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Abstract

We analyze the phase structure of SU(co) gauge theory at finite temperature using matrix
models. Our basic assumption is that the effective potential is dominated by double-trace terms
for the Polyakov loops. As a function of the temperature, a background field for the Polyakov loop,
and a quartic coupling, it exhibits a universal structure: in the large portion of the parameter space,
there is a continuous phase transition analogous to the third-order phase transition of Gross, Witten
and Wadia, but the order of phase transition can be higher than third. We show that different
confining potentials give rise to drastically different behavior of the eigenvalue density and the free
energy. Therefore lattice simulations at large N could probe the order of phase transition and test

our results.



I. INTRODUCTION

The phase structure of SU(N) gauge theories is of fundamental importance. In finite-
temperature pure gauge theory, the relevant order parameter is the Polyakov loop. It is
therefore reasonable to study the phase transition as a function of an effective theory of
thermal Wilson lines, as a type of matrix model.

At infinite N the problem can be simplified by writing the effective potential as a func-
tional of the eigenvalue density [I], rather than as a function of N — 1 eigenvalues. The
phase structure at infinite N becomes also interesting as various models show an exotic
phase transition whose order is third. Gross, Witten and Wadia first showed that in lattice
gauge theory in two dimensions, there is a third-order phase transition as a function of the
coupling constant [2 [3]. Lattice gauge theory at strong coupling with heavy quarks also
exhibits a third-order phase transition as a function of temperature [4, [5].

In this paper, we study a phase structure of SU(c0) gauge theory with an external field
of the Polyakov loop as a type of matrix model. We show that depending on the type of
confining potential, there is a continuous phase transition whose order is third or higher. This

phase transition is a generalization of the Gross-Witten-Wadia (GWW) phase transition.

A. Polyakov loop at large N

The Polyakov loop, tr L(x) where L(x) = Pexp [z’g fol/T drAo(1,%x)|, is a Wilson loop
along the temporal direction 7 in the fundamental representation. Under center symme-
try, the Polyakov loop transforms as trL — ztrl where z € Z(N). After diagonaliz-
ing the Polyakov line by a gauge transformation, we denote the eigenvalues as 6; where
L = diag(e, ..., ") with 6, + 605+ - -+ 60y = 0. Since there are N — 1 degrees of freedom
in the group manifold of SU(N), the Polyakov loop alone is not sufficient to describe the
theory for N > 2. One can either take N — 1 independent eigenvalues or use the Polyakov

loops that wind n times in the temporal direction,

1
n = —trL™. 1
pn = ptr (1)
The expectation values of all p, with n = 1,2,..., N — 1 form a complete set of order

parameters for all possible symmetry breaking patterns of Z(N).
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In the large N limit, we use the notation §; = (& — 3) = 0(z) with —1/2 <2 <1/2 [I]

and write the Polyakov loop as

Pn=— Y e dxexp [inf(x)] :/ dfp(0)e™ (2)

—Tr

l\)\»—‘

where we have introduced the eigenvalue density, p(6) = dz/df, in the last expression. The
Polyakov loop thus becomes a functional of p. By definition the eigenvalue density has to

satisfy two conditions, the non-negativity

0 < p(6), (3)

and the normalization
1 :/ dfp(0) . (4)

We will show in the next section that the non-negativity condition plays an essential role

for the GWW phase transition.

B. Effective potential

We construct the effective potential of the Polyakov loop near T; at large N based on a

version of the semi-classical method. The potential consists of two parts:

‘/eff(pn) = V;)ert(pn) + Vnonpert(pn)a (5)

where Ve, is the perturbative contribution, which breaks Z(N) symmetry, and Vionpert 18
the nonperturbative contribution, which keeps the theory in the confined phase below Tj.

The perturbative contribution is computed up to two loops for any N [6]:

= 1
Voert = = Y _dn |p* + O(X?)  with  d, = dh— (6)

n=1

where A\ = ¢?N is the 't Hooft coupling, and d is the number of dimensions. The prefactor
dy is positive and dimensionless, but the explicit form is irrelevant in this paper. The mass
for each Polyakov loop p, is negative, so the perturbative effective potential breaks Z (V)
symmetry maximally. On the other hand, the leading-order contribution to the nonper-

turbative part in the semi-classical approximation is unknown. It has to be such that it



gives positive mass to every Polyakov loop below Tj in order to prevent the spontaneous

symmetry breaking. Therefore we consider the following form

nonpert Z Cn ‘pn’ =+ . (7)

where ¢, > d,, below T,. For finite N, we only need the first | N/2| terms, but for infinite
N, it must contain infinite sum of the double-trace terms.

We now make another assumption. We assume that Z (V) symmetry breaks completely
at Ty so that the phase transition is driven by the Polyakov loop p;. Lattice simulations
in three and four dimensions at large N support this assumption [7]. We add a quartic
coupling b; as a next-leading term, as well as the external field h for p;. We write the

effective potential near T, as

Var = Y an lpul* + b1 (I1*)" = B (o1 + i) = ZV Pn)- (8)

n=1

where a,, = ¢,, —d,,. This form is nothing but the sum of Landau free energy V,, for each p,,
where V; = ay |p1]2 + by (|pl|2)2 — h(p1+p}) and V51 = ay, |,0n]2. Naively, it appears that
each loop is independent and there is no interaction between p, and p,, for n # m. The
non-negativity condition , however, constraints the eigenvalues of the Polyakov loop, and
it couples all p,, as we show in the next two sections.

Equation reduces to the original model of Gross, Witten and Wadia when b; = 0,
an, = ¢, = 1/n, and h = 1/g*. The strong-coupling lattice gauge theory in mean-field
approximation essentially reduces down to the model of Gross, Witten and Wadia, as well
as the perturbation theory in S% x S* [8] although the perturbative contribution —d,, is more
complicated in this case. In matrix models, both the Haar measure type (¢, = 1/n) and the

mass-deformation type (¢, = 1/n?) have been studied in [9] and [10], respectively.

II. PHASE STRUCTURE

We construct a phase diagram based on Eq. . We assume that the deconfining transi-
tion temperature T, defined at h = 0 is driven by the first Polyakov loop p1, so that Z(NV)
symmetry is completely broken at T,;. We further assume that b; is small and constant near

T, and also that a,~; > 0 near T, so that the higher corrections for p,~; are not included.
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FIG. 1. Phase diagrams of SU(occ) pure Yang-Mills constructed from Eq. (8). The lines and meshed
surfaces indicate phase transitions: Solid lines are model independent while the dashed lines mildly
depend on the models. Here we have used the Vandermonde determinant type (s = 1). The green
solid and red dashed meshed surfaces are the surfaces of GWW and first-order phase transitions,

respectively. The critical first order is located at the origin where all three phase transitions meet.

We otherwise keep the coefficients a,, arbitrary in this section. The three parameters in
Vi(p1), ie., a1, by and h, determine the phase structure as shown in Fig.

In the confined phase, all a, are positive so that there is no spontaneous symmetry
breaking of Z(N). The confined phase is the region to the right of the 1st and 2nd order
phase transition lines in Fig. . As we increase the external field h, Z(N) symmetry is
explicitly broken, and the Polyakov loop p; grows monotonically with A, while all other
Polyakov loops p,s1 stay zero. The eigenvalue density can be then written as a Fourier

series in terms of the moments
1
p(0) = o (1 +2p1(h)cosb) (9)

where —m < 6 < —m. There is a critical value of the external field h. where p;(h.) = 1/2,
above which this solution violates the nonnegative condition (3)). Writing 6h = h — h,., we

can express the free energy as [11]

0 for 6h <0
F(h) = frea(B) + 1 (10)
vdh" + O(6h™) for 6h >0,

where v is an irrelevant constant, and fie, is a smooth function of h. We argue in [I1]

that the exponent r is larger than two for any coefficients a,, and thus the singular point



corresponds to a continuous phase transition whose order is larger than second. We call
this transition a generalized Gross-Witten-Wadia (GWW) transition. The original model of
Gross, Witten, and Wadia [2, [3], gives rise to the Vandermonde-determinant-type potential
where a,, = 1/n, and the exponent r is three, i.e. the transition is third order.

The surface of the GWW phase transition where p; becomes 1/2 can be found by expand-
ing V; around p; = 1/2. We plot the GWW surface in Fig. [1b| with the green solid meshed
surface. The GWW surface is independent of the detail of the coefficients for the double
trace terms. When b; is negative and |b;| sufficiently large, the phase transition becomes
first order. The location of the first-order phase transition depends on the details of the
coefficients a,,: here we plot the surface of first-order phase transition using the model based
on the Vandermonde determinant (s = 1) indicated by the red dashed meshed surface in
Fig.

Fig. [1a]is the phase diagram with zero external field. The green and red shaded regions
are the projections of the GWW and first-order phase transition surfaces onto the h = 0
plane, respectively. There is a second-order phase transition line where a; = 0 and b; > 0.
At the origin a; = by = h = 0, the first, second and higher order phase transition lines meet.
At this point, the Polyakov loop p; jumps from 0 to 1/2, as is typical of a first order phase
transition, while the mass associated with p; becomes zero, as is typical of a second order

phase transition. This point is termed as “critical first order” in [12].

III. MODELS

We now model the coefficients of effective potential a,, in Eq. and confirm the general
argument in the previous section. The coefficients of the double trace terms, a,, = ¢, — d,,
consist of two parts: the perturbative contribution —d,, @ and the unknown nonperturba-
tive contribution ¢,. In the confined phase, ¢, has to be larger than d,, for all n. A simple

choice is to use
1

ne’

cn = c1(T)Ty) (11)

where ¢; is a dimensionless function of T/T;. We set s < d and ¢; > d; below Ty, so
that the phase transition happens at ¢; = d; for nonnegative b;. In this paper, we take
s=1,2,3,and 4. s = 1 and 2 are the type of confining potentials used in phenomenological

models of QCD at finite temperature based on the Haar measure and the mass deformation,
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FIG. 2. The eigenvalue density above the GWW point, h = 1. The eigenvalue density changes
depending on the coefficients of the double trace terms, s = 1,2, 3, and 4 as shown in the left plot.
The right plot shows x as a function of . The eigenvalues for s = 4 pile up at the end point for
O(x) with x > 9. As a result, the eigenvalue density becomes the delta function at the endpoint

+6(xo) as depicted by the arrow in the left plot. Note that p(—6) = p(0) and z(—0) = —x(0).

respectively [13]. On the other hand, the confining potential with s = 4 is based on the
the ghost dominance in the infrared regime [14], which gives rise to the so called inverted
GPY-Weiss potential. Alternatively, one can think of the model as the mass deformation
potential in 2s-dimensions or the inverse GPY-Weiss potential in s dimensions, but we do
not specify dimensions and consider s = 1,2, 3, and 4 with d > s as simple examples.

In this paper, we set d; = 0 and b; = 0 in Eq. and solve the model exactly. The
exact solution can be then used to construct the full potential including b, and d; using the
Legendre transform [I1] following [9]. The equation of motion is then

hsin@z/ de,p(e,)zsm(nQ——nQ) (12)
- n?

1 )
7r n=1

where we have set ¢; = 1 without loss of generality. We solve this equation under the two
constraints, Egs. and . Below the GWW point h < h. = 1/2, the solution for the
equation of motion is given in Eq. (9) with p; = h and p,>1 = 0. As discussed before, the
solution is independent of the model. The free energy is given as F' = ¢;p?(h) — 2hpy(h) =
—i — 0h — 0h? where dh = h — h,.

The eigenvalue density above the GWW point depends on models, but it can be solved
exactly for s = 1,2,3 and 4. Above the GWW point, the eigenvalue density develops a gap
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at the endpoints for all cases. It is given as

L B 0 (. ,00 . ,0\" GO L0600\
s=1,3: p(@)—Clcosa(sm? sin 5) +Cgcos§ sin” = —sin” 5 (13)

06 = bo) —{2_ 00 + 6o) + QL (14 2hcos®) (14)
T

where C) + Cy = 2h/7. The density is defined only in the interval of —fy < 6 < 6y, and it

s=24: p(0) =(1—umx)

is zero otherwise. The endpoint 6 is given implicitly as a function of h:

1 m— by In(sin %) (7 — )"

_ _ 2
~ 2sin? %7 2sin(m —6)" 1 —sin® %’ 6sinfy + 6 (7 — by) cos by

h (15)

for s = 1,2,3 and 4, respectively. The solution is the minimum of the potential if C =
2h/m for s = 1, while zp = 1 for s = 2. On the other hand, the solution satisfies the
equation of motion only if C} = (=1 + 3h + hcosby) / (7 + mcosby) for s = 3, while xy =
(0o + 2hsinby) /m for s = 4. The eigenvalue density above the GWW point is plotted in
Fig. [2a] when h = 1.

For s = 4, the eigenvalues 6(z) with z7/2 < x < 1/2 become a single value 6y = 6((/2)
as shown in Fig. 2Bl Therefore 6 is no longer an injective function of x, and the density
becomes a delta function at the endpoints, as depicted by the arrow in Fig. [2al Physically,
the eigenvalue repulsion weakens as s increases, and the value of 6, for a fixed value of h
becomes smaller. When s = 4 the repulsion is so weak that the eigenvalues pile up at the
endpoints, and the density becomes delta function.

The free energy can be computed using the solutions above. It is given as in Eq.
with fres = —2 —8h —6h* and v = 4/3 , 128v/3/(357) , 8/3, 2560v/5/(567n) for s = 1,2,3
and 4, respectively. The exponent is given as

54+ s
= ) 16
r=2 (16)

The order of the discontinuity of the free energy with respect to h depends upon s: for s = 1
the third derivative is discontinuous; for s = 2 and 3, the fourth derivative; and for s = 4,

the fifth derivative.

IV. CONCLUSIONS

We have considered an effective potential of the Polyakov loop in SU(N) Yang-Mills

theory at large N using a version of semi-classical argument. According to perturbation
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theory, only the double trace of the Polyakov loop is present up to two loops. We assume
that the double-trace terms dominate near the phase transition and argue that the effective
potential takes the form given in Eq. in the presence of the background field A coupled
to the Polyakov loop p;. We have shown that there are at least three different types of phase
transitions as shown in Fig. [l Only the location of the first-order phase transition depends
on the explicit form of the coefficients, while the locations of the other phase transitions
are model independent. There is a large region in the parameter space where the phase
transition is continuous but the order of phase transition is third or larger as depicted in the
green solid meshed surface in Fig.[Ib] We have called the surface of the phase transition the
Gross-Witten-Wadia (GWW) surface; anywhere on this surface the Polyakov loop p; is 1/2.
Below the GWW point, the effective potential is simply a sum of simple Landau free energy
for each p,. At the GWW point, the Polyakov loop p; becomes 1/2 and the simple Landau
theory breaks down due to the nonnegativity constraint for the eigenvalue density. We have
confirmed this general argument using specific models in Sec. [[TI} Both the free energy and
the eigenvalue density drastically change above the GWW point. Observing these behavior

in lattice simulations at large N would be a benchmark for the GWW phase transition.
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