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Abstract

The standard Monte Carlo (MC) k-eigenvalue algorithm involves itera-
tively converging the fission source distribution using a series of potentially
time-consuming inactive cycles before quantities of interest can be tallied.
One strategy for reducing the computational time requirements of these in-
active cycles is the Sourcerer method, in which a deterministic eigenvalue
calculation is performed to obtain an improved initial guess for the fission
source distribution. This method has been implemented in the Exnihilo
software suite within SCALE using the SPy or Sy solvers in Denovo and the
Shift MC code. The efficacy of this method is assessed with different Denovo
solution parameters for a series of typical k-eigenvalue problems including
small criticality benchmarks, full-core reactors, and a fuel cask. It is found
that, in most cases, when a large number of histories per cycle are required
to obtain a detailed flux distribution, the Sourcerer method can be used to
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reduce the computational time requirements of the inactive cycles.

Keywords: fission source convergence, Monte Carlo transport,
hybrid methods

1. Introduction

The design and operation of nuclear fission reactors requires a detailed
solution to the neutron transport k-eigenvalue problem to obtain the neu-
tron multiplication factor (keg) for criticality safety analyses and pin- and
subpin-resolved flux distributions for depletion, thermohydraulic-coupling,
and radiation damage analyses. In some cases, the accuracy required for
these analyses necessitates the use of Monte Carlo (MC) methods for neu-
tron transport. The traditional MC power iteration algorithm for solving
the k-eigenvalue problem involves carrying out a series of cycles, in which
a collection of neutron histories are simulated and the induced fission sites
are recorded. Since the fission source distribution is not known a priort,
an initial guess must be used for the first cycle. For subsequent cycles, the
fission source can be formed from the fission sites from the previous cycle.
Inactive cycles—in which no events are tallied—are first carried out to obtain
a converged fission source. Active cycles are then performed, and an estimate
of keg and the flux distribution are recorded for each cycle. The final estimate
for ke and the flux distribution can then be ascertained by averaging together
the estimates from the active cycles.

Full-core reactor analysis generally requires a large number of inactive
cycles that are computationally expensive. For eigenvalue-only calculations
inactive cycles may account for approximately half of the total runtime. For
calculations that require more detailed tallies the relative expense of inactive
cycles is reduced. Numerous strategies have been proposed to reduce the
computational time spent on inactive cycles.

Acceleration techniques such as the fission matrix method [Il, 2] attempt to
improve how a new fission source is generated from the previous iteration by
using additional information garnered from solving an approximate problem.
Preliminary analysis using a deterministic-based fission matrix acceleration
method yielded promising results, but further investigation is required before
adopting this method for production-level use [3| 4]. With the particle ramp-
up method [5], the number of histories per cycle is gradually increased during
inactive cycles so that less computational time is wasted simulating particle



histories when the fission source is far from converged. However, it is possible
that this method would exacerbate issues with neutron clustering [6]. With
the MC version of Wielandt’s method the fission source is formed from a
combination of the induced fission sites from the previous cycle and also the
current cycle, in order to increase the interaction between decoupled regions
of a problem [7].

Another strategy is to use an improved initial guess for the fission source
distribution such that fewer inactive cycles are required to obtain a converged
fission source. As opposed to acceleration methods, this technique does not
modify the rate of convergence of power iteration. In principle this could
be done in concert with the other two strategies, but in this work this third
strategy is studied in isolation. The default initial guess for the fission source
for k-eigenvalue problems is usually generated from a flux distribution that is
uniform throughout all space. The conversion between the flux distribution
and the fission source is later described in Eq. . For reactor problems, flux
distributions that are uniform radially and have a cosine or flattened cosind?|
shape axially can be used. The Watt fission spectrum is typically used for the
energy distribution, and isotropic emission is used for the angular distribution.
The complexity of the spatial distribution of the fission source is not captured
by these typical initial guesses, especially in the presence of inhomogeneities
such as control and burnable absorber rods, mixed fuels, and variable burnup
states.

The Sourcerer method [8] can be used to obtain an improved initial
guess for arbitrary configurations, thereby providing an automatic means of
reducing the number of inactive cycles. With this method, a deterministic
neutron transport calculation is first carried out as a preprocessing step. The
resulting approximate mesh-based flux distribution is used to calculate a
mesh-based fission source distribution that is used as an initial guess. This
method has previously been implemented in the Sourcerer module within
the SCALE modeling and simulation suite [9] using Denovo [10] as a discrete
ordinates (Sy) solver and the KENO MC transport code [9]. The method
was demonstrated to be effective for a spent fuel canister problem with both
transport codes run in serial [§]. Another method similar to the Sourcerer
method has previously been proposed, but does not appear to have ever been
implemented [I].

2The flattened cosine shape is defined as f(x) =1 — (1 — cos(z))?.



The Sourcerer method is effective only if a deterministic estimate of
the flux distribution can be obtained quickly relative to the time required
for the MC inactive cycles. As a practical consideration, the computer
memory requirements for the deterministic solution should not be so large
that an analyst must use additional computer resources solely to employ the
Sourcerer method. Though most deterministic techniques are likely to satisfy
these criteria for small reactor problems, full-core analysis poses significant
challenges. Full-core modeling with the Sy method requires leadership-class
computer resources [I1], making the application of the Sourcerer method to
full-core analysis impractical in most cases. The Simplified Py (SPx) method
is a low-order approximation of the transport equation that can provide
estimates of the flux distribution for full-core problems in significantly less
processor time and with smaller memory requirements than Sy methods [12].
When a high degree of accuracy is not required, the SPyx method is preferable
to the Sy method provided that the problem does not contain regions with
extremely long mean free paths (e.g., air or void regions) that cannot be
handled by the former method.

In this work, the performance of the Sourcerer method is assessed using
deterministic estimates of the neutron flux with varying degrees of accuracy
for a collection of typical k-eigenvalue problems. The Sourcerer method has
been implemented using the Denovo SPy [12] and Sy solvers, so the Sourcerer
method can be applied to a wide range of problems, including full-core reactor
analysis. This implementation is done in the Exnihilo software suite [13]
within SCALE using the Shift MC transport code [14]. Shift, like Denovo,
was designed to be massively parallel and has demonstrated excellent scaling
behavior from laptops to leadership-class supercomputers [10), 14]. Both
codes support a variety of geometry and physics packages. Shift and Denovo
are easily coupled through the Omnibus front-end [15], which is common to
both codes. This implementation requires the user to choose the solution
parameters for the Denovo solver, including the SPy order or Sy quadrature
set, resonance self-shielding treatment for cross section generation, number
of energy groups, and solution mesh. The accuracy of the Denovo solution—
which is governed by this choice of parameters—could affect the efficiency of
the Sourcerer method.

The rest of this paper proceeds as follows. Section[2]provides the theoretical
background for the Sourcerer method and the use of Shannon entropy [16] to
qualitatively assess fission source convergence. Section [3| first details how the
Sourcerer method is implemented within Exnihilo and how cross sections are
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generated with different resonance self-shielding treatments. Criteria are then
proposed for quantitatively assessing the cycle in which an MC simulation
can be deemed converged, based on Shannon entropy. Using results from
these convergence criteria, a quantitative metric Nyreak-even 1S then described
that can be used to determine when the use of the Sourcerer method is
justified. This parameter considers the number of inactive cycles saved using
the Sourcerer method and the computational time requirements of the two
transport steps.

Section [4] describes the models used for experimentation, which include
two small criticality benchmark problems, three full-core reactor problems,
and a fuel cask problem:

1. A modified version of the 2003 C5G7 mixed-oxide (MOX) fuel bench-
mark problem [I7].

Core 17 of the Babcock & Wilcox® (B&W) 1810 benchmark [18].
Watts Bar Nuclear Power Station, Unit 1 (WBN1) [19].

Westinghouse AP1000® reactor [20].

Westinghouse AP1000® reactor, unrodded configuration [20].

NAC International Inc. Universal Multi-Purpose Canister System (NAC
UMS®) fuel cask [21].

SEEA

For each of these problems, the number of inactive cycles saved using the
Sourcerer method, as well as Ny eak-even, are determined. The results of these
experiments are discussed in Section 5] Section [6] provides concluding remarks.

This work demonstrates that the Sourcerer method might provide perfor-
mance enhancements in a subset of problems—especially those where a large
number of histories per cycle are required—but further advancements in the
speed and accuracy of deterministic methods are necessary for Sourcerer to
be advantageous for arbitrary use cases.

2. Theory

MC neutron transport can be used to estimate kg via the power iteration
method, which involves successively solving the neutron transport equation
to obtain convergent estimates of the fission source. The neutron transport
equation can be formulated in operator notation as

(T - Sy = —xFy, (1)



where T is the transport operator, S is the scattering operator, x is the fission
spectrum, F is the fission operator, and v is the neutron flux. Assuming
steady-state operation, these operators are independent of flux and depend
only on the geometry, material compositions, and temperature. By collecting
these operators in a single term,

A=F(T-9)%. (2)
Eq. can be formulated as a standard eigenvalue problem,

kot = Af, (3)

where kg is the dominant eigenvalue of A and f, the eigenvector, is the fission
source given by

f=Fy. (4)
The power iteration method estimates the fission source at iteration n + 1
as
1) _ L g4
o = — AfY. (5)
k(")
eff
Subsequently, kg for iteration n —+ 1 can be formulated in terms of f"+1 ),
and kég) as
eff <f(")> eff <f(”)> )

where (-) denotes integration over all phase space. With MC neutron transport,
Eq. is implemented by recording fission sites during each cycle and using
them to form the fission source for the next cycle.

The convergence rate of power iteration is equivalent to the dominance

ratio, p, which is defined as the ratio of the second and first largest eigenvalues
of A:

_ K
= (7)

In other words, the error is reduced by a factor of 1 — p each iteration. The
dominance ratio is a physical property of a system that describes the extent to
which fissionable regions are decoupled. A reactor configuration with a large
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dominance ratio (i.e., near 1) indicates that neutrons born in one fissionable
region are unlikely to induce fission in some other fissionable region. The
dominance ratio scales with the physical size of the reactor and increases with
the presence of strong absorbers such as control rods. High burnup can create
configurations with disparate regions with high concentrations of fissionable
material (i.e., the top and bottom of fuel rods) that increase the dominance
ratio. This decoupling results in slow power iteration convergence.

With power iteration, the number of cycles required for fission source
convergence depends not only on the dominance ratio but also on the quality
of the initial guess for the flux distribution used to form the initial fission
source in Eq. . With the Sourcerer method, a deterministic transport
calculation is carried out to obtain an approximate flux distribution that
is then used as an initial guess. Provided this distribution is closer to the
converged distribution than typical initial guesses (i.e., uniform, axial cosine,
or axial flattened cosine flux distributions), this method will reduce the
number of cycles required for fission source convergence compared with these
typical cases. It is emphasized that even if the deterministically estimated
flux distribution is inaccurate, since it is only used as an initial guess it will
not affect the converged MC result for kog or the MC flux distribution.

Though the ultimate goal of k-eigenvalue problems is to obtain a converged
estimate of kqg, it is not sufficient to judge the convergence of a calculation
by considering k.g alone. When the dominance ratio is near unity, k.g will
converge faster than the fission source [22]. As a result, keg might falsely
appear to be converged before the fission source is fully resolved. To avoid
false convergence, the convergence of the fission source can be assessed with
the Shannon entropy,

H:_Zfi10g2(fi)v (8)

where f; is the fraction of source neutrons born in cell ¢ [16]. As the cycle-
wise estimates of f; improve, the Shannon entropy converges to a constant,
problem-dependent value.

Other metrics for assessing convergence have been proposed more recently
including the center of mass of the neutron population [23] and higher-
order moments of the Shannon entropy [0]. These metrics have z, y, and z
components and may be more effective in detecting false convergence due to
neutron clustering [6]. The Shannon entropy is used in this work because it is
currently the most widely-used metric, and it is not directionally-dependent,
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simplifying the method that will be described in Section for assessing
convergence.

Plotting the Shannon entropy versus cycle was originally proposed as a
visual metric for assessing fission source convergence [16]. Both kg and H
(as well as the other aforementioned metrics) are autocorrelated, meaning
cycle-wise estimates of these quantities depend on results from previous cycles
and are therefore not statistically independent. This poses challenges for
quantitatively determining whether a simulation is converged [24]. For this
reason, both visual and quantitative analysis of Shannon entropy convergence
are used in this work.

3. Methodology

To assess how the fidelity of the deterministic solution affects the per-
formance of the Sourcerer method, a series of experiments were conducted
wherein the deterministic solution parameters were varied and the Shannon
entropy was analyzed. In Section |3.1}, implementation of the Sourcerer method
within Exnihilo is discussed. Section describes how broad-group cross
sections were generated for deterministic transport, with different resonance
self-shielding treatments. Section describes how the Shannon entropy
convergence of MC power iteration is quantified for the purposes of this work.
Section |3.4 introduces a quantitative method for determining when the use of
the Sourcerer method is justified.

3.1. Implementation of the Sourcerer Method

The Sourcerer method has been implemented in the Exnihilo software suite
within SCALE, using Denovo as an SPy or Sy solver and Shift for the MC
k-eigenvalue calculation. This implementation is facilitated by the Omnibus
front-end that allows Denovo and Shift to be run interchangeably from a
common input format. When the Sourcerer method is initiated, Omnibus ray
traces the geometry onto a Cartesian mesh for use with Denovo. Denovo is
run, and the converged estimate of the flux distribution is automatically sent
to Shift. Shift generates the initial fission source, ¢(7, E), based on one of
two methods. The fission spectrum can be generated with a volume-weighted
mixed fission spectrum, calculated automatically from the XSProc module



[9] within SCALE. Defining this spectrum as x (7, £), the fission source is

4(7, E) = x (7. E) / V(B 54, E) (7, B') A (9)

Alternatively, the fission spectrum can be assumed to be a Watt fission
spectrum in energy, Xwaw(E), regardless of the material. This yields the
following fission source:

qwatt (7, E) = Xwatt(E) /V(E’) Yy (7, E') o(7, E") dE". (10)
\ 2 . )
q(E) q(7)

The Watt fission spectrum is nuclide specific. As a result, this assumption is
valid only if all fissions come from the single nuclide used to form the Watt
fission spectrum. A 23°U Watt fission spectrum might provide a reasonable
approximation for a variety of typical reactor cases. As denoted in Eq. ,
this version of the fission source is fully separable in space and energy. In
other words, it has a component that depends only on space, ¢(7), and a
component that depends only on energy, ¢(F). Instead of storing a unique
fission spectrum for each mesh cell based on the material composition, the
Watt fission spectrum is stored only once. This is advantageous because it
saves a significant amount of computer memory when forming the initial MC
source probability distribution.

The user must specify the cross section library and parameters to be used
by Denovo, including the SPy order or Sy quadrature set and solution mesh.
The impact that these choices have on performance is addressed in this work.
In addition, the user must select the fission spectrum (i.e., Eq. @ or )
Since the memory savings associated with Eq. are significant and U
fission is expected to dominate for the problems considered, this latter method
will be used exclusively in this work.

3.2. Cross Section Generation

The implementation of the Sourcerer method within Exnihilo requires
users to specify the cross section library used by Denovo. The choice of
energy group structure and cross section treatment could affect performance,
so experimentation is done using two different strategies. Cross sections were



generated for broad group structures with 2 and 24 groups using two resonance
self-shielding treatments: an infinite homogeneous medium (IHM) assumption
and Wigner-Seitz (WS) pin cells [25]. The 24-group structure was created by
starting with a 23-group structure from the LANCR code [26]. An additional
energy group bound was added at 5 eV—the purpose of which is explained
below—to form a 24-group structure used for experimentation, as shown in
[Appendix Al A 2-group structure was created with bounds at 20 MeV, 5 eV
and 107° eV. Typical k-eigenvalue problems generally require finer group
structures to capture important physics. However, with the Sourcerer method,
the goal is to quickly obtain an improved initial guess for the flux distribution,
so coarser group structures are considered in this work.

For both sets of groups, a Doppler-broadened library was created from
an ENDF/B-VII 999-group neutron library [9] using MALOCS2 [9]. This
was done using “MT=1099" flux data [9]. This data is material specific but
generally uses a Maxwellian distribution in the thermal region, a 1/FE distri-
bution in the epithermal region, and a Watt spectrum in the fast region. One
limitation of the MALOCS2 module is that a broad-group energy boundary
must be present at 5 eV, which is used as a thermal cutoff energy [27], hence
the addition of an extra group in the LANCR structure.

Using these Doppler-broadened libraries, IHM resonance self-shielded cross
sections are generated inline within Exnihilo using Omnibus, which relies
on XSProc for this operation. For each material in the problem, XSProc
performs a 0-D Sy calculation, assuming an infinite homogeneous medium of
the material. This is done using an energy group structure that uses every
point in the continuous energy data (typically between 10? and 10°, depending
on the nuclide). The resulting neutron flux energy distributions are used to
calculate the IHM cross sections for each material. For each mesh cell in the
problem, the cross section within the cell is calculated using the “pin-resolved”
method [28], in which the cross sections of the materials in each zone within
the mesh cell are mixed by volume fraction.

The Wigner-Seitz approximation is used to model a pin within a lattice as
a set of concentric cylinders. With this approximation the outermost annular
region, representing the moderator, is sized such that the moderator volume
is preserved. By generating these pin cells for each unique pin in a problem,
deterministic neutron transport calculations can be performed to obtain zone-
specific neutron flux distributions to create self-shielded cross sections. In this
work, all WS cross sections are generated with a “pin-homogenized” method
[28], in which the cross section within a pin cell (o) is calculated from the
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zone-specific fluxes (¢,), Doppler-broadened cross sections (o), and volume
fractions within the pin cell (f,) as given by

Zfz¢z0-2
Y L.

If there are multiple mesh cells per pin cell, all mesh cells are assigned this
same cross section. For the small critical benchmark experiments in this work,
unique pin cells were manually input into XSProc.

For the three full-core reactor problems considered in this work, models
were available in the reactor-aware geometry format used by the Virtual
Environment for Reactor Applications (VERA) software suite [29] produced
by the Consortium for Advanced Simulation of Light Water Reactors (CASL)
[30]. Using the VERA geometry format, WS cross sections were generated
automatically using the vera2omn utility within Exnihilo. This utility auto-
matically builds multizone pin cells for each unique fuel pin configuration
and executes XSProc [2§8]. A 252-group master library is used, and the group
collapse and self-shielding calculation are done in the same operation.

g

(11)

3.3. Convergence Criteria

As mentioned in Section [2| Shannon entropy was originally proposed as a
visual metric for assessing fission source convergence. Visualization is a useful
technique for qualitatively evaluating whether a calculation is converged;
therefore, Shannon entropy plots are presented as a component of the results
in Section 5} A quantitative method, proposed here, is also used to determine
the cycle in which a simulation can be declared converged.

Criteria for determining whether a calculation has converged using the
Shannon entropy have previously been proposed by Brown et al. [24]. These
criteria consist of six statistical checks to be applied to an interval of ¢ cycles,
where values for g were suggested to be 10, 20, and 30. The objective was
to use these criteria to automatically assess whether the Shannon entropy is
converged during a simulation. These criteria did not use a prior: knowledge
of the converged Shannon entropy. In this work, MC simulations were run
with a significant number of cycles such that the converged Shannon entropy
is known conservatively. Based on this converged Shannon entropy, a simpler
set of metrics were used to evaluate convergence. For the purpose of this
work, power iteration is declared to be converged if the following Shannon
entropy criteria are met:
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1. The difference between the average of the previous ¢ cycles and the
average over the active cycles is within one standard deviation of zero.

2. The slope of the previous ¢ cycles is less than 1074

These criteria, as well as those proposed by Brown et al., are ad hoc.
Since the Shannon entropy is autocorrelated, statistical methods that treat
cycle-wise estimates of the Shannon entropy as independent samples are not
valid. More research in this area is necessary but is beyond the scope of this
work.

3.4. Computational Time Requirements

The Sourcerer method should reduce the number of cycles necessary for
the fission source to converge. However, the use of this method is justified
only if the deterministic neutron transport calculation can be performed
in less time than that required to perform the extra cycles with MC. The
computational time requirements for these extra cycles is directly proportional
to the number of histories run per cycle. Different applications will require
different numbers of histories per cycle. For example, a calculation where
ke is the only desired result will require fewer histories per cycle than if
detailed subpin-resolution results are desired. Likewise, the use of Sourcerer
might be justified in the latter case but not the former. For this reason, the
performance of the Sourcerer method is assessed in terms of the number of
histories per cycle required to “break even” such that the time requirements
to obtain a converged fission source with and without Sourcerer are equivalent.
To calculate this quantity, the number of cycles saved using Sourcerer (Cyayeq)
is defined as

Csaved - Cstandard - CSourcerera (12>

where Csourcerer a0d Clpandara are the number of cycles required to obtain a
converged fission source as defined by the criteria in Section [3.3| with and
without the Sourcerer method, respectively. For the purpose of this work,
Cstandara Will refer to the number of cycles required for convergence using the
most appropriate typical initial guess for the flux, whether it be a uniform,
axial cosine, or axial flattened cosine distribution. The number of particles
required to break-even, Npeak-even, 1S then defined by the relation

taet = Nbreak-even C(saved ti\/{Ca (13>
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where t4e¢ is the computational time required for deterministic transport
and t);¢ is the computational time required for MC transport per particle.
Sourcerer is run with a moderate, but arbitrarily chosen, number of particles
per cycle, and Npieak-even 18 then calculated by rearranging Eq. :

tdet

Nbreak-even = ( 14)

Csaved ti\/jc .

This quantity can then be compared with numbers of histories per cycle used
for different analyses for each tested model, as found in the literature. For a
given model, if the number of histories per cycle typically used is significantly
larger than Npieak.even, the use of the Sourcerer method is justified. This
assumes that the number of histories per cycle is a fixed value, which is the
case for most MC codes. This is not the case if the particle ramp-up method
is being used. The Ny eak-even 18 specific to a particular MC and deterministic
transport code combination. Thus, results presented here are applicable
only to the implementation of the Sourcerer method with Denovo and Shift
but should provide insight into the applicability of the Sourcerer method in
general.

4. Models

This section describes the models used for experimentation. Two small
criticality benchmark experiments were selected: a modified version of the 2003
C5GT7 benchmark and core 17 of the B&W 1810 benchmark. Two full-core
models were also chosen: the WBN1 reactor and the rodded and unrodded
versions of the Westinghouse AP1000®. Shift has previously been validated
using all four of these problems [14) 31]. Finally, a NAC International Inc.
(NAC) UMS® cask was selected, similar to one used for the initial analysis of
the Sourcerer method conducted by Ibrahim et al. [§].

4.1. 2003 C5G7 Benchmark

The C5G7 computational benchmark is an eighth-core MOX fuel problem
originally created to assess how effectively deterministic neutron transport can
model heterogeneous reactor models without the use of spatial homogenization.
This work used the 2003 version [17] of this problem rather than the more
commonly used 2005 version, which is half the size in the axial dimension.
Since the 2003 version is larger, it has a higher dominance ratio (approximately
0.978 [32]) and is therefore a more challenging fission source convergence
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problem. An image of the model appears in Figure [I The model consists of
four 17x17 square pitch lattice pin assemblies. Each assembly is 21.42 cm
x 21.42 cm x 192.78 cm. Including the moderator, the total size of the
geometry is 64.26 cm X 64.26 cm x 214.20 cm. Reflecting boundaries are
used at © = 0 cm, y = 64.26 cm, and z = 0 cm. Vacuum boundary conditions
are used elsewhere.

The model contains two assemblies with UQO, fuel and two assemblies
fueled with three different enrichments of MOX: 4.3 wt.%, 7.0 wt.%, and
8.7 wt.%. Each assembly has a fission chamber in the center pin location
along with 24 guide tubes arranged radially around the center pin. In the
original benchmark, each fuel pin contained a homogenized fuel-clad mixture,
for which seven-group cross sections were provided. This benchmark was
modified for use with continuous energy MC by creating detailed fuel pins
that explicitly model the fuel, clad, and gap regions, based on dimensions and
compositions provided by preliminary documents pertaining to the benchmark
[33].
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Figure 1: Eighth-core model of the 2003 version of the C5G7 geometry with reflecting
boundaries at x = 0 cm, y = 64.26 cm, and z = 0 cm. Cladding and gaps within pins have
been omitted for visualization.

4.2. Babcock and Wilcox 1810 Benchmark

The B&W 1810 benchmark [I8] consists of a series of critical experiments
performed on a small light water reactor. The benchmark was originally
created to compare computational results from a two-group diffusion model
to experimental results in the presence of a UO5-GdO3 burnable absorber
fuel mixture. A total of 23 different core configurations were studied. In
this work, core XVII was chosen for experimentation. A diagram of this
core configuration appears in Figure 2] This core was chosen because of
the presence of additional absorbers and multiple enrichment zones. These
heterogeneities increase the complexity of the fission source distribution.

The computational model used for the benchmark is a quarter core with
reflecting boundaries on the x and y centerlines and vacuum boundaries
elsewhere. The total size of the model is approximately 107.14 cm in z and
y and 145 cm in z. Core XVII has an inner zone with fuel enriched to 4.0
wt.%, an outer zone with an enrichment of 2.46 wt.%, and 10 UO,-Gd,O3
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rods that contain 4.00 wt.% GdyO5 and 96.00 wt.% UO, with a 1.94 wt.%
enrichment. The model also contains four B4C control rods and aluminum
grid plates at the bottom of the geometry (minimum z), which provide axial
heterogeneity. The water moderator in this model contains 1,432 ppm boron.
Center and top grid plates, as well as the core tank, are not modeled.

2.46% enr. 4.0% enr. Gd,0;-UO0, B,C calibration water Al
fuel fuel fuel tube
I E— —
A g 140
100 28 120
" BRI 100
= go ittt it = 80
> 70 N 00
60 {40
50 |20
le 1 1 1 1 1
0 10 20 30 40 50 60 0 20 40 60 80 100
x (cm) x (cm)
(a) Fuel loading (b) z-z slice on the y centerline

Figure 2: Fuel loading of core XVII of the B&W 1810 benchmark. Cladding and gaps
within pins have been omitted for visualization. Aluminum regions have several different
compositions, but are collapsed into a single color for simplicity.

4.3. Watts Bar Nuclear Power Station, Unit 1

WBNT1 is a Westinghouse-designed pressurized water reactor (PWR) in
Rhea County, Tennessee, that began operating in 1996. A full-core model
of this reactor (shown in Figure |3) was created to simulate initial startup
physics as a component of the validation of the VERA software suite [19].
There are three varieties of 17x17 fuel assemblies containing fuel with 23°U
enrichments of 2.110 wt.%, 2.619 wt.%, and 3.100 wt.%. Each assembly
contains 24 control rod guide tube locations and a central instrumentation

16



tube. Both Pyrex® burnable absorber rods and rod cluster control assembly
banks of AIC/B4C rods are used, as well as moderator with a 1,285.2 ppm
soluble boron chemical shim.

The reactor has a significant degree of axial heterogeneity with eight
spacer grids as well as top and bottom assembly nozzles and core plates. The
pressure vessel and containment are not modeled. This reactor is considerably
larger than the 2003 C5G7 and B&W 1810 models, with the quarter core
measuring approximately 365.5 cm X 365.5 cm x 418.94 cm. WBNI1 has a
high dominance ratio (approximately 0.987 [32]), making this a challenging
fission source convergence problem. Additionally, the axial variation in this
problem perturbs the axial flux distribution. A simplified approach, such as
assuming that the flux distribution is a cosine axially, is not expected to be
effective for this problem, which makes this problem a good candidate for
application of the Sourcerer method.
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(a) Fuel loading (b) z-z slice on the y centerline

Figure 3: WBNI1 model. Red, orange, and purple represent fuel, and blue represents
moderator.

4.4. Westinghouse AP1000®
The Westinghouse AP1000® is a Generation III+ PWR reactor design
currently being constructed at six sites in China and the United States. A
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full-core model of the AP1000® was created as a test stand for the VERA
software suite [20], as shown in Figured, The reactor has five different 17 x 17
assembly types with 23U enrichments ranging from 0.7 wt.% (natural) to 4.8
wt.%. The AP1000® uses as many as 12 Al,O3-B,C wet annular burnable
absorber rods per assembly. In addition, as many as 124 rods per assembly
consist of fuel coated with a ZrBy burnable absorber known as Westinghouse
integral fuel burnable absorber (IFBA). The mechanical shim operational
strategy is also employed using tungsten control banks, Ag-In-Cd control
banks, and boron chemical shim. Simulations were performed with these
control rods inserted and also removed. The latter case is referred to as
the “unrodded” configuration. The unrodded configuration was also chosen
because it is known to have a top-peaked flux distribution from axial variation
in the burnable absorbers. Since uniform, axial cosine, and axial flattened
cosine initial guesses do not capture this shape, it might be a good candidate
for the Sourcerer method.

Axially, the reactor has significant heterogeneities including 12 ZIRLO®
grids, 8 intermediate mixing vane grids, 4 intermediate flow mixing grids,
Inconel grids above and below the fuel, and an Inconel grid above the bottom
nozzle [20]. The pressure vessel and containment are not modeled. This model
is similar in size to the WBN1 model, measuring approximately 365.56 cm
X 365.56 cm x 494.48 cm, which means this problem is also challenging for
fission source convergence.
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Figure 4: Westinghouse AP1000® model. Red, orange, and purple represent fuel, and blue
represents moderator.

4.5. NAC UMS® Cask

This model (shown in Figure [5)) consists of a NAC International Inc.
Universal Multi-Purpose Canister System (UMS®) Model TSC-24 fuel cask
loaded with 24 Combustion Engineering 14x14 spent fuel assemblies from
the Maine Yankee PWR [21]. The Maine Yankee power station was located
in Wiscasset, Maine, and was decommissioned in 1996. This cask is serial
number TSC-24-TSC-11 and contains assemblies that were discharged over
the course of 15 years with initial 2**U enrichments between 3.03 and 3.91%
and discharge burnups between 25.9 GWd/MtHM and 49.2 GWd/MtHM. The
fuel compositions have been adjusted to simulate the expected compositions
in the year 2100 (i.e., a decay time of 104 years after the last discharge
date). Each assembly is surrounded by Boral plates, which are effective at
absorbing thermal neutrons. The water regions between assemblies form
a “flux trap” where neutrons are thermalized and thereby prevented from
entering adjacent assemblies. The total size of the model is approximately
270.33 cm x 270.33 cm x 544.57 cm, which includes a 60 cm annular water
reflector region. Vacuum boundaries are used on all sides of the model.
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5. Results

For each model described in Section[4] a Shift k-eigenvalue calculation was
performed using a uniform, axial cosine, or axial flattened cosine initial flux
distribution, as well as flux distributions from Denovo solutions with different
resolutions. These starting sources are compared with the MC solution from
Shift. Plots of keg and Shannon entropy convergence, in combination with
convergence and timing results, are used to assess the efficacy of the Sourcerer
method. All trials were run on the CADES compute cluster at ORNL, which
is composed of Intel® Xeon® CPU E5-2698 v3 compute nodes with 32 cores
per node and 128 GB RAM per node. All Denovo SPy calculations were
performed with an Ly convergence tolerance of 1 x 1079, which is moderately
tight for the SPy solution method [12].

5.1. C5G7

For the C5G7 problem, the low-resolution Sourcerer trial used an SP;
angular expansion, a Py scattering expansion solver order, 2-group IHM cross
sections, and a solution mesh with 2 pins per mesh element radially and
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5 cm mesh divisions axially (26 x 26 x 43 = 29,068 mesh cells). The high-
resolution trial used an SP3 angular expansion, a P; scattering expansion,
24-group WS cross sections, and a solution mesh with 1 pin per mesh element
radially and 5 cm mesh divisions axially (51 x 51 x 43 = 111,843 mesh cells).
These trials are compared against uniform and axial cosine starting sources.
All trials were run with 500 inactive cycles and 500 active cycles with 1 x 107
histories per cycle on 2 compute nodes with 32 MPI tasks per node.

The radial and axial flux distributions for the axial cosine distribution
and two Sourcerer trials are compared against the MC solution in Figure [0
The two Sourcerer trials match the MC solution nearly exactly axially, but
the low-resolution Sourcerer trial fails to capture the radial shape with the
same fidelity as the high-resolution trial.

The ke and Shannon entropy are plotted as a function of cycle for each
trial in Figure [7] As expected, keg appears to converge significantly faster
than the Shannon entropy, an effect that is most pronounced in the uniform
and axial cosine trials. Qualitatively it is apparent that both Sourcerer trials
converge in significantly fewer cycles than the uniform and axial cosine trials.
This is corroborated by the results from the convergence criteria described
in Section [3.3] which are marked on the Shannon entropy plot and also
tabulated in Table . For these convergence tests, a step size (q) of 20 was
used. According to this metric, approximately 100 cycles are saved by using
either Sourcerer trial when compared with using an axial cosine. This suggests
that the reduction of inactive cycles is insensitive to the choice of Denovo
solution parameters for this problem.

As expected, Table 1 indicates that the Shift runtime per particle history
is not significantly affected by the use of a more accurate starting fission
source; all of the potential runtime savings result from the ability to run fewer
inactive cycles to converge the fission source. The Denovo run times vary by
more than two orders of magnitude, and likewise the Npicak-even Values are
1.68 x 103 and 2.97 x 10° for the low- and high-resolution Sourcerer trials,
respectively. It is likely that typical analysis using this problem would require
significantly more than 10% — 10° histories per cycle. For example, Shift was
previously benchmarked with this problem by running 1 x 106 histories for 250
inactive cycles and 1,000 active cycles to compare keg, integrated assembly
powers, and maximum pin powers to published results [31].

Because the convergence metric used in this study is affected by the
statistical noise in the Shannon entropy, additional analysis was performed
to estimate the uncertainty in the converged cycle results. This was done by
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repeating each trial 9 times with different random number seeds and applying
the convergence criteria, resulting in a total of 10 statistically independent
samples of the converged cycle for each trial. The average and standard
deviation of these 10 samples are compared to the original sample in Table
From these results, it appears that there is considerable statistical variation
in converged cycle results, but the general trend is the same: both Sourcerer
trials result in significantly faster convergence. Obtaining 10 samples for
each trial for the remaining problems in this work was not feasible from
the standpoint of computational resource requirements. For the remaining
problems, only a single sample was obtained, with the understanding that
there is some degree of uncertainty with these results.

Table 1: Convergence results (using the criteria described in Section with ¢ = 20) and
Npreak-even values (as described in Section for the C5G7 problem. Cycles saved values
are relative to the cosine distribution.

Method Conv. Cycles Denovo wall = Shift wall time  Npeak-even
cycle  saved time (s) per hist. (s)

Uniform 220 - — 3.12 x 107 —

Cosine 138 — — 3.12 x 1076 -

Sourcerer low 39 99 0.53 3.18 x 1076 1.68 x 103

Sourcerer high 36 102 95.6 3.15 x 1076 2.97 x 10°

Table 2: Comparison of the single-sample converged cycles results in Table|l|to the average
and standard deviation of the converged cycles of 10 samples.

Method Conv. cycle, Conv. cycle,
initial sample average of 10 samples
Uniform 220 260 £ 40
Cosine 138 150 + 20
Sourcerer low 39 80 + 60
Sourcerer high 36 50 + 20
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Figure 6: Flux distributions used as initial guesses for MC power iteration, compared with
the converged MC solution, for the C5G7 problem.
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Figure 7: Convergence plots for the C5G7 problem. Markers represent the converged cycles
tabulated in Table
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5.2. BEW 1810 Core 17

For the B&W 1810 core 17 problem, the low-resolution Sourcerer trial
used an SP; angular expansion, a Py scattering expansion, 2-group THM
cross sections, and a solution mesh with 2 pins per mesh element radially
and 5 cm mesh divisions axially (30 x 30 x 30 = 27,000 mesh cells). The
high-resolution trial used an SP3 angular expansion, a P; scattering expansion,
24-group WS cross sections, and a solution mesh 1 pin per mesh element
radially and 5 cm mesh divisions axially (58 x 58 x 30 = 100,920 mesh cells).
These trials are compared against uniform and axial cosine starting sources.
All trials were run with 200 inactive cycles and 200 active cycles with 1 x 107
histories per cycle on two compute nodes with 32 MPI tasks per node.

The radial and axial flux distributions for the axial cosine distribution
and two Sourcerer trials are compared against the MC solution in Figure [8]
As with the C5GT7 trial, the high-resolution solution matches the MC solution
nearly exactly, and the low-resolution solution captures the correct axial
shape but not the correct radial shape.

Figure [9] shows the Shannon entropy as a function of cycle. Visually, it is
apparent that the high-resolution Sourcerer trial converges in significantly
fewer cycles than the other trials. Quantitative convergence analysis was
performed with ¢ = 10 for this problem (instead of ¢ = 20, as was done for
all other problems) because the high-resolution Sourcerer trial appeared to
converge in under 20 cycles. Visually it appears that the axial cosine trial
converges in the second fewest number of cycles, followed by the low-resolution
Sourcerer trial. However, using the quantitative metrics, this order is reversed.
This highlights the shortcomings of the convergence criteria described in
Section and suggests there is a considerable degree of uncertainty in the
number of cycles saved and Npear-even @s tabulated in Table

Previous Shift benchmarking with this problem involved running 250
inactive cycles and 1,000 active cycles with 1 x 10¢ histories per cycle to com-
pare keg and pin powers to experimental results [31]. Though the Nyiear even
for the low-resolution trial is considerably less than 1 x 10°, it is not clear
that this result is reliable, as previously mentioned. The Ny eak-even fOr the
high-resolution Sourcerer trial is 6.50 x 10°. Since this value is close to 1 x 10°,
it appears that even if the value for the number of cycles saved is accurate
for the high-resolution trial, Sourcerer will provide very little benefit. If
more detailed analysis were to be required for this problem—e.g., subpin flux
distributions for depletion analysis—perhaps 1 x 107 histories per cycle would
be run and the use of the Sourcerer method would be well justified.
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Table 3: Convergence results (using the criteria described in Section with ¢ = 10) and

Npreak-even values (as described in Section for the B&W 1810 core 17 problem. Cycles
saved values are relative to the cosine distribution.

Method Conv. Cycles Denovo wall Shift wall time  Npreak-even
cycle  saved time (s) per hist. (s)

Uniform 51 — — 2.71 x 1076 —

Cosine 42 —~ —~ 2.73 x 1076 -

Sourcerer low 29 13 0.38 2.75 x 1076 6.43 x 10°

Sourcerer high 14 28 50.1 2.75x 1075 6.50 x 10°
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the converged MC solution, for the B&W 1810 core 17 problem.
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Figure 9: Convergence plots for the B&W 1810 core 17 problem. Markers represent the
converged cycles tabulated in Table
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5.3. Watts Bar Nuclear Unit 1

Early experimentation with the WBN1, AP1000®, and unrodded AP1000®
problems revealed that low-resolution Denovo solutions were ineffective in
improving fission source convergence. Therefore, the trials presented for these
problems all used the 24-group energy structure with an SP3 angular expan-
sion and a P; scattering expansion. For this problem, three Sourcerer trials
are compared with uniform and axial cosine initial flux distributions. The low-
resolution trial used IHM cross sections and a solution mesh with 8 mesh cells
per assembly radially (i.e., 2.125 pins per mesh cell) and 5 cm mesh divisions
axially (128 x 128 x 88 = 1,441,792 mesh cells). The medium-resolution trial
used IHM cross sections and a solution mesh with 1 pin per mesh radially
and 5 cm mesh divisions axially (263 x 263 x 88 = 6,086,872 mesh cells).
The high-resolution trial used WS cross sections generated automatically
from a VERA model as described in Section 3.2l The solution mesh was
generated automatically by the vera2omn utility. The mesh resolution was
1 pin per mesh radially, with additional mesh divisions within assembly gaps.
Axially, the maximum mesh division size was 5 cm. The total mesh size was
305 x 305 x 115 = 10,697,875 mesh cells.

The principle difference between the medium- and high-resolution trials is
the use of WS cross sections. With the WBN1 and AP1000® models there
are too many unique pin cells for it to be practical to generate WS cross
sections by hand. Since automatic generation of WS cross sections can be
done only on a per-pin basis using VERA, the effect of WS cross sections
was investigated specifically with these trials to understand the expected
performance for cases when a VERA model is not available. All trials were
run with 800 inactive cycles and 200 active cycles with 4 x 107 histories
per cycle on 32 compute nodes with 32 MPI tasks per node. Note that in
production simulations, considerably more active cycles would typically be
performed. However, since the aim of this work is to study the convergence
of the fission source, it is the inactive cycles that are of primary importance.

Radial and axial flux distributions for the initial guesses are compared with
the MC solutions in Figure [I0} Unlike the C5G7 and B&W 1810 problems,
the radial flux distribution is captured best by the low-resolution distribution,
followed by the medium- and high-resolution distributions. It is not apparent
why this is the case, but the low-resolution distribution could be coincidentally
more accurate due to a cancellation of error effect. Axially, the medium-
and high-resolution distributions closely match the MC solution, whereas the
low-resolution solution is considerably less accurate.
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For the low-resolution Sourcerer trial, the Shannon entropy does not
visually appear to converge any faster than the axial cosine trial, as seen in
Figure[11] As a result, the Npeak-even value for this trial in Table [ is probably
not reliable. Both the medium- and high-resolution trials visually appear to
converge in significantly fewer cycles than the axial cosine as corroborated by
the quantitative convergence results. This suggests that capturing this axial
shape is more important for Sourcerer performance. The Nycareven Values for
the medium- and high-resolution trials are both larger than the number of
histories used for previous analyses of this problem. A Shift benchmark study
that compared keg, control rod/bank worth, and boron worth to experimental
results used 300 inactive cycles and 700 active cycles with 1 x 107 histories
per cycle [14]. In other words, similar to the B&W 1810 problem, the use of
the Sourcerer method is justified for this problem only if considerably more
histories per cycle are required for highly resolved flux distributions.

Table 4: Convergence results (using the criteria described in Section and Npreak-even
values (as described in Section for the WBN1 problem

Method Conv. Cycles Denovo wall Shift wall time  Npeak-even
cycle  saved time (s) per hist. (s)

Uniform 223 - — 2.84 x 1077 -

Cosine 292 — — 2.72 x 1077 -

Sourcerer low 249 43 117 2.72x 1077 1.00 x 107

Sourcerer medium 81 211 773 2.66 x 1077 1.38 x 107

Sourcerer high 63 230 1770 2.64 x 1077 2.91 x 107
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Figure 10: Flux distributions used as initial guesses for MC power iteration, compared
with the converged MC solution, for the WBN1 problem.
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Figure 11: Convergence plots for the WBN1 problem. Markers represent the converged
cycles tabulated in Table El Note that the keg plot shows only the first 150 cycles.
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5.4. Westinghouse AP1000®

For the AP1000® problem, a similar set of Sourcerer trials were used as
with the WBN1 problem. All trials used a 24-group energy structure with
an SP3 angular expansion and a P scattering expansion. The low-resolution
trial used IHM cross sections with 8 mesh cells per assembly radially (2.125
pins per mesh radially) and 5 cm mesh divisions axially (128 x 128 x 99 =
1,622,016 mesh cells). The medium-resolution trial used ITHM cross sections
and a solution mesh with 1 pin per mesh radially and 5 cm mesh divisions
axially (263 x 263 x 99 = 6,847,731 mesh cells). The high-resolution trial
used WS cross sections generated from a VERA model. As was the case with
the WBN1 problem, the generated mesh had an radial resolution of 1 pin
per mesh cell with additional divisions in the assembly gaps and a maximum
axial division size of 5 cm (285 x 285 x 145 = 11,777,625 mesh cells). All
trials were run with 1000 inactive cycles and 500 active cycles with 4 x 107
histories per cycle on 32 compute nodes with 32 MPI tasks per node. These
trials are compared against uniform and axial flattened cosine initial guesses.

Radial and axial flux distributions for the initial guesses are compared
against the MC solution in Figure[12] As was the case with the WBN1 problem,
the higher-resolution trials do not improve the radial flux distribution. Unlike
the WBN1 problem, none of the Sourcerer trials were able to closely match
the axial flux distribution. As a result, none of the Sourcerer trials provided
faster convergence compared with an axial flattened cosine or uniform initial
guess as seen in Figure [13] with converged cycle values in Table [5

The inability of the deterministic solution to capture the correct flux
distribution might be because of the presence of IFBA pins in the AP1000®,
as discussed in Section [£.4] The presence of a strong absorber directly
surrounding the fuel pins significantly perturbs the local flux distribution. It
is possible that the spatial and/or energy discretization are not fine enough
to capture this effect, which in turn affects the flux distribution throughout
the whole problem. The spatial/energy resolution could be further increased:;
however, the high-resolution solution for this problem required significantly
more processor time than the high-resolution WBNT1 trial, which had a high
Nireak-even Telative to the number of histories per cycle previously used for
WBNI1 analysis. In other words, a more detailed Denovo solution could
potentially improve the performance of Sourcerer for this problem, but it is
unlikely that this would be practical unless an extremely highly resolved flux
distribution is required.
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Table 5: Convergence results (using the criteria described in Section and Npreak-even
values (as described in Section for the AP1000® problem

Method Conv. Cycles Denovo wall Shift wall time  Npreak-even
cycle  saved time (s) per hist. (s)

Uniform 336 — — 1.95 x 1077 —

Flattened cosine 422 — — 2.02 x 1077 -

Sourcerer low 620 - 124 1.89 x 1077 -

Sourcerer medium 788 — 846 1.88 x 1077 -

Sourcerer high 616 - 2670 1.92 x 1077 -
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Figure 12: Flux distributions used as initial guesses for MC power iteration, compared
with the converged MC solution, for the AP1000® problem.
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Figure 13: Convergence plots for the AP1000® problem. Markers represent the converged
cycles tabulated in Table 5| Note that the k.g plot shows only the first 200 cycles.
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5.5. Westinghouse AP1000®, Unrodded Configuration

As discussed in Section [4.4] this problem is identical to the standard
AP1000® problem except that tungsten and Ag-In-Cd control rods have
been removed. For this problem, the same three trials were run as the
standard AP1000® problem. The only exception is that the mesh generated
by vera2omn for the unrodded high-resolution trial (285 x 285 x 143 =
11,615,175 mesh cells) has two fewer axial divisions than the high-resolution
trial in the standard AP1000® problem.

Radial and axial flux distributions for the initial guesses are compared
against the MC solution in Figure The radial flux distribution plot shows
the same performance trend as the standard AP1000® problem. Axially, the
low-resolution trial produces a flux distribution that resembles a cosine. By
increasing the mesh resolution with the medium-resolution trial, the radial
flux distribution becomes less accurate but the axial flux distribution improves.
However, WS cross sections do not yield any further improvement, but rather
the asymmetry of the axial flux distribution is overestimated.

As seen in Figure [15] qualitatively it appears that all trials converge in
a similar number of cycles and that Sourcerer does not appear to provide
any benefit. The order in which the cycles converge, tabulated in Table [6] is
likely an artifact of the convergence criteria rather than a legitimate effect.
As a result, the uncertainty in Ci,eq as given by Eq. is high, meaning
the Npreak-even value for the high-resolution trial is not reliable. As was the
case with the standard AP1000® problem, a more detailed mesh or energy
group energy structure might allow the Sourcerer method to outperform
a uniform distribution; but it is unclear whether the Denovo solve time
requirements would be justified for anything but Shift simulations which
require an extremely large number of histories per cycle.
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Table 6: Convergence results (using the criteria described in Section and Npreak-even
values (as described in Section for the unrodded AP1000® problem

Method Conv. Cycles Denovo wall Shift wall time  Nyreak-cven
cycle  saved time (s) per hist. (s)

Uniform 672 — — 2.02 x 1077 —

Cosine 815 — — 2.03 x 1077 —

Sourcerer low 763 — 177 1.91 x 1077 -

Sourcerer medium 688 — 1130 1.89 x 1077 —

Sourcerer high 642 30 2660 1.93 x 1077 4.59 x 108
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Figure 14: Flux distributions used as initial guesses for MC power iteration, compared
with the converged MC solution, for the unrodded AP1000® problem.
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Figure 15: Convergence plots for the unrodded AP1000® problem. Markers represent the
converged cycles tabulated in Table [} Note that the k.g plot shows only the first 200
cycles.
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5.6. NAC UMS® Cask

One limitation of the SPy method is that it cannot be used in the presence
of material voids. The NAC UMS® cask model has a void region surrounding
the cylindrical reflector, as seen in Figure[5] As a result, the Sy method was
used as the deterministic solver for this problem. In addition, a VERA model
was not available, so only IHM cross sections were tested. Low- and high-
resolution trials both used a step characteristics spatial differencing scheme,
a quadruple range quadrature set with four polar and four azimuthal angles
per level per octant (Sg), a Py scattering expansion, and an Ly convergence
tolerance of 1 x 1073. The low-resolution trial used a solution mesh with
5 cm mesh divisions both radially and axially (54 x 54 x 109 = 317,844
mesh cells). The high-resolution trial used a solution mesh with 1 pin per
mesh element radially and 5 cm mesh divisions axially (106 x 106 x 109 =
1,224,724 mesh cells). All trials were run with 1,000 inactive cycles and 500
active cycles with 4 x 107 histories per cycle on 2 compute nodes with 32 MPI
tasks per node. These trials are compared against a uniform initial guess.

As seen in Figure [16] the radial flux distribution has an asymmetric
shape. This is expected because the loaded assemblies have different initial
enrichments and discharge burnups. Axially, the flux is top-peaked. During
reactor operation there is a higher moderator density at the bottom of the
core due to the axial temperature distribution, which leads to lower burnup
in the axial top portion of the fuel assemblies. The lower burnup fuel at the
top of the assembly causes this asymmetry in the flux distribution.

The high-resolution trial captures the radial shape better than the low-
resolution trial, but the opposite is true axially. As seen in Figure and
Table [7] the high-resolution trial converges significantly faster than the low-
resolution and uniform trials. Unlike all of the previous problems, the trial
with the most accurate axial shape did not perform the best. This is likely
because of the Boral plates that form the flux traps between assemblies,
as described in Section [4.5] These flux traps cause the assemblies to be
significantly more neutronically decoupled. In other words, if the initial guess
for the fission source is inaccurate radially, the power iteration process cannot
correct this inaccuracy at the same rate as in a reactor problem.

The fact that both Sourcerer trials quantitatively and qualitatively offer
improvements over a uniform initial guess demonstrates that sufficiently
accurate Denovo solutions can be obtained over a range of solution parameters
for this problem. However the Npieakeven Values of 5.71 x 10° and 1.68 x 107
for the low- and high-resolution trials are greater than the number of histories
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used for previous analysis. A production-level determination of kg for this
problem used 150 inactive cycles and 400 active cycles with 5x10° histories
per cycle [34]. In other words, the use of Sourcerer for this problem is justified
only if more highly resolved flux distributions are required.

These results can also be compared with previous Sourcerer results from
another NAC UMS® problem as reported by Ibrahim et al. [§]. Based off of
published values from Ibrahim et al., Npieak-even Was found to be 2.53 x 104,
which is more than an order of magnitude less than the Np,eak-even for the
low-resolution case in this work. This discrepancy is from the sensitivity of
Npreak-even t0 both the problem and combination of deterministic and MC
codes used with the Sourcerer method. Though Ibrahim et al. used the same
cask model as the one used in this work, it was loaded with different fuel and
a different decay time was considered. In addition, Ibrahim et al. used Denovo
and KENO, both run in serial. The Shift computational time per particle was
found to be 2.74 times less in this work than the KENO computational time
per particle calculated from results from Ibrahim et al. The Sourcerer method
provides a greater benefit when the MC code requires more computational time
per particle because the deterministic solve is comparatively less expensive.
Finally, Ibrahim et al. used different convergence metrics and different Denovo
solution parameters, which might contribute to the discrepancy in Ny eak-even-

Table 7: Convergence results (using the criteria described in Section and Npreak-even
values (as described in Section for the NAC UMS® problem

Method Conv. Cycles Denovo Wall Shift wall time  Npieak-even

cycle  saved Time (s) per hist. (s)
Uniform 159 - - 4.96 x 1077 -
Low 114 45 12.7 4.94 x 1077 5.71 x 10°
High 87 72 608 5.02 x 1077 1.68 x 107

42



— MC solution
— Det. solution, 2-group, Sy, QR 4x4, IHM, 5 cm radial, 5 cm axial
— Det. solution, 24-group, Sy, QR 4x4, IHM, 1 pin/mesh radial, 5 cm axial

T T T T T

0.014

0.012

0.010

0.008 -

Normalized flux

0.006

0.004

0.002 -

0.000 . - v
—100 =50 0 50 100

z (cm)

(a) Radial, y and z fuel midplanes

— MC solution
— Det. solution, 2-group, Sy, QR 4x4, IHM, 5 cm radial, 5 cm axial
— Det. solution, 24-group, Sy, QR 4x4, IHM, 1 pin/mesh radial, 5 cm axial

0.015F

Normalized flux
o
o
=
o

0.005

0.000 . -
100 200 300 400

z (cm)

ol

(b) Axial, centerline

Figure 16: Flux distributions used as initial guesses for MC power iteration, compared
with the converged MC solution, for the NAC UMS® cask problem.
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— Uniform
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Figure 17: Convergence plots for the NAC UMS® cask problem. Markers represent the
converged cycles tabulated in Table E
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6. Conclusion

In this work the Sourcerer method has been implemented in the Exnihilo
transport suite within SCALE using Denovo’s SPy and Sy solvers and the
Shift MC transport code. An ad hoc convergence metric was used to determine
the number of cycles required for convergence with and without Sourcerer.
Provided that the Sourcerer method is successful in reducing the number of
cycles required for convergence, Denovo and Shift timing results can be used
to calculate Npreak-even tO estimate the number of particles per cycle for which
the use of the Sourcerer method is justified.

Convergence and Ny eak-cven Tesults were presented for a variety of typical
k-eigenvalue problems for Sourcerer trials with low- and high-resolution
Denovo solutions, as well as uniform and axial cosine or axial flattened cosine
initial flux distributions. These Denovo solutions varied the SPy or Sy order,
resonance self-shielding treatment for cross section generation, number of
energy groups, and solution mesh. For the C5G7 problem, both low- and
high-resolution Denovo solutions resulted in convergence in significantly fewer
cycles, with Npeak-even values that were small compared with the number of
histories used in previous analysis. This indicates the Sourcerer method can
reliably reduce the number of cycles required for convergence for this problem,
insensitive to the choice of Denovo solution parameters.

For the B&W 1810 core 17, WBN1, and NAC UMS® cask problems,
the higher-resolution Denovo solutions yielded the best performance, though
all of these trials had Npeak-cven Values close to or exceeding the number of
histories per cycle used for analyses appearing in the literature. In these
cases, the use of the Sourcerer method is justified only if a large number of
histories per cycle are required for more highly resolved flux distributions.
For the standard and unrodded AP1000® problems, none of the Sourcerer
trials reduced the number of cycles required for convergence relative to an
axial flattened cosine initial flux distribution. Unlike the other reactor cases
considered in this work, even the high-resolution Denovo solution did not
capture the correct axial flux distribution, which appears to be necessary
for the Sourcerer method to be effective for reactor problems. This could
be caused by IFBA pins in the AP1000®, but further analysis is needed to
confirm this possibility.

In several cases, the convergence results using the convergence criteria
presented in Section were inconsistent with visual expectations. Future
work might involve developing improved convergence criteria that take into
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account the autocorrelation of the Shannon entropy. The Sourcerer method as
implemented in Exnihilo requires a marginal amount of additional effort from
the user compared with a standard Shift k-eigenvalue simulation. Assuming
that the number of histories per cycle is fixed, the use of the Sourcerer method
appears to be justified in cases where highly resolved flux distributions
are desired and therefore a large number of histories per cycle are used.
Further advancements in the speed and accuracy of deterministic methods
are necessary for Sourcerer to be advantageous for arbitrary use cases.
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Appendix A. Energy Group Bounds for the 24-Group Structure

The 24-group structure is based on the 23-group LANCR structure, with
an additional group bound at 5 eV. This structure is shown in Table [A.§]
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Table A.8: Energy group bounds for the 24-group structure

Energy group bound (eV)

2.000% 107
8.208x10°
1.111x10°
5.531x 103
1.864 %102
3.761x 10
3.538x 10"
2.770x 10!
2.168x 10!
2.040x 10!
1.597x10"
7.150x10°
6.700x10°
6.300x10°
5.000x 10°
1.097x10°
1.045%x10°
9.500x 107!
3.500x 107!
2.060x 107!
1.070x 1071
5.800x 1072
2.500%x 1072
1.000x 1072
1.000x107°
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