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Abstract—TFile transfers between the decentralized storage
sites over dedicated wide-area connections are becoming in-
creasingly important in high-performance computing and big
data scenarios. Designing such scientific workflows for large file
transfers is extremely challenging as they depend on the file,
I/O, host, and local- and wide-area network subsystems, and
their interactions. To gain insights into file-transfer rate pro-
files, we develop polynomial, bagging, and boosting regression
models for Lustre and XFS file transfer measurements, which
are collected using XDD over a suite of 10 Gbps connections
with 0-366 ms round trip times (RTTs). In addition to overall
trends and analytics, these regressions also provide file-transfer
rate estimates for RTTs and number of parallel flows at which
measurements might not have been collected. They show that
bagging and boosting techniques provide closer data fits than
the polynomial regression. We develop probabilistic bounds on
the generalization error of these methods, which combined with
the cross-validation error establish that former two are more
accurate estimators than the polynomial regression. In addi-
tion, we present a method to efficiently determine the number
of parallel flows to achieve a peak file-transfer rate using fewer
than full sweep measurements; in our measurements, the peak
is achieved in 96% of cases with 15-25% of measurements of
a full sweep.

Keywords-Wide area transport; dedicated connections; TCP;
throughput profiling; regression; cross-validation; fast probing.

I. INTRODUCTION

Scientific workflows related to file transfers among
geographically-dispersed data storages are critical for having
successful collaborations among researchers in many sci-
ence areas, including biology, chemistry, climate science,
computing, materials science, physics, and others [1], [2].
These workflows originate due to a variety of purposes,
including archiving (from compute/instrument systems to
storage sites), post-processing and visualization (from stor-
age sites to compute/visualization facilities). For example,
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in climate science, large collections of observational climate
data and simulated data are stored in various distributed data
repositories, and the Earth System Grid Federation (ESGF)
grants remote access of these datasets to thousands of users
for analysis and visualization purposes.

The support infrastructure is being enhanced in several
ways to facilitate such data transfers. The wide-area net-
works, such as the Department of Energy’s ESnet, pro-
vide on-demand, dedicated links [3], and high-performance
filesystems, such as Lustre [4], deployed with large collec-
tions of disk drives provide site-wide access. Then, dedicated
hosts, such as Data Transfer Nodes (DTNs) [5], employ
tools, such as GridFTP [6] and XDD [7], to transfer the
files. However, even after these developments, significant
challenges remain in designing disk-to-disk file transfer
workflows over wide-area connections, as they involve a
complicated composition of filesystems, I/O, and local-
area and wide-area network segments. Sustaining high file
transfer rates requires joint optimization of these parameters
to account for the impedance mismatches among them [8].

We measured file I/O and network throughput, and file
transfer rates or throughput of Lustre and XFS file systems
for a suite of seven emulated connections in the 0-366 ms
RTT range. Significant statistical variations in measurements
are observed due to the complex interactions of non-linear
TCP dynamics with parallel file I/O streams. Consequently,
it became necessary to repeat the measurements to ensure
confidence in analytics based on them. To gain insights into
the transfer rate profiles, we develop polynomial, bagging,
and boosting regression models [9] for these measurements
as functions of RTT and number of parallel flows. These re-
gressions indicate the overall transfer rate trends as functions
of various parameters, namely, monotonicity or unimodality
with respect to the number of flows. In addition, they
provide transfer rate estimates for configurations at which
measurements have not been collected, for example, at new
RTT and/or number of flows.

Our results show that both bagging and boosting tech-
niques provide better data fits compared to the polynomial
regression. Their regression functions, however, are quite
different: the polynomials are smooth, namely, infinitely
differentiable, whereas the other two are not differentiable
at all. It makes it harder to compare them at a finer level
based solely on the data fit error, particularly, in terms
of their accuracy in regions where no measurements are
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collected. We estimate probabilistic performance bounds on
their generalization errors using the Vapnik-Chervonenkis
theory [10]. Combined with the cross-validation errors, these
results indicate that both bagging and boosting estimates are
more accurate than the polynomial regression, and in addi-
tion they provide insights into optimal parameters needed
for these regression methods.

The regression models are built using a complete full
sweep measurements; however, collection of this many mea-
surements required weeks to months of dedicated system
time. The d-w method has been proposed in [11] for iden-
tifying near-optimal performance using significantly fewer
measurements. By exploiting the overall unimodality of
the profiles, this method implements a stochastic gradient
approach using d repeated measurements over w-sized win-
dows; in particular, this method utilizes jumps across the
w-window, which does not necessarily follow the regression
trends. We present in this work a regression-driven d-w
method that utilizes all d measurements within w-window
for gradient computation. The performance analyses of this
method show that for both Lustre and XFS filesystems
the peak throughput is achieved in more than 96% of
cases while using only 15-25% of total measurements, and
these performances in general are commensurate with those
in [11], and are better in the specific case of default file I/O.

The rest of the paper is organized as follows. We summa-
rize related work in Section II; describe network transport,
file I/O subsystems, and XDD file transfers, and present
an overview of the file transfer measurements with various
filesystem configurations in Section III; present a detailed
regression analysis to fit the measurements and derive the
probabilistic bounds on the generalization error in Sec-
tion IV; and describe our d-w method and its performance
analysis in Section V. We conclude in Section VI.

II. RELATED WORK

Regression techniques have been applied to analyze file
transfer rates over shared [12] and dedicated connec-
tions [13], and recent advances in analytics [14] provide
additional perspectives for these transfers. In particular, sim-
ple mean- and median-based models are used for GridFTP
transfers in [12] and piece-wise linear regressions are used
for file throughput over dedicated connections in [13]. In
contrast, we apply more advanced bagging and boosting
regression methods, and analytically derive the correspond-
ing probabilistic bounds on the generalization error. There
exist a number of tools for choosing parameter values
to maximize file transfer performance. The GridFTP-APT
project develops models that identify TCP buffer sizes and
number of TCP flows for improved transfer performance,
and builds tools for dynamically changing the number of
connections during a file transfer [15]. Kissel, et al. [16],
use similar optimizations as GridFTP-APT, but leverage
the Phoebus network transport layer that includes its own
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Figure 1: File transfers over long-haul connections.

dynamic network optimization scheme to improve GridFTP
file transfer performance. There is also previous work on
estimating optimal parallel storage system parameters [17],
[18], [19]. Our work is similar but we attempt to op-
timize both network and storage system parameters, and
use measurements rather than coarse-grain TCP behavior
to estimate optimal parameters. The d-w scheme [11] is
similar to the more computationally intensive techniques,
such as stochastic gradient descent [20]; but our window-
average implementation does not require significant amounts
of training data for each source-destination pair. It can be
viewed as an implementation of the stochastic approximation
method [21] with derivative computation based on averaged
measurements within w-window.

III. EXPERIMENTAL SETUP AND MEASUREMENTS

A wide-area disk-to-disk file transfer involves reading
from a source filesystem, transporting the file data across
the local- and wide-area networks, and creating and writing
the file contents on a destination filesystem. Therefore, the
transfer process encompasses multiple subsystems, such as
storage devices, data transfer hosts, and LAN and WAN
connections, as illustrated in Fig. 1.

A. Experimental Setup

Measurements of file transfer rates for Lustre filesystems
using XDD (described in next subsection) are collected
over our testbed that includes two dedicated 48-core Linux
servers and an emulated 10 Gbps connection for RTT
T = 0.4, 11.6, 22.6. 45.6, 93.6, 183, and 366 ms. The
network connections are emulated in hardware using ANUE-
ixia devices to which host 10GigE interfaces are directly
connected; see Fig. 2. The Lustre filesystem is mounted
over a local InfiniBand network. The individual throughput
profiles of network transport and disk file I/O are obtained
by sweeping over the values for various system parameters.
We collected TCP throughput measurements using iperf and
the file I/O throughput using xddprof.

B. XDD File Transfers

A single XDD process spawns a set of threads to open
a file and perform data transfers between either storage and
memory or memory and the network. A set of source-XDD
and destination-XDD processes are need to be paired to ac-
complish the file transfer. A source-XDD process generates
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Figure 2: Test configurations of emulated long-haul connections.

a TargetThread that opens the file, and creates a number
of QThreads that issue read commands to fill a thread-local
buffer, and subsequently transfer those buffered data over the
network to a destination-XDD process. A destination-XDD
process performs similar tasks in reverse order to receive
data from the network and write them into the storage
system. The number of source and destination QThread pairs
is equal to the number of TCP parallel streams, and hence
we refer to each source-destination QThread connection as
a flow. XDD reports read transfer rate at the sender and
write transfer rate at the receiver for each file transfer by
aggregating across all flows.

C. File Transfer Measurements

We collected three sets of XDD disk-to-disk write file
transfer measurements, for Lustre, one with the buffered
I/O (the Linux default), another with the direct I/O option
(avoids the local copy of the file on the host), and a third
one for XFS. Each configuration measurement was repeated
10 times, and can be regarded as independent.

1) Lustre-to-Lustre Default 1/0

In the default I/O Lustre setup, the number of flows varies
from 1 to 8, and the number of stripes 2 and 8. A few
representative throughput profiles of write transfer rates are
plotted in Figs. 3(a) and 3(b). We observe that the overall
throughput profiles are unimodal with respect to the number
of flows. When 2 stripes are used, at lower RTTs, mean
throughput peaks at 4 flows, and takes a nosedive at 6 flows.
The sharp drop is progressively delayed at higher RTTs.
Comparing the profiles between 2 stripes vs. 8 stripes, we
notice somewhat higher transfer rates at lower RTTs with 2
flows and 4 flows when 2 stripes are used, whereas use of
8 stripes yields slightly higher rates at higher RTTs with 8
flows. However, the sharp drop in throughput, if any, occurs
earlier, at 5 flows, when 8 stripes are used.

2) Lustre-to-Lustre Direct 1/0

We use similar configurations for direct /O Lustre ex-
periments: the number of flows from 1 to 10, and the
number of stripes 2 and 8. The corresponding plots are
shown in Figs. 3(c) and 3(d). The throughput profiles show
monotonically increasing trends with respect to the number
of flows. Comparing the performances of 2 vs. 8 stripes,
we notice that the use of 2 stripes yields somewhat higher
transfer rates for lower flow counts. With more flows, overall
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throughput is higher, and 8 stripes is the better option.
Also, the peak transfer rates with 10 flows and 8 stripes
demonstrate a significant improvement over the default I/O
Lustre counterparts.
3) XFS

For XFS, the number of flows varies from 1 to 10, and
the throughput profile plot is shown in Fig. 3(e) for various
RTTs. Similar to the Lustre direct /O configuration, the
overall throughput exhibits predominantly increasing trends
with respect to the number of flows; although compared
to the former, the throughput increases much faster with
increasing flow counts in lower RTT cases.

IV. REGRESSION ANALYSIS

In this section, we first describe three regression tech-
niques, namely, polynomial, bagging, and boosting, applied
to file transfer rate measurements of previous section, and
derive probabilistic bounds for their generalization error.
A. Polynomial Regression

To model the nonlinear relationship between the predic-
tors and response, the polynomial regression method is the
most simple approach, which includes polynomial functions
of the predictors in the regression model [9]. In general,
considering the number of flows (n) and RTT (7) as two
predictors, a polynomial regression model f,o1y () of file
transfer rate or throughput that includes the interaction terms
of the predictors is given by

footy(n, 7) Bo + Bin + Pat + Bsn® + BanT
057 4 -+ Buuy 2 antM

+51\4(M+1)/2+MTM7
where M denotes the degree of the polynomial and Ss are
the regression coefficients or parameters. Now, since this
model is still a linear model with predictors n, 7, nr, n2,
72, etc., we can use standard least squares linear regression
to estimate the regression coefficients s and produce an
overall nonlinear fit fpo1y (-).

To select the polynomial degree M, we apply the k-
fold cross-validation method. In this approach, the whole
throughput measurement set is randomly divided into &
subsets, or folds, of approximately equal size. Among these
k folds, the first fold is considered as a validation set, and
the regression training is applied on the remaining k& — 1
folds altogether. The cross-validation mean-squared error
(CVMSE;) is then computed with respect to the held-out
validation fold. This procedure is repeated k times with a
different fold of observations as a validation set in each time.
Finally, the overall cross-validation error is computed by
averaging {CVMSE;,i =1,2,...,k}.

Fig. 4 summarizes the results of cross-validation approach
when applied to both the Lustre default I/O and Lustre direct
I/O datasets. In case of Lustre default I/O with 2 stripes
the cross-validation root mean-squared error (CVRMSE)
monotonically decreases with the increase in model order,
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Figure 3: Mean throughput profiles of Lustre default I/O, Lustre direct I/0, and XFS file write transfer rates.

but the amount of such decrease becomes progressively
smaller at higher model order; see Fig. 4(a). Therefore, it
seems that a polynomial with degree M = 3 or 4 is required
to fit the 2-striped Lustre default I/O data. On the other hand,
the CVRMSE of Lustre direct I/O with 2 stripes remains
almost constant to its value at M = 2 as model order is
increased. Hence, a polynomial model with degree M = 2
would be sufficient for the 2-striped Lustre direct I/O dataset.
From Fig. 4(b) we notice similar performances of Luster
default I/O and direct I/O with 8 stripes.

In addition, from the training data portions of the cross-
validation method, we compute the adjusted—R2 statistic,
defined as adjusted-R? = 1—[RSS/(P—L—1)]/[TSS/(P—
1)], where RSS is the residual sum of squares of the fit, TSS
is the total sum of squares of the data, P is the size of data,
and L is the number of predictors in the model. Unlike the
usual R? statistic that always increases as more predictors
are added to the regression model, the adjusted-R2 metric
pays a price for the inclusion of unnecessary predictors in
the regression model. In Figs. 4(c) and 4(d), we respectively
show the variations of the adjusted-R? value with respect to
M for both 2 and 8 stripes Luster default I/O and direct I/O
datasets. These results also corroborate that, to fit the Lustre
default I/O and direct I/O datasets, we require M = 3 (or
4) and M = 2, respectively.

In Fig. 4, we also depict the variations in the number of
statistically significant predictors, whose p-value < 0.00001,
with respect to the model order. A small p-value indicates
that there is an association between the predictor and the
response. From Figs. 4(e) and 4(f), we observe that for the
Lustre default I/O the number of significant predictors peaks
at M = 3 for both the 2-striped and 8-striped datasets;
at M = 4 the number remain the same for the 2-striped
dataset only. For Lustre direct I/O, at M = 2 the number of
significant predictors becomes the maximum and equals to
the total number of predictors. Therefore, we reiterate that
the polynomial models with M = 3 and M = 2 respectively
fit the Lustre default I/O and direct I/O datasets.

The polynomial regression fits with M = 3 and M =
2 respectively to the Lustre default I/O and direct I/O are
shown in Fig. 5, along with the measured datasets. For the
Lustre default I/O, we show the throughputs with respect to
RTT for 1 flow and 4 parallel flows; whereas for the Lustre
direct I/O, we depict the same for 1 flow and 10 flows. It is
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Figure 4: Results of cross-validation analysis with respect to
polynomial regression model order for the Lustre default and direct
I/O file write transfer rates.

evident that the polynomial regression model fits the Lustre
direct I/O relative better than the Lustre default I/O.
B. Bagging

To capture the nonlinear interactions among the predic-
tors, an alternative approach to the polynomial regression
(with interaction terms) is the decision tree based methods.
Bagging is one of such powerful regression models that
uses decision trees as the basic building blocks [9]. In
this approach, B different trees f,(-) are trained on B
bootstrapped datasets {ny, 75 }, which are obtained by taking
repeated samples from the original training set {n, 7}. Each
of these trees are grown very deep, and are not pruned.
Hence, each individual tree overfits each bootstrapped data
and results into high variance but low bias. As averaging
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is a natural way to reduce variance, the bagging regression
model is formulated by taking the average of all trees as

1 B
fbag(an) = B Zfb(nbﬂ'b)-
b=1

In Fig. 6, we show various performance measures of the
bagging regression method with respect to the number of
trees and the relative importance of the predictors. Figs. 6(a)
and 6(b) depict the cross validation root mean-squared error
as a function of B respectively for the 2-striped and 8-striped
Luster default and direct I/O datasets. In the bagging context,
this error is also known as the out-of-bag (OOB) error,
which is calculated using the OOB observations, i.e., the
remaining observations not used to train a particular bagged
tree. We observe that the OOB error initially decreases and
then becomes almost constant as we increase B. In both the
2-striped and 8-striped scenarios, the Lustre default I/O has
smaller OOB error than that of the Lustre direct I/O.

The variations of the R? statistic with respect to the
number of trees are shown in Figs. 6(c) and 6(d) respectively
for the 2-striped and 8-striped Luster default and direct
I/O datasets. In both cases, the R? values remain almost
constant, except for slight increments at small values of B.
When 2 stripes are used, the R? statistic of the Lustre default
I/O is larger than that of the Lustre direct I/O; whereas that
trend gets reversed when 8 stripes are used.

The relative importance of the predictors (number of flows
and RTT) are depicted in Figs. 6(e) and 6(f). To calculate
this measure, we first record the total amount of decrease in
RSS due to splits in decision trees over a specific predictor,
and then take average over all B trees. Therefore, a large
value associated with a predictor signifies a large decrease
in RSS due to splits with respect to that predictor, and
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Figure 6: Results of cross-validation analysis of bagging regres-
sion method for the Lustre default and direct I/O file write transfer
rates.

hence indicates that particular predictor is important. From
this perspective, the number of flows appears to be more
important predictor than RTT for both the 2-striped and 8-
striped Lustre default I/O and direct I/O datasets.

In addition, in Fig. 7, we demonstrate the bagging re-
gression fits with B = 50 for the Lustre default I/O and
direct I/O alongside the measured throughput variations. As
before, we show the throughput profiles for 1 flow and 4
flows of the Lustre default 1I/O; and those for 1 flow and
10 flows for the Lustre direct I/O. These bagged regressions
show improved fits than the polynomial regressions.

C. Boosting

Another regression approach that involves decision trees
as the core technique is the boosting method [9]. Unlike
bagging, where each tree is grown independently on a
bootstrapped data, in boosting, the trees operate on the
original training data and they are built sequentially using
the residual information from the previously grown trees.
The motivation behind such an approach is that each tree,
typically having a small depth, when fitted to the residuals
can improve the overall predictions in areas where the previ-
ously grown trees did not perform well. Hence, the boosting
method follows the philosophy of learning slowly to improve
performance. Mathematically, the boosting regression model
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with B decision trees can be written as

B
fboost (TL, T) = Z )\fb(na 75 Rb)a
b=1
where ) is known as the shrinkage parameter that controls
the rate at which the boosting method learns; and Ry, is the
residual values applied to the bth tree. At the beginning,
Ry is initialized with the measured throughput values, i.e.,
Ry =Y, and then it is sequentially evaluated as Ry
Ry—1 — Afp—1(n, 75 Rp—1).

Fig. 8 demonstrates the performance of the boosting
method for both the Lustre default I/O and Lustre direct
I/O datasets. The cross-validation root mean squared errors
show monotonic decrease as the number of trees is increased
for both the 2-striped and 8-striped Lustre datasets; see
respectively Figs. 8(a) and 8(b). We notice that, for the
Lustre direct I/0, the cross-validation errors become almost
constant when the number of trees is increased beyond, say,
B = 500; whereas the cross-validation errors for the Lustre
default I/O continue to decrease even when B = 1000.
Furthermore, at higher B values, the cross-validation error
of Lustre default I/O is smaller than that of direct I/O.

The variations of R? statistic with respect to B are plotted
in Figs. 8(c) and 8(d) respectively for the 2-striped and
8-striped Luster default and direct I/O measurements. As
observed in the cross-validation performance, the values of
R? statistic for the Lustre direct I/O become almost constant
at B = 500 and above; whereas R? statistic for the Lustre
default I/O always increases with B. Similar to the bagging
method, at higher B values the R? statistic of the Lustre
default I/O is found to be larger than that of the Lustre
direct I/O when 2 stripes are used, and the relationship is
flipped when 8 stripes are used.
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Figure 8: Results of cross-validation analysis of boosting regres-
sion method for the Lustre default and direct I/O file write transfer
rates.

The barplots in Figs. 8(e) and 8(f) showing the relative
importance of the predictors demonstrate very similar per-
formances as in bagging. These plots again suggest that, for
both the 2-striped and 8-striped Lustre datasets, the number
of parallel flows is a more important predictor than RTT in
terms of the amount of RSS reduction in the regression fit.

The boosting regression fits with B = 500 to the Lustre
default I/O and direct I/O are shown in Fig. 9, along with
the measured throughput values. As before, we show the
boosting fits to throughput profiles for 1 flow and 4 flows
of the Lustre default I/O; and those for 1 flow and 10 flows
for the Lustre direct I/O. Overall, the performance of these
boosting fits seems to be in between those of the polynomial
and bagging regression fits.

In addition, we repeat the above regression analysis for the
XFS configuration, and the results for bagging and boosting
techniques are shown in Fig. 10. The observations we gather
from these plots largely conform with those that we have
seen in both Lustre configurations as well; namely, bagging
in general leads to overall better fits than boosting, and with
large number of trees their performances are almost similar.
D. Generalization Bounds

The regression models f,,a = poly,bag, boost, are
useful in identifying the overall throughput trends, that is, the
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Figure 9: Results of boosting regression fits on the Lustre default
and direct I/O file write transfer rates: solid lines — measured data,
broken lines — fitted data.

monotonic decrease with respect to RTT 7 and unimodality
with respect to the number of parallel flows n. From a
practical perspective, collecting measurements at a new RTT
might incur a significant cost of establishing a new long-
haul connection. If such a connection is available, however,
the measurements at a new n value involves only executing
the file transfer code. Collecting measurements in either
case is time-consuming (even with emulators) because files
need to be physically transferred over the connection, and
furthermore the transfer times increase with RTT. As such,
the regression models can be used to provide point through-
put estimates for given n and 7, particularly, for values at
which measurements have not been collected. In addition,
the regression function f, can be used to identify the optimal
n* to achieve the maximum throughput for a given 7,
for example, by using estimated gradients W Once
regression is estimated based on prior measurements, n* can
be estimated computationally; typically, measurements at a
large number of parameter setups are needed to ensure such
estimation accuracy. At the other extreme, a connection with
a given RTT 7 may be set up and measurements at several n
values collected, and in the next section we present a method
that avoids a complete sweep of n values.

In either case, the effectiveness of this method critically
depends on the accuracy of the throughput estimates, which
in turn depends on the regression function and its empirical
error RSS. We analyze these methods using the Vapnik-
Chervonenkis theory [10], which provides a basis for their
performance comparison, and indeed confirms the empirical
observations from the previous subsection.

The file transfer throughput 6,, -, using n flows over a
connection with RTT 7, is a random variable. Its distribution
Py, , is quite complex since it depends on file, host and
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network subsystems and their interactions. We define the
throughput regression as

G(n, ™) = E[f(n, 7)] = / 0(n, 7)dPy

which depends on generally unknown Py, _. It can be
estimated using [, measurements 6(n, 7%, 5), j = 1,2, ..., i
collected over connections with RTT 73, k = 1,2,...,m.
Consider an estimator f for the regression f(n,7) chosen
from a function class F, for example, polynomials. The
generalization error I(f) of such an estimator f is

1(f) / [ (n,7) — O(n, )P

and the best estimator f* is given by I(f*) = minger I(f).
The best empirical estimator f € F minimizes the empirical
error RSS

1 m
I il
that is, I(f) = minger I(f). Here, f is best sample-

based approximation of ideal f* for which the Vapnik-
Chervonenkis theory [10] provides the following perfor-

n,T

n,r)

Iy
1
TZ TLTk —9(’[7, Tk?.])}27

mance guarantees. Let | = > [ denote the total number

k=
of measurements. Then, we ha\lze
P {I (f) > I(f%) +e}
P {r}?ax |1 (k) —1(h)] > e/z}

16N (5. F) te™e1/ 60"

where 0, » < C, and Ny (e, F) is the e-cover of F under
Lo norm. The regression f, is chosen from class F,, and

fr and f, are the expected and empirical best estimates.

IN

IN

For polynomial regression, functions of F, have a
bounded Lipschitz constant £, given by the maximum
gradient, and their e-cover is bounded as [22]:

2L [£]
NOO (67-7:poly) < ?2 <4,
when 7 and n are scaled to the range [0,1]. Thus, the
expected error I( fpoly) of the profile mean is within € of
the optimal error I(f},,) with a probability that increases
with [, and is independent of the underlying distributions.

The functions in F, used for bagging and boosting
regression estimates have the total variation upper bounded
by 2C, which provides us the upper bound ([23], p. 175):

€

N (LHC/€) g (26/C)
W (507) <2 (3)

By using this bound, we obtain

P{I(fa) > I(fs) + €}
( I )(1+C’/e) log, (4¢/C)

]-"a) <2

<32 le=< /20
As before, the expected error I( f,) is within e of the optimal

error I(fr) with a probability that increases with .
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Figure 10: XFS regression performance.

The regression estimator f, is not in general guaranteed
to minimize the expected error I(.) or the empirical error
I(.). In particular, consider that I(f,) = I(f.) + é, for
€, > 0, and that with probability at most J,, we have the
condition P { maxpcz, |I (h) — I(h)| > 6/2} as described
above. Then, with probability at least 1 — §,, we have

I(fa) < I(fa)+€/2=1(fa) +éa+e/2
< I(f)+ea+€/2 < éa+I(f)+e
Now, since f(fa) > 0, we have ¢, < f(fa). Thus, with
probability at least 1 — d,, we have the condition I(f,) <
I(fa) + I(fZ) + €, which can be equivalently stated as

P{I(f) > I(fa) +1(£2) + ¢} < 6.

This condition indicates that the generalization error of
fo depends on two main factors: (a) its empirical error
I(f,) which is reflected in CVRMSE of f,, and (b) the
best possible error I(f¥) achievable by the class F, itself.
We note that the above three estimator classes have strong
approximation properties which make the second term small.
Consequently, the generalization error is mainly determined
by the data fit, as confirmed by the lower cross-validation
errors described in the previous subsections. Furthermore,
increasing the number of parameters of f,, such as the
degree of polynomials and number of regression trees,
beyond a certain limit does not improve its generalization,
as indicted by a small or no reduction in CVRMSE.

V. FAST PROBING METHOD FOR PEAK TRANSFER RATE

In this section, we describe a fast probing depth-width (d-
w) method and analyze its performance characterization.

A. D-W Method

The basic idea of our d-w method is to exploit the
observed unimodality of transfer rate measurements with
respect to the number of flows. The monotonicity property of
Lustre direct I/O is a special case of unimodality. We utilize
a stochastic gradient search method that starts with the
largest number of flows, and continues to strategically probe
multiple configurations (e.g., number of flows) with the
objective of identifying the peak throughput with the fewest
probes. According to Algorithm 1, at each configuration of
width w, we collect d repeated measurements and compute
their averages. Using those w averaged throughput values,
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Algorithm 1 D-W Probing Algorithm

1: initialize: i = max flow
2: while i > w do
3: w-width configuration: P; = {i—w+1,...,i—1,i}
4 d measurements: y; = {y; 1,%i,2,---,Yi.d} Vi € P;
50 Vi ={Jicws1,-- Bk with i = (1/d) Y0, i
6 Si=(1/(y)) Z,gi)l sk. where s = slope(¥i1, Ui2),
_ _ i1, Yio € Yi, il # 42
if (SZ < 0) and (Si—l < 0) then
Popt =P B
: lopt = argmax Y; 1
10: Ypeak = MAX Y,
11: break
12: 14—1—1

we evaluate the mean-slope of that configuration by averag-
ing (g) pairwise slopes of the averaged throughput values.
We keep on shifting to a new probing configuration by
decreasing the number of flows by one until two consecutive
configurations result in negative mean-slopes. This stopping
criterion reduces the risk of premature termination due to
variability of insufficient observations. Finally, from the
selected configuration, the setting with the highest average-
throughput is chosen as the optimal probed setting.

Potentially there are different choices of d, w values. The
larger the d value, the greater is the chance of correctly
identifying the peak transfer rate, but at the cost of extra
probing overhead. On the other hand, a large w value helps
to smooth out any local variations, but also increases probing
overhead by including additional configurations.

B. Performance Characterization

We characterize the overall performance of the d-w
method in terms of probing overhead and probing accuracy.
We express probing overhead (in percentage) as the ratio
between the number of probes actually performed by the d-w
method to the complete configuration sweep. To characterize
probing accuracy, we utilize: (i) flow selection accuracy and
(ii) peak throughout accuracy. We evaluate the flow selection
accuracy as the fraction of times the d-w method correctly
identifies the flow at which we actually observed the peak
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transfer rate. The peak throughput accuracy is computed as
the ratio between the peak throughput returned by the d-w
method to the measured peak throughput.

The performance analyses of the d-w method are shown
in Figs. 11-13 for both 2-striped and 8-striped Lustre default
1/0 and direct I/O file transfer rate measurements. For these
analyses, we use (d,w) = (3,2), (3,3), (5,2), (5,3). For the
Lustre default I/O, the probing overhead decreases as RTT
is increased, because the configuration having peak transfer
rate changes from 4 flows at lower RTTs to 8 flows at
the maximum RTT. Also, the probing overhead increases
with increasing d and w values. From the analyses of flow
selection and peak throughput accuracies, we notice that a
change in w value does not affect the performance if d
value is kept fixed, but a change in d value improves the
accuracy performance. Overall, we get more than 90% flow
selection accuracy (except at one RTT for 2 stripes) and
more than 98% peak selection accuracy. Therefore, a method
with (d,w) = (3,2), which corresponds to the lowest probing
overhead, appears reasonable for the Lustre default I/O.

For the Lustre direct I/O, the probing overhead remains
almost constant at different RTTs; this is because the peak

0 100 200

RTT

(d) direct 1/O, 8 stripes

100 150 200

RTT

0 50

(c) direct /O, 2 stripes

of peak throughput accuracy with respect to RTT.

throughput in general occurs at the maximum 10 flows for
all the RTTs. Also, with the increase in the d and w values,
the probing overhead increases expectedly. The analyses on
probing accuracy show more variations than those observed
with the Lustre default I/O. Particularly, an increase in w
value considerably improves the flow selection and peak
throughput accuracies at the lower RTTs. Overall, keeping
w 3 ensures more than 85% flow selection accuracy
and more than 96% peak selection accuracy. In addition, an
increase in d value also improves the accuracy performances.
Therefore, to keep the probing overhead low, a method with
(d,w) = (3,3) seems appropriate for the Lustre direct I/O.

In addition, we also compare the performance of our d-w
method with the one proposed in [11]. Whereas d has the
very same meaning in the other method, w does not denote
the width of the sliding window there; rather, it describes the
interval between probed configurations (e.g., w = 2 means
every other configuration is jumped over). Select probing
results of this alternate d-w implementation for Lustre 8
stripes are plotted in Fig. 14. These results are largely
commensurate with those shown in Figs. 11-13, although
it appears the d-w method of this work yields somewhat
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better throughput accuracy performance for default I/O, and
the other method leads to higher accuracy for direct I/O.

VI. CONCLUSIONS

We presented disk-to-disk file transfer measurements for
Lustre and XFS filesystems over emulated dedicated con-
nections for a wide range of RTTs, and provided regression
analysis to quantify the relationship between these file
transfer rates and the corresponding system parameters, such
as RTT and number of parallel flows. These results along
with the probabilistic bounds on the generalization error of
the regression methods provide valuable insights needed to
predict the performance of file transfers. In addition, large
variations in measured transfer rates indicate that repeated
measurements are often necessary to ensure estimation
confidence. Our gradient-descent based d-w method avoids
the need for time-consuming full sweeps of all parameter
combinations by probing a small number of measurements
to identify configurations that achieve peak rates. Future
directions include detailed analytical development of the d-w
method and its variants in terms of performance guarantees.
It will also be of interest to develop methods that dynami-
cally adapt d and w values based on measurements.
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