DOE-PURDUE-08629

SLEEC: Semantics-Rich
Libraries for Effective Exascale
Computation

Final Technical Report

Period Covered: September 2012—August 2017
Award #: DE-SC0008629

April 2018

Milind Kulkarni

School of Electrical and Computer Engineering
Purdue University
West Lafayette, IN 47906

Contents
1 Introduction and Summary

2 Communication Optimization
2.1 SemCache e
2.2 SemCachet++ e
2.3 Locality-aware GPU Execution

3 Domain-aware optimization
3.1 Optimizing Multi-scale Computational Mechanics
3.2 Optimizing LULESH with CnC
3.3 Task and Data Coarsening in CnC

4 Application optimization
4.1 Multi-scale Peridynamics
4.2 Domain-aware Multilevel Partitioning

5 References

1 Introduction and Summary

SLEEC (Semantics-rich Libraries for Effective Exascale Computation) was a project funded by
the Department of Energy X-Stack Program, award number DE-SC0008629. The initial project
period was September 2012—August 2015. The project was renewed for an additional year, expiring
August 2016. Finally, the project received a no-cost extension, leading to a final expiry date of
August 2017.

Modern applications, especially those intended to run at exascale, are not written from scratch.
Instead, they are built by stitching together various carefully-written, hand-tuned libraries. Cor-
rectly composing these libraries is difficult, but traditional compilers are unable to effectively ana-
lyze and transform across abstraction layers. Domain specific compilers integrate semantic knowl-
edge into compilers, allowing them to transform applications that use particular domain-specific
languages, or domain libraries. But they do not help when new domains are developed, or ap-
plications span multiple domains. SLEEC aims to fix these problems. To do so, we are building
generic compiler and runtime infrastructures that are semantics-aware but not domain-specific. By
performing optimizations related to the semantics of a domain library, the same infrastructure can
be made generic and apply across multiple domains.

SLEEC made contributions in three broad areas:

1. Optimized Communication Between CPU and GPU. To support the increasing use of
GPUs and other accelerators, programmers often adopt an offloading approach, where some
computations are delegated to the accelerator. Critical to making this offloading approach
effective is determining which data needs to be moved to the accelerator. Our strategy is
to take a domain-aware approach, where by understanding the semantics of the operations
being performed on the accelerator, we can perform exactly the computations needed [2, 1].
We also leveraged similar ideas to accelerate GPU-offloaded tree computations [3].

2. Domain-aware scheduling and computation optimization. In addition to optimizing
communication, we investigated strategies for exploiting domain semantics to optimize com-
putational science applications. Our approach led to domain-agnostic (but domain aware)
optimization strategies for an in-house computational mechanics code [6] that we extended
to Peridigm, a peridynamics code from Sandia, and LULESH (7, §].

3. Application optimization. Finally, we leveraged insights from our optimization strategies
to develop optimized applications. These include an optimized, multi-scale peridynamics
algorithm [5] and a domain-aware, optimized partitioning algorithm [4].

The following sections provide brief overviews of these efforts.

2 Communication Optimization

2.1 SemCache

Recently, GPU libraries have made it easy to improve application performance by ofloading com-
putation to the GPU. However, using such libraries introduces the complexity of manually handling
explicit data movements between GPU and CPU memory spaces. Unfortunately, when using these
libraries with complex applications, it is very difficult to optimize CPU-GPU communication be-
tween multiple kernel invocations to avoid redundant communication.

In this paper, we introduce SemCache, a semantics-aware GPU cache that automatically man-
ages CPU-GPU communication and dynamically optimizes communication by eliminating redun-
dant transfers using caching. It’s key feature is the use of library semantics to determine the
appropriate caching granularity for a given offloaded library (e.g., matrices in BLAS). We applied
SemCache to BLAS libraries to provide a GPU drop-in replacement library which handles communi-
cations and optimizations automatically. Our caching technique is efficient; it only tracks matrices
instead of tracking every memory access at fine granularity. Experimental results show that our
system can dramatically reduce redundant communication for real-world computational science ap-
plication and deliver significant performance improvements, beating GPU-based implementations
like CULA and CUBLAS.

This work appeared in AlSaber and Kulkarni, ICS 2013 [2].

2.2 SemCache++

Offloading computations to multiple GPUs is not an easy task. It requires decomposing data,
distributing computations and handling communication manually. GPU drop-in libraries (which
require no program rewrite) have made it easy to offload computations to multiple GPUs by hiding
this complexity inside library calls. Such encapsulation prevents the reuse of data between succes-
sive kernel invocations resulting in redundant communication. This limitation exists in multi-GPU
libraries like CUBLASXT.

In this paper, we introduce SemCache++, a semantics-aware GPU cache that automatically
manages communication between the CPU and multiple GPUs in addition to optimizing commu-
nication by eliminating redundant transfers using caching. SemCache++ is used to build the first
multi-GPU drop-in replacement library that (a) uses the virtual memory to automatically manage
and optimize multi-GPU communication and (b) requires no program rewriting or annotations.
Our caching technique is efficient; it uses a two level caching directory to track matrices and sub-
matrices. Experimental results show that our system can eliminate redundant communication and
deliver performance improvements over multi-GPU libraries like StarPU and CUBLASXT.

This work appeared in AlSaber and Kulkarni, ICS 2015 [1].

2.3 Locality-aware GPU Execution

GPGPUs deliver high speedup for regular applications while remaining energy efficient. In recent
years, there has been much focus on tuning irregular, task-parallel applications and/or the GPU
architecture in order to achieve similar benefits for irregular applications running on GPUs. While
most of the previous works have focused on minimizing the effect of control and memory divergence,
which are prominent in irregular applications and which degrade the performance, there has been
less attention paid to decreasing cache pressure and hence improving performance of applications
given the small cache sizes on GPUs.

In this paper we tackle two problems. First we extract data parallelism from irregular task
parallel applications, which we do by subdividing each task into sub tasks at the CPU side and
sending these sub tasks to the GPU for execution. By doing so we take advantage of the massive
parallelism provided by the GPU. Second, to mitigate the memory demands of many tasks that
access irregular data structures, we schedule these subtasks in a way to minimize the memory
footprint of each warp running on the GPU. We use our framework with 3 task-parallel algorithms
and show that we can achieve significant speedups over optimized GPU code.

This work appeared in Hbeika and Kulkarni, LCPC 2016 [3]

3 Domain-aware optimization

3.1 Optimizing Multi-scale Computational Mechanics

An important emerging problem domain in computational science and engineering is the develop-
ment of multi-scale computational methods for complex problems in mechanics that span multiple
spatial and temporal scales. An attractive approach to solving these problems is recursive de-
composition: the problem is broken up into a tree of loosely coupled sub-problems which can be
solved independently and then coupled back together to obtain the desired solution. However, a
particular problem can be solved in myriad ways by coupling the sub-problems together in different
tree orders. As we argue in this paper, the space of possible orders is vast, the performance gap
between an arbitrary order and the best order is potentially quite large, and the likelihood that a
domain scientist can find the best order to solve a problem on a particular machine is vanishingly
small.

In this paper, we present a system that uses domain-specific knowledge captured in compu-
tational libraries to optimize code written in a conventional language (C). The system generates
efficient coupling orders to solve computational mechanics problems using recursive decomposition.
Our system adopts the inspector-executor paradigm, where the problem is inspected and a novel
heuristic finds an effective implementation based on domain properties evaluated by a cost model.
The derived implementation is then executed by a parallel run-time system (Cilk) which achieves
optimal parallel performance. We demonstrate that our cost model is highly correlated with actual
application runtime, that our proposed technique outperforms non-decomposed and non-multiscale
methods. The code generated by the heuristic also outperforms alternate scheduling strategies,
as well as over 99% of randomly-generated recursive decompositions sampled from the space of
possible solutions.

This work appeared in Liu et al., ICS 2013 [6]

3.2 Optimizing LULESH with CnC

Writing scientific applications for modern multicore machines is a challenging task. There are a
myriad of hardware solutions available for many different target applications, each having their own
advantages and trade-offs. An attractive approach is Concurrent Collections (CnC), which provides
a programming model that separates the concerns of the application expert from the performance
expert. CnC uses a data and control flow model paired with philosophies from previous data-flow
programming models and tuple-space influences. By following the CnC programming paradigm,
the runtime will seamlessly exploit available parallelism regardless of the platform; however, there
are limitations to its effectiveness depending on the algorithm. In this paper, we explore ways
to optimize the performance of the proxy application, Livermore Unstructured Lagrange Explicit
Shock Hydrodynamics (LULESH), written using Concurrent Collections. The LULESH algorithm
is expressed as a minimally-constrained set of partially-ordered operations with explicit dependen-
cies. However, performance is plagued by scheduling overhead and synchronization costs caused
by the fine granularity of computation steps. In LULESH and similar stencil-codes, we show that
an algorithmic CnC program can be tuned by coalescing CnC elements through step fusion and
tiling to become a well-tuned and scalable application running on multi-core systems. With these

optimizations, we achieve up to 38x speedup over the original implementation with good scalability
for up to 48 processor machines.
This work appeared in Liu and Kulkarni, WolfHPC 2015 [7].

3.3 Task and Data Coarsening in CnC

Programmers are faced with many challenges for obtaining performance on machines with increas-
ingly capable, yet increasingly complex hardware. A trend towards task-parallel and asynchronous
many-task programming models aim to alleviate the burden of parallel programming on a vast
array of current and future platforms. One such model, Concurrent Collections (CnC), provides a
programming paradigm that emphasizes the separation of the concernsdomain experts concentrate
on their algorithms and correctness, whereas performance experts handle mapping and tuning to a
target platform. Deep understanding of parallel constructs and behavior is not necessary to write
parallel applications that will run on various multi-threaded and multi-core platforms when using
the CnC model. However, performance can vary greatly depending on the granularity of tasks and
data declared by the programmer. These program-specific decisions are not part of the CnC tuning
capabilities and must be tuned in the program. We analyze the performance behavior based on
tuning various elements in each collection for the LULESH application using CnC. We demonstrate
the effects of different techniques to modify task and data granularity in CnC collections. Our fully
tiled CnC implementation outperforms the OpenMP counterpart by 3x for 48 processors. Finally,
we propose guidelines to emulate the techniques used to obtain high performance while improving
programmability.
This work appeared in Liu and Kulkarni, LCPC 2016 [8]

4 Application optimization

4.1 Multi-scale Peridynamics

Peridynamics is a nonlocal extension of classical continuum mechanics that is well-suited for solving
problems with discontinuities such as cracks. This paper extends the peridynamic formulation to
decompose a problem domain into a number of smaller overlapping subdomains and to enable the
use of different time steps in different subdomains. This approach allows regions of interest to
be isolated and solved at a small time step for increased accuracy while the rest of the problem
domain can be solved at a larger time step for greater computational efficiency. Performance of the
proposed method in terms of stability, accuracy, and computational cost is examined and several
numerical examples are presented to corroborate the findings.
This work appeared in Lindsay et al., CMAME 306:382-405 [5].

4.2 Domain-aware Multilevel Partitioning

Multiscale problems are often solved by decomposing the problem domain into multiple subdomains,
solving them independently using different levels of spatial and temporal refinement, and coupling
the subdomain solutions back to obtain the global solution. Most commonly, finite elements are
used for spatial discretization, and finite difference time stepping is used for time integration.
Given a finite element mesh for the global problem domain, the number of possible decompositions
into subdomains and the possible choices for associated time steps is exponentially large, and the

computational costs associated with different decompositions can vary by orders of magnitude. The
problem of finding an optimal decomposition and the associated time discretization that minimizes
computational costs while maintaining accuracy is nontrivial. Existing mesh partitioning tools,
such as METIS, overlook the constraints posed by multiscale methods and lead to suboptimal
partitions with a high performance penalty. We present a multilevel mesh partitioning approach
that exploits domainspecific knowledge of multiscale methods to produce nearly optimal mesh
partitions and associated time steps automatically. Results show that for multiscale problems, our
approach produces decompositions that outperform those produced by stateoftheart partitioners
like METIS and even those that are manually constructed by domain experts.
This work appeared in Jamal et al., [IJNME 112(1):58-85 [4]

5 References

[1] Nabeel Al-Saber and Milind Kulkarni. Semcache++: Semantics-aware caching for efficient
multi-gpu offloading. In Proceedings of the 29th ACM on International Conference on Super-
computing, ICS '15, pages 79-88, New York, NY, USA, 2015. ACM.

[2] Nabeel AlSaber and Milind Kulkarni. Semcache: semantics-aware caching for efficient gpu
offloading. In Proceedings of the 27th international ACM conference on International conference
on supercomputing, ICS ’13, pages 421-432, New York, NY, USA, 2013. ACM.

[3] Jad Hbeika and Milind Kulkarni. Locality-aware task-parallel execution on gpus. In Chen Ding,
John Criswell, and Peng Wu, editors, Languages and Compilers for Parallel Computing, pages
250-264, Cham, 2017. Springer International Publishing.

[4] M. Hasan Jamal, Arun Prakash, and Milind Kulkarni. Exploiting semantics of temporal mul-
tiscale methods to optimize multilevel mesh partitioning. International Journal for Numerical
Methods in Engineering, 112(1):58-85.

[5] P. Lindsay, M.L. Parks, and A. Prakash. Enabling fast, stable and accurate peridynamic com-
putations using multi-time-step integration. Computer Methods in Applied Mechanics and En-
gineering, 306:382 — 405, 2016.

[6] Chenyang Liu, Muhammad Hasan Jamal, Milind Kulkarni, Arun Prakash, and Vijay Pai. Ex-
ploiting domain knowledge to optimize parallel computational mechanics codes. In Proceedings

of the 27th international ACM conference on International conference on supercomputing, ICS
"13, pages 25-36, New York, NY, USA, 2013. ACM.

[7] Chenyang Liu and Milind Kulkarni. Optimizing the lulesh stencil code using concurrent col-
lections. In Proceedings of the 5th International Workshop on Domain-Specific Languages and
High-Level Frameworks for High Performance Computing, WOLFHPC 15, pages 5:1-5:10, New
York, NY, USA, 2015. ACM.

[8] Chenyang Liu and Milind Kulkarni. Evaluating performance of task and data coarsening in
concurrent collections. In Chen Ding, John Criswell, and Peng Wu, editors, Languages and
Compilers for Parallel Computing, pages 331-345, Cham, 2017. Springer International Publish-
ing.

