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ABSTRACT

This article presents combined measurements of fatty acid-based organic PCM products and
numerical simulations to evaluate the energy benefits of adding a PCM layer to an exterior wall.
The thermal storage characteristics of the PCM were measured using a heat flow meter apparatus
(HFMA). The PCM characterization is based on a recent ASTM International standard test
method, ASTM C1784. The PCM samples were subjected to step changes in temperature and
allowed to stabilize at each temperature. By measuring the heat absorbed or released by the
PCM, the temperature-dependent enthalpy functions for melting and freezing were determined.

The simulations were done using a previously-validated two-dimensional (2D) wall model
containing a PCM layer and incorporating the HFMA-measured enthalpy functions. The wall
model was modified to include the hysteresis phenomenon observed in PCMs, which is reflected
in different melting and freezing temperatures of the PCM. Simulations were done with a single
enthalpy curve based on the PCM melting tests, both melting and freezing enthalpy curves, and
with different degrees of hysteresis between the melting and freezing curves. Significant
differences were observed between the thermal performances of the modeled wall with the PCM

layer under the different scenarios.

Keywords: PCM characterization; heat flow meter apparatus; ASTM C1784; PCM hysteresis

modeling; 2D wall model with PCM
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NOMENCLATURE

Bi Biot number

Cp Specific heat (J/kg/K)

F View factor

H Enthalpy (J/g)

h Convective heat transfer coefficient (W/m?/K)
k Thermal conductivity (W/m/K)

N Number of readings in a HFMA block

Q Energy released/absorbed per unit area by the PCM (J/m?)
q Heat flux (W/m?2)

Osolar Solar irradiance (W/m?2)

R Radius of tube used in T-history method (m)
S HFMA plate calibration factor ((W/m2)/mV)
T Temperature (K)

Vv Voltage signal from HFMA plates (mV)

X Thickness (m)

AH Step-wise enthalpy change (J/g)

AT Temperature step change in HFMA plates (K)
ox HFMA plate thickness (m)

a Solar absorptance

S Term used in view factor calculation

e Infrared emittance

& Inclination of the modeled wall with the ground
p Density (kg/m3)

T Time period of each HFMA reading (1.3 s)
Subscripts:

equi. Equilibrium condition of the HFMA

ext Exterior

int Interior

L Lower plate of the HFMA
I Fully molten state of PCM
S Fully frozen state of PCM
U Upper plate of the HFMA

Abbreviations:
COP Coefficient of performance
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HFMA
LWR
0SB
PCM
™Y

Heat flow meter apparatus
Long wave radiation
Oriented strand board
Phase change material
Typical meteorological year
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1. INTRODUCTION

Phase change materials have garnered a lot of attention for applications in building envelopes
for energy storage, reducing cooling loads and peak load shifting, and improving comfort
conditions [1-3]. In order to accurately evaluate the performance of a PCM-based system, the
knowledge of the main thermophysical properties of the selected PCM is important [4-6]. The
thermal storage characteristics of a PCM are well-defined via four parameters, the specific heats
in the solid and molten phase, melting temperature and the phase change enthalpy [7]. However,
most PCMs exhibit a melting range instead of a single melting temperature, in which case the
shape of the enthalpy curve as a function of temperature [H(T)] describes the material with much
better precision [7].

Differential scanning calorimetry (DSC) is one of the most-commonly used methods for
determining the enthalpy function of PCMs and its application to PCMs has been described in
the literature [7, 8]. The DSC method assumes isothermal conditions within the test sample
(PCM) and this requirement limits the samples to very small sizes (1-10 mg), which may result
in the thermophysical properties of the test sample being different from those of the bulk
material [4]. High heating and cooling rates can lead to temperature gradients within the PCM
test sample and lead to measurement artifacts, such as the heating and cooling enthalpy curves
being systematically shifted to higher and lower temperatures, respectively [7, 8].

Yinping et al. [4] introduced the T-history method for PCM characterization. In their method,
the authors started with a tube containing a liquid PCM maintained at a temperature above its
melting point and another with water at the same initial temperature, followed by exposing both
samples to an ambient temperature lower than the phase change range of the PCM and

measuring the temperature evolution of both samples. Using the known properties of water (or
5
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another standard material) and the test tube, the specific heats (solid and liquid) and the latent
heat of the PCM could be determined [4]. Over the years, several researchers have proposed
modifications and improvements to the T-history method [9-11]. The T-history method is
purported to be a more suitable method for PCM characterization than DSC as it allows analysis
of larger samples (15 g) with simpler equipment and in less time [12].

However, even with the T-history method the samples are limited in size and shape
compared to what might be expected with PCM products for building envelopes. T-history
method is based on the lumped capacitance method, i.e. the temperature distribution in the
sample is assumed to be uniform, which is reasonable if the Biot number (Bi = hR/2k) is less
than 0.1; where ‘R’ is the radius of a tube, ‘k’ the thermal conductivity of the PCM and ‘h’ the
natural convective heat-transfer coefficient of air outside the tube [4]. To ensure the validity of
the lumped capacitance approach, typically test tubes of a small diameter are used as containers
for the PCM [13].

Recently, a new ASTM International standard called ASTM C1784 [14] has been established
to enable measurements of PCMs as well as inhomogeneous building products containing PCMs.
Several different forms of PCM-based building products have been reported in the literature,
including shape-stabilized PCM sheets [15], PCM wallboards [16-18], PCM mixedin
concrete and brick [19, 20], PCM-impregnated insulation materials [21-23], macro-packaged
PCM in plastic pouches [24], and products with nano-PCM composites [25]. ASTM C1784 is
based on a modified application of a heat flow meter apparatus (HFMA), which was originally
designed according to the requirements of ASTM C518 [26] to measure steady-state thermal
conductivity of materials. Shukla and Kosny [27] reported test data from several PCM-integrated

products based on the new test method. The authors noted that the dynamic thermal properties of
6
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PCM-integrated building products are dependent on parameters such as the fraction of PCM within
the product as well as specific heat and thermal conductivity of all the components [27]; the
additional components might be packaging and additives such as fire retardants, conductivity
enhancers, etc. Further, the properties of the PCM itself may change due to surrounding materials
and introduction of foreign materials. Therefore, the properties of PCM- integrated components
may be significantly different than ones derived from the pure PCM [27]. Kim et al. [15] used a
variation of the heat flow meter method to measure specific heats of PCM sheets in a thermostatic
chamber. The chamber temperature was raised or lowered by 1°C every 30 minutes over the range
of the PCM transition temperatures, with 4 hours of stabilization period between heating and
cooling tests. The specific heats were calculated using the measured heat flows and rate of change
of temperature [15]. PCM products that have been tested using heat flow meters include PCM-
enhanced gypsum board, PCM-aerogel composite, shape-stabilized PCM sheet, and PCM-
enhanced blown cellulose [15, 27].

Regarding numerical modeling of building envelopes with PCMs, AL-Saadi and Zhai [28]
reviewed the literature and classified the models into three categories based on their level of
complexity: simple, intermediate and sophisticated models. The authors compared the different
models in terms of their advantages and disadvantages regarding simulation capabilities for
complex systems and computational efficiency. The authors noted that many existing models
ignore hysteresis and subcooling that are inherent in some PCMs and cannot be used for annual
simulations of building thermal performance with PCMs [28]. Bony and Citherlet [29] defined
hysteresis as a delay in phase change while cooling, i.e. the freezing begins at a lower
temperature than the end of the melting phase. Paraffinic PCMs exhibit very little hysteresis

(~1°C or less) [8, 18], while organic bio-based PCMs and inorganic salt hydrates can exhibit
7
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hysteresis of 5-13°C [24, 30].

Kuznik and Virgone [31] showed the need to model thermophysical property curves of both
melting and freezing to account for hysteresis. The authors used specific heats (Cp) from melting
and freezing curves in separate models and compared the results against experimental data from
heating and cooling steps. The model with the melting ‘Cp’ yielded good match with melting step
data and freezing curve-based model matched well with cooling step data, but not vice-versa
[31]. Gowreesunker and Tassou [32] utilized varying enthalpy—temperature relationships during
melting and freezing in a computational fluid dynamics (CFD) model to study the effects of
PCM clay boards on the control of indoor environments. When validated against experimental
measurements of indoor temperatures, the model utilizing the separate melting and freezing
enthalpy functions showed better simulation accuracy than a model using a single, idealized
linear enthalpy function [32].

Researchers have used different methods of incorporating separate enthalpy curves for
melting and freezing in models, specifically the treatment of interrupted melting or freezing. In
other words, what if the PCM is subjected to heating while its state is defined by the freezing
curve or vice-versa? One method is to assume enthalpy transitions from one curve to the other at
a slope equal to the slope of the enthalpy curve in the solid phase [29, 33] or a horizontal
transition between the curves [34]. Another method is to assume no transitions, i.e. the PCM
state remains on the same curve whether heating or cooling and only transitions to the other
curve once the melting end temperature has been exceeded (melting to freezing curve transition)
or if the temperature falls below the freezing end temperature (freezing to melting curve
transition) [33, 35].

The current work presents measurements of melting and freezing enthalpy curves of two
8



157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

PCMs using the HFMA and estimations of annual energy performance using a two-dimensional
(2D) model of a PCM-enhanced wall system. To the authors’ knowledge, this is the first study that
combines measurements of full-scale PCM products with annual energy simulations using a 2D
wall model incorporating the hysteresis in PCMs. The current model is based on an existing wall
model that was validated against data from experiments on a full-scale wall system with a PCM
wallboard and then used to calculate the annual energy impacts of the PCM wallboard [18]. The
existing model was modified to include an 8.3 mm layer of PCM (instead of the PCM wallboard)
and to incorporate the PCM hysteresis. Interrupted heating and cooling cycles were treated without

instantaneous transitions from one curve to the other, following [33, 35].

2. PCM THERMAL CHARACTERIZATION USING HFMA

2.1. Description of HFMA

Figure 1 shows a heat flow meter apparatus (HFMA). The HFMA used in this study is one of
the Fox 300 models, similar to the current Fox 314 from TA Instruments [36]. The apparatus
consists of upper and lower plates, which sandwich the test specimen. Each plate is outfitted with
a solid state heating and cooling system and the plate temperatures can be independently
controlled to induce a heat flow in either upward or downward direction through the specimen.
Thin-film heat flux transducers (HFTs), of dimensions 7.6 x 7.6 cm and thickness 1.78 mm, are
permanently bonded to the upper and lower plate surfaces. Each plate contains one HFT installed
at the center of the plate. In the center of the each transducer, a Type E thermocouple is bonded

near its surface, close to the test specimen. These thermocouples accurately measure the
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specimen surface temperatures and are also used to control the plate temperatures.

During tests, a set of data is taken once every 1.3 seconds. Each set of data includes the upper
and lower plate temperatures and heat flux transducer outputs. 512 consecutive sets of data are
organized in one block and are averaged to yield the mean plate temperatures and heat fluxes.
The following thermal equilibrium criteria need to be met for a test to be considered complete:

1. The block average temperature of each plate must be within 0.2K of the previous block.

2. The difference between the average HFT voltages from successive blocks must be within

a certain absolute value (typically 50 mV) and within 2% of the earlier block average.

An additional criterion for test completion is the absence of any monotonic trends in the data.
Once a certain number of consecutive blocks satisfy all equilibrium criteria, the test for a given
temperature set point is considered complete. The HFMA is calibrated using a National Institute
of Standards and Technology (NIST)-traceable standard reference material (SRM) 1450 [37]to
convert the voltage signal to heat fluxes. With the measured sample thickness, upper and lower
plate temperatures and heat fluxes, the thermal conductivity of the test specimen can be

calculated.

2.2. PCM characterization

A modified application of the HFMA is to measure specific heats of materials [38]. The
procedure involves measuring the amount of heat flow per unit area (Q, J/m?2) absorbed or
released by a test sample on switching the HFMA plate temperatures after they have achieved
thermal equilibrium at one set point to another, till the plates achieve thermal equilibrium at the
new set points. The measured heat absorbed or released is also corrected for the heat capacity of

the HFMA plates. The volumetric specific heat (pCp, J/m3/K) of the test sample is then

10



199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

determined by dividing the corrected heat absorbed/released by the measured sample thickness;
‘p’ (kg/m?) and ‘Cp’ (J/kg/K) are the density and specific heat of the test sample. Egs. 1 and 2

show the calculations of ‘Q’ and ‘pCp’.

Q= Ziv= 1[SU(VU,I' VU,equi.) + SL(VL,L’ (1)
/VL,equi.)]T
pCr=(QATBCp'p'25x") /x @

In the above equations, ‘N’ is the number of blocks, each with 512 readings, ‘S’ is the plate
calibration factor (W/m2)/mV), ‘V’ is the block-averaged voltage signal (mV), ‘z’ is the time
period for each data point (1.3 s), ‘AT’ is the temperature step change imposed on the HFMA
plates, ‘Cp'p'26x" is the plate correction factor (J/m?/K), ‘6x" is the plate thickness (m), and ‘x’
is the sample thickness (m). The subscripts ‘U’ and ‘L’ represent the upper and lower plates, and
‘equi.’ represents the residual signals at the final equilibrium condition.

This additional capability of the HFMA can be utilized to measure the thermal storage
characteristics of PCMs and led to the development of ASTM C1784 [14]. This test method
makes a series of measurements to determine the thermal energy storage in a test specimen, or
the enthalpy function, over a temperature range, as depicted in Figure 2. ‘T’ represents the plate
temperatures and ‘Q’ is the energy released/absorbed by the PCM during the temperature Steps.
First, both HFMA plates are held at the same constant temperature until thermal equilibrium is
achieved. Equilibrium is defined by the reduction in the amount of energy flow between the
plates and the specimen to a very small (residual) and nearly constant value. Next, both plate
temperatures are changed by identical amounts and held at the new temperature until equilibrium
is again achieved. The energy absorbed or released by the specimen is recorded from the time of

the temperature change until reaching equilibrium is again achieved. Using a series of
11
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temperature step changes and the measured thickness and density of the PCM, the step-wise
enthalpy changes (4H, J/g) and cumulative enthalpy function (H(T), J/g) over the PCM
transition temperature range can be determined. Complete details of the test method are provided

in ASTM C1784 [14].

2.3. Selected PCMs for characterization

Two PCM products were measured, SaveE® FS21R and SaveE® FS29, produced by PLUSS

Advanced Technologies (http://www.pluss.co.in/). FS21R and FS29 have nominal melting

temperatures of 20.7 and 29 °C, respectively, and are designed to yield latent heat capacities of
183 and 158 J/g. Both PCMs are blends of fatty acid-based organic materials in a polymer
matrix. The PCMs are made into tiles that are encapsulated with a polyethylene layer and a thin
aluminum foil (<0.5 mm); two layers are intended to reduce the risk of rupture. Further, the
PCMs are designed to be form stable to minimize leakage even if the tiles are ruptured during
installation. The form-stability also allows developing PCM tiles of different dimensions
(thickness and shape) according to the application requirements.

The current PCM samples are about 30.5 x 30.5 cm in dimensions, 8 to 8.3 mm thick
and weighed about 0.6 kg. One of the PCMs, FS21R, is shown in Figure 3. The PCM dimensions
are deemed large enough to be representative of actual PCM products for building envelope
applications; in fact, PCM tiles of the same dimensions were used in the ceiling of a test hut for a
different study. The measurements were done in a HFMA with a 7.6 x 7.6 cm measurement area.
The authors have access to a HFMA with a measurement area of 25.4 x 25.4 cm, which is being
upgraded to add the specific heat measurement capability. A comparison of enthalpy

measurements from the smaller and larger HFMA will provide insights about the uniformity of
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the PCM composition and if a larger measurement area or larger samples are required.

3. NUMERICAL SIMULATIONS

3.1. Model geometry and details

Simulations were performed using the heat transfer module of COMSOL Multiphysics® [39].
The current wall model, shown in Figure 4, is a modification of previous models that were
validated against experimental data from tests of full-scale walls containing PCMs under real
building and weather conditions [18, 23]. Simulations were performed with and without an 8.3
mm PCM layer; the case without the PCM served as a baseline. FS21R was the PCM used in the
simulations. Due to its design, the PCM sheet is added as a separate layer in the current model
compared to a PCM wallboard (18) and PCM-impregnated cavity insulation (23) in the previous
modeling studies. The wall construction used in the model was “2 x 4” stud construction, i.e. it
contained wood studs of 3.8 cm x 8.9 cm, resulting in a cavity depth of 8.9 cm. The centerlines
of the studs were spaced 40.6 cm apart. The exterior side of the wall consisted of 1.3 cm oriented
strand board (OSB) and the interior contained 1.3 cm gypsum wallboard. The cavity was filled
with cellulose insulation. The modeled wall represents a typical construction practice for
residential buildings in the United States (U.S.).

The model solved the following time-dependent energy equation:
T
PCge= V- (kVT) 3)
In eq. 3, ‘T’ is the temperature, ‘p’ is the density, ‘Cp’ is the specific heat, and ‘k’ is the

thermal conductivity of the different wall materials. Boundary conditions used in the model are

described in section 3.3. Table 1 lists the material properties used in the numerical modeling.
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These values were obtained from literature or through measurements. The conductivity
measurements were done according to ASTM C518 [26].

Table 1. Material properties for numerical modeling

Density | Thermal conductivity | Specific heat
(kg/m3) (W/m/K) (Jlg/K)
Cellulose 40.8 0.042 1.424
Wood stud 576.7 0.144 1.633
OSB 640.0 0.130 1.410
Gypsum board 549.5 0.153 1.089
0.119(s) -
PCM (FS21R) 774.0 0.127 () —

The thermal conductivities of the PCM were measured with HFMA plate temperatures that
were both below or both above the phase transition range of the PCM. In other words, the
conductivities were measured with the PCM in fully frozen and fully molten states, and the
respective conductivities are represented by ‘s’ and ‘I’. For simplicity of the simulations, and
since the two measured conductivities were within 3% of the mean, an average value of 0.123
W/m/K was used in the simulations. The PCM specific heat (Cppcm) Was calculated as the
temperature derivative of the measured enthalpy functions (= dH/dT), using the hysteresis model
described in section 3.2.

The scope of the study was limited to calculating heat flows through a ‘clear’ section of the
wall, i.e. no features other than the wall cavity and stud were modeled. Wall-to-wall or wall-to-
ceiling interfaces, joints and corners, windows, radiation exchange between interior surfaces,
etc., were not considered in the model. Further, internal loads, solar gains and heat flows through
windows, roof and ceiling loads, infiltration, etc. could not be considered due to the modeling
limitations. Hence, only a small two-dimensional (2D) horizontal cross-section of the wall was

modeled, extending from the stud centerline to the cavity centerline. Exterior boundary
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conditions were applied to the OSB surface that is exposed to the “outside” and an interior
boundary condition was applied to the wallboard surface facing the interior conditioned space or
“room”. Symmetric boundary conditions were assumed at the stud and cavity centerlines, as

indicated in Figure 4.

3.2. PCM hysteresis model

As described earlier, it is important to account for the hysteresis of PCMs for more realistic
and accurate evaluations of PCM performance. Here, the hysteresis phenomenon in the PCM
layer was modeled using a ‘previous solution” operator in COMSOL [40].A variable named
‘H_PCM’ was defined within the domain representing the PCM layer (see Figure 4). H_PCM is
a binary variable that can take values of ‘0’ and ‘1°. It should be noted that H_PCM does not
define the state of the PCM as solid or liquid. Rather, depending on its value, the enthalpy curve
of melting (H_PCM = 0) or freezing (H_PCM = 1) is used to calculate the specific heat of the
PCM. The following equation was incorporated in the model:

H_PCM Bnojac[if{T > Thign,1,if (T < Tiow,0,H_PCM)}] =0 (4)

“Thigh’ is the temperature at which melting ends and ‘Tiow’ is the freezing end temperature.
According to eqg. 4, at any location within the PCM layer, whenever the temperature from the
previous solution step rose above Thign, that location was assumed to be fully molten, soH_PCM
switched from “0” to “1” and the PCM enthalpy switched from the melting to the freezing curve.
Conversely, at any location, if the temperature dropped below Tiow, H_PCM switched from “1”
to “0” and the PCM enthalpy switched to the freezing curve. For interrupted heating or cooling,
the variable H_PCM retained its existing value, i.e. the enthalpy function remained on the
melting or freezing curve, as the case may be, without any transitions. The operator ‘nojac’ is

15
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used in COMSOL to ensure that the previous solution variables are not included in the solution

of the conservation equations for the current time step.

3.3. Annual simulation parameters and boundary conditions

The annual simulation methodology is the same as reported previously [18, 23]. Appropriate
exterior and interior boundary conditions are required for the annual simulations. The exterior
boundary conditions were estimated using typical meteorological year (TMY 3) weather data [41]
for Charleston, South Carolina (SC). Input files containing hourly values of outdoor and sky
temperatures, solar irradiation and exterior surface convective heat transfer coefficients were
generated for the annual simulation models. Egs. 5 and 6 represent the exterior and interior
boundary conditions. In eq. 5, the first term on the right side is the solar irradiance, the second
term is the convection heat transfer and the last term is the long-wave radiation (LWR) exchange
with the surroundings. Symmetry boundary condition was assumed at the stud and cavity

centerlines, i.e. there was no heat flux across those surfaces as represented by eqg. 7.

Gext= Aqsolar t hext(Tout Tsurf) + 50[(1 Fsky) (T *oort ) +F (T ot )] 5)
out surf sky sky surf

Qint = hint(Troom Tsurf) (6)

Cheg=0 @

In the above equations,
a = Solar absorptance of the exterior wall surface, assumed to be 0.6
e = Infrared emittance of the exterior wall surface, assumed to be 0.8
ent = Exterior surface, facing the conditioned space
int = Interior surface, facing the conditioned space

q = Heat flux (W/m?)

16
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g = Heat flux vector (W/m?)

n = Boundary normal vector

Osolar = Solar irradiance on the exterior wall surface (W/m2), from TMY3 data

hexw = Exterior surface convective heat transfer coefficient (W/m?2/K)

hiw = Interior surface heat transfer coefficient (W/m2/K)

Fs, = Radiation view factor from sky to the wall

Tout = Outside ambient temperature (K), from TMY 3 data

Tsy = SKy temperature (K), from TMY3 data

Tsurt = Wall surface temperature (K); exterior wall surface facing the outdoor
environment in eq. 5 and interior surface facing the room in eg. 6

Troom = Room or interior conditioned space temperature (K)

Hourly values of ‘hext” and ‘Qsolar” for the different wall orientations were generated with the
help of EnergyPlus™ [42], a whole-building modeling tool. Values of ‘hext’ were calculated
using the outdoor temperature and wind velocity data from the TMY 3 files. The LWR exchange
between the exterior wall surface and the outside, ground and sky can be described by eq. 8. For
simplicity, it was assumed that the outside (Tout) and ground surface temperatures (Tground) are the
same, reducing the LWR exchange to eq. 9. Fsky, Fout and Fground are the view factors between the
exterior wall surface and the sky, outside and ground, respectively. The sum of those three view
factors is unity (eq. 10), which results in the LWR term in eq. 5. Fsy was calculated usinga

relation from Walton [43], listed as eq. 11, and it has a value of 0.35 for a vertical wall (¢ =

90°).
QLWR=€U[Fout(T4 -T* )+F (T oot )+F (T4 ‘T4)] (8)
out surf ground ground surf sky sky surf
qiwr= SU[(Fout + Fground) (7;)111-t - Tsuif) +Fsky(Tslzc}y - Tsuif)] (9)
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Fsky + Four + Fground =1 (10)

Fsiy = B[0.5(1 + cos¢)]; B = +/0.5(1 + cos¢) (11)

The interior heat transfer coefficient (hint) was assumed to be 8.29 W/m?/K, following
ASHRAE Handbook of Fundamentals [44], for a non-reflective vertical surface. The influence of
the heat gains and losses through the wall on the interior room temperature was captured by
allowing the room temperature to float between assumed heating and cooling temperature set
points. It was also assumed that the heating and cooling systems could instantaneously match the
wall-generated heating and cooling loads, so that the room temperature floated between the set
points but never went outside that range. The heating and cooling set points were set to 20 and
22.2°C, respectively, and these set points are quite common in residential and commercial
buildings in the U.S. The choice of the PCM FS21R for characterization and modeling is related
to the selected cooling set point, since it has been shown that the energy performance of aPCM

is dependent on the relation between its melting temperature and the cooling set point [18].

4. RESULTS AND DISCUSSION

In this section, experimental data and the numerical simulation results are presented and
discussed. Also included are simulation results of temperature, H_PCM and the PCM specific

heat that show that the PCM hysteresis model was operating as per expectations.
4.1. HFMA data

As described in sections 2.1 and 2.2, the heat flux transducers within the HFMA plates record
voltage signals that are converted to heat flows using calibration factors. The block averages of

the voltage signals are also used to determine the length of time needed after each step change in
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temperature to reach equilibrium. Figure 5 and Figure 6 show the block-averaged voltage
readings from one melting test and one freezing test of the PCM FS21R. The legends or labels
describing the curves represent the end temperatures after each temperature step change. The
step changes were nominally 1°C. For clarity, only a few curves are shown that correspond to the
temperatures close to and within the phase transition range of FS21R.

The heating curves are characterized by a high positive initial reading followed by a steep
decline within a few blocks (3-5) to the equilibrium values. However, when melting is occurring,
with associated heat absorption by the PCM, the block averages show a slow, gradual decline. In
Figure 5, the three curves exhibiting the most prominent melting behavior are indicated by
arrows; these curves correspond to the temperature steps ending at 20, 21 and 22°C, which is
expected, since the nominal melting point of FS21R is 20.7°C. The cooling curves are
characterized by a high negative initial reading followed by an increase to the equilibrium
values. When freezing occurs, with associated heat release from the PCM, the increase is slow
and gradual. However, often the freezing of the PCM is delayed, as seen by the behavior of
FS21R at 20°C in Figure 6. The curve corresponding to 20°C initially increased to a small
negative number (blocks 2-4) before freezing and heat release started, as indicated by the
inverted bell shape of the curve between blocks 5 and 30. Again, the three curves representing
temperature steps ending at 18, 19 and 20°C, which exhibited the most prominent freezing
behavior, are indicated by arrows. It is interesting to note that the curve corresponding to 18°C
end point (i.e. temperature step 19 to 18°C) showed a discernibly slower increase in the negative
voltage signals than the curve corresponding to 19°C (i.e. 20 to 19°C step); in other words the
amount of heat released was greater in the 19-18°C step than the 20-19°C step. This indicates

that the PCM FS21R is a mixture of components with slightly different freezing temperature
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ranges (21-20 and 19-18°C).

Figure 7 and Figure 8 show the measured enthalpy curves from duplicate melting and
freezing tests, respectively. The temperature range of the measurements was from 10 to 32°C.
Near and within the phase transition range, 1°C temperature steps were used for improved
resolution, but away from the transition range 2°C temperature steps were used. The
measurements from the duplicate tests were within 4% of each other for all temperature steps,
except the 18-19°C step during melting tests for which the difference was 8%. Figure 9 shows
the combined melting and freezing enthalpy curves. The enthalpy is assumed to be zero at 10°C
and is 165.7 J/g at 32°C (based on the melting tests). The phase transition range is about 18 to
22°C and a hysteresis of 1°C is observed; melting ended at 22°C and freezing started at 21°C.
Figure 10 shows the melting and freezing specific heats based on the enthalpy measurements.
The specific heat curve during freezing has two peaks, at 18.5 and 20.5°C, indicating the
presence of components with distinct freezing temperatures.

Another PCM, FS29, was tested using the HFMA method. Two tests each were performed
for melting and freezing. In this case, rather than duplicating the temperature steps as with
FS21R, the temperature steps were offset. The first melting test contained temperature steps of
14-16, 16-18, 18-20, ...., 36-38°C, and the second melting test contained steps of 17-19, 19-
21, ....,35-37°C. Similarly, offset temperature steps were used for the freezing tests. Following
the analysis process described in ASTM C1784 [14], the enthalpy data from the different tests
were combined and are listed in Table 2. ‘Tstart” and “Tend” are the initial and final temperatures
for each temperature step, ‘4H’ is the change in enthalpy during the temperature steps and ‘H’ is
the cumulative enthalpy function. Figure 11 shows the combined enthalpy curves of FS29.

Table 2. Combined melting and freezing enthalpy data of FS29
20



Tstart ("C) Tena CC) | AH (J/g) | H (J/9) Remarks

Melting test 1 14 0
14 16 3.87 3.87
16 18 412 8.00
18 20 4.46 12.46
20 22 4.86 17.32
22 24 6.34 23.67
24 26 10.42 34.09
26 28 27.72 61.81
28 30 74.99 136.80
30 32 5.61 142.41
32 34 6.49 148.90
34 36 6.30 155.19
36 38 4.48 159.67

Melting test 2 17 5.92 | ‘H’ interpolated from melting test 1
17 19 4.32 10.24
19 21 5.06 15.31
21 23 6.36 21.66
23 25 9.65 31.31
25 27 22.64 53.95
27 29 77.10 131.05
29 31 10.51 141.57
31 33 5.54 147.10
33 35 4.17 151.27
35 37 4.21 155.48

Freezing test 1 38 159.67 | ‘H’ from melting test 1
38 36 -3.88 155.79
36 34 -4.01 151.79
34 32 -3.96 147.82
32 30 -6.50 141.33
30 28 -8.06 133.27
28 27 -43.97 89.30
27 26 -12.17 77.13
26 24 -12.97 64.16
24 22 -8.44 55.72
22 20 -5.68 50.04
20 18 -5.06 44.98
18 16 -4.68 40.31
16 14 -4.44 35.87
14 12 -4.66 31.21
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Freezing test 2 35 153.72 | ‘H’ interpolated from freezing test 1
35 33 -4.74 148.98
33 31 -5.00 143.98
31 29 -5.21 138.76
29 27 -38.57 100.19
27 25 -21.94 78.25
25 23 -9.58 68.67
23 21 -6.09 62.58

4.2. Annual simulations with PCM incorporated in an external wall

Annual simulations were performed using the wall model depicted in Figure 4 and using
TMY 3 weather data for Charleston. The simulations were performed over a period of one year or
8760 hours (365 days x 24 hours) and the variables of interest (temperature, PCM properties,
heat flows, etc.) were written in output files on an hourly basis. The first step in the modeling
work was to check the validity of the hysteresis model, described in section 3.2, in capturing the
phase of the PCM FS21R. To evaluate the hysteresis model, the temperature, the variable
H_PCM and specific heat (Cp, pcm) were monitored at a point ‘A’ in the PCM layer. Thelocation
of point ‘A’ is indicated by the red dot in Figure 12. Figure 13 shows the calculated temperature
and H_PCM at point ‘A’ as a function of time between the time period of February 22-28;the
values of H_PCM correspond to the right vertical axis. The selected time period was chosen for
illustration due to the frequent switching of the PCM state between melting and freezing
enthalpy curves. The thick horizontal, dashed black and green lines correspond the melting end
and freezing end temperatures, respectively. When the temperature of the PCM rises above the
melting end point (22°C), the PCM should transition from the melting to the freezing curve, and
vice-versa when the PCM temperature drops below the freezing end point (18°C). A value of

zero of H_PCM is associated with the melting curve and a value of one is associated with the
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freezing curve. As observed in Figure 13, while the temperature remained below 22°C, the value
of H_PCM was zero. In the simulations, at 5 PM on February 22, the temperature

rose above 22°C and H_PCM switched to a value of one. H_PCM remained at one till the
temperature dropped below 18°C at 8 AM on February 25, when it switched back to

zero. Subsequently, H_PCM switched between zero and one whenever the temperature crossed
the melting and freezing end points.

Figure 14 shows the calculated PCM specific heat (‘Cp - PCM’, based on the value of
H_PCM) and specific heats based on the melting and freezing curves (‘Cp - Melting’ and ‘Cp -
Freezing’). The transition of Cp, pcm between the melting and freezing curves are clearly
observable; the transitions are marked by thin vertical black, dashed lines. The times of these
transitions coincide with the switching of the values of H_PCM. At 5 PM on February 22,
the Cp, pcm transitioned from the melting to the freezing curve as H_PCM went fromzero
to one; on February 25, 8 AM, H_PCM went from one to zero and Cp, pcm
transitioned from the freezing to the melting curve, and so on. Thus, the hysteresis model
accurately captured the shift of the PCM enthalpy between melting and freezing enthalpy curves
depending on the temperature within the PCM layer.

Next, annual simulations were performed with three different scenarios: (i) baseline model
without the PCM (‘No PCM”), (ii) model with the PCM layer, but the PCM specific heat (Cp)
based on the melting enthalpy curve alone (‘Hmelt’), and (iii) model with PCM hysteresis, i.e.
Cyp, rcm IS based on both melting and freezing enthalpy curves depending on the value of H_PCM
(‘Hmelt/freeze’). The main quantity of interest is the heat transfer at the interior wall surface,
which is facing the room. The heat gains and losses at this surface represent the wall-generated

loads that need to be compensated by mechanical heating or cooling to maintain the indoor
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comfort conditions. The simulations were performed for a south-oriented wall, which typically
experiences the highest heat gains in Charleston. Further, the analysis of the simulation results is
focused on heat gains and resultant cooling energy use, since Charleston is in a warm, humid
climate zone.

To illustrate the PCM behavior, Figure 15 shows the calculated spatially-averaged
temperature and specific heat within the PCM layer. The results are shown for typical 2-day
periods during spring (April 28 — 29) and summer (July 17-18) in Charleston. During the spring
period (Figure 15(a)), for a majority of the time, the calculated temperature in the melting curve
only case (‘Hmelt’) remained within the PCM transition range (i.e. below the melting end point
of 22°C) and the specific heat (Cppcm (Hmelt) ) remained at a high level (> 20 J/g/K). Duringthe
late-afternoon of April 29, the temperature rose above 22°C and the Cppcm (Hmelt) decreased to
about 1.8 J/g/K, which indicates the fully-molten regime. When hysteresis was included in the
model (‘Hmelt/freeze’), the temperature rose above 22°C during the afternoons on both spring
days and the Cppcm (Hmelt/freeze) decreased to fully-molten value of 1.8 J/g/K. Thus, including
hysteresis clearly impacts the calculations of PCM behavior. During the summer days (Figure
15(b)), the calculated temperatures were predominantly above 22°C and the Cppcm from both the
‘Hmelt’ and ‘Hmelt/freeze’ cases remained in the 1.8-2.1 J/g/K range, except briefly during the
early hours of July 17.

Figure 16 compares the calculated heat flows per unit wall area at the interior wall surface for
the ‘No PCM’, ‘Hmelt’ and ‘Hmelt/freeze’ cases. Positive heat flows represent internal heat
gains and negative flows represent heat losses. The impact of the PCM layer during spring is
clearly visible in Figure 16(a), with reduced heat gains and no heat losses compared to the

baseline case (‘No PCM”). Also evident is the difference in the calculated heat flows when the
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PCM hysteresis is ignored (‘Hmelt’) or captured (‘Hmelt/freeze’). The differences in the
calculated heat flows under the ‘Hmelt” and ‘Hmelt/freeze’ cases follow the Cppcm profilesin
Figure 15(a). In the ‘Hmelt’ case, the heat gains were zero at all times when Cppcm (Hmelt)
remained above 20 J/g/K; the heat gains rose to 3 W/m2during late afternoon on April 29, when
the PCM was fully molten and Cppcm (Hmelt) decreased to 1.8 J/g/K. Conversely, Cppcm
(Hmelt/freeze) decreased to 1.8 J/g/K during the afternoons of both April 28 and 29, and peak
heat gains of about 5.5 W/m? were observed during both days. During summer (Figure 16(b)),
the PCM in both the ‘Hmelt” and ‘Hmelt/freeze’ cases was in a predominantly fully-molten state
and was not benefitting from the phase transitions and latent heat storage; hence, no discernible
difference was observed in the heat gains from the two PCM cases. The slight reduction in the
peak heat gains compared to the ‘No PCM’ case is presumably resulting from the added thermal
resistance of the molten PCM layer.

In order to further evaluate the impact of the degree of hysteresis on PCM performance,
additional scenarios were considered using assumed freezing enthalpy curves with additional
hysteresis. Figure 17 shows the measured (‘F_Meas’) and assumed enthalpy curves for freezing;
‘F H2C’ and ‘F_H4C’ represent the freezing curves with additional hysteresis of 2 and 4°C,
respectively. ‘F_ H2C’ and ‘F_H4C’ were created by shifting the measured freezing enthalpy
curve by 2 and 4°C to lower temperatures.

Figure 18 shows the calculated monthly-integrated heat gains per unit wall area through a
south-facing wall for all the scenarios modeled, without and with PCM as well as usingdifferent
enthalpy curves and degrees of hysteresis to define the PCM specific heat. The reductions in heat
gains with the PCM layer are most significant during the non-summer months (January-May and

October-December). During these months, the impact of using one (‘Hmelt”) vs. two enthalpy
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curves (‘Hmelt/freeze”) and additional hysteresis (‘Hmelt/f H2C’ and ‘Hmelt/f H4C”) on the
calculated heat gains are clearly observable. The calculated heat gains are minimum when the
PCM specific heat is defined by the melting enthalpy curve only, and progressively increase
when both melting and freezing enthalpy curves are used and with increasing degrees of
hysteresis. During summer (June-September), the heat gains are almost identical regardless of
the enthalpy curves used to define the specific heat; this is presumably due to the PCM layer
being predominantly molten during this time and not benefitting from phase transitions.

To get a better sense of the resulting cooling energy consumption, the calculated heat gains
were converted to electricity consumption using temperature-dependent coefficients of
performance (COP) of a typical heat pump unit, following [18]. The COP of the heat pump is a
function of the ambient temperature. Since the cooling equipment is often placed in an
unconditioned space, it operates more efficiently when the outside temperatures are lower. This
adds to the potential for cooling energy savings since PCMs enable delayed heat gains through
walls compared to walls without PCM, as seen in Figure 16.

Table 3 shows the variation of the heat pump COP with outside temperature. The hourly
calculated heat gains were converted to electricity consumption using the COP values listed in
table 3; linear interpolation was used to estimate COP values at outdoor temperatures other than
those listed in table 3. It was assumed that the cooling equipment operated only when the room
temperature tended to exceed the cooling set point (22.2°C). In other words, if the room
temperature remained below the cooling set point, the electricity consumption was set to zero
even if there was some heat gain through the walls. This was done to differentiate between
cooling loads in summer and heat gains in winter (or spring/autumn); the latter might offset the

heating energy needs and do not add to the cooling energy use.
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Table 3. Temperature-dependent heat pump COP

Outdoor COP
temperature (°C) (Wh/Wh)

23.89 4.16

29.44 3.73

35.00 3.22

40.56 2.72

46.11 2.28

Table 4 shows the calculated annual heat gains per unit wall area and resultant cooling
electricity consumption for the different scenarios considered. Again, the impact of the PCM
layer in reducing heat gains and electricity consumption are clearly observable. Further, when
utilizing both melting and freezing enthalpy curves in the model, the savings are discernibly
lower than when using the melting curve alone, 29% vs. 32%, respectively. With PCMs that
exhibit significant hysteresis, the savings can be expected to be significantly lower than with
PCMs that show little to no hysteresis. For the current wall configuration and climate zone, the
PCMs with added hysteresis (‘Hmelt/f H2C’ and ‘Hmelt/f H4C”) were estimated to save only
12-15% in cooling electricity compared to 29% with the actual PCM, FS21R, which is
represented by ‘Hmelt/freeze’.

Table 4. Comparison of calculated annual heat gains per unit wall area and cooling
electricity use between different modeled scenarios

Annual heat gain % Annual electricity %
(Wh/m2) Difference (Wh/m?) Difference
No PCM 22507 5601
Hmelt 14609 -35.1 3813 -31.9
Hmelt/freeze 15284 -32.1 3969 -29.1
Hmelt/f_H2C 18962 -15.7 4772 -14.8
Hmelt/f_H4C 19674 -12.6 4912 -12.3

5. SUMMARY, CONCLUSIONS AND FUTURE WORK

Temperature-dependent enthalpy functions of two fatty-acid based PCM products, FS21R
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and FS29, were measured using a heat flow meter apparatus (HFMA). The measurements were
done according to ASTM C1784, a standard test method for thermal characterization of full-scale
PCM products. The measured enthalpy functions of FS21R were utilized in a 2D wall model.
The model incorporated a hysteresis model to include both melting and freezing enthalpy curves
with varying degrees of hysteresis. Simulations were performed for a south-oriented wall in
Charleston, SC using typical yearly climate data. Hourly heat gains through the wall and
associated cooling electricity consumption were calculated for different scenarios: (i) baseline
wall without the PCM layer, (ii) wall with the PCM layer, but the PCM specific heat based on
the melting enthalpy curve alone, and (iii) PCM specific heat based on the melting and freezing
enthalpy curves and with varying degrees of hysteresis.

The results showed that including the hysteresis effect significantly impacts the calculated
thermal performance of the PCM layer and resultant energy savings compared to a wall without
the PCM. For the current wall model, orientation (south-facing wall) and climate conditions,
simulations with the PCM specific heat based on only the melting enthalpy curve showed 32%
reduction in the wall-related cooling electricity consumption. The calculated energy savings
dropped to 29% when both the melting and freezing enthalpy curves are used; the calculated
savings were further reduced to 15% and 12% when additional 2-4°C of hysteresis between the
melting and freezing enthalpy curves were assumed.

A significant assumption in the numerical simulations was related to the treatment of
hysteresis and interrupted melting or freezing. Here, it was assumed that the PCM state remained
on the same enthalpy curve even if the melting or freezing was interrupted, and only transitioned
to the other curve if the temperature went above or below the melting and freezing end points,

respectively. It will interesting to evaluate the difference in the calculated PCM performance if
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instantaneous transition to the melting curve was allowed in case of interrupted freezing (or vice-
versa), as has been done in some studies. Another important next step is to couple the 2D wall
model to a whole-building energy analysis software to determine the impacts of PCMs, withand

without hysteresis, on the whole-building energy performance.
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Figure 2. Schematic representation of the PCM characterization method.
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Figure 12. Point ‘A’ within the PCM layer is indicated by the red dot.
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