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Presentation Outline

Introduction

e Motivation: CH, fugitive emissions monitoring

Design and characterization of a portable TDLAS sensor

« TDLAS sensor construction
e Sensitivity analysis and chamber response time

Field deployment at METEC CSU

e Accuracy benchmark vs. MOX VOC sensors
 AOA localization of CH, fugitive emissions
e Source magnitude estimation (Gaussian plume / ML algorithms)

Toward a next generation integrated photonic chip sensor

 Initial results: on-chip evanescent field waveguide TDLAS

Concluding remarks
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Motivation: CH, fugitive emissions monitoring E = ===

> 500,000 active oil/gas wells in USA

« 570 x 10° ft3 of CH, leakage in 2009,
(59 % leaks during production phase)

« ~ 30% anthropogenic CH, emissions

« Radiative forcing of CH, is 37x greater
than CO,

Alvarez et. al., “Greater focus needed on methane
leakage from natural gas infrastructure,” Proc. Nat.
Acad. Sci., 109 (17), pp. 6435-6440, (2012).
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CH, leakage rate on oil/gas well pad
is 2-10% of total production!

Cost-effective sensor network for
localization and precise quantification
(ppmv-level) of CH, on oil and gas
production well-pads
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Use-case for innovative sensor networks

An Intelligent Multi-Modal Methane
Measurement System (AIMS)

Real-time sensor mesh network
(IBM MMT System)

‘||I|

Technological driver: ARPA-E MONITOR

» Cost-effective sensor network for continuous
CH, leak quantification, localization, and repair

* No viable technology today: Alignment of
performance with required cost point poses
significant challenge

Opportunity driver: Application of physical
analytics/loT solutions to

* Significantly reduce fugitive CH, emissions
across the oil and gas industry

* Improve production efficiency, safety, and
compliance with emissions regulations

* Harness the full potential of natural gas as a
clean fuel

Leak area (10x10m?) :
Qs01 P g
BN
: : S i SR
Physical analytics: S
Aggregate/push to Bluemix i __ ! « source inference via inversion [T ] Rl
1 H /K_I-IL:--_I_-I___I_
cloud (MQTT protocol) + plume dispersion models Leak rate—TF 1321 [ 104
+ machine-learned model blending | (6 +/.04 t—"1———"F=
Scfh) ?.;T__ _____ - —t—i= ] - & =
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Use-case for innovative sensor networks

Metal-oxide (MOX):

How many sensors do we really need
to localize and quantify emissions?

i J Figaro

A ‘ 1)

TGS2611

= Chemi-resistive sensor

= CH, adsorption (hot SnO,)
*= ppmv-level sensitivity

= ~10 USD/ sensor

= Susceptible to other VOCs
» Ruggedized enclosure

An Intelligent Multi-Modal Methane
Measurement System (AIMS)

Robust sensors to withstand harsh environments

Low size, weight, power, and cost (SWaP-C)

= Conventional NIR TDLAS

Species selectivity + sensitivity (DL < 10 ppmv)
= <5k USD / sensor
= Intermediate SWaP-C Lightweight data packaging on each WSN node

compromise +benchmark | for wireless connectivity and real-time analytics
IOS-TDLAS performance

Picarro G2308

= Cavity-enhanced absorption
» < 10 ppbv sensitivity

= Dynamic range: (200 ppmv)
* 60 lbs, power: ~250 W

»= Requires vacuum pump

» ~50k USD / sensor

= Integrated optical sensor
TDLAS (I0S-TDLAS)

= Low-volume cost (< 250 USD)

= Sensitivity: 6.3 ppmv-Hz1/2
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Portable TDLAS sensor construction

optical fiber input —l

Polycarbonate
IP65 enclosure
(8x5%3in.3)

20% CH, fiber
reference

particle
filter

open-path _S
TDLAS sensor '§
detector TEC % 0
fan-driven flow = :
% 3
¥ =
_ =
* 5 cm open-path fiber-coupled cell (TDLAS) sdjustable
« Parallel (3 cm) 20 vol. % CH, (A reference) tripod
* Dual InGaAsP photodetector TEC fans for
gas exchange in chamber J
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CH, spectra and chamber response time
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2v; CH, R(4) spectra at 6057.1 cm-* (1651 nm)

» Alignment optimized + AR lens for fringe reduction
« Voigt nonlinear regression with 2"d order baseline

wavenumber[cm™]

» 2 ms spectral acquisition (500 Hz laser ramp)

 Residual deviation: o, = 6.5x10" cm1-Hz'/?2

200 - — . T T T
~3 s CH, injection
1 [CH4]peak =150 ppmv
— CH, shut-off
= 150 4 ) “' 4
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Chamber response time

« ~3 srelease (1.0 vol. %) — 150 ppmv CH,

* 40 ms measurement resolution
e 90% to 10% — 2.1 s (1/e decay time)
» Typical CH, peak: ~20 s (field measurements)
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Laser ramp-rate for optimized sensitivity

Detection sensitivity:

O, = 2.0 ppmv - Hz'1?

Min. fractional absorption:

(aL),i, = 4.5%10° Hz1/2

10 T —rT T —rT T LAY —rTTTTT
] - . mgw 1
high-frequency acquisition 4—, _
1
'E‘ 1
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Q. G\\‘\S\ i 100 200 300 400 500 60O
& 101 _ \ &‘& 1 measurement time [s]
B
/:: 20.2ppmv & o :
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S | e
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-1 1 e
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TDLAS sensor Allan-deviation and RIN analysis:

» High-frequency (2 ms) and real-time (2 s) operation

* Low-frequency noise (< 500 Hz) due to fan-cooled TECs
for InGaAsP photodetectors

relative intensity noise [Hz ']
o
1

* Laser f,n, = 500 Hz to avoid low-frequency noise

« NEP = 7.2x101° W-Hz'Y2 (100 kHz) — sensor operates 10°
at 2.2x detection noise floor

—— TDLAS portable sensor
— DFB laser (direct to detector)

10"

v/

Low-frequency mechanical
noise (TEC fan coolers)

— 500 Hz TDLAS
ramp rate

h

10° 10° 10" 10’
frequency [Hz]

\ detection noise floor
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Field deployment at the METEC facility (CSU) E = ===

Methane Emissions Technology Evaluation
Center (METEC) field deployment:

» 5-day deployment (July 17-21, 2017): 16.6 hours CH, data
* 4.4 hours control, 12.2 hours blind (1.9 hours CH, data)
» Blind measurements: TDLAS sensor not always downwind

* TDLAS sensor co-located with a customized VOC MOx
sensor for accuracy benchmark

TDLAS | AN Experimental Configuration:

Sensor ;
' et « Control: 68 SCFH — 135 SCFH
' | ; « Blind: 0 SCFH — 40 SCFH
¢ Concurrent anemometer measurement

Gas-processing unit

B :wﬁ np—

We” head 0 FE R S e Al Goal: single-sensor source
AOA and magnitude estimation

CSU METEC Test-site
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Control experiment: tank CH, release

20|l 135 SCFH " Easttank [13 m, 155 |
=
c
2
: - 3
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bl 70 4 |
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’ 1320 §
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L — 160 3
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£ | 10 =
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measurement time [s]

Concurrent TDLAS / MOX / anemometer data:

» Downwind placement of TDLAS sensor (150° LoS)

1 hour measurement, 2 s time-resolution (TDLAS/MOX)
East tank thief hatch (13 m, 135 SCFH) control CH, leak

Good visual correspondence between TDLAS/MOX units

Real-time acquired temperature (MOX unit thermistor)

0 .
15 - . ””f?o:
10 -
5_
o< 270
wind [m/s]
Ws5-6
W4-5
-4 wind average:
02-3 ;
Mi1-2 1.8 m/s (116.8°)
o-1 180
-10 0 10
| 1 1 1 1 1 1
B T T 1
TDLAS sensor (150°)
] | o |
_20_
_30_
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CH, retrieval and TDLAS/MOX comparison

-ti I . T T y T T T T T T T
Real-time CH, retrieval: AoV = 1.2 ppruty S o EasOPU @8 1127 SCFR) |
. . Correlation: R2= 0.74 o WestGPU (127 SCFH)
» 500 Hz line-scan rate, VLMS (2 s resolution) < 450 o° o Easttank haich (135 SCFH) _
E K o WestGPU (68/130 SCFH)
» Account for temperature dependent: f .~ O EestGPU(125SCFH)
8 [} © o ’,’ === linear regression fit
i. transition line-strength S, (T) S 1004 L L 1
.. . . .. (7] * (4] .
ii. air-broadening coefficient v (p,T) O @ o &° > Fo  © T;’LAS_base"”e
1 s [ ]
» Post-analysis baseline erosion: g Po © "ZJ’ mg’:mc}; * E%E Mg;::é;oroo“c .
y | é 501 O% § i Qo.&)g%% § Sy % 10’ 06,«9% %"ooo%gog%%o 7]
. o g o & i ©
[CH,](t) —>[CH4](ti)—rt'n|Bn[CH4](ti) = - 8104’ e 1 e
P <E 10" 10° 10’ 10°
B ={[t/T, ) To <t<(Lt, /TBJ+1)-TB} o cCHemm
150 225 300 375

TDLAS sensor [ppmv]

—— unfiltered CH, time-series
250 4 —— baseline (min. erosion filter)
— baseline-removed CH,

TDLAS / MOX sensor comparison:

5 Control experiments (4.4 hours), spans leak
rates 68 — 135 SCFH

» TDLAS sensor placed downwind from leak

4.7 ppmv (mean
200 - noiselcif:et) H I .” “”’ ‘ )

900 1050 1200 1350

Good R? correlation (0.74); non-ideal orientation

background
subtraction
[ ]

CH, concentration [ppmv]

» Erosion noise floor peak: ~ 3 ppmv (consistent
————— with Allan-deviation sensitivity)

| [R—— T

0 500 1000 1500 2000 2500 3000 « TDLAS/MOX sensor agrees for [CH,] > 12 ppmv
pulse time [s]
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Determining emission source location

<||I

-20 -10 0 10 20
1 | 1 | 1 | 1 | 1 . . . .
Leak angle-of-arrival (AOA) localization:
Legend: N
304 © Egsa?ﬂes leak w«—I—w < * Bin datain 20 s intervals; 12 ppmv threshold
_Corn_actly ® . . .
| 'dentified leaks - 5  Correlate wind angles with CH, concentrations
PY TDLAS sensor g
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20 - Z[CH 1t)- o v
a , @ =tan™| =
: (@on) = Z[CH 1 7 v,
10 ~
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. > 2 sensors for true localization
®
O n 320_ E
w
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o
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Summary of METEC field test results

Experiment Lea_k | eak component Flow rate I__eak location Averat_:_;e wind- Leak AOA

duration (SCFH) | [distance, angle] velocity (v,,) {Qa04) £ 60404

Control 1 3554 s EastGPU (Pad 3) | 68/127 9.0m (909) 1.96 m/s (137.2°) | 102.3° £22.0°
Control 2 1757 s West GPU (Pad 3) 127 41m (90°,110°) | 2.60m/s (125.6°) | 109.9° £24.1°
Control 3 3553s Easttank (Pad 3) 135 13.0m (155°) 1.77m/s (116.8%) | 145.5° £ 14.5°
Control 4 3552s WestGPU (Pad 3) | 68/130 4.1m (90°,110°) | 1.58m/s (97.0°) | 102.3° £23.2°
Control 5 3459 s East GPU (Pad 3) 125 9.0m (909 2.80m/s (61.6°) 82.6° £13.2°
Blind 1 3442s Tank (Pad 1) 36.1 3.4m (60°) 0.58 m/s (68.9°) 76.3° £53.6°
Blind 2 3470s Wellhead (Pad 2) 4.4 6.9m (125°) 1.41m/s (124.8°) | 119.3° £25.2°

Calculated source angle-of-arrival (AOA) for single-sensor “localization”:

Can we estimate the source magnitude from a single sensor?

Extract the shape of the plume for modeling (multiple sensors)

Total 6.3 hours control + blind CH, release (85 % CH,, 10.2 % C,H,, 0.7 % C;Hy)

AOA consistent with known source-detector line-of-sight (LoS), and downwind of CH, leak

Single-sensor cannot distinguish between two leaks along a single LoS — choose placement wisely

— use wind variability

Need plume profile information

4/15/2018

SPIE-DCS CBRNE XIX [10629-33]

© 2018 IBM Corporation 13



Single-sensor source magnitude estimation

Parametrized Gaussian plume model:

Plume reconstruction from v, variation in short-term measurements
|dentify nominal LoS CH, peak concentration (Gaussian LMS)

d << D, (Lagrangian integral dist. ~10°m) —» 0 = 0, - d
Optimization (i.e. “calibration”) of dispersions g, ,, and o, ,

Training data shows Q. agreement within 50 % accuracy

O Control 1 (68/127 SCFH) o

O Control 2 (127 SCFH) R2=074 ¢
T O Control 3 (135 SCFH) 00.'
L O  Control 4 (68/130 SCFH) o)
8 100 - O Control 5 (125 SCFH) O i E
= Blind 1 (36.1 SCFH) e o :
o O Blind 2 (4.4 SCFH) ’ GPU leak (Qm) 180
— -==Unity slope (ideal) S O
-'% © " o © T.7ppmv
- N 2
% 00\'5 [CH4](rs) ) <| Vi |> -d
= S5 ) Q.=x- (27[-0'V’y -0,,)
8 10 Qq\o X g(zs ’ H J O-v,z ) d)
© . v 7
g ] e — o = - : (Z _ H )2 (Z + H )2
@ 1 7 36ppmv 2 . . oo o ] C —exp| ————2 |+ exp| ————~
© T O 50 100 150 200 250 2(c, , -d)? 2(c, , -d)?

- wind angle [deg.] v,z v,z

! I ! ! ! ! ! I ! - -
10 100 Calculated emissions flux (Q.)
set flow rate [SCFH]
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Source estimation using ML models

150 - . - . ;
| Training peaks a@ @
T 3-fold cross-validation
L(_IS 100 - -
D, 8
= 50- -
=
= ¢ MAE = 3.0 SCFH |
L 95.8 % training accuracy
E & . r . T y
% | Target peaks & ]
= 75/25 trainftarget split :iﬁf’
5 100 - i -
iC)
0
2 50- ]
S _ @ MAE = 8.2 SCFH |
88.5 % target accurac
0Jle . | . Iﬂ g : y
0 250 100 150

set flow rate (Q,,) [SCFH]

» Random-forest model accuracy: + 8.2 SCFH (target

MAE) — 88.5 % Q_ accuracy

- Top features (d, [CH,], V,,) consistent with GP model:

Flow rate: | Q, oc [CH4](rS)-<| \I/W |>-d2

RF-based supervised learning:

» Random-forest (RF) regressor model,
75/25 training-to-test split ratio

» Supervised training (20 s CH, data
input bins), 3-fold CV w/ randomized
HP optimization

Feat Relative

cature Significance [%]
Source distance 56.0 £ 6.6
CH, amplitude 209 + 11.1
Wind speed (max.) 109 £ 10.2
Wind angle (rel.) 50 £ 11
Wind speed (avg.) 39 + 58
Wind angle (abs.) 1.8 £ 0.8
Wind speed (dev.) 16 £ 0.6
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Silicon photonic chip sensor design E ===

laser
input

S .,amblent CH, output to

detector

Si waveguide

SiO, buried oxide

Si substrate

Integrated photonic chip sensor Detection sensitivity:
0,4 = 6.3 ppmv - Hz'Y2

Noise-equivalent absorp:
(aL)pin = 3.3%x10° Hz 172

155 nm SiN

uol1das-X

reference 250nm  Si

o o
- - -y = . -
i ] ?‘3-& . Q'a- % oo g.&g‘w&-ﬁ

‘n“ a‘ ,«‘5 .4 Evanescent

uolnenwis apow

y 2P S : i ;
R Tonp = 98.4% interaction region
] Ambient
& CH,
VP
[ Algipres/ Alrsops
sample : =254%
; CH,: R(4) 2v, '
waveguide (6057.1 cm) s:,},- L hm : . .
1.5vol. % Vv Tor=93.7% -— Si0, buried-oxide

silicon handle wafer
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Conclusions

Fugitive emissions monitoring of CH,:

 CH, as a clean fuel — reduce GHG loading via leak monitoring
* Requirements: spatial + temporal resolution (real-time, large-area SN)

Demonstration of a field-deployable portable TDLAS sensor:
 Fiber coupled open-path (5 cm) absorption sensor (a,,, = 6.5x107 cm1-Hz1?)
* Benchmark performance for next generation integrated photonic chip sensors

» 5-day field deployment at METEC facility (5 Control, 2 Blind, 6.3 hours data)
» Demonstrate correspondence vs. custom MOX sensors (TDLAS — specificity)

Physical analytics for source localization/quantification:

» AOA calculation via CH, weighted mean wind-angle
» Single-sensor source estimation via Gaussian plume + ML models
« Generalizable to alternative sensing modalities (or multiple sensors in WSN)

Next generation: integrated photonic chip sensor nodes for significant
SWaP-C benefits — facilitate large-scale deployment of real-time WSNs
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