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Abstract

We analyze the phase structure of SU(∞) gauge theory at finite temperature using matrix

models. Our basic assumption is that the effective potential is dominated by double-trace terms

for the Polyakov loops. As a function of the temperature, a background field for the Polyakov loop,

and a quartic coupling, it exhibits a universal structure: in the large portion of the parameter space,

there is a continuous phase transition analogous to the third-order phase transition of Gross, Witten

and Wadia, but the order of phase transition can be higher than third. We show that different

confining potentials give rise to drastically different behavior of the eigenvalue density and the free

energy. Therefore lattice simulations at large N could probe the order of phase transition and test

our results.
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I. INTRODUCTION

The phase structure of SU(N) gauge theories is of fundamental importance. In finite-

temperature pure gauge theory, the relevant order parameter is the Polyakov loop. It is

therefore reasonable to study the phase transition as a function of an effective theory of

thermal Wilson lines, as a type of matrix model.

At infinite N the problem can be simplified by writing the effective potential as a func-

tional of the eigenvalue density [1], rather than as a function of N − 1 eigenvalues. The

phase structure at infinite N becomes also interesting as various models show an exotic

phase transition whose order is third. Gross, Witten and Wadia first showed that in lattice

gauge theory in two dimensions, there is a third-order phase transition as a function of the

coupling constant [2, 3]. Lattice gauge theory at strong coupling with heavy quarks also

exhibits a third-order phase transition as a function of temperature [4, 5].

In this paper, we study a phase structure of SU(∞) gauge theory with an external field

of the Polyakov loop as a type of matrix model. We show that depending on the type of

confining potential, there is a continuous phase transition whose order is third or higher. This

phase transition is a generalization of the Gross-Witten-Wadia (GWW) phase transition.

A. Polyakov loop at large N

The Polyakov loop, trL(x) where L(x) = P exp
[
ig
∫ 1/T

0
dτA0(τ,x)

]
, is a Wilson loop

along the temporal direction τ in the fundamental representation. Under center symme-

try, the Polyakov loop transforms as trL → ztrL where z ∈ Z(N). After diagonaliz-

ing the Polyakov line by a gauge transformation, we denote the eigenvalues as θi where

L = diag(eiθ1 , . . . , eiθN ) with θ1 +θ2 + · · ·+θN = 0. Since there are N −1 degrees of freedom

in the group manifold of SU(N), the Polyakov loop alone is not sufficient to describe the

theory for N > 2. One can either take N − 1 independent eigenvalues or use the Polyakov

loops that wind n times in the temporal direction,

ρn =
1

N
trLn. (1)

The expectation values of all ρn with n = 1, 2, . . . , N − 1 form a complete set of order

parameters for all possible symmetry breaking patterns of Z(N).
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In the large N limit, we use the notation θi = θ( i
N
− 1

2
) = θ(x) with −1/2 ≤ x ≤ 1/2 [1]

and write the Polyakov loop as

ρn =
1

N

N∑
i=1

einθi →
∫ 1

2

− 1
2

dx exp [inθ(x)] =

∫ π

−π
dθρ(θ)einθ, (2)

where we have introduced the eigenvalue density, ρ(θ) = dx/dθ, in the last expression. The

Polyakov loop thus becomes a functional of ρ. By definition the eigenvalue density has to

satisfy two conditions, the non-negativity

0 ≤ ρ(θ), (3)

and the normalization

1 =

∫ π

−π
dθρ(θ) . (4)

We will show in the next section that the non-negativity condition plays an essential role

for the GWW phase transition.

B. Effective potential

We construct the effective potential of the Polyakov loop near Td at large N based on a

version of the semi-classical method. The potential consists of two parts:

Veff(ρn) = Vpert(ρn) + Vnonpert(ρn), (5)

where Vpert is the perturbative contribution, which breaks Z(N) symmetry, and Vnonpert is

the nonperturbative contribution, which keeps the theory in the confined phase below Td.

The perturbative contribution is computed up to two loops for any N [6]:

Vpert = −
∞∑
n=1

dn |ρn|2 +O(λ2) with dn = d1
1

nd
(6)

where λ = g2N is the ’t Hooft coupling, and d is the number of dimensions. The prefactor

d1 is positive and dimensionless, but the explicit form is irrelevant in this paper. The mass

for each Polyakov loop ρn is negative, so the perturbative effective potential breaks Z(N)

symmetry maximally. On the other hand, the leading-order contribution to the nonper-

turbative part in the semi-classical approximation is unknown. It has to be such that it
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gives positive mass to every Polyakov loop below Td in order to prevent the spontaneous

symmetry breaking. Therefore we consider the following form

Vnonpert =
∞∑
n=1

cn |ρn|2 + . . . , (7)

where cn > dn below Td. For finite N , we only need the first bN/2c terms, but for infinite

N , it must contain infinite sum of the double-trace terms.

We now make another assumption. We assume that Z(N) symmetry breaks completely

at Td so that the phase transition is driven by the Polyakov loop ρ1. Lattice simulations

in three and four dimensions at large N support this assumption [7]. We add a quartic

coupling b1 as a next-leading term, as well as the external field h for ρ1. We write the

effective potential near Td as

Veff =
∞∑
n=1

an |ρn|2 + b1

(
|ρ1|2

)2 − h (ρ1 + ρ∗1) =
∞∑
n=1

Vn(ρn). (8)

where an = cn− dn. This form is nothing but the sum of Landau free energy Vn for each ρn,

where V1 = a1 |ρ1|2 + b1

(
|ρ1|2

)2 − h (ρ1 + ρ∗1) and Vn>1 = an |ρn|2. Naively, it appears that

each loop is independent and there is no interaction between ρn and ρm for n 6= m. The

non-negativity condition (3), however, constraints the eigenvalues of the Polyakov loop, and

it couples all ρn, as we show in the next two sections.

Equation (8) reduces to the original model of Gross, Witten and Wadia when b1 = 0,

an = cn = 1/n, and h = 1/g2. The strong-coupling lattice gauge theory in mean-field

approximation essentially reduces down to the model of Gross, Witten and Wadia, as well

as the perturbation theory in S3×S1 [8] although the perturbative contribution −dn is more

complicated in this case. In matrix models, both the Haar measure type (cn = 1/n) and the

mass-deformation type (cn = 1/n2) have been studied in [9] and [10], respectively.

II. PHASE STRUCTURE

We construct a phase diagram based on Eq. (8). We assume that the deconfining transi-

tion temperature Td defined at h = 0 is driven by the first Polyakov loop ρ1, so that Z(N)

symmetry is completely broken at Td. We further assume that b1 is small and constant near

Td and also that an>1 > 0 near Td so that the higher corrections for ρn>1 are not included.
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(a) Without the external field, h = 0.
(b) With the external field, h ≥ 0.

FIG. 1. Phase diagrams of SU(∞) pure Yang-Mills constructed from Eq. (8). The lines and meshed

surfaces indicate phase transitions: Solid lines are model independent while the dashed lines mildly

depend on the models. Here we have used the Vandermonde determinant type (s = 1). The green

solid and red dashed meshed surfaces are the surfaces of GWW and first-order phase transitions,

respectively. The critical first order is located at the origin where all three phase transitions meet.

We otherwise keep the coefficients an arbitrary in this section. The three parameters in

V1(ρ1), i.e., a1, b1 and h, determine the phase structure as shown in Fig. 1

In the confined phase, all an are positive so that there is no spontaneous symmetry

breaking of Z(N). The confined phase is the region to the right of the 1st and 2nd order

phase transition lines in Fig. 1a. As we increase the external field h, Z(N) symmetry is

explicitly broken, and the Polyakov loop ρ1 grows monotonically with h, while all other

Polyakov loops ρn>1 stay zero. The eigenvalue density can be then written as a Fourier

series in terms of the moments

ρ(θ) =
1

2π
(1 + 2ρ1(h) cos θ) (9)

where −π ≤ θ ≤ −π. There is a critical value of the external field hc where ρ1(hc) = 1/2,

above which this solution violates the nonnegative condition (3). Writing δh = h − hc, we

can express the free energy as [11]

F (h) = freg(h) +

 0 for δh ≤ 0

vδhr +O(δhr+1) for δh > 0 ,
(10)

where v is an irrelevant constant, and freg is a smooth function of h. We argue in [11]

that the exponent r is larger than two for any coefficients an, and thus the singular point
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corresponds to a continuous phase transition whose order is larger than second. We call

this transition a generalized Gross-Witten-Wadia (GWW) transition. The original model of

Gross, Witten, and Wadia [2, 3], gives rise to the Vandermonde-determinant-type potential

where an = 1/n, and the exponent r is three, i.e. the transition is third order.

The surface of the GWW phase transition where ρ1 becomes 1/2 can be found by expand-

ing V1 around ρ1 = 1/2. We plot the GWW surface in Fig. 1b with the green solid meshed

surface. The GWW surface is independent of the detail of the coefficients for the double

trace terms. When b1 is negative and |b1| sufficiently large, the phase transition becomes

first order. The location of the first-order phase transition depends on the details of the

coefficients an: here we plot the surface of first-order phase transition using the model based

on the Vandermonde determinant (s = 1) indicated by the red dashed meshed surface in

Fig. 1b.

Fig. 1a is the phase diagram with zero external field. The green and red shaded regions

are the projections of the GWW and first-order phase transition surfaces onto the h = 0

plane, respectively. There is a second-order phase transition line where a1 = 0 and b1 > 0.

At the origin a1 = b1 = h = 0, the first, second and higher order phase transition lines meet.

At this point, the Polyakov loop ρ1 jumps from 0 to 1/2, as is typical of a first order phase

transition, while the mass associated with ρ1 becomes zero, as is typical of a second order

phase transition. This point is termed as “critical first order” in [12].

III. MODELS

We now model the coefficients of effective potential an in Eq. (8) and confirm the general

argument in the previous section. The coefficients of the double trace terms, an = cn − dn,

consist of two parts: the perturbative contribution −dn (6) and the unknown nonperturba-

tive contribution cn. In the confined phase, cn has to be larger than dn for all n. A simple

choice is to use

cn = c1(T/Td)
1

ns
, (11)

where c1 is a dimensionless function of T/Td. We set s ≤ d and c1 > d1 below Td, so

that the phase transition happens at c1 = d1 for nonnegative b1. In this paper, we take

s = 1, 2, 3, and 4. s = 1 and 2 are the type of confining potentials used in phenomenological

models of QCD at finite temperature based on the Haar measure and the mass deformation,
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FIG. 2. The eigenvalue density above the GWW point, h = 1. The eigenvalue density changes

depending on the coefficients of the double trace terms, s = 1, 2, 3, and 4 as shown in the left plot.

The right plot shows x as a function of θ. The eigenvalues for s = 4 pile up at the end point for

θ(x) with x ≥ x0. As a result, the eigenvalue density becomes the delta function at the endpoint

±θ(x0) as depicted by the arrow in the left plot. Note that ρ(−θ) = ρ(θ) and x(−θ) = −x(θ).

respectively [13]. On the other hand, the confining potential with s = 4 is based on the

the ghost dominance in the infrared regime [14], which gives rise to the so called inverted

GPY-Weiss potential. Alternatively, one can think of the model as the mass deformation

potential in 2s-dimensions or the inverse GPY-Weiss potential in s dimensions, but we do

not specify dimensions and consider s = 1, 2, 3, and 4 with d ≥ s as simple examples.

In this paper, we set d1 = 0 and b1 = 0 in Eq. (8) and solve the model exactly. The

exact solution can be then used to construct the full potential including b1 and d1 using the

Legendre transform [11] following [9]. The equation of motion is then

h sin θ =

∫ π

−π
dθ′ρ(θ′)

∞∑
n=1

sin(nθ − nθ′)
ns−1

, (12)

where we have set c1 = 1 without loss of generality. We solve this equation under the two

constraints, Eqs. (3) and (4). Below the GWW point h ≤ hc = 1/2, the solution for the

equation of motion is given in Eq. (9) with ρ1 = h and ρn>1 = 0. As discussed before, the

solution is independent of the model. The free energy is given as F = c1ρ
2
1(h)− 2hρ1(h) =

−1
4
− δh− δh2 where δh = h− hc.

The eigenvalue density above the GWW point depends on models, but it can be solved

exactly for s = 1, 2, 3 and 4. Above the GWW point, the eigenvalue density develops a gap
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at the endpoints for all cases. It is given as

s = 1, 3 : ρ(θ) = C1 cos
θ

2

(
sin2 θ0

2
− sin2 θ

2

)1/2

+ C2 cos3 θ

2

(
sin2 θ0

2
− sin2 θ

2

)−1/2

(13)

s = 2, 4 : ρ(θ) = (1− x0)
δ(θ − θ0) + δ(θ + θ0)

2
+

1

2π
(1 + 2h cos θ) (14)

where C1 + C2 = 2h/π. The density is defined only in the interval of −θ0 ≤ θ ≤ θ0, and it

is zero otherwise. The endpoint θ0 is given implicitly as a function of h:

h =
1

2 sin2 θ0
2

,
π − θ0

2 sin(π − θ0)
, −

ln(sin θ0
2

)

1− sin2 θ0
2

,
(π − θ0)3

6 sin θ0 + 6 (π − θ0) cos θ0

(15)

for s = 1, 2, 3 and 4, respectively. The solution is the minimum of the potential if C1 =

2h/π for s = 1, while x0 = 1 for s = 2. On the other hand, the solution satisfies the

equation of motion only if C1 = (−1 + 3h+ h cos θ0) / (π + π cos θ0) for s = 3, while x0 =

(θ0 + 2h sin θ0) /π for s = 4. The eigenvalue density above the GWW point is plotted in

Fig. 2a when h = 1.

For s = 4, the eigenvalues θ(x) with x0/2 ≤ x ≤ 1/2 become a single value θ0 = θ(x0/2)

as shown in Fig. 2b. Therefore θ is no longer an injective function of x, and the density

becomes a delta function at the endpoints, as depicted by the arrow in Fig. 2a. Physically,

the eigenvalue repulsion weakens as s increases, and the value of θ0 for a fixed value of h

becomes smaller. When s = 4 the repulsion is so weak that the eigenvalues pile up at the

endpoints, and the density becomes delta function.

The free energy can be computed using the solutions above. It is given as in Eq. (10)

with freg = −1
4
− δh− δh2 and v = 4/3 , 128

√
3/(35π) , 8/3 , 2560

√
5/(567π) for s = 1, 2, 3

and 4, respectively. The exponent is given as

r =
5 + s

2
. (16)

The order of the discontinuity of the free energy with respect to h depends upon s: for s = 1

the third derivative is discontinuous; for s = 2 and 3, the fourth derivative; and for s = 4,

the fifth derivative.

IV. CONCLUSIONS

We have considered an effective potential of the Polyakov loop in SU(N) Yang-Mills

theory at large N using a version of semi-classical argument. According to perturbation
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theory, only the double trace of the Polyakov loop is present up to two loops. We assume

that the double-trace terms dominate near the phase transition and argue that the effective

potential takes the form given in Eq. (8) in the presence of the background field h coupled

to the Polyakov loop ρ1. We have shown that there are at least three different types of phase

transitions as shown in Fig. 1. Only the location of the first-order phase transition depends

on the explicit form of the coefficients, while the locations of the other phase transitions

are model independent. There is a large region in the parameter space where the phase

transition is continuous but the order of phase transition is third or larger as depicted in the

green solid meshed surface in Fig. 1b. We have called the surface of the phase transition the

Gross-Witten-Wadia (GWW) surface; anywhere on this surface the Polyakov loop ρ1 is 1/2.

Below the GWW point, the effective potential is simply a sum of simple Landau free energy

for each ρn. At the GWW point, the Polyakov loop ρ1 becomes 1/2 and the simple Landau

theory breaks down due to the nonnegativity constraint for the eigenvalue density. We have

confirmed this general argument using specific models in Sec. III. Both the free energy and

the eigenvalue density drastically change above the GWW point. Observing these behavior

in lattice simulations at large N would be a benchmark for the GWW phase transition.
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