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Abstract. QMCPACK is an open source quantum Monte Carlo package for ab-initio
electronic structure calculations. It supports calculations of metallic and insulating
solids, molecules, atoms, and some model Hamiltonians. Implemented real space
quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte
Carlo. QMCPACK uses Slater-Jastrow type trial wavefunctions in conjunction with
a sophisticated optimizer capable of optimizing tens of thousands of parameters.
The orbital space auxiliary field quantum Monte Carlo method is also implemented,
enabling cross validation between different highly accurate methods. The code is
specifically optimized for calculations with large numbers of electrons on the latest
high performance computing architectures, including multicore central processing
unit (CPU) and graphical processing unit (GPU) systems. We detail the program’s
capabilities, outline its structure, and give examples of its use in current research
calculations. The package is available at http://www.gmcpack. org,.

Keywords: QMCPACK, Quantum Monte Carlo, Electronic Structure, Quantum
Chemistry.
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1. Introduction

[{] An accurate solution of the many-body Schrodinger equation is a grand challenge
for physics and chemistry. The great difficulty of obtaining accurate yet tractable
solutions has led to the development of many complementary methods, each bearing
unique approximations, limitations, and assumptions. Today, the electronic structure of
periodic condensed matter systems is most commonly obtained using density functional
theory (DFT), while for isolated molecules many-body quantum chemical techniques
can also be applied.[I 2] With these techniques, obtaining systematically improvable
and increasingly accurate results for general systems is a major challenge. With DFT,
the challenge lies in deriving accurate approximations to and constraints on the exact
density functional, such as the recent approximate SCAN functional[3]. For this reason,
a systematically improvable DFT is a challenging theory and therefore progress is slow.
In quantum chemistry, the most accurate methods are systematically improvable but
scale poorly with system size. They are not well developed for periodic systems with
hundreds of electrons, and, in particular, are not yet suitable for describing metallic
states. Other many-body methods, such as GW and dynamical mean-field theory
(DMFT), are limited by their approximations. GW is systematically affected by a
perturbative treatment of the electron-electron interaction. DMFT, mostly used for
“correlated” electronic systems, suffers from the local nature of its self energy despite
being non-pertubative, particularly when applied to low-dimensional systems and/or to
systems where a strong Hubbard repulsion is not the only relevant contribution in the
interaction.

Quantum Monte Carlo (QMC) methods provide an alternative route to solutions
of the many-body Schrédinger equation via stochastic sampling[4]. By sampling the
many-body wavefunction or its projection, QMC methods largely avoid the need
to perform numerical integrals that scale poorly with system size. Further, QMC
methods and implementations generally invoke controllable approximations. Although
computationally expensive compared to DFT, QMC methods can be systematically
improved and give nearly exact results in some cases. This was most notably performed
for the homogeneous electron gas in 1980[5]. Besides their stochasticity, the key
distinctions between QMC and most other electronic structure methods is that (1)
for QMC the approximations are few and well specified, and (2) QMC usually requires
a “trial wavefunction” as input. The trial wavefunction is typically constructed from
the results of less costly methods, e.g. DFT or small quantum chemical calculation,
and improved via subsequent optimization. QMC methods can be directly applied

1 This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05- 000R22725
with the U.S. Department of Energy. The United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the United States Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government purposes. The Department of
Energy will provide public access to these results of federally sponsored research in accordance with
the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
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to materials and chemical problems of interest as with any other electronic structure
method but also serve as an important validation tool to assess and improve the
approximations of less costly methods by providing reference benchmark data.

QMC methods have been applied to isolated molecules as well as insulating,
semiconducting, and metallic phases of condensed matter. Complex molecules[6), [7, [§],
liquids[9], molecular solids[I0] 1], solids[12] and defect properties of materials[13] [14]
15, [16, 17] have been studied at clamped nuclear geometries. Molecular dynamics
calculations driven by QMC nuclear forces, and calculations beyond the Born-
Oppenheimer approximation are also possible, e.g., [I8, 19, 20]. The majority of results
have been obtained with approaches that operate in real space, using variational Monte
Carlo (VMC) and diffusion Monte Carlo (DMC)[21, 22 23 24, 25, 26]. Whereas
QMC methods that sample the many-body wavefunction in real space have been in
use for decades, there are an increasing number of attractive methods that can be
implemented in a basis of atomic orbitals, such as auxiliary field (AFQMC)[27, 28, 29],
Monte Carlo configuration interaction (MCCI) [30, 31] and full-configuration interaction
QMC (FCIQMC)[32]. Both real-space and basis approaches have different strengths
and weaknesses. For example, more accurate multiple-projector pseudopotentials and
frozen core approaches are readily implemented in AFQMCI33], 34] and FCIQMC, but
these methods are generally thought to have a higher computational cost compared
to real-space QMC. Most significantly, the increasing diversity of QMC methods with
different approximations will enable cross-validation of electronic structure schemes for
challenging chemical, physical and materials problems, and help guide improvements in
the methodology.

QMCPACK implements a variety of real-space solvers and a complementary, recently
developed AFQMC solver. The package is open source and openly developed. QMCPACK
is implemented in modern C++, making strong use of object orientation and template
based generic programming techniques to facilitate high modularity, a separation of
functionalities, and significant code reuse. A special emphasis has been given to
performance, capability, and stability for large production calculations. A state-of-
the-art wavefunction optimization algorithm capable of optimizing tens of thousands of
parameters enables the most accurate and sophisticated wavefunctions to be utilized.[35]
The latest size-consistent algorithms for pseudopotential evaluation[36] and time
step[7, [IT] are implemented. The code is highly optimized for modern high-performance
computer architectures via extensive vectorization, careful consideration of memory
layouts and access patterns[37], efficient OpenMP threading, and an implementation
for graphics processing units (GPUs) using NVIDIA’s CUDA. A significant effort is
underway to improve the code for exascale architectures with a single common code
base. QMC methods are particularly attractive for these future systems due to the
relatively low data movement required. This combination of capabilities and activities
helps to distinguish QMCPACK from other QMC codes such as QWALK][3g], CASINO|[39],
CHAMP[40], and TurboRVB[41].

In this article, we give an overview of the features and capabilities of the



@MCPACK : An open source ab initio Quantum Monte Carlo package 5)

QMCPACK package. To indicate the future development pathways, we outline a number
of challenges for QMC methods, including development of consistent many-body
pseudopotentials, the addition of spin-orbit interactions to QMC Hamiltonians, and
the challenge of exascale computing.

2. Open source and open development

QMCPACK is open source and distributed under the Open Source Initiative[42] approved
University of Illinois/NCSA Open Source license. The main project website http:
//qmcpack.org links to versioned releases and the development source code. This
also includes a substantial manual detailing installation instructions, examples for
workstation through to supercomputer installations, and detailed methodology and
input parameter descriptions. The source code includes a substantial test framework
(> 300 tests) including unit and integration tests that are used to help validate the
implementation and test new installations.

QMCPACK is also openly developed. The latest source code and updates are
coordinated via GitHub, https://github.com/QMCPACK/gmcpack. This site provides
version controlled source code, a wiki describing development practices, issue (ticket)
tracking, and a contribution review framework (pull request reviews). The project
follows the “git flow” branching and development model.

Contributions from new developers are encouraged and follow exactly the same
mechanism as for established developers. For example, the “finite difference linear
response” (FDLR) method[43] was recently contributed and underwent several updates
to maximize compatibility with the existing source code. The full discussion history of
contributions is also available. The open development process, with full change history
available, allows contributions to be clearly identified and credit accurately assigned.
The source code change history can be tracked to the earliest days of QMCPACK .

All proposed changes to QMCPACK automatically undergo continuous integration
testing which allows the contributions to be run on different architectures and with
different software versions than might have been used for development, e.g. different
processor manufacturers, GPUs, or compilers. This allows for rapid feedback and
reduces risk that significant bugs are introduced.

Development directions are set in part based on requests from users and experience
applying QMCPACK to tutorial through to research level problems. Besides contacting
the developers directly or using GitHub, a discussion group (“QMCPACK Google group”)
provides a method to make suggestions or obtain support. For example, requests to
interface QMCPACK with additional electronic structure or quantum chemistry packages
that will enable new science applications or solve an existing problem will be given
priority.
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3. Code structure

QMCPACK is architected in a modular and generic structure, aiming to facilitate the
maximum reuse of source code and to appropriately abstract key organizational and
functional concepts. For example, as detailed below, all the different components of a
trial wavefunction utilize a common base class and provide an identical interface to the
different QMC methods. This allows any newly contributed wavefunction component
to become immediately available to all the QMC methods.

Extensive use is made of C++ generic and template programming to minimize
reimplementation of common functionality. For example, the numerical precision is
parameterized, with single, double and mixed precision implementation available largely
from a single source definition, and widely used functionality such as 1 to 3 dimensional
splines are accessed through a common interface.

In the following we give a high-level outline of the major abstractions and
components in the application. In practice and due to the large range of functionality
implemented, QMCPACK consists of over 200 classes. To aid developers, the manual
(http://docs.qgmcpack.org) provides additional guidance while the Doxygen tool is
used to produce documentation to help track functionality and interdependencies.
Currently this is automatically generated from the latest development source and
published at http://docs.qgmcpack.org/doxygen/doxy/.

At a high level, QUCPACK consists of the following major abstractions and areas of
functionality (figure [1):

(i) QMCMain. The topmost level of the application is responsible for parallel setup and
initially parsing the input XML. Each XML section is handed to the appropriate
functionality to setup the Hamiltonian or run a QMC calculation. Notably, the
input driver persists walkers from section to section. A single QUCPACK input file
can therefore describe a single simple VMC run, or considerably more complex
and powerful workflows invoking VMC, wavefunction optimization, and production
DMC calculations at a range of time steps. The user can choose the appropriate
modality for their research.

(ii) QMC Drivers. These implement major QMC methods such as VMC, wavefunction
optimization, reptation. Orbital space methods such as AFQMC (section are
also implemented here. Due to the levels of abstraction, the drivers have no
dependencies on the specifics of the trial wavefunction that are in use.

(iii) Walkers and particles. Classes handle the state information for each walker,
including the lists of particles that are updated by the Monte Carlo. Common
infrastructure for computing minimum images in periodic boundary conditions is
provided here. Walkers carry additional state information depending on the enabled
Hamiltonian and Observables so that appropriate statistics can be reported.

(iv) Hamiltonians. The Hamiltonian used within in QMCPACK is described by the input
XML. This enables model system calculations as well as first principles calculations
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to be performed. Beyond Born-Oppenheimer simulations are also supported, with
the ionic positions a non-constant part of the Hamiltonian. The kinetic, bare
electron-ion, pseudopotential, electron-electron and ion-ion Coulomb terms are
implemented at this level.

(v) Observables. Quantities that are not critical to the evaluation of the Hamiltonian
are termed observables and potentially include the density, density matrices,
momentum distribution.

(vi) Wavefunction. The trial wavefunctions are implemented as a product of different
wavefunction components. This includes single and multiple Slater determinants,
and one, two, and three-body Jastrow terms. Specialized wavefunctions such
as backflow and antisymmetrized geminal product (AGP) wavefunctions are also
implemented here.

(vii) Single particle orbitals. Orbitals from plane-wave, spline, and gaussian basis sets
are evaluated for use in e.g. Slater determinant components of the wavefunction.
Specialty basis sets are also implemented, e.g. the plane-wave based homogeneous
electron gas, and the hybrid augmented-plane wave basis set combining interstitial
plane waves and atomic-core centred spherical harmonic expansions.

(viii) Standard libraries. Where available, standardized implementation and libraries
are used for parallelization (MPI), I/O (HDF5, libxml2), linear algebra
(BLAS/LAPACK), and Fourier transforms (FFTW).

4. Performance and Parallel Scaling

Due to the high computational cost of QMC methods, the QMCPACK implementations
have been heavily optimized to obtain a high on-node performance and a high distributed
parallel efficiency. Nevertheless, obtaining a highly performing and efficient simulation
remains an important responsibility of the user, because a considered choice of QMC
methods, algorithms, accurate trial wavefunctions, and overall statistics can significantly
reduce the computational cost.

Many electronic structure methods obtain high computational efficiency — a high
fraction of theoretical floating point performance — via use of dense linear algebra such
as matrix multiplication. Real space QMC methods are noteworthy for the relative
lack of dense linear algebra and a focus on particle-like operations, such as computing
inter-particle distances or evaluating small polynomial functions of particle position. In
this regard parts of QMC are similar to a classical molecular dynamics code.

To obtain high on-node performance, QMCPACK ’s implementations are optimized
to vectorize efficiently and to make efficient use of modern memory hierarchies and
maximize in-cache data reuse. For example, while historically QMC codes have tended
to avoid recomputing values, for some operations it is now faster to compute properties
on the fly. This also reduces the memory requirements of the application. We have
recently completed extensive analysis and reimplementation of the core compute kernels
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Figure 1. High-level overview of the structure of QMCPACK . For simplicity many
smaller components are not shown. This includes the particle classes, distance tables,
indicate additional high-level
functionality is available. Dependencies between components flow from top to bottom,
except for the libraries which are used by all component of the application.

2

and the branching and load balancing classes. The “..

of the application, more than doubling the speed of many calculations on modern
multicore processors[37]. The performance obtained for several key kernels is shown
in figure To improve the computational efficiency of the largest calculations with
thousands of electrons where the Slater determinant update cost is significant, we have
recently proposed a delayed update algorithm that enables increased use of matrix-
matrix multiplication[44].

High parallel scalability is determined by exploiting parallelization at two levels.
First, on node parallelization is achieved through OpenMP threading, or CUDA on
GPUs. This allows common read-only data such as trial wavefunction coefficients to be
shared between threads, reducing overall memory usage. Each OpenMP thread updates
one or more walkers, and multiple walkers can be assigned to each GPU. The second level
of parallelization is obtained via MPI. For simulations with a variable number of QMC
walkers, load balancing is performed by default at every step. Asynchronous messaging
is used to reduce the time to load balance all the walkers across all the nodes, but in the
current implementation a global reduction is still required to compute the ensemble
average energy needed for load balancing. As shown in figure [3, even for modest
calculations the scalability is sufficient to fully utilize the largest supercomputers. The
first level of parallelization within each node reduces the total volume of MPI messaging
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Figure 2. Computational performance of key kernels in QMCPACK for an NiO 32

atom cell on Intel Knights Landing processors. By using a Structure of Arrays (SoA)
layout and improving the implemented algorithms, higher arithmetic intensity (AI) is
obtained compared to the Array of Structures (AoS) data layout used exclusively in
older versions of QMCPACK. A significantly higher overall performance, measured in
GFLOPS, is obtained in the new implementation.
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Figure 3. Parallel scaling of QUCPACK on two architectures for DMC calculations of
a NiO 128 atom cell with 1536 valence electrons. Titan nodes have a single GPU
each, and these runs used 512000 total walkers. Each Blue Gene Q node has a 16 core
processor, and these runs used 458752 total walkers.

because the load balancing only needs to be performed at the per-node level. Options

to adjust the load balancing frequency and alternative algorithms such as stochastic

reconfiguration[45)] are available.
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5. Real space QMC methods

5.1. Introduction

The main production algorithms in QMCPACK use methods based on Monte Carlo
sampling of electron positions in real space to produce highly accurate estimates of
the many-body ground-state wavefunction |®¢) and its associated properties. Note that
QMC also has complementary orbital space-based approaches that work within second
quantization, as described in section [13]

VMC and DMC are the most commonly applied real-space QMC methods. Within
VMC, the simplest scheme, Monte Carlo sampling is used to obtain estimates of the
energy of a trial wavefunction

Evue = /\IJH\II (1)

In DMC, the ground-state wavefunction is obtained by projection of the imaginary time
Schrodinger equation
~95 HY (2)
to long time, where = it and has units of imaginary time. (Hartree units are used
here and throughout, except where noted.) Crucial to both methods is an accurate trial
or guiding wavefunction. Clearly, in VMC the trial wavefunction completely determines
the accuracy and statistical efficiency of the result. In DMC it is the nodal surface of
the trial wavefunction that determines the accuracy, while the overall trial wavefunction
determines the statistical efficiency. The full range of supported trial wavefunctions is
described in section [6l
The real-space methods use a Hamiltonian within the Born-Oppenheimer
approximation (BOA):

R 1 1 1
H=—Y V43 ——+3 v’(r.R 3
22 VZ+2i#j |ri_rj‘+uv (ri,Rj) (3)

where the lower case indices and positions r; refer to the electrons, and the upper case
indices and positions R; refer to the ions. In order, the terms in |3| correspond to the
kinetic energy of the electrons, the potential energy of the electrons, and the potential
energy due to interactions between electrons and ions. The energy contribution due to
the Coulomb interactions of the atoms is constant within the BOA, and is computed by
an Ewald sum. Further details are given in section

For technical reasons, in the following we will work with the “importance sampled”
Schrodinger equation, which can be obtained from the imaginary time Schrodinger
equation by rewriting it in terms of f(r, 3) = V1 (r)¥(r, 3).

of
5, = L/®0) (4)

= AV (V=F(r)) — (EL(r) — Eq)] f(r, 5) ()
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where Up(r) is the trial wavefunction, F(r) = 2V log Up(r) is the “wavefunction
force”, and Ep(r) = Up(r) 'HUp(r) is the “local energy”. L is the “importance-
sampled Hamiltonian” operator. To help future discussion, we split L into a

“drift /diffusion” operator K and a “branching” operator E, given by
|
K = §V (V—=F(r)) (6)

E=- (Er(r) — Er) (7)

One advantage of working with the physical Hamiltonian as opposed to an auxiliary
problem (as in Kohn-Sham DFT), is that the variational theorem of quantum mechanics
holds, which states that for a trial wavefunction W,

_ (Ur|H[Yr)  (Vr| By ()| Vr)
BT A "

The strict equality holds if Uy is the ground-state of H. A corollary is that the variance
of the trial wavefunction also obeys the following:

s _ (Wl (By, )Y 0)
7, = S 20 )

The variational principle is significant, since it gives us a well-defined metric for

which wavefunctions are better or worse approximations to the ground state. This can
be turned into an actual algorithm by parameterizing families of wavefunction ansatz
with parameters c. One can then minimize equation [8 with respect to ¢ to obtain a
best estimate for the state.

5.2. Variational Monte Carlo

The oldest approach for dealing with the Schrodinger equation for realistic systems
involves writing an approximation for the ground-state wavefunction and evaluating
expectation values. There are two ingredients in this procedure: evaluating equation
for some set of variational parameters ¢, and then minimizing. The optimization
procedure is covered in detail in Section [10]

The energy expectation value in equation |8 as well as all physical expectation
values, are integrals of a form that are amenable to Metropolis Monte Carlo sampling.
Thus, we can evaluate equation |8 (for example) by the following:

o= IS L s

N is the number of samples, and ¢ is a Gaussian-distributed statistical error whose
variance scales like 1/1/N,. We write the sample configurations as r(t;) to emphasize
that Metropolis Monte Carlo generates samples sequentially via a random walk along
a Markov chain. To parallelize the algorithm, multiple independent Markov chains or
“walkers” are used.
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5.2.1. Trial Moves QMCPACK supports VMC trial moves with and without drift. This
means that the move r — r’ is drawn from the transition probability distribution given
by:

T(r—r'7)= (11)

1 (r' —r — 2\7F(r))?
——————exp | —
(47 \T)3N/2 ANT

For drift based moves, F(r) is taken to be the same wavefunction force as appears
in equation [d For moves without drift, F(r) = 0. In the absence of pathologies in the
trial wavefunction, the use of the drift term is almost always more efficient.

In addition to drift or no-drift based moves, the code supports particle-by-particle
or all-electron moves. All-electron moves are conceptually the simplest. One proposes
the move r — r’ = r+ A by drawing the 3N, dimensional vector A from the distribution
in equation [11, This move is then accepted or rejected with probability:

W (r)? T(x" — 1)
[Wr(r)? T(r — r’))

In contrast, particle-by-particle moves work by iterating sequentially over all

A(r = r') = min (1.0, (12)

electrons. Considering an electron 7 at position r;. A particle-by-particle move is
executed by first drawing a new position for electron ¢ from the following probability
distribution.

1 (r'; —r; — 2A7Fy(r))?
. A = - : 1
T<r07 7rl % rl? 7rNc) (47TAT)3/2 eXp ( 4)\7_ ( 3)

Then, the move is accepted or rejected using a similar acceptance probability as in
equation (12| Particle-by-particle moves are typically favored over all-electron moves, due
to their higher statistical and numerical efficiencies in practice. However, all-electron
moves may be competitive for small systems or for sophisticated trial wavefunctions
where single particle moves can not be cheaply evaluated numerically.

5.3. Projector Monte Carlo

One can substantially improve upon the accuracy of VMC by using projector Monte
Carlo methods such as DMC. The “projector” is the formal solution of the imaginary
time Schrodinger equation G’(ﬁ) = exp(—ﬁ]—:f ), and has the very desirable property
that given any trial wavefunction |W7) which is non-orthogonal to the ground-state
wavefunction, one can obtain the ground-state |®¢) by the following:

ﬁli_{ﬂ G(B)|¥r) = e #|dy) (14)

For efficiency reasons, we consider the projector @(r, r’, 3) associated with the
importance sampled Schrodinger equation. For realistic systems, it is exceedingly rare
to have exact analytic expressions for the projector. However, we can solve for the

Green’s function G(7) of equation [4| approximately for short times 7. Solving the
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drift /diffusion equations and rate equations independently in the short-time limits, one
uses the symmetric Trotter formula:
A A T A N T A
exp (T(A + B)> = exp (§B> exp (TA) exp (§B> + O(1?) (15)
to stitch these independent solutions together into an approximate solution for the
importance sampled Green’s function:

G(r,v',7) = <r|é(r)|r’) = Gpp(r, v, 7)Gp(r,x', 7) + O(?) (16)

Gpp(r,r’,7) is the Green’s function for the drift/diffusion operator A\.V-(V—F(r)).
Assuming that F(r) is slowly varying, its solution is given by:

~ , 1 (r' —r — 2\7F(r))?
Gpp(r,r',7) = Wexp (— o ) (17)

The Green’s function for the local energy operator is:

Gp(r,v',7) = Pyexp (—%(EL(r) + Er(r') — 2ET)T> (18)

Near the nodes of W (r) and near bare ions, singularities render the “slowly-
varying” approximation used in equation [17|invalid. Improved drift-diffusion projectors
have been derived which have been shown to reduce the time step error [46]. QMCPACK
implements drift rescaling based on proximity to the nodal surface, following the
prescription in [46] for single-electron and all-electron moves. Rescaling based on
proximity to bare ions is not yet implemented.

5.4. Diffusion Monte Carlo

Diffusion Monte Carlo works by stochastically simulating the imaginary-time evolution
of an initially prepared state f(r,0) = |¥z(r)|>. This is done by exploiting the
mathematical correspondence between Fokker-Planck equations for the evolution of
probability distributions, and Langevin equations describing the stochastic evolution
of particle trajectories. To shift to a Langevin picture, we represent an initial state
f(r,0) by an ensemble of N,, walkers {ro(0),r;(0),...,ry,_1(0)} distributed according
to f(r,0). Assume each walker also has an associated weight w;(/) where w;(0) = 1.0.
We consider the action of the short-time Green’s function G(r,r’, 7) on this distribution.

The action of the drift-diffusion propagator can be simulated with a random drift-
diffusion step, given by:

r(3+7) =r(8) + 2ATF(x(B)) + V2A7¢ (19)

Here, & is a 3N, dimensional Gaussian random vector with unit variance. Once
a new position generated, the Gg(r,r’,7) contribution is dealt with by updating the
walker weight w; (/) with the following formula:

w(f+71) =w(B)Gp(r(B)r(B+7),7) (20)
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Expectation values of local observables A(r) over the distribution f(r,5) are
obtained by a weighted average:

S w(8)A(ri(8))
A — ?
(A);(B) SN 5)

Implementing everything discussed up to this point results in “pure diffusion”

(21)

Monte Carlo. However, due to the exponential growth/decay of the walker weights
with [, the efficiency of this method decays exponentially with the projection time.
“Branching” diffusion Monte Carlo circumvents this problem by implementing equation
stochastically through the replication/removal of walkers. For each walker i, M,
copies of the walker are made after the drift/diffusion step according to the formula
M; = INT(w;(8 4+ 7) + &), where £ is a uniform random number between 0 and 1. The
weights of these M; walkers are renormalized and the copies then proceed to the next
time step. Notice that M; = 0 implies that the walker is killed.

To avoid a walker population explosion or collapse, practical DMC simulations
adjust Er dynamically to keep the population finite and stable. In QMCPACK this is
achieved using either a variable number of walkers combined with the above population
control, or via a fixed walker count scheme (“stochastic reconfiguration” [45]). Both
schemes can potentially introduce a “population control bias” that must be checked
and controlled for, particularly for small populations. To minimize or check for bias,
the population should be as large a possible, should be allowed to fluctuate significantly,
and the simulation run for a long time.

To correctly simulate Fermionic systems and avoid a collapse of the propagated
wavefunction to a Bosonic solution, the “fixed node approximation” is implemented.
This constrains the projected solution to the nodal surface of the trial wavefunction,
thereby preserving Fermionicity. Proposed moves that result in a nodal crossing are
detected through the change in sign of the wavefunction and are rejected. This is usually
the most significant approximation made, and requires accurate trial wavefunctions.

Finally, we note that several important modifications for production calculations:
QMCPACK implements the “small time-step error” algorithm due to Umrigar et al. [46],
where the drift term is modified near wavefunction nodes and effective time step
introduced to improve the time step convergence of the algorithm. The recently proposed
size-consistent variation[7, [I1] is also implemented. This is particularly effective for
computing energy differences between very different sized-systems, such as absorption
energies or the formation energies of molecular crystals[11].

5.5. Reptation Monte Carlo

Reptation Monte Carlo is constructed by exploiting the Feynman path-integral
formulation of Schrédinger’s equation[47]. Its primary advantages over DMC are its
ability to estimate observables over pure distributions in polynomial time, and lack of
population bias and control issues. Consider the ground-state “partition function”:

Z(B) = (Uple P |Wy) (22)
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First, we split ePH into n segments each spanning an imaginary time 7 = §/n. After
inserting n+1 position space resolutions of the identity and rewriting the resulting
expression in terms of the importance sampled projector, we find that Z(/) can be

written as:
Z(8) = / dr(to) ... dre(t,)P[X]e~ i Lomo (et x(tsn) (23)
PIX] = | U7 (r(to) PGpp(r(to), v(t1)) ... Gpp(r(ta-1),x(ts))  (24)
Lpwe(r,t) = g (EL(r) + Er(r') — 2Er) (25)

X is shorthand for a “path” X = (r(¢y),...,r(t,)). The reader will recognize
Z(P) as a path integral. Lpysc is called the “link action”, which when summed over t,
gives the action for the path X. P[X] is the probability of a walker which is initially
distributed according to |¥(r)|? executing the directed random walk from r(¢y) to r(t,)
along the path X.

All reptation moves in QMCPACK use the “bounce algorithm”[48]. For move
proposals, the improved propagators described in the DMC section are directly used
in reptation. In addition to nodal drift-rescaling, we incorporate the DMC effective
time step and energy filtering methods directly into the link-action, which helps to
significantly reduce ergodicity problems associated with reptiles getting stuck in low
energy regions of configuration space. In the event that reptiles still get stuck, the age
of all reptile beads is accumulated. If a bead exceeds some specified age, the entire
reptile is forced to propagate for n steps without rejection and then re-equilibrate.

Since P[X] cancels out of the reptile accept /reject step, any all-electron move which
is a valid VMC configuration is supported in RMC. In addition to traditional all-electron
moves, QMCPACK also supports reptile proposals which are built from a sequence of N,
particle-by-particle moves. Reptile moves proposed with these “particle-by-particle”
moves exhibit higher acceptance ratios than the traditional all-electron moves, and are
thus favored if memory is available.

Propagation in RMC is supported for all-electron, local, and semi-local
pseudopotential Hamiltonians. The fixed-node constraint is enforced by rejecting
proposed node crossings and immediately bouncing.

Since the random walk of each reptile is totally independent of other reptiles, RMC
is straightforwardly parallelized. In addition to generic MPI parallelization, QMCPACK s
RMC driver is able to place one reptile per OpenMP thread on shared memory systems.

6. Trial Wavefunctions

Within QMC methods, the goal of the trial wavefunction is to represent the true
Fermionic many-body wavefunction of the studied system as accurately as possible,
including all the correlated electron physics. Due to the large number of evaluations
of the wavefunction values and derivatives during the Monte Carlo sampling, it is also
important that the trial wavefunction be computationally cheap enough and use little
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enough memory in order to be practical. These are different considerations from those
applied in DFT and in the more closely related quantum chemical methods, leading to
different preferences.

Several different trial wavefunction forms are implemented in QMCPACK , with
varying suitability for solid state and molecular systems, and different trade-offs between
accuracy, memory usage, and number of parameters. The most common form is
the multi-determinant Slater-Jastrow form (section [6.1)), where the orbitals in each
determinant are evaluated using either real space splines or a Gaussian basis set
(section [6.2). The orbitals are usually obtained from a mean-field method and imported
to QMCPACK . The determinantal part ensures that the trial wavefunction is properly
antisymmetric with respect to exchange of electron positions, i.e. Fermionic. Additional
correlations are incorporated via a symmetric real-space Jastrow factor (section . The
Jastrow factor is usually obtained via optimization entirely within QMCPACK (section .

6.1. Multi-Determinant Slater-Jastrow Form

For the vast majority of molecular and solid-state studies, the trial wavefunction is
written as the product of an antisymmetric function and a symmetric Jastrow function

M
Uy = DIDfe’, (26)
i=1
where the N electron trial wavefunction W is expanded in a weighted sum of products
of up and down spin determinants, D. These are in turn multiplied by a real-space
Jastrow factor, J. When exponentiated, this factor is nodeless and the nodes of the
trial wavefunction are therefore purely determined by the determinantal parts. A single
product of up-spin and down-spin determinants would correspond to a mean-field or
Hartree-Fock starting point. Larger determinantal sums can be obtained, e.g., from
multi-configuration self-consistent field quantum chemical calculations, CIPSI (section
, or be constructed based on physical or chemical reasoning. Excited states may be
constructed by manipulating the occupancy of the Slater determinants in the input, e.g.
to create an exciton. Wavefunctions with greater or fewer electrons than the neutral
ground state may be similarly prepared to compute electronic affinities or ionization
potentials.

Due to the potentially large computational cost in evaluating the trial wavefunction,
QMCPACK uses previously computed data and optimized methods to avoid full
recomputation wherever effective and practical. For single electron moves, QMCPACK
uses the Sherman-Morrison algorithm, as described in [49]. For large calculations with
thousands of electrons, the delayed update scheme of [44] is currently being implemented.
For calculations with multiple determinants, QMCPACK implements the “table method”
of Clark et al.[50]. This exploits the relationship between largely similar determinants
to cheaply compute the determinant values while only requiring the full N? memory
cost of a single determinant. This enables, e.g., molecular calculations that approach
or even reach “chemical accuracy” to be performed[5I]. To date, calculations with up
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to O(10°) determinants have been performed (see section [13.3)), with larger calculations
clearly possible[52].

6.2. Orbitals

The single-particle orbitals in the Slater determinants are generally determined by
another electronic structure code and imported into QMCPACK for calculations. QMCPACK
has an easily extensible mechanism for adding new ways of representing single-particle
orbitals. This can be particularly useful when addressing model systems or performing
specialized tests. For example, QMCPACK supports specialty homogeneous electron gas
and plane-wave based wavefunctions, and for work on spherical quantum dots, radial
numerical functions[53]. However, by far the most common sources of orbitals are
plane-wave based from Quantum Espresso (QE) [54, [55], and Gaussian based from the
GAMESS code[56]. Converters from these codes are provided and can straightforwardly
be extended to other methodologically related codes.

6.2.1. B-spline basis sets For calculations involving periodic boundary conditions, the
standard route is to first perform a DFT calculation using QE and to then import the
plane-wave coefficients into QUCPACK . Finite molecular systems can also be studied by
adding a considerable vacuum region. QMCPACK then allows the boundary conditions to
be made aperiodic, even for orbitals originally based on plane-waves.

Although the single-particle orbitals can be evaluated directly in the plane-wave
basis, this requires evaluating each plane-wave for every orbital and is thus very
expensive: the cost grows with the number of plane-waves. For this reason, the single-
particle orbitals are usually converted into a regular 3D B-spline representation in
real-space. As implemented, this requires a constant 64 coefficients to be accessed
in memory to evaluate each single-particle wavefunction regardless of the size of the
underlying basis. These operations are optimized to vectorize very well on current
computer architectures, enabling the orbital evaluation to run very efficiently.

The principal downside of a B-spline basis is memory consumption, particularly
for large simulation cells. Naively, the memory cost scales as O(N?). For larger
calculations the B-spline tables can easily grow to tens or even hundreds of gigabytes,
potentially exceeding available memory. Currently QUCPACK shares the B-spline table
among all processors on a node (or GPU), but memory limitations can still constrain
the calculations that can be performed. In the case of supercell calculations, QUCPACK
can exploit Bloch’s theorem to reduce the demand. To save additional memory, the
spline coefficients may also be stored in single precision, halving the amount of memory
required compared to the full double precision used in the originating plane-wave code.
However, memory usage of B-splines remains a problem for large simulation cells.

To further reduce memory costs, QUCPACK can utilize a hybrid basis set composed
of radial splines times spherical harmonics near the atoms and B-splines elsewhere
in space.[57, 58] This is similar to the augmented plane-wave schemes used by some
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DFT implementations. The scheme allows for the high frequency components of
the trial wavefunction near the atomic nuclei to be represented by a compact radial
function and the smoother part of the wavefunction in the interstitial regions to be
represented by a much coarser B-spline table. The hybrid basis can save a factor of
4-8 in memory compared to the standard B-spline representation while maintaining
accuracy. Obtaining the hybrid representation from a plane-wave basis requires an
initial computationally costly conversion.

6.2.2. Gaussian basis sets For molecular systems, one typically uses a Gaussian basis
set to represent the single-particle orbitals. QMCPACK supports standard quantum
chemical basis sets including contractions and for arbitrary angular momenta. Atomic
or natural orbitals can therefore be directly imported from standard quantum chemistry
codes. Interfaces currently exist to GAMESS[56], quantum package[59], and for packages
supporting the MOLDEN format. Interfacing requires converting the output of the
intended package to QUMCPACK 's XML or HDF5 format. For all-electron calculations, a
cusp correction scheme is implemented to enforce the electron-nuclear cusp.

6.2.3. Specialized basis sets Besides the B-spline and Gaussian basis sets described
above, QMCPACK implements several additional specialized basis sets for specific problems.
This includes Slater Trial Orbitals (STOs), the homogeneous electron gas, and radial
numerical functions for atomic calculations. Due to the flexible internal architecture,
orbitals can be expressed in any combination of these functions. For example, in [60],
it was proposed to save memory by storing orbitals on different sets of B-spline tables
based on their kinetic energy. This scheme did not require any source code modifications.

6.3. Backflow wavefunctions

Improvement of the nodal surface can be achieved through backflow wavefunctions,
complementing the multideterminant route. The formal justification for backflow
wavefunctions rests on the homogeneous electron gas and Fermi liquid theory [61].
Backflow appears promising for bulk applications[62], and has also been shown to aid in
capturing dynamical correlations in molecular systems when used in conjunction with
multideterminant wavefunctions [63].

Backflow wavefunctions are constructed from determinantal wavefunctions as
follows. Instead of evaluating the Slater matrix M,; = ¢;(r;) at the bare electron
coordinates r;, we evaluate it at new quasiparticle coordinates ]\Zfij = ¢;(q;). The
“backflow transformation” from r; — q; is defined as:

QG =Ti + Y > 0P|y, =1 (i, — 1) (27)
a<Bia#is
In QMCPACK , the 7*?(r) are short-ranged, spherically symmetric functions

represented by fully optimizable B-splines. QMCPACK allows for separate optimization of
same-spin, opposite-spin, and electron-ion terms. Currently, backflow is fully supported
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only with single determinant wavefunctions, but it can be used in both bulk and
molecular systems.

7. Jastrow factors

Jastrow factors[64] are included in the trial wavefunction to improve the representation
of the many-body wavefunction. This non-negative Bosonic factor is in principle an
arbitrary function of all electron and ionic positions, but in practical calculations are
most commonly built from functions systematically incorporating one, two, and three-
body correlations. Notably, the Jastrow factor can readily satisfy the electron-electron
and electron-nucleus cusp conditions [65], 66], which are very slow to converge in the
multideterminant expansions commonly used in quantum chemistry. The improved
representation of the many-body wavefunction naturally reduces the statistical variance
of the local energy and also improves the quality of the DMC projection operator[67, 68],
which is useful in the context of timestep and nonlocal pseudopotential localization
errors.
The bosonic ground state for N particles can be written

Up=e /B (28)

with J symmetric and where R denotes all the particle positions. For fermions, the
fixed node [69, [70] (or fixed phase [71]) wavefunction that arises from DMC projection
has a related form. In this case, a Jastrow wavefunction appears as a prefactor|[72]
modifying the local structure of the input Fermionic trial wavefunction, 1 to account
for many-body correlations:

Upy =e ' ®or(R) (29)
The Jastrow factor can be formally represented in a many-body expansion
1 1
J = Z w(ra) 3 Z ualFoirTaty) + Zk u3(Coi, Yorj, Tori) + -+ (30)
ot oo'ij oo'o'ij

with each n-body term u,, being symmetric under particle exchange.
The one-body term is approximated in QMCPACK as a sum over atom-centered s-wave
type functions that depend on the local ionic species [

(o) = 3 tar (It — 1)) (31)

with 77, being the position of the p-th ion of species I. The dependence on spin is
optional.

The two-body term is approximated as a spin-dependent liquid-like factor (the
electron-electron term) optionally with a second factor that additionally depends on the
ionic coordinates (the electron-electron-ion term)

u?(raia ra’j) = uao’(‘rai - ra’j‘) (32)

+ Zuaa/1(|rai - r1u|> |rU’j - rIu|7 |rai - ra’j|)
Ip
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In each case, the up-up and down-down terms are constrained to be equal.

A wide range of options are available for the one-dimensional electron-ion (u,;)
and electron-electron (u,,/) Jastrow correlation functions including B-splines, first and
second-order Padé functions, long and short ranged Yukawa functions, and various short-
ranged functions suitable for model helium. The most commonly used choice for either
correlation function is a one-dimensional cubic B-spline

u(r) = né pmBs (TC;M - m) (33)

where Bs(x) denotes a cardinal cubic B-spline function defined on the interval x € [—3, 1)

(centered at x = —1), {p,} are the control points, and r, is the cutoff radius. The last
M control points (p; ... pas) comprise the optimizable parameters while pg is determined
by the cusp condition

2M Ou
re Orlr=0

Po=Dp2 — (34)

The Jastrow cutoffs should be selected in the region of non-vanishing density in open
boundary conditions. In periodic boundary conditions the cutoffs must be smaller than
the simulation cell Wigner-Seitz radius.
The three-body electron-electron-ion correlation function (uy,;) currently used in
QMCPACK is identical to the one proposed in [73]:
Mer Mep Mee

L .m ,.n
uao’[(rah To'I, Ta'cr’) - E E E YernTo1To' 1T 5ot (35)

=0 m=0 n=0

(- 5) 0 ()

3
“(ror=5) 0 (mi-3)

Here M,.; and M, are the maximum polynomial orders of the electron-ion and
electron-electron distances, respectively, {~smn, } are the optimizable parameters (modulo
constraints), 7. is a cutoff radius, and r,, are the distances between electrons or ions
a and b. i.e. The correlation function is only a function of the interparticle distances
and not a more complex function of the particle positions, r. As indicated by the ©
functions, correlations are set to zero beyond a distance of r./2 in either of the electron-
ion distances and the largest meaningful electron-electron distance is r.. This is the
highest-order Jastrow correlation function currently implemented.

Today, solid state applications of QMCPACK usually utilize one and two-body B-spline
Jastrow functions, with calculations on heavier elements often also using the three-body
term described above. While there are not yet any comprehensive comparisons between
the different forms of the Jastrow factor in current use, this choice appears to give very
similar accuracy to other forms. Experience with atoms and molecules is similar. In
the future, should systematic studies find a new form of Jastrow factor to be more
efficient or effective, it can be rapidly introduced due to the object oriented nature of
the application.
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8. Hamiltonian

The Hamiltonian is represented in QMCPACK as a sum of abstract components
H=> 1, (36)
with each component implemented as a class. The functionality of all Hamiltonian

component classes is dictated by a shared base class. The primary shared characteristic
of each component is the evaluation of its contribution to the local energy

EL=Y Epn , Epn=9:'H, 07 (37)

In QMC algorithms, the local energy (as well as other observables) is collected after all
Monte Carlo walkers have advanced one step in configuration space.

Possibly uniquely, the Hamiltonian that is solved is specified in the QUCPACK input.
This makes QMCPACK suitable for model studies as well as ab initio calculations. The
most general Hamiltonian that can currently be handled by QMCPACK is non-relativistic
with pairwise interactions between quantum (electrons or nuclei) or classical (nuclei
only) particles and possibly external fields

H=>"T,+> Vig+ > Viet Y Voo + > Vet > vert (38)
q qa#q’ qc c#c! q ¢
Here ¢ and ¢ denote the species of quantum and classical particles, respectively.

While non-adiabatic (multiple quantum species) and model-potential (e.g. low-
temperature helium) calculations are possible, we focus the remainder of the discussion
to the most typical case: electronic structure problems within the Born-Oppenheimer
(clamped nuclei) approximation [74]. In this case, the many body Hamiltonian is (in

=L S ) - S Y lrar) Y vulenri@)

1<j i Ip I’y

atomic units)

where ¢ and 7 sum over electron indices and [u denotes the u-th ion with species I.

QMCPACK supports all-electron and pseudopotential calculations in both open and
periodic boundary conditions. The choice of ion core and boundary conditions affects
the potential terms and we now briefly review these forms. For all-electron calculations
in open boundary conditions, all of the interaction potential terms are related simply
to the bare Coulomb interaction ve(r) = 1/r

Vee(risry) = wve(|r; — ) (40)
Ver(vi,try) = —Zpvo(|ri — 1)
Vi (Crp, o) = Z1Zpve(|vr, — vowl)

In periodic boundary conditions (PBC), the long-ranged part of each potential

contributes an infinite number of terms due to the series of image cells filling all of
space.

v(|ry =) — Y o(|ry — 12 +n"L) (41)

n=0
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Sums of this type are evaluated via the Ewald summation technique [75]. An optimized
breakup [70] into long and short-ranged contributions is used to minimize computational
effort.

With the introduction of semi-local pseudopotentials, the electron-ion term takes
the form

Cer (v, 1) = Ve[t = 1) + Y Vo) [ve|ri = v1]) = vioe (s — r2,])] (A2

tm
where all of the non-local channel terms vanish beyond cutoff radii that may be unique
to each channel and the local part approaches —Z,s;/r in the long distance limit (Z.z¢
is the effective core charge presented by the pseudopotential). The evaluation of the
local energy for semi-local pseudopotentials follows the algorithm laid out by Mitas et
al.[T7] with a 12 point angular integration used by default.

In DMC calculations, the semi-local potentials are evaluated within the locality
approximation [77], or the more recent “t-moves” approximations[78, 36] that restore
the variational principle the the DMC algorithm. In particular, the algorithm of [30]
restores size-extensivity.

9. Boundary conditions

QMCPACK accommodates both periodic and open boundary conditions in 1, 2, or 3
dimensions, including mixed boundary conditions. After the pseudopotential and fixed-
node approximations in QMC, the choice of boundary conditions imposes another set
of approximations onto a system that must be treated with care.

9.1. Long-Range Interactions

The long-ranged Coulombic interactions of the electrons and ions must be handled
with care in order to ensure that the potential energy doesn’t diverge when using
periodic boundary conditions. In QUCPACK , the interparticle interactions are computed
using an optimized implementation[76] of the well-known strategy of decomposing the
interactions into short and long ranged components, and performing sums over the
former and latter in real and reciprocal space, respectively [75].

9.2. Twist-averaged boundary conditions

Bloch’s theorem demonstrates how a finite wavefunction can be used to simulate an
infinite lattice within periodic boundary conditions by incorporating the following
symmetry:

\If(rl + Lm; Iy, ... ,I’N) = 67;K‘Lm‘1](1'1, Iy, ... ,I'N) (43)
where K is a vector in reciprocal space, L,, is a lattice vector of the supercell, and

O, = K-L,, is the “twist angle” [2]. For pure periodic boundary conditions (in which
© = 0), systems converge slowly to their thermodynamic limit due to shell effects and
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quantization of momentum [79]. Therefore, to improve convergence speed and accuracy,
one should average over many simulations done with different twist angles, a scheme
called “twist-averaged boundary conditions”. In QMCPACK , the averaging is done in

post-processing, using e.g. qmca (section [14.1)) and/or Nexus (section [15).

10. Optimization

In all real-space quantum Monte Carlo calculations, optimizing the wavefunction
significantly improves both the accuracy and efficiency of computation. However,
it is very difficult to directly adopt deterministic minimization approaches due to
the stochastic nature of quantities with Monte Carlo. Thanks to major algorithmic
improvements, it is now feasible to optimize up to tens of thousands of parameters in
a wavefunction for a large solid or molecule. QMCPACK implements multiple optimizers
based on the state-of-the-art linear method with several techniques, described below,
improving its robustness, efficiency and capability.

10.1. The Linear Method

QMCPACK optimizes trial functions using an implementation of the linear method (LM)
[80] that includes modifications to improve stability in the face of variables of greatly
differing stiffnesses, facilitate the optimization of excited states, and reducing the
memory footprint when optimizing large numbers of variational parameters. The
LM is sometime referred to as “energy minimization”, although the approach is more
general. The LM gets its name from the way that it employs a linear expansion of the
wavefunction,

Ny

)= e ), (44)

y=0
where |UY) for y € {1,2,3,...} is the derivative of the trial function |¥) with respect to
its yth variational parameter and |¥°) = |¥), within an expanded energy expression,

oy _ (@[H[P)
E(C) = —=". (45)
(@]P)
Using this linear approximation to how the energy changes with the variational
parameters, minimizing F with respect to ¢ can be achieved by solving the generalized

eigenvalue problem

o~ (WIH|TY) s ()
2 ) P 1o

or, written in matrix-vector notation,
He=ESC¢, (47)

the matrix elements for which are evaluated by Monte Carlo integration [81], 82] in
direct analogy to how VMC evaluates the energy. If one assumes the improved trial
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function |®) is similar to the previous trial function |¥), which implies that the ratio
ce/co is small for all z € {1,2,3,...}, then a reasonable approximation to |®) can be
had by replacing pi, — . + ¢,/ co for each variational parameter p, in |¥). As for other
optimization methods that compute an update based on some local approximation to
the target function, such as Newton-Raphson, this process is then repeated until further
updates no longer lower the energy.

10.2. Stabilizing the Linear Method

In practice, it is important to implement an analogue to the trust radius schemes
common to Newton-Raphson in order to ensure that the solution of equation does
not correspond to an unreasonably long step in variable space, or, put another way, to
ensure that the ratio ¢,/co is not too large. The LM optimizer in QUCPACK supports
two mechanisms for preventing too-large updates: a diagonal shift a as employed in
the original algorithm [80] as well as an overlap-based shift § that becomes important
when parameters of greatly different stiffnesses are present. Using these shifts, the
Hamiltonian matrix is modified to become

H — H + A + (B, (48)

where A and B provide stabilization via the original and overlap shifts, respectively.
As in the original method, QMCPACK uses A, = 04, (1 — d,0) and the adjustable shift
strength « to effectively raise the energy along each direction of change while leaving
the current wavefunction |[¥%) = |¥) unaffected.

While the original shifting scheme has been effective in many cases, it can struggle if
two different variational parameters produce wavefunction derivatives of vastly different
sizes. For example, imagine a two-variable wavefunction whose overlap matrix evaluates

to
1 0 0
S=]101 0 |. (49)
0 0 10°
Performing the usual 7/ = (S%)E' transformation to produce a standard eigenvalue

problem (with § set to zero for now) gives us

1 0 0
S*HS i+ |0 o 0 |i7=EW (50)
00 %

We see that, if we were to make o large enough to significantly penalize the second
variable direction, we would penalize the first direction so much that it would essentially
become a fixed parameter.

The purpose of the overlap shift is to resolve this issue by adding an energy penalty
based on the norm of the part of ¢ corresponding to directions orthogonal to the
current wavefunction |¥), which would correctly penalize steps along directions of large
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derivative norms more than those along directions of small derivative norms. This goal
is accomplished by the definitions

Qxy - 5xy - 5900(1 - 5y0)50y (51)
Txy - (]— - 6x05y0) [Q—FSQ} zy (52)
B =(QY) 'TQ" (53)

in which Q transforms into a basis in which all update directions are orthogonal to the
current wavefunction |¥) (this transformation is equivalent to that of equation (24) of
reference [81]). T is the overlap matrix in this basis with its first element zeroed out
so that the current wavefunction is not penalized. Finally, the inverses of Q and its
adjoint transform us back to the basis of the original generalized eigenvalue problem so
that the effect of the overlap shift cay be written in the form of equation . Note
that, in practice, it is not necessary to construct B explicitly, as QMCPACK solves the
generalized eigenvalue equation by iterative Krylov subspace expansion, during which
the Krylov basis (whose first vector is always |¥)) is kept orthonormal by the Gram-
Schmidt procedure. In this Krylov basis, applying the overlap shift involves merely
adding (3 to the diagonal of the subspace Hamiltonian matrix (except, of course, to
the first element corresponding to |W)). This Krylov approach also has the benefit
of ensuring that the overall update is orthogonal to the current wavefunction, which
is related to norm-conservation and was found to be desirable by the LM’s original
developers. [80, 8], [82]

Although like most trust-radius schemes the optimal choices for o and S are
somewhat heuristic, QMCPACK automatically adjusts them after each iteration of the LM
by solving for the updates generated by three different sets of shifts and retaining the
shift that gave the best update, as determined by a correlated-sampling comparison of
their energies on a fresh sample. For maximum efficiency in regimes where optimization
is not difficult but sampling is expensive, QMCPACK retains the ability to run in a single-
shift, no-second-sample mode. When running instead in multi-shift mode, we have
observed that successful optimizations often result with the simple initial choice of
a = f = 1. In principle, however, one might expect @ < S to be more effective,
because when the [ shift is filling the role of limiting the update size, « is only needed
to penalize (hopefully rare) linear dependencies between update directions that 3, being
overlap-based, cannot address.

10.3. Optimizing for Excited States

QMCPACK ’s current LM optimization engine supports both standard energy minimization
and the minimization of a recently introduced [83] excited state target function,
(U|(w — H)|T)/(U|(w — H)?|T), whose global minimum is the exact energy eigenstate
immediately above the targeted energy w. Although this technology is a very recent
development and will doubtless evolve in time as the science behind excited state
targeting matures, we felt it important to make an early version of it available to the
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community. Optimization proceeds in much the same way as for a ground state, with
the user specifying w and the stabilization shifts o and 8 and the LM repeatedly solving
generalized eigenvalue equations analogous to equation to generate wavefunction
updates. Additional methods for automatically selecting and updating w have been
developed[84]. For details into this targeting function and how it is optimized, we refer
the reader to the original publication [83].

10.4. Handling Large Parameter Sets

One important limitation of the LM comes when the number of variational parameters
rises to 10,000 or more, at which point the contributions to H and S made by each
Markov chain become cumbersome to store in memory, especially when running one
Markov chain per core on a large parallel system in which per-core memory is limited.
QMCPACK currently addresses this memory bottleneck using the blocked LM[35], a recent
algorithm that separates the variable space into blocks, estimates the most important
variable-change directions within each block, and then uses these directions to construct
a reduced and vastly more memory efficient LM eigenvalue problem to generate an
update direction in the overall variable space. Like excited state targeting, this is a new
feature that can be expected to evolve in time, and has been made openly available to
the community in the spirit of rapid dissemination. As of this writing, it has not been
widely tested outside of the work in its original publication [35], but in time we expect
to have a clearer picture of its capabilities.

10.5. Multi-objective optimization

QMCPACK also supports optimizing variational parameters based on not only the total
energy but also variance. In certain situations, the best target object may not be the
energy only but a cost function mixing both energy and variance which reduces to zero
when the wavefunction is exact. The cost function can be any linear combination of
energy and variance. QMCPACK picks the optimal parameter set corresponding to the
minimal value of a quartic function fitting the cost function evaluated on seven shifts
by correlated-sampling.

11. Observables

A broad range of observables and estimators are available in QMCPACK . In this section
we describe the total number density (density), number density resolved by particle
spin (spindensity), spherically averaged pair correlation function (gofr), static structure
factor (sk), energy density (energydensity), one body reduced density matrix (dmlb)
and force (Forces) estimators. These estimators can be evaluated for the entire run (e.g.
all VMC and DMC sections) when added to the Hamiltonian section in the input file,
or applied to a specific section. Higher order density matrix quantities for calculating
quantum entanglement have also been studied previously, e.g. [85] [86], [87].



GMCPACK : An open source ab initio Quantum Monte Carlo package 27

Figure 4. Left: Electron density of (Fe(H20)6)?t cluster in a 10A box using
100x100x100 grid points, based on calculations in [92]. Right: Electron density of
Ti0O5 in a grid of 80x80x80 grid points, based on calculations in [93].

11.1. Density and spin density

The particle number density operator is given by
N, = Z(S(r—ri), (54)

This estimator accumulates the number density on a uniform histogram grid over the
simulation cell. The value obtained for a grid cell ¢ with volume (2. is then the average
number of particles in that cell

ne = / dR| V|2 / chrz;a(r -1y, (55)

When using periodic boundary conditions, the density will be collected for the cell (or
supercell) defined by the simulation. When using non-periodic boundary conditions, a
cell has to be defined in order to set a grid. It is then recommended to center the system
(molecule) in the middle of the defined cell. The collected data is stored in HDF5 format
in a .stat.h5 file. Using Nexus (section , one can use the qdens tool to extract the
data in a *zsf format readable with visualization tools such as XCrysDens|[88, [89] or
VESTA[9(]. Examples of density plots are shown in figure . Similar to the density, the
spin-density estimator can be also collected for each independent spin, as shown and
analyzed in [91] for magnetic states in T'i4Ox.

11.2. Pair correlation function

The functional form of the species-resolved radial pair correlation function operator is

NS NSI

%
Gss' (1) = TN, Z Z 6(r — |y, =y, [). (56)

is=17y=1
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Here N, is the number of particles of species s and V' is the supercell volume. If s = ¢/,
then the sum is restricted so that iy # j,.

An estimate of g (7) is obtained as a radial histogram with a set of IV, uniform
bins of width ér. This can be expressed analytically as

r4or/2

Gss' (1) = 47T7”2NN ZZ (57’/ dr'o(r’ — |rsi — ry;l), (57)

or/2

where the radial position r is restricted to reside at the bin centers 67/2,307/2, .. ..

11.3. Static structure factor

Let pf = > i ¢’®Ti be the Fourier space electron density, with rs being the coordinate
of the j-th electron. k is a wavevector commensurate with the simulation cell. The
static electron structure factor S(k) can be measured at all commensurate k such that
k| < (LR-DIM_CUTOFF)r.. N¢ is the number of electrons, LR_DIM_CUTOFF is the
optimized breakup parameter, and r. is the Wigner-Seitz radius. It is defined as follows:

0 i) (5%)

S(k) =
11.4. Energy density estimator

An energy density operator, E,, satisfies

/ dré, = H, (59)

where the integral is over all space and H is the Hamiltonian. In QMCPACK , the energy
density is split into kinetic and potential components

E =T +V. (60)

with each component given by
. 1 R
= 525(1'—1'1)]9? (61)

- d(r—r;) +0(r— -1y —
Vr:Z (r r)2 (r r] (rs,1;) +Z o(r —r;) (r I'g) I (r;, )

+Zc5(r—f'g)—|—5(r—f' w)

0 (Tp, Ty,
<m 2
Here r; and 1, represent electron and ion positions, respectively, p; is a single electron
momentum operator, and 9°(r;,r;), 0 (r;,T,), 0//(%y,T,,) are the electron-electron,
electron-ion, and ion-ion pair potential operators (including non-local pseudopotentials,
if present). This form of the energy density is size-consistent, i.e. the partially integrated
energy density operators of well separated atoms gives the isolated Hamiltonians of
the respective atoms. For periodic systems with twist averaged boundary conditions,

the energy density is formally correct only for either a set of supercell k-points that
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correspond to real-valued wavefunctions, or a k-point set that has inversion symmetry
around a k-point having a real-valued wavefunction. For more information about the
energy density, see [94].

The energy density can be accumulated on piecewise uniform three dimensional
grids in generalized Cartesian, cylindrical, or spherical coordinates. The energy density
integrated within Voronoi volumes centered on ion positions is also available. The total
particle number density is also accumulated on the same grids by the energy density
estimator for convenience so that related quantities, such as the regional energy per
particle, can be computed easily.

11.5. One-body density matriz

The N-body density matrix in DMC is py = |¥7)(Vpy| (for VMC, substitute U for
Ury). The one body reduced density matrix (1IRDM) is obtained by tracing out all
particle coordinates but one:

= ZTTRn’\I/T><\I/FN’ (62)
In the formula above, the sum is over all electron indices and Trgr,(x) = [ dR,(R,| *
IR,,) with R,, = [r1,...,T0_1,Tps1, ..., Tv]. When the sum is restrlcted over spin up or

down electrons, one obtains a density matrix for each spin species. The IRDM computed
by QMCPACK is partitioned in this way.
In real space, the matrix elements of the 1IRDM are

(e, r') = (el ) = 3 / R, Uy (r, R, Wy (), Ry) (63)

A more efficient and compact representation of the 1IRDM is obtained by expanding
in single particle orbitals, e.g. from a Hartree-Fock or DFT calculation, {¢;}:

(i, j) = ($ilna|e;)
= [ myrn ) Y [ G o) 69

The integration over r’ in equation is inefficient when one is also interested in
obtaining matrices involving energetic quantities, such as the energy density matrix
[94] or the related and more well known Generalized Fock matrix. For this reason, we
compute: [94]

(i) [ R (R () S [ e G o) (69

11.6. Forces

For all-electron calculations, naively estimating the bare Coulomb Hellman-Feynman
force with Quantum Monte Carlo suffers from a fatal problem: While the expectation
value of this estimator is well defined, the 1/r? divergence causes the variance to be
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infinite, meaning we can’t obtain a meaningful error bar for this quantity. There
are several schemes to circumvent this. For all-electron calculations, QMCPACK can
currently calculate forces and stress using the Chiesa estimator [95] in both open
and periodic boundary conditions. Implementation details and validation of forces
in periodic boundary conditions can be found in [96]. In the future, pseudopotential
forces will be supported, and methods to reduce the variance of existing estimators are
currently being explored.

12. Forward-Walking Estimators

Forward-walking is a method by which one can sample the pure fixed-node distribution
(®g|Po). Specifically, one multiplies each walker’s DMC mixed estimate for the
observable O, %@m), by the weighting factor 5;((1;)). This weighting factor for any
walker R is proportional to the total number of descendants the walker will have after

a sufficiently long projection time f.

To forward-walk on an observable, one declares a generic forward-walking estimator
within a Hamiltonian block, and then specifies the observables to forward-walk on and
forward-walking parameters.

13. Orbital space QMC methods

15.1. Introduction

In addition to real-space QMC methods, QMCPACK also supports orbital-space QMC
approaches for the study of atomic, molecular and solid-state systems. Auxiliary-Field
Quantum Monte Carlo (AFQMC) is implemented internally, while interfaces to selected
Configuration Interaction (SCI) methods have been developed.[97, 08, 99, 100] The
starting point of orbital-space approaches is the Hamiltonian in second quantization,
typically defined by

A L 1 T
H = Z hZ]CIC] -+ 5 Z ‘/;jleIC;[CZCk, (66)
1, 1,5,k
where ¢/(¢&;) are the creation (annihilation) operators for spinors associated with a given

single particle basis set, with associated 1- and 2-electron matrix elements given by
hi; and Vj;i;. The choice of the single particle basis along with the calculation of the
appropriate Hamiltonian matrix elements must be performed by a separate electronic
structure package. The Hamiltonian matrix elements are expected in the FCIDUMP
format used by codes including Molpro [101], PySCF [102] and VASP [103, 104, [105].
The calculations are typically performed on a single particle basis defined by the solution
of a Hartree-Fock or DF'T calculation. Both finite and periodic calculations are possible.
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13.2. Augziliary Field Quantum Monte Carlo (AFQMC)

The fundamental idea behind AFQMC is identical to that of DMC, namely that the
propagation of many-body states in imaginary time leads to the lowest eigenstate of the
Hamiltonian with non-zero overlap[27]. In contrast with DMC, AFQMC operates in the
Hilbert space of non-orthogonal Slater determinants and uses the Hubbard-Stratonovich
transformation 106, 107] to express the short-time approximation of the propagator as
an integral over propagators that contain only 1-body terms. The application of one-
body propagators to walkers in the algorithm (represented by Slater determinants) leads
to rotations of the corresponding Slater determinants that define a random walk, similar
to the random walk in real-space followed by walkers in DMC[108]. QMCPACK implements
the constrained-path algorithm of Zhang and Krakauer with the phaseless approximation
[27,109]. Similar to the algorithm of Zhang and Krakauer, we use importance sampling
and force-bias to improve the sampling efficiency of the algorithm. For a complete
description of the implemented algorithm, see the lecture notes on AFQMC by S. Zhang
in the open-access book [28] and [29)].

The AFQMC implementation in QMCPACK attempts to minimize the memory
requirements of the calculation, while increasing the performance of the associated
computations. This is done by a combination of: (1) distributed sparse representations
of large data structures (e.g. 2-electron integrals), (2) efficient use of shared-memory on
multi-core architectures, (3) combination of efficient BLAS and sparse-BLAS routines
for all major computations, and (4) an efficient distributed algorithm for walker
propagation. Notice that the code is able to distribute the work associated with the
propagation of a walker over many nodes, enabling access to systems with thousands
of basis functions with a full ab initio representation. Both single determinant as
well as multi-determinant trial wave-functions are implemented. In the case of multi-
determinant expansions, both orthogonal as well as non-orthogonal expansions are
efficiently implemented. For orthogonal expansions, a fast algorithm based on the
Sherman-Morrison-Woodbury formula is implemented which leads to a modest increase
in computing time for determinant expansions involving even many thousands of terms.

13.3. Selected CI and CIPSI wavefunction interface

As discussed previously, a direct path towards improving the accuracy of a QMC
calculation is through a better trial wavefunction. One approach is to use Selected
CI methods such as CIPSI (Configuration Interaction using a Perturbative Selection
done Iteratively), or the recently developed Adaptive Sampling CI (ASCI)[99] and Heat
Bath CI (HBCI)[I00]. The principle behind selected CI methods was first published
in 1955 by Nesbet[07]. The first calculations on atoms were performed by Diner,
Malrieu and Claverie[I10] in 1967. Many advances have since been made with selected
CI techniques, and it has been applied widely to atomic, molecular and periodic
systems[111], 112} 113, 114, 115, 116, 117, 118]. The method is based on an iterative
process during which a wavefunction is improved at each step. During each iteration,
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C

Figure 5. The C202H3N molecule. The colors red, gray, blue and white correspond
to oxygen, carbon, nitrogen, and hydrogen respectively. The geometry is from the
heterocyclic rings database[122].

the current wavefunction is used in conjunction with the Hamiltonian to find important
contributions that will be added to the wavefunction in the next iteration. In most
Selected CI approaches, the importance of a contribution is determined from a many
body perturbation theory estimate. A full description of CIPSI, its algorithms, and
results on various systems can be found in Refs. [08, 119, 120]. A description of
new improvements to selected CI techniques that have been demonstrated with ASCI
and HBCI can be found in Refs. [99, 100]. The CIPSI method[98, 121}, 119, 120] is
implemented in the Quantum Package (QP) code[59] developed by the Caffarel group.
QMCPACK does not implement CIPSI, but is able to use output from the QP code via
tight integration.

In the following we use the CyO5H3N molecule (figure to illustrate the use
of CIPSI to obtain an improved trial wavefunction. The CyO5H3N molecule is part
of the cycloreversion of heterocyclic rings database[122], for which the geometry was
optimized with DFT using the B3LYP function in a 6-31G basis set. Orbitals are
represented within the aug-ccpVTZ basis set. The energetics of this molecule are known
to have a strong dependence on the choice of functional in DFT simulations [122].
Diagnostics based on coupled cluster theory (CC) with single, double, and peturbative
triple excitations (CCSD(T))[123] suggest a multireference character [124], a known
problem for these techniques [125]. The multireference capability of DMC-CIPSI makes
it an ideal tool for treating difficult systems with large static correlations.

The FCI space for Co0,H3N in aug-ccpVTZ is approximately 10%8 determinants.
Fortunately, using all of these determinants is not necessary to converge a QMC
calculation to chemical accuracy. We truncate determinants based on their magnitudes
with a user defined threshold e [I19], which allows the wavefunction to be evaluated in
QMCPACK with a cost growing asv/Ng., where Ny is the number of determinants.
Truncation values of 1073, 10™*, 107 and 107% result in wavefunctions of 239, 44539,
541380 and 908128 determinants, respectively. For each truncated wavefunction
we optimize one, two and three-body Jastrow factors with VMC. To isolate the
improvement of the nodal surface when adding determinants from CIPSI, the coefficients
of the determinants were not optimized, although this could result in a further
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Ng: | CIPSI(E) | CIPSI(E+PT2) [ DMC

1 -281.6729 |  -283.0063 | -283.070(1)
239 -281.7423 | -282.9063 | -283.073(1)
44539 | -282.0802 |  -282.7339 | -283.078(1)
541,380 | -282.2051 |  -282.6772 | -283.088(1)
908,128 | -282.4020 |  -282.6775 | -283.089(1)

Table 1. Energies in Hartree of CoOoH3N as a function of the number of determinants
Nget in the trial wavefunction obtained using CIPSI(E), CIPSI(E4+PT2) and DMC.
CIPSI(E) is the variational energy, while CIPSI(E+PT2) includes perturbative
corrections.
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Figure 6. DMC energy of C2OsH3N using different trial wavefunctions. Using the
aug-ccpVTZ basis, wavefunctions are generated from Hartree-Fock, PBE, and hybrid
functionals PBEO and B3LYP. Multideterminant CIPSI trial wavefunctions contain
up to 908128 determinants, as indicated. The dashed line is a guide to the eye and
indicates the systematic improvement of the CIPSI wavefunctions.

improvement in the wavefunctions. DMC results are extrapolated to a zero time-step
using time-steps of 7 = 0.001, 0.0008 and 0.0005.

DMC results in table [I] show that the DMC results are converged close to 0.001 Ha,
or better than chemical accuracy of 1 Kcal/mol, by around 500000 determiants. Figure |§|
shows the energy as a function of different single-determinant trial wavefunctions as well
as multideterminant wavefunctions generated with CIPSI. The latter show a systematic
improvement of the nodal surface as a function of the number of determinants. However,
it is also interesting to note that in this case the single determinant B3LYP results are
quite accurate, highlighting the importance of orbital selection and optimization to

improve efficiency[126].
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14. Utilities

14.1. Averaging quantities in the MC data

QMCPACK includes the gmca Python-based tool to average quantities in the output files
and aid in performing statistical analysis. Given the name of an output file, qmca
will compute the average of each quantity in the file. Results of separate simulations
can also be aggregated, such as for different twists (twist averaging), multiple steps
(autocorrelation analysis) or multiple Jastrow parameters (Jastrow optimization).

In addition to all the quantities computed by QMCPACK , qmca computes the data
variance and efficiency. qmca also allows visualizing the evolution of MC quantities over
the course of the simulation by a trace offering a quick picture of whether the random
walk had expected behavior as in example figure [7]
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Figure 7. Screenshot of qmca trace analysis. The solid black line connects the values
of the local energy at each Monte Carlo block (labeled “samples”). The average value
is marked with a horizontal, solid red line. One standard deviation above and below
the average are marked with horizontal, dashed red lines. The trace of this run is
largely centered around the average with no large-scale oscillations or major shifts,
indicating a good quality Monte Carlo run.

14.2. Wavefunction converters

An important step before running a QMC calculation is to obtain the trial wavefunction
from another electronic structure or quantum chemical code and convert it into a format
readable by QUCPACK . In addition to the large set of converters available through Nexus,
QMCPACK comes with 2 converters upon compilation. Connections to other codes will be

developed on request.
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convert4jgmc: When compiling QMCPACK , an extra binary called convert4dqmc
is also created. convert4dqgmec manages gaussian trial wavefunctions from codes such
as GAMESS|[127], VSVB[128] or Quantum Package[59]. convertdqme handles the
conversion of single determinant, multideterminants (CASSCF, CI, CIPSI), numerical
and Gaussian basis sets. The output file generated can be either in an XML or HDF5
format. convert4dqme allows the user to add multiple option to the wavefunction such
as a Jastrow function (2-body, 3-body or Pade), cusp conditions, or limit the number
of determinants to include.

pw2qmepack: When using a plane wave trial wavefunction from the PWSCF code
in the QE suite[54] 53], pw2qmepack.x is used. Source code patches are included with
QMCPACK to produce the pw2qmcpack.x binary for specific QE versions, necessary to
collect and write the wavefunction in the correct format for QMCPACK .

15. Workflow automation using Nexus

Completing the research project path from project conception to polished results
requires a great amount of computational and researcher effort. Much of the effort stems
from the fact that obtaining even single, non-production energies from QMC is a multi-
stage process requiring orbital generation (e.g. with a DFT code), orbital file format
conversion, Jastrow optimization via VMC, subsequent DMC projection, and later
analysis. This process must usually be repeated many times to ensure convergence of the
results with respect to system size, k-point mesh, B-spline mesh, and DMC timestep,
as well as for the different solids or molecules of interest. Often this entire process
must be performed first in the validation of pseudopotentials (e.g. via atomic or dimer
calculations). As a further complication, the appropriate computational environment
— or host computer — can vary with the stage in the chain from small clusters for
DFT work, mid-size machines for wavefunction optimization, and sometimes very large
supercomputing resources for DMC or AFQMC. Simplifying the management of these
processes is of key importance to minimize the full time to solution for QMC.

Scientific workflow automation tools have been used with much success in the
electronic structure community to reduce both the burden on the researcher and to
reduce the propagation of human error with improved systematization. Packaged with
QMCPACK is an automation tool, called Nexus [129], which has been tailored to the
computational workflows of QMC. The system handles several steps in the simulation
process typically requiring human involvement such as atomic structure manipulation,
input file and job submission script generation, batch job monitoring and error detection,
selection of optimized wavefunctions, and post-processing of statistical data. Nexus
also handles the flow of information between simulations in a workflow chain, such as
passing on the relaxed atomic structure, orbital file information, and optimal Jastrow
parameters to subsequent simulations that require them. The system is suitable for both
exploratory and production QMC calculations spanning multiple machines, including
those approaching a high-throughput style.
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Nexus is written in Python following an object-oriented approach to allow
extensibility to multiple simulation codes and host execution environments. Nexus
currently has interfaces to QE [54], [55], GAMESS [127, 56], VASP [130, 131, 103 [104],
QMCPACK , and a number of associated post-processing and file conversion tools. Nexus
does not require access to the internet or to an installed database to run, instead
operating only via the filesystem. Nexus is therefore suitable for the widest range
of computer environments. Supported machine environments include standard Linux
workstations as well as high performance computers. Explicit support exists for
systems at the National Energy Research Scientific Computing Center (NERSC),
the Oak Ridge Leadership Computing Facility (OLCF), the Argonne Leadership
Computing Facility (ALCF), Sandia National Laboratories high-performance computing
resources, the National Center for Supercomputing Applications (NCSA), the Texas
Advanced Computing Center (TACC), the Center for Computational Innovations (CCI)
at Rensselaer Polytechnic Institute, and the Leibniz Supercomputing Centre (LRZ).
Variations in the job submission and monitoring environments at each institution
necessitate specific extensions to ensure operability across this wide range of resources.

Users interact with Nexus by writing short Python scripts that generally resemble
input files. Use of such “input files” allow the user to spend more time on project design
rather than execution and naturally comprise both a record of calculations performed
and a means to fully reproduce them. Nexus has been used extensively in summer
schools on QMCPACK and recent research papers. An additional benefit of the workflows
is the greatly improved ability to reproduce the calculations at a later date, and to speed
up related research projects through reuse.

16. Examples

In the following we give examples of recent applications of QMCPACK to illustrate the
insights achievable with the currently implemented QMC algorithms and to highlight use
of specific features of the application. A molecular example, where the trial wavefunction
is systematically converged using CIPSI is given in section [13.3

16.1. Black Phosphorus

Black phosphorus (BP) has enormous potential for technological applications because
it is layered like graphite and can be exfoliated to form a 2D material that is naturally
a semiconductor. There are some technical complications in making devices due to
effects such as the degradation of the material when exposed to air or water. Ab
initio calculations can help understand such processes and act as a laboratory in which
to test mitigation strategies. However, the interaction between the black phosphorus
layers was thought to be dispersive in nature. Non-covalent interactions are a classically
difficult case to treat with density functional based approaches, while, QMC has been
shown to perform as well as the most accurate quantum chemical methods while
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also being applicable to extended and larger systems[I32, 133, 134]. We employed
QMCPACK to calculate the interaction between black phosphorus layers as well as the bulk
material[I35]. We found that in one particular arrangement the interaction between the
layers was very well reproduced by one van der Waals-corrected DFT functional, but
as soon as the stacking between the layers was changed, the functional’s performance
degraded.

In order to understand this phenomenon, we looked at the change in the charge
density induced by the presence of nearby layers of black phosphorus. Classically, one
might expect very little change in the charge density due to a van der Waals interaction,
and this property is rigorously upheld by various vdW-corrected DFT functionals.
However, we found a large charge reorganization caused by the presence of nearby black
phosphorus layers and of a character that was different than that predicted by DFT.

This study took advantage of QMCPACK ’s ability to handle mixed boundary
conditions (section @ For BP monolayers and bilayers, we used periodic boundary
conditions parallel to the layers, but open boundary conditions perpendicular to them.
Also, we found the interaction energies were very sensitive to finite size effects, and the
ability to perform calculation on many different supercells of the material was crucial
to determine their exact form. The B-spline representation was used for the orbitals in
the trial wavefunctions (section [6.2.1). Finally, the ability of the code to evaluate the
charge density from the calculation was crucial.

16.2. Bilayer a-graphyne

Carbon can form two-dimensional sheets of sp — sp*-hybridized atoms, a-graphyne. Its
existence was predicted three decades ago[I136] and has recently received a great deal
of attention because of its intriguing potential as a new Dirac material[I37, 138, [139].
Among various available forms of a graphyne-based structures, a bilayer a-graphyne
consisting of two stacked two-dimensional hexagonal lattices can be energetically
stabilized in two different stacking modes (AB and Ab mode) out of a total of six
available modes; note that the a-graphyne hexagons are much larger than those of
graphene. While an AB mode has been predicted to exhibit electronic properties similar
to those of an AB bilayer of graphene, Ab-stacked graphyne is expected to possess split
Dirac cones at the Fermi level, and its gaps can be opened with and applied electric
field normal to the surface[140]. Theoretical predictions of these electronic properties of
bilayer graphynes were made by using first-principle DFT methods[140]. However, DFT
studies failed to suggest which of the AB and Ab stacking mode is the most energetically
stable one because of the approximate description of van der Waals forces within the
non-interacting Kohn-Sham scheme. As seen in Table [2| computed interlayer distances
and binding energies obtained from DFT calculations are strongly scattered depending
on which specific exchange-correlation functional was used.

In order to establish which stacking mode is the most stable one, DMC calculations,
that include without any approximations the long-range van der Waals interactions,
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a-graphyne(AB) | a-graphyne(Ab)
Method R E, R E, AEap-—ap
DFT-D2 3.25 13.4 3.37 13.6 -0.2
vdW-DF | 3.47 19.8 3.64 18.5 1.3
rVV10 3.27 17.9 3.41 17.8 0.1
DMC | 3.24(1) 23.2(2) | 3.43(2) 22.3(3)| 0.9(4)

Table 2. Equilibrium interlayer distance Ry (A) and binding energies Fj, (meV /atom)
for an Ab and AB bilayer a-graphyne using DMC and various vdW-corrected DFT
functionals[I4T]. AFE4p_4p indicates the binding energy difference between AB and
Ab a-graphyne.

AE (R) (meV/atom)

R(R) R(R)

Figure 8. Interlayer binding energy for (a) AB, and (b) Ab stacking mode of a bilayer
a-graphyne using various DFT XC functionals and DMC as function of interlayer
distance R. The dotted lines indicate a Morse function fit. Reproduced from [141].

were performed to compute the equilibrium interlayer distance and binding energy for
Ab and AB bilayer graphyne[141]. DMC equilibrium binding energy for the AB stacking
mode (23.2(2) meV /atom) is estimated to be slightly larger than that for Ab stacking
mode (22.3(3) meV /atom), which suggests that the AB-stacked bilayer is energetically
favored over the Ab stacking mode. In comparing the DMC results with results from
vdW-corrected DFT functionals, including the pairwise correction of Grimme (DFT-
D2)[142], 143], self-consistent non-local van der Waals functional (vdW-DF)[144], and
simplified non-local vdW-correction (rVV10)[I45], it was found that those significantly
underestimate the interlayer binding energies for both stacking modes (see figure .

It is interesting to find which vdW-corrected DFT functional most accurately
describe the weak interlayer van der Waals interaction in bilayer a-graphynes by
comparing the DFT results to the DMC ones. As Table [2] shows, there is no vdW-
corrected DFT functional that achieves good accuracy for both interlayer distance and
binding energy. However, the rVV10 functional produces almost identical equilibrium
interlayer distances as DMC, and the vdW-DF results for interlayer binding energies and
AFE p_ap are the closest ones to the DMC results for both stacking modes. Therefore,
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one may conclude that rVV10 can provide well-optimized vdW geometries for low-
dimensional carbon allotropes, while vdW-DF gives the best vdW energetics among the
various vdW-corrected DFT functionals investigated here.

16.3. TiOs

The Row 3 and Row 4 transition metals are extremely useful elements for a number
of applications, ranging from magnetic applications to solar cells and catalysis. The
reason for their versatility is the partially filled d-shell, which gives rise to a number of
oxidation and spin states. The 3d electronic states are also rather localized and give rise
to relatively strong electronic correlations, especially in the transition metal oxides, such
as NiO and TiO,. This has as a consequence that standard computational approaches
using density functional theory within the local density approximation (LDA) or the
generalized gradient approximation (GGA) are inadequate and frequently give incorrect
results.

Titanium dioxide (TiO3) occurs in a variety of polymorphs. Three of those occur
naturally: rutile, anatase and brookite. Rutile is the most abundant one and is used
as a white pigment as well as an opacifier and an ultraviolet radiation absorber, while
anatase is the most photocatalytically active polymorph[140] [147].

In spite of the prevalence and many applications of TiO,, it is very difficult to
determine which of the polymorphs is the most stable one. Experimental studies
have indicated that rutile is the most stable structure, and anatase and brookite
are metastable. However, the enthalpy differences between the polymorphs are very
small, of the order of 1 mHa per formula unit, making precise determinations very
difficult 148, (149, 150, 151}, 152, 153, 154, 155).

Electronic structure calculations using a broad range of local and gradient corrected
functionals give anatase as the lowest-energy polymorph, and thereafter brookite and
rutile[I56) [157], in supposed disagreement with experiments. DFT+U can give the
apparent correct ordering of the polymorphs for a sufficiently large U value[158, [159].
Hybrid functionals can also give the correct energetic ordering of the polymorphs, but
only using very large fractions of exact exchange[I59).

In two recent studies[93] 160], diffusion Monte Carlo calculations were used to
examine TiOy polymorphs with the goal of determining the energetic ordering at zero
and finite temperatures. Both studies gave the result that anatase is the most stable
polymorph at 0 K, with very small energy differences between rutile and brookite.
Finite-temperature Helmholtz free energies were then calculated by including phonon
contributions based on DFT phonon calculations. The results in both studies were very
similar: the finite-temperature contributions from lattice vibrations drove the free energy
of the rutile polymorph to be the smallest at temperatures above approximately 650 K
(see figure [9] ). These two studies may finally resolve the question of the most stable
polymorphs of TiO,: at 0 K, anatase is the most stable one, while lattice vibrations
drive a transition from anatase to rutile at about 650 K.
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Helmholtz free energy
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Figure 9. The Helmholtz free energy of rutile, anatase and brookite as a function
of temperature. All the values are shifted by the calculated Helmholtz free energy of
anatase at 0 K. The energy differences between brookite and rutile at 0-400 K, and
between anatase and rutile at 450-850 K are provided in the insets (a) and (b). The
energy of brookite is always larger than that of the other two solids, while the energy
of rutile becomes lower than that of anatase at 650+£150 K. The error bars indicate
the statistical uncertainty due to the QMC data used for the 0 K energy differences.
Reproduced from [93].

16.4. The Magnéli phase Tiy O;

Because of its many oxidation states, titanium can form a variety of stoichiometrically
different oxides. Ome particular set are the Magnéli phases with the generic formula
T2,0n-1). These form ordered crystals with diminishing band gaps with increasing
n. In particular, TisO; forms a magnetic semiconductor at temperatures below
120 K[161, 162]). DFT finds multiple low energy states, but the ordering depends on the
functional used.

DMC calculations[91] found the same energetic ordering of the lowest three states as
the DFT calculations by Zhong et al.[163], but with larger energy separations. A detailed
examination of the spin densities and local moments on the Ti*" ions showed that the
DFT methods actually gave very good representations of the total moments. However,
the orbital alignments were different in DMC, especially in the FM state. This certainly
will give rise to different energy differences compared to DFT as the energy differences
between the states can rather accurately be attributed to Heisenberg exchange between
the magnetic Ti ions, which will differ with the different orbital alignments.
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Figure 10. Radial distribution function of absolute total density difference from
extrapolated estimator around V atom for various theoretical methods using RRKJ
pseudopotentials: (a) M1 phase, and (b) R phase. As a function of increasing U value
the LDA+U density tends to an improved accuracy, i.e., as U is increased LDA+U
curves get closer to zero. Reproduced from [I82].

16.5. VO,

Vanadium dioxide (VO2) has a rich phase diagram which can be exploited in novel
device applications. At ambient pressure, the unstrained VO, undergoes a metal
to insulator transition (MIT) at 7. ~ 341 K from the low temperature monoclinic
M1 phase to the high temperature rutile (R) phase [164, 165, [166]. This phase
transition has been studied rather extensively, in part due to the on-going debate
on the driving mechanism of this MIT. The challenge in describing this material is
often related to the representation of electron correlations in this strongly correlated
electron material [167, 168, 169, 170, 171, 172, I73]. Commonly, experimental
studies are accompanied with density functional theory (DFT) calculations for better
understanding. Additionally, DF'T has been used in isolation to provide insight into
the mechanism of the MIT [I74] [I75] 176, 177]. However, the failings of DFT in this
context are also well known [178, [179] [180]. If functional development led to systematic
improvement[I81], this should be measurable in both the total energy and the electron
density; the two properties that the exact functional must perfectly reproduce.

Recent QMC calculations of VO, were used as a reference in assessing various DFT
formulations[I82]. Supercells of 48 atoms were used to model the antiferromagnetic
ground state of the M1 and R phases, and a 3 x 3 x 3 grid was used in twist-averaging.
The QMC calculations used LDA+U orbitals for the nodes, where the optimized U-value
of 3.5 eV was obtained from DMC as the value that minimized the variational DMC
energy.

In general, it was observed that the best description of energetics between the
structural phases did not correspond to the best accuracy in the charge density.
An accurate spin density was found to lead to a correct energetic ordering of the
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Table 3. Values of lattice constant (a), bulk modulus (Bp), and cohesive energy
(Econ) for AFM-II type NiO obtained from a Vinet fit of the equation of state computed
using GGA+U and DMC at U=U,,; and a 16-atom type II AFM NiO supercell.

method a (A) By (GPa) E.y (eV/fu.)

GGA+U 4.234 192 8.54
DMC 4.161(7)  218(14) 9.54(5)
Experiment! 4.17 145-206 9.5

L[1R4].

different magnetic states. However, local, semilocal, and meta-GGA functionals tend
to erroneously favor demagnetization of the vanadium sites, which can be reconciled in
terms of the self-interaction error. The metrics used also revealed the limitations in the
description of correlated 3d-orbital physics present in currently available functionals.
This is evident, e.g., in the density metrics shown in figure [I0] where spatial variations
in the electron density with respect to DMC reference are shown; the extrapolated
estimator is used as the DMC reference.

16.6. NiO and potassium-doped NiO

Nickel oxide is the poster-child for correlated transition metal oxides. It has a simple
rocksalt structure and is at low temperatures a Type II antiferromagnetic insulator.
Not only is NiO interesting as a prototypical correlated transition metal oxide, but it is
typically a p-type semiconductor, one of a very small number of p-type oxides, because
as-deposited NiO typically has a Ni deficiency. Stoichiometric NiO can also be p-doped
with suitable monovalent elements, e.g., with Li or K. This brings the basic questions
of what are the energetics of vacancies or substitutional dopants in NiO, and how do
their descriptions in DFT-based calculations differ from those based on QMC?

DMC calculations[I83] were performed on 64-atom supercells with a single
substitutional K dopant or Ni or O vacancies. DMC results for ground state properties
were in very good agreement with experiments, compared to the DFT results (see
Table . There was also a large difference in defect creation energies, with DF'T energies
underestimating them (Table . The optical gaps were also underestimated by DF'T,
as expected. DMC calculations of the optical gap were larger, in fact much larger than
experimental values. Calculations of the gap using a 128-atom supercell reduced the
gap, but the variance was large enough for this size cell that the reduction of the gap for
the larger supercell was not statistically significant. In any case, the gap calculations
indicate that finite-size corrections can be significant in DMC gap calculations and also
point to the need for improved excited state methodologies in QMC calculations of
solids, where the errors are currently larger than for ground states.
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Table 4. DMC formation energies of a K dopant (Ey) NiO under O-rich condition,
and optical gap (E,) for NiO and K-doped NiO in a 64-atom supercell[I83]. Energies

are in eV.
method E¢(K) E, (NiO) E, (KNiO)
GGA 1.9 1.4 0.7
GGA+U 0.6 3.6 2.9
5.8(3)
DMC 1.3(3) 5.0(7)! 4.8(4)
Exp. - 4.323 3.7- 3.9

!Optical gap calculated in a 128 atoms supercell.
*Reference [185], 186, 187, [188].
3Reference[189).

16.7. Pseudopotential development and testing

Testing pseudopotentials is an important part of QMC due to (i) the historic challenge
of developing accurate pseudopotentials for many-body methods such as QMC and
historical reuse of DFT or Hartree-Fock-derived potentials, and (ii) the importance of
checking any biases unique to QMC such as the T-moves and locality approximations in
DMC. Comparing atomic properties such as ionization potentials, and dimer properties
such as bond lengths and binding energies obtained by DMC with experimental or
quantum chemical results, provides a robust, inexpensive, and transferable test of
pseudopotential quality. Recently, QMCPACK and Nexus [129] were used jointly to validate
a collection of newly developed pseudopotentials for the early-row transition metals (Sc-
Zm) [190].

DMC calculations were performed for five atomic charge states (ranging from
neutral to 4+) and at nine transition metal-oxygen dimer bond lengths for each species.
Orbitals were generated with QE using the experimental spin multiplicity within LDA
[5, 191] or HSE [192] 193] for atoms and LDA for dimers. Two-body Jastrow functions
were optimized at each atomic charge state and at the equilibrium geometry for dimers.
Subsequent DMC calculations were performed with both T-moves and the locality
approximation to assess the affect of pseudopotential localization errors. This large
number of calculations is best handled using workflow software such as Nexus.

The resulting DMC atomic ionization potentials and dimer bond lengths, binding
energies and vibration frequencies were compared with prior DMC results using
Gaussian-based Hartree-Fock [194] 195, [196] pseudopotentials, all electron quantum
chemistry results using MRCI [197, [198] and CCSD(T) [199, 200, 201] approaches, and
experiment. On essential all measures, the various theoretical approaches performed
similarly well compared with experiment. The current pseudopotential DMC results
were within 0.2 eV of experiment on average for atomic ionization potentials and dimer
binding energies, with the T-moves and locality approximation generally agreeing to
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0.05 eV for these energy differences. Equilibrium bond lengths were found to be within
0.5% of the experimental values, while the more sensitive vibration frequencies agreed
to around 3%. This work as well as subsequent studies have verified the quality of
the new potentials for QMC studies of transition metal containing systems, but further
improvements are desirable (section [I7.1)).

17. Future extensions and challenges

17.1. Pseudopotentials

The atomic core energies scale quadratically with the nuclear charge, Z, while the
valence energies stay essentially constant across all chemical elements. The energy
fluctuations from the core therefore dominate any QMC calculation and, indeed, the
overall cost is o Z* with a between 5.5 and 6.5[202, 203]. It is therefore highly desirable
to construct an effective, valence-only Hamiltonian with the atomic cores removed. In
fact, a related problem is encountered also in one-particle calculations with plane waves.
For that matter, even in many-body calculations with heavy atoms fully correlating the
core(s) would eventually dominate the calculations regardless of the employed method.

Pseudopotentials (PPs) and the closely related effective core potentials (ECPs)
have been used in condensed matter calculations as well as in basis set quantum
chemical calculations for several decades[I]. At the very basic level, the atomic
cores and corresponding degrees of freedom are replaced by PPs/ECPs operators that
mimic the action of the core states on the valence electrons. Traditional PP/ECP
constructions are based on one-particle solutions of the atom and typically involve norm
conservation/shape consistency so that the pseudo-orbitals match the true original all-
electron orbitals outside some appropriate core radius. Many advances for ECPs/PPs
have been proposed that generalize, make more efficient, improve or more accurately
reproduce the true atomic properties, e.g. Refs. [204, 205, 206, 207]. For QMC
calculations, one improvement that has been used to improve the transferability has
been based on fitting HF (Hartree-Fock) or DF (Dirac-Fock) energy differences for a
set of atomic and ionic excitations. Furthermore, many-body constructions have been
suggested by means of reproducing the (correlated) one-particle density matrices beyond
a certain radius or by improving upon DFT solution for a given atom using many-body
perturbation theory.

Despite all these elaborate and sophisticated efforts, at present, pseudopotentials
remain a very laborious part of QMC studies. The main reason is that QMC often
reaches accuracy beyond and sometimes well beyond the accuracy of traditional and
even currently most advanced PP/ECP constructions. Additional complications come
from dealing with the non-locality in the QMC framework that introduces further
complications and demands on quality of the trial wavefunctions. As a result, PP/ECP
for every element has to be painstakingly retested and benchmarked anew and if the
inaccuracies sufficiently bias the valence properties of interest, one has to go back to
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square one and construct a more accurate PP/ECP. Furthermore, techniques in DFT
that use solid state results to improve transferability, e.g. [208], are not practical in
QMC because of the computational cost of the large supercells required to converge
finite size errors.

To overcome these highly technical but important barriers it is desirable to develop a
new generation of PPs/ECPs based on correlated constructions from the outset, provide
high accuracy that would not limit the subsequent QMC results, and also be efficiently
used in QMC. In addition, one would like to have flexibility in choosing the core-valence
partitioning and transferability not only at ambient (equilibrium) conditions but also
at high pressures, non-equilibrium conformations and other broader set of conditions.

The goal is therefore not only to reproduce the properties of the atom within one-
particle theory and then hope for best in many-body calculation. Our effort would be
focused on reproducing the true many-body properties of the original system(s), i.e.,
atom(s), in a variety of settings. For this purpose, we plan to derive new generation
of PPs/ECPs that would be based on a number of new criteria targeted to uphold its
accuracy and fidelity to the true original many-body Hamiltonian. In particular,

(i) we plan to construct an atomic ECP operator that will match a subset of the many-
body spectrum as close as possible to the original atomic Hamiltonian. This will
involve a set of states that have the largest weights in molecular, surface, solid or
other chemical settings;

(ii) include more options for multiple core-valence partitioning whenever appropriate;

(iii) express PPs/ECPs in a simple representations/forms that enable their use with
multiple methods ranging from traditional DFT and plane wave-based packages
to many-body approaches based on stochastic and explicit expansions in basis set
methods;

(iv) try to capture all of the relevant physics that is feasible at the current state-of-
the-art, e.g., impact of correlated cores together with correlated valence, describe
relativity with the best available account of correlation, explicit treatment of spin-
orbit effects, etc.

Clearly this is an ambitious plan that will require significant effort and time, and
as such it is almost a never ending task (since it is almost always possible to slightly
improve upon the previous version). Nevertheless, we believe that equally important is
the adoption of new standards: many-body instead of one-particle framework, testing
and benchmarking by a multitude of methods that cross-validate the quality of the
PPs/ECPs, and systematic documentation and improvements so that PPs/ECPs can
be used without endless retesting and with true many-body quality of the corresponding
operators shown upfront. To-date, explicitly correlated ECPs have been developed for
a selection of first and second row elements [209], with future developments for the rest
of the periodic table underway.

These developments will be collected on a new community website, http://
pseudopotentiallibrary.org, that will be used for storing the data and will also
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include tests and benchmarks. The PPs/ECPs will also be available as a part of the
QMCPACK package.

17.2. Spin-orbit interaction

Until now, almost all electronic structure QMC calculations have been carried out
with spins of individual electrons being fixed, up or down. This is easy to justify for
Hamiltonians without explicit spin operators. Such Hamiltonians commute with any
spin, so that up or down orientations are conserved and the solution of the many-body
problem is therefore confined to the space of spatial coordinates, and spin states are
imposed as a symmetry (e.g. a triplet state). Many interesting phenomena involve
the interaction between the spin and spatial degrees of freedom, such as the spin-orbit
interaction. Recently, dynamic spins as quantum variables has been realized in DMC
in order to treat such interactions directly, see [210] and [211]. We plan to implement
dynamic spins into QMCPACK , and a brief outline of the necessary changes are outlined
below.

In order to implement spin-dependent operators, spin variables need to be
introduced as dynamic quantum variables. This requires a change from one-particle
orbitals to one-particle spinors

Xn(riy 80) = ah (ti)x " (s:) + By, (r:)x* (s:) (67)
where the spatial orbitals can be different for the spin up and down channels. The
spin functions yT™ take on discrete values in the minimal spin representation, namely
x'(1/2) = x*(=1/2) = 1 and x"(—=1/2) = x*(1/2) = 0. The simplest antisymmetric
wavefunction is then a single determinant of the one-particle spinors, rather than the
product of spin-up and spin-down determinants. In order to increase the efficiency of
sampling the spin degrees of freedom, the spinors will be represented using a continuous
(overcomplete) representation

XT(U(Si) — otisi (68)

where s; € (0,27). These explicitly varying spins result in complex wavefunctions,

for which we must abandon the fixed-node approximation that applies to real-valued

wavefunctions. By writing the many-body wavefunction in terms of an amplitude and
phase ¥ = pexp [i®], the real part of the Schrodinger equation becomes

op

—5- =

where W is Re [U~1W W] and W is any nonlocal operator such as a pseudopotential.

1 1
—§V2+V+§|V<I>|2+WR€ p (69)

Since we do not know the exact phase, we approximate it by the use of a trial phase
using the Fixed-Phase approximation [71]. Since p is positive-definite, there is no nodal
surface and the DMC algorithm is seemingly the same as for bosonic ground states with
an additional potential provided by the trial phase.
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Sampling of the spin variables can be achieved by introducing a spin “kinetic
energy”, namely
2
T, = —2%% {5—8? + 1} (70)
such that it annihilates an arbitrary spinor and does not contribute to the total energy.
However, the introduction of this operator modifies the DMC Green’s function to include
a diffusion and drift term for the spin variables S = (s1,59,...,sy). The pg is a spin
mass, which can be interpreted as a time step for the spin variable propagation.
Once the spins are treated as variables rather than static labels, spin-dependent
Hamiltonians can be treated. For the spin-orbit integration, a generalization of the non-
local operators used in QMC calculations is necessary. Relativistic quantum chemistry

calculations utilize the semi-local form
04+1/2 j
Wi=Y" > D Wilr)|timy)(tim;l (71)
t j=—lt=1/2| m=—j

for fully relativistic pseudopotentials that include scalar-relativistic and spin-orbit effects
[212]. Utilizing the spin representation introduced above, the contribution from the non-
local pseudopotential is inherently complex. When evaluating the localization of the
pseudopotential with the trial wavefunction Re [\P;lW\I/T}, one will encounter terms
such as (Qs|¢jm), where (2 is the solid-angle and s is the spin variable for an individual
electron. These terms are given as

, [0+m+1/2 is
<QS‘£,] =/(+t 1/2, mj) =+ Wyz,m—lﬂ(g)e
E :F m + 1/2 —1i8
et Y@ (72

By summing over each electron and ion and taking the real part, one obtains the
contribution to the local energy from the complex non-local pseudopotential in the
locality approximation. As is described in [211], a generalization to the Casula T-moves
[78, B6] has been constructed for complex non-local operators such as the relativistic
pseudopotentials above, and will also be included.

17.8. Adapting to trends in High Performance Computing

Predicting details about future high performance computing architectures is difficult,
but some general trends can be observed that should motivate application design
decisions in an effort of increasing forward portability. As Moore’s Law and Dennard
scaling slow due to physical limitations, recent strategies for gaining performance have
largely consisted of increasing the parallel capability of hardware. However, the time
and power costs of moving data during program execution also limits the traditional
increase in parallelism by scaling out commodity-type nodes and connecting them by a
high performance interconnect. As a result, parallelism is being added both at the overall
system level as before, and also within the processors by increasing thread count, and
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within the node by adding specialized compute accelerators such as GPUs, FPGAs, etc.
Besides increasingly complex compute hierarchies, memory is also becoming hierarchical
and more complex, e.g. with the addition of non-volatile memory and various types
of on-package high-bandwidth memories. Although the traditional memory structure
already involved multi-level caches and system RAM, this complexity was almost entirely
managed by the hardware controllers and compilers. However, as the memory hierarchy
deepens, it could become necessary for the application developer to more actively
manage its usage to realize desired performance increases. Adapting to these changes
is very important for QMC because the high computational cost often results in the
methods being run on the latest supercomputers with the newest architectures.

While QMC methods have considerable natural parallelism that makes maintaining
parallel efficiency fairly straightforward on most traditional hardware, the real desire is
to reduce the overall time to solution for any given problem of interest. This means that
simply mapping more walkers to more available threads does not scale indefinitely for our
purposes, and a multifaceted strategy is needed to leverage increasingly complex modern
computer architectures. The emergence of GPU-based HPC architectures around half
a decade ago indicated that maintaining high performance was no longer “business as
usual.”

In order to take advantage of the massive increase in the number of lightweight
threads that were offered by GPUs, the parallel strategy in QMCPACK was re-mapped
from walker-based parallelism to particle-based parallelism. However, as compute
accelerators get more powerful with an increasing number of available threads, and more
powerful threads have their own vectorization capabilities, additional parallelism must
be exploited. For example, so that multiple threads can be assigned to a single particle
within each walker when working on compute intensive operations such as the inverse
matrix update and Jastrow function calculations. Meanwhile, the natural parallelism
present in the Monte Carlo method cannot be abandoned, as it will always be desirable
to use more walkers. For this piece of the strategy to continue to be viable, better
protocols for equilibration are needed to ensure that the overall time to solution can
continue to be reduced.

It is common for HPC application developers to strive for a forward portable design
to minimize the effort required in adapting their code to new architectures. With the
trend for increasing complexity and a variety of compute and memory architecture
configurations, a flexible application design is as important as ever for attaining
good “performance portability” - the ability to run efficiently on significantly different
architectures, e.g. conventional processors, GPUs, and potentially even FPGAs.

QMCPACK is being actively developed to adopt to the changing computational
landscape. In particular, to (i) run efficiently on systems with fewer “fat” nodes with
deeper heterogeneous compute capabilities as well as systems with a larger number of
more homogeneous “thin” nodes by supporting multiple granularities of computation,
(ii) accommodating multiple types of fine-grained multi-threading and vectorization to
fully utilize the processors and compute accelerators, and (iii) make effective use of the
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increasingly complex memory hierarchy. To facilitate this task, simplified “miniapps”
have been developed for real space QMC and AFQMC. These are distributed via
https://github.com/QMCPACK. The miniapps encapsulate the main operations of each
method while avoiding the full complexity of the main application and enabling use as
testbeds for different programming models and middleware layers that help treat the
above complexities. In the long term, we hope for a future C++4 standard that provides
a migration path to an effective and portable solution.

18. Summary

We have described the current capabilities of the open source and openly developed
QMCPACK Quantum Monte Carlo package. The methods implemented enable full many-
body electronic structure calculations to be performed for a wide range of molecular
to periodic condensed matter systems, including metals, and using either all-electrons
or pseudopotentials in the Hamiltonian. By solving the Schrodinger equation using
statistical methods, large and complex systems can be studied to unprecedented
accuracy, including systems where other electronic structure methods have difficulty.

QMCPACK contains both real space and orbital space Quantum Monte Carlo
algorithms.  Both classes of algorithm involve only limited and well-controlled
approximations and can potentially be systematically converged to give near exact
results. By virtue of the different approximations and convergence routes involved, these
enable cross-validation between the methods and promise to significantly strengthen
predictions where very different methodologies agree. The methods are well suited to
today’s supercomputers and the architectural trends towards exascale computing. Both
the parallel scalability and on node numerical performance of QMCPACK are state of the
art, minimizing time to scientific solution. Updates are planned to take full advantage
of the trends in high-performance computing in a performance-portable manner. Due
to the rapid development in the fundamental Quantum Monte Carlo algorithms and
methodology, we plan to continue to extend QMCPACK to incorporate the best new
methods from the current authors as well as those developed or contributed by the
wider Quantum Monte Carlo community.
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