2017 IEEE International Symposium on Nanoelectronic and Information Systems

Quantum Circuit Designs of Integer Division
Optimizing T-count and T-depth

Himanshu Thapliyal*, T. S. S. Varun*, Edgard Mufioz-Coreas*, Keith A. Britt' and Travis S. Humblef
*Department of Electrical and Computer Engineering
University of Kentucky, Lexington, KY
Email: hthapliyal @uky.edu
fQuantum Computing Institute
Oak Ridge National Laboratory, TN

Abstract—Quantum circuits for basic mathematical functions
such as division are required to implement scientific computing
algorithms on quantum computers. In this work, we propose two
designs for quantum integer division. The designs are based on
quantum Clifford+T gates and are optimized for T-count and
T-depth. Quantum circuits that are based on Clifford+T gates
can be made fault tolerant in nature but the T gate is very
costly to implement. As a result, reducing T-count and T-depth
have become important optimization goals. Existing quantum
hardware is limited in terms of number of available qubits.
Thus, ancillary qubits are a circuit overhead that needs to be
kept to a minimum. We propose two quantum integer division
circuits. The first quantum integer division circuit is based on
the non-restoring division algorithm. The proposed non-restoring
division circuit is optimized for total quantum hardware (T-
count and T-depth) cost but requires 2 x n 4 1 ancillary qubits.
We also propose a quantum integer division circuit based on
the restoring division algorithm. The proposed restoring division
circuit is optimized for total qubits. The design requires only n
ancillary qubits but will need more quantum hardware than the
non-restoring division circuit. Both proposed quantum circuits
are based on (i) a new quantum conditional addition circuit,
(ii) a new quantum adder-subtractor and (iii) a new quantum
subtraction circuit. Further, both designs are compared and
shown to be superior to existing work in terms of T-count and
T-depth. The proposed quantum non-restoring integer division
circuit has a 96% improvement in terms of T-count and a 93%
improvement in terms of T-depth compared to existing work.
The proposed quantum restoring integer division circuit has a
91% improvement in terms of T-count and a 86% improvement
in terms of T-count compared to the existing work.

I. INTRODUCTION AND BACKGROUND

Quantum circuits of arithmetic operations are needed to de-
sign quantum hardware for implementing quantum algorithms
such as Shor’s factoring algorithm, the discrete log problem,
class number algorithm and triangle finding algorithm [1] [2].
Dividers are one of the major computational units in quantum
arithmetic and have applications in circuit designs of quantum
algorithms [3] [1].

Quantum circuits that are based on Clifford+T gates can be
made fault tolerant in nature permitting reliable and scalable
quantum computation [4] [5]. The Clifford+T gate family is
illustrated in [6]. The T gate is very costly to implement
compared to the Clifford gates making reducing T-count and
T-depth important optimization goals [5] [7]. Existing quantum

978-1-5386-1356-6/17 $31.00 © 2017 IEEE
DOI 10.1109/iNIS.2017.34

123

hardware is limited in terms of number of available qubits [8].
Thus, ancillary qubits are a circuit overhead that needs to be
kept to a minimum.

In the existing literature, there are a handful of integer
divider designs based on reversible gates targeting mostly
reversible computing [9] [10] [11]. Among these designs we
found only [12] to be suitable for quantum computing. The
quantum integer division circuit in [12] implements the restor-
ing division algorithm and uses the quantum Fourier transform
to perform the division operation. However, the design in
[12] is not optimized for T-depth and T-count. The quantum
division circuit in [12] uses controlled phase shift gates. It is
known that the controlled phase gates required by the design in
[12] can only be approximated by Clifford+T gates [13]. The
Clifford+T based approximations of the controlled phase gates
have a high T gate cost [13]. Further, the T gate cost increases
as the accuracy of the controlled phase gate approximation is
improved [13]. Thus, implementing all the controlled phase
gates required by the design in [12] with a high degree of
accuracy will result in a design with high T-count and T-depth
[13].

This paper presents two designs for quantum circuit integer
division based on Clifford+T gates. The first quantum circuit is
based on the non-restoring division algorithm and the second
quantum circuit is based on the restoring division algorithm.
Both proposed quantum integer division circuits are based
on (i) a new quantum conditional ADD operation circuit,
(ii) a new quantum adder-subtractor and (iii) a new quantum
subtraction circuit. The proposed non-restoring division circuit
is optimized for total quantum hardware (T-count and T-depth)
cost. The trade off for reducing the quantum hardware of the
design is the need to use more ancillary qubits. The non-
restoring division circuit requires 2 * n + 1 ancillary qubits.
The proposed quantum restoring division is designed with
the aim to minimize total qubits. We reduce the number of
ancillary qubits to n but must use more quantum hardware
than the proposed quantum non-restoring division circuit. Both
the proposed restoring quantum integer division circuit and
proposed non-restoring quantum integer division circuit are
compared and shown to be superior to existing work in terms
of T-depth and T-count.

@) CO‘ pute
1(!) I
& SOCIety

This paper is organized as follows. Section II presents the
design of the (i) new quantum conditional addition circuit,
(i1) a new quantum adder-subtractor and (iii) a new quantum
subtraction circuit used in the proposed quantum division
circuits. In section III the design of the proposed quantum
non-restoring integer division circuit is discussed. The design
of the proposed quantum restoring integer division circuit is
presented in section IV.

II. DESIGN OF QUANTUM CIRCUITS USED IN PROPOSED
INTEGER DIVISION CIRCUITS

The quantum circuits that are required for developing the
proposed non-restoring and restoring integer division circuits
are: (i) controlled adder-subtractor, (ii) quantum subtractor and
(iii) conditional ADD operation circuit. The quantum circuit
designs of the quantum adder-subtractor, quantum subtractor
and the conditional ADD operation circuit are discussed in the
following sections.

A. Design of Quantum Subtractor

Fig. 1. Graphic symbol of quantum subtractor. S represents the quantum
subtraction operation

|B)
4)

|5)
|4)

b, —~b— —D—s,
a, ag
b, - ®— —P—s,
a, N qubit a,
} Ripple Carry }
a,, Adder a,,
b1 — D,
an1 A

Fig. 2. Circuit design of N qubit quantum subtractor based on N qubit
quantum ripple carry adder

Fig.1 shows the symbol of the quantum subtractor circuit.
The subtractor circuit takes two n qubit inputs |A) and |B).
The input a is regenerated at the output. The n-qubit output
|S) has the result of the subtraction of b and a. Fig.2 shows
the circuit design of N qubit subtractor based on N qubit
quantum ripple carry adder. As shown in Fig.2, a quantum
ripple carry adder is required to develop a quantum subtractor
circuit. We use the quantum ripple carry adder proposed in
[14] for developing the quantum subtractor circuit. To perform
subtraction, we use the design approach presented in [15].
Thus, the input qubits |B) are complemented before being
applied to the quantum ripple carry adder. Then, the ripple
carry adder calculates b + a. At the end of computation, the

124

input qubits |B) are complemented again. As a result, the

quantum subtractor calculates (b + a) which is equivalent to
b—a [15].

B. Design of Quantum Adder-Subtractor

|B) EAES 1P) | B) ECEA P)
ctrl ctrl |A) |A)
|A) —e— |4) Ctrl —e— Ctrl

(a) (b)

Fig. 3. Graphic symbols of (a) Adder-Subtractor (b) Conditional ADD
operation circuit. AS represents add or subtract operation. CA represents
conditional add operation

ctrl— ——ctrl
bo{)250
a, a,
b, ¢ N qubits 51
& Ripple Carry a
! Adder !
an-L an.z
b, >—Sn1
an'l an-1

Fig. 4. Circuit design of N qubit quantum adder-subtractor based on N qubit
quantum ripple carry adder

Fig. 3(a) shows the graphic symbol of the quantum con-
trolled addition or subtraction circuit. The quantum adder-
subtractor circuit operates as follows: (i) when the input
labeled ctrl is high (refer Fig. 3(a)), the circuit output is
|P) = |B — A), (ii) when the ctrl input is low, the circuit
output is |P) = |B + A).

The complete working circuit of the quantum adder-
subtractor circuit is shown in Fig. 4. The quantum adder-
subtractor circuit is based on the design presented in [15]
and uses the ripple carry adder in [14]. The quantum adder-
subtractor calculates (b + a) when ctrl is high. The expression
(b+ a) is equivalent to b — a.

C. Design of Quantum Conditional ADD Operation Circuit

Fig. 3(b) shows the graphic symbol of the quantum condi-
tional ADD operation circuit. The quantum conditional ADD
operation circuit operates as follows: (i) when the input
labeled ctrl is high (refer Fig. 3(b)), the circuit output is
|P) = |B+ A), (ii) when the ctrl input is low, the circuit
output is |P) = |B).

The complete working circuit of quantum conditional ADD
operation circuit is shown in Fig.5 for 4 qubit operands. The
quantum conditional ADD circuit uses a modified version
of the ripple carry adder proposed in [14]. We were able

ctrl ctrl
b0 *—D s0
a0 a0
b1 P P P- sl
al \r o S \i/ al
b2 ? S, ? 52
a2 —e O— D S, — a2
b3 ? &P ? s3
a3 —e—b & & b—e— a3

Fig. 5. Circuit design of quantum conditional ADD operation circuit

to remove the qubit that performs the carry out for the
adder in [14] as we do not need the carry out qubit in the
proposed integer dividers. The addition architecture in [14]
uses Peres gates to perform the addition. The Peres gate can be
decomposed into a Feynman and a Toffoli gate. By replacing
the Feynman gate with a Toffoli gate, we can use the control
line (ctrl) to determine whether the conditional ADD circuit
will perform addition or no operation. Although, Fig.5 is just
shown for 4 qubit operands, it can easily be extended to any
operand size.

III. DESIGN OF NON-RESTORING QUANTUM INTEGER
D1VISION CIRCUIT

The quantum circuits that are required for developing the
hardware implementation of the proposed non-restoring divi-
sion algorithm are: (i) Leftshift operation circuit, (ii) controlled
adder-subtractor, and (iii) conditional ADD operation circuit.
We observed that we can eliminate the LeftShift operation
circuit by combining [R[g.,,—2)) and |Q[,—1]) to form an n
qubit register there by saving the quantum resources.

The proposed non-restoring division algorithm for quantum
circuits is shown in Table I. In Table I, the inputs to be given
are: (a) (|Q[o:n—1])» 1 qubit register in which the dividend is
loaded; (b) |Djg.;,—17), n qubit register in which the divisor
is loaded; (c) ‘R[O:n71]>s n qubit remainder register which is
initiated to O at the start. At the end of computation, we get
the quotient at |Q[o.,—1j) and remainder at |Rjo.,—1)). The
divisor is retained at the output. Also, n+ 1 garbage qubits are
produced. The methodology to design our proposed quantum
non-restoring integer division circuit is developed from the
non-restoring division algorithm shown in Table I. The Steps
of the methodology are presented below.

A. Design Methodology for Quantum Non-Restoring Integer
Division Circuit

From Table I, we can see that the algorithm is divided into
two phases. (i) Core Engine Phase and (ii) Supplementary
Restoring Phase. The Core Engine Phase is iterated n times.
Supplementary Restoring Phase takes place after the end of
n iterations of the Core Engine Phase. The Supplementary
Restoring Phase is repeated once. A quantum circuit is devel-
oped for each of these phases. The final circuit that performs
the integer division using the non-restoring integer division

125

Algorithm 1: Proposed quantum non-restoring division algorithm
function Non — Restore (|Qn), |Rn),|Dn))
fori=0 to n—1do

/* Start Core Engine Phase */

if(‘R[O:n—1]> > 0) then

(‘Q[l:n—l])a |R[O:n—1]>) = Lerrsurrr (‘Q[O:n—l])a |R[0:n—1]>)§
[R(0:n—1]) = [Rjo:n—1]) + |Djoin—1))}

else
(‘Q[l:n—l])v |R[O:n—1]>) = Lerrsurer (‘Q[O:n—l]}a |R[0;n—1]>)§
< ‘R[O:n71]> = IR[O:n71]> - |D[O:n71]>;
end if;
if(| Rjo.,—1)) > 0) then
Qo) = 13
else
Qo) = 0;
end if;
/* End Core Engine Phase */
end for;

//after n iterations//
¢ /% Start Supplementary Restoring Phase */
if(‘R[O:n—1]> > O) then

‘R[0:n71]> = ‘R[O:n—1]>;

4 else
‘R[O:n71]> = IR[O:nfl]> + |D[0:n71]>;
end if;
/* End Supplementary Restoring Phase */
return R;

end function

TABLE I
PROPOSED QUANTUM NON-RESTORING DIVISION ALGORITHM

Core engine iterated n times Supplementary circuit

M — — — — -1 o
L I R L
Rig.n—o1)! H Loveeod | - | R —
[Bion-21) mnll m] |ca :} o:n-2)
[Bo-ud 4 P - [Be-n)
Dy LR ket D)
10) LO, — J Garbage

Fig. 6. Quantum non-restoring integer divider circuit design

algorithm is shown in Fig. 6. In Fig. 6, I] represents the first
iteration of the Core Engine Phase, I2 represents the second
iteration and In represents the final iteration.

1) Core Engine Phase: Fig. 7 represents the quantum
circuit that does the operations that are marked under the Core
Engine Phase in the algorithm in Table IV. We now elaborate
on how the information moves in Fig. 7 .

o Step 1. |Dj.—1)) holds the divisor, |Rjg.,—17) is ini-
tialised to zero, and |Q[o.,—1)) holds the dividend.

o Step 2. We consider, |Q[,—1)) and |Rjo.,—g)), as one
combined register.

o Step 3. The combined register of Step 2 and |Dyg.,,—1)
are applied as two n qubits inputs to the quantum adder-
subtractor circuit. In Fig. 7, AS represents the adder-
subtractor circuit. At the end of computation, register
‘D[O:n—1]> emerges unchanged and the combined register

1 —— |Qu)
|Q[O:’n—2]> 7 |Q[1:n—1]>
n— R
\Q[1) AS | [0])
|R[():n—2]> |R[1:n—1]>
’R[n_1]> Garbage
|Dion—1)) ————— [Djon-1])

Fig. 7. Quantum non-restoring integer divider circuit design for first itera-
tion(core engine)

now holds the sum or difference of the combined register
and D.

o Step 4. Qubit |Rp,_q)) is complemented and applied as
the ctrl qubit to quantum adder-subtractor circuit.

o Step 5. The ctrl qubit is left out as garbage.

o Step 6. An ancillary qubit set to 1 and qubit |Q[,,—q]) are
applied to a CNOT gate. |Qy,,—1]) is the control qubit and
1 is the target qubit.

The Steps from 1 to 6 constitute the operations of the Core
Engine Phase. From the algorithm in Table I, it can be seen
that Steps 2 to 6 of the Core Engine Phase are iterated n times.
So, the circuit in Fig. 7 that represents the Core Engine Phase
is also iterated n times (see Fig. 6). The outputs of the first
iteration as inputs to the second iteration and so on for all n
iterations.

|Riom—2)) — oal | Rio:n—21)
|Rpn-1)) ~ |Rp-1))

|D[0:n71]> |D[0:n71]>
0 <, Garbage

Fig. 8. Quantum circuit implementation of the Supplementary Restoring
Phase(refer Table 1)

2) Supplementary Restoring Phase: After the end of n
iterations of the Core Engine Phase, |Ry.,—;)) might be
negative at the end of n iterations. In that case, it has to be
restored by adding the divisor. This restoration of the negative
remainder is carried out by the Supplementary Restoring Phase
quantum circuit shown in Fig. 8. The quantum circuit shown
in Fig. 8 is the quantum implementation of the Supplementary
Restoring Phase marked in the algorithm in Table I. We now
elaborate on how the information moves in the supplementary
circuit.

o Step 1. The qubit |R},_4]) and an ancillary qubit set to
0 are applied as inputs to a CNOT gate. |R[,,_yj) is the
control qubit and the ancillary qubit is the target qubit.
The target now holds the value of |Rp,_q).

o Step 2. The ancillary qubit is used as ctrl qubit to the
conditional ADD operation quantum circuit.

o Step 3. Registers |Rjg.,,—1]) and |Djg,,,—q)) are applied
as inputs to conditional ADD operation quantum circuit.

126

In Fig. 8, CA represents the conditional ADD operation
circuit. | Djo.,—1]) emerges unchanged and | R[g.,, 1)) will
contain either the sum or emerge unchanged.
o Step 4. The control qubit | Rjy.,—1)) is left out as garbage.
o Step 5. After Step 4, we have the Quotient in |Q[o.,—1]),
and the remainder in |Rjo.,—1)). The divisor |Djg.;,—1)
is unchanged.

B. Cost Comparison With Existing Work
TABLE I

RESOURCE COUNT OF PROPOSED NON-RESTORING ALGORITHM
DIVISION CIRCUIT

Designs Adder- conditional ADD Non-Restoring
Subtractor operation circuit Divider
T-count (14n — 14) (21n — 14) 14n2 + 21n — 28
T-depth 8 16 8xn+ 7
Ancilla qubits 0 0 2%xn+1
TABLE III
COMPARISON OF RESOURCE COUNT BETWEEN PROPOSED AND EXISTING
WORK
1 Proposed % impr.
w.rt. 1
T-count ~ 400n% 14n2 + 21n — 28 ~ 96%
T-depth 130 % n 8xn+7 ~ 93%
Ancilla qubits 2n 2xn+1 -

1 is the work in [12]

The resources used in the design of the proposed quantum
non-restoring integer division circuit is presented in Table
II. As shown in Table II, the proposed design will require
2 xn + 1 ancillary qubits. n ancillary qubits are used during
initialization of remainder register and the remaining n+1 are
transformed to garbage output. The T-count required by the
design is given by summing the cost of adder-subtractor and
conditional ADD operation quantum circuit at each stage. T-
count of the proposed quantum non-restoring integer division
circuit is 14n2 4 21n — 28. The T-depth required by the design
is given as 8 xn + 7.

Comparison of resource costs between the proposed quan-
tum non-restoring integer division circuit and the existing
work is shown in Table III. To calculate the T-count and
T-depth for [12] we use T-count and T-depth values from
approximate phase gate implementations reported in [13]. The
implementations with the poorest accuracy are used. This is
because the T gate cost increases significantly as a function of
accuracy. Table III shows that the proposed quantum circuit
of integer division has an improvement ratio of 93% in terms
of T-depth, and 96% in terms of T-count.

IV. DESIGN OF RESTORING QUANTUM INTEGER DIVISION
CIRCUIT

The quantum circuits that are required for developing the

hardware implementation of the proposed restoring division

algorithm are (i) Leftshift operation circuit, (ii) n qubit quan-
tum subtractor and (iii) Conditional ADD operation circuit.
We observed that we can eliminate the LeftShift operation
circuit by combining |Rjg.,,—2]) and (|Qp,—1]) to form an n
qubit register which is actually equal to performing an left
shift operation. By combining the qubits in this way, we do
not have to use a separate left shift operation circuit.

The proposed restoring division algorithm is shown in Table
IV. In Table IV, the inputs to be given are: (a) (|Q[o:n—1)), 7
qubit register in which the dividend is loaded ; (b) ‘D[O:n71]>’
n qubit register in which the divisor is loaded; () |Rp:n—1]), 1
qubit remainder register which is initiated to O at the start. The
algorithm repeats n times. At the end of n iterations, we get
the quotient at (|Qo.,—1]) and the remainder at |R.,_1)).
The divisor is retained at the output. The methodology to
design our proposed quantum restoring integer division circuit
is developed from the restoring division algorithm shown in
Table IV. The Steps of the methodology are presented below.

Algorithm 1 : Proposed Restoring division algorithm

function Restore (|Qn),|Rn),|Dn))
fori=0 to n—1do
(|Q[1:n,1]>, ‘R[O:n71]>) = LerrsHier (‘Q[01n71]>, ‘R[o;n71]>);
(|R_ D[O:n71]> = ‘R[O:n71]> - |D[O:7171]>;

if(‘R[g:n_1]> >0 then
Qo) =1
|R[0:n—1]> =|R— D[o;n—1]>;
else
|Qo)) = 0;
|Rio:n—1]) = |R — Dioin—1]) + |D[oin—1])}
end if;
end for;
/Irepeat for n iterations//
return R;

end function

TABLE IV
PROPOSED RESTORING DIVISION ALGORITHM FOR QUANTUM CIRCUITS

A. Design Methodology for Quantum Restoring Integer Divi-
sion Circuit

}Q[O:n—2]> ’Q[l:n—1]>
Q- R
Q1)) :@ o | Ryo))

| Rio:n—2)) | | Ri1n—11)
|Rpn—11) & O— [Qlp)
|D[O:n_1]> |D[():n—1]>

Fig. 9. Quantum restoring integer divider circuit design for a single iteration

Fig.9 shows the quantum circuit generated for the quan-
tum restoring division circuit after 1 iteration of our design
methodology. The Steps of the proposed methodology are
repeated n times. Hence, the circuit in Fig. 9 is also iterated

127

Q@ HH e e
R) — 112 — Int |Rn)
D) A H el w)

Fig. 10. Quantum restoring integer divider circuit design(for n iterations)

n times. This is done by using the outputs of the first iteration
as inputs for the next iteration. Fig. 10 shows the complete
quantum restoring division circuit where /1 represents the first
iteration, /2 represents second iteration and In represents the
final iteration. We now elaborate on how information moves
through the circuit shown in Fig. 9.

o Step 1. The |Djg.;,—1j) holds the divisor, |Rjg.,—1)) is
initialised to zero, and |Q[o.,—1)) holds the dividend.

o Step 2. We consider, |Q[,—1)) and |Rjo.,—2), as one
combined register.

o Step 3. The combined register mentioned above in Step 2,
and |Dyg.,,—1]) are given as inputs to the quantum subtrac-
tor circuit. Register |D[0:n_1]> emerges unchanged. The
combined register now holds the result of subtraction of
R and D registers. Let us call this result as [R—Djg.,,—1))-

o Step 4. Qubits |[R — Dy,_y)) and |R},_q)) are supplied
to a CNOT gate. |[R — Dy,,_q)) is the control qubit and
the |Rp,,_q)) is the target qubit. The target now holds the
value of |R — Dy,_y)) because |Rp,_qj) is always zero
throughout the computation.

o Step 5. Qubit |Ry,_q) is the control qubit to the condi-
tional ADD operation circuit.

o Step 6. Registers |R — Djg.,,—1}) and |Djg.,—1)) are the
two n qubit inputs to the conditional ADD operation
circuit. Register | Djg.,,—1]) emerges unchanged. The com-
bined register will contain either the sum or emerge
unchanged..

o Step 7. |Rp,_qy) is complemented.

Steps 2 through 7 are repeated n times. At the end of n

iterations, the Quotient will be in |Q[o.,—1)), the remainder in
| Rjo:n—1]) and the divisor emerges unchanged.

B. Cost Comparison With Existing Work

TABLE V
RESOURCE COUNT OF PROPOSED RESTORING DIVISION CIRCUIT

Subtractor conditional ADD Restoring
operation circuit Divider
T-count (14n — 14) (21n — 14) 35n2 — 28n
T-depth 8 16 18 n
Ancilla qubits 0 0 n

The resources used in the design of the proposed quantum
restoring integer division circuit is presented in Table V. As
shown in Table V, the proposed design will require n ancillary
qubits during initialization of the remainder register. The T-
count required by the design is given by summing the cost of

TABLE VI
COMPARISON OF RESOURCE COUNT BETWEEN PROPOSED AND EXISTING

WORK
1 Proposed % impr.
w.rt. 1
T-count =~ 400n? 35n2 — 28n ~ 91%
T-depth 130 xn 18 xn 86.15%
Ancilla qubits 2n n 50%

1 is the work in [12]

subtractor and conditional ADD operation quantum circuit at
each stage. T-count of the proposed quantum restoring integer
division circuit is 35n% — 28n. The T-depth required by the
design is given as 18 * n.

Comparison of resource estimation between proposed quan-
tum circuit of integer division and the existing quantum circuit
of integer division in [12] is shown in Table VI. To calculate
the T-count and T-depth for [12] we use T-count and T-
depth from approximate phase gate implementations reported
in [13]. The implementations with the poorest accuracy were
used. This is because the T-count increases significantly as
a function of accuracy. Table VI showed that the proposed
quantum circuit of integer division has an improvement ratio
of 86.15% in terms of T-depth, and 91% in terms of T-count.

V. CONCLUSION

In this work, we have presented two designs for quantum
circuit integer division based on Clifford+T gates. The first
quantum circuit presented is based on the non-restoring di-
vision algorithm and the second quantum circuit presented
is based on the restoring division algorithm. The design of
subcomponents used in the proposed quantum integer division
circuits such as the quantum conditional ADD operation cir-
cuit, quantum adder-subtractor and quantum subtraction circuit
are also shown. The proposed quantum integer division circuits
are shown to be superior to existing designs in terms of T-depth
and T-count. We conclude that the proposed non-restoring
division circuit can be integrated in a larger quantum data
path system design where T-count and T-depth are of primary
concern. We also conclude that the proposed restoring division
circuit can be integrated in a larger quantum data path system
design to implement quantum algorithms where qubits are
limited and T-count and T-depth must be kept to a minimum.

Existing quantum circuit implementations do not include the
additional qubit transformations that account for the available
instruction set architecture, the hardware connectivity and
layout constraints of a particular technology [16], [17]. For
example, in trapped ion quantum computers (such as those
presented in [18] and [19]) offer different methods to im-
plement multi-qubit gates. These methods include piece-wise,
nearest-neighbor interactions that address individual qubits
as well as global interactions that apply coherent rotations
uniformly to all available ions. The choice of which method
to use depends on the layout of the device architecture and
the relative complexity of the different instructions. Such

128

constraints will significantly impact how quantum circuits
are implemented in practice. The proposed quantum integer
division circuit designs do not take into account technology
constraints. However, the T-count and T-depth cost savings of
our quantum integer division circuits are unaffected by these
hardware considerations. To efficiently implement quantum
algorithms, new designs need to be investigated for integer
division that minimize the overhead imposed by technology
constraints.

REFERENCES

[1] available at:
[2]
[3]

[4]

P. Selinger et. al., The Quipper System, 2016,
http://www.mathstat.dal.ca/ selinger/quipper/doc/.

S. Beauregard, “Circuit for Shor’s algorithm using 2n+3 gubits,” Quan-
tum Information & Computation, vol. 3, no. 2, pp. 175-185, Mar 2003.
M. A. Nielsen and I. Chuang, “Quantum computation and quantum
information,” 2002.

A. Paler, I. Polian, K. Nemoto, and S. J. Devitt, “Fault-tolerant, high-
level quantum circuits: form, compilation and description,” Quantum
Science and Technology, vol. 2, no. 2, p. 025003, 2017. [Online].
Available: http://stacks.iop.org/2058-9565/2/i=2/a=025003

X. Zhou, D. W. Leung, and I. L. Chuang, “Methodology for quantum
logic gate construction,” Phys. Rev. A, vol. 62, p. 052316, Oct 2000. [On-
line]. Available: https:/link.aps.org/doi/10.1103/PhysRevA.62.052316
M. Amy, D. Maslov, M. Mosca, and M. Roetteler, “A meet-in-the-
middle algorithm for fast synthesis of depth-optimal quantum circuits,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 32, no. 6, pp. 818-830, 2013.

S. J. Devitt, A. M. Stephens, W. J. Munro, and K. Nemoto, “Require-
ments for fault-tolerant factoring on an atom-optics quantum computer,”
Nature Communications, vol. 4, p. 2524, Oct. 2013.
IBM, Quantum Computing - IBM Q, 2017,
https://www.research.ibm.com/ibm-q/.

N. M. Nayeem, A. Hossain, M. Haque, L. Jamal, and H. M. H. Babu,
“Novel reversible division hardware,” in 2009 52nd IEEE International
Midwest Symposium on Circuits and Systems, Aug 2009, pp. 1134—-1138.
S. V. Dibbo, H. M. H. Babu, and L. Jamal, “An efficient design technique
of a quantum divider circuit,” in 2016 IEEE International Symposium
on Circuits and Systems (ISCAS), May 2016, pp. 2102-2105.

F. Dastan and M. Haghparast, “A novel nanometric fault tolerant
reversible divider,” International Journal of the Physical Sciences, vol. 6,
no. 24, pp. 5671-5681, October 2011.

A. Khosropour, H. Aghababa, and B. Forouzandeh, “Quantum division
circuit based on restoring division algorithm,” in Information Technol-
ogy: New Generations (ITNG), 2011 Eighth International Conference
on. IEEE, 2011, pp. 1037-1040.

V. Kliuchnikov, D. Maslov, and M. Mosca, “Fast and efficient exact
synthesis of single-qubit unitaries generated by clifford and t gates,”
Quantum Info. Comput., vol. 13, no. 7-8, pp. 607-630, Jul. 2013.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2535649.2535653
H. Thapliyal and N. Ranganathan, “Design of efficient reversible logic-
based binary and bcd adder circuits,” ACM Journal on Emerging
Technologies in Computing Systems (JETC), vol. 9, no. 3, p. 17, 2013.
H. Thapliyal, “Mapping of subtractor and adder-subtractor circuits on
reversible quantum gates,” in Transactions on Computational Science
XXVII. Springer, 2016, pp. 10-34.

K. A. Britt and T. S. Humble, “High-performance computing with
quantum processing units,” ACM Journal on Emerging Technologies in
Computing Systems (JETC), vol. 13, no. 3, p. 39, 2017.

K. A. Britt and T. S. Humble, “Instruction set architectures for quantum
processing units,” arXiv preprint arXiv:1707.06202, 2017.

N. M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt, K. A.
Landsman, K. Wright, and C. Monroe, “Experimental comparison of
two quantum computing architectures,” Proceedings of the National
Academy of Sciences, p. 201618020, 2017.

E. A. Martinez, T. Monz, D. Nigg, P. Schindler, and R. Blatt, “Compiling
quantum algorithms for architectures with multi-qubit gates,” New
Journal of Physics, vol. 18, no. 6, p. 063029, 2016.

[51

[6]

[7]

available at:

[8]
[91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

