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2.1.2 ECP/VTK-m

Overview The ECP/VTK-m project is providing the core capabilities to perform scientific visualization on
exascale architectures. The ECP/VTK-m project fills the critical feature gap of performing visualization and
analysis on processors like graphics-based processors and many integrated core. The results of this project
will be delivered in tools like ParaView, Vislt, and Ascent as well as in stand-alone form. Moreover, these
projects are depending on this ECP effort to be able to make effective use of ECP architectures.

One of the biggest recent changes in high-performance computing is the increasing use of accelerators.
Accelerators contain processing cores that independently are inferior to a core in a typical CPU, but these
cores are replicated and grouped such that their aggregate execution provides a very high computation rate
at a much lower power.

Current and future CPU processors also require much more explicit parallelism. Each successive version of
the hardware packs more cores into each processor, and technologies like hyperthreading and vector operations
require even more parallel processing to leverage each core’s full potential.

VTK-m is a toolkit of scientific visualization algorithms for emerging processor architectures. VI'K-m
supports the fine-grained concurrency for data analysis and visualization algorithms required to drive extreme
scale computing by providing abstract models for data and execution that can be applied to a variety of
algorithms across many different processor architectures.

The ECP/VTK-m project is building up the VTK-m codebase with the necessary visualization algorithm
implementations that run across the varied hardware platforms to be leveraged at the exascale. We will
be working with other ECP projects, such as ALPINE;, to integrate the new VTK-m code into production
software to enable visualization on our HPC systems.

Key Challenges The scientific visualization research community has been building scalable HPC algorithms
for over 15 years, and today there are multiple production tools that provide excellent scalability. However,
our current visualization tools are based on a message-passing programming model. More to the point,
they rely on a coarse decomposition with ghost regions to isolate parallel execution [7, 8. However, this
decomposition works best when each processing element has on the order of a hundered thousand to a
million data cells [9] and is known to break down as we approach the level of concurrency needed on modern
accelerators [10, 11].

DOE has made significant investments in HPC visualization capabilities. For us to feasibly update this
software for the upcoming exascale machines, we need to be selective on what needs to be updated, and we
need to maximize the code we can continue to use. Regardless, there is a significant amount of software to
be engineered and implemented, so we need to extend our development resources by simplifying algorithm
implementation and providing performance portability across current and future devices.

Solution Strategy The ECP/VTK-m project leverages VITK-m [12] to overcome these key challenges.
VTK-m has a software framework that provides the following critical features.

1. Visualization building blocks: VTK-m contains the common data structures and operations required
for scientific visualization. This base framework simplifies the development of visualization algorithms
[13].

2. Device portability: VTK-m uses the notion of an abstract device adapter, which allows algorithms
written once in VI'K-m to run well on many computing architectures. The device adapter is constructed
from a small but versatile set of data parallel primitives, which can be optimized for each platform [14].
It has been shown that this approach not only simplifies parallel implementations, but also allows them
to work well across many platforms [15), 16, 17].

3. Flexible integration: VTK-m is designed to integrate well with other software. This is achieved with
flexible data models to capture the structure of applications’ data [18] and array wrappers that can
adapt to target memory layouts [19].

Even with these features provided by VTK-m, we have a lot of work ahead of us to be ready for exascale.
Our approach is to incrementally add features to VITK-m and expose them in tools like ParaView and Vislt.
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Figure 2: Examples of recent progress in VITK-m include (from left to right)
multiblock data structures, gradient estimation, and mapping of fields to colors.

Recent Progress The VTK-m project is organized into many implementation activities. The following
features have been completed in the past 12 months.

Key Reduce Worklet: This adds a basic building block to VTK-m that is very useful in constructing
algorithms that manipulate or generate topology [20)].

Spatial Division: Introductory algorithms to divide space based on the distribution of geometry
within it. This is an important step in building spatial lookup structures.

Basic Particle Advection: Particle advection traces the path of particles in a vector field. This
tracing is fundamental for many flow visualization techniques. Our initial implementation works on
simple structures

Surface Normals: Normals, unit vectors that point perpendicular to a surface, are important to
provide shading of 3D surfaces while rendering. These often need to be derived from the geometry itself.

Multiblock Data: Treat multiple blocks of data, such as those depicted in Figure 2 at left, as first-class
data sets. Direct support of multiblock data not only provides programming convenience but also allows
us to improve scheduling tasks for smaller groups of data.

Gradients: Gradients, depicted in Figure 2] at center, are an important metric of fields and must
often be derived using topologic data. Gradients are also fundamental in finding important vector field
qualities like divergence, vorticity, and qg-criterion.

Field to Colors: Pseudocoloring, demonstrated in Figure [2 at right, is a fundamental feature of
scientific visualization, and it depends on a good mechanism of converting field data to colors.

VTK-m 1.1 Release: VI'K-m 1.1 was released in December 2017.

Next Steps Our next efforts include:

External Surface: Extracting the external faces of solid geometry is important for efficient solid
rendering.

Location Structures: Many scientific visualization algorithms require finding points or cells based
on a world location.

Dynamic Types: The initial implementation of VIK-m used templating to adjust to different
data structures. However, when data types are not known at compile time, which is common in
applications like ParaView and Vislt, templating for all possible combinations becomes infeasible.
Provide mechanisms to enable runtime polymorphism.

OpenMP: Our current multicore implementation uses TBB [21] for its multicore support. However,
much of the code we wish to integrate with uses OpenMP [22], and the two threading implementations
can conflict with each other. Thus, add a device adapter to VTK-m that uses OpenMP so this conflict
will not happen.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract
DE-NA0003525.
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