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Presentation Outline 
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• Introduction
• Motivation: CH4 fugitive emissions monitoring

• Design and characterization of a portable TDLAS sensor
• TDLAS sensor construction
• Sensitivity analysis and chamber response time

• Field deployment at METEC CSU
• Accuracy benchmark vs. MOX VOC sensors
• AOA localization of CH4 fugitive emissions
• Source magnitude estimation (Gaussian plume / ML algorithms)

• Toward a next generation integrated photonic chip sensor
• Initial results: on-chip evanescent field waveguide TDLAS

• Concluding remarks
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Motivation: CH4 fugitive emissions monitoring
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US Energy Information 
Administration

• > 500,000 active oil/gas wells in USA

• 570 × 109 ft3 of CH4 leakage in 2009,
(59 % leaks during production phase)

• ~ 30% anthropogenic CH4 emissions

• Radiative forcing of CH4 is 37× greater
than CO2

Alvarez et. al., “Greater focus needed on methane
leakage from natural gas infrastructure,” Proc. Nat.
Acad. Sci., 109 (17), pp. 6435-6440, (2012).

Condensate 
Tanks

Wellhead

Separation Unit

CSU METEC Testsite

• CH4 leakage rate on oil/gas well pad
is 2-10% of total production!

Cost-effective sensor network for
localization and precise quantification
(ppmv-level) of CH4 on oil and gas
production well-pads
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Use-case for innovative sensor networks
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Technological driver: ARPA-E MONITOR

• Cost-effective sensor network for continuous 
CH4 leak quantification, localization, and repair

• No viable technology today: Alignment of 
performance with required cost point poses 
significant challenge

Opportunity driver: Application of physical 
analytics/IoT solutions to

• Significantly reduce fugitive CH4 emissions 
across the oil and gas industry

• Improve production efficiency, safety, and 
compliance with emissions regulations

• Harness the full potential of natural gas as a 
clean fuel

Real-time sensor mesh network 
(IBM MMT System)

Aggregate/push to Bluemix 
cloud (MQTT protocol)

Physical analytics: 
• source inference via inversion
• plume dispersion models
• machine-learned model blending

An Intelligent Multi-Modal Methane 
Measurement System (AIMS)
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Use-case for innovative sensor networks
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An Intelligent Multi-Modal Methane 
Measurement System (AIMS)

• Robust sensors to withstand harsh environments

• Low size, weight, power, and cost (SWaP-C)

• Species selectivity + sensitivity (DL < 10 ppmv)

• Lightweight data packaging on each WSN node 
for wireless connectivity and real-time analytics

Metal-oxide (MOX):

Figaro 
TGS2611

 Chemi-resistive sensor
 CH4 adsorption (hot SnO2)
 ppmv-level sensitivity
 ~10 USD / sensor
 Susceptible to other VOCs
 Ruggedized enclosure

Cavity-ringdown (CRDS):

Picarro G2308

 Cavity-enhanced absorption
 < 10 ppbv sensitivity
 Dynamic range: (200 ppmv)
 60 lbs, power: ~250 W
 Requires vacuum pump
 ~50k USD / sensor

v
v

Open-path TDLAS:

 Conventional NIR TDLAS
 < 5k USD / sensor
 Intermediate SWaP-C 

compromise + benchmark 
IOS-TDLAS performance

Integrated chip sensor:

 Integrated optical sensor 
TDLAS (IOS-TDLAS)

 Low-volume cost (< 250 USD)
 Sensitivity: 6.3 ppmv∙Hz-1/2

How many sensors do we really need 
to localize and quantify emissions?
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Portable TDLAS sensor construction
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• 5 cm open-path fiber-coupled cell (TDLAS)

• Parallel (3 cm) 20 vol. % CH4 (λ reference)

• Dual InGaAsP photodetector TEC fans for
gas exchange in chamber

Polycarbonate  
IP65 enclosure 
(8×5×3 in.3)
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CH4 spectra and chamber response time
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2ν3 CH4 R(4) spectra at 6057.1 cm-1 (1651 nm)

• Alignment optimized + AR lens for fringe reduction
• Voigt nonlinear regression with 2nd order baseline
• 2 ms spectral acquisition (500 Hz laser ramp)
• Residual deviation: αmin = 6.5×10-7 cm-1∙Hz-1/2

Chamber response time

• ~3 s release (1.0 vol. %) → 150 ppmv CH4

• 40 ms measurement resolution
• 90% to 10%  → 2.1 s (1/e decay time)
• Typical CH4 peak: ~20 s (field measurements)
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Laser ramp-rate for optimized sensitivity
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TDLAS sensor Allan-deviation and RIN analysis:

• High-frequency (2 ms) and real-time (2 s) operation

• Low-frequency noise (< 500 Hz) due to fan-cooled TECs 
for InGaAsP photodetectors

• Laser framp = 500 Hz to avoid low-frequency noise

• NEP = 7.2×10-10 W∙Hz-1/2 (100 kHz) → sensor operates 
at 2.2× detection noise floor

σadv = 2.0 ppmv ∙ Hz-1/2

(αL)min = 4.5×10-6 Hz-1/2

Detection sensitivity:

Min. fractional absorption:



© 2018 IBM Corporation

Field deployment at the METEC facility (CSU)
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Methane Emissions Technology Evaluation 
Center (METEC) field deployment:

• 5-day deployment (July 17-21, 2017): 16.6 hours CH4 data

• 4.4 hours control, 12.2 hours blind (1.9 hours CH4 data)

• Blind measurements: TDLAS sensor not always downwind

• TDLAS sensor co-located with a customized VOC MOx
sensor for accuracy benchmark

Experimental Configuration:

• Control: 68 SCFH – 135 SCFH
• Blind: 0 SCFH – 40 SCFH
• Concurrent anemometer measurement

Goal: single-sensor source 
AOA and magnitude estimation
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Control experiment: tank CH4 release
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Concurrent TDLAS / MOX / anemometer data:

• Downwind placement of TDLAS sensor (150° LoS)

• 1 hour measurement, 2 s time-resolution (TDLAS/MOX)

• East tank thief hatch (13 m, 135 SCFH) control CH4 leak

• Good visual correspondence between TDLAS/MOX units

• Real-time acquired temperature (MOX unit thermistor)
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CH4 retrieval and TDLAS/MOX comparison
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Real-time CH4 retrieval:

• 500 Hz line-scan rate, VLMS (2 s resolution)

• Account for temperature dependent:

i. transition line-strength
ii. air-broadening coefficient

• Post-analysis baseline erosion:
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TDLAS / MOX sensor comparison:

• 5 Control experiments (4.4 hours), spans leak 
rates 68 – 135 SCFH

• TDLAS sensor placed downwind from leak

• Good R2 correlation (0.74); non-ideal orientation

• Erosion noise floor peak: ~ 3 ppmv (consistent 
with Allan-deviation sensitivity)

• TDLAS/MOX sensor agrees for [CH4] > 12 ppmv
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Determining emission source location
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Leak angle-of-arrival (AOA) localization:

• Bin data in 20 s intervals; 12 ppmv threshold

• Correlate wind angles with CH4 concentrations

• Single-sensor can only determine AOA, need 
≥ 2 sensors for true localization
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Summary of METEC field test results
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Calculated source angle-of-arrival (AOA) for single-sensor “localization”:

• Total 6.3 hours control + blind CH4 release (85 % CH4, 10.2 % C2H6, 0.7 % C3H8)

• AOA consistent with known source-detector line-of-sight (LoS), and downwind of CH4 leak

• Single-sensor cannot distinguish between two leaks along a single LoS → choose placement wisely

• Can we estimate the source magnitude from a single sensor?

• Extract the shape of the plume for modeling (multiple sensors)
Need plume profile information

→ use wind variability
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Single-sensor source magnitude estimation
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Parametrized Gaussian plume model:

• Plume reconstruction from 𝑣⃑𝑣𝑤𝑤 variation in short-term measurements

• Identify nominal LoS CH4 peak concentration (Gaussian LMS)

• d << DL (Lagrangian integral dist. ~ 102 m) → 𝜎𝜎 = 𝜎𝜎𝑣𝑣 � 𝑑𝑑
• Optimization (i.e. “calibration”) of dispersions 𝜎𝜎𝑣𝑣,𝑦𝑦 and 𝜎𝜎𝑣𝑣,𝑧𝑧

• Training data shows Qc agreement within 50 % accuracy

Calculated emissions flux (Qc)
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Source estimation using ML models
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RF-based supervised learning:

• Random-forest (RF) regressor model, 
75/25 training-to-test split ratio

• Supervised training (20 s CH4 data 
input bins), 3-fold CV w/ randomized 
HP optimization

• Random-forest model accuracy: ± 8.2 SCFH (target 
MAE) → 88.5 % Qc accuracy

• Top features (𝑑𝑑, 𝐶𝐶𝐶𝐶4 , 𝑣⃑𝑣𝑤𝑤) consistent with GP model:

2
4[ ]( ) | |cQ CH d∝ ⋅ ⋅wsr v

r
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Silicon photonic chip sensor design
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x-section
m

ode sim
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chip

sample 
waveguide

silicon handle wafer

σadv = 6.3 ppmv ∙ Hz-1/2

(αL)min = 3.3×10-5 Hz-1/2

Detection sensitivity:

Noise-equivalent absorp:

Integrated photonic chip sensor
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Conclusions
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Fugitive emissions monitoring of CH4:
• CH4 as a clean fuel → reduce GHG loading via leak monitoring
• Requirements: spatial + temporal resolution (real-time, large-area SN)

Demonstration of a field-deployable portable TDLAS sensor:
• Fiber coupled open-path (5 cm) absorption sensor (αmin = 6.5×10-7 cm-1∙Hz-1/2)
• Benchmark performance for next generation integrated photonic chip sensors
• 5-day field deployment at METEC facility (5 Control, 2 Blind, 6.3 hours data)
• Demonstrate correspondence vs. custom MOX sensors (TDLAS → specificity)

Physical analytics for source localization/quantification: 
• AOA calculation via CH4 weighted mean wind-angle
• Single-sensor source estimation via Gaussian plume + ML models
• Generalizable to alternative sensing modalities (or multiple sensors in WSN)

Next generation: integrated photonic chip sensor nodes for significant 
SWaP-C benefits → facilitate large-scale deployment of real-time WSNs
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