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The iron-based high temperature superconductors exhibit a rich phase diagram re-
flecting a complex interplay between spin, lattice, and orbital degrees of freedom [1–4].
The nematic state observed in many of these compounds epitomizes this complexity,
by entangling a real-space anisotropy in the spin fluctuation spectrum with ferro-
orbital order and an orthorhombic lattice distortion [5–7]. A more subtle and much
less explored facet of the interplay between these degrees of freedom arises from the
sizable spin-orbit coupling present in these systems, which translates anisotropies in
real space into anisotropies in spin space. Here, we present a new technique enabling
nuclear magnetic resonance under precise tunable strain control, which reveals that
upon application of a tetragonal symmetry-breaking strain field, the magnetic fluctu-
ation spectrum in the paramagnetic phase of BaFe2As2 also acquires an anisotropic
response in spin-space. Our results unveil a hitherto uncharted internal spin structure
of the nematic order parameter, indicating that similar to liquid crystals, electronic
nematic materials may offer a novel route to magneto-mechanical control.

In the absence of external strain, BaFe2As2 under-
goes a weakly first-order antiferromagnetic phase tran-
sition at TN = 135K, accompanied by an orthorhombic
structural distortion that breaks the tetragonal symme-
try of the unit cell in the paramagnetic phase. The rel-
atively small orthorhombic lattice distortion (∼ 0.3%)
[5] is driven by a nematic instability [8], whose elec-
tronic origin is manifested by the large in-plane resistivity
anisotropy (∼ 100%) [9, 10]. Despite being simultaneous
in BaFe2As2, the nematic and antiferromagnetic transi-
tion temperatures, Ts and TN , split upon doping, giving
rise to a regime with long-range nematic order but no
antiferromagnetic order, since TN < Ts [1, 11].

The close relationship between nematicity and the
magnetic degrees of freedom can be seen directly from the
stripe-like nature of the antiferromagnetic state, which
orders with one of two possible wave-vectors related by
a 90◦ rotation: Q1 = (π, 0) (corresponding to spins
parallel along the y axis and anti-parallel along x) and
Q2 = (0, π) (corresponding to spins parallel along x and
anti-parallel along y). Below TN nearest neighbor spins
are parallel or antiparallel depending on whether they are
connected by a short or long bond, however above TN but
below Ts the magnetic fluctuations centered around Q1

become weaker or stronger than those centered around
Q2, depending on whether the b axis is parallel or perpen-
dicular to Q1, respectively. Mathematically, this allows
one to define the nematic order parameter ϕ̄ in terms of
the (spin unpolarized) magnetic susceptibility χ (q) ac-
cording to ϕ̄ ≡ χ−1(Q2)−χ−1(Q1) [2]. Such an interplay
between nematic and spin degrees of freedom has been

FIG. 1. Spin fluctuations in momentum space (left) and in
real space (right) and polarization directions of the Fe spins
for the three nematic components, ϕxy (a,b), ϕyx (c,d), and
ϕzz (e,f). The red arrows correspond to the magnetic ordering
vector Q1 = (π, 0) and the blue arrows correspond to Q2 =
(0, π). The black spheres are the Fe sites, the green sphere is
the As site, and the green arrows indicate the direction of the
hyperfine field.

indeed observed by neutron scattering [6, 7, 12, 13] and
nuclear magnetic resonance (NMR) [14–16] experiments
in detwinned BaFe2As2 crystals.
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FIG. 2. (a) Crystal structure of BaFe2As2, with Ba (green),
Fe (blue) and As (magenta) sites shown. Lower panel shows
the Fe-As plane in the tetragonal phase, with arrows indicat-
ing the unit cell axes of the orthorhombic phase (a || (110)tet,
b || (110)tet). (b,c) Orientation of the magnetic field with
respect to the coil (H1) and strain axis for H0 ⊥ c (b) and
H0 || c (c). For positive (tensile) strain H0 is parallel to b,
whereas for negative (compressive) strain H0 is along a.

However, orbital degrees of freedom also participate ac-
tively in the nematic phase. This leads to the well known
effect that tetragonal symmetry-breaking is also mani-
fested by a ferro-orbital polarization that makes the oc-
cupation of the Fe dxz orbitals different than the occupa-
tion of the Fe dyz orbitals. A less explored effect emerges
from the relatively sizable spin-orbit coupling (SOC),
which converts anisotropies in real space into anisotropies
in spin space. On one hand, SOC enforces the spins
to point along the ordering vector direction below TN .
On the other hand, SOC leads to different magnitudes
of the diagonal spin susceptibility components, χαα (q)
with α = (x, y, z), in the nematic temperature regime,
TN < T < Ts. As a result, the nematic order param-
eter naturally acquires an internal spin structure, since
generically one must define ϕαβ = χ−1

αα(Q2) − χ−1
ββ (Q1).

Clearly, the nematic order parameter ϕ̄ defined above
can be understood as an average over all possible polar-
izations, ϕ̄ = 1

9

∑
αβ

ϕαβ . The space-group symmetry of

the iron pnictides enforces many of these combinations
to vanish, yielding only three non-zero independent com-
ponents: ϕxy, ϕyx, and ϕzz. The physical meaning of
each component is depicted in Fig. 1; for instance, ϕxy
is a measure of the asymmetry between spin fluctuations
peaked at Q1 and polarized along the x axis, and spin
fluctuations peaked at Q2 and polarized along the y axis.

Elucidating the hitherto unkown spin structure of the
nematic order parameter is fundamental to shed light on
the intricate interplay between orbital, spin, and lattice
degrees of freedom, which are ultimately responsible for

the superconducting instability of the system. In this
paper, we perform NMR spin-lattice relaxation measure-
ments to probe the anisotropy of the spin fluctuations un-
der fixed strain in the paramagnetic phase of BaFe2As2.
The role of the applied uniaxial strain is to provide a
small tetragonal symmetry-breaking field, akin to exter-
nally applied magnetic fields in ferromagnets. In contrast
to previous works, here we probe the magnetic fluctua-
tions anisotropy both in real space and in spin space –
more specifically, we determine each of the nematic sus-
ceptibilities associated with the three nematic compo-
nents ϕxy, ϕyx, and ϕzz. This is possible because the
magnetic fluctuations associated with each spin polar-
ization pattern generate very different types of fluctu-
ating local fields experienced by the 75As nuclear spin
(I = 3/2), which couples to the four nearest neighbor Fe
spins via a transferred hyperfine interaction (see Fig. 1)
[17]. Our main result is that the three nematic compo-
nents respond differently to external strain, i.e. nematic
order induces not only real-space anisotropy, but also af-
fects the spin-space anisotropy. In particular, we find
that the out-of-plane spin fluctuations centered at Q ‖ â
are more strongly enhanced by the strain, as compared to
the spin fluctuations polarized along the longer in-plane
axis. This raises the interesting possibility of reversing
the spin polarization of the system from in-plane to out-
of-plane by applying a sufficiently strong in-plane strain.
More broadly, our results thus opens a new avenue toward
magneto-mechanical manipulation of strongly correlated
systems that display nematic order.

Key to this study is our ability to control precisely the
uniaxial strain applied in the sample, which is achieved
by integrating a novel piezoelectric strain cell with an
NMR probe. This new device is based upon a design used
previously to investigate the superconducting transition
temperature of Sr2RuO4 [18, 19], and can achieve both
positive and negative strains with large strain homogene-
ity. This device differs from the horseshoe-clamp [9] used
previously for NMR [15], and offers superior control over
the sample alignment and the level of strain applied.

Single crystals of BaFe2As2 were cut along the tetrag-
onal (110) direction and mounted in the cryogenic strain
cell with field oriented both parallel and perpendicular to
the crystallographic c-axis, as shown in Fig. 2. The strain
cell contains two sets of piezoelectric stacks, one inner
and two outer. Because the sample is freely suspended
between the piezoelectric stacks rather than glued down
over a portion of the stack, the full displacement of each
stack is transferred to the sample. As a result the device
is able to achieve displacements of ±6µm at room tem-
perature and ±3µm at 4K, corresponding to strains of
the order of 10−3 in this material. A free-standing NMR
coil was placed around the sample prior to securing the
ends of the crystal in the strain device with epoxy. The
radiofrequency field H1 is oriented parallel to the strain
axis, which is always perpendicular to the external field,
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FIG. 3. (T1T )−1
y,z versus strain (a,c) and versus temperature (b,d) The solid lines are fits as described in the text. The open

diamonds in (b,d) are reproduced from Ref. 20. (e) χzz (Q1), χzz (Q2), and χxx (Q1) + χyy (Q2) as a function of strain at
137K and 141K. The data have been displaced vertically for clarity. The dashed lines are guides to the eye.

H0. In our device, strain is always applied along the x
axis defined in Fig. 2; since the b axis is defined as the
shorter axis, positive (i.e. tensile) strain corresponds to
x ‖ a and y ‖ b, whereas negative (i.e. compressive)
strain gives y ‖ a and x ‖ b. When the crystal is strained
by applying voltage to the piezoelectric stacks, the dis-
placement, x, is measured by a capacitive position sensor,
and strain is calculated as ε = (x − x0)/L0, where L0 is
the unstrained length of the crystal. To account for differ-
ential thermal contraction, the zero-strain displacement,
x0, was determined by the condition that the quadrupo-
lar splitting ναα satisfies the tetragonal-symmetry rela-
tionship |νxx| = |νyy| = |νzz|/2, as described in the sup-
plemental material. The linear relationship between ναα
and strain (Fig. S1) indicates that both positive and neg-
ative strains are achieved, without bowing of the crystal.
The field H0 was oriented either along the z direction
parallel to the crystalline c axis, or in the plane of the
crystal along the y-direction, as shown in Fig. 2.

The spin lattice relaxation rate (T1T )−1
µ for different

field orientations µ = z, y is shown in Fig. 3 both as
a function of strain ε and temperature T . It is strik-
ing that while (T1T )−1

z increases by approximately 30%
at 137K for the largest applied strain (approximatelly
0.3%), (T1T )−1

y increases by 500%. In both cases, both
positive and negative strain increase (T1T )−1 in a nonlin-
ear fashion. This behavior is a manifestation of the spin
anisotropy induced by nematic order. More precisely,

the spin lattice relaxation rate is primarily dominated by
the fluctuations of the local hyperfine field at the As site,
which in turn is determined by the neighboring iron spins
according to:(

1

T1T

)
µ

=
γ2

2
lim
ω→0

∑
q,α,β

F (µ)
αβ (q)

Imχαβ(q, ω)

}ω
, (1)

where γ is the nuclear gyromagnetic factor, F (µ)
αβ are the

hyperfine form factors, which depend on the field di-
rection µ (see Supplemental Material), χαβ(q, ω) is the
dynamical magnetic susceptibility, and α, β = {x, y, z}
[17]. Because the system is metallic, spin fluctuations
experience Landau damping, resulting in the low-energy
dynamics χ−1

αβ(q, ω) = χ−1
αβ(q) − i~ω/Γ, where Γ is the

Landau damping, as seen by neutron scattering exper-

iments. Consequently, lim
ω→0

Imχαβ(q,ω)
}ω = 1

Γχ
2
αβ(q), i.e.

the spin-lattice relaxation rate is proportional to the
squared susceptibility integrated over the entire Brillouin
zone. Since the magnetically ordered state has wave-
vectors Q1 = (π, 0) and Q2 = (0, π), one expects that
the susceptibility is peaked at these two momenta. In-
deed, neutron scattering experiments confirm that the
magnetic spectral weight is strongly peaked at Q1 and
Q2.

Therefore, as an initial step to elucidate the effect of
strain on the spin fluctuations anisotropy, we consider
that the susceptibility is sharply peaked at these two
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magnetic ordering vectors. Evaluation of the hyperfine
form factors yields:

(T1T )
−1
x ∝ χ

2
xx (Q1) + χ2

yy (Q2) + χ2
zz (Q2)

(T1T )
−1
y ∝ χ

2
xx (Q1) + χ2

yy (Q2) + χ2
zz (Q1)

(T1T )
−1
z ∝ χ

2
zz (Q1) + χ2

zz (Q2) (2)

where the prefactors are approximately the same in all
equations (see SM), and proportional to the off-diagonal
hyperfine matrix element Fxz coupling in-plane Fe spin
fluctuations to out-of-plane As hyperfine fields (and vice-
versa). The fact that χzz (Qi) contributes to T1 for all
directions of the applied magnetic field is thus consistent
with the hyperfine field analysis depicted in Fig. 1, since
out-of-plane spin fluctuations on the Fe sites produce hy-
perfine fluctuating fields in the As sites along both in-
plane directions. Similarly, the fact that only χxx (Q1)
and χyy (Q2) contribute to T1 for external fields applied
along the plane is a consequence of the fact that these
spin fluctuations generate hyperfine fields in the As site
oriented out of the plane.

Because by symmetry (T1T )
−1
x (ε) = (T1T )

−1
y (−ε),

the NMR data can be used to extract the strain
and temperature dependence of the three polarized
spin-susceptibility combinations χ2

zz (Q1), χ2
zz (Q2), and

χ2
xx (Q1) + χ2

yy (Q2), as shown in Fig. 3(e). This anal-
ysis provides several interesting insights. First, focusing
on the out-of-plane fluctuations, in-plane strain enhances
spin fluctuations around one of the two ordering vectors
(χzz (Q1) for ε > 0 and χzz (Q2) for ε < 0) at the same
time as it suppresses the fluctuations around the other
ordering vector. Therefore, in-plane strain transfers mag-
netic spectral weight between the two dominant out-of-
plane spin-fluctuation channels. This is consistent with
neutron scattering experiments in detwinned pnictides
[6], which however only probed the unpolarized suscepti-
bility. More importantly, this behavior is a direct mani-
festation of the response of the nematic order parameter
ϕzz to strain, since ϕzz = χ−1

zz (Q2)− χ−1
zz (Q1).

Turning now to the average in-plane fluctuations
χ2
xx (Q1) + χ2

yy (Q2), we note that, in contrast to the
quantity χzz (Q1) − χzz (Q2), it is an even function of
the applied strain. This behavior can be attributed
to the response of the nematic order parameter ϕxy =
χ−1
xx (Q2)−χ−1

yy (Q1) to strain. Similarly to ϕzz, ϕxy pro-
motes a transfer of magnetic spectral weight, but now
between x-polarized spin fluctuations around Q1 and y-
polarized spin fluctuations around Q2. Since only the
combination χ2

xx (Q1)+χ2
yy (Q2) contributes to the spin-

lattice relation rate, the total magnetic spectral weight
remains the same to linear order in ϕxy, since what is
suppressed in, say, χyy(Q2) is tranferred to χxx(Q1). Of
course, as strain is enhanced, non-linear effects quadratic
in ϕ2

xy take place, in agreement with the behavior dis-
played by Fig. 3(e). Note that the third nematic or-

der parameter, ϕyx = χ−1
yy (Q2) − χ−1

xx (Q1), does not af-
fect the in-plane fluctuations that contribute the most to
the spin-lattice relaxation rate. This is not unexpected,
since the spin fluctuations associated with χyy(Q1) and
χxx(Q2) do not generate hyperfine fields in the As sites,
as shown in Fig. 1.

The most striking feature of Fig. 3(e) is that the out-
of-plane spin fluctuations seem to have a larger response
to in-plane strain than the in-plane spin fluctuations.
This observation suggests that the nematic susceptibil-

ity associated with ϕzz, χ
(zz)
nem ≡ ∂ϕzz/∂ε, is larger than

the nematic susceptibility associated with ϕxy, χ
(xy)
nem ≡

∂ϕxy/∂ε, and is manifestation of the fact that nematic
order induces not only real-space anisotropy, but also
spin-space anisotropy. To make this analysis more quan-
titative, we fit the full temperature, strain, and field ori-
entation dependence of T1 to a model that incorporates
the fact that the magnetic fluctuations are not infinitely
peaked at the ordering vectors Q1,2, since the magnetic
correlation length is finite above the magnetic transition.
In the tetragonal phase, there are three different mag-
netic correlation lengths, ξx, ξy, and ξz, associated re-
spectively with the pairs of peaks (χxx (Q1) , χyy (Q2));
(χyy (Q1) , χxx (Q2)), and (χzz (Q1) , χzz (Q2)). This
spin anisotropy is intrinsic to the tetragonal crystalline
symmetry and is enforced by the spin-orbit coupling
even in the absence of nematic order. Nematic or-
der induced by strain breaks the equivalence between
these pairs of peaks, splitting the correlation lengths into
ξ̃−2
x = ξ−2

x ∓ϕxy, ξ̃−2
y = ξ−2

y ∓ϕyx, and ξ̃−2
z = ξ−2

z ∓ϕzz.
This model is similar to the one used previously in [15]
and is described in the supplemental material.

The fits for (T1T )−1
z and (T1T )−1

y in the absence of
strain are shown as solid gray lines in Figs. 3(b) and
(d) for ξx = ξy. We find ξz/ξx = 0.88, in agreement
with the fact that in the absence of strain the spins point
along the plane. Moreover, the temperature dependence
of ξx(T ), shown in Fig. 4(a), gives values consistent with
those measured by inelastic neutron scattering. Having
fixed the unstrained parameters, we perform fits in the
presence of strain, shown by the solid lines in Fig. 3(a)
and (c). The only parameters introduced in this case
are the nematic order parameters ϕxy = ϕyx and ϕzz.
The good agreement between the fitted and the experi-
mental curves of both (T1T )−1

z and (T1T )−1
y over a wide

temperature-strain regime demonstrates the suitability
of the phenomenological model employed in our analysis.

The temperature and strain behaviors of the nematic
order parameters ϕαβ allows us to extract the temper-

ature dependence of the nematic susceptibilities χ
(xy)
nem

and χ
(zz)
nem, as shown in Fig. 4(b). It is clear that gen-

erally χ
(zz)
nem > χ

(xy)
nem , particularly close to the magnetic

transition. This quantitative analysis corroborates the
qualitative conclusion above, namely that nematic order
induces anisotropies in spin-space, and that the out-of-
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FIG. 4. Fit parameters (a) κzz,yx/κxy, and (b) ξ and κxy ver-
sus temperature, based on the fits (solid lines) shown in Fig.
3. Also shown are the nematic susceptibilities measured by
Raman and elastoresistance measurements, reproduced from
Refs. 21 and 22 and 23, respectively. The solid lines are fits
as described in the text.

plane spin fluctuations are more strongly enhanced by
in-plane strain than the in-plane spin fluctuations. It is

interesting to compare χ
(xy)
nem and χ

(zz)
nem with the nematic

susceptibility extracted from elastoresistance [23] and
from electronic Raman spectroscopy experiments [21].
As shown in Fig. 4(b), the values are consistent, and
the NMR-extracted nematic susceptibilities also follow a
Curie-Weiss type of behavior [22], with a Curie temper-
ature T0 = 116 K comparable to that extracted from the
elastoresistance [23]. Note however that, in contrast to
our NMR analysis, the other probes for the nematic sus-
ceptibility are not sensitive to the “polarization” of the
nematic susceptibility.

To the best of our knowledge, our results are the first
to reveal the internal spin structure of the nematic order
parameter in iron-based superconductors. This behav-
ior is a clear manifestation of the entanglement between
spin, orbital, and lattice degrees of freedom in the nor-
mal state of these compounds. Since superconductivity
emerges from this unique state, the rich interplay be-
tween these different degrees of freedom revealed by our
NMR analysis will certainly affect the properties of the
superconducting state.

The surprising anisotropic response of different ne-
matic components to in-plane strain reveals that the spin
polarization can be controlled by lattice distortions, sim-
ilar to a piezomagnetic effect. In particular, the result

χ
(zz)
nem > χ

(xy)
nem implies that for sufficiently large strain ε∗,

the dominant spin polarization will shift from in-plane
to out-of-plane. The value of ε∗ can be estimated from
the condition that the out-of-plane magnetic correlation

length ξ̃z = ξz − εχ(zz)
nem becomes larger than the in-plane

magnetic correlation length ξ̃x = ξx − εχ
(xy)
nem , yielding

ε∗ ≈ 0.4% close to the magnetic transition temperature.
Such a strain value, which is just beyond the capability of
our specific piezo device, can reasonably be achieved by
similar types of devices, however. More importantly, this
analysis opens a new avenue to control spin polarization
in nematic materials without using magnetic fields, but
instead by using mechanical strain. Since nematic order
has been observed in other correlated materials such as
cuprates and ruthenates, it will be interesting to investi-
gate whether similar sizable effects are present in these
systems as well.

More broadly, our work demonstrates that precision
tunable strain in combination with NMR provides a novel
and important method to probe spin and charge degrees
of freedom. It provides an intriguing possibility to tune
the NMR spin relaxation rate by changing a voltage bias
on the piezoelectric stacks. The subtle coupling between
the lattice and spin polarizations exhibited by BaFe2As2

offers the potential for controlling magnetic properties
through lattice deformations in next generation materi-
als. Another potential application of our technique is
the use of nuclear quadrupolar resonance to image local
strains. The large response of the EFG to strain observed
in this study would translate into high spatial resolution
in a linear strain gradient, so that As NMR may be able
to resolve microscopic features such as grain boundaries
or defects.
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METHODS

Crystals were grown in self-flux as described in [24]
and cut along the (110)T direction. Sample A had a
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mass of 2.52 mg and was mounted with the field par-
allel to the c axis, and Sample B had a mass 0.91 mg
and was mounted with the field perpendicular to the c
axis (see Fig. 2). The crystals were secured with heat-
cured epoxy (UHU Plus 300 epoxy resin). Strain was
applied along the (110)T direction using the CS100 cryo-
genic uniaxial strain cell developed by Razorbill Instru-
ments based on a design by Hicks et. al. [18], mounted in
a modified probe operating in a Quantum Design PPMS
cryostat. The displacement, x was measured by moni-
toring the capacitance of using a precision capacitance
bridge with a resolution of 0.1nm. The strain was com-
puted as ε = (x − x0)/L0, where L0 = 2.052 mm and
x0 = 49.5 µm for sample A and L0 = 1.494 mm and
x0 = 51.58 µm for sample B. For sample B, positive
(tensile) strain corresponds to H0 || b̂ and negative (com-
pressive) strain corresponds to H0 || â. Because the sam-
ple was mounted at room temperature, thermal contrac-
tion creates positive strain even at zero piezo bias at low
temperatures, making a precise determination of x0 dif-
ficult. For sample A x0 was determined by the mini-
mum in (T1T )−1 versus x, and for sample B x0 was de-
termined by the value νbb(x0) = |νcc|/2 = 1.23 MHz,
where ναα is the quadrupolar splitting for field along
the α direction (see supplemental materials). The max-
imum/minimum possible applied voltages to the piezo-
electric stacks limited the range of strains that could be
applied to between approximately −0.002 to +0.003 in
the perpendicular case, and −0.0015 to +0.002 for the
parallel case. The spin-lattice relaxation rate was mea-
sured using inversion recovery at the central transition
in fixed field, and the data were fit to the expression
M(t) = M0

[
1− 2f

(
9
10e
−6t/T1 + 1

10e
−t/T1

)]
. The data

were well-fit to a single T1 value.
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SPECTRAL MEASUREMENTS

When the crystal is strained by applying voltage to
the piezoelectric stacks, the displacement, x, is measured
by a capacitive position sensor, and strain is calculated
as ε = (x − x0)/L0, where L0 is the unstrained length
of the crystal. It is crucial to determine the unstrained
displacement, x0, at cryogenic temperatures due to differ-
ential thermal contraction between the strain device and
the sample. This value can be obtained by observing the
asymmetry of the electric field gradient (EFG) tensor.
The spectra were measured by acquiring echoes while
sweeping the magnetic field H0 at fixed frequency. The
quadrupolar satellite resonances occur at fields Hsat =
(f0 ± ναα)/γ(1 + Kαα), where f0 is the radiofrequency,
γ = 7.29019 MHz/T is the gyromagnetic ratio, Kαα and
ναα are the Knight shift and EFG tensor components in
the α = (x, y, z) direction. The central transition field

is given by: Hcen = f0
γ(1+Kαα)

(
1
2 +

√
3f2

0−2(νββ+ναα)2

12

)
,

where β = (y, x, z) for α = x, y, z. The center of gravity
of each peak was used to determine the resonance field,
and hence Kαα and ναα as a function of strain.

Fig. 5(b) shows a typical field-swept NMR spec-
trum of the 75As, revealing a narrow central transition
(Iz = 1/2 ↔ −1/2) and two quadrupolar satellite peaks
(±3/2 ↔ ±1/2). The spectrum was fit to the sum of
three Gaussians to extract both the Knight shift, Kαα,
and the EFG, ναα. The EFG tensor is given by ναβ =
(eQ/12h)∂2V/∂xα∂xβ , where Q is the quadrupolar mo-
ment of the 75As and V is the electrostatic potential at
the As site. This quantity is dominated by the occupa-
tion of the dxz,yz-orbitals of the neighboring Fe atoms,
and the EFG asymmetry η = (νyy − νxx)/(νxx + νyy)
is a measure of the nematic order parameter [25, 26].
Note that the magnetic field lies along the shorter b-
axis under tensile strain (ε > 0), and along the longer
a-axis under compressive strain (ε < 0), as shown in
Fig. 2 of the main text. The EFG enables us to iden-
tify the zero-strain displacement, x0, by the condition
|νxx| = |νyy| = |νzz|/2. As shown in Fig. 5(c), νyy, and
hence η(ε) = (νyy(ε)−νyy(−ε))/(νyy(ε)+νyy(−ε)), varies
linearly with strain.

Despite the fact that the EFG varies with strain, we
find no significant variation of the satellite linewidth with
strain. The strong variation of the EFG with strain ex-
plains the quadrupolar broadening observed in Co, Ni
or Cu-doped Ba(Fe,M)2As2 [27–29]. The dopant atoms
create an inhomogeneous strain field that gives rise to
a distribution of local EFGs. Recently a finite value
of η ∼ 0.1 was reported in the tetragonal phase of un-
strained BaFe2(As1−xPx)2 above Ts [26]. The origin of
this finite nematicity is likely due to local defects, and
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FIG. 5. (a) Knight shift versus strain at 138K. (b) The
75As spectrum at 138K for a strain level of 0.0265% at fre-
quency 55.924 MHz. The solid line is a fit to the spectrum
as described in the text. (c) The quadrupolar splitting versus
strain, and (d) versus temperature. The zero-strain points
(diamonds) are reproduced from Ref. 20.

based on our results the strain fields are on the order of
0.05%.

The Knight shift is shown versus strain in Fig. 5(a)
for H0 ⊥ c. The in-plane Knight shift shows little or no
variation with ε, such that (Kxx−Kyy)/Kyy ≤ 3% at the
highest strain levels in this material. This result is sur-
prising because the same quantity is approximately 6% in
the nematic phase of FeSe [30]. Recent static susceptibil-
ity measurements in BaFe2As2 under strain indicate that
χxx and χyy in the paramagnetic phase differ by only 5%
[31]. This result suggests that χαα(q = 0) couples only
weakly to the strain.

SPIN-LATTICE RELAXATION RATE: MODEL

As stated in the main text, the spin-lattice relaxation rate is given by:(
1

T1T

)
µ

=
γ2

2

∑
q,α,β

F (µ)
αβ (q)

Imχαβ(q, ω)

}ω
(3)

where γ is the gyromagnetic ratio of the nuclear spin, and F (µ)
αβ is a form factor that depends on the direction of

the applied field (indicated by µ), and α, β = {x, y, z}. The coordinate system is defined such that x and y connect
nearest neighbor Fe atoms. Ref. [17] derived the form factor for an As nucleus subject to an arbitrary field direction.
In the paramagnetic state, one obtains (see also Ref. [15]):(

1

T1T

)
µ

=
γ2

2

∑
q

∑
α=1,2

[
R̄(µ) · Āq · ¯̃χ (q) · Ā†q ·

(
R̄(µ)

)†]
αα

(4)

All quantities with an overbar are 3× 3 matrices. The matrix ¯̃χ (q) is diagonal; its matrix elements are related to
the magnetic susceptibility elements according to:

χ̃αα (q) ≡ lim
ω→0

Imχαα (q, ω)

~ω
=

1

Γ
χ2
αα(q) (5)

where Γ is the Landau damping term. Furthermore, we have the hyperfine tensor:
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Āq = 4

 Axx cos
(
qx
2

)
cos
( qy

2

)
−Axy sin

(
qx
2

)
sin
( qy

2

)
iAxz sin

(
qx
2

)
cos
( qy

2

)
−Ayx sin

(
qx
2

)
sin
( qy

2

)
Ayy cos

(
qx
2

)
cos
( qy

2

)
iAyz cos

(
qx
2

)
sin
( qy

2

)
iAzx sin

(
qx
2

)
cos
( qy

2

)
iAzy cos

(
qx
2

)
sin
( qy

2

)
Azz cos

(
qx
2

)
cos
( qy

2

)
 (6)

and the rotation matrix:

R̄(µ) =

 sin2 φ+ cos θ cos2 φ − sin 2φ sin2 θ
2 cosφ sin θ

− sin 2φ sin2 θ
2 cos2 φ+ cos θ sin2 φ sinφ sin θ

− cosφ sin θ − sinφ sin θ cos θ

 (7)

Here, the field direction µ is described by the angles θ, ϕ according to ĥ = cosϕ sin θ x̂+sinϕ sin θ ŷ+cos θ ẑ. Because
the lattice distortion is very small, we consider hereafter that the hyperfine tensor remains essentially tetragonal, i.e.
Axx = Ayy, Ayz = Axz, and Axy = Ayx.

It is now straightforward to obtain the expressions for 1/ (T1T )µ for different field directions µ. We find:(
1

T1T

)
x

= 8γ2
∑
q

[
sin2

(qx
2

)
sin2

(qy
2

)
A2
xy + sin2

(qx
2

)
cos2

(qy
2

)
A2
xz

]
χ̃xx (q)

8γ2
∑
q

[
cos2

(qx
2

)
cos2

(qy
2

)
A2
yy + cos2

(qx
2

)
sin2

(qy
2

)
A2
yz

]
χ̃yy (q)

8γ2
∑
q

[
cos2

(qx
2

)
sin2

(qy
2

)
A2
yz + cos2

(qx
2

)
cos2

(qy
2

)
A2
zz

]
χ̃zz (q) (8)

(
1

T1T

)
y

= 8γ2
∑
q

[
cos2

(qx
2

)
cos2

(qy
2

)
A2
xx + sin2

(qx
2

)
cos2

(qy
2

)
A2
xz

]
χ̃xx (q)

8γ2
∑
q

[
sin2

(qx
2

)
sin2

(qy
2

)
A2
xy + cos2

(qx
2

)
sin2

(qy
2

)
A2
yz

]
χ̃yy (q)

8γ2
∑
q

[
sin2

(qx
2

)
cos2

(qy
2

)
A2
xz + cos2

(qx
2

)
cos2

(qy
2

)
A2
zz

]
χ̃zz (q) (9)

and:

(
1

T1T

)
z

= 8γ2
∑
q

[
cos2

(qx
2

)
cos2

(qy
2

)
A2
xx + sin2

(qx
2

)
sin2

(qy
2

)
A2
xy

]
χ̃xx (q)

8γ2
∑
q

[
cos2

(qx
2

)
cos2

(qy
2

)
A2
yy + sin2

(qx
2

)
sin2

(qy
2

)
A2
xy

]
χ̃yy (q)

8γ2
∑
q

[
sin2

(qx
2

)
cos2

(qy
2

)
A2
xz + cos2

(qx
2

)
sin2

(qy
2

)
A2
yz

]
χ̃zz (q) (10)

If we approximate the magnetic susceptibility as delta-functions peaked at the magnetic ordering vectors Q1 = (π, 0)
and Q2 = (0, π), we obtain:

(T1T )−1
x =

8γ2A2
xz

Γ

[
χ2
xx (Q1) + χ2

yy (Q2) + χ2
zz (Q2)

]
(11)

(T1T )−1
y =

8γ2A2
xz

Γ

[
χ2
xx (Q1) + χ2

yy (Q2) + χ2
zz (Q1)

]
(12)

(T1T )−1
z =

8γ2A2
xz

Γ

[
χ2
zz (Q1) + χ2

zz (Q2)
]

(13)

These equations can be inverted to extract the quantities:

χ2
zz (Q1) =

Γ

16γ2A2
xz

[
−(T1T )−1

y (−ε) + (T1T )−1
y (ε) + (T1T )−1

z (ε)
]

(14)

χ2
zz (Q2) =

Γ

16γ2A2
xz

[
(T1T )−1

y (−ε)− (T1T )−1
y (ε) + (T1T )−1

z (ε)
]

(15)

χ2
xx (Q1) + χ2

yy (Q2) =
Γ

16γ2A2
xz

[
(T1T )−1

y (−ε) + (T1T )−1
y (ε)− (T1T )−1

z (ε)
]
, (16)
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using the fact that (T1T )−1
x (ε) = (T1T )−1

y (−ε). These quantities are plotted in Fig. 3(e) of the main text.
Although useful for a qualitative analysis, this approximation neglects the important fact that the magnetic fluc-

tuations have finite correlation lengths ξ. To model this effect, we consider susceptibilities peaked at Q1 and Q2, as
seen by neutron scattering experiments (the amplitude χ0 of the susceptibilities is absorbed in Γ, for convenience) [6]:

Γχ̃xx (q) =
1[(

ξ−2
x − ϕxy

)
+ (cos qx − cos qy + 2)

]2 +
1[(

ξ−2
y + ϕyx

)
+ (− cos qx + cos qy + 2)

]2
Γχ̃yy (q) =

1[(
ξ−2
y − ϕyx

)
+ (cos qx − cos qy + 2)

]2 +
1[(

ξ−2
x + ϕxy

)
+ (− cos qx + cos qy + 2)

]2
Γχ̃zz (q) =

1[(
ξ−2
y − ϕzz

)
+ (cos qx − cos qy + 2)

]2 +
1[(

ξ−2
y + ϕzz

)
+ (− cos qx + cos qy + 2)

]2 ,
(17)

Note that we have three different correlation lengths: ξx corresponds to in-plane spin fluctuations with spins parallel
to the ordering vector direction; ξy corresponds to in-plane spin fluctuations with spins perpendicular to the ordering
vector direction; and ξz corresponds to out-of-plane spin fluctuations. This spin anisotropy originates from the spin-
orbit coupling, as shown in Ref. [32]. The nematic order parameters ϕαβ split the tetragonal degeneracy between
χxx (Q1) and χyy(Q2), between χxx (Q2) and χyy(Q1), and between χzz (Q1) and χzz(Q2). They are related to the

external strain ε according to the nematic susceptibilities χ
(αβ)
nem , i.e. ϕαβ = εχ

(αβ)
nem .

Substituting these expressions in Eqs. (8), (9), and (10) give:

Γ

8γ2

(
1

T1T

)
x

= A2
xy

[
J1

(
ξ−2
x − ϕxy

)
+ J1

(
ξ−2
y + ϕyx

)]
+A2

xz

[
J3

(
ξ−2
x − ϕxy

)
+ J2

(
ξ−2
y + ϕyx

)]
+A2

yy

[
J1

(
ξ−2
y − ϕyx

)
+ J1

(
ξ−2
x + ϕxy

)]
+A2

yz

[
J2

(
ξ−2
y − ϕyx

)
+ J3

(
ξ−2
x + ϕxy

)]
+A2

yz

[
J2

(
ξ−2
z − ϕzz

)
+ J3

(
ξ−2
z + ϕzz

)]
+A2

zz

[
J1

(
ξ−2
z − ϕzz

)
+ J1

(
ξ−2
z + ϕzz

)]
(18)

as well as

Γ

8γ2

(
1

T1T

)
y

= A2
xx

[
J1

(
ξ−2
x − ϕxy

)
+ J1

(
ξ−2
y + ϕyx

)]
+A2

xz

[
J3

(
ξ−2
x − ϕxy

)
+ J2

(
ξ−2
y + ϕyx

)]
+A2

xy

[
J1

(
ξ−2
y − ϕyx

)
+ J1

(
ξ−2
x + ϕxy

)]
+A2

yz

[
J2

(
ξ−2
y − ϕyx

)
+ J3

(
ξ−2
x + ϕxy

)]
+A2

xz

[
J3

(
ξ−2
z − ϕzz

)
+ J2

(
ξ−2
z + ϕzz

)]
+A2

zz

[
J1

(
ξ−2
z − ϕzz

)
+ J1

(
ξ−2
z + ϕzz

)]
(19)

and

Γ

8γ2

(
1

T1T

)
z

= A2
xx

[
J1

(
ξ−2
x − ϕxy

)
+ J1

(
ξ−2
y + ϕyx

)]
+A2

xy

[
J1

(
ξ−2
x − ϕxy

)
+ J1

(
ξ−2
y + ϕyx

)]
+A2

yy

[
J1

(
ξ−2
y − ϕyx

)
+ J1

(
ξ−2
x + ϕxy

)]
+A2

xy

[
J1

(
ξ−2
y − ϕyx

)
+ J1

(
ξ−2
x + ϕxy

)]
+A2

xz

[
J3

(
ξ−2
z − ϕzz

)
+ J2

(
ξ−2
z + ϕzz

)]
+A2

yz

[
J2

(
ξ−2
z − ϕzz

)
+ J3

(
ξ−2
z + ϕzz

)]
(20)

Here, we defined the integrals:

J1 (r) =

∫ π

−π

∫ π

−π

dqxdqy

(2π)
2

cos2
(
qx
2

)
cos2

( qy
2

)
[r + (cos qx − cos qy + 2)]

2 ≡
∫ π

−π

∫ π

−π

dqxdqy

(2π)
2

sin2
(
qx
2

)
sin2

( qy
2

)
[r + (cos qx − cos qy + 2)]

2

J2 (r) =

∫ π

−π

∫ π

−π

dqxdqy

(2π)
2

cos2
(
qx
2

)
sin2

( qy
2

)
[r + (cos qx − cos qy + 2)]

2

J3 (r) =

∫ π

−π

∫ π

−π

dqxdqy

(2π)
2

sin2
(
qx
2

)
cos2

( qy
2

)
[r + (cos qx − cos qy + 2)]

2 (21)
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In the limit ξ−2
i ± ϕαβ � 1, we can approximate the integrals by expanding the integrand near (π, 0), yielding:

J1 (r) ≈ 1

4π
ln

(
Λ1√
r

)
J2 (r) ≈ 1

8π

[
1− r

2
ln

(
Λ2√
r

)]
J3 (r) ≈ 1

2πr
(22)

where Λ1 ≈ 1.45 and Λ2 ≈ 3.2 for r < 0.5, according to numerical evaluations of the integrals. Note that, as
expected from symmetry considerations, (T1T )

−1
x (−ε) = (T1T )

−1
y (ε) and (T1T )

−1
z (−ε) = (T1T )

−1
z (ε).

FITTING THE SPIN LATTICE RELAXATION
RATE DATA

The expressions for (T1T )−1
α given above depend on six

parameters: ξx, ξy, ξz, ϕxy, ϕyx, and ϕzz. We first fit the
zero-strain data shown in Fig. 3(b) and 3(d) of the main
text assuming all the ϕαβ = 0, and that ξy = ξx. Because
the Landau damping term, Γ, is unknown, one cannot
simply extract the ξx,z directly from the data. How-
ever, the ratio of (T1T )−1

x /(T1T )−1
z does constrain the

data and enable us to fit the data using the temperature-

dependent correlation lengths shown in Fig. 4(b) of the
main text. The hyperfine coupling constants are given
by: Axx = Ayy = 0.66 T/µB , Azz = 0.47 T/µB , and
Axz = Ayz = 0.43 T/µB [20], and we assume the value
Axy = 0.33 T/µB [15].

Using these values for ξx,z and assuming that ξy = ξx,
we then proceed to fit the strain-dependent (T1T )−1 data

to the three nematic order parameters, ϕxy = χ
(xy)
nemε,

ϕyx = χ
(yx)
nemε, and ϕzz = χ

(zz)
nemε, where the χ

(αβ)
nem are the

static nematic susceptibilities of the three components of
the nematic order. These data are shown in Fig. 4 of the
main text as a function of temperature.
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