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I. INTRODUCTION

This report summarizes the research that was accomplished under contract No. 9-XG9-
2259Z for Los Alamos National Laboratory. This work, together with the corresponding
numerical implementations, was primarily done by Todd Wareing, a graduate student at the
University of Michigan, for his Ph.D. dissertation. Dr. Wareing is now a staff member in Group
X-6 at Los Alamos National Laboratory. Some of the results of Dr. Wareing’s work were
published in a recent conference paper!.

The basic problem addressed in the project was that of accelerating the iterative
convergence of Discrete Ordinates (SN) problems. Important previous work on this problem,
much of which was done at LANL, has shown that the Diffusion Synthetic Acceleration (DSA)
method can be a very effective acceleration procedureZ:3. However, in two-dimensional
geometries, only the diamond differenced Sy equations have been efficiently solved using DSAZ.
This is because, for the 2-D diamond-differenced Sy equations, the standard DSA procedure leads
to a relatively simple discretized low-order diffusion equation that for many problems can be
efficiently solved by a multigrid method?. For other discretized versions of the SN equations, the
standard DSA procedure leads to much more complicated discretizations of the low-order diffusion
equation that have not been efficiently solved by multigrid (or other) methods.

In this project, we have developed a new procedure to obtain discretized diffusion
equations for DSA-accelerating the convergence of the SN equations using certain lumped
discontinuous finite element spatial differencing methods. The idea is to use an asymptotic
analysis for the derivation of the discretized diffusion equation. This is based on the fact that
diffusion theory is an asymptotic limit of transport theory>. The asymptotic analysis also shows
that the schemes considered in this project are highly accurate for diffusive problems with spatial
meshes that are optically thick. Specifically, we apply this DSA procedure to a lumped Linear
Discontinuous (LD) scheme for slab geometry and a lumped Bilinear Discontinuous (BLD) scheme
for x,y-geometry. Our theoretical and numerical results (both summarized below) indicate that
these schemes are very accurate and can be solved efficiently using the new method.

A summary of the remainder of this report follows. In Sec. II we describe the concept that
underlies the DSA method. In Sec. III we describe the basic asymptotic relationship between
transport and diffusion theory. We then derive and test our DSA method for slab geometry in Sec.
IV, and for x,y-geometry in Sec. V. A brief discussion concludes the report in Sec. V1.

II. BASICS OF DSA

Let us consider the standard SN equations in slab geometry with isotropic scattering:
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The unaccelerated Source Iteration method for these equations is
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This scheme converges slowly for optically thick problems with scattering ratios close to unity. To
accelerate convergence, we retain Eq. (3) but replace Eq. (4) by a more complicated, yet more
efficient equation. To do this, we define a correction, f, such that
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Subtracting Eq.(3) from Eq.(1), we obtain
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This equation for fy, is exact, but it is just as difficult to solve as the original equation. Therefore,
for DSA, one approximates Eqgs. (6) and (5) by the the diffusion approximation
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Here fU+D)is the diffusion approximation to f,, at the (/+1)-st iteration. To obtain a robust and
efficient DSA procedure, the discretization of Eqs. (7) and (8) must be consistent with the
discretization of Egs. (3) and (5). To obtain the discretization for Eq. (7) we use the method of
asymptotic expansions, and to obtain the discretization of Eq. (8) we use the standard DSA or Py
method.

1. ASYMPTOTIC DERIVATION OF THE LOW-ORDER DIFFUSION EQUATION

We assume that Eq. (6) is written in dimensionless form and invoke the usual assumptions
for “diffusive” problems. That is, the physical medium is many mean free paths thick, and the
cross sections, flux, and source are continuous and do not vary significantly over the distance of
one mean free path. One obtains the following scaled Sy equations>:
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Here € depends on the particular characteristics of the transport problem. We see that for € = 1, the
problem remains unchanged, and for € << 1, the problem is “diffusive.” To determine the
asymptotic solution of Eq. (9), we introduce the ansatz
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into Eq. (2) and equate the coefficients of £-1, €0, and l. Recursively solving the resulting
systems of equations, we obtain to leading order
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where f(()m)(X) solves the standard DSA diffusion equation
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Thus, as € — 0, the solution of the continuous transport equation limits to the solution of
the conventional diffusion equation. Certain discontinuous finite element schemes for the SN
equations have the property that when the same asymptotic analysis is applied to them on a fixed
grid, one obtains an accurate discretized diffusion equation that can be solved efficiently by the
multigrid method. We use these discretized Sy and diffusion equations in this paper.

We note that for a differencing scheme to possess this asymptotic limit is very significant,
not only from the point of view of developing an efficient DSA procedure for it, but also from a
point of view of accuracy3-7. This is because, in Eq. (9), as € — 0, the true transport cross
section 0,(x)/ € tends to infinity, so the optical thickness of the spatial cells tends to infinity.
Therefore, when a differencing scheme possesses this asymptotic limit, it means that there are
diffusive problems for which the scheme will produce accurate resalts even for a very optically
thick spatial grid. Most simple transport schemes, such as the diamond or weighted diamond
schemes, can fail for such problems.

IV. ASYMPTOTIC DSA METHOD FOR SLAB GEOMETRY

We have implemented this new “asymptotic” DSA procedure in slab geometry for the
mass-lumped Linear-Discontinuous (LD) scheme>. The LD scheme with isotropic scattering is
given by the following equations:
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Here 6,, ; =3 for conventional LD and = 1 for the “mass-lumped” LD scheme. Experience has
shown that conventional LD is more accurate for optically thin cells and “mass-lumped” LD is
more accurate for optically thick cells. Interpolation between the two gives a modified LD
schemeb. We use the “mass-lumped” 8,, ; =1 LD scheme in this analysis.

The LD equations for the correction f ,(,f“) are given by:
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If we scale Egs. (14) using the asymptotic scaling, we obtain the following:
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Performing the same asymptotic analysis on these discretized equations as we performed on the
continuous Sy equation, Eq. (9), we obtain for £ <<'1
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where f ;.5 is the “olution of the following diffusion equation, with a one point removal term:
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Now we devise a DSA method in which all the steps are the same as in the standard DSA
method, except that Eq. (18) is used instead of the standard diffusion equation derived by the P,
method. [Boundary conditions for Eq. (18) are obtained from the Py approximation to Eqs. (14).]
This gives us corrections to the scalar flux at the cell edges. We derive the “update” equations,
which convert this information to cell-average scalar flux corrections, from the Py approximation to
Egs. (14); these update equations are:
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We have Fourier-analyzed and experimentally tested this scheme. Convergence results are
given in Table 1. For linearly anisotropic scattering with 0 < u <1, the theoretical and
experimental convergence results are nearly the same as those given in Table 1. We see that the
“asymptotic” DSA procedure is very efficient, and that the theoretical and experimental results
agree very closely. Other calculations show that acceleration of the modified LD scheme is just as
efficient as for the “lumped” scheme.

V. ASYMPTOTIC DSA METHOD FOR X,Y-GEOMETRY

For x,y-geometry, we use the Bilinear Discontinuous (BLD) finite element scheme with
rectangular cells. The Linear-Discontinuous (LD) finite element scheme does not result in a
diffusion equation in the asymptotic limit6, so we cannot DSA-accelerate it. We use a “lumped”
BLD scheme pronosed by Adams® which, for uniform homogeneous cells, is given by:
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Following the same asymptotic procedure as in slab geometry, we obtain the following
discretized diffusion equation for the correction factor used in the DSA procedure:
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This gives corrections to the scalar flux at the cell vertices. [Boundary conditions for this equation
are obtained from the Py approximation to Egs. (23).] The “update” equations, which convert this

information to corrected cell-average scalar fluxes, are also derived using the P} approximation to
Egs. (23); these are:
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We have Fourier-analyzed and experimentally tested this scheme; convergence results are
given in Tables 2 and 3. Table 2 gives the worst case results, for ¢ = 1 and the S4 quadrature set,
and Table 3 gives the corresponding results for ¢ = 0.95. In all cases shown in these tables, the
agreement between theory (Fourier analysis) and experiment (the actual running of a code) is
excellent. These results show that the 2-D version of the asymptotic DSA method will rapidly
converge, provided that the aspect ratio of the cells in the spatial grid is not too large.

Finally, we consider the heterogeneous 3-region, X,y-geometry problem with the
configuration shown in Fig. 1. We solved this problem wiih the S4 quadrature set and various
uniform spatial grids, with a relative pointwise convergence criterion of 10-5. We calculated the
spectral radius, the leakage out the rightmost 2.0 cm on the top boundary, and the absorption rates
in regions 1, 2, and 3; this data is all given in Table 4. For the coarsest mesh, the leakage result is
not very accurate. However, the exact solution of this problem changes by about five orders of
magnitude from the lower left corner of the system to the upper right comer, and in this crudest
mesh, the numerical solution changes by an average amount of one order of magnitude across each
cell. Therefore, this is an extremely crude mesh. All of the other numerical results are quite
accurate, and in no case was a negative flux generated. Also, for all grids, the convergence of the
DSA scheme is quite rapid. The most slowly converging grid required 14 iterations; the
unaccelerated Source Iteration Scheme required about 100 iterations for this problem on each grid.

V1. DISCUSSION

We have devised a new procedure for obtaining efficiently-solvable discretized diffusion
equations that can be used in DSA calculations, and we have applied this procedure to lumped
discontinuous finite-element methods in slab and x,y-geometries. Our procedure applies to
discretized SN schemes that produce, using an asymptotic expansion, a useful discretized diffusion
equation. For a differencing scheme to have this asymptotic property is not just a mathematical
curiosity; it implies that the scheme will be highly accurate in the diffusive SN problems with very
thick spatial meshes. Therefore, these schemes will have two very important properties: they will
be highly accurate, and they will be efficiently and robustly solvable by a linear DSA procedure.
Such schemes do not currently exist in production transport codes.
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Table 1. Spectral Radius for Slab Geometry S16 LD Scheme With Isotropic Scattering

Ax (mfp) Method c=05 c=07 c=09 | ¢c=098
01 Theoretical 0.096 0.141 0.194 0218
' Experimental 0.095 0.140 0.193 0.217
10 Theoretical 0.088 0.129 0.176 0.207
' Experimental 0.087 0.128 0.175 0.206
10.0 Theoretical 0.026 0.052 0.121 0.194
' Experimental 0.033 0.059 0.120 0.193
100.0 Theoretical 0.003 0.007 0.026 0.096
' Experimental 0.005 0.011 0.033 0.098
Table 2. ctral Radii for X,Y-Geometry S4 Lumped BLD Scheme
With Isotropic Scattering and ¢ = 1.0
Ay
Method Ax 0.5 1.0 5.0 10.0 20.0 40.0
Theoretical 0.5 0.342
Experimental : 0.328
Theoretical 0.482 0.407
Experimental 1.0 0460 | 0375
Theoretical 0.820 0.784 0.531
Experimental 5.0 0773 | 0749 | 0514
Theoretical 0900 | 0.879 0699 | 0.563
Experimental 10.0 0860 | 0858 | 0686 | 0.554
Theoretical 20.0 0.947 | 0935 0.825 | 0718 | 0.591
Experimental ' 0910 | 0.920 0816 | 0.711 0.579
Theoretical 40.0 0973 | 0.967 0.905 | 0.835 0.733 | 0.606
Experimental ' 0935 | 0952 0.897 | 0.829 0725 | 0.593
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Table 3. Spectral Radii for X.Y-Geometry S4 Lumped BLD Scheme

With Isotropic Scattering and ¢ = 0.95

Method | > A1 os 1.0 5.0 10.0 20.0 40.0
Theoretical 0.5 0319
Experimental : 0.308
Theoretical 0 0456 | 0.381
Experimental L. 0434 | 0.368
Theoretical 0.774 0.732 0.460
Experimental 5.0 0735 | 0706 | 0.550
Theoretical 0.850 | 0820 | 0593 | 0457
Experimental 10.0 0.813 | 0.800 | 0580 | 0.447
Theoretical 20.0 0.894 | 0.872 0.691 0.554 0.413
Experimental : 0859 [ 0.856 0.677 | 0.542 0.400
Theoretical 40.0 0918 | 0.901 0752 | 0621 0469 | 0332
Experimental : 0.883 | 0.880 | 0.737 | 0.609 0459 | 0.323
Table 4. Results for the X,Y-Geometry Heterogeneous Problem
Ax=Ay Spectral ] Abs. Rate Abs. Rate Abs. Rate
(cm) Radius 8-10 Region 1 Region 2 Region 3
2.0 0.407 1.13x10°3 1.729 0.926 1.337
1.0 0.359 423x10™ 1.818 0.941 1.237
0.667 0.310 308x10°% | 1836 0.948 1.213
-4
0.5 0.276 2.68x10 1.842 0.951 1.204
0.333 0.266 238x10° 1.846 0.954 1.197
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Figure 1. The X,Y-Geometry Heterogeneous Problem
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