
Quantum Circuit Designs of Integer Division
Optimizing T-count and T-depth

Himanshu Thapliyal∗, T. S. S. Varun∗, Edgard Muñoz-Coreas∗, Keith A. Britt† and Travis S. Humble†
∗Department of Electrical and Computer Engineering

University of Kentucky, Lexington, KY

Email: hthapliyal@uky.edu
†Quantum Computing Institute

Oak Ridge National Laboratory, TN

Abstract—Quantum circuits for basic mathematical functions
such as division are required to implement scientific computing
algorithms on quantum computers. In this work, we propose two
designs for quantum integer division. The designs are based on
quantum Clifford+T gates and are optimized for T-count and
T-depth. Quantum circuits that are based on Clifford+T gates
can be made fault tolerant in nature but the T gate is very
costly to implement. As a result, reducing T-count and T-depth
have become important optimization goals. Existing quantum
hardware is limited in terms of number of available qubits.
Thus, ancillary qubits are a circuit overhead that needs to be
kept to a minimum. We propose two quantum integer division
circuits. The first quantum integer division circuit is based on
the non-restoring division algorithm. The proposed non-restoring
division circuit is optimized for total quantum hardware (T-
count and T-depth) cost but requires 2 ∗ n+ 1 ancillary qubits.
We also propose a quantum integer division circuit based on
the restoring division algorithm. The proposed restoring division
circuit is optimized for total qubits. The design requires only n
ancillary qubits but will need more quantum hardware than the
non-restoring division circuit. Both proposed quantum circuits
are based on (i) a new quantum conditional addition circuit,
(ii) a new quantum adder-subtractor and (iii) a new quantum
subtraction circuit. Further, both designs are compared and
shown to be superior to existing work in terms of T-count and
T-depth. The proposed quantum non-restoring integer division
circuit has a 96% improvement in terms of T-count and a 93%
improvement in terms of T-depth compared to existing work.
The proposed quantum restoring integer division circuit has a
91% improvement in terms of T-count and a 86% improvement
in terms of T-count compared to the existing work.

I. INTRODUCTION AND BACKGROUND

Quantum circuits of arithmetic operations are needed to de-

sign quantum hardware for implementing quantum algorithms

such as Shor’s factoring algorithm, the discrete log problem,

class number algorithm and triangle finding algorithm [1] [2].

Dividers are one of the major computational units in quantum

arithmetic and have applications in circuit designs of quantum

algorithms [3] [1].

Quantum circuits that are based on Clifford+T gates can be

made fault tolerant in nature permitting reliable and scalable

quantum computation [4] [5]. The Clifford+T gate family is

illustrated in [6]. The T gate is very costly to implement

compared to the Clifford gates making reducing T-count and

T-depth important optimization goals [5] [7]. Existing quantum

hardware is limited in terms of number of available qubits [8].

Thus, ancillary qubits are a circuit overhead that needs to be

kept to a minimum.

In the existing literature, there are a handful of integer

divider designs based on reversible gates targeting mostly

reversible computing [9] [10] [11]. Among these designs we

found only [12] to be suitable for quantum computing. The

quantum integer division circuit in [12] implements the restor-

ing division algorithm and uses the quantum Fourier transform

to perform the division operation. However, the design in

[12] is not optimized for T-depth and T-count. The quantum

division circuit in [12] uses controlled phase shift gates. It is

known that the controlled phase gates required by the design in

[12] can only be approximated by Clifford+T gates [13]. The

Clifford+T based approximations of the controlled phase gates

have a high T gate cost [13]. Further, the T gate cost increases

as the accuracy of the controlled phase gate approximation is

improved [13]. Thus, implementing all the controlled phase

gates required by the design in [12] with a high degree of

accuracy will result in a design with high T-count and T-depth

[13].

This paper presents two designs for quantum circuit integer

division based on Clifford+T gates. The first quantum circuit is

based on the non-restoring division algorithm and the second

quantum circuit is based on the restoring division algorithm.

Both proposed quantum integer division circuits are based

on (i) a new quantum conditional ADD operation circuit,

(ii) a new quantum adder-subtractor and (iii) a new quantum

subtraction circuit. The proposed non-restoring division circuit

is optimized for total quantum hardware (T-count and T-depth)

cost. The trade off for reducing the quantum hardware of the

design is the need to use more ancillary qubits. The non-

restoring division circuit requires 2 ∗ n + 1 ancillary qubits.

The proposed quantum restoring division is designed with

the aim to minimize total qubits. We reduce the number of

ancillary qubits to n but must use more quantum hardware

than the proposed quantum non-restoring division circuit. Both

the proposed restoring quantum integer division circuit and

proposed non-restoring quantum integer division circuit are

compared and shown to be superior to existing work in terms

of T-depth and T-count.

2017 IEEE International Symposium on Nanoelectronic and Information Systems

978-1-5386-1356-6/17 $31.00 © 2017 IEEE

DOI 10.1109/iNIS.2017.34

123

This paper is organized as follows. Section II presents the

design of the (i) new quantum conditional addition circuit,

(ii) a new quantum adder-subtractor and (iii) a new quantum

subtraction circuit used in the proposed quantum division

circuits. In section III the design of the proposed quantum

non-restoring integer division circuit is discussed. The design

of the proposed quantum restoring integer division circuit is

presented in section IV.

II. DESIGN OF QUANTUM CIRCUITS USED IN PROPOSED

INTEGER DIVISION CIRCUITS

The quantum circuits that are required for developing the

proposed non-restoring and restoring integer division circuits

are: (i) controlled adder-subtractor, (ii) quantum subtractor and

(iii) conditional ADD operation circuit. The quantum circuit

designs of the quantum adder-subtractor, quantum subtractor

and the conditional ADD operation circuit are discussed in the

following sections.

A. Design of Quantum Subtractor

|B〉 S |S〉
|A〉 • |A〉

Fig. 1. Graphic symbol of quantum subtractor. S represents the quantum
subtraction operation

Fig. 2. Circuit design of N qubit quantum subtractor based on N qubit
quantum ripple carry adder

Fig.1 shows the symbol of the quantum subtractor circuit.

The subtractor circuit takes two n qubit inputs |A〉 and |B〉.
The input a is regenerated at the output. The n-qubit output

|S〉 has the result of the subtraction of b and a. Fig.2 shows

the circuit design of N qubit subtractor based on N qubit

quantum ripple carry adder. As shown in Fig.2, a quantum

ripple carry adder is required to develop a quantum subtractor

circuit. We use the quantum ripple carry adder proposed in

[14] for developing the quantum subtractor circuit. To perform

subtraction, we use the design approach presented in [15].

Thus, the input qubits |B〉 are complemented before being

applied to the quantum ripple carry adder. Then, the ripple

carry adder calculates b̄ + a. At the end of computation, the

input qubits |B〉 are complemented again. As a result, the

quantum subtractor calculates (b̄+ a) which is equivalent to

b− a [15].

B. Design of Quantum Adder-Subtractor

|B〉 AS |P 〉
ctrl • ctrl
|A〉 • |A〉

(a)

|B〉 CA |P 〉
|A〉 • |A〉

Ctrl • Ctrl

(b)

Fig. 3. Graphic symbols of (a) Adder-Subtractor (b) Conditional ADD
operation circuit. AS represents add or subtract operation. CA represents
conditional add operation

Fig. 4. Circuit design of N qubit quantum adder-subtractor based on N qubit
quantum ripple carry adder

Fig. 3(a) shows the graphic symbol of the quantum con-

trolled addition or subtraction circuit. The quantum adder-

subtractor circuit operates as follows: (i) when the input

labeled ctrl is high (refer Fig. 3(a)), the circuit output is

|P 〉 = |B −A〉, (ii) when the ctrl input is low, the circuit

output is |P 〉 = |B +A〉.
The complete working circuit of the quantum adder-

subtractor circuit is shown in Fig. 4. The quantum adder-

subtractor circuit is based on the design presented in [15]

and uses the ripple carry adder in [14]. The quantum adder-

subtractor calculates (b̄+ a) when ctrl is high. The expression

(b̄+ a) is equivalent to b− a.

C. Design of Quantum Conditional ADD Operation Circuit

Fig. 3(b) shows the graphic symbol of the quantum condi-

tional ADD operation circuit. The quantum conditional ADD

operation circuit operates as follows: (i) when the input

labeled ctrl is high (refer Fig. 3(b)), the circuit output is

|P 〉 = |B +A〉, (ii) when the ctrl input is low, the circuit

output is |P 〉 = |B〉.
The complete working circuit of quantum conditional ADD

operation circuit is shown in Fig.5 for 4 qubit operands. The

quantum conditional ADD circuit uses a modified version

of the ripple carry adder proposed in [14]. We were able

124

ctrl • • • • ctrl

b0 • • s0

a0 • • • a0

b1 • • s1

a1 • • • • • • • a1

b2 • • s2

a2 • • • • • • • a2

b3 s3

a3 • • • a3

Fig. 5. Circuit design of quantum conditional ADD operation circuit

to remove the qubit that performs the carry out for the

adder in [14] as we do not need the carry out qubit in the

proposed integer dividers. The addition architecture in [14]

uses Peres gates to perform the addition. The Peres gate can be

decomposed into a Feynman and a Toffoli gate. By replacing

the Feynman gate with a Toffoli gate, we can use the control

line (ctrl) to determine whether the conditional ADD circuit

will perform addition or no operation. Although, Fig.5 is just

shown for 4 qubit operands, it can easily be extended to any

operand size.

III. DESIGN OF NON-RESTORING QUANTUM INTEGER

DIVISION CIRCUIT

The quantum circuits that are required for developing the

hardware implementation of the proposed non-restoring divi-

sion algorithm are: (i) Leftshift operation circuit, (ii) controlled

adder-subtractor, and (iii) conditional ADD operation circuit.

We observed that we can eliminate the LeftShift operation

circuit by combining |R[0:n−2]〉 and |Q[n−1]〉 to form an n
qubit register there by saving the quantum resources.

The proposed non-restoring division algorithm for quantum

circuits is shown in Table I. In Table I, the inputs to be given

are: (a) (|Q[0:n−1]〉, n qubit register in which the dividend is

loaded; (b) |D[0:n−1]〉, n qubit register in which the divisor

is loaded; (c) |R[0:n−1]〉, n qubit remainder register which is

initiated to 0 at the start. At the end of computation, we get

the quotient at |Q[0:n−1]〉 and remainder at |R[0:n−1]〉. The

divisor is retained at the output. Also, n+1 garbage qubits are

produced. The methodology to design our proposed quantum

non-restoring integer division circuit is developed from the

non-restoring division algorithm shown in Table I. The Steps

of the methodology are presented below.

A. Design Methodology for Quantum Non-Restoring Integer
Division Circuit

From Table I, we can see that the algorithm is divided into

two phases. (i) Core Engine Phase and (ii) Supplementary

Restoring Phase. The Core Engine Phase is iterated n times.

Supplementary Restoring Phase takes place after the end of

n iterations of the Core Engine Phase. The Supplementary

Restoring Phase is repeated once. A quantum circuit is devel-

oped for each of these phases. The final circuit that performs

the integer division using the non-restoring integer division

Algorithm 1: Proposed quantum non-restoring division algorithm

function Non−Restore (|Qn〉, |Rn〉, |Dn〉)
for i = 0 to n− 1 do

/* Start Core Engine Phase */
if(|R[0:n−1]〉 > 0) then

(|Q[1:n−1]〉, |R[0:n−1]〉) = LEFTSHIFT (|Q[0:n−1]〉, |R[0:n−1]〉);
|R[0:n−1]〉 = |R[0:n−1]〉+ |D[0:n−1]〉;

else
(|Q[1:n−1]〉, |R[0:n−1]〉) = LEFTSHIFT (|Q[0:n−1]〉, |R[0:n−1]〉);
|R[0:n−1]〉 = |R[0:n−1]〉 − |D[0:n−1]〉;

end if;
if(|R[0:n−1]〉 > 0) then
|Q[0]〉 = 1;

else
|Q[0]〉 = 0;

end if;
/* End Core Engine Phase */

end for;
//after n iterations//

/* Start Supplementary Restoring Phase */
if(|R[0:n−1]〉 > 0) then
|R[0:n−1]〉 = |R[0:n−1]〉;

else
|R[0:n−1]〉 = |R[0:n−1]〉+ |D[0:n−1]〉;

end if;
/* End Supplementary Restoring Phase */

return R;
end function

TABLE I
PROPOSED QUANTUM NON-RESTORING DIVISION ALGORITHM

Core engine iterated n times Supplementary circuit

|Q〉

I1 I2

· · ·· · ·· · ·· · ·

In

|Q〉
∣∣R[0:n−2]

〉 · · ·· · ·· · ·· · ·
CA

∣∣R[0:n−2]

〉

∣∣R[n−1]

〉 · · ·· · ·· · ·· · · • ∣∣R[n−1]

〉

|D〉 · · ·· · ·· · ·· · · • |D〉
|0〉 • Garbage

Fig. 6. Quantum non-restoring integer divider circuit design

algorithm is shown in Fig. 6. In Fig. 6, I1 represents the first

iteration of the Core Engine Phase, I2 represents the second

iteration and In represents the final iteration.

1) Core Engine Phase: Fig. 7 represents the quantum

circuit that does the operations that are marked under the Core

Engine Phase in the algorithm in Table IV. We now elaborate

on how the information moves in Fig. 7 .

• Step 1. |D[0:n−1]〉 holds the divisor, |R[0:n−1]〉 is ini-

tialised to zero, and |Q[0:n−1]〉 holds the dividend.

• Step 2. We consider, |Q[n−1]〉 and |R[0:n−2]〉, as one

combined register.

• Step 3. The combined register of Step 2 and |D[0:n−1]〉
are applied as two n qubits inputs to the quantum adder-

subtractor circuit. In Fig. 7, AS represents the adder-

subtractor circuit. At the end of computation, register

|D[0:n−1]〉 emerges unchanged and the combined register

125

1
∣∣Q[0]

〉

∣∣Q[0:n−2]

〉 ∣∣Q[1:n−1]

〉

∣
∣Q[n−1]

〉

AS
• ∣

∣R[0]

〉

∣
∣R[0:n−2]

〉 ∣∣R[1:n−1]

〉

∣∣R[n−1]

〉 • Garbage
∣∣D[0:n−1]

〉 • ∣∣D[0:n−1]

〉

Fig. 7. Quantum non-restoring integer divider circuit design for first itera-
tion(core engine)

now holds the sum or difference of the combined register

and D.

• Step 4. Qubit |R[n−1]〉 is complemented and applied as

the ctrl qubit to quantum adder-subtractor circuit.

• Step 5. The ctrl qubit is left out as garbage.

• Step 6. An ancillary qubit set to 1 and qubit |Q[n−1]〉 are

applied to a CNOT gate. |Q[n−1]〉 is the control qubit and

1 is the target qubit.

The Steps from 1 to 6 constitute the operations of the Core

Engine Phase. From the algorithm in Table I, it can be seen

that Steps 2 to 6 of the Core Engine Phase are iterated n times.

So, the circuit in Fig. 7 that represents the Core Engine Phase

is also iterated n times (see Fig. 6). The outputs of the first

iteration as inputs to the second iteration and so on for all n
iterations.

∣∣R[0:n−2]

〉

CA

∣∣R[0:n−2]

〉

∣∣R[n−1]

〉 • ∣∣R[n−1]

〉

∣∣D[0:n−1]

〉 • ∣∣D[0:n−1]

〉

0 • Garbage

Fig. 8. Quantum circuit implementation of the Supplementary Restoring
Phase(refer Table 1)

2) Supplementary Restoring Phase: After the end of n
iterations of the Core Engine Phase, |R[0:n−1]〉 might be

negative at the end of n iterations. In that case, it has to be

restored by adding the divisor. This restoration of the negative

remainder is carried out by the Supplementary Restoring Phase

quantum circuit shown in Fig. 8. The quantum circuit shown

in Fig. 8 is the quantum implementation of the Supplementary

Restoring Phase marked in the algorithm in Table I. We now

elaborate on how the information moves in the supplementary

circuit.

• Step 1. The qubit |R[n−1]〉 and an ancillary qubit set to

0 are applied as inputs to a CNOT gate. |R[n−1]〉 is the

control qubit and the ancillary qubit is the target qubit.

The target now holds the value of |R[n−1]〉.
• Step 2. The ancillary qubit is used as ctrl qubit to the

conditional ADD operation quantum circuit.

• Step 3. Registers |R[0:n−1]〉 and |D[0:n−1]〉 are applied

as inputs to conditional ADD operation quantum circuit.

In Fig. 8, CA represents the conditional ADD operation

circuit. |D[0:n−1]〉 emerges unchanged and |R[0:n−1]〉 will

contain either the sum or emerge unchanged.

• Step 4. The control qubit |R[0:n−1]〉 is left out as garbage.

• Step 5. After Step 4, we have the Quotient in |Q[0:n−1]〉,
and the remainder in |R[0:n−1]〉. The divisor |D[0:n−1]〉
is unchanged.

B. Cost Comparison With Existing Work

TABLE II
RESOURCE COUNT OF PROPOSED NON-RESTORING ALGORITHM

DIVISION CIRCUIT

Designs Adder- conditional ADD Non-Restoring
Subtractor operation circuit Divider

T-count (14n− 14) (21n− 14) 14n2 + 21n− 28
T-depth 8 16 8 ∗ n+ 7
Ancilla qubits 0 0 2 ∗ n+ 1

TABLE III
COMPARISON OF RESOURCE COUNT BETWEEN PROPOSED AND EXISTING

WORK

1 Proposed % impr.
w.r.t. 1

T-count ≈ 400n2 14n2 + 21n− 28 ≈ 96%
T-depth 130 ∗ n 8 ∗ n+ 7 ≈ 93%
Ancilla qubits 2n 2 ∗ n+ 1 -

1 is the work in [12]

The resources used in the design of the proposed quantum

non-restoring integer division circuit is presented in Table

II. As shown in Table II, the proposed design will require

2 ∗ n + 1 ancillary qubits. n ancillary qubits are used during

initialization of remainder register and the remaining n+1 are

transformed to garbage output. The T-count required by the

design is given by summing the cost of adder-subtractor and

conditional ADD operation quantum circuit at each stage. T-

count of the proposed quantum non-restoring integer division

circuit is 14n2+21n−28. The T-depth required by the design

is given as 8 ∗ n+ 7.
Comparison of resource costs between the proposed quan-

tum non-restoring integer division circuit and the existing

work is shown in Table III. To calculate the T-count and

T-depth for [12] we use T-count and T-depth values from

approximate phase gate implementations reported in [13]. The

implementations with the poorest accuracy are used. This is

because the T gate cost increases significantly as a function of

accuracy. Table III shows that the proposed quantum circuit

of integer division has an improvement ratio of 93% in terms

of T-depth, and 96% in terms of T-count.

IV. DESIGN OF RESTORING QUANTUM INTEGER DIVISION

CIRCUIT

The quantum circuits that are required for developing the

hardware implementation of the proposed restoring division

126

algorithm are (i) Leftshift operation circuit, (ii) n qubit quan-

tum subtractor and (iii) Conditional ADD operation circuit.

We observed that we can eliminate the LeftShift operation

circuit by combining |R[0:n−2]〉 and (|Q[n−1]〉 to form an n
qubit register which is actually equal to performing an left

shift operation. By combining the qubits in this way, we do

not have to use a separate left shift operation circuit.

The proposed restoring division algorithm is shown in Table

IV. In Table IV, the inputs to be given are: (a) (|Q[0:n−1]〉, n
qubit register in which the dividend is loaded ; (b) |D[0:n−1]〉,
n qubit register in which the divisor is loaded; (c) |R[0:n−1]〉, n
qubit remainder register which is initiated to 0 at the start. The

algorithm repeats n times. At the end of n iterations, we get

the quotient at (|Q[0:n−1]〉 and the remainder at |R[0:n−1]〉.
The divisor is retained at the output. The methodology to

design our proposed quantum restoring integer division circuit

is developed from the restoring division algorithm shown in

Table IV. The Steps of the methodology are presented below.

Algorithm 1 : Proposed Restoring division algorithm

function Restore (|Qn〉, |Rn〉, |Dn〉)
for i = 0 to n− 1 do

(|Q[1:n−1]〉, |R[0:n−1]〉) = LEFTSHIFT (|Q[0:n−1]〉, |R[0:n−1]〉);
(|R−D[0:n−1]〉 = |R[0:n−1]〉 − |D[0:n−1]〉;

if(|R[0:n−1]〉 > 0) then
|Q[0]〉 = 1
|R[0:n−1]〉 = |R−D[0:n−1]〉;

else
|Q[0]〉 = 0;
|R[0:n−1]〉 = |R−D[0:n−1]〉+ |D[0:n−1]〉;

end if;
end for;

//repeat for n iterations//
return R;
end function

TABLE IV
PROPOSED RESTORING DIVISION ALGORITHM FOR QUANTUM CIRCUITS

A. Design Methodology for Quantum Restoring Integer Divi-
sion Circuit

∣∣Q[0:n−2]

〉 ∣∣Q[1:n−1]

〉

∣∣Q[n−1]

〉

S
•

CA

∣
∣R[0]

〉

∣∣R[0:n−2]

〉 ∣∣R[1:n−1]

〉

∣∣R[n−1]

〉 • ∣
∣Q1[0]

〉

∣∣D[0:n−1]

〉 • • ∣∣D[0:n−1]

〉

Fig. 9. Quantum restoring integer divider circuit design for a single iteration

Fig.9 shows the quantum circuit generated for the quan-

tum restoring division circuit after 1 iteration of our design

methodology. The Steps of the proposed methodology are

repeated n times. Hence, the circuit in Fig. 9 is also iterated

|Q〉
I1 I2

· · ·· · ·· · ·
In

|Qn〉
|R〉 · · ·· · ·· · · |Rn〉
|D〉 · · ·· · ·· · · |Dn〉

Fig. 10. Quantum restoring integer divider circuit design(for n iterations)

n times. This is done by using the outputs of the first iteration

as inputs for the next iteration. Fig. 10 shows the complete

quantum restoring division circuit where I1 represents the first

iteration, I2 represents second iteration and In represents the

final iteration. We now elaborate on how information moves

through the circuit shown in Fig. 9.

• Step 1. The |D[0:n−1]〉 holds the divisor, |R[0:n−1]〉 is

initialised to zero, and |Q[0:n−1]〉 holds the dividend.

• Step 2. We consider, |Q[n−1]〉 and |R[0:n−2]〉, as one

combined register.

• Step 3. The combined register mentioned above in Step 2,

and |D[0:n−1]〉 are given as inputs to the quantum subtrac-

tor circuit. Register |D[0:n−1]〉 emerges unchanged. The

combined register now holds the result of subtraction of

R and D registers. Let us call this result as |R−D[0:n−1]〉.
• Step 4. Qubits |R − D[n−1]〉 and |R[n−1]〉 are supplied

to a CNOT gate. |R − D[n−1]〉 is the control qubit and

the |R[n−1]〉 is the target qubit. The target now holds the

value of |R − D[n−1]〉 because |R[n−1]〉 is always zero

throughout the computation.

• Step 5. Qubit |R[n−1]〉 is the control qubit to the condi-

tional ADD operation circuit.

• Step 6. Registers |R − D[0:n−1]〉 and |D[0:n−1]〉 are the

two n qubit inputs to the conditional ADD operation

circuit. Register |D[0:n−1]〉 emerges unchanged. The com-

bined register will contain either the sum or emerge

unchanged..

• Step 7. |R[n−1]〉 is complemented.

Steps 2 through 7 are repeated n times. At the end of n
iterations, the Quotient will be in |Q[0:n−1]〉, the remainder in

|R[0:n−1]〉 and the divisor emerges unchanged.

B. Cost Comparison With Existing Work

TABLE V
RESOURCE COUNT OF PROPOSED RESTORING DIVISION CIRCUIT

Subtractor conditional ADD Restoring
operation circuit Divider

T-count (14n− 14) (21n− 14) 35n2 − 28n
T-depth 8 16 18 ∗ n
Ancilla qubits 0 0 n

The resources used in the design of the proposed quantum

restoring integer division circuit is presented in Table V. As

shown in Table V, the proposed design will require n ancillary

qubits during initialization of the remainder register. The T-

count required by the design is given by summing the cost of

127

TABLE VI
COMPARISON OF RESOURCE COUNT BETWEEN PROPOSED AND EXISTING

WORK

1 Proposed % impr.
w.r.t. 1

T-count ≈ 400n2 35n2 − 28n ≈ 91%
T-depth 130 ∗ n 18 ∗ n 86.15%
Ancilla qubits 2n n 50%

1 is the work in [12]

subtractor and conditional ADD operation quantum circuit at

each stage. T-count of the proposed quantum restoring integer

division circuit is 35n2 − 28n. The T-depth required by the

design is given as 18 ∗ n.

Comparison of resource estimation between proposed quan-

tum circuit of integer division and the existing quantum circuit

of integer division in [12] is shown in Table VI. To calculate

the T-count and T-depth for [12] we use T-count and T-

depth from approximate phase gate implementations reported

in [13]. The implementations with the poorest accuracy were

used. This is because the T-count increases significantly as

a function of accuracy. Table VI showed that the proposed

quantum circuit of integer division has an improvement ratio

of 86.15% in terms of T-depth, and 91% in terms of T-count.

V. CONCLUSION

In this work, we have presented two designs for quantum

circuit integer division based on Clifford+T gates. The first

quantum circuit presented is based on the non-restoring di-

vision algorithm and the second quantum circuit presented

is based on the restoring division algorithm. The design of

subcomponents used in the proposed quantum integer division

circuits such as the quantum conditional ADD operation cir-

cuit, quantum adder-subtractor and quantum subtraction circuit

are also shown. The proposed quantum integer division circuits

are shown to be superior to existing designs in terms of T-depth

and T-count. We conclude that the proposed non-restoring

division circuit can be integrated in a larger quantum data

path system design where T-count and T-depth are of primary

concern. We also conclude that the proposed restoring division

circuit can be integrated in a larger quantum data path system

design to implement quantum algorithms where qubits are

limited and T-count and T-depth must be kept to a minimum.

Existing quantum circuit implementations do not include the

additional qubit transformations that account for the available

instruction set architecture, the hardware connectivity and

layout constraints of a particular technology [16], [17]. For

example, in trapped ion quantum computers (such as those

presented in [18] and [19]) offer different methods to im-

plement multi-qubit gates. These methods include piece-wise,

nearest-neighbor interactions that address individual qubits

as well as global interactions that apply coherent rotations

uniformly to all available ions. The choice of which method

to use depends on the layout of the device architecture and

the relative complexity of the different instructions. Such

constraints will significantly impact how quantum circuits

are implemented in practice. The proposed quantum integer

division circuit designs do not take into account technology

constraints. However, the T-count and T-depth cost savings of

our quantum integer division circuits are unaffected by these

hardware considerations. To efficiently implement quantum

algorithms, new designs need to be investigated for integer

division that minimize the overhead imposed by technology

constraints.

REFERENCES

[1] P. Selinger et. al., The Quipper System, 2016, available at:
http://www.mathstat.dal.ca/ selinger/quipper/doc/.

[2] S. Beauregard, “Circuit for Shor’s algorithm using 2n+3 gubits,” Quan-
tum Information & Computation, vol. 3, no. 2, pp. 175–185, Mar 2003.

[3] M. A. Nielsen and I. Chuang, “Quantum computation and quantum
information,” 2002.

[4] A. Paler, I. Polian, K. Nemoto, and S. J. Devitt, “Fault-tolerant, high-
level quantum circuits: form, compilation and description,” Quantum
Science and Technology, vol. 2, no. 2, p. 025003, 2017. [Online].
Available: http://stacks.iop.org/2058-9565/2/i=2/a=025003

[5] X. Zhou, D. W. Leung, and I. L. Chuang, “Methodology for quantum
logic gate construction,” Phys. Rev. A, vol. 62, p. 052316, Oct 2000. [On-
line]. Available: https://link.aps.org/doi/10.1103/PhysRevA.62.052316

[6] M. Amy, D. Maslov, M. Mosca, and M. Roetteler, “A meet-in-the-
middle algorithm for fast synthesis of depth-optimal quantum circuits,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 32, no. 6, pp. 818–830, 2013.

[7] S. J. Devitt, A. M. Stephens, W. J. Munro, and K. Nemoto, “Require-
ments for fault-tolerant factoring on an atom-optics quantum computer,”
Nature Communications, vol. 4, p. 2524, Oct. 2013.

[8] IBM, Quantum Computing - IBM Q, 2017, available at:
https://www.research.ibm.com/ibm-q/.

[9] N. M. Nayeem, A. Hossain, M. Haque, L. Jamal, and H. M. H. Babu,
“Novel reversible division hardware,” in 2009 52nd IEEE International
Midwest Symposium on Circuits and Systems, Aug 2009, pp. 1134–1138.

[10] S. V. Dibbo, H. M. H. Babu, and L. Jamal, “An efficient design technique
of a quantum divider circuit,” in 2016 IEEE International Symposium
on Circuits and Systems (ISCAS), May 2016, pp. 2102–2105.

[11] F. Dastan and M. Haghparast, “A novel nanometric fault tolerant
reversible divider,” International Journal of the Physical Sciences, vol. 6,
no. 24, pp. 5671–5681, October 2011.

[12] A. Khosropour, H. Aghababa, and B. Forouzandeh, “Quantum division
circuit based on restoring division algorithm,” in Information Technol-
ogy: New Generations (ITNG), 2011 Eighth International Conference
on. IEEE, 2011, pp. 1037–1040.

[13] V. Kliuchnikov, D. Maslov, and M. Mosca, “Fast and efficient exact
synthesis of single-qubit unitaries generated by clifford and t gates,”
Quantum Info. Comput., vol. 13, no. 7-8, pp. 607–630, Jul. 2013.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2535649.2535653

[14] H. Thapliyal and N. Ranganathan, “Design of efficient reversible logic-
based binary and bcd adder circuits,” ACM Journal on Emerging
Technologies in Computing Systems (JETC), vol. 9, no. 3, p. 17, 2013.

[15] H. Thapliyal, “Mapping of subtractor and adder-subtractor circuits on
reversible quantum gates,” in Transactions on Computational Science
XXVII. Springer, 2016, pp. 10–34.

[16] K. A. Britt and T. S. Humble, “High-performance computing with
quantum processing units,” ACM Journal on Emerging Technologies in
Computing Systems (JETC), vol. 13, no. 3, p. 39, 2017.

[17] K. A. Britt and T. S. Humble, “Instruction set architectures for quantum
processing units,” arXiv preprint arXiv:1707.06202, 2017.

[18] N. M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt, K. A.
Landsman, K. Wright, and C. Monroe, “Experimental comparison of
two quantum computing architectures,” Proceedings of the National
Academy of Sciences, p. 201618020, 2017.

[19] E. A. Martinez, T. Monz, D. Nigg, P. Schindler, and R. Blatt, “Compiling
quantum algorithms for architectures with multi-qubit gates,” New
Journal of Physics, vol. 18, no. 6, p. 063029, 2016.

128

