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Abstract

We have conducted a series of ride-along experiments on the Z facility to ascertain the
Hugoniot of silica centered in the stishovite phase over a range 0.4 - 1.0 TPa, together
with partial release states produced at the interface between the sample and a fused silica
window. The stishovite samples were synthesized in a large-volume multi-anvil press at
15 GPa and 1773 K, with an initial density of 4.29 gm/cc. The new Z experiments on
stishovite fill in a gap between gas gun experiments and NIF experiments. The states are
compared with the Hugoniots of quartz and fused silica for inferences as to EOS. They
are generally consistent with Sesame 7360 predictions. Sound speed constraints from
these data are discussed. The new Hugoniot data cross over the melting curve of
stishovite; together with the partial-release data and predictions from density-functional
theory modeling, they provide insights into the properties of solid and liquid under
extreme conditions. These data are fundamentally important for understanding the
interior of silicate-based super-Earths.
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Recent research on stishovite: Hugoniot and
partial release Z experiments and DFT EOS

calculations

1.0 Introduction and Background

Stishovite is a tetragonal high-pressure polymorph of Si02, and is believed to be a
key component of the earth's lower mantle and of parts of other rocky planets. In this
structure, each silicon atom is surrounded by 6 oxygen atoms in an octahedral
arrangement; stishovite is thus markedly different from other polymorphs of Si02. Two
phase diagrams of this material are shown in Fig. 1.1
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Figure 1.1. Phase diagrams of stishovite. 100 kb = 10 GPa.

Key questions to be investigated in the present study include the shock equation-of-
state and partial release behavior. Due to the experimental design, sound speed at the
Hugoniot (useful for tying data to seismic properties of the lower mantle) is not available
from these experiments.

An early attempt to obtain this information used a two-stage light gas gun (Furnish
and Ito, 1995) with samples synthesized in a belt-press. Methods available at that time
were not well suited to the small sample sizes used (3 mm diameter and 0.5 — 0 8 mm
thick) and had very large uncertainties. A more recent study by Millot, et al (2015) used
a transparent stishovite single crystal sample and several polycrystalline samples on
OMEGA laser-driven experiments to obtain the data shown in Fig. 1.2. Although that
study was published after the current experiments were underway, the current work is
interesting in that it provides (1) shock data within the large gap below 1 TPa (10 MBar)
in the laser data set, and (2) partial release data which may offer useful information about
phase transitions in this material.
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2.0 Experimental Configuration

2.1 Notional description and EOS calculation methods

This study was comprised of 5 experiments on the Z machine, as enumerated in Table
2.1. Each was a two-sided coaxial flyer plate experiment (described later) impacting
aluminum flyer plates into the samples.

Table 2.1. List of Z ex eriments (short names for shots in arentheses .
Shot number Hardware Set Date Impactor Velocities
Z2826 (2) A0483A 6/30/2015 14.4, 15.85
Z2828 (3) A0483B 7/2/2015 12.25, 13.5
Z2902 (4) A0542A 1/26/16 20.15, 21.55
Z3001 (5) A0559 9/16/16 18.66, 20.0
Z3035 (6) A0574 12/12/16 24.02, 25.2

The stishovite sample was directly impacted by the flyer, and was supported and
backed by a Z-cut alpha quartz (Z-quartz") window. There were 2 — 3 points on each
flyer plate whose velocity was measured by VISAR during launch and impact on Z-
quartz windows; these waveforms were used to determine the impact time and velocity
on the fronts of the stishovite samples. For each case, the impact produces a sufficiently
strong shock in the quartz window to give a reflective shock front whose velocity can be
measured by VISAR [Knudson and Desjarlais, 2009]. From this measurement and the
sample Hugoniot state, the partially released state in the sample could be deduced.
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Figure 2.1. Schematic of impact configuration. (Left) Pressure vs. particle velocity. H = Hugoniot state;
PR = partial release; UFP = Flyer plate velocity. (Right) time vs. position. Derivation of Hugoniot and

partial release state is shown schematically.

Calculating the sample Hugoniot state requires measuring the shock transit time
through the sample (therefore knowing the wavespeed), determined by subtracting the
impact time from the shock arrival time at the sample window interface. The most
significant uncertainty is this impact time, which must be calculated from the impact
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times at the adjacent spots (with slight corrections for differences in flyer plate flight
distances).

The sample experiences a release when the shock wave enters the quartz window.
The pressure and particle velocity of the partially released state is calculated from the
measured wavespeed in the Z-quartz (which must be divided by the index of refraction of
a-quartz, which is 1.547 at the 532 nm wavelength used in the present experiments.).
The quartz parameters are taken as po= 2.65 gm/cc, a = 6.26 km/s, b = 1.2, c = 2.56 and
d = 0.37 s/km, with the quartz shock velocity expressed as U, = a + bup — cup exp(-d up).
If steady-wave assumptions about this release wave are applied, the partially-released
density and the wavespeed of the release wave are available. However, the steady-wave
assumptions are not strictly correct. Errors due to this are not detailed in the present
report.

Uncertainties are propagated via Monte Carlo methods (see §3.3).

2.2 Hardware

The present discussion focusses on the liquid portion of the test; those considerations
drove design decisions that affected the context of the stishovite samples.

The clear liquid experiments were designed as shown in Fig. 2.2. This setup, known
as a coaxial liquid cell configuration, includes two panels on opposite sides of the
cathode stalk (a tongue-depressor shaped aluminum piece affixed to the Z cathode
magnetically insulated transmission lines, or MITLs). Aluminum flyer plates 1 mm thick
and 29 mm wide are set on opposite sides of the cathode stalk, separated from the stalk
by 1.0 and 1.4 mm (south and north, respectively). During the experiment, electrical
current flows up the cathode stalk and down the flyer plates. Lorentz forces accelerate
the flyer plates across the gaps into the respective panels. Z current pulse shapes, A/K
gaps and flight distances are chosen so that the plates accelerate smoothly without
shockup, impact the respective panels at approximately the same time, and preserve
sufficient thickness during launch to impose a supported shock which does not attenuate
during passage through the sample.

The two panels afford two slightly (10 — 20%) different impact velocities, with
correspondingly different shock amplitudes generated in the samples. This is due to
differing anode/cathode (A/K) gaps and flight distances.

Because the samples are transparent, the VISAR records from the probes viewing
these samples afford an abundance of information: (1) the acceleration record of the flyer
plate, (2) the quartz shock wave speed in the buffer, (3) the time at which the shock
enters the sample, (4) the time-dependent shock wave speed of the wave crossing the
sample (measured directly by the VISAR), (5) the time the shock enters the quartz
window, and (6) the shock wave speed (hence stress amplitude) in the window.

This experimental setup also allows for a second pair of experiments on the bottom
section of the panels, as well as another probe on each panel viewing the flyer plate.
These locations were used for samples of geophysical interest.
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Figure 2.2. Z hardware for the neat liquid experiments (transparent samples).

For the experiments with an opaque liquid mixture, it was necessary to add an
additional VISAR probe on each panel to view the flyer plate adjacent to the liquid
sample (Fig. 2.3). As well, the sample chamber thicknesses were increased from 0 4 mm
to 1.0 mm due inhomogeneity of the liquid mixtures. The aluminum flyer plate thickness
was increased from 1.0 to 1 2 mm to ensure the thickness at impact would be enough so
the rarefaction from the flyer rear surface would not overtake the shock in the sample.
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Figure 2.3. Configuration for opaque liquid samples (2 — 7 except 4). FVP = flyer-viewing probe; SVP =
sample-viewing probe. Upper samples are Hydroliquid; lower are ride-along stishovite (Si02) samples

except Z3107 (which tested bridgmanite, or MgSiO3). "ole configuration was used for both panels for all
shots except 5, 6, 7 (Z3001, 3035, 3107).

For purposes of interpreting the stishovite data, the panel maps in Fig. 2.4 suffice. A
key point is that the flight distances to impact the stishovite samples and the adjacent
window(s) were measured prior to shot, but those to impact the liquid cell were not.
Therefore it was necessary to integrate the flyer plate motion data to deduce these
distances and therefore the flyer shape during launch.

0 275

Figure 2.4. Panel maps. (Left) Plan view of each of the two panels for shots 2, 3, with the stishovite
samples at 0.73 units and flyer-viewing probes at 0 and 2.53 units. (Middle) Shot 4 plan view, similar to
shots 2, 3 except that the upper flyer-viewing probe is through the transparent liquid sample at 1.00 units,
and the stishovite is at 0.275 units. (Right) Plan view for shots 5, 6, with flyer viewing probes at 0, 1.08
and 2.73 units and the stishovite sample at 0.54 units. A shot 7 exists with the same configuration, but

included bridgmanite instead of stishovite.
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2.3 Diagnostics

The two probes viewing the liquid samples each used 7 fibers: 1 for sending light, 5
for receiving light to be sent to the VISAR systems, and one for the passive SVS (Streak
Visible Spectroscopy) system. The other six probes (three per panel) each used 4-fiber
configurations, 1 for sending light and 3 to return Doppler-shifted light to the VISAR
systems. VISAR signals were recorded for 5 las, timed to place the motion of interest
near the center of the record.

Two 19-beam VISAR interferometers, manufactured by National Security
Technologies (Special Technologies Laboratory), were set up to include velocity-per-
fringe settings ranging from 277.71 m/s up to 2.2895 km/s. 28 of these channels were
used on each of the present shots.

Timing was accomplished by recording light returns during a test run in which the
laser light at the source is momentarily electronically blocked, giving a 1.5 ns FWHM dip
in the measured light levels, and accounting for the known portions of the 2-way transit
to the target.

Impact time on the Z-quartz buffer was established by extrapolating the impact times
observed on the flyer-viewing VISAR probes to the sample location. Uncertainties in
this process were typically — 0.25 — 1.0 ns.

2.4 Sample Synthesis

The stishovite samples were synthesized in a large-volume octahedral cell at the
Carnegie Institution of Washington at a pressure of 15 GPA and a temperature of 1500 C.
The typical grain size was —4 microns, and the phase was confirmed by Raman
spectroscopy. The sample diameters were 2.8 mm.
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3.0 Results

3.1 Flyer performance

Flyer plate launches were smooth throughout the experiment, and well-diagnosed.
The North Bottom flyer plate measurement for Z2826 (shot 2) is shown in Fig. 3.1. (only
one of the three sets of VISAR fringe records is shown). The signature of impact was
clear for all flyer plate measurements, whether using LiF or Z-cut a-quartz windows.
This record is typical of the flyer plate launches in this series.
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Figure 3.1. VISAR records for Z2826 North Bottom flyer plate. (Left) Fringe record and inset Lissajous
pattern for Channel 6 (VFP = 0.2771 km/s). (Right) Plot of all three velocity records for this flyer plate

measurement.

Flyer plate measurements with Z-cut a-quartz windows showed fringe activity after
impact corresponding to the shock wave propagating through the window. We have not
analyzed these signatures in detail. For LiF windows (e.g. the record shown in Fig. 4.1),
the light was quickly extinguished after impact.

Critical to the interpretation of impact time is the question of impact planarity. Only
shots 5 and 6 had more than 2 points monitored on each flyer plate; results for these are
shown in Fig. 3.2. The stishovite sample is located at a position of 0.54. These times are
corrected to constant flight distance (see Section 2.2).
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3.2 Representative velocimetry results

Consider the velocimetry data from the north panel liquid probe in shot 6 (Z3035),
shown in Fig. 3.2. It provides a time-of-arrival of the shock at the back of the stishovite
sample and a measurement of the velocity of the shock into the Z-cut a-quartz window.
The initial arrival is determined by first deflection of the fringes, and is measured to
—0.25 ns. Cross-timing with the adjacent flyer-viewing signals provides impact
information under the sample, as discussed elsewhere.

The velocity of the shock in the Z-cut a-quartz window (Fig. 3.3 bottom right)
provides a measure of the reshock state in the sample. To obtain this velocity, a large
number of fringe jumps are required (see Dolan [2006]). Choosing the correct number of
fringes requires bringing the velocity amplitudes into agreement, together with physics
sanity checks to be discussed in §3.3. Following the initial arrival and a plateau, the
wave begins to decelerate as the release from the back of the flyer plate overtakes the
shock front. However, this cannot be used directly to determine the sound speed at the
Hugoniot state because the thickness of the flyer at time of impact is not well known
(estimated as 0.2 — 0.4 mm after thinning by the Z current during launch).
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3.3 Stishovite Hugoniots and partial release states

In the present experiments, the liquid cells are attached to the two panels of the
coaxial configuration just before shot time, and the positions of these cells relative to the
flyer plate are never explicitly measured. For most similar Z experiments, the flight
distances to all target components are carefully measured in the Target Fabrication
laboratory ahead of final assembly. Therefore, the interpretation of these shots included a
careful integration of flyer motion to deduce these flight distances to impact.

For all shots except Z3107 (aka Shot 7), monolithic stishovite samples were placed in
the bottom sample locations. The observables are listed in Table 3.1, and the resulting
Hugoniot and reshock values are listed in Table 3.2 and plotted in Fig. 3.4. In Table 3.2,
the primary observable quantities are the shock velocity for the Hugoniot and the particle
velocity (from the post-arrival wavespeed) for the partial release state.

Table 3.1. Input parameters for the stishovite samples. UFP is the impact velocity. Post-arrival wavespeed
is the apparent shock velocity in the quartz window downstream of the sample, and must be divided by the
index of refraction of the Z-cut quartz window, n tz = 1.547.

Test Stishovite
Thickness
mm

Initial
Density
gm/cc

Impact
Velocity
km/s

Impact
time
[Ls

Breakout
Time
p s

Post-arrival
wavespeed
km/s

2 North 0.631(1) 4.26(2) 14.62(5) 3.3680(5) 3.4037(3) 23.40(20)

2 South 0.658(1) 4.28(2) 16.00(5) 3.3818(5) 3.4221(3) 24.50(20)

3 North 0.369(1) 4.31(2) 12.25(5) 2.8060(5) 2.8299(4) 20.80(15)

3 South 0.425(1) 4.34(2) 13.50(5) 2.8055(5) 2.8330(3) 22.10(15)

4 North 0.679(1) 4.30(2) 20.15(5) 2.6803(5) 2.7176(4) 27.50(30)

4 South 0.616(1) 4.27(2) 21.55(5) 2.6824(5) 2.7137(4) 28.60(30)

5 North 0.369(1) 4.29(2) 18.70(5) 3.1789(5) 3.1996(4) 25.70(30)

5 South 0.452(1) 4.29(2) 19.96(5) 3.1633(5) 3.1877(4) 26.75(30)

6 North 0.319(1) 4.29(2) 23.91(5) 3.0746(5) 3.0896(3) 30.64(30)

6 South 0.795(1) 4.29(2) 25.39(5) 3.0737(5) 3.1111(2) 31.35(30)

Table 3.2. Hu oniot and release values for the stishovite sam les.

Test Hugoniot Partial Release

Pressure
(GPa)

Shock
Velocity
(km/s)

Particle
Velocity
(km/s)

Density
(gmkm3)

Strain Pressure
(GPa)

Density
(gm/cm3)

Particle
Velocity*
(km/s)

Release
Velocity'
(km/s)

2 North 426(4) 17.69(29) 5.67(5) 6.27(8) 0.320(8) 330(6) 4.39(20) 8.23(9) 6.0(7)

2 South 462(4) 16.35(24) 6.61(5) 7.19(11) 0.404(9) 366(7) 5.38(23) 8.72(9) 6.4(8)

3 North 316(5) 15.49(42) 4.74(7) 6.22(11) 0.307(12) 253(4) 4.05(22) 7.09(7) 4.4(5)

3 South 361(4) 15.46(33) 5.38(6) 6.66(11) 0.348(11) 290(4) 4.50(22) 7.65(7) 4.7(5)

4 North 668(7) 18.21(30) 8.53(7) 8.10(17) 0.469(11) 476(12) 7.31(23) 10.11(14) 15.3(2.5)

4 South 760(9) 19.68(38) 9.04(8) 7.91(19) 0.460(13) 521(12) 7.29(22) 10.64(14) 19.3(3.1)

5 North 597(10) 17.84(53) 7.80(11) 7.64(26) 0.438(19) 408(11) 7.01(27) 9.27(14) 17.2(3.2)

5 South 665(10) 18.49(46) 8.38(10) 7.86(24) 0.454(16) 447(12) 7.35(25) 9.76(14) 20.6(3.8)

6 North 913(18) 21.18(70) 10.05(15) 8.19(37) 0.475(23) 610(14) 7.67(35) 11.62(15) 24.1(4.6)

6 South 992(7) 21.28(24) 10.87(6) 8.77(15) 0.511(8) 643(14) 8.50(16) 11.98(15) 36.9(7.2)
* Referenced to the laboratory frame; 1 Eulerian wavespeed (i.e. in space of material in Hugoniot state)

The uncertainties for the Hugoniot are mostly due to the reported uncertainty in the
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shock transit time (kt‘Back sulface) t (Impact)); those for the reshock, to the uncertainty in the
post-arrival wavespeed (the shock velocity in the quartz window).

Strictly speaking, the last column in Table 3.2 (a sort of averaged release wave speed)
is inaccurate because it is computed using steady-wave assumptions, and we do not
expect those to apply here. However, it may offer a loose estimate of the sound speed at
the Hugoniot. For a proper measurement of that quantity, a two-layer flyer plate (e.g.
copper on aluminum) should be used in conjunction with several sample thicknesses.
That construction was not used here because the liquid sample measurements required a
well-supported shock.
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Figure 3.4. Hugoniot and reshock
states for stishovite. The fit is Co =
7.5 km/s, S =1.7.

The Hugoniot and partially release states may be plotted in the pressure-density space
against other data to give a scientific context, as in Fig. 3.5. The Hugoniot data appear to
lie sensibly on the interpolation of the Millot (2015) data; as well, the partial release data
suggest a change is occurring at the —0.5 TPa level (refreeze?).

An earlier analysis of these data did not use the proper flyer plate shapes because it
assumed a nominal flight distance for the liquid cell samples. The results of that analysis,
shown in Fig. 3.6, are clearly above the expected curve in pressure-density space.
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These EOS data are not credible.
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4.0 Density Functional Theory modeling

We have modeled the silica system using DFT molecular dynamics with VASP and
two different functionals to predict these Hugoniots. The results are shown in Fig. 4.1.
LDA is the local density approximation. PBEsol is a form of generalized gradient
approximation (GGA) optimized for densely packed solids and their surfaces (Perdew, et
al., 2008). The pyrite and liquid calculations assume those structures. In general, we
consider the agreement of these calculations with experiment to be satisfactory.
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Figure 4.1. Present stishovite Hugoniot data, compared with DFT models.
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5.0 Afterword

The measurement of shock transit times in opaque samples carries the difficulty that
the impact time must be inferred from nearby probes, an inference sensitive to the shape
of the flyer plate. Such an effort succeeds or fails depending on the proper interpretation
of many details. An accurate knowledge of flight distances to impact on the various
components of the target is key. For these experiments, the liquid cell positions were not
measured after final mounting due to the logistics of late-time loading. Therefore the
most accurate determination of flight distances was obtained by integrating the flyer
motion until impact on the flyer-viewing probes. When the actual flight distances were
used, the results made sense.

It is possible the results could be further improved (and the uncertainties tightened)
using a method suggest by C. Seagle after M. Knudson. Relative timing of similar
features on different fringe records can often be determined accurately by timeshifting
one trace until the features overlay (facilitated by scaling the traces vertically so the
features are of similar amplitude).

It would be useful to include stishovite samples on future experiments using layered
impactors to better measure sound speeds at the Hugoniot state.
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