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Motivation

 Why can’t we see infinitely fine detail with an imaging system?

 Because the resolution is limited by some component of the system.

 Common limitations for resolution include:

• Optics: The laws of physics control how small a spot can be formed.

• Focal plane pixels: Shannon sampling theory and the finite size of the pixels 
limits what details can be accurately sensed.

• Jitter: If the image is moving relative to the focal plane during the time light is 
collected, then the image is blurred.

 For the purposes of this presentation we will neglect jitter.

 Integration times are assumed to be short enough such that jitter blur does not 
occur.

 For most visible imaging systems used during the day (and not held by a 
person), this is a good assumption.
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Motivation

 For reasons to be discussed later, the resolution of the system is usually 
limited by the finite size of the pixels.

 Rather than discuss the abstract concept of “fine details”, we will discuss 
resolution in terms of “spatial frequency.”

• Spatial frequency is completely analogous to temporal frequency.

• The dimensionality of spatial frequency is reciprocal length.

• Imaging fine details such as sharp edges or point objects requires accurately 
measuring high spatial frequencies.

 When the resolution of the imaging system is limited by the size of the 
pixels, there are high spatial frequencies transmitted accurately by the 
optics but sensed incorrectly by the focal plane.

• The high spatial frequencies are “aliased”, i.e., sensed as lower spatial 
frequencies.

 Techniques exist for using multiple, aliased images and reconstructing a 
properly-sampled image.

• These techniques are known as multi-frame super-resolution techniques.
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Motivation

From http://people.cs.clemson.edu/~tadavis/cs809/aa.html
From:
http://www.hookedongolfblog.com/2006/05/13/firethorn-golf-apparel

These images show extreme cases of aliasing.
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Motivation – The Bottom Line

 We can take a system whose native imagery looks like:

 and turn it into a system that outputs imagery like:
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Sampling Theory

 For an incoherent imaging system, the highest spatial frequency that the 
optical system can transmit is

• Spatial frequencies above opt are not transmitted by the optical system.

 The highest spatial frequency that can be sensed accurately by the 
detector is

• Spatial frequencies above det are aliased back to lower frequencies.

 When these two frequencies are equal we have
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Sampling Theory

 Define the sampling ratio     as              .

 When         the system is properly sampled.

• The pixel pitch is small enough that all of the spatial frequencies up to the 
optical cutoff frequency are sensed without aliasing.

• For a diffraction-limited Airy disk, there are at least 2.44 pixels across the 
first-null diameter.

• The resolution of the system is limited by diffraction.

 When         the system is undersampled.

• The pixel pitch is relatively large compared to the optical spot.  Spatial 
frequencies below the optical cutoff frequency and above the detector cutoff 
frequency are aliased.

• The resolution of the system is limited by the pixel pitch.

• We can increase the resolution up to the point where the optics become the 
limiting factor.
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Undersampled Systems

 Why not always design a system such that it is Nyquist sampled?

 Q depends on the focal length, aperture diameter, and pixel pitch.  These 
parameters affect many other decisions in a design trade study.

 For example, the pixel pitch directly impacts the field-of-view (FOV).

• Using smaller pixels but maintaining the same FOV requires more pixels.

 Data processing needs will increase.

 Power consumption will go up.

 Data bandwidth needs will increase.

• Using smaller pixels but maintaining the number of pixels reduces FOV.

 Smaller Q values produce more energy on a single pixel.

• Increases signal-to-noise ratio.

• Increases integration time and hence motion-blur.

 Smaller Q values often produce higher quality images despite the effects 
of aliasing†.

†R. D. Fiete, "Image quality and FN/p for remote sensing systems," Opt Eng 38, 1229-1240 (1999).
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 Consider the following systems at a wavelength of 0.5 microns.

 These systems are all considerably undersampled and would have 
improved resolution if Q were increased to 2.  Other system trades impact 
the decision.

 There may be times when improved resolution is desired.

Examples of Undersampled Systems

Name f/#
Pixel Pitch

(m)
Q

Ikonos 2 14.3 12 0.60

Quickbird 2 14.7 12 0.61

SkySat-1 (Skybox 
Imaging)

10.4 6.5 0.8

iPhone 6 or 6 Plus 2.2 1.5 0.73

Canon EOS Rebel 
T3i (18-55 mm lens)

3.5-5.6 4.3 0.41-0.65
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Super-Resolution Imaging

 Super-resolution techniques allow the sampling ratio Q to be effectively 
increased.

 Super-resolution refers to using a number of low-resolution images to 
create a single high-resolution image.

• The low-resolution images are usually laterally displaced by sub-pixel 
amounts.

• Super-resolution algorithms have been implemented which use precise axial 
shifts.

 Such algorithms are generally impractical in deployed systems due to vibrations 
and variations in the line-of-sight pointing angle.

 Excellent overview articles on super-resolution techniques exist1,2.

1S. C. Park, M. K. Park, and M. G. Kang, "Super-resolution image reconstruction: 
A technical overview," IEEE Signal Proc Mag 20, 21-36 (2003).
2J. Tian and K. K. Ma, "A survey on super-resolution imaging," Signal, Image and 
Video Processing 5 (3), 329-342 (2011).
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Drizzle

 One commonly used super-resolution algorithm is Drizzle†.

 It was developed by Fruchter and Hook for use with the Hubble Space 
Telescope.

† A. S. Fruchter and R. N. Hook, "A novel image reconstruction method applied to 
deep Hubble Space Telescope images," Proc SPIE 3164, 120-125 (1997).

Image from http://www.stsci.edu/~fruchter/dither/drizzle.html
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Drizzle Simulation
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Drizzle Simulation

Reconstructed Image Best Focus Measurement
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Drizzle Simulation – Slices

Reconstructed Image Best Focus Measurement

• The three-bar pattern is not visible for any of the groups for the best focus 
measurement.

• The three-bar pattern is discernible for two of the groups in the 
reconstructed image.  

• Higher-spatial frequencies are present in the reconstructed image.
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Drizzle Limitations

 The Drizzle algorithm only corrects for the effects due to the 
undersampled nature of the system.

 Blurring due to the optics remains.

 If we know the optical point-spread function (i.e., how the optics blurs an 
image), we can correct for that as well.

• Phase-diverse phase retrieval techniques can be used to determine the 
optical point-spread function for undersampled systems1-3.

 Similar effects such as focal plane charge diffusion can be corrected in 
post-processing as well.

1 E. A. Shields, Opt Lett 37, 2463-2465 (2012).
2 E. A. Shields, Computational Optical Sensing and Imaging, OSA Technical Digest (online) 
paper CTu2B.4 (2012).
3 E. A. Shields, Proc. of SPIE, 8499 (2012).
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Super-Resolution via Nonlinear Optimization

 While the Drizzle algorithm is fast and simple, it is not necessarily the 
most accurate algorithm.

 A commonly-used technique that potentially provides better results uses 
non-linear optimization techniques to estimate the high-resolution image.

 An objective function is defined and minimized.  This objective function 
provides a metric for the difference between:

• 1) the estimated high-resolution image blurred by the system imaging model 
and then downsampled to the focal plane pixel pitch

• 2) the measured undersampled images

 If relatively few frames of data are available, the super-resolution problem 
is ill-posed and regularization terms are used to constrain the solution.
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Super-Resolution via Nonlinear Optimization

 Mathematically, we represent the objective function via:

 
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Super-Resolution via Nonlinear Optimization

 The goal is to find the high-resolution image z that minimizes J.

 The number of variables is equal to the number of pixels in the high-
resolution image.

• Reconstructing a 1024x1024 image requires optimizing over 1 million 
variables.

 To efficiently perform this minimization, the gradient of J with respect to z
is necessary.

• Techniques that do not use gradient information are much too slow.

• Techniques that use first-order derivative information (e.g., conjugate 
gradient optimization) can efficiently handle this problem.
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Super-Resolution via Nonlinear Optimization

 The traditional super-resolution technique assumes that the imaging 
model is known precisely.

• This usually means that an image registration step is performed to determine 
the k parameters.

 If the image registration algorithms fails, the super-resolution 
reconstruction is quite poor.

 Recently, Drew Kouri (1441) and I extended this technique to include 
simultaneous optimization of the lateral shifts†.

 New analytic derivative terms were calculated.

•
��

��
already existed in the literature.

• We calculated 
���

��� ,
��

��
,

���

���, 
���

����
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���

����
.

•
���

��� is useful for the traditional, image-only problem.  If an     norm is used, J(z)

is quadratic and Newton-methods can be used for very efficient minimization. 

†D. P. Kouri and E. A. Shields, "Efficient multiframe super-resolution for 
imagery with lateral shifts," Applied Optics 53 (24), F1-F9 (2014).

2
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Super-Resolution Results

 Measured data from an unclassified optical testbed system were used.

• The optical point-spread function was known from interferometric 
measurements.

• 50 frames with a Q of 0.75 were used.

• 3X super-resolution was performed.

 The Drizzle algorithm was used in the following manner:

• Initial image registration

• Drizzle super-resolution reconstruction

• Deconvolution to mitigate the effects of optics and slight blurring terms 
associated with the Drizzle algorithm itself.

 The optimization algorithm was used in the following manner:

• The initial estimates for the lateral shifts were all zero.

• The initial estimate for the high-resolution scene was an interpolated version 
of a single low-resolution scene.

• Lateral shifts and pixel values were optimized simultaneously.

• A final optimization over pixel values was performed.
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Measured Low-Resolution Image

50 such images, slightly displaced from 
each other, were used.
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(U) Drizzle Algorithm Reconstruction
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(U) Optimization Algorithm Reconstruction
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Reconstructions

 The optimization reconstruction clearly does a better job reconstructing 
high-spatial frequency content.

 Re-running the Drizzle algorithm with registration parameters obtained via 
the optimization algorithm  does not noticeably change the Drizzle result.

Low-Resolution Image Drizzle Reconstruction
Optimization 

Reconstruction



Slide 29 of 36

Outline

 Motivation

 Imaging and Sampling Theory

 Super-Resolution via Drizzle

 Super-Resolution via Nonlinear Optimization

 Trends in Super-Resolution Research

 Summary



Slide 30 of 36

Ongoing Super-Resolution Research

 Bryan Arguello (5773) is continuing our super-resolution research while 
obtaining his PhD.

 Currently we are investigating adding image rotation to our simultaneous 
minimization of pixel values and lateral shifts.

• Can we analytically calculate the derivative of the objective function with 
respect to image rotations?

 We would also like to investigate utilization of Automatic Differentiation 
(AD) techniques for super-resolution.

• AD allows specialized software analysis tools to perform gradient calculations 
analytically without analytic derivations.

• This could potentially allow for efficient optimization of the objective function 
for much more complex motion models.

 The underlying formulation of the super-resolution problem assumes 
Gaussian noise.

• For imaging systems, Poisson-distributed noise may be more appropriate.

• How do we efficiently model Poisson-distributed noise systems?



Slide 31 of 36

Trends in Super-Resolution Research

 For the case where relatively few frames of data exist, the super-resolution 
problem is ill-posed.

• Regularization techniques are employed to constrain the solution.

• Research into appropriate regularization functions is ongoing.

 Efforts for super-resolution video reconstruction are underway as well.

• Traditional techniques simply use a sliding window.

• A variety of techniques are being studied to either improve calculation speed 
or reconstruction accuracy.

 Multi-frame super-resolution has been shown with an array of detectors 
rather than multiple frames from the same detector†.

†Charles Guillem, et al, “Super-resolution imaging using a camera array,” Opt Lett 
39(7), 1889-1892 (2014).
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Trends in Super-Resolution Research

 Apple has apparently been exploring super-resolution imaging for 
smartphones.

 It looks like they are studying using a prism to precisely tilt the image on 
the focal plane array.

 Patent number 20140125825 filed November 8, 2012, published May 8, 
2014.
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Trends in Super-Resolution Research

 Multi-frame super-resolution techniques have been shown to effectively 
increase the resolution of terahertz imaging systems with pulsed and 
continuous wave sources1.

 Super-resolution techniques are also being studied for magnetic 
resonance imaging (MRI)2.

• It is often faster to acquire two-dimensional slice stacks of images rather than 
true 3D volumes.

• In such cases super-resolution techniques can be employed.

• New trades between resolution, signal-to-noise ratio, and acquisition time can 
be made.

1 Li-Min Xu, et al, “High-resolution reconstruction for terahertz imaging,” Appl Opt 
53(33), 7891-7897 (2014).
2 Esben Plenge, et al, “Super-resolution methods in MRI: Can they improve the trade-
off between resolution, signal-to-noise ratio, and acquisition time?” Magnetic 
Resonance in Imaging 68(6), 1983-1993 (2012).
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Summary

 Many remote sensing imaging systems are designed such that the pixels 
are relatively large compared to the size of the optical spot.

• Such systems are called undersampled.

• The resolution of undersampled systems is limited by the pixel size.

• Aliasing artifacts may be present in undersampled systems since the optical 
system transmits spatial frequencies that exceed what the detector can 
measure.

 Multi-frame super-resolution techniques can be used to improve the 
spatial sampling.

• Increased resolution is not free.  Costs include:

 Considerably more data need to be collected.

 The image must somehow be moved by small amounts on the detector.

 Image registration is required.

 Considerable processing may be necessary for the super-resolution algorithm 
itself.
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Summary

 What can multi-frame super-resolution do?

• Provide a high-resolution reconstruction when multiple, jittered, 
undersampled frames are available.

• Provide a high-resolution reconstruction of a moving target when multiple, 
undersampled frames are available.

 The motion of the target is used in lieu of motion of the scene.

 The reconstructed background will be quite blurry.

 What can multi-frame super-resolution not do?

• Improve the resolution of a single frame of data.

• Improve the resolution of a properly-sampled system.

• Improve the resolution beyond the point where the system resolution is 
limited by the optics.


