SAND2018- 4009R

2.1.2 ECP/VTK-m

Overview The ECP/VTK-m project is providing the core capabilities to perform scientific visualization on
exascale architectures. The ECP/VTK-m project fills the critical feature gap of performing visualization and
analysis on processors like graphics-based processors and many integrated core. The results of this project
will be delivered in tools like ParaView, Vislt, and Ascent as well as in stand-alone form. Moreover, these
projects are depending on this ECP effort to be able to make effective use of ECP architectures.

One of the biggest recent changes in high-performance computing is the increasing use of accelerators.
Accelerators contain processing cores that independently are inferior to a core in a typical CPU, but these
cores are replicated and grouped such that their aggregate execution provides a very high computation rate
at a much lower power.

Current and future CPU processors also require much more explicit parallelism. Each successive version of
the hardware packs more cores into each processor, and technologies like hyperthreading and vector operations
require even more parallel processing to leverage each core’s full potential.

VTK-m is a toolkit of scientific visualization algorithms for emerging processor architectures. VI'K-m
supports the fine-grained concurrency for data analysis and visualization algorithms required to drive extreme
scale computing by providing abstract models for data and execution that can be applied to a variety of
algorithms across many different processor architectures.

The ECP/VTK-m project is building up the VTK-m codebase with the necessary visualization algorithm
implementations that run across the varied hardware platforms to be leveraged at the exascale. We will
be working with other ECP projects, such as ALPINE;, to integrate the new VTK-m code into production
software to enable visualization on our HPC systems.

Key Challenges The scientific visualization research community has been building scalable HPC algorithms
for over 15 years, and today there are multiple production tools that provide excellent scalability. However,
our current visualization tools are based on a message-passing programming model. More to the point,
they rely on a coarse decomposition with ghost regions to isolate parallel execution [7, 8. However, this
decomposition works best when each processing element has on the order of a hundered thousand to a
million data cells [9] and is known to break down as we approach the level of concurrency needed on modern
accelerators [10, 11].

DOE has made significant investments in HPC visualization capabilities. For us to feasibly update this
software for the upcoming exascale machines, we need to be selective on what needs to be updated, and we
need to maximize the code we can continue to use. Regardless, there is a significant amount of software to
be engineered and implemented, so we need to extend our development resources by simplifying algorithm
implementation and providing performance portability across current and future devices.

Solution Strategy The ECP/VTK-m project leverages VITK-m [12] to overcome these key challenges.
VTK-m has a software framework that provides the following critical features.

1. Visualization building blocks: VTK-m contains the common data structures and operations required
for scientific visualization. This base framework simplifies the development of visualization algorithms
[13].

2. Device portability: VTK-m uses the notion of an abstract device adapter, which allows algorithms
written once in VI'K-m to run well on many computing architectures. The device adapter is constructed
from a small but versatile set of data parallel primitives, which can be optimized for each platform [14].
It has been shown that this approach not only simplifies parallel implementations, but also allows them
to work well across many platforms [15), 16, 17].

3. Flexible integration: VTK-m is designed to integrate well with other software. This is achieved with
flexible data models to capture the structure of applications’ data [18] and array wrappers that can
adapt to target memory layouts [19].

Even with these features provided by VTK-m, we have a lot of work ahead of us to be ready for exascale.
Our approach is to incrementally add features to VITK-m and expose them in tools like ParaView and Vislt.

Exascale Computing Project (ECP) 4 ECP-XX-XXXX



M

Figure 2: Examples of recent progress in VITK-m include (from left to right)
multiblock data structures, gradient estimation, and mapping of fields to colors.

Recent Progress The VTK-m project is organized into many implementation activities. The following
features have been completed in the past 12 months.

Key Reduce Worklet: This adds a basic building block to VTK-m that is very useful in constructing
algorithms that manipulate or generate topology [20)].

Spatial Division: Introductory algorithms to divide space based on the distribution of geometry
within it. This is an important step in building spatial lookup structures.

Basic Particle Advection: Particle advection traces the path of particles in a vector field. This
tracing is fundamental for many flow visualization techniques. Our initial implementation works on
simple structures

Surface Normals: Normals, unit vectors that point perpendicular to a surface, are important to
provide shading of 3D surfaces while rendering. These often need to be derived from the geometry itself.

Multiblock Data: Treat multiple blocks of data, such as those depicted in Figure 2 at left, as first-class
data sets. Direct support of multiblock data not only provides programming convenience but also allows
us to improve scheduling tasks for smaller groups of data.

Gradients: Gradients, depicted in Figure 2] at center, are an important metric of fields and must
often be derived using topologic data. Gradients are also fundamental in finding important vector field
qualities like divergence, vorticity, and qg-criterion.

Field to Colors: Pseudocoloring, demonstrated in Figure [2 at right, is a fundamental feature of
scientific visualization, and it depends on a good mechanism of converting field data to colors.

VTK-m 1.1 Release: VI'K-m 1.1 was released in December 2017.

Next Steps Our next efforts include:

External Surface: Extracting the external faces of solid geometry is important for efficient solid
rendering.

Location Structures: Many scientific visualization algorithms require finding points or cells based
on a world location.

Dynamic Types: The initial implementation of VIK-m used templating to adjust to different
data structures. However, when data types are not known at compile time, which is common in
applications like ParaView and Vislt, templating for all possible combinations becomes infeasible.
Provide mechanisms to enable runtime polymorphism.

OpenMP: Our current multicore implementation uses TBB [21] for its multicore support. However,
much of the code we wish to integrate with uses OpenMP [22], and the two threading implementations
can conflict with each other. Thus, add a device adapter to VTK-m that uses OpenMP so this conflict
will not happen.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract
DE-NA0003525.

Exascale Computing Project (ECP) 5 ECP-XX-XXXX



(1]

2]

[10]

[11]

REFERENCES

B. Smith, R. Bartlett, and xSDK developers. xSDK community package policies, 2016. version 0.3,
December 2, 2016, https://dx.doi.org/10.6084/m9.figshare.4495136.

R. Bartlett, J. Sarich, B. Smith, T. Gamblin, and xSDK developers. xSDK community installation
policies: GNU Autoconf and CMake options, 2016. version 0.1, December 19, 2016, https://dx.doil
org/10.6084/m9.figshare.4495133.

Todd Gamblin, Matthew P. LeGendre, Michael R. Collette, Gregory L. Lee, Adam Moody, Bronis R.
de Supinski, and W. Scott Futral. The Spack Package Manager: Bringing order to HPC software chaos.
In Supercomputing 2015 (SC’15), Austin, Texas, November 15-20 2015. LLNL-CONF-669890.

Alquimia Project Team. Alquimia Web page. https://bitbucket.org/berkeleylab/alquimia.
PFLOTRAN Project Team. PFLOTRAN Web page. http://www.pflotran.org.
Alicia Marie Klinvex. xSDKTrilinos user manual. Technical Report SAND2016-3396 O, Sandia, 2016.

James Ahrens, Kristi Brislawn, Ken Martin, Berk Geveci, C. Charles Law, and Michael Papka. Large-
scale data visualization using parallel data streaming. IEFEE Computer Graphics and Applications,
21(4):34-41, July/August 2001.

Hank Childs, David Pugmire, Sean Ahern, Brad Whitlock, Mark Howison, Prabhat, Gunther H. Weber,
and E. Wes Bethel. Extreme scaling of production visualization software on diverse architectures. IEFEE
Computer Graphics and Applications, 30(3):22-31, May/June 2010. DOTI 10.1109/MCG.2010.51.

Kenneth Moreland. The ParaView tutorial, version 4.4. Technical Report SAND2015-7813 TR, Sandia
National Laboratories, 2015.

Kenneth Moreland. Oh, $#*Q! Exascale! The effect of emerging architectures on scientific discovery. In
2012 SC Companion (Proceedings of the Ultrascale Visualization Workshop), pages 224231, November
2012. DOI 10.1109/SC.Companion.2012.38.

Kenneth Moreland, Berk Geveci, Kwan-Liu Ma, and Robert Maynard. A classification of scientific
visualization algorithms for massive threading. In Proceedings of Ultrascale Visualization Workshop,
November 2013.

Kenneth Moreland, Christopher Sewell, William Usher, Li ta Lo, Jeremy Meredith, David Pugmire, James
Kress, Hendrik Schroots, Kwan-Liu Ma, Hank Childs, Matthew Larsen, Chun-Ming Chen, Robert May-
nard, and Berk Geveci. Vtk-m: Accelerating the visualization toolkit for massively threaded architectures.
IEEE Computer Graphics and Applications, 36(3):48-58, May/June 2016. DOI 10.1109/MCG.2016.48.

Kenneth Moreland. The vtk-m user’s guide. techreport SAND 2018-0475 B, Sandia National Laboratories,
2018. http://m.vtk.org/images/c/c8/VTKmUsersGuide.pdf.

Guy E. Blelloch. Vector Models for Data-Parallel Computing. MIT Press, 1990. ISBN 0-262-02313-X.

Li-ta Lo, Chris Sewell, and James Ahrens. PISTON: A portable cross-platform framework for data-
parallel visualization operators. In Furographics Symposium on Parallel Graphics and Visualization,
2012. DOIT 10.2312/EGPGV/EGPGV12/011-020.

Matthew Larsen, Jeremy S. Meredith, Paul A. Navratil, and Hank Childs. Ray tracing within a data par-
allel framework. In IEEFE Pacific Visualization Symposium (PacificVis), April 2015. DOI 10.1109/PACI-
FICVIS.2015.7156388.

Kenneth Moreland, Matthew Larsen, and Hank Childs. Visualization for exascale: Portable performance
is critical. In Supercomputing Frontiers and Innovations, volume 2, 2015. DOT 10.2312/pgv.20141083.

Exascale Computing Project (ECP) 6 ECP-XX-XXXX



[18] Jeremy S. Meredith, Sean Ahern, Dave Pugmire, and Robert Sisneros. EAVL: The extreme-scale analysis
and visualization library. In Furographics Symposium on Parallel Graphics and Visualization (EGPGV),
pages 21-30, 2012. DOI 10.2312/EGPGV/EGPGV12/021-030.

[19] Kenneth Moreland, Brad King, Robert Maynard, and Kwan-Liu Ma. Flexible analysis software for
emerging architectures. In 2012 SC Companion (Petascale Data Analytics: Challenges and Opportunities),
pages 821-826, November 2012. DOI 10.1109/SC.Companion.2012.115.

[20] Robert Miller, Kenneth Moreland, and Kwan-Liu Ma. Finely-threaded history-based topology com-
putation. In Furographics Symposium on Parallel Graphics and Visualization, pages 41-48, 2014.
DOIT 10.2312/pgv.20141083.

[21] James Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor Parallelism.
O’Reilly, July 2007. ISBN 978-0-596-51480-8.

[22] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using OpenMP. MIT Press, 2007. ISBN 978-
0-262-53302-7.

Exascale Computing Project (ECP) 7 ECP-XX-XXXX



