

Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir

Final Report Appendix — Chapter 4

March 2018

Report Number DOE-PGE-00198-3

Prepared by
Pacific Gas & Electric Company
San Francisco, CA 94105

Authors
Michael Medeiros, Robert Booth, James Fairchild, Doug Imperato, Charles Stinson, Mark Ausburn, Mike Tietze, Saeed Irani, Alan Burzlaff, Hal Moore, James Day, Ben Jordan, Trent Holsey, Doug Davy, Kevin Plourde

For the United States Department of Energy under Contract DOE-OE0000198, Executed
December 2009

And, the California Public Utilities Commission under Decision 10-01-025, Executed
January 2010

And, the California Energy Commission under Grant Award PIR-12-001, Executed July
2013

Principal Investigator

Michael Medeiros, Program Manager, Pacific Gas & Electric Company, mjml@pge.com

Acknowledgments

We would like to acknowledge the many organizations and individuals who contributed their time and unique expertise to the overall Compressed Air Energy Storage (CAES) Study effort and in creating the basis for this final report. These included PG&E contractors Worley Parsons, MHA Petroleum Consultants, Irani Engineering, Vox Planning, CH2M Hill, Hal Moore Energy Consulting Services, Bluewater Energy Solutions, Day Carter Murphy LLP, King Island Gas Storage, Robert Booth, James Fairchild, Doug Imperato, and Charles Stinson. As well, we would like to acknowledge Lawrence Berkeley National Labs and the public agencies of San Joaquin County and the City of Lodi for their contributions and support. Reviewing and editing by Jonas Weisel are also gratefully acknowledged.

Citation

Medeiros, M, Booth, R, Fairchild, J, Imperato, D, Stinson, C, Ausburn, M, Tietze, M, Irani, S, Burzlaff, A, Moore, H, Day, J, Jordan, B, Holsey, T, Davy, D, Plourde, K. 2018. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir, Final Report. DOE-PGE-00198-1. Pacific Gas & Electric Company, San Francisco, CA, March 2018.

Legal Disclaimer

This report was prepared by Pacific Gas and Electric Company. Neither Pacific Gas and Electric Company nor any of its employees and agents: makes any written or oral warranty, expressed or implied, including, but not limited to those concerning merchantability or fitness for a particular purpose; assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus process, method, or policy contained herein; or represents that its use would not infringe any privately owned rights, including, but not limited to, patents, trademarks, or copyrights.

This report was prepared as an account of work sponsored by agencies of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Abstract

Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology.

CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

The project screened potential sites in California and selected two locations: King Island, near Stockton, and East Island in San Joaquin County. All necessary rights were acquired at both sites to conduct tests and develop a CAES facility. Core drilling provided information on reservoir rock properties, caprock properties, reservoir pressure, and reservoir fluid. Results found the conditions at the King Island site to be more favorable than East Island. Air injection testing at King Island produced data on flow dynamics, rock mechanics, and other factors. Finally, the project team developed a conceptual engineering design for a CAES facility and reservoir infrastructure, and analyzed the environmental impacts and permitting requirements.

To determine the interest and qualifications of potential third parties, the project issued a Request for Offer (RFO), which required applicants to describe their technical qualifications to develop, construct, own, operate, and maintain a CAES facility at the King Island site, and to estimate their costs for participation in the project. Offers were received, but the best offer was not economically competitive with alternative storage technologies.

The project demonstrated the technical feasibility of using an abandoned natural gas reservoir for storing high-pressure compressed air for a 300-MW-by-10-hour CAES facility. The reservoir at the King Island site was shown to be capable of accommodating the flow rates and pressures necessary for the operation of the facility. However, the estimated high cost of a CAES facility will have to be addressed in the context of the cost of alternative energy storage technologies.

Chapter 4 Attachment

A401: SmartCAES Suggested General Arrangement

