
CFD-DEM modeling the effect of column size & bed height on Umf in micro fluidized beds with Geldart B particles

Yupeng Xu¹, <u>Tingwen Li¹</u>, Jordan Musser¹, William Rogers¹, Xiaoxing Liu², Guangwen Xu²

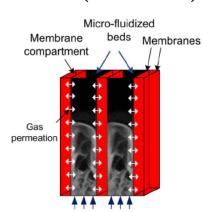
- 1. National Energy Technology Laboratory, Department of Energy, US
- 2. Institute of Process Engineering, Chinese Academy of Sciences, CHINA

Outline

- **❖**Background and Motivation
- **Simulation** settings
- *Results and discussion
- *****Conclusions

Motivation

❖ Micro Fluidized Bed Reaction Analyzer (MFBRA)


- Integrate MFB with gas analysis spectrometer
- Rapid heating and low diffusion
- Online real-time isothermal differential reaction
- Effective TGA-complementary instrument for gas-solid reactor analysis
- Applications: pyrolysis, combustion, gasification, reduction, catalysis, and absorption.

Prototype Integral MFBRA MS-isolated MFBRA LC-D LC-D Process Mass Epectrometer

MFBRA @ CAS, China

❖ Micro Membrane Fluidized Bed Reactor (MMFBR)

- Membrane bundle to add/remove gas
- Optimal heat & mass transfer
- Maximization of membrane area
- Process integration and intensification

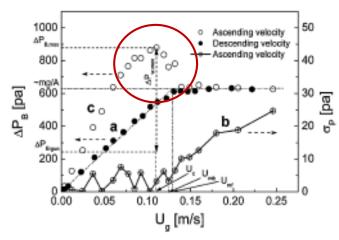
Fluidized bed membrane

Pd-membrane assembly

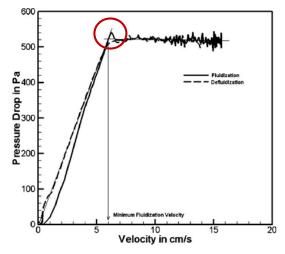
MMFBR @ TUE, Netherlands member read

Motivation

Previous experimental studies


- *Column size range from mm to cm
- Pressure overshoot exists in micro fluidized beds even for group B particles
- ❖ Umf is influenced by bed height and column diameter

❖ Wall effect dominates in micro-fluidized bed


- Di Felice and Gibilaro (2004) assume the wall effect is caused by the increase of bed voidage due to wall geometrical effect
- *Rao et al. (2010) consider the enhancing of particle-wall friction due to the increase of the ratio of wall area to bulk volume as the main reason

❖To better understand the fluidization behavior in micro-fluidized bed reactors through CFD-DEM simulations

- ❖Effect of column diameter and bed height on Umf
- ❖Detailed investigation on the wall effect

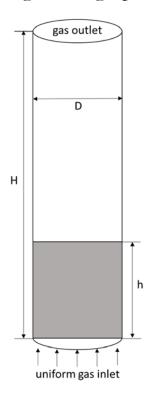
Liu et al. CEJ (2008)

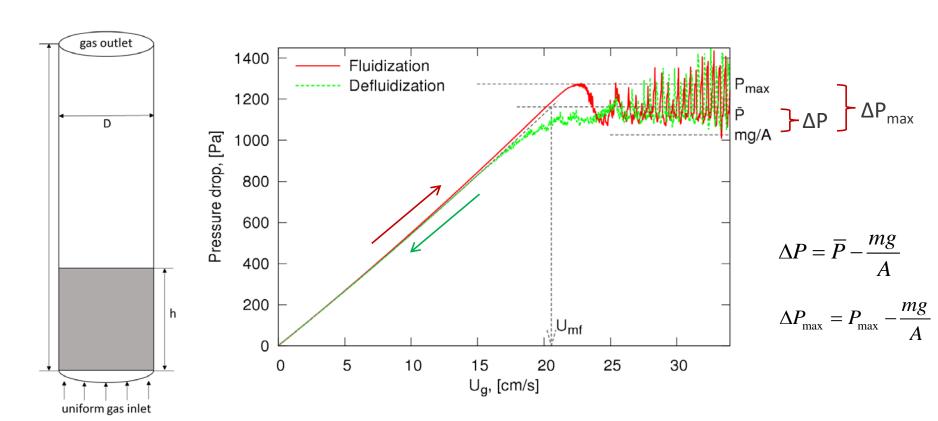
Rao et al. AIChE (2010)

Simulation approach

Multiphase Flow with Interphase eXchanges - Discrete Element Model (MFIX-DEM)

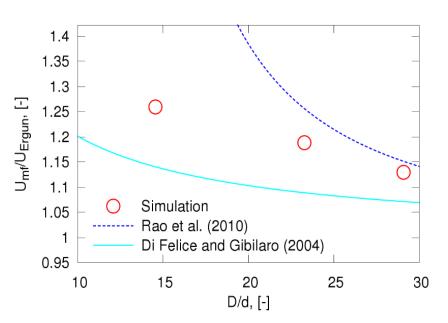
- Cartesian grids are used to discretize the computational domain.
- Boundary cells are truncated to conform the domain surface (Cut-cell meshing technique).
- Hybrid parallel mode with distributed memory parallel (DMP) and shared memory parallel (SMP) using message passing interface (MPI) and open multi-processing (OpenMP).

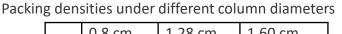


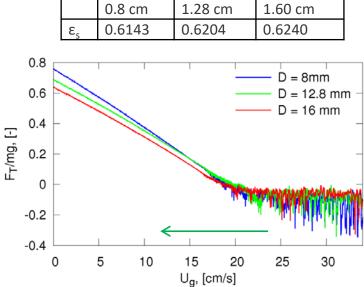

Table 1: Parameters used in the numerical simulations

Parameter	Unit	Value
Gravity y-direction	m/s2	9.81
Gas density	Kg/m3	1.2
Gas viscosity	Pa∙s	1.8e-5
Particle diameter	μm	550
Particle density	kg/m3	2500
Particle sphericity	-	0.9
Restitution coefficient (normal)	-	0.99
Restitution coefficient (tangential)	-	0.3
Friction coefficient between particles	-	0.4
Friction coefficient between particle and wall	-	0.4
Normal spring stiffness	N/s	100

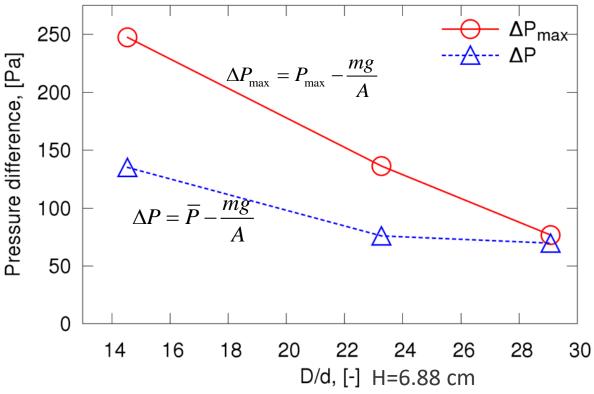
An example (D=0.80 cm & h = 6.88 cm)


- The air velocity was slowly increased beyond the point of fluidization and then decreased to zero to get the entire pressure drop profile (gas velocity increase/decrease rate: 1 cm/s)
- Both the pressure overshoot and increasing of Umf were captured by our simulations





Effect of different column diameters (D=0.80 cm, 1.28 cm, 1.60 cm & h = 6.88 cm)



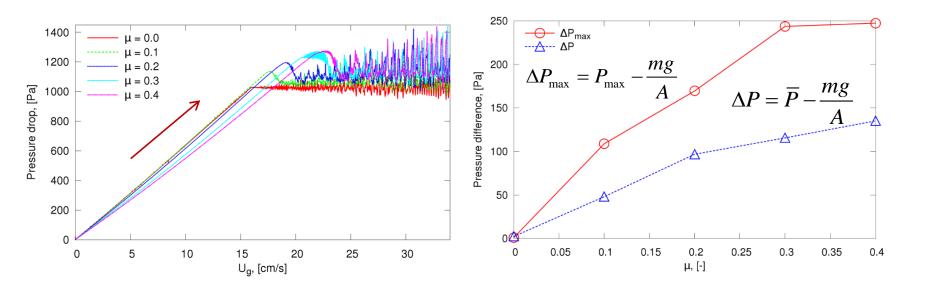
- The packing density increases with increasing column diameters, which contributes to the decrease of minimum fluidization velocity.
- The fraction of bed weight supported by the wall decreases with increasing column diameter during defluidization stage.
- These two factors, frictional and geometrical effects from the wall, are coupled and hard to distinguish.

Pressure differences for different column sizes

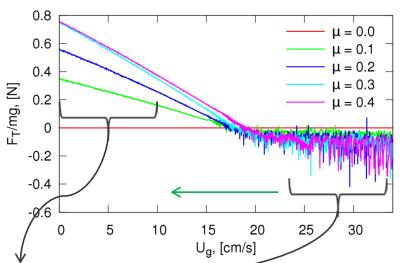


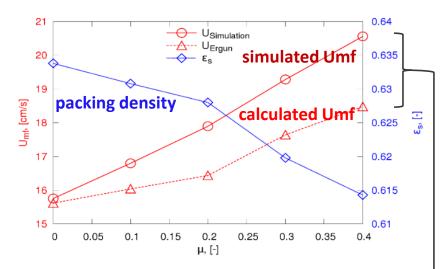
- The pressure differences for a fixed bed height with varying column diameters both decrease with increasing column diameter.
- The difference ($\Delta Pmax \Delta P$) characterizing pressure overshoot decreases with increasing column diameters.

Effect of static bed height (D = 1.6 cm)

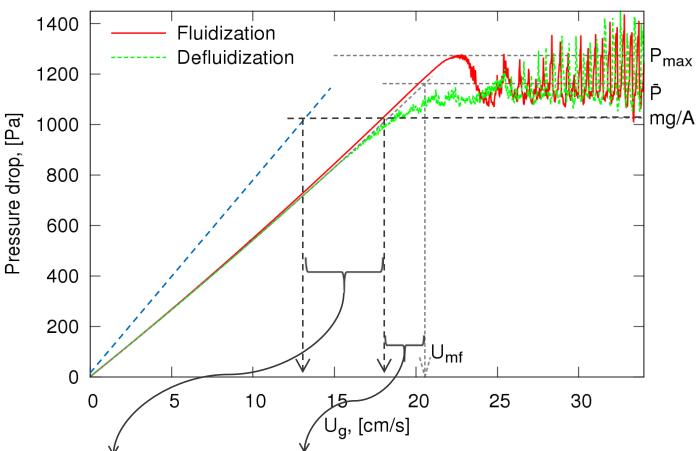

- Umf increases with static bed height which highlights the frictional effect
- Results agree well with experimental observation and Rao's correlation.

Parametric study of wall friction (D=0.8 cm; H=6.88 cm)


- The frictional effect is investigated by varying the particle-wall friction coefficient μ from 0.0 to 0.4 for the 0.8 cm bed diameter and 6.88 cm static bed height.
- When particle-wall friction is 0, there is no noticeable pressure overshoot. As the particle-wall friction coefficient increases, both the overshoot and average bed pressure drop increase.
- Pressure differences increases with particle-wall friction suggesting stronger frictional force.



Parametric study of wall friction (D=0.8 cm; H=6.88 cm)



- The positive tangential force during defluidization indicating the wall partially supports the weight of particles.
- The negative particle-wall tangential force during fluidization indicates upward particle movement.
- The packing density decreases from 0.634 to 0.614 when particle-wall friction coefficient is increased from 0 to 0.4. The increased porosity leads to less flow resistance, hence delays in Umf.
- The elevated pressure drop due to wall friction further delays the onset of fluidization.

Wall effect on Umf

• Wall effect: particle packing and wall friction both delay Umf for micro-fluidized bed in this study

Conclusions

- The effect of column diameter and bed height on Umf was investigated for micro-fluidized beds of group B particles using MFIX-DEM.
- Decreasing column diameter and increasing bed height led to high Umf due to the stronger wall effect which is consistent with experimental results.
- Detailed analysis on wall effect was conducted including the wall geometrical effect and particle-wall friction.
- CFD-DEM is a very powerful tool to investigate fluidization characteristics of micro-fluidized beds.

Acknowledgements & Disclaimer

Acknowledgements

This technical effort was performed in support of the U.S. Department of Energy, Office of Fossil Energy's Advanced Numerical Simulation of Multiphase Flow through the National Energy Technology Laboratory under the RES contract DE-FE0004000. This research was also supported in part by an appointment to the National Energy Technology Laboratory Research Participation Program, sponsored by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

