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Motivation
Micro Fluidized Bed Reaction Analyzer (MFBRA) 

• Integrate MFB with gas analysis spectrometer
• Rapid heating and low diffusion
• Online real-time isothermal differential reaction
• Effective TGA-complementary instrument for gas-solid reactor 

analysis
• Applications: pyrolysis, combustion, gasification, reduction, 

catalysis, and absorption.

Micro Membrane Fluidized Bed Reactor (MMFBR) 
• Membrane bundle to add/remove gas
• Optimal heat & mass transfer
• Maximization of  membrane area
• Process integration and intensification

MMFBR @ TUE, Netherlands

MFBRA @ CAS, China



4

Previous experimental studies
Column size range from mm to cm
Pressure overshoot exists in micro fluidized beds even for 

group B particles
Umf is influenced by bed height and column diameter

Wall effect dominates in micro-fluidized bed
Di Felice and Gibilaro (2004) assume the wall effect is caused 

by the increase of  bed voidage due to wall geometrical effect
Rao et al. (2010) consider the enhancing of  particle-wall 

friction due to the increase of  the ratio of  wall area to bulk 
volume as the main reason 

To better understand the fluidization behavior in 
micro-fluidized bed reactors through CFD-DEM 
simulations
Effect of  column diameter and bed height on Umf
Detailed investigation on the wall effect

Motivation

Liu et al. CEJ (2008) 

Rao et al. AIChE (2010) 



5

Simulation approach
Multiphase Flow with Interphase eXchanges - Discrete Element Model (MFIX-DEM) 

Parameter Unit Value
Gravity y-direction m/s2 9.81
Gas density Kg/m3 1.2
Gas viscosity Pa·s 1.8e-5
Particle diameter μm 550
Particle density kg/m3 2500
Particle sphericity - 0.9
Restitution coefficient (normal) - 0.99
Restitution coefficient (tangential) - 0.3
Friction coefficient between particles - 0.4
Friction coefficient between particle and wall - 0.4
Normal spring stiffness N/s 100

Table 1: Parameters used in the numerical simulations

• Cartesian grids are used to discretize the computational domain.

• Boundary cells are truncated to conform the domain surface (Cut-cell meshing technique).

• Hybrid parallel mode with distributed memory parallel (DMP) and shared memory parallel 
(SMP) using message passing interface (MPI) and open multi-processing (OpenMP). 
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Results
An example (D=0.80 cm & h = 6.88 cm)

mgP P
A

∆ = −

max max
mgP P
A

∆ = −

• The air velocity was slowly increased beyond the point of  fluidization and then decreased to 
zero to get the entire pressure drop profile (gas velocity increase/decrease rate: 1 cm/s )

• Both the pressure overshoot and increasing of  Umf were captured by our simulations

ΔP ΔPmax
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Results
Effect of different column diameters (D=0.80 cm, 1.28 cm, 1.60 cm & h = 6.88 cm)

0.8 cm 1.28 cm 1.60 cm
εs 0.6143 0.6204 0.6240

Packing densities under different column diameters

• The packing density increases with increasing column diameters, which contributes to the 
decrease of  minimum fluidization velocity. 

• The fraction of  bed weight supported by the wall decreases with increasing column diameter 
during defluidization stage.

• These two factors, frictional and geometrical effects from the wall, are coupled and hard to 
distinguish. 
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Results
Pressure differences for different column sizes

• The pressure differences for a fixed bed height with varying column diameters both decrease 
with increasing column diameter. 

• The difference (ΔPmax – ΔP) characterizing pressure overshoot decreases with increasing 
column diameters.

H=6.88 cm

max max
mgP P
A

∆ = −

mgP P
A

∆ = −
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Results
Effect of static bed height (D = 1.6 cm)

• Umf increases with static bed height which highlights the frictional effect  

• Results agree well with experimental observation and Rao’s correlation.
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Results
Parametric study of wall friction (D=0.8 cm; H=6.88 cm)

• The frictional effect is investigated by varying the particle-wall friction coefficient µ from 
0.0 to 0.4 for the 0.8 cm bed diameter and 6.88 cm static bed height. 

• When particle-wall friction is 0, there is no noticeable pressure overshoot. As the particle-
wall friction coefficient increases, both the overshoot and average bed pressure drop 
increase. 

• Pressure differences increases with particle-wall friction suggesting stronger frictional force.

mgP P
A

∆ = −
max max

mgP P
A

∆ = −
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Results
Parametric study of wall friction (D=0.8 cm; H=6.88 cm)

• The positive tangential force during defluidization indicating the wall partially supports the 
weight of  particles. 

• The negative particle-wall tangential force during fluidization indicates upward particle 
movement. 

• The packing density decreases from 0.634 to 0.614 when particle-wall friction coefficient is 
increased from 0 to 0.4.  The increased porosity leads to less flow resistance, hence delays in 
Umf.

• The elevated pressure drop due to wall friction further delays the onset of  fluidization.

packing density

simulated Umf

calculated Umf
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Results
Wall effect on Umf

• Wall effect: particle packing and wall friction both delay Umf for micro-fluidized bed in 
this study
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• The effect of  column diameter and bed height on Umf was investigated for micro-fluidized 
beds of  group B particles using MFIX-DEM.

• Decreasing column diameter and increasing bed height led to high Umf due to the stronger 
wall effect which is consistent with experimental results.

• Detailed analysis on wall effect was conducted including the wall geometrical effect and 
particle-wall friction.

• CFD-DEM is a very powerful tool to investigate fluidization characteristics of  micro-
fluidized beds.

Conclusions
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