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Abstract

The measurement of the radiation characteristics of an antenna on a near-field range
requires that the antenna under test be located very close to the near-field probe.
Although the direct coupling is utilized for characterizing the near field, this close
proximity also presents the opportunity for significant undesired interactions (for
example, reflections) to occur between the antenna and the near-field probe. When
uncompensated, these additional interactions will introduce error into the
measurement, increasing the uncertainty in the final gain pattern obtained through the
near-field-to-far-field transformation. Quantifying this gain-uncertainty contribution
requires quantifying the various additional interactions. A method incorporating
spatial-frequency analysis is described which allows the dominant interaction
contributions to be easily identified and quantified. In addition to identifying the
additional antenna-to-probe interactions, the method also allows identification and
quantification of interactions with other nearby objects within the measurement
room. Because the method is a spatial-frequency method, wide-bandwidth data is not
required, and it can be applied even when data is available at only a single temporal
frequency. This feature ensures that the method can be applied to narrow-band
antennas, where a similar time-domain analysis would not be possible.
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Introduction

Near-field antenna measurement methods are employed to obtain the far-field radiation characteristics of
an antenna by probing the electromagnetic field very close to the antenna under test, and then applying
mathematical transforms to compute the field at a very large distance from the antenna [1, 2, 3]. Because
the antenna and the probe are in very close proximity, the desired direct coupling is not the only
interaction of significance. Unwanted interactions are also present, and they can have an impact on the
accuracy of the measurement. These interactions are manifest by mutual coupling in the form of multiple
reflections between the antenna and probe structures, as well as reflections from other objects, and their
presence will ultimately lead to uncertainty in the measured antenna gain. A new method is described for
detecting and quantifying these interactions, and a conservative estimate of the resulting contribution to
the uncertainty in the measured gain is given.

As a starting point, the nature of the near field will be examined. This will provide insight into the
behavior of the reflections to be expected with near-field measurements. Next, using this basis, an
idealized situation that is amenable to closed-form analytical analysis will be developed to illustrate the
spatial-frequency analysis method and its ability to isolate the reflections from the direct coupling.
Finally, the method will be applied to actual data measured on the large near-field range at Sandia’s
Facility for Antenna and Radar-cross-section Measurement (FARM), illustrated in Figure 1.

antenna
under test
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Figure 1 The large near-field range at the Sandia Facility for Antenna and Radar-cross-section
Measurement (FARM), showing the coordinate system associated with a spherical near-field
measurement. The probe-to-antenna spacing is variable, and is often much less than shown here.

Intuition might suggest that time-domain analysis would be very useful in isolating the reflections. Such
an analysis requires a short time-domain pulse width, or equivalently a large temporal-frequency
bandwidth, to resolve reflections over the short distances involved with near-field measurements. Spatial-
frequency analysis, unlike time-domain analysis, does not require a wide bandwidth. In fact, it can even
be applied to a measurement at a single frequency. This is particularly fortuitous, since the reflections in a
near-field measurement occur over very short distances, requiring extremely wide bandwidths (much
wider than supported by many antennas) for the time-domain analysis to be able to resolve them. As a
practical matter, this would make the time-domain approach applicable to only a small subset of antennas:
those that could support an extraordinary bandwidth. In contrast, the spatial-frequency analysis can be
applied to any antenna, regardless of how narrow or wide its supported bandwidth.



As a brief introduction, consider an open-ended waveguide probe and horn antenna aligned along their
bore-sight directions and separated by a distance z, as illustrated in Figure 2. The coordinate axes used for
the analysis is the same as used with near-field measurements at the FARM, and is illustrated in both
Figure 1 and Figure 2. In the latter illustration, the direct-coupling path (dark blue) and the path of the
first reflection (light blue) are shown. For a specified separation distance z , the length of the propagation
path for the direct coupling is simply z, while that of the first reflection is approximately 3z . As z varies,
the spatial frequencies associated with the responses of the two components differ. In the following,
exactly how the z-axis spatial-frequency analysis takes advantage of this difference in propagation-path
length will be described. First, before examining the details of the method, it will be useful to examine the
nature of the near field.

£ antenna under test

waveguide probe

Figure 2 Hllustration of the direct path (propagation distance z), and first-order interaction path
(propagation distance 3z) between the probe and antenna under test.

The nature of the near field
If the probe is located at a sufficient distance from the antenna, the directly coupled field will be

dominated along the bore-sight direction by a spherical-wave component proportional to ‘f|71 . However,
near-field measurements often impose spacing of only a few wavelengths, where field terms with other
than |F|71 dependence might also be important. Examination of the free-space electric-field dyadic Green’s

. 5 o s § v 3 2 i3
function can provide insight into the need to include terms with |r‘ or even ‘r‘ dependence when

evaluating the uncertainty contribution of multiple reflections between the probe and test antenna.

The free-space electric-field dyadic Green’s function for a monochromatic field is a solution of the
inhomogeneous vector Helmholtz equation [4]

VxVxG(F[f') - kG (F[f)=I8(F - F), (1)

where I =XX+yy +22 = Ff + 00 + d¢ is the unit dyad. The X, ¥,Z unit vectors define the axes in the
reference coordinate system, and the r, é, (i) are the usual spherical unit vectors. The time dependence

+jot

e" will be assumed, where the radian frequency is @ =27/, f is the temporal frequency, k, =, /c,

and ¢ is the speed of light'.

' ¢=2.99792458-10° m/ S is the exact speed of light in the vacuum, and ultimately it is used to define the standard length of

the meter. The speed of light in air is slower by about 0.03% to 0.05%, depending on temperature and water-vapor content (see
tables for dry air and saturated water vapor in [5]). Using the vacuum value for propagation in air will cause distances derived

from the measured delay to be long by about 0.03% to 0.05%. Sometimes using ¢ = 3 - 10° m/s , which is in error from the



The dyadic Green’s function is

G(F|F') =(i+ki§w] °
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where F locates the field point, and ¥’ locates the source point. Since it can be shown that
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the free-space dyadic Green’s function can be expanded as
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For a specified source current-density distribution, J (F') , the electric field outside the source region, at

position ¥, is obtained by integrating the dot product of the source current-density vector against the
dyadic Green’s function over the volume, V', containing the source current, [4]

E(F)=—jop, [I(¥) G(F[f')ar". (5)

Examination of (4) shows the integrand of (5) will contain components that vary with inverse powers of
the distance from the source point to the field point, but only first, second, and third inverse powers are
present. Also, the second and third inverse powers are associated with all directions of source and field
vectors, while the first inverse power is associated only with vector components of the field that are
orthogonal to the direction pointing directly from the source point to the field point. In particular, vector
components of the source that point directly from the source point to the field point can only contribute to
the second and third inverse power terms, and only to vector components of the electric field that are
parallel to this line of sight.

Without knowing any details of the current distribution producing the electric field, precise estimates of
the relative importance of the various terms is difficult. However, consider the series expansion

i 1?2
1+ ncos(y)—+ E((n +2)cos’(y) - l)r—2+
ro 2 r

13
L L1202 cosy)((n+ 4ycos” (w) - 3) -+ L nefl23l, (o)
T r

2 ) R 14
’1(”2—::)((n+4)cos (w)((n+6)cos (\u)—6)+3)rr—4+---

where Cos(\v ) =r-r,r= |f|, and 7' = |F" . After substitution of (6) into (4) and forming the dot product
with the source current-density vector, the result of the integration over ¥'in (5) will be three integrals,
each proportional to ™', k;'r ™, or k,°r ", respectively. Each of the integrands will be a vector in 7'

multiplied by a series in #'/r . The details of J (f’) will determine how the series resulting from each of

- g
r—r'| inthe

the integrals behaves, but estimating the relative size of the terms proportional to k, "

Green’s function gives a rough estimate of the relative importance of the ‘f|_” terms in the near-field

region for n=1,2,3 . At a separation of about 16 wavelengths, the second-order term will be about 40 dB

vacuum value by less than 0.07%, is appropriate and sufficiently accurate. Distances in vacuum derived from the measured delay
with this approximation will be long by about 0.07%. Distances in air will be long by about 0.1% to 0.12%.



below the first-order term. The third-order term will reach 40 dB below the first-order term at a separation
of only1.6 wavelengths. Thus, in the realm of near-field measurements, at least the second-order term has
a potential to provide a contribution on the order of 0.1 dB or more, depending on the separation. It is
clear that a method of analyzing the contribution from the antenna-to-probe interactions should not

arbitrarily be limited to only terms with 'F|_1 dependence. The z-axis spatial-frequency analysis described
below does not discriminate between the terms.

Identifying the reflections between the probe and antenna

The reflections between the probe and the antenna under test can be detected by examining measurements
of the probe-to-antenna coupling along the bore-sight directionr =z as the separation z is varied (see
Figure 2), while looking for response components with phase variation proportional to about
z,3z,5z,7z,---. The first of these is the desired direct coupling, while the rest identify the first and

higher-order reflections between the probe and antenna. In many cases only the first reflection will be
significant, but the spatial-frequency analysis described below can detect, identify, and quantify
contributions from higher-order reflections, as well as contributions from the walls, floor, and ceiling.

It should again be acknowledged that identifying the phase behavior of the various interaction terms could
be accomplished by examining the data either in the temporal-frequency domain or in the spatial domain.
Separation and identification of the components requires either the application of an inverse Fourier
transform in the frequency domain followed by sorting the resulting time-domain responses according to
delay, or the application of a forward Fourier transform in the spatial domain followed by sorting the
resulting spatial-frequency responses. However, as already stated, because of the small distances
involved, the frequency-domain analysis will require a very wide bandwidth, making that approach
unattractive at best or completely useless when the antenna cannot support sufficient bandwidth.
Consequently, the time-domain method will not be considered further.

Because many antennas can be narrow-bandwidth designs, collecting data at only a single or a few
frequencies while varying the separation distance and subsequently performing a spatial-frequency
analysis is a practical approach. The process of computing the spatial frequencies and their interpretation
will be described next.

The spatial-frequency analysis of the probe-to-antenna interaction

The relationship between the spatial domain and the spatial-frequency domain is entirely analogous to the
relationship between the time domain and the temporal-frequency domain, which may be more familiar
and intuitive. An understanding of the spatial-frequency analysis will be facilitated by referring to the
arrangement of the antenna under test and field probe illustrated in Figure 2. An analytic model, based on
a simplified antenna source, will be derived. Although the specific analytical analysis is for a special,
simplified situation, it does apply in principle to the generic case, and the analytic model will allow the
spatial-frequency analysis to be examined in a precise manner, without the complication and confusion
that might be introduced by a more generalized situation. After the analysis is complete, the method will
be applied to measured data using numerical methods, demonstrating remarkable agreement with the
analytic model.

For the required simplicity, allow the antenna to be represented by a point current source at the origin,

3o (F)=——8(F)F - ¢
AUT(r) Jon, (l‘ )y (7)
From (5), the electric field at ¥ from this simple current source is given by
E(F)=—jou, [[[G(F[F)- T (F)dF. (8)
AUT
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Using (4) and (7) in (8) and performing the integration gives the electric field radiated from the antenna,

_ = 1 1 = eijk""
E(F)=C|T-ff-| j—+—— (1—3ff) $ . 9
() { [jkr kgrzj }y4nr ©)

0

The electric field has components with ™', 7, and 7~ dependence.

Now, suppose this field is probed by an ideal probe antenna, polarized with the electric field along y, and
located at ¥ = zz. The configuration in Figure 2 will support reflections from the probe, the antenna under

test, and their associated supporting structures (not shown). Assuming, again for simplicity, that the
reflected fields occur at the apertures of the antenna and probe as illustrated in Figure 2, the voltage
measured by the probe as a function of separation distance, z, is

, © ) 1 1 efjko(ZnH)z
V(Z) =C zr;mbeFZUT 1- J (10)
n=0

k, (2n+1)z - k02 (2n+1)2 72 4n(2n+1)z ’

where » indicates the order of the reflection (7 =0 is the direct coupling term), C"includes the probe gain

as well as the source strength, and ', ,, and T, are the complex reflection coefficients at the apertures

of the probe and antenna under test, respectively. It is assumed that the probe and horn are terminated in
matched impedances at their respective terminals. Other reflections might also be present, and will be
addressed subsequently. The voltage in (10) is the spatial-domain response along the z axis.

Information about the spatial frequencies contained in (10) can be obtained by computing the Fourier
integral over a finite range of positions along the Zaxis, z,, <z <z, , giving the spatial-frequency

‘min

response,
Zge _—Jjko(2n+1)z
e ;
e dz
zZ
Zmin
Zmgx " © 1 1 Zimgx e—jko (2n+1)z -
i n n .
V(Zm[rﬂzmax’k) = J. V(Z)e'/ dZ = C ermherAUT _] 2 e./ dZ ” (11)
an(2n+1)l Tk (2041) 2,
Znar _—jko(2n+1)z
- ! > = 3 e™dz
ko (2n+1) . z

Analogous to the temporal frequency, the spatial frequency is defined from the spatial radian frequency
(the wavenumber), k , as
k
f;patial :E ‘ (12)
The wavenumber, k , is the Fourier transform variable in (11). The spatial frequency associated with the

direct coupling is

kO
=0 13
fo=gt (13)
and it will become apparent that the spatial frequency associated with the n” reflection is
k
=(2n+1)=—=. 14
fy=(2n+1)22% (14)

The relative response at these spatial frequencies can be easily obtained after evaluating the Fourier
transform in (11), allowing determination of the strength of the reflection, and therefore the determination
of the contribution to measurement uncertainty associated with the individual reflections.

-11 -



Continuing with the analytic model, the first integral in (11) can be written in terms of sine and cosine
integrals,

Znge o= Jko (2n41)z Znge ik, 2
1 (Zpins Zonar s K J. —e’kzdz— I —dz
y , (15)
= (ci (Akn zm) ci (Akn me) [sz (Akn zmx) Si (Akﬂ z. )])

where Ak, =(2n+1)k, —k , and the sine and cosine integrals, as defined in 8.23 in Gradshteyn & Ryzhik

[6] for real argument x, are

J'Slnt (16)

and

ci(x)z—jf COtStdt. (17)

X

These sine and cosine integrals are plotted in Figure 3.

——y=cix)
0.4} —y=si(x)

0.2}

o N
02F -1

04}

06}

08¢

. . o T sint
Figure 3 The sine and cosine integrals, sz J ——dt and cz

* %

Other sine and cosine integrals are also commonly defined (see, for example, 5.2 in Abramowitz &
Stegun [7] or the software documentation for Mathematica [11]),

Si(x)=si(x)+g , (18)

where
tsint

Si(x)=|—dt , 19

== (19)
and

Ci(x)=ci(x) ; (20)
where

Ci(x):y+1nx+j%t‘ldz, (21)

0

and v =0.577215664901532860606512090--- is Euler’s constant”.

2 Euler’s constant, y, is one of those fascinating and mysterious mathematical constants that appear in numerous contexts. It has yet to be proven
to be irrational [8], although it appears that it might be, and it might even be a transcendental number, but that also has not been proven. Euler’s

-12 -



The integral /; (z
Ak, =0. The remaining two integrals are obtained by applying the integration-by-parts procedure,

Ak ) is plotted in Figure 4 for z , =1, z,, =2, showing a well-defined peak at

min max s

Zmax ea/'Ak" z e~jAk” 2 |Fmax Zmax 7]Ak,, z
—dz=— - jAk I —dz
Gise z z z . z, (22)
—JjAk, z, —jAk, z,
e JRKy Ziin e n “max .
= - _JAkIl(Zminﬂ max’Ak )
Zmin Zmux

and

Zingx e—jko(2n+1)z _ & JAk, z |Fmax 1 Zingy —jAk,, %

J. —3€/kde:——2 —]Ak— J —de

i Z 2z7 | 2 Lz (23)

e/ Znin e/ Znax A2
= 2 2 (I—JAk me) 2 2 (I—JAk Zmax) 2" Il(zmm’ mnx’Ak )
Zmin Zmax

Thus, the complete response as a function of spatial wavenumber, k , is

V(zmin’ mwc’ z Zmin> max’k) (24)
where

Ak, Ak?
- + Z o 2 Ak
ko(2n+1) 242 (2n+1) LB i)
1 1 (e_jAkn Zmin e ]Akn max
V.iz,: ' Z ,k :C/Fn bFZUT —j -
"( e max ) prove 4‘rc(2n+1) k0(2n+1)L Bt ..
1 & /Dy Zynin ) o /DKy Zax )
2 > ( P (1_JAanmin)"zi(l_]Aknzmax)
Zko (2]’! + ]) Zmin Zmax
(25)

The peak spatial-frequency responses occur when Ak, =0, so that

k=k,(2n+1), (26)

definition, y = 11m H, —Inm (see 6.1.3 in Abramowitz and Stegun [7]), where /,, Z— is the harmonic number [9], is quite slow to converge
k=1

and cannot be recommended for computing y . For example, the magnitude of the error with m =1,000,000 is about 5x 1077, and with

m=1,000,000,000 is about 5x 10" . A better approximation is v, = H, —Inm—1/2m , where y = limvy,, , for which the magnitude of the error

is orders of magnitude smaller, being less than 10~ with m =1,000 and less than 10~" with m =1,000,000. A number of even more efficient

algorithms have been developed to compute y [8, 10]. One of these, y, = H, —In ( m+1/2+1/ 24m) , is accurate to within about 2x10™" with

m=1,000 and 2x107'® with m = 50,000. Using the built-in capability of Mathematica [11] or Sage [12] to compute large numbers of digits of

v, and counting digits to the right of the decimal point, the 3,423" through 3,427" digits are all zero, but this string of 5 zeros gives only
fleeting hope that the sequence has terminated and that y is rational; the sequence of nonzero digits continues on beyond. The sequence of 5 zeros
never occurs again in the next 100,000 digits, but it occurs 10 times in the first 1,000,000 digits, and one of these is part of a sequence of 6
consecutive zeros. In fact, sequences containing 5 or more consecutive copies of each of the digits 0 through 9 occur 10, 8, 11, 8, 8,9, 8,4, 7, and
14 times, respectively, in the first 1,000,000 digits. Counting all sequences that begin at distinct positions, but which may overlap, the sequences
of 5 consecutive copies of the digits 0 through 9 occur 11,9, 11,9, 9, 10, 9, 6, 8, and 15 times, respectively, an average of 9.7 times. If the digits
are uniformly distributed, the expected number of times each of these sequences should occur is 10. This and other similar tests are consistent
with the digits being uniformly distributed, but do not constitute proof. Additional information about Euler’s y can be found in [13, 14].

-13 -



and the peak of the response due to the n” reflection is

[ probelaur | ( z 1 Zmax = Zoi 1 Zmax + Zmi
Vi (Zimins Zma> Ko (2n +1)) = ' —£222 In| 24X | — A i |+ e : (27)
n ( M= 1max ) 4TE(2VI + 1) Zmin ko (271 + 1) ZminZmax 2ky (Zn + 1) ZminZmax
me =1, Zmax =2
08 w , ‘ ’ ‘ i
magnitude
real part
06} ——— imaginary part |
04}

AK)

max’

I1(Zmln'

Zmax _—jAk z

Figure 4 The integral I, (z,,,, 2 ., » Ak ) = I —dz forz,, =1 andz,, =2, as a function of Ak.
z

Zmin

The ratio of the peak contribution of the first reflection to the peak contribution of the direct response is

ln[ Zmax ] _ 1[ Zmax ~ Zmin ] ] + 1[ Zmax + Zmin ]
Zmin 3kO ZminZmax 6kO ZminZmax

_ Vl (Zmin’zmax’k = 3k0)

1
A= =<T provel aur . (28)
VoZmin Zmarsk = ko) 31 ln[ ZWC] - 1( Zmax = Zmin ] Jj+ 1[ Zmax + Zmin ]
Zmin kO ZminZmax 2k0 ZminZmax
Note that the factor of 1/3is the result of the reflected field propagating three times as far. Letting
z,. =0z, ,the ratio can be written in the convenient form
ln(a)_;Ma—l(jJrl; i a+1J
8y =T el s = e NI (29)
3 1 A a=1{. 1 % o+l
ln(a)———— jt—
21z, O 4n z,,, o
Sincez,, >z, , o is constrained so that 1< o <oo. The magnitude of the ratio ———— is plotted in

probe™ AUT
Figure 5 for 1 <a <100 and several values of z,,, /A, . This ratio appears to be nearly independent of

both o andz,,, . The following limits are useful in understanding the behavior of the magnitude:

73 3

m
probe lFAUT| - 1 7»6 - 1 7\.(2) o—0
(2n) zmin | (2) Zin

As o — 1, the ratio approaches a small, finite value, and when o becomes very large, it approaches the
simple fraction 1/3. As can been seen in Figure 5, the value never varies far from 1/3 when z,, >4,/2.

However, when z,, <X,/2, the behavior becomes a little more interesting. For a fixed value of o, as

L~ 127;3[1_ 12);3]
6 Zmin 6 Zmin
iiﬂ[\r o ]_1 (%) (6v) ; [ N ] | -

‘rprobe |FA UT|
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., 1s reduced below about X, /3, the ratio begins to increase slightly, reaches a maximum, and then
falls to

Z

. A, 1

lim| —— |=—

i\ T sl gur 27_

A

This behavior is visible in Figure 6, where the magnitude of is plotted as a function of both

probe™ AUT

and o . The maximum is located at

Zpin = Y (@t (@-1) §+\/{1+3 1) J[l—é ) J , o (31)
32 a (a+DIn(a) —(a—1)| 4 2 (a+1)In(a) 8 (a+1)In(a)
A

and its value increases slowly as o increases. The maximum of ‘

z

min

and the value of z . where

min

probe AUT |

it occurs are both plotted in Figure 7 as a function of a .

Since the antenna model used here is a point-source current, the propagating field expands spherically.
However, for a large distributed antenna, the amplitude dependence on distance might be somewhat
different in the near-field region.” Nevertheless, the conclusion is that the magnitude of the ratio of the
peak of the reflection response to that of the direct response is nearly independent of the parameters of the
measurement, and thus gives a reliable indication of the magnitude of the interference from the antenna-
to-probe interaction.
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Figure 5 Plot of the magnitude of the ratio as a function of o >1 for several values of z

min *
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3 For example, the field in the very near vicinity of a large planar antenna can behave as a plane wave, while for a well-designed
probe, the reflection will exhibit nearly spherical expansion.
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The phase of A, is

arg(Al)=arg(l“pmbe)+arg(FAUT)+arg (32)

The contribution to the phase from the measurement parameters is negligible for practical values of =z, ,
as seen in Figure 8. Thus, the phase of the ratio is essentially determined by the phase of the reflection
coefficients when z,,, >A/2 .
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Figure 8  Phase of ———— for 1< o <5 with 0<z,, /L, <0.5 (bottom) and0.5<z,, [\, <2 (top).

probe™ AUT
Note the different color scales for the phase values.

Statistics of the associated error
The error in the coupling due to the first-order reflection is defined, in decibels, as

1+K
v

dB,,, 2010g10[ ]:201og10(\1+A1|)=101og10(1+2\A1|cosc|>1 +\A1|2), (33)
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where ¢, is the phase of A,. As shown above, the phase of A, is essentially the phase of the product of

the two reflection coefficients. In a specific instance, the phase of the reflection coefficients might be
estimated with some certainty, but without additional information, it is reasonable to assume these phases
are uniformly distributed within the ensemble of all possible situations.

Taking the phase of A, to be a uniform random variable such that — < ¢, < 7, the error in decibels will
be in the range
20log,, (1-|A,[)<daB

error

<20log,, (1+]A,]), (34)

which is plotted in Figure 9. Values outside this range will not occur.
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Figure 9 Range of the error in coupling due to first-order reflection, in decibels, as a function of reflection
amplitude.

With the range of ¢, as stated, and using the principal value of the inverse cosine, the dB,,, function in

error

(33) can be inverted to give

(35)

lodB rrrrrr /10_1_‘A |2
¢, (dB,,,,.A,)=*arccos |

2|A|
The probability that the error is below a specified value, dB,

error

—‘(bl (a’Bmm,Al )‘ plus the probability that it is greater than ‘4)1 (dme,Al )‘ Since ¢, is uniformly

is the probability that ¢, is less than

distributed, the cumulative probability distribution for dB, is
0, dB,,,,, <20log,,(1-[A,])

2 4 B /10
P(dBerror): larCCOSLI-F‘AI‘ 10
T 2‘Al‘

J, 20log,,(1-[A,|) < @B, <20log,,(1+|A,]) (36)

error

1 dB,,,, =20log,, (1+]A,)

The probability density function for the error is discontinuous, bimodal, and strongly peaked near the
extremes of (33), and is given by
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0

p (dBerror) = WP(dBerrur)
err
In(10 B, /10
2(%) 0 — for 2010g;o (1-[Ay]) < @B, < 20logyq (1+]Ay]) - (37)
S R TN
4
0 otherwise

The cumulative probability distribution and probability density are plotted in Figure 10 for the case when
|A1‘ =-25dB. As already noted, the probability density is highest at the extremes of the distribution. In
addition, as the error term becomes larger, the probability functions become more skewed away from zero
error, and their shapes are less symmetrical. For example, compare the case of |A1| =-25 dB in Figure 10

with the case of ‘Al‘ =-10 dB in Figure 11.
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Figure 10 Cumulative probability distribution (left) and probability density (right) for the error caused by
the first reflection when |A1| =-25dB.
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Figure 11 Cumulative probability distribution (left) and probability density (right) for the error caused by
the first reflection when |A1| =-10dB.
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An example

Using the analytic model derived above for radiation from a point current source, the spatial-frequency
response along the z axis can be computed. For the purpose of illustration, the following parameters are
applied to the model:

Iy =—0.70 z,.. =30 inches fom =2 GHz
r =-0.70 z =060 inches fon. =4 GHz

probe max

The amplitudes of the real and imaginary parts of the normalized field are displayed in Figure 12 as a
function of temporal frequency (vertical axis) and position along the z axis (horizontal axis).
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Figure 12 Real (left) and imaginary (right) response along the z axis for the example.
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Figure 13 Normalized spatial-frequency response along the z axis for the example, for single frequency, at
f =2.3 GHz, at left, and over the entire bandwidth, 2 < f <4 GHz, at right.

The spatial-frequency response for the single frequency f =2.3 GHzis plotted on the left in Figure 13.
The plot on the right of Figure 13 shows the response for all temporal frequencies in the range
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2 GHz £ f <4 GHz, with the broken lines indicating where the expected peak responses of the direct

coupling and successive reflections occur. The left-most peak represents the direct coupling, while the
peaks progressively to the right represent the 1%, 2™, and 3" reflections. In this example, choosing the
reflection coefficients to be fairly large for both the probe and antenna under test allows these higher-
order reflections to be seen clearly. No processing weight has been applied to reduce spatial-frequency
side lobes caused by the truncation of the Fourier transform at finite limits. The sidelobes are easily
identified with the direct coupling or various order reflections according to their slopes with respect to
temporal frequency (see the plot on the left of Figure 13). Interference among the several terms is
apparent at higher spatial frequencies as the reduced intensity of the response competes with side lobes
from the direct-coupling response.

This example, based on the analytic model, demonstrates that the relative response of the significant
reflections between the antenna under test and the probe can be isolated and measured by processing the
measured amplitude and phase response obtained while moving the probe, or the antenna, along the z
axis. With measured data, a numerical fast-Fourier-transform (FFT) algorithm would be applied, and the
sampling interval along the z axis must be chosen to avoid aliasing of the highest-order reflection
anticipated to be present. As has been shown in Figure 13, the process can be applied equally well to a
narrow-bandwidth measurement (single frequency), or to a wide-bandwidth measurement with many
frequencies. The width of the response lobe (resolution) is determined by the distance, measured in
wavelengths, along the z axis for which data is obtained. Sidelobes can be reduced by applying an
appropriate weighting function to the data before performing the numerical Fourier transform. The
spatial-frequency resolution is reduced as the sidelobes are reduced, but increasing the length along the z
axis for which the data is collected can mitigate this loss of resolution.

Extending the model to include other reflections

The behavior of reflections between the antenna and probe has been examined, and it has been
demonstrated that these reflections can be detected and evaluated with the z-axis spatial-frequency
analysis. However, additional reflections can occur from objects or structures located to the side of either
the antenna or probe, but which move with the antenna or probe. Other reflections from stationary
surfaces will also occur. These reflections will behave somewhat differently than the reflections that
occur directly between the probe and antenna, as a consequence of their different propagation paths, and
this behavior needs to be examined.

Reflections from structures extending to the sides of the probe or antenna
Suppose the antenna and/or probe has structural parts that extend to the sides, in a direction transverse to
the z axis. For example, consider the structure attached to the antenna in Figure 14. For the path indicated

in the illustration, the length traversed by the n” reflection between this structure and the probe and back
to the antenna is

Ln=z-}-2n\/22+d2 , (38)

where d is the distance in the x-y plane to the point of reflection.

The rate of change of this path as the distance between the probe and antenna changes is

LIS S

dz V22 +d? .

Since the path length for the n” reflection occurring directly between the antenna and probe is (2n+1)z,

(39)

its rate of change is simply 2n +1. It is this rate of change of the path length that determines the spatial
frequencies present in the response component due to the reflection. Since
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iLﬂ <2n+l, (40)
dz

the spatial frequencies associated with reflections from objects offset to the side, but which move with the
antenna or probe, will always be less than the spatial frequencies associated with the same order reflection
occurring directly between the antenna and probe. Additional reflection paths, other than the one shown
in Figure 14, are possible. A little thought will show that the above statement is also true for spatial
frequencies associated with those paths. The analysis is similar to what has already been presented, and
will not be detailed here.

£ antenna under test |~ structure attached to antenna under test

waveguide probe

Figure 14  Illustration of the reflection path from the probe to a structure attached to the antenna under test.

Reflections from stationary side walls of the measurement room

Many possibilities exist for interactions between stationary objects, the probe, and the antenna under test,
so for simplicity, a somewhat idealized situation will be analyzed. Figure 15 shows the geometry
associated with a direct reflection from a single side wall®. The analysis applies equally for similar
reflections from other surfaces, including the floor, ceiling, positioner table or slide, etc.

To simplify the analysis, the reflection from the side wall will be assumed to behave essentially as a
specular reflection, so the point of reflection can be taken to be on the wall halfway between the antenna
and probe. Additionally, multiple reflections can occur, complicating the situation considerably, as many
paths are possible for the subsequent reflections. To minimize complexity, while still providing insight
into the behavior of multiple reflections, only multiple reflections following the same path as the first
reflection will be considered in the analytic model below. For interactions with the wall along the path
depicted in red in Figure 15, the additional contribution to the received voltage will be modeled as
© © — jko(2n=1)L
v z)= v (z)= Cl! F(%n—l)l—*nflrn~l 64 ,
wa//( ) ”Z:; n ( ) ; wall aut ~ probe 41_[(2” —l)L
where Lis the total length of the one-way propagation path, via the wall, between the probe and
antenna,

L=2 fd2+%(z—zo)2 i (42)

n indicates the number of times the signal reflects along the path, C" accounts for the antenna and probe
gains, ", ,is the reflection coefficient associated with the wall, and z;locates the aperture of the antenna.

(41)

* The various on-axis reflections from the end walls will behave similarly to the direct coupling or the direct reflections between
the probe and antenna. This is a consequence of their total path length changing at the same rate as the path between the probe
and antenna as the separation distance is varied.
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This path is assumed long enough to justify including only the field terms that are inversely proportional
to the path length in the analysis. The higher-order reflections (n >1) include reflections from the antenna

and probe. The reflection coefficients associated with the antenna and probe, I',, and I, are functions

probe

of angle, and therefore may have different values than for the direct reflections between the antenna and
probe, but that angular dependence is not explicitly shown in the equations describing the model. While
the summation is written as an infinite sum, the product of reflection coefficients can rapidly become so
small as to be negligible in a well-designed anechoic chamber, allowing the summation to be truncated to
a few or even a single term.

£,_antenna under test

waveguide probe

Figure 15  Illustration of a reflection from a side wall from the probe to the antenna, in addition to the direct-
response component and the interaction-response that has previously been examined.

In an effort to anticipate the behavior of the side-wall reflection, consider the rate of change of L with
respect to z,
a___(z7n) (43)
dz (z—z())24—4d2

For any values of z, z,, and d > 0, it will always be the case that‘dL/ dz‘ <1, so L changes at a lower rate

than the separation between the antenna and probe, and thus the first (# =1) reflection will produce a
response at a lower spatial frequency than the direct coupling between the probe and antenna. As the
distance to the wall increases, the associated spatial frequency for the first side-wall reflection becomes
even lower. This is a crucial difference between the behavior of interactions with the wall and the
behavior of the antenna-to-probe interactions. For example, when z — z, = 60 inches and d =120 inches,
dL/dz = 0.24, the response from the first side-wall reflection will occur at roughly a fourth of the spatial
frequency associated with the direct response. For a longer wall distance, d =240 inches, the rate of
change isdL/dz = 0.126 . It will be shown below that, as with multiple reflections between the probe and
antenna, multiple reflections from the wall will produce higher spatial frequencies than the single
reflection. Nevertheless, in a well-designed near-field range, the second and subsequent reflections should
be negligible in comparison to the first.

Continuing with the simplified analysis, the spatial-frequency response associated with the n” wall
reflection is obtained from the Fourier integral
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Zrna.x

zmux

Vwa[/,n (k) = I v, (X)ejkzdz = C"r‘(zn"l)l—*nﬂrnﬂ

_j[koz(zn—l) arzﬁ%(z—zo)2 —kz]

¢ dz , (44)

wall aut — probe 1
8n(2n—1),[d +Z(z—zo)2
Zmin

for which an exact closed-form expression is not readily available. An approximate form can be obtained
by expanding the square root in (44) in a series”,

, 1 2 1(z=2\ 1(z-zY 1(z-z Y
d’+—(z-z,) =d|1+= O —= 0| +— U T
4 2\ 2d 8\ 2d 16\ 2d

& @)z Y
=d )0 ! ( 2d J '

n=0

(45)

The series in (45) only converges for d > ‘ZO — z‘ / 2 . When the distance to the wall is large with respect to
the maximum excursion of z from z,, keeping only the first term of (45) in the denominator of the
integrand and the first two terms in the exponential gives the following approximation to the received
voltage due to the n” wall reflection,

Fﬁa”"’FZ;T";i . m j[ZkOd(Zn—l)[Hl(z_zo sz_sz
Foaz,a ( )= C"W J e e dz . (46)

The integral can be evaluated in terms of the Fresnel integrals, plotted in Figure 16, and which are defined
as [7]

C(x)zjcos(gtzjdt and S(x)zj.sin(gtzjdt. (47)
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Figure 16  Fresnel integrals that describe the response from the wall.

The result of integrating (46) is the spatial-frequency-domain contribution from the »” wall reflection,
and is

> The double factorial notation means 2n!!=2-4.6---(2n)=2"n! and (2n—1)!!:1-3-5---(2n71):2"F(n+%)/\/g,(see 6.1.49 in [7]).
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kl
-j Zkod(2n~1)—md—kzo 3 " B
174 = (k) - _Cﬂl—*(Zr};l)l—\n—ranilb e [ ] C(K(k,ZO Zmax)) ]S(K(k,ZO Zmax)) , (48)
’ ' g 4-1’271](0(11(2}’[—1)z _C(K(k7 ZO _Zmin))+jS(K(k7ZO _Zmin))
where
hz)= |[—2hd [k _ oy 22, (49)
n(2n—-1) | k, 2d

Since the Fresnel integrals are bounded, —0.78 < C (x) <0.78 and -0.72< § (x) <0.72, the magnitude of

the left-most factor in (48) never exceeds about 2.1. This means that the importance of the n” reflection
relative to the first reflection can be estimated by the proportionality

Vwall,n (k) — - Ffv((zlllfl)rZutFZi'abe (50)
VW””‘I (k) max (271 - 1)3

Clearly, the n =1component will be dominant, particularly when the reflection coefficient of the wall is
small, as it is in an anechoic chamber. It can be shown that ‘Vwall, , (k)| has extrema at

+z . =2z 2
min 0) +m i 5 me]ﬂt@gers- (51)
4d Zpee = Z

max min

kzﬂn—U%(%”

The maximum for the first reflection (7 =1) occurs when m =0, so the spatial frequency of the first-
reflection peak is
f = (Zmax +Zmin _220)£
’ 4d c’
which, ford > (z,,, + z,,, —2z,)/4, will always occur at a spatial frequency lower than the direct

(52)

coupling.

An example of the wall response alone, comparing the first reflection to the sum of the first four
reflections is plotted in Figure 17. For this example, k, =2n, d =20, z, =5, =8,z =16,and

r_,=r =T =—1. Since it is unlikely that the magnitude of the reflection coefficients will be

wall — * aut — © probe

unity, the higher-order reflections will be even less significant than indicated in the figure.
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Figure 17 Comparison of response due to first wall reflection and sum of first four reflections, for
parameters k, =2n,d =20, z, =5, z,, =8,z,, . =16 ., =T, =T ~1 .
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An example with probe-to-antenna interaction and side-wall reflections

The model for the side-wall reflection is added to the antenna-to-probe interaction model previously
described. The composite response is examined for the following set of parameters:
r, =-0.70 z, = 0 inches d =144 inches

aut

I s =—0.70 Z,., =30 inches Join =2 GHz

probe min

r,.=-1.00 Z,... =60 inches Joar =4 GHz

The amplitudes of the real and imaginary parts of the normalized total coupling between the probe and
antenna are plotted as a function of z-axis position and temporal frequency in Figure 18, on the left and
right, respectively. In this case, interference between the various terms is very evident in the form of
ripples along the peak-response ridges.

Real( v(z, f)) Imag( v(z, f))

frequency (GHz)
frequency (GHz)
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Figure 18  Real and imaginary response along the z axis for the example with the addition of the wall
response.

The resulting normalized spatial-frequency response for f =2.3 GHz is plotted on the left in Figure 19,

while the spatial-frequency response for the complete range of temporal frequencies is plotted on the
right. In all cases, the amplitudes are normalized to the direct coupling at each temporal frequency. The
peak of the spatial frequency associated with the reflection from the wall should occur at about

f.=0. 16§—O , well below that of the direct response, even though the propagation path is much larger.
T

However, in Figure 19, the peak of the wall response for / =2.3 GHz occurs at a slightly lower spatial

frequency than predicted by (51). This is a result of the interaction of the side lobes of the direct response
and the wall response. The full-band plot on the right of Figure 19 shows this effect, which is manifest in
the ripple and variations seen along the peak-response ridge associated with the wall.

It is worth mentioning that if a time-domain analysis could be used, the response associated with the wall
would appear to the right of the direct response instead of to its left because of the increased delay
associated with the longer path length.

These examples are based on the simplified analytic models, which were derived above. As part of the

simplification, no weighting was applied to the response function in order to suppress side lobes resulting
from the Fourier transform integral over the finite range ofz.
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Figure 19  Normalized z-axis spatial-frequency response for the same example as in Figure 12 and Figure
13, but with the addition of the wall response. The single-frequency response at f =2.3 GHzis on

the left, and the response over the frequency range 2 < f <4 GHz is on the right. The peak

nearest the left is the response from the wall, while the largest response just to the right is the
direct response. The two additional peaks to the right are the I* and 2" reflections, respectively.

Summary of the spatial-frequency analysis

The spatial-frequency analysis will produce a peak response from the n"” reflection between the probe and
the antenna under test at the approximate spatial frequency given by

f.~(2n+ 1)1 ‘

c

The location of the peak is approximate because the assumption has been made in the analysis that the
reflection occurs at a point along the z axis, in particular from the center of the aperture. In reality,
significant reflections could occur from structures located slightly offset from the z axis and at distances
other than the location of the aperture, but still attached to the probe or antenna. It has been shown that
reflections from such structures will produce lower spatial frequencies than given by (53).

(53)

The analysis of the side-wall reflection showed that the first reflection from a stationary wall can produce
spatial frequencies somewhat lower than 1/A , simply because the rate of change of the phase along the
reflection path is smaller than that of the direct coupling. The peak of the first reflection from a wall that
is located a distance d from the z axis is expected to be near

f — (Zmax +Zmin _220) f

1

=5 A D ¥ By — 225 ) + (54)
4d c 4 ( 0 )

Reflections from multiple surfaces in the measurement room can occur, but all dominant reflections from

stationary side walls will occur in the region of spatial frequencies f, < f//c, and multiple points of

interaction can also cause the measured peak to be broadened or even broken into multiple peaks.

The spatial-frequency analysis for the probe-to-antenna interaction and the side-wall reflections can be
applied with equal ease and accuracy to both narrow-bandwidth and wide-bandwidth antennas, unlike
time-domain analysis, which requires very wide bandwidths to detect and isolate the various interactions.
This makes spatial-frequency analysis a very powerful tool for detecting these interactions and assessing
their impact on the uncertainty associated with the measurement.
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Estimating the uncertainty using the spatial-frequency response

The models presented above are idealized. Even so, there is evidence of interference between side lobes
associated with the direct response and the response associated with the reflections. This leads to
variations in the amplitude of the reflection peaks as the temporal frequency is varied. In measured data, it
is anticipated that there will be multiple points of reflection and additional sources of interference, which
could cause significant variations. The result is that the peak response associated with each reflection
component may not lie on a straight line relating spatial frequency to temporal frequency, as given by
estimates for each reflection based on the analysis. In order to provide a good estimate of the amplitude of
each reflection, it is necessary to search for the peak response in a region surrounding the expected
location of the peak. The expected spatial frequencies of the probe-antenna interactions are based on the
order of the reflection between the probe aperture and the antenna under test, while reflections from the
stationary side-walls will occur at lower spatial frequencies than the direct response.

After the peaks of the reflections between the antenna and probe have been identified, the contribution to
the gain uncertainty can be computed. For an uncertainty estimate, it is the relative amplitude of the
various peaks with respect to the direct coupling that is relevant, not the absolute level. Thus, normalizing
the response at each temporal frequency to the peak of the direct coupling is appropriate. In estimating
this uncertainty over a band of temporal frequencies, it is desirable to smooth the data over the measured
band, while providing a conservative estimate of the contribution to the uncertainty.

First, the mean, W, , and standard deviation, o ., of the peak-reflection responses can be computed over

the set of temporal frequencies. Then, to obtain a smooth estimate of the total reflection component, the
data is fit to the following polynomial function

s,i,(f)=Zam[f “fJ : (55)
' m=0 S

where the maximum degree, n, of the polynomial is a parameter that must be chosen with some
judgment. Higher degree will allow the curve fit to follow the data better, but too large a degree can
introduce wild fluctuations in the fit. By ensuring that the number of frequency points is significantly
greater than the number of coefficients in the polynomial, the curve fit generally will be well constrained.
It is recommended that the degree be chosen according to

n:min(nmax,tnf/nsj), (56)

where 7, is the number of temporal frequencies measured, », is a parameter specifying the number of

frequency samples per degree, n___ is the upper limit on the degree to be allowed, and LxJ is the floor

max

function, meaning the biggest integer less than or equal to x. For example, choosing n,, =15and n, =10

with n, =91 measured frequencies would suggest a degree of n=9fors ( f ) .

The estimated uncertainty in the coupling, S,,, caused by reflections is
S —(sﬁ, +2c5f)SS2l <S +(Sﬁ, +2Gf). (57)

It will be instructive to examine these estimates for examples of measured data.

21,meas 21,meas

Examples of measured data

Several sets of data were collected on the large near-field range at the Sandia Facility for Antenna and
Radar-cross-section Measurements (FARM). These data sets demonstrate the viability of the z-axis
spatial-frequency analysis method for identifying and quantifying interactions between the antenna under
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test and the near-field probe, as well as identifying and quantifying reflections from nearby structures,
such as the side walls, floor, and ceiling.

Measurement showing first reflection

A set of S-band data was collected on April 24, 2012, with the bore-sight directions of the probe and
antenna aligned as illustrated in Figure 2. The data set consists of measured values of S,, as the separation

distance between the probe and antenna is varied. The probe is an MI-Tech WR-430 open-ended
waveguide probe, and the antenna is an ARA S-band horn antenna (s/n 16581). The data spans a
frequency range of 1.7 GHz to 2.6 GHz in 10-MHz steps, and the separation varies from 30 inches (0.762
m) to 100 inches (2.54 m) in nominal steps of 0.05 inches (1.3mm). At the lowest frequency, the
separation varies from 4.32 wavelengths to 14.40 wavelengths, a change of about 10 wavelengths, while
the interval between data points is 0.007 wavelengths. At the highest frequency, the separation varies
from 6.61 wavelengths to 22.03 wavelengths, and the interval between data points is 0.010 wavelengths.

The data are calibrated by normalizing to the complex value of S, obtained when the coaxial cables

feeding the probe and antenna are connected together. This calibration process compensates for the
variations in the frequency response of the instrumentation. Since this data was collected by the Orbit/FR
software, the Agilent PNA was operating in an uncalibrated mode, meaning that internal coupling and
leakage were not compensated. The magnitude of the coupling, in decibels, is plotted in Figure 20 as a
function of frequency and lower-slide position®. The coupling exhibits a rapid decrease as the frequency
moves to the lower end of the measured frequency band. The decrease in coupling as the separation is
increased is also readily apparent.’

Z-axis measured response, S-21, scan =1
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Figure 20  Magnitude of the measured coupling between the MI-Tech WR-430 open-ended waveguide probe
and the ARA S-band horn antenna, in decibels.

® For this data set, and those that follow, the z-axis position is labeled “Lower Slide position” on the relevant plots. This is a value
obtained from sensors on the slide, and which was recorded by the data-acquisition software. However, a possible sign change
might need to be applied to the reported data, and an offset must be added to obtain the true distance between the aperture of the
antenna and the aperture of the probe. This poses no problem or limitation for the analysis.

7 For this measurement, the distance between the probe and the antenna’s coordinate-system origin is obtained by subtracting the
lower-slide position from 100 inches, so larger values of the lower-slide position correspond to shorter distances between the
antenna and probe.
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The real and imaginary parts of S,,, plotted in Figure 21, show clear and unambiguous phase variation as

the separation is varied, which indicates a well-defined spatial frequency (cycles per meter) at each

temporal frequency.
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The spatial frequency of the direct coupling is expected to be 1/A, where A is the wavelength, but the
first reflection between the horn and probe should have a spatial frequency of about 3/ , because its

propagation path is three times as far. Similarly, the second reflection should have a spatial frequency of
about 5/ . These estimates of the locations of the responses are somewhat inexact, since the reflections

can come from various parts of the structures that are not directly on the z axis. Applying a Fourier
transform in z will show the spatial frequencies present in the measured data, at each temporal frequency,
independently of the expected positions. However, the expected positions provide a basis for where to

look for the peak responses.

Spatial-frequency response relative to direct response, S-21, scan = 1
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Normalized spatial-frequency response associated with the reflection between MI-Tech WR-430

open-ended waveguide probe and the ARA S-band horn antenna. The white lines indicate the
expected spatial frequencies for the direct coupling and first through third reflections, based on

the analytic model.
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Figure 22 shows the spatial-frequency response as a function of temporal frequency that results from
transforming the data displayed in Figure 20 and Figure 21 along the separation dimension, z. The
response has been normalized to the direct response (red band) to obtain the relative response needed to
compute the component of uncertainty. The expected positions of the various responses are shown as
narrow white lines. The slope of the first reflection response is different from that of the direct coupling
response, since it corresponds to triple the spatial frequency of the direct coupling. The direct coupling
and first-reflection components are clearly visible in Figure 22, located at the expected positions, but
there is no evidence of second or third reflections. At most frequencies, the peak of the first-reflection
response does occur at the expected spatial frequency, although this reflection does not occur entirely
between points on the z axis, as evidenced by smaller responses at lower spatial frequencies. Reflections
occurring at points located away from the z axis are responsible for these. Sidelobes from the direct
coupling are also apparent. The first reflection response is around 50 dB lower than that due to the direct
coupling.
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Figure 23 Normalized spatial-frequency response of the first reflection, with the 9"-order polynomial curve

fit.

The peak of the first-reflection interaction response has been extracted and plotted in Figure 23 as a
function of temporal frequency. The response is several tens of decibels below the direct coupling, and
will contribute only a small amount to the uncertainty of the measured bore-sight gain. The slow variation
with temporal frequency implies that there is more than a single interaction term, occurring at nearly the
same spatial frequency, which produces the interference pattern seen in Figure 23. There is also a clear
trend for the interaction response to decrease as frequency is increased.

The smooth fit, labeled s, in Figure 23, corresponds to an n"-degree polynomial withn =9 . The
=15and n =10 for n, =91

frequencies. A conservative estimate of the uncertainty of the direct coupling caused by reflections
between the probe and the antenna is

S —(sﬁ, +26_,.)SS2[ <S§

The uncertainty bound for S, due to the reflection between the probe and the antenna is plotted in Figure

polynomial is of the form (55), using (56) to choose the degree with n

max

21,meas 21,meas + (Sﬁl + 20]’ ) . (58)

24 for this example data set. In this case, the spatial-frequency analysis has shown that the interaction
between the probe and antenna introduces only a small uncertainty in the bore-sight gain.
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Uncertainty bound for S-21,
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Figure 24  Boresight-gain uncertainty bound due to the presence of the first reflection.

The effect of varying the length of the z-axis excursion

The change in separation of the probe and antenna for this data set amounts to about 10 wavelengths at
the lowest frequency. The effect of changing the range of separation between the probe and antenna can
be seen in Figure 25, where the normalized spatial-frequency response is plotted for separation ranges of
10, 8, 5, and 2.5 wavelengths at the lowest frequency. The spatial-frequency resolution is reduced as the
length of excursion is reduced, and the reduction of resolution becomes quite pronounced when the
change in separation is reduced to only 2.5 wavelengths. The impact of the coarse resolution is the
potential for confusing and smearing of various components of the response. In fact, for the small
separation change of 2.5 wavelengths, detection of any response at spatial frequencies below those of the
direct response is clearly impractical. This means that response due to side-wall reflections could not be
adequately detected and quantified.

In Figure 25, the white lines indicate the expected location of the various contributions, based on the
analytic model described above. The red lines indicate the bounds within which the search algorithm
looks for the maximum value at each frequency, and the dashed lines indicate the location of the
maximum values chosen for each temporal frequency. It is clear from examination of Figure 25 that the
algorithm is much more adept at accurately selecting responses associated with the first reflection when
the length of the excursion is larger. For example, for the smaller excursions, the algorithm confuses
sidelobes or even the edges of the main lobe of the direct response with the response from the first
reflection.

The contribution of the first reflection to the uncertainty is plotted in Figure 26 for the four different z-
axis excursions. The 2.5-wavelength change severely over-estimates the uncertainty, compared to the
longer z-axis excursions, and this is consistent with the circumstance that a large portion of the
contributions chosen by the search algorithm were from the edge of the main lobe of the direct response.
The agreement between the estimates with 5-, 8-, and 10-wavelength changes is more consistent.
However, it is clear from Figure 25 that the 5- and 8-wavelengh z-axis excursions cause the search
algorithm to confuse direct-response sidelobes with the first-reflection response. These data suggest that
at least a 10-wavelength excursion should be used when practical.
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Figure 25  Normalized spatial-frequency response when the separation between the probe and antenna is 10
wavelength (upper left), 8 wavelengths (upper right), 5 wavelengths (lower left), and 2.5
wavelengths (lower right). In all cases, the sample interval at the highest frequency is 0.01
wavelength.
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Changing the bounds to narrow the region in which the algorithm searches for the peaks is certainly
possible, and might make uncertainty estimates using shorter z-axis excursions more accurate by reducing
the chance of mistakenly selecting sidelobe contributions. However, the reflections between off-axis
portions of the probe and the antenna certainly can produce components at spatial frequencies below
those expected from the analytical model (white lines), so narrowing the search region too much could
cause some of these to go undetected. It might also be useful to change the weighting function to reduce
the sidelobes®, or it might even be possible to design a smarter search algorithm that can detect points
associated with sidelobes. Nevertheless, making the z-axis excursion about 10 wavelengths at the lowest
frequency provides good resolution and is a reasonable choice for many situations. Increasing the spatial-
frequency resolution even more may be desirable when reflections from walls and other nearby stationary
structures are significant. Since these will produce spatial frequencies below those associated with direct
coupling, enhanced resolution may be necessary to adequately separate them.

The effect of varying the z-axis sample spacing

The effect of increasing the interval between spatial samples is examined next. Figure 27 shows the
normalized spatial-frequency response with a sample spacing of 0.258 inches on the left and with a
sample spacing of 0.698 inches on the right. As the temporal frequency varies from lowest to highest, this
corresponds to 0.036 - 0.055 wavelengths and to 0.100 - 0.154 wavelengths for the two sample spacings.
The z-axis excursion is 10 wavelengths at the lowest frequency. The effect of increasing the sample size
along the z axis is simply to reduce the maximum spatial frequency that can be detected without aliasing.
The image on the left of Figure 27, having more closely spaced samples along the z axis, has nearly three
times the range of unaliased spatial frequencies compared to the image on the right.
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Figure 27  Normalized spatial-frequency response when the change in separation between the probe and
antenna of 10 wavelengths, with the sample interval ranging from 0.036 to 0.055 wavelengths
(left) and from 0.100 to 0.154 wavelengths (right) for the lowest and highest frequencies,
respectively.

Since this analysis is based on the application of the discrete Fourier transform, the resolution in the
spatial-frequency domain is determined by the total extent of the data in the spatial domain. Similarly the
total extent of the transformed result in the spatial-frequency domain depends on the sample spacing
(spatial-resolution) of the data in the spatial domain. These two principles are clearly demonstrated by the
data displayed in Figure 25 and Figure 27.

¥ The weight function used in all of the processing reported here is a Taylor weighting with 7 =21 and s/l = —80 dB.
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Measurement showing second reflection

A second measurement was performed using the ARA horn and MI-Tech WR-430 open-ended
waveguide probe, only this time absorber covering the probe’s mounting structure was removed.

Additionally, more frequencies, n, =361, were measured. This data spans a frequency range of 1.7 GHz

to 2.6 GHz in 2.5-MHz steps. As with the first data set, the separation varies from 30 inches (0.762 m) at
the 70-inch lower-slide position to 100 inches (2.54 m) at the 0 lower-slide position. The mean step size is
0.05 inches (1.3mm). At the lowest frequency, the separation varies from 4.32 wavelengths to 14.40
wavelengths, while the interval between data points is 0.0072 wavelengths. The magnitude of the
measured response is plotted in Figure 28, where some ripple, consistent with the presence of interfering
components, can be seen.

Z-axis measured response, S-21, scan =1
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Figure 28  Magnitude of the measured coupling between the MI-Tech WR-430 open-ended waveguide probe
and the ARA S-band horn antenna. The absorber has been removed from the probe mounting
structure.

The spatial-frequency response is plotted in Figure 29, where the second-order reflection is clearly
visible, being strongest in the temporal-frequency region around 1.9 GHz. The first-order reflection is
also stronger than for the first set of data, Figure 22, and is very prominent around 1.9 GHz. Although the
same probe and antenna were measured, the removal of absorber from the probe-support structure has
made an obvious difference.

As observed from Figure 29, the peak of the first-reflection interaction response is considerably larger
than the second-reflection response. The first- and second-reflection responses have been extracted with a
peak-search algorithm and plotted in Figure 30 as a function of temporal frequency, along with a smooth
polynomial fit to the response. In Figure 29, the dashed lines indicate the locations where the search
algorithm picks the maxima of each of the direct, first-reflection, and second-reflection responses at each
temporal frequency, while the white lines indicate the expected location, based on the analytic model.
Notice that the algorithm bounces between the second-reflection response and a sidelobe of the direct
response in regions were the response is very low. In order to not miss significant contributions, the
search algorithm looks in a region centered along the expected position for each of the reflections, and
when the contribution is low, it can pick values that are actually sidelobes from a another strong response.
However, since these values are quite low, the contribution to the uncertainty is small, and the
compromise is justified by the ability to not miss significant contributions that occur at spatial frequencies
other than the nominal (expected) response.
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Spatial-frequency response relative to direct response, S-21, scan = 1
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Figure 29  Normalized spatial-frequency response obtained from the data plotted in Figure 28. The second-
order reflection is clearly present, and most visible in the temporal-frequency region around 1.9
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Figure 30  Normalized spatial-frequency response of the first reflection (left) and second reflection (right),
with a 15™-order polynomial curve fit.

The smooth fits plotted in Figure 30 correspond to n”-degree polynomials with 7 =15, of the form given

in (55). The parameters used in (56) to choose the degree are n,,, =15, n =10, and n, =361

max

frequencies. The uncertainty bound for S, due to the reflection between the probe and the antenna is

plotted in Figure 31 for this example data set. As to be expected from the removal of absorber, the
uncertainty is larger. Notice the significant peak in the uncertainty near 1.9 GHz, where the first-order
reflection is much larger than before, and where the second-order reflection is clearly present. However,
the second-order reflection is much smaller than the first-order, so the use of only the first-order reflection
to compute the uncertainty is justified.
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Figure 31  Boresight-gain uncertainty-contribution bounds due to the presence of the first and second
reflections.

Measurement showing reflection from a side wall of the chamber

This set of data was acquired with the ARA S-band horn on the large near-field range, but absorber was
removed from the floor to demonstrate the spatial-frequency response caused by reflections from a side of
the chamber, in this case the floor. The configuration is shown in Figure 32, the floor of which should be
compared with the floor in Figure 1. The absence of the absorber on the floor between the horn and the
probe will allow a significant reflection to occur that is expected to behave as described by the analytic
analysis of a wall reflection.

The magnitude of the measured response is plotted in Figure 33. Ripple consistent with the presence of
interfering components is very obvious. Also, for this data set, unlike the previous two sets, the reported
Lower Slide position actually increases as the spacing between the probe and antenna increases’. The
normalized spatial-frequency response is plotted in Figure 34. The absence of the absorber on the floor
caused a very strong spatial-frequency response at spatial frequencies below the direct-coupling response.
In fact, it appears that there are two reflections from stationary walls. The stronger response occurs at
lower spatial frequencies than the weaker response. This implies that the weaker response is either a
higher-order response from the floor or is coming from a position somewhat closer than the stronger
response, since the analytic model predicts higher spatial frequencies as the reflection point moves closer
to the z axis. In comparison, the first reflection between the probe and antenna is producing a much
weaker response. The fact that the first-reflection response occurs at lower spatial frequencies than the
aperture separation suggests means that these reflections are coming from structure that is offset from the
axis, but is moving with either the probe or antenna. This data set also shows the first-reflection response
merging into a sidelobe of the direct-coupling response at the low-frequency end of the data set.
Collecting data over a larger excursion along the z axis would have reduced the width of the main lobe of
the response and also reduced the sidelobe spacing, possibly mitigating this problem. The fact that the
first-reflection response is spread over a range of spatial frequencies at each temporal frequency indicates

? The FARM utilizes several different model towers, slides, and measurement configurations. The consequence is that the
direction of motion for which increasing values are reported by the sensors is not consistent over all configurations. For that
reason, the software that performs the spatial-frequency analysis must determine the meaning of the slide position for each data
set. Failure to do so correctly will result in negative values for the desired spatial frequencies instead of positive values.
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that the first reflection is coming from several parts of the structure that are offset from the range axis, not
a single, well-defined point.

\ i
ol M ;

Figure 32 ARA Horn antenna mounted on the spherical near—f eld range, with absorber removed from the
floor to increase reflection interference.
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Figure 33 Magnitude of the measured coupling between the MI-Tech WR-430 open-ended waveguide probe
and the ARA S-band horn antenna. The absorber has been removed from the floor between the
horn and the probe.
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The peak values of the spatial-frequency response that were extracted by the search algorithm are plotted
against the temporal frequency in Figure 35 for the first reflection between the probe and antenna (left)
and the exposed floor (right). The data set contains a large number of z-axis samples, so the smooth
curves are fit to 15"™-degree polynomials. In this case, the response from the floor reflection is entirely

dominant over the first-reflection response between the probe and antenna. The resulting contribution to

the uncertainty of the boresight gain from each is plotted in Figure 36. The uncertainty contribution from

the floor reflection exceeds *1 dB at some frequencies, underscoring the importance of properly placed

absorber in the near-field measurement chamber.
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the floor between the antenna and probe. The presence of a strong reflection is obvious at spatial
frequencies below those due to the direct coupling, as predicted by the analytical model.
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Figure 35  Spatial-frequency response for the first reflection (left) and the floor (wall) reflection when the

absorber has been removed from the floor between the antenna and probe.
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Conclusion

A robust method for detecting, identifying, and quantifying reflections that occur on a near-field range
has been described, analyzed, and demonstrated. The method is based on the analysis of different spatial
frequencies associated both with the direct coupling and with each reflection. These spatial frequencies
can be extracted from data obtained as the distance separating the antenna and probe is varied. Unlike
time-domain analysis, this spatial-frequency analysis does not require a large bandwidth, and it can even
be applied to data collected at a single temporal frequency. This is a significant advantage for antenna
measurements, since many antenna designs support only limited or very narrow bandwidths.

The spatial-frequency analysis can identify and distinguish the direct coupling between the probe and the
antenna under test, the different order reflections that occur directly between the probe and the antenna,
and the reflections that occur from side-walls in the near-field measurement room, including the floor and
ceiling. The analytical model shows that the n-order direct reflection between the probe and antenna
produces spatial frequencies near f, =+/2n+1 / A, where A is the wavelength, while the spatial frequency
associated with the direct coupling is simply 1/A . The analysis also shows that the dominant reflections

from stationary structures not centered on the line connecting the antenna and probe are always
associated with spatial frequencies smaller than 1/A . In addition, reflections from objects offset to the
side of, but attached to, the antenna or probe are associated with spatial frequencies that are less than
those associated with the same order reflection occurring directly between the probe and antenna from on-
axis points.

The method involves collecting data in the spatial domain by simply varying the spacing between the
antenna under test and the near-field probe. It is recommended that data be obtained with a spacing
increment of about 2, /10, where A, is the wavelength at the highest frequency to be measured. The

range of separation from minimum to maximum should no less than about NA_, where A is the

min min

wavelength of the lowest frequency. A good choice is N > 10, although values as small as 5 may be
useable under some circumstances. It is also recommended that the minimum spacing, z, , should be

min 2

greater than about A, /2.
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Measured data obtained on the near-field range at the Sandia Facility for Antenna and Radar-cross-section
Measurement has been presented to show the validity and usefulness of the z-axis spatial-frequency
analysis. The agreement between the simple analytical model and actual measured data is remarkable, and
confirms the validity of this approach. The ease and clarity with which the various interaction components
can be detected, separated, identified, and quantified justifies the additional effort required to obtain the z-
axis data when performing near-field antenna measurements.

The reflections on the near-field range that have been identified and quantified with this spatial-frequency
analysis constitute just some of the contributions to the uncertainty of the measurement of the antenna’s
gain. Now, having been accurately quantified, these contributions can be combined with other sources of
uncertainty to provide a more complete and accurate estimate of the total measurement uncertainty.

As a final thought, consider that the spatial-frequency analysis provides a very good method to filter the
direct coupling from various reflections that occur during the near-field measurement, but as applied in
the z-axis spatial-frequency analysis, it is used only to quantify a component of the uncertainty in the gain
measurement. If the antenna-to-probe separation could be varied quickly enough to allow a suitable
number of spherical scans to be completed in a reasonable time, the z-axis spatial-filtering method could
be applied to the entire set of spherical near-field data, and the direct coupling could be isolated and
extracted intact without reflections. While such a measurement seems impractical with current positioning
equipment, it could be of use in an application where minimizing gain uncertainty is critical, such as
calibrating a standard-gain horn.
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