skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanical Behavior of UO2 at Sub-grain Length Scales: Quantification of Elastic, Plastic and Creep Properties via Microscale Testing

Abstract

Techniques were developed to measure properties at sub-grain scales using depleted Uranium Oxide (d-UO2) samples heat-treated to obtain different grain sizes and oxygen stoichiometries, through three main tasks: 1) sample processing and characterization, 2) microscale and conventional testing and 3) modeling. Grain size and crystallography were characterized using Scanning Electron Microscopy (SEM), in conjunction with Electron Backscattering Diffraction (EBSD) and Electron Channeling Contrast Imaging (ECCI). Grains were then carefully selected based on their crystallographic orientations to perform ex-situ micromechanical tests with samples machined via Focused Ion Beam (FIB), with emphasis on micro-cantilever bending. These experiments were performed under controlled atmospheres, to insure stoichiometry control, at temperatures up to 700 °C and allowed measurements involving elastic (effective Young’s modulus), plastic (critical resolved shear stresses) and creep (creep strain rates) behavior. Conventional compression experiments were performed simultaneously to compare with the ex-situ measurements and study potential size effects. Modeling was implemented using anisotropic elasticity and inelastic constitutive relations for plasticity and creep based on kinematics and kinetics of dislocation glide that account for the effects of crystal orientation, and stress. The models will be calibrated and validated using the experimental data. This project provided insight on correlations among stoichiometry, crystallography and mechanicalmore » behavior in advanced oxide fuels, provided valuable experimental data to validate and calibrate mesoscale fuel performance codes and also a framework to measure sub-grain scale mechanical properties that should be suitable for use with irradiated samples due to small volumes required. The goals and metrics of the ongoing study of thermo-mechanical behavior in depleted uranium dioxide (d-UO2) outlined in this project have been concluded successfully, resulting in: 1) the successful fabrication, processing, and characterization of large-grained samples with various orientations (up to and including single crystals) having stoichiometric and hyper-stoichiometric O/U ratios; 2) formulation, calibration, and validation of a crystal plasticity constitutive model to describe the creep deformation of UO2 at the sub-grain length scale (single crystal level) at intermediate temperatures; 3) the successful calibration of a crystal plasticity constitutive model to describe the elasto-plastic deformation of microcantilever beams, also at moderate temperatures. Samples were prepared from natural uranium oxide powder of production-quality provided by Areva. The powder was pressed in a die to a pressure of 100 MPa to produce green pellets with no sintering aids, lubricants, or any other additives. The green pellets were then heated up to 1700 °C under ultra-high purity argon atmosphere (~1 ppm O2). The atmosphere was then changed to 79% Argon, 21% O2 and the temperature was held at 1700 °C for 2 hours to sinter the pellets under oxidative conditions [1] that are known to increase grain growth kinetics in UO2 [2]. Samples were then cooled down under Ar-4%H2 atmosphere to reduce the samples back to stoichiometric UO2. For macro-scale procedures, testing of UO2 samples with large grains was performed at 1200 °C using a modified load frame capable of applying dead-weight loads to ensure constant stress conditions, while displacement of the sample produced by the applied load was measured with high precision micrometers to obtain strains. Stress steps were used during testing and the strains were monitored to measured creep strain rates under steady state for each level of stress used, so that stress exponents could be obtained. The results of the mechanical testing, along with sample geometry and crystal orientation of the grains in the samples, as well as post-test sample characterization were used to formulate a viscoplastic model to account for steady state (stage II) creep behavior, along with basic assumptions from crystal plasticity and kinematic constraints due to testing fixtures. In the micro-scale, testing of microcantilever beams at temperatures ranging from 25 to 570 °C was performed in-situ with a scanning electron microscope with a special attachment to apply load and measure displacement while the samples were at temperature. The load-displacement curves obtained showed linear behavior before fracture for all temperatures attempted except 570 °C, where clear deviations from non-linearity were observed before fracture. These deviations were consistently observed for all samples tested for a given orientation. A viscoplastic model was used to account for the presence of inelastic strain, along with basic assumptions from crystal plasticity and beam theory. These models were kept as simple as possible, and results from tests performed in a set of samples with a given crystal orientation were used to calibrate the material constants for the model, while results from a different sample set were then used for validation, thus satisfying the conditions of all main tasks within the parameters of this project. Details of these efforts are outlined in this report.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2];  [2]
  1. Arizona State Univ., Tempe, AZ (United States)
  2. Univ. of California, Berkeley, CA (United States)
Publication Date:
Research Org.:
Arizona State Univ., Tempe, AZ (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
1433510
Report Number(s):
13-5505
13-5505
DOE Contract Number:  
NE0000670
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English

Citation Formats

Shaffer, B., Roney, K., Gong, B., Lim, H., McDonald, R., Rudman, K., Peralta, Pedro, Frazer, D., and Hosemann, P. Mechanical Behavior of UO2 at Sub-grain Length Scales: Quantification of Elastic, Plastic and Creep Properties via Microscale Testing. United States: N. p., 2018. Web. doi:10.2172/1433510.
Shaffer, B., Roney, K., Gong, B., Lim, H., McDonald, R., Rudman, K., Peralta, Pedro, Frazer, D., & Hosemann, P. Mechanical Behavior of UO2 at Sub-grain Length Scales: Quantification of Elastic, Plastic and Creep Properties via Microscale Testing. United States. https://doi.org/10.2172/1433510
Shaffer, B., Roney, K., Gong, B., Lim, H., McDonald, R., Rudman, K., Peralta, Pedro, Frazer, D., and Hosemann, P. 2018. "Mechanical Behavior of UO2 at Sub-grain Length Scales: Quantification of Elastic, Plastic and Creep Properties via Microscale Testing". United States. https://doi.org/10.2172/1433510. https://www.osti.gov/servlets/purl/1433510.
@article{osti_1433510,
title = {Mechanical Behavior of UO2 at Sub-grain Length Scales: Quantification of Elastic, Plastic and Creep Properties via Microscale Testing},
author = {Shaffer, B. and Roney, K. and Gong, B. and Lim, H. and McDonald, R. and Rudman, K. and Peralta, Pedro and Frazer, D. and Hosemann, P.},
abstractNote = {Techniques were developed to measure properties at sub-grain scales using depleted Uranium Oxide (d-UO2) samples heat-treated to obtain different grain sizes and oxygen stoichiometries, through three main tasks: 1) sample processing and characterization, 2) microscale and conventional testing and 3) modeling. Grain size and crystallography were characterized using Scanning Electron Microscopy (SEM), in conjunction with Electron Backscattering Diffraction (EBSD) and Electron Channeling Contrast Imaging (ECCI). Grains were then carefully selected based on their crystallographic orientations to perform ex-situ micromechanical tests with samples machined via Focused Ion Beam (FIB), with emphasis on micro-cantilever bending. These experiments were performed under controlled atmospheres, to insure stoichiometry control, at temperatures up to 700 °C and allowed measurements involving elastic (effective Young’s modulus), plastic (critical resolved shear stresses) and creep (creep strain rates) behavior. Conventional compression experiments were performed simultaneously to compare with the ex-situ measurements and study potential size effects. Modeling was implemented using anisotropic elasticity and inelastic constitutive relations for plasticity and creep based on kinematics and kinetics of dislocation glide that account for the effects of crystal orientation, and stress. The models will be calibrated and validated using the experimental data. This project provided insight on correlations among stoichiometry, crystallography and mechanical behavior in advanced oxide fuels, provided valuable experimental data to validate and calibrate mesoscale fuel performance codes and also a framework to measure sub-grain scale mechanical properties that should be suitable for use with irradiated samples due to small volumes required. The goals and metrics of the ongoing study of thermo-mechanical behavior in depleted uranium dioxide (d-UO2) outlined in this project have been concluded successfully, resulting in: 1) the successful fabrication, processing, and characterization of large-grained samples with various orientations (up to and including single crystals) having stoichiometric and hyper-stoichiometric O/U ratios; 2) formulation, calibration, and validation of a crystal plasticity constitutive model to describe the creep deformation of UO2 at the sub-grain length scale (single crystal level) at intermediate temperatures; 3) the successful calibration of a crystal plasticity constitutive model to describe the elasto-plastic deformation of microcantilever beams, also at moderate temperatures. Samples were prepared from natural uranium oxide powder of production-quality provided by Areva. The powder was pressed in a die to a pressure of 100 MPa to produce green pellets with no sintering aids, lubricants, or any other additives. The green pellets were then heated up to 1700 °C under ultra-high purity argon atmosphere (~1 ppm O2). The atmosphere was then changed to 79% Argon, 21% O2 and the temperature was held at 1700 °C for 2 hours to sinter the pellets under oxidative conditions [1] that are known to increase grain growth kinetics in UO2 [2]. Samples were then cooled down under Ar-4%H2 atmosphere to reduce the samples back to stoichiometric UO2. For macro-scale procedures, testing of UO2 samples with large grains was performed at 1200 °C using a modified load frame capable of applying dead-weight loads to ensure constant stress conditions, while displacement of the sample produced by the applied load was measured with high precision micrometers to obtain strains. Stress steps were used during testing and the strains were monitored to measured creep strain rates under steady state for each level of stress used, so that stress exponents could be obtained. The results of the mechanical testing, along with sample geometry and crystal orientation of the grains in the samples, as well as post-test sample characterization were used to formulate a viscoplastic model to account for steady state (stage II) creep behavior, along with basic assumptions from crystal plasticity and kinematic constraints due to testing fixtures. In the micro-scale, testing of microcantilever beams at temperatures ranging from 25 to 570 °C was performed in-situ with a scanning electron microscope with a special attachment to apply load and measure displacement while the samples were at temperature. The load-displacement curves obtained showed linear behavior before fracture for all temperatures attempted except 570 °C, where clear deviations from non-linearity were observed before fracture. These deviations were consistently observed for all samples tested for a given orientation. A viscoplastic model was used to account for the presence of inelastic strain, along with basic assumptions from crystal plasticity and beam theory. These models were kept as simple as possible, and results from tests performed in a set of samples with a given crystal orientation were used to calibrate the material constants for the model, while results from a different sample set were then used for validation, thus satisfying the conditions of all main tasks within the parameters of this project. Details of these efforts are outlined in this report.},
doi = {10.2172/1433510},
url = {https://www.osti.gov/biblio/1433510}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Apr 16 00:00:00 EDT 2018},
month = {Mon Apr 16 00:00:00 EDT 2018}
}