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Abstract

We conducted three Hugoniot and release experiments on copper on the Z machine at
Hugoniot stress levels of 0.34 and 2.6 TPa, using two-layer copper/aluminum impactors
travelling at 8 and 27 km/s and Z-quartz windows. Velocity histories were recorded for 4
samples of different thicknesses and 5 locations on the flyer plate (3 and 4 for the first
two experiments). On-sample measurements provided Hugoniot points (via transit time)
and partial release states (via Z-quartz wavespeed). Fabrication of the impactor required
thick plating and several diamond-machining steps. The lower-pressure test was planned
as a 2.5 TPa test, but a failure on the Z machine degraded its performance; however,
these results corroborated earlier Cu data in the same stress region. The second test
suffered from significant flyer plate bowing, but the third did not. The Hugoniot data are
compared with the APtshuler/Nellis nuclear-driven data, other data from Z and elsewhere,
and representative Sesame models.
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Copper Hugoniot measurements to 2.8 TPa
on Z

1.0 Introduction and Background

Copper is an fcc metal generally assumed to remain in this phase until melting,
although there have been suggestions of transition to bct (body-centered tetragonal) under
some conditions [e.g. Neogi and Mitra, 2017]. This makes it a good candidate for being a
reference material for shock wave studies. As well, its density (8.94 gm/cc) and good
electrical conductivity make it a choice material for driver plates in pulsed-power EOS
experiments. Therefore it is interesting to explore its Hugoniot and release properties
under a wide range of conditions.

The present study is designed to determine the Hugoniot of copper in the range 2.5 —
3.0 TPa (25 — 30 MBar). A stretch goal is to obtain one or both of a partial release state
or the Hugoniot sound speed of this material.

Representative earlier Hugoniot points are plotted together with predictions by
Sesame EOS 3325 in Fig. 1.1.
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Figure 1.1. Hugoniot of copper.
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2.0 Experimental Configuration

2.1 General description

The present study uses a single-sided stripline design as shown in Fig. 2.1. The flyer
panel is composite, with 200 mm of plated copper backed by 800 mm of aluminum The
Z machine current, denoted by I, gives rise to Lorentz forces that launch the flyer to the
left and the relatively massive tungsten cathode to the right. This allows (1) a symmetric
copper 4 copper impact, and (2) higher impact velocities than could be achieved with a
simple copper flyer. The desired impact velocity was 25 — 30 km/s. VISAR (Barker and
Hollenbach, 1972; Dolan, 2006) was used for velocimetry measurements. The use of Z-
cut a-quartz windows (Knudson and Desjarlais, 2009a,b) allow the VISAR measurement
of shock velocity, giving additional information about the partially released state
produced when the shock front passes from the copper into the quartz window. The
VISAR probes were bare-fiber probes set back — 1 mm from the windows.
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Figure 2.1. Copper experiment configuration. Stars show points where velocity is monitored by
VISAR. Copper samples are yellow; quartz windows are cyan.

With this shot design it is in principle possible to measure not only the Hugoniot, but
also a partial release state or a Hugoniot sound speed. Consider the wave interaction
diagram in Fig. 2.2. The wavespeed in the copper sample (deduced from the observed
arrival time on the waveform, the sample thickness, and the relative impact time),
combined with the impact velocity and the sample density, yields the Hugoniot state.
The observed plateau velocity (Fig. 1.3 center and right, denoted as Vobs), combined with
the known quartz Hugoniot, gives the pressure and particle velocity of the copper partial
release state. Combined with the Hugoniot point it is possible to calculate the density of
the partial release state and the wavespeed of the transition.

With multiple sample thicknesses, we may be able to measure the Hugoniot sound
speed from the thickness dependence of the arrival times of the release on the waveform.
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However, for sample thicknesses > 0.5 mm, the release may overtake the initial shock
wave before arriving at the sample/window interface.
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Figure 2.2. Wave interactions in copper experiment. (Left) Time vs. position diagram and expected
waveform. Dashed lines are release fan. (Right) Pressure vs. particle velocity diagram, showing partial

release to quartz Hugoniot.

2.2. Shot design features refined by modeling

This shot design is based on the earlier design used for shots Z2006 (Fig. 2.3) and
Z2027 (Lemke et al, 2011). Shot Z2006 reached a record velocity of 28 km/s with an
aluminum/copper composite flyer. Z2027 used an aluminum flyer and reached a record
velocity of 40 km/s. Shock data were not obtained for the Ta sample on either shot,
perhaps due to the 90° bend of the optical fiber in the diagnostic housing. The present
hardware is therefore updated based on recent best practices.
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Figure 2.3. Z shot 2006, October, 2009: hardware, flyer velocity, drive current.
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Large-scale 3D MHD simulations on Cielo show plasma generation near the base of
the anode panel (Fig. 2.4). This is not seen in lower-resolution simulations, and may
contribute to previously unexplained load current losses as well as posing a risk to
diagnostics. This plasma traverses the anode-cathode (A-K) gap to the cathode and is
swept upward along the gap.

Adding a bevel near the base of the anode panel (panel with the samples) helps to
mitigate plasma generation up to 15 ns.

These simulations used an 87 mm diameter, 66 mm tall mesh with 335.6 M elements,
1.006 B element edges. They ran on 2400 nodes (38,400 cores) for 6 days. The mesh
resolution at the core of the mesh was 40 microns.

Z2027 A0099 Stripline n. bevel: 3004.2 ns

sj

anode cathode .111
 

plasn

Figure 2.4. Cielo MHD calculations showing plasma generation with and without anode bevel

Another area of the shot design refined by modeling is the Z pulse shape. New
Bertha models began with the configuration from Z2006 and sought to smooth the foot of
the current pulse. This was to reduce the energy delivered to heat the panel and possibly
melt the flyer plate. An unfold of the load current (Lemke method) was used to estimate
former losses for comparison with the new design. The results are shown in Fig. 2.5
(note that these are dated due to data loss from a hard drive crash).
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Figure 2.5. Pulse shape and resultant Cu velocity (depth dependent) and
density and temperature of panel components.

2.3. Fabrication

The composite plate is a fabrication challenge. An earlier plating capability used in
Z2006 (October, 2009) was no longer available, so a new capability had to be located or
developed.

Consider this part (Fig. 2.6). It is an aluminum piece with 800 mm of aluminum and
200 mm of copper in the flyer plate portion. The new design has a single rectangular
slot. The toe of the stripline has flairs to reduce inductance and plasma generation and
increase peak current. The slot is — 6 mm deep, chosen to give a flight distance of 4 — 5
mm after allowing for samples projecting into the slot.

This part is fabricated in a 5-step process:
1. Machine rough (32 i.tinch) with 4.2" Al flyer
2. Diamond machine slot base and sides
3. Plate copper to —380 µm (43 — 72 hours; 66% success)
4. Machine flyer to just over final thickness
5. Diamond machine copper, Al back and base

The most difficult step is the thick-plating of the copper with proper adhesion to the
diamond-machined aluminum
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Figure 2.6. Anode panel, with layered impactor

The plating process (step 3 above) took 43 — 72 hours for the first test device and
initial batch of 3 devices (Table 2.1), of which two achieved full adhesion of the copper
to the aluminum.

Table 2.1. Parameters for platinQ of first anode panels. Sides and bottom refer to Cu thickness

First test device Device 01 Device 02 Device 03

Sides 355 m 600 m 645 m 690 m

Bottom 350 m 514 m 515 m 464 m

Plating
time
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The final assemblies are shown in Fig. 2.7. The probe holder eliminates the 90° bend
used on the 2009 shots. The bevel on the anode base shaped to reduce plasma production
is clear in the middle image. The cross-section to the left illustrates the 3 sample
thicknesses, chosen as approximately 0.2, 0.5 and 0.3 mm (top to bottom).

Target panel insert Target panel installed into
anode (unit with flyer plate)

"41.„

Overall shot assembly

Figure 2.7. Assembled anode panel (left 3 images) and overall assembly (right).
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3.0 Results

3.1 Shot Z2837 - A Zinger

The first attempt at this experiment, conducted on July 27, 2015, suffered from a Z
machine short which diverted more than half of the current away from the target. Termed
"zingers," these phenomena involve the development of an unexpected electrical pathway
in the Magnetically Insulated Transmission Line (MITL) portion of Z.

The velocimetry results for this test are summarized in Fig. 3.1.
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Figure 3.1. Velocimetry results from
Z2837.

3.92

The flyer velocity recorded by the second and third flyer-viewing VISAR probes was
8.05 km/s instead of the planned 25- 30 km/s. That these two probes recorded the
velocity through impact is supported by the fact that the velocity to apparent impact
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integrates to 4.00 mm, which is the nominal flight distance. The top and bottom flyer-
viewing VISAR probes did not show impact time, possibly due to flyer deformation.
Those velocities integrated to 3.55 and 2.16 mm, respectively. All flyer-viewing probes
showed an abrupt jump in the flyer velocity of —4 km/s at an intermediate point in the
launch, reflecting an unplanned pulse-shape due to the zinger. As well, for each
waveform, the three VISAR channels (fringe sensitivities of 0.45045, 0.68876 and
2.26413 km/s/fringe) gave consistent results.

The middle sample velocimetry showed an expected waveform, with the three
VISAR channels again giving generally consistent results. This was the only sample we
attempted to interpret because the waveforms for the two adjacent flyer-viewing spots
were clean (as noted above). It was possible to deduce the impact time on the sample,
and therefore the wavespeed and the Hugoniot state. The resulting Hugoniot point is
shown in Fig. 3.2 juxtaposed on selected earlier data and the Sesame 3320 and 3325
models.
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3.2 Shot Z2875 — Distorted flyer plate

A new experiment was built with the other panel that showed good adhesion of the
copper to the aluminum Nevertheless, this panel had a small area which had a scuffed
appearance (Fig. 3.3), affecting the area of the impactor directly under the top copper
sample.

A region with
scuffing was
manped

Top Flyer

Top Sample

2nd Flyer

Mid Sample

3rd Flyer

Bottom Sample

Bottom Flyer

Figure 3.3. Flyer plate for second shot. Stars are points monitored by VISAR.

The velocimetry results are summarized in Fig. 3.3. The impact velocity of 27 km/s
was achieved. As with the first shot, the top flyer-viewing spot did not give usable data,
but the other spots did. The flyer impact times, corrected for slight differences in flight
distance, are shown in Fig. 3.4. The bottom two flyer measurements were very close in
time (-0.5 ns apart), while the second preceded those by nearly 8 ns. The top flyer
impact was not measured, but is suspected to be 5 — 10 ns before the second flyer impact.

The flyer plate shape upon impact is deduced from the observed impact times for the
flyer-viewing probe measurements, with results shown in Fig. 3.5. The impact times
under the copper samples are determined by interpolating the flyer-viewing
measurements (corrected for flight distance changes). Whether this interpolation is best
done as linear, quadratic or other is debatable; the differences at least give an idea of the
uncertainty in the result.

The resulting Hugoniot points are shown in Fig. 3.6. That the uncertainties from the
points deduced from the two samples do not overlap is troublesome. This may be due to
a more complicated flyer shape leading to impact. Alternatively, the thicker sample may
experience release overtake. However, that thicker sample has a higher measured shock
velocity than the thinner, which is the reverse of what would be expected.
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30

It is worth asking how sensitive these Hugoniot points are to the inferred impact time.
Fig. 3.7 gives an idea of this sensitivity, with perturbations in steps of 1 ns applied to the
assumed impact time on the two bottom Cu samples in Z2875. It is clear that a 1 ns step
causes a significant change in the Hugoniot point, in particular, for the thinner (-0.395
mm) sample.
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Figure 3.7. Effect on Hugoniot point of perturbing the impact time on Z2875 samples

by increments of 1 ns.

Previous studies (e.g. Lemke et al, 2003) do show bowing of the flyer plates, but
primarily in the horizontal direction (referenced to the present test geometry). Our
interest is in the orthogonal (vertical) direction.

3.3 Shot Z3106 — More samples and measurements

Based on the lessons of Z2875, a third shot was prepared (including a new anode
panel) with four copper samples and five flyer-viewing probes (Fig. 3.8). The flyer plate
was accelerated smoothly to 27 km/s over a 4 mm flight distance. As with the earlier
shots, the top flyer plate measurement terminated early. The flyer plate measurements
are summarized in Fig. 3.9.
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Probe with 9 spots, 36 fibers

Figure 3.8. Sample cross-section and map photograph of Z3106 apparatus
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Figure 3.9. Flyer plate measurements for Z3106.

Time # 1: Spot # 2 had an "evenr at 3 mm (Fig.
3.10), but continued to an impact at 4 mm.

Impact

 \\\

The top spot cut off
after — 1 mm of motion

—FM (Top)

—FP812

—FPI3

—FPIt4

—FO7t5 (Bottom)

The second spot from the top showed a discontinuity after propagating 3 mm (i.e. at
3222 ns; see Fig. 3.10). It is unclear how much this might affect the nature of the impact
under the adjacent copper samples (the two top samples).

Turning to the samples, let us look at all waveforms for evidence of rarefaction
overtake. Fig. 3.11 shows these, together with a position vs. time diagram showing an
incipient rarefaction-overtake wave interaction. Thicker samples will show more
overtake effect (manifested by decreasing wave amplitude and speed). For Z2875, it is
ambiguous whether the thickest sample (0.5079 mm) showed overtake, while neither of
the thinner samples did. For Z3106, the two thicker samples are likely showing some
rarefaction overtake.

The Hugoniot plots with these new data are shown in Fig. 3.12. The most credible
datum is the 0.338 mm point (no overtake and not adjacent to the anomalous launch).
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Figure 3.10. Sample fringe record, velocity detail, and locator section for discontinuity on Flyer # 2 spot.
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Figure 3.11. Waveform details from Z2875 and Z3106, showing potential rarefaction overtake situations.
* = possible overtake. A wave-interaction drawing on the lower left shows an incipient overtake.

Samples are numbered from bottom to top.
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Figure 3.12. Hugoniot plots including Shot Z3106 results. The linear Us-UP relations are
Co = 4.2335 and S = 1.3478 (Sesame 3325) and Co = 4.2347 and S = 1.353 (Sesame 3320).

3.4 Data Summary

25 30

The input data for these calculations are summarized in Table 3.1. The Hugoniot
results are listed in Table 3.2. Due to the uncertainties in these, we have not attempted to
extract the partial release states. A future researcher may yet extract sound speeds from
the results of Z3106, but will have to bear in mind the uncertainties from (1) choosing
release arrival points, and (2) the Hugoniot state.

Partial release states have been computed (and, by definition, lie on the z-cut a-quartz
Hugoniot in pressure-particle velocity space); these are tabulated in Table 3.3. The
impedance-match rationale is shown in Fig. 3.13. Strictly speaking, the last column in
Table 3.3 (a sort of averaged release wave speed) is inaccurate because it is computed
using steady-wave assumptions, and we do not expect those to apply here. However, it
may offer a loose estimate of the sound speed at the Hugoniot.
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Table 3.1. In ut quantities for Hu oniot calculation
Test Thickness

rnm
Impact Vel

km/s
Impact Time

ps
Breakout Time

ps
ZQ Wavespeed

mm/ 1.cs

2837Mid 0.502(2) 8.06(4) 3.7472(5) 3.8008(5) 15.5(2)

2875Mid 0.497(2) 26.97(20) 3.2363(4) 3.2569(5) 46.8(5)

2875Bot 0.335(2) 26.97(20) 3.2386(4) 3.2539(5) 46.8(5)

3106MidTop 0.5236(10) 26.95(5) 3.6278(5) 3.65021(15) 46.8(2)

3106MidBot 0.6669(10) 26.95(3) 3.6305(5) 3.66154(15) 46.8(2)

3106Bot 0.338(1) 26.95(3) 3.6318(5) 3.64730(15) 46.8(2)

Table 3 2 Hu oniot states
Test Pressure

(GPa)
Particle
velocity
(rnm/µs)

Shock Velocity
(mm/µs)

Density
(gmkrn3)

2837Mid 338(5) 4.03(2) 9.4(1) 15.7(2)

2875Mid 2908(93) 13.48(10) 24.1(7) 20.4(8)

2875Bot 2664(114) 13.48(10) 22.0(9) 23.2(1.6)

3106MidTop 2823(67) 13.47(3) 23.4(6) 21.2(7)

3106MidBot 2596(44) 13.48(1) 21.5(4) 24.0(7)

3106Bot 2642(90) 13.47(2) 21.9(7) 23.4(1.3)

Table 3.3 Partial release states
Test Up P Rho Us

2837Mid 4.85(8) 129(4) 15.0(2) 16.3(2.1)

2875Mid 20.02(27) 1605(38) 12.2(7) 9.8(1.1)

2875Bot 20.02(27) 1605(38) 11.9(1.0) 7.0(1.1)

3106MidTop 20.02(11) 1605(15) 12.1(4) 8.8(0.6)

3106MidBot 20.02(11) 1605(15) 11.8(4) 6.3(0.4)

3106Bot 20.02(11) 1605(16) 11.9(4) 6.8(0.7)
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Figure 3.13. Partial release of Cu to Z-cut cc-quartz window.
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