

Improvements in Transportation Security Analysis from a Complex Risk Mitigation Framework for the Security of International Spent Nuclear Fuel Transportation

Adam D. Williams
Global Security Research & Analysis
Sandia National Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. **SAND2017-XXXX**

Outline

- Introduction
- Risk Complexity & International SNF Transportation
 - A New Conceptual Approach for Risk Complexity
 - Novel Analysis Tools for Risk Complexity
- Lessons Learned from Risk Complexity in International SNF Transportation
- Implications for Transportation Security
- Summary & Conclusions

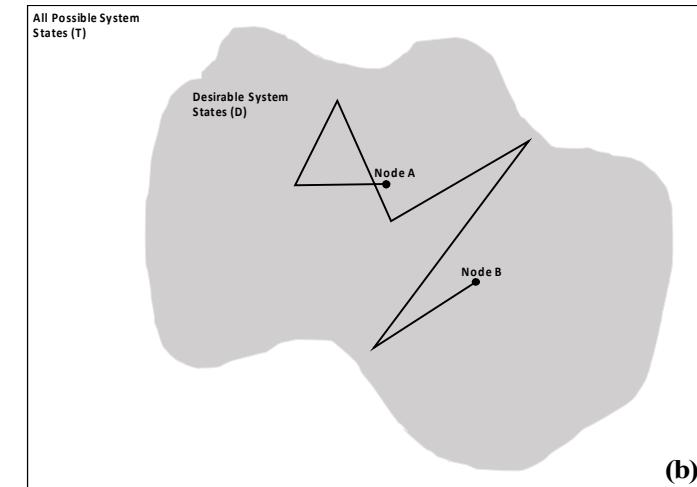
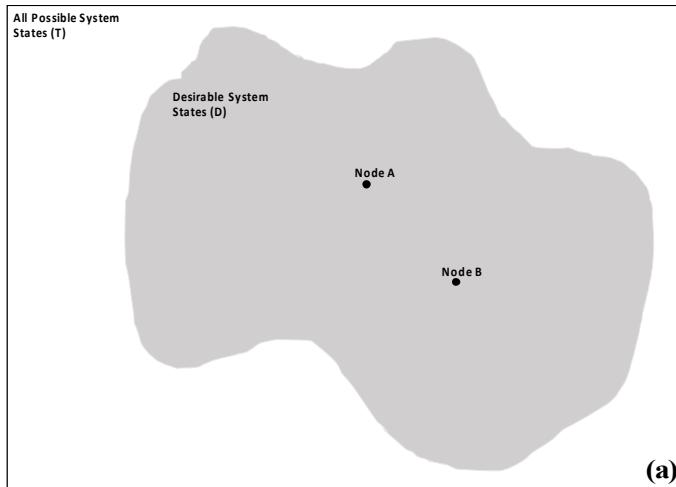
Introduction

- The nuclear fuel cycle faces **more complex risks** from a growing & evolving operational environment
 - Interdependencies between security, safety & safeguards (3S) risks & dynamic operational environments challenge traditional risk analysis methods
- Exemplified in the multi-modal or **multi-jurisdictional complexity** of the international transport of spent nuclear fuel (SNF)
 - 1996 shipment of HEU from Colombia to U.S.
 - Agreed shipment of SNF from Iran to Russia

Introduction

- According to Olli Heinonen (2017):
 - *'Safeguards, security, and safety are commonly seen as **separate areas** in nuclear governance. While there are technical and legal reasons to justify this, they also **co-exist and are mutually reinforcing**. Each has a **synergetic effect on the other...**'*
- Recently completed LDRD research at Sandia National Laboratories explored **integrated** safety, security & safeguards (**3S**) frameworks for **managing risk complexity** in international SNF transportation
 - The results of this study present intriguing implications reducing transportation security risk(s) against 21st century threats

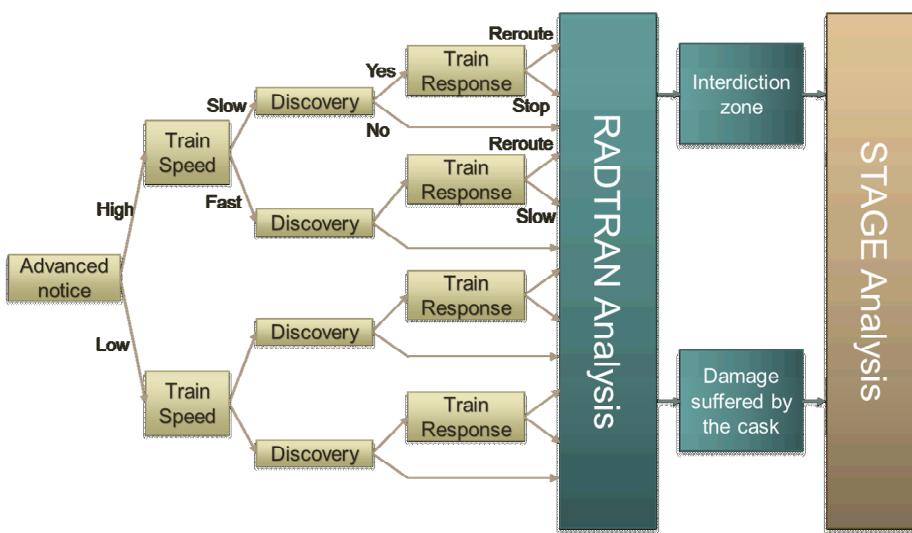
Risk Complexity



- A new concept of risk that, for international SNF transportation, that includes
 - The traditional definitions of risk associated with ***security***, safety & safeguards
 - Social and political contexts/dynamics that may prevent the completion of the desired safety, security and safeguards objectives
 - The emergence of risk resulting from interactions among security, safety, and safeguards risks and mitigations

Risk Complexity

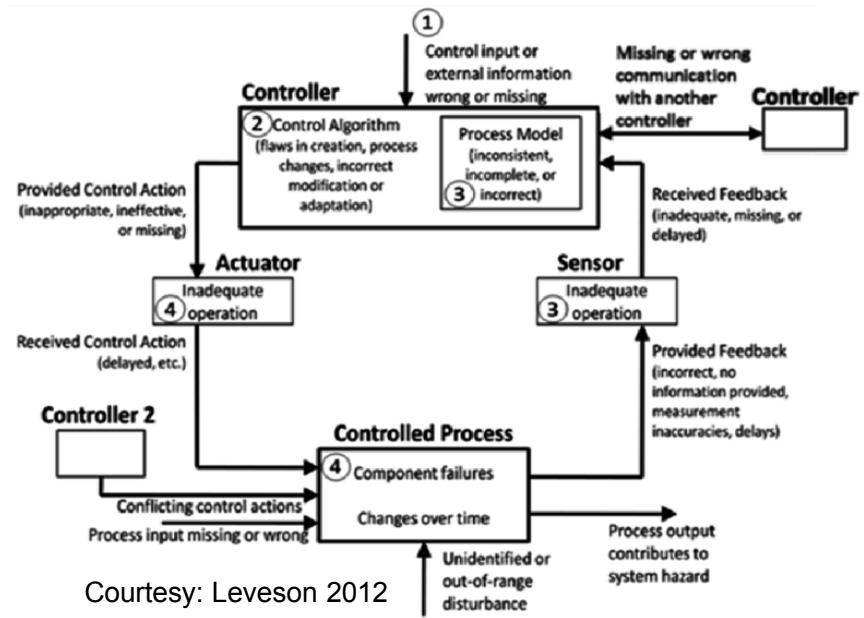
- Incorporating complexity & systems theories into traditional engineering approaches to risk introduces:
 - **Interdependence**: how interactions influence desired functions
 - **Emergence**: how system level behavior results from interactions
 - **Hierarchy**: how higher levels constrain the behaviors of lower levels
- The result: a state-space description of complex risk where
 - (T) = total state space
 - (D) = some subset of (T) representing all desirable system states
 - $(T-D)$ = a complementary subset representing the undesirable, or 'risky,' states
- All else equal, complex risk is manipulating the technical/social components of a system to stay in the desirable system states

Risk Complexity


- Such systems may exist at ***different places*** in the desirable space at ***different points in time***
 - Complex risk is dynamic and also includes all system states between beginning & end points
 - The requirements that define the desirable space are implemented in different social, political, and technical contexts.
- Therefore, while Figure (a) may appear to have relatively low risk at Nodes A and B, Figure (b) illustrates how there are multiples points that approach the boundary of the desirable space

Risk Complexity

Dynamic Probabilistic Risk Assessment (DPRA)


- Bottom-up & deterministic
- Uses Dynamic Event Trees (DETs) for systematic and automated assessment of possible scenarios arising from uncertainties
- Models/tools used:
 - Safety: **RADTRAN**
 - Security: **STAGE**
 - Safeguards: **PRCALC**, Markov Chain model of safeguards from BNL

Courtesy: Kalinina, et. al. 2017

System-Theoretic Process Analysis (STPA)

- Top-down & based on system-level behaviors
- Based on abstracting real complex system operations into hierarchical control structures & functional control loops
- Two Primary Steps:
 - **'Step One'**: identify possible violations of control actions that lead to system states of higher risk
 - **'Step Two'**: derive specific scenarios that could cause these theorized violations to occur

Courtesy: Leveson 2012

Lessons from SNF Transportation

- Key benefits of the state-space descriptions of risk include:
 - **Improved** understanding over traditional approaches to transportation security risk
 - **Enhanced** understanding & ability to manage increasing risk complexity
 - **Distinguishing** sources of risk that can be controlled (i.e., defining & high level requirements) from those that cannot (i.e., inherent risk of shipping)
 - **Identifying** sources of risk variability (e.g., those from implementation vs. those regardless of implementation)

Attributes	Traditional Characterization (e.g., security in isolation)	Complex Risk Characterization
Risk Definition	<i>Probabilistic ability to protect along path(s) against anticipated adversary capabilities</i>	<i>Emerges from potential system migration toward states of higher risk</i>
Risk Reduction	<i>From improved component reliability & defense-in-depth</i>	<i>Realized as part of complex risk management trade-space</i>
Risk Measure	<i>System effectiveness (e.g., combinatorial reliability of security components)</i>	<i>State description including nuclear material loss, area contamination & socioeconomic harms</i>
Solution Space	<i>Limited to increasing security component reliability or reducing adversaries capabilities</i>	<i>Expanded to technical, organizational or geopolitical influences & safety/safeguards leverage points</i>
Relationship to Safety & Safeguards	<i>None, treated as an independent risk</i>	<i>Parallel characteristic, treated as interdependent component of complex risk</i>

Lessons from SNF Transportation

- A potential ***paradigm shift*** in risk assessment & management for international SNF transportation security (and, nuclear fuel cycle activities writ large)
 - Risk from the ‘inside out’ as a dynamic balance within a system state-based tradespace
- Additional major lessons include:
 - realities of international SNF transportation will challenge current approaches and assumptions;
 - risk itself is complex;
 - some aspects of/influences on risk are controllable, some are not;
 - 3S interdependencies exist;
 - risk is a complex trade space; and,
 - integrated 3S risk management frameworks can reduce risk/uncertainty, even for individual (e.g., security only) perspectives

Implications for Transportation

Security (1/2)

- These conclusions offer a better understanding of 3S interactions that *can improve SNF transportation security design & analysis*

Lessons Learned	Implications for SNF Transportation Security
Realities of international SNF transportation will challenge current approaches and assumptions	<ul style="list-style-type: none">Need to (re)assess the validity of assumptions underlying current approaches to transportation securityTechnical analysis tools need to account for the variation in implementation of the PPS in transit among different operators
Risk itself is complex	<ul style="list-style-type: none">Security risk metrics (e.g., system effectiveness, P_E) may be insufficient to adequately describe security risk/assess vulnerabilitiesNeed to identify key aspects/descriptors of new challenges to transportation security
Some aspects of/influences on risk are controllable, some are not	<ul style="list-style-type: none">Not all security risks lie in adversary action or can be described in probabilistic/technical reliability termsImplementation decisions & how technical components within transportation security systems matter—and should be included in analytical frameworks

Implications for Transportation Security (2/2)

- These conclusions offer a better understanding of 3S interactions that *can improve SNF transportation security design & analysis*

Lessons Learned	Implications for SNF Transportation Security
3S interdependencies exist	<ul style="list-style-type: none">Need to change the assumption that transportation security can be accurately & adequately evaluated independentlyA broader solution space exists for managing complex risk in transportation security (e.g., leveraging safeguards material accounting practices to mitigate insider issues)
Risk is a complex trade space	<ul style="list-style-type: none">There is no 'true' minimization of security risk, therefore attempts at security design optimization are more complexNeed to develop expertise/experience in making security-related trade-offs during international SNF transportation
Integrated 3S risk management frameworks can reduce risk/uncertainty, even for individual perspectives	<ul style="list-style-type: none">Integrated approaches have been shown to incorporate more contributor to complex riskNeed to develop new analytical approaches to assess non-uniform, larger types of uncertainty (between safety, security & safeguards)

Conclusions

- This SNL study demonstrated how incorporating complexity & systems theories supports ***complex risk***, a concept that better addresses
 - Non-traditional risk-related pressures & dynamics (e.g., social contexts & changing security implementation capabilities)
- Related insights offer improved management strategies to ensure the protection of nuclear (& radiological) materials against dynamic, complex risks while in transit
- This concept provides implications for improving SNF transportation security—and security of nuclear materials in transit more generically—against 21st century threats