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Abstract—Neutron-based parallel-beam laminography is an
important 3D characterization tool because it can image thick
specimens with unique shapes and provides a complimentary
contrast to X-rays for several elements relevant to the mate-
rial sciences and biology. However, the inversion of neutron
laminography data is complicated because of the non-traditional
geometry of the set-up, the presence of noise and the occurrence
of gamma hits on the detector during the course of an experiment.

In this paper, we present a model-based/regularized-inversion
reconstruction algorithm for neutron laminography. We intro-
duce a new forward-model/data fitting term and combine it
with a flexible regularizer function to formulate the recon-
struction as minimizing a cost-function. We then present a
novel optimization algorithm that is based on combining a
majorization-minimization technique with a first-order method
that is amenable to simple parallelization on multi-core architec-
tures. Using simulated and experimental data, we demonstrate
that it is possible to acquire high quality reconstructions com-
pared to the typically used filtered-back projection algorithm and
algebraic reconstruction techniques.

I. INTRODUCTION
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Fig. 1. Illustration of the set-up used for neutron laminography. The sample is
tilted by an angle «, rotated and imaged, allowing for thin lamellar samples to
be measured without heavily attenuating the beam. When o = 0, this set-up
corresponds to conventional parallel-beam tomography.

Laminography refers to a set of techniques that have been
developed to reconstruct samples which have large lateral
dimensions which make them difficult to scan using conven-
tional tomography geometries [1]. Along with tomosynthesis
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Gamma Hit
Illustration of a single radiograph from a neutron laminography
experiment of an additively manufactured thin cylindrical metallic part. Notice
that in the zoomed in section there is a set of pixels that are bright (contrast
adjusted for emphasis) caused by gamma rays hits on the detector. Typically,
there are several such hits at various locations and at different images in the
data set.

Fig. 2.

[2] and limited-angle tomography [3], laminography repre-
sents a variant of conventional computed tomography (CT)
in which the source, object and detector are oriented in a
manner such that sufficient measurements of the projections
of the object can be made and used to reconstruct the sample
reliably. Laminography has been demonstrated to be useful
in several applications including defect detection in semicon-
ductor wafers [4], characterizing historic artifacts [5], and
reconstructing polymer lamellar samples [6]. In summary, with
the growing use of tomographic techniques to characterize
samples with varied shapes for emerging applications such
as additive manufacturing, laminography is a vital tool for
characterizing samples in 3D.

As with conventional CT, laminography techniques have
been developed for cone-beam geometries using table-top
X-rays systems [7] and for parallel-beam geometries using
synchrotron based X-rays [8] and neutron sources [9]. In this
paper, we focus on algorithms for parallel-beam laminography
in which a sample is tilted, rotated, imaged (see Fig. 1) and
then reconstructed. Neutron-based parallel-beam laminogra-
phy [5], [9], typically carried out at high-flux research reactors
or pulsed-neutron facilities, is an important 3D characteriza-
tion tool because it can image thick specimens with unique
shapes and made of “high-Z” (atomic number) materials. In
particular, since neutron cross-section is not correlated with
the atomic number of an element like for X-rays, neutrons
can penetrate materials made of high-Z elements more easily
than X-rays. However, the inversion of neutron laminography
data is complicated because of the non-traditional geometry
of the set-up, the presence of noise and the occurrence of
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gamma hits on the detector (see Fig. 2) during the course of
an experiment.

The most widely used algorithms for parallel-beam neu-
tron laminography are based on pre-processing the data to
deal with the gamma hits followed by the application of a
variant of the filtered back-projection algorithm [10], [11]
or an algebraic reconstruction technique [12]. However, due
to the geometry of the set-up, there are typically “missing
cones” of information in Fourier-space [10], resulting in noisy
reconstructions with artifacts and a loss of resolution due to
the pre-processing. The reconstructions may also be affected
by streaks due to the presence of the gamma hits if these
are not detected and filtered-out by the pre-processing steps.
Furthermore, algebraic reconstruction techniques like SIRT
[13] do not have a well defined convergence behavior and may
result in increased noise as the number of iterations increases.
In summary, while the conventional approaches for parallel-
beam laminography provide a reasonable reconstruction there
are still several challenges in being able to obtain high-quality
reconstructions from typical data sets.

Model-based inversion techniques [14], which involve for-
mulating and minimizing a cost-function that balances a data
fitting term (derived from a forward model) and a regularizer
(derived from a prior model) have been shown to dramati-
cally improve reconstruction quality for several limited-angle
[15], [16], sparse-view [17], [18] and low-dose tomography
applications [19]. Recently, such techniques have been devel-
oped for cone-beam X-ray laminography [20], [21], showing
improvements in image quality over the standard approaches.
However, these approaches do not account for the occurrence
of gamma hits and the Poisson-like characteristics of the noise.
Furthermore, these approaches are strongly coupled to a the
total-variation regularizer which is best suited to samples with
“discrete” regions with sharp edges.

In this paper, we present a model-based reconstruction
algorithm for parallel-beam neutron laminography. First, we
design a new forward model/data-fitting term that combines a
projection matrix that models the complex geometry of the
system, a data-dependent weighting term for modeling the
noise and a penalty term based on a Huber-like function [22]
that is robust to outliers. We then present a novel optimiza-
tion algorithm that is based on combining a majorization-
minimization [15]-[18], [23], [24] technique with a first-order
method inspired by the optimized-gradient method [25] that is
amenable to simple parallelization on multi-core architectures.
Using simulated and experimental data, we demonstrate that
it is possible to acquire high quality reconstructions compared
to the typically used filtered-back projection algorithm and al-
gebraic reconstruction techniques even without pre-processing
the data sets to filter-out the gamma hits.

II. FORMULATING THE COST FUNCTION

Neutron laminography is a parallel-beam transmission
modality in which we estimate the attenuation coefficients of
the sample from a collection of measured transmission images
that are corrupted by noise as well as gamma-hits. In order
to reconstruct the attenuation coefficients associated with the
sample, we use the MBIR [19] framework. The reconstruction
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Fig. 3. Tllustration of the Talwar function Sp for T' = 2.5. The red dashed
line shows the typically used least-squares penalty in several algorithms.

is formulated as a minimization problem,

f:arg]{nin{l(g; ) +s()} ¢))

where ¢ is the vector of log-normalized measurements, f is
the vector containing all the attenuation coefficients, I(;) is
a data fidelity enforcing function and s(.) is a function that
enforces regularity in f. We utilize a data-fidelity term that is
designed to handle outliers [16], [17], [22], [26] of the form

Ugs ) = 3 3 Brlle: — ATV W) @

where A is a forward projection matrix, W is a diagonal matrix
with entries set to be the inverse variance of the noise in g;,

Br(z) = {%

T? |2|>T

lz] < T

is a generalization of the Huber function [27] (also called
the Talwar function [28], [29]) (see Fig. 3) and 7T is the
outlier threshold. The particular form of 3 function is a more
accurate model for data with outliers compared to the widely
used quadratic penalty [30]. The entries of W are set such that
Wi = X\;, where \; is the raw un-normalized measurement
[30]. We design A to model the laminography geometry of
our set-up by using the ASTRA tool-box [31], [32] that can
utilize multiple GPUs [33], [34] to accelerate the application
of this matrix.

For s(f), we choose the negative log of g-generalized
Markov-random field (QGGMRF) probability density function
[35]. It is given by

s(f) = > wire(fs — fr)
{j,k}eEN
L=t |?
L — If
p(fj fk) o % 2—p

N is the set of pairs of neighboring voxels (e.g. a 26 point
neighborhood), 1 < p < 2, c and oy are qGGMRF parameters.
The weights w;j are inversely proportional to the distance
between voxels j and k, normalized to 1. This model provides
a greater degree of flexibility in the range of reconstructions
compared to an algorithm specifically designed for a total-
variation regularizer [36] that may force the reconstructions
to appear “waxy” [14]. In particular, when p = 1 we get a
behavior similar to a total-variation model and when p = 2
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the regularizer is a quadratic function allowing for smoother
reconstructions.

Combining the data fidelity model (2) with the image model
(3) the MBIR cost function is

o) = 33 (o= ANWVI) +5(5) @

Thus, the reconstruction is obtained by

f « argmin c(f)
f

This function in non-convex and non-differentiable and hence
we will use a majorization strategy to find a solution.

III. OPTIMIZATION ALGORITHM

In this section we outline the majorize-minimize (MM)
optimization strategy from [26] for finding a minima of the
MBIR cost function (3). The MM optimization approach [23],
[24] is based on the repeated construction and decrease in
value of a differentiable majorizer to the original cost function.
The function ¢(.; 2’) is a majorizer for the function ¢(.) at the
point 2’ if the following two conditions hold [14]

a(z%7") =

q(z';2") =

t(2)
t(z). “)
If Q(.; f7) is a majorizer to ¢(.) at the point f’, our algorithm

consists of repeatedly constructing () and updating the volume
to obtain a desirable solution.

A. Construction of the Majorizer
It was shown in [16], that
Or(z:2') 2?2 |2 <T
T\T;T ) =
T2 |2'|>T
is a majorizer to Bt ((3)) at 2’. Defining e;(f) = ¢; — [Af]

and using the composition property of majorizing functions
(16]

M
QU =5 Qr (DT es IV ) +5(1) )

is a majorizer to the original cost (3). This can be re-written
in a simpler form by defining

‘,‘:{Wii le: (F VWi < T ©
Tl Je)VWE =T

where the entries W' essentially ignore measurements classi-
fied as an outlier based on the current values of the scaled
fitting error. Ignoring constants, (5) can be re-written as

QU ) = gllg = Af + (7). @

B. Updating the Voxels

Instead of using a coordinate descent strategy to decrease a
similar function as in [16], [18], [26], we propose a parallel
update strategy in-order to make use of the fast and parallel
projection (and back-projection) operations for the laminogra-
phy geometry. To update the volume based on this surrogate
function (7) we adopt a modified version of the optimized
gradient method (OGM) of Kim and Fessler [25]. A straight
forward method to implement this algorithm would be to run
a few iterations of OGM to decrease the surrogate cost for
@, then use this new value as the the updated volume and
iterate the process. This method would involve re-setting the
momentum factors for each set of “inner” iterations involving
the decrease of (). Instead, we adopt a different approach that
involves only one iteration of the OGM method, but carry
forward the momentum factors from the previous iteration.
Specifically, at the k™ iteration we apply the following steps,

1
R+ o pR) _ ZVQ(f; F N g

(e LV 4(EW)?
2

k
FOHD)  plD) t;;%(h(kﬂ) O
(k)
primsy (h(k+1) _ f(k)) (8)

where L is set so that L = max{diag(ATWA) +
diag(V2s(0))} > max{diag(ATW®*) A) + diag(V2s(f*)))},
an upper-bound on the Lipschitz constant of the gradient of
the surrogate function at any given iteration and ¢(°) = 1. The
gradient of (Q w.r.t f is

VQ(f; f')=—-ATW'(g— Af) + Vs(f) 9)

Hence the overall updates for the algorithm are simple and in-
volve a single computation of the forward and back-projection
per iteration. Empirically, we have observed that the above
algorithm results in a monotonic sequence of decreasing cost
function values.

C. Implementation Details

Since the proposed MBIR cost function is non-convex and
setting 7" is not straightforward, we initialize the algorithm by
running the method (Fig. 4) N times for K iterations with the
T set to a large number and progressively decrease 7T each
time so that it rejects a certain fraction of the measurements
(For results in this paper, N = 5 and K = 10). At the
final stage we fix 7', initialize f from the previous stage
and run the algorithm till the stopping criteria is met or the
maximum number of iterations is attained. We initialize the
values of f to O at the start of the algorithm. The gradient
of the data-fidelity term is implemented using the ASTRA
tool-box’s multi-GPU operators [33] in which the forward and
back-projection are not matched [34] and are based on simple
models [37] to accelerate the computation on GPUs at the
expense of accuracy. Despite of this, we have not observed
any divergent behavior or appearance of significant artifacts,
though we believe the use of matched projectors could help
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function [f] + RECONSTRUCT(g, f™t)
%Inputs: Measurements ¢, Initial reconstruction finit
%Outputs: Reconstruction f
+(0) — 17‘/:(0) = p0) — finit
Compute gradient step size L
for k=1to K do > K - maximum iterations
e®) =y — Afk) > Initialize error vector
Update W) based on e*) and threshold T' (6)
Compute gradient: — AW ) e(k) 1 vs(f(-))
Compute fF+1) pE+1) ¢(E+1) ysing equations (8)
if stopping criteria is met then
break
end if
end for
f(* f(k+1)
end function

Fig. 4. Overall MBIR algorithm for laminography.

attain a better reconstruction. The gradient of the prior is
implemented to be parallel so each thread operates on a subset
of voxels.

IV. RESULTS

We compare reconstructions from three algorithms : the
modified filtered back projection (FBP) [10], SIRT [13] and
the MBIR method. For the FBP and SIRT we pre-process
the raw data using a median filter using the TomoPy package
[38] to filter out the gamma-hits. The maximum number
of iterations for the MBIR method was set to 200 and the
algorithm was terminated if the relative change in the average
value of the reconstruction was less than 0.1%. The value of p
is set to 1.2 for the MBIR reconstructions. All reconstructions
were carried out using a server with 22 Intel Xeon-Phi cores,
512 Gb of RAM and 2 P100 Nvidia GPUs each with 24 Gb
of memory.

A. Simulated Data

We constructed a high-resolution phantom to represent an
additively manufactured part with pores (see Fig. 5 (a)) and
generated laminography projections of size 128 x 256 pixels at
400 views between 0° — 360° with the laminography angle set
to 70°. We simulated gamma-hits at approximately 6 random
locations in 40% of the views and simulated Poisson statistics
for the noise. Fig. 5 (b) shows cross-sections of the reconstruc-
tion from the FBP method. Notice that the reconstructions are
noisy, with poor resolution for the pore features and artifacts
in the x — z and y — z planes due to the missing cones of
information. The SIRT reconstruction (Fig. 5 (c)) is sharper
than the FBP reconstruction but still has residual noise and the
artifacts due to the missing cones of information. In contrast,
the proposed MBIR method significantly suppresses the miss-
ing cone artifacts and produces a quantitatively accurate, less
noisy and a visually better resolution for the reconstruction.
To emphasize the importance of outlier modeling we also
compare the proposed MBIR algorithm with a similar method
based on a quadratic [(g; f) and demonstrate (Fig. 6) that the
modeling for the outliers (gamma-hits) dramatically improves

the quality of reconstruction without any pre-processing ap-
plied to the data. We note that, similar artifacts were seen for
the FBP and SIRT algorithm, but leave these images out in
the interest of brevity.

B. Experimental Data

The experimental data set is obtained from an additively
manufactured metal part made of a Chromium-Cobalt alloy
at the manufacturing demonstration facility (MDF) at Oak
Ridge National Lab (ORNL). Because of its unique shape and
composition, neutron laminography is an important technique
to make the measurements and characterize defects such as
pores in the 3D printed sample. Measurements were made at
the High-Flux Isotopte Reactor (HFIR) at the CG-1D beam-
line and consisted of 1094 views between 0 — 360° using
a 2048 x 2048 pixel detector with the laminography angle
set to 70°. We use a 700 x 1600 window of pixels (Fig. 1)
to reconstruct a 700 x 1600 x 1600 voxel volume. Fig. 7
demonstrates how the MBIR algorithm can produce a high
quality reconstruction (high visual resolution for similar noise
levels) from this noisy-data set even from the raw un-filtered
measurements compared to the FBP and SIRT algorithm.
Similarly to the simulated data, Fig. 8 illustrates that merely
using a MBIR based on quadratic (g; f) can result in streaks
in various directions and these can be misclassified as pores
if the analysis is done on individual x — y cross sections
of the reconstructed volume. Hence, the robust modeling
provides a useful way to handle gamma-hits as a part of the
reconstruction.

V. CONCLUSION

In this paper, we presented a robust MBIR algorithm for
neutron laminography. The algorithm is based on optimizing
a cost-function that accounts for the noise characteristics, the
presence of gamma-hits and provides the flexibility to choose
from a family of regularization functions. We presented an
optimization algorithm based on constructing a majorization
function and using it to update the voxels using a first-order
algorithm that enables us to perform the updates rapidly using
massively parallel architectures. We applied our algorithm to
simulated and experimental data to illustrate that our method
is superior to traditional direct inversion and algebraic iterative
algorithms in obtaining high-quality reconstructions from the
raw measurements.
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(a) Ground Truth (b) FBP (PSNR: 9.48 dB)

(c) SIRT (PSNR: 15.42 dB) (d) MBIR (PSNR: 17.41 dB)

Fig. 5. Cross-sections from the 3D reconstruction using FBP, SIRT and the proposed MBIR from a simulated data set representing an additively manufactured
part with pores. Notice that the FBP reconstruction has artifacts due to the sampling geometry (missing cones) and some ringing due the filter used. The
SIRT reconstruction is more accurate than FBP, but still has a worse noise v/s resolution performance than the proposed MBIR. The MBIR also significantly
suppresses the artifacts due to missing data compared to both FBP and SIRT. Furthermore, unlike the FBP and SIRT methods, the MBIR method was applied
without any pre-processing using median filters.

(a) MBIR (Least squares)

(b) MBIR (Talwar-model)

Fig. 6. Illustration of the artifacts in a x — z cross section (same as in Fig. 5)
that occur when the gamma hits on the detector are not accounted for by
the pre-processing even when using a sophisticated model-based inversion
algorithm with a weighted-least squares data-fit penalty. However, using the
proposed algorithm (b), outliers can be detected and rejected as a part of the
reconstruction without pre-filtering the data.
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Fig. 7. & — y cross-sections from the 3D reconstruction using FBP, SIRT and the proposed MBIR from a data set of an additively manufactured part. Notice
that the for a given background noise level, the MBIR produces higher resolution images (visually) compared to FBP and SIRT (For example - regions
indicated by red arrow in (a) and the zoomed-in images of (d), (e) and (f)). Furthermore, there are ringing artifacts in the FBP (blue-arrow) reconstruction
due to the filtering of the projections that are suppressed by SIRT and the proposed MBIR method.
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Fig. 8. Illustration of artifacts (indicated with a red arrow in (a)) ina y — z
cross section that occur when the gamma hits on the detector are not accounted
for by the pre-processing even when using a MBIR algorithm based on a
weighted-least squares data-fit penalty. However, using the proposed algorithm
(b), outliers can be detected and rejected as a part of the reconstruction without
pre-filtering the data.
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