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Over the course of this project, computational scientists working on behalf of the 
Department of Energy's Office of Science (DOE SC) were exploiting a new generation of 
petascale computing resources to make previously inaccessible discoveries in a broad 
range of disciplines including physics, chemistry and material science. The 
computational systems underpinning this work increased in performance potential from 
tens to hundreds of Pflop/s, and evolved significantly from those in use at the beginning 
of the project in terms of available concurrency; wider use of accelerators such as 
graphics processing units(GPUs) ; and changes to the memory hierarchy including the 
incorporation of a new generation of persistent devices (e.g., phase change memory). 
 
To ensure that DOE's computational scientists can successfully exploit this emerging 
generation of high performance computing (HPC) systems, the University of Southern 
California (USC) assembled a broad team of computer scientists with the expertise to 
address the most pressing challenges of DOEʼs computing systems: (a) end-to-end 
performance optimization, including single-node performance, interprocessor 
communication, load balancing and I/O; (b) performance portability for heterogeneous 
systems, including accelerators; (c) minimizing energy consumption; (d) resilient 
computation; and, (e) exploiting new memory technology. 
 
The leadership on SUPER organized a broadly-based project with expertise in compilers 
and other system tools, performance engineering, energy management, and resilience. 
This comprehensive coverage allowed us to integrate tools from numerous researchers, 
both within our institute and in other SciDAC-3 computer science institutes. We worked 
with DOE centers and HPC vendors to integrate, deploy, test, and document tools that 
achieve our objectives, and then actively collaborate with DOE center staff and scientific 
application teams to address high-priority codes and codes with special needs. It is a 
collaboration with University of Southern California (lead), Lawrence Berkeley National 
Laboratory (co-lead), Lawrence Livermore National Laboratory, Argonne National 
Laboratory, Oak Ridge National Laboratory, Massachusetts Instute of Technology, 
University of California San Diego, University of Maryland, University of North Carolina, 
University of Oregon, and University of Tennessee.  
 
Utahʼs contribution to SUPER was led by Mary Hall (Utah PI), who served as the area 
lead for autotuning and performance optimization.   Within Hall’s research group, her 
work on SUPER extended autotuning technology, and the CHiLL and CUDA-CHiLL 
transformation, code generation and autotuning compiler.  Senior Personnel Ganesh 
Gopalakrishnan led Utah’s contribution to resilience research, with the development of 
FUSED and SORREL to apply formal methods to detect errors in codes. 
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1 Introduction
The SciDAC-3 Institute for Sustained Performance, Energy, and Resilience (SUPER) focused on developing tech-

nology and leveraging expertise towards ensuring that computational scientists could successfully exploit existing and
emerging DOE high performance computing systems. To achieve this goal, SUPER was organized into research thrusts
focusing on performance engineering, auto-tuning, performance tools, energy efficiency, resilience and multi-objective
optimization, with a target of facilitating effective utilization of near term HPC systems. As described in this summary
document, our teams’ significant insights into both application- and architecture-awareness drove numerous innova-
tions across our stated research areas, while significantly improving the performance, portability, and functionality of
numerous SciDAC partnership applications, enabling scientific simulation at unprecedented scale. Additionally, the
tools, methodologies, and collaborations developed under this project will continue paying dividends as we face the
challenges of forthcoming multi-petascale and exascale computing technologies.

2 Performance Engineering
At the core of SUPER’s performance engineering was its engagement with the SciDAC applications. This in-

cluded 16 funded partnerships (SUPER researchers received partnership funding) and several unfunded collaborations
(funded exclusively through SUPER). In addition, we found it necessary to supplement several funded partnerships
with augmentations or SUPER funds in order to provide sufficient resources.

Although there were some common challenges and solutions across applications, we were often required to employ
a menagerie of application-specific code transformations, threading enhancements, GPU-acceleration, changes to data
structures, leveraging distributed memory, and fundamental algorithmic transformations. We highlight some of the
more substantial performance engineering efforts below.

In order to mitigate performance penalties that arise from non-contiguous node allocation on torii, we developed
techniques to identify suitable mappings of processes to allocated nodes. This involved instrumentation and collection
of application performance data using mpiP. Accelerated with our mpiAproxy tool, we evaluated several reordering
algorithms for MPAS-O, ACES4BGC, and XGC1 on Titan [65].

We developed a number of performance solutions for the fusion code CGYRO (ATOM SAP). These included
providing additional scratch memory for the vendor-tuned BLAS routines (enabled better blocked implementations),
the use of OpenACC and cuFFT for GPU-acceleration, and the replacing of multiple MPI collectives with point-to-
point communication. Overall, these improved performance by more than 3×.

Instrumentation and analysis of the EPSi FES SAP code XGC1 identified bottlenecks in the PETSc solvers. Dis-
abling vendor-tuned collective implementations improved solver performance by 8×. Additionally, we developed a
novel, load balancing technique to address load imbalance in XGC1’s new nonlinear collisional operator. Overall, we
were able to improve XGC1 performance by 2× on 256K cores of Titan.

Within the ParaDIS NNSA SAP, we exploited efficient OpenMP configurations (MPI vs. OpenMP balance, place-
ment, compiler flags, etc.) to attain a 2× speedup at 512K cores on Sequoia. Additionally, we collaborated with
FastMath to integrate and analyze the use of their new KINSOL solver in ParaDIS. Overall, KINSOL improved per-
formance by about 10% at 256K cores. Finally, we developed a new domain decomposition and load balancing
algorithm capable of detecting and correcting load imbalance at scale. This improved performance by nearly 20%.

MFDn leverages a stored-matrix Lanczos eigensolver to calculate the properties of light atomic nuclei. To save
memory, symmetry and reduced precision are leveraged. As such, the SAP was in need of high-performance imple-
mentations of SpMV and SpMV T. Moreover, as SpMV is inherently memory bandwidth limited and Lanczos requires
global dot products, SUPER collaborated with FastMath on the optimization and integration of a block (s-step) eigen-
solver (LOBPCG) that transforms multiple SpMV’s into a single SpMM and transforms multiple global dot products
into a single matmul. The resultant 4× local SpMM speedup enabled an overall speedup of 1.8× at scale [3, 5].

Unlike MFDn, BIGSTICK (CalLat NP SAP) is a matrix-free (factored matrix) implementation of nuclear CI. Un-
fortunately, at high concurrency, load balance becomes increasingly challenging. In a two-step method, we first
benchmark MFDn to create a cost model, then use these empirically-derived weights to affect better load balance. The
result was a 4× speedup on Mira at 64K cores [58]. Similar load balancing emerged on manycore processors like
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KNL at high thread concurrency (128-256 threads). To that end, we implemented a fundamentally different approach
to threading and attained a 7× speedup on KNL [60].

Although hybrid programming models (MPI+X) are obviously necessitated by GPU-acceleration, they can also be
necessitated on manycore architectures. When attempting to run CCSD(T) from NWChem on the Knights Corner
(KNC) manycore accelerator (predecessor to Cori’s KNL), we found that there was only sufficient memory to run one
MPI process (one core) per card. To remedy this extreme underutilization, we developed an OpenMP implementation
that produced a 65× increase in KNC performance [59].

Prior to SciDAC3, the LibTensor framework (used in QChem within the Excited States BES SAP), had been a single-
node, out-of-core tensor contraction library. Such an implementation was not appropriate for large-scale DOE super-
computers. To that end, we collaborated with UCB on the integration of the Cyclops Tensor Framework (CTF) [64]
as a means of providing a distributed memory back end. The result allowed for a 150× speedup, as well as portability
to BGQ-, KNL-, and GPU-based supercomputers [36].

Perhaps the most impressive speedup was attained on the FES code Xolotl (PSI FES SAP) where accelerated com-
parisons and pruning redundant work resulted in a more than 10,000× speedup on the reaction network initialization
routine (falling from nearly a day to 6 seconds) and overall speedup of over 1,000× on the Cray XC30 Eos.

3 Autotuning
While SciDAC2’s PERI pioneered the development of autotuning tools, SUPER advanced this work in several ways,

increasing the capability of tools and their ability to optimize SciDAC applications. Early in the project, we integrated
various autotuning, performance analysis and compiler, and code generation tools, including Active Harmony, TAU,
PAPI, Orio, CHiLL and CUDA-CHiLL, and ROSE. We completed an an automated, end-to-end optimization of the
SMG2000 benchmark, a semi-coarsening multigrid on structured grids [69]. This demonstration combined outlining
using the ROSE compiler, transformation and code generation using CHiLL, and search space navigation with Active
Harmony. A subsequent experiment combined TAU with CHiLL, Active Harmony, and Orio to demonstrate end-to-
end autotuning using performance data (via PAPI), a performance database TAUdb, and machine learning [18]. An
integration with TAU and Orio’s OpenCL code generation investigated autotuning to facilitate porting to different
GPUs [19].

Throughout the project, we extended these tool capabilities, inspired by SciDAC applications requirements. For
Active Harmony, a new user interface was developed that simplified specifying the autotuning search space, as well
as extensions for multi-objective autotuning (see Section 7). Orio was extended to optimize and tune for modern
architecture features: SIMD pragmas [46], and GPU code generation and autotuning of sparse matrix and vector
kernels used in the PETSc toolkit [23, 47]. CHiLL has been extended to improve the quality of generated code [21],
generate GPU code [38], and most notably, employ loop and data transformations for sparse matrix computations
using an inspector/executor approach [73, 74, 75].

With these enhancements, we also applied autotuning to a several SciDAC application codes. As a group, the
SUPER autotuning team examined key computations from three SciDAC applications: (1) the PUSHE computation
from the EPSi project XGC1 code; (2) a DSlash operator example extracted from the USQCD MILC code containing
a conjugate gradient solver and hand-optimized SU(3) primitives; and, (3) the MPAS Ocean model from the Mul-
tipscale climate project. The first of these, XGC1, did not yield improvements as the application developers were
simultaneously improving the code. For USQCD MILC, the Dslash operator was manually tuned to target multi-core
architectures with SSE/AVX SIMD units. It was heavily unrolled and restructured. As an exercise in demonstrating
programmer productivity of compiler-directed autotuning, we started with a high-level version of this code and used
CHiLL’s transformations to generated a version very similar to the manually-tuned code. The MPAS code uses un-
structured grids, leading to indirect addressing. Further extensive use of array notation, structures, and pointers, makes
the code difficult to analyze using existing compiler tools. We developed a custom transformation tool that replaces
this indirection inside loop nests with a pointer buffer that points directly to the array being accessed, we demonstrat-
ing a 1.4× speedup on velocity corrector step function of MPAS, and a 1.08× overall speedup on the application. The
application developers modified their data structures as a result of this finding.

In a collaboration with FASTMATH, sparse matrix support in CHiLL was used to optimize the Locally Optimal
Block Preconditioned Conjugate Gradient (LOBPCG) solver [2], and was shown to outperform manually-tuned code
for the same algorithm [4]. Using an inspector-executor approach, a data transformation converted the very large,
symmetric sparse matrix from a CSR format to a compressed sparse block (CSB) format. To reduce the data movement
associated with indices of the matrices, a short integer was used as the type for the matrices that pointed to the
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beginning of each CSB block. Targets for AVX SIMD code generation were marked with pragmas for the native Intel
ICC compiler.

4 Performance Tools
Tuning and Analysis Utilities (TAU)

SUPER made significant extensions and improvements to the TAU Performance System [63] that enabled TAU to
be applied effectively in performance studies on several institute collaborations. A TAUdb repository was established
to store performance data and share it among the SUPER team, and TAU analysis software was configured to provide
access to the repository. The source code auto-instrumentation support in TAU was enhanced throughout the project,
as support for updated parsers from EDG (C++) was updated and a new Rose [41] (Fortran) parser was integrated.
Binary instrumentation support was also continuously enhanced, as new versions of DyninstAPI [72] were supported
and new support using the PEBIL binary rewriter [40] was integrated into TAU. Event-based sampling and hybrid
timing/sampling measurement in TAU was greatly enhanced throughout the project, providing measurement options
for complex applications that are a challenge to auto-instrument [44]. OpenMP support in TAU was also advanced
during the project – including a GOMP library wrapper for GCC 4.9 – eventually leading to support for the OMPT
(OpenMP Tools) interface in the proposed OpenMP 5.0 standard [26]. TAU has support for an early prototype im-
plementation of OMPT [32], and is being updated to support the eventual “reference” implementation as provided
by the OMPT draft subcommittee. TAU was improved and extended for GPUs and manycore devices throughout the
SUPER project. CUDA was fully-integrated in TAU using NVIDIA’s CUPTI interface [45]. TAU was ported to early
and current generations of the Intel Xeon Phi (MIC) architecture. Our efforts reduced TAU measurement overhead for
high thread counts on manycore systems. TAU measurement and analysis, together with TAUdb, were incorporated
in both CHiLL/Active Harmony and Orio autotuning frameworks. We demonstrated how autotuning could be use to
optimize code for multiple architecture targets [20]. Finally, performance data was mapped to the application domain,
as TAU data was integrated into MPAS-Ocean output data to be visualized in VisIT. [33] All of the aforementioned
TAU enhancements were used to study SciDAC applications, including CCSM, XGC, MILC and MPAS-Ocean.

Roofline Toolkit
Perhaps one of the more user-intensive and challenging activities is understanding the capabilities of the myriad

of emerging and novel architectures. One might rely on vendor marketing to quantify the performance potential of
a new processor, but this method often overestimates real bandwidths or compute capabilities (STREAM bandwidth
is often lower than pin bandwidth, KNL down clocks to 1.2GHz for AVX-heavy computations, etc.). Alternately,
one might try to digest the dry and voluminous architectural documentation provided by each vendor. This is a
time consuming operation and can fail similarly to the aforementioned approach. A third approach is to construct
benchmarks to characterize machines. To that end, as part of the Empirical Roofline Toolkit, we developed a series of
benchmarks designed to produce Roofline models for multicore, manycore, and GPU-accelerated node architectures.
These benchmarks leverage MPI+OpenMP+CUDA and can thus characterize any of DOE’s supercomputers including
the BGQ-based Mira, the KNL-based Cori, or the multi-GPU accelerated SummitDev [42]. We also developed a
benchmark to characterize NVIDIA’s new Unified Memory technology that hides the hierarchical memory nature
of GPU-accelerated systems from users [43]. In doing so we were able to identify certain performance pitfalls and
mediation strategies for Titan when using CUDA Unified Memory.

We have developed an application to support the visualization of roofline data beyond generation of static im-
ages [52]. The roofline visualizer is implemented in Java, using the JavaFX toolkit. It reads and renders Roofline
summary data from Json files generated by the Empirical Roofline Toolkit. It also allows browsing and display of
rooflines from online roofline data repositories. Such repositories facilitate organized storage and sharing of roofline
data. Since multiple rooflines can be loaded simultaneously the visualizer allows filtration of rooflines according to the
metadata attributes included in the Json output. Display of multiple rooflines at once facilitates comparative analysis
of system performance. Through integration with the TAUdb profile database the Roofline Visualizer is able to display
selected application performance profile data on a corresponding Roofline figure. This enables application developers
to identify compute kernels with potential for significant performance improvement. The Roofline Visualizer is op-
tionally available as a plugin to the Eclipse IDE. In this mode it allows selection of application source code elements
from the IDE’s user interface. If performance data for the selected code is available it will be rendered into the selected
roofline chart.
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5 Energy Efficiency
Future HPC systems will most likely be over-provisioned and power constrained to be operated within strict power

limits [53, 56], i.e., not all components of the system can be run at maximum power draw and, therefore, maximum
performance. For these classes of systems, the objective of performance optimization, which has traditionally been
to minimize time-to-solution, will morph into a more complicated objective maximizing performance under a power
budget. Therefore, SUPERs energy thrust was charged with 1) understanding how computation and communica-
tion patterns affect the overall power requirements of HPC applications, 2) leveraging this understanding to design
application- and architecture-aware optimization techniques that enable the reduction of DOE HPC energy footprint
or efficient computing within a power bound and 3) working with the SUPER team towards the overall goal of the
multi-objective optimization combining power, performance, and resilience.

Initial tool development work to measure fine-grain power usage was done to support the research. Development on
PAPI to enable on-board Xeon Phi power measurement and use of the RAPI for Xeons was performed. In addition, the
Resource Centric Reflection (RCR) tool suite was designed for monitoring off-core hardware performance counters
and other node-wide metrics and for computing real time models based on those metrics. RCR Tool was also used for
monitoring temperature and power consumption to guide real time decisions regarding clock modulation and power
states, as well as fine grain thread/task scheduling.

The Green Queue framework [54, 70] is a framework designed to automate the development and deployment of
customized architecture- and application-aware power savings recipes for large-scale HPC applications achieving up
to 21% and 32% energy savings on HPC production applications run at scale. Additional work focused on the mem-
ory sub-system involved our methodology that uses application and machine characterization information to build
predictive machine learning models that can accurately quantify phase-level sensitivity to the reduced per core mem-
ory bandwidth resulting from changes in the memory bus frequency to reduce the power. We evaluated the predictive
capability of the model on real applications and validated them at a fine grain level by looking at 43 individual com-
putational phases or application hotspots as well as the whole application. For more than 91% of the application
hotspots, the prediction error is less than 10% [71]. Building from these validated performance and power models
collaborations among SUPER team members developed an automated end-to-end system to reduce the complexity
of developing and deploying machine learning models for performance, power, and energy. The new framework
Automatic Multi-objective Modeling with Machine Learning (AutoMOMML) enabled multi-objective optimizations
(power and performance) for HPC workloads [13].

6 Resilience
During the years of SUPER, we have made major advances for resilience. Our approaches covered two major

thrusts: detection and correction of errors by formal methods; and improving the performance of application failure
recovery mechanisms. Along the first thrust, SUPER investigators focused on understanding how hardware-level
errors can be detected and corrected in software. Our efforts exposed intrinsic properties of algorithms for validation
and correction and developed the theoretical foundations allowing other researchers to identify the sections of their
algorithms that present such properties to develop mathematical invariants. As an example, we augmented dataflow
task-based programs with specialized validators or invariant checkers and found these approaches not only can detect
soft errors and, in some cases, recover the lost data, but also guarantee a correct result in all instances. Additionally,
we developed FUSED [61], a tool-flow based on ROSE that inserts control-flow based error detectors into applications
and developed a tool-flow called SORREL [1] to support our method to approximate a given stencil computation using
linear regression models [62] to serve as a proxy for detecting errors.

In the second thrust, SUPER researchers also made significant strides to improve recovery mechanisms for appli-
cations. We used multi-threading techniques to detect and possibly to correct errors in computing logic [34, 35]. We
explored the error sensitivity of algebraic multigrid and found that low-cost pointer triplication could detect and elim-
inate almost all injected errors [17]. We tested the efficacy of roll-forward and roll-back recovery for two Conjugate
Gradient (CG) programs and found an average of 70% of all executions converge correctly for a rate that injects an
error every 5 minutes. We also made major strides in improving the User Level Fault Mitigation (ULFM), a proposed
extension for fault tolerance to the MPI standard. We investigated different fault management models built on ULFM,
including containment domains, Algorithm-Based Fault Tolerance (ABFT), and integration into large scientific appli-
cations via Fenix [27, 31] and LFLR [68]. We also improved the state-of-the-art in checkpoint/restart by evaluating
the power usage of applications during checkpointing to shift power during low I/O power phases to other applications
in computation phases [57], yielding up to 32% improvement for a single, high-priority application.
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7 Multi-Objective Optimization
The multi-objective optimization effort in SUPER focused on the optimization of multiple metrics for performance,

energy, and resilience by treating collections of these metrics as objectives to be simultaneously optimized and/or
constraints to be satisfied. Foundational to this work was development of search formulations and algorithms that
exploit mathematical optimization capabilities to address the search problem in autotuning [7, 8, 10, 30]. The collab-
oration also enhanced the capabilities of search frameworks such as Active Harmony [67] by developing a new search
strategy, ANGEL [22], for multi-objective search by focusing on a constrained region defined by available metrics.
A particular focus of the collaboration was on the simultaneous optimization of metrics relating to run time, power,
and energy [9, 11, 13]. We characterized situations where tradeoffs among these metrics occur and demonstrated
that nontrivial tradeoffs can exist between energy consumption and established run time. Additionally, we considered
the effects of addressing resiliency and increased fault rates when performing multi-objective optimization. Sev-
eral efforts addressed checkpointing in particular, establishing optimal frequencies of different types of checkpoints
[6, 29, 66]. We also examined the effect of the idle power and/or filesystem energy consumption when considering
multi-objective optimization of multi-level checkpointing schemes [12]. We applied our search and modeling method-
ology to several emerging architectures, including GPUs [51] and FPGAs [48, 49]. We also examined the use of this
modeling to improve performance portability across different leadership-class architectures [55]. Under SUPER, we
also examined I/O performance and its modeling and optimization to address situations where an application is I/O
intensive [15, 16, 37]. This work included inter-institute collaborations between SUPER and SDAV institute.

8 Engagement
Broadly speaking, SUPER’s engagement activities can be categorized into application partnerships, inter-institute,

facilities, and vendors. SUPER’s primary performance engineering activities can be categorized as collaborations
between researchers from SUPER and application partnership as described in Section 2.

Most of SUPER’s inter-institutional collaborations were with FastMath researchers. We collaborated with FastMath
on the optimization and integration of LOBPCG (a replacement for Lanczos as an eigensolver) into the Nuclear
Configuration interaction codes MFDn (NUCLEI SAP) and BIGSTICK (CalLat SAP). Whereas Lanczos is based
on matvec (SpMV in MFDn), LOBPCG is based on matrix-block vector products (SpMM in MFDn). This activity
produced several joint publications and code releases [3, 5].

Additionally, we explored optimization of linear solvers including direct solvers based on HSS factorizations [28],
coarse grid solves for 2-level algebraic multigrid [25], and geometric multigrid solvers using HPGMG-FV. HPGMG-
FV is a highly-optimized full multigrid solver developed as an alternative to HPL and HPCG for benchmarking super-
computers. The BoxLib-based cosmology code Nyx requires a highly scalable gravity (Poisson) solve. Unfortunately,
the existing BoxLib-based solution lacked scalability above 10K cores. To rectify this, SUPER researchers worked
with FASTMath researchers to integrate HPGMG into the production BoxLib so that Nyx could leverage its perfor-
mance capabilities. Researchers from Nyx have since demonstrated scalability to nearly 0.5M cores.

In order to facilitate the performance analysis requirements for FastMath researchers, we collaborated with FastMath
on the development of aforementioned Empirical Roofline Toolkit and Visualizer [42] as described in Section 4, as
well as conducting an investigation of performance counter infrastructure on the Cray XC series and standalone x86
systems. Eventually this activity expanded to include researchers from NERSC’s NESAP application readiness activity
who leveraged Roofline across their applications to drive optimization and analyze performance on KNL [14, 24, 50].
This strong collaboration with NERSC also included the development of a performance counter methodology on the
Cray XC series (using Intel’s VTune and SDE).

Buoyed by success of the NESAP activities, SUPER and NERSC began a collaboration with the Intel Advisor team
with the goal of integrating Roofline visualization directly into advisor. Newer releases of Intel advisor now include a
Roofline visualization of every large loop nest in an application. These can be analyzed in terms of performance, data
movement, SIMDization, and overall fraction of application run time. In March of 2017 we conducted a successful In-
tel Advisor Roofline Hackathon at LBL [39] with participants from LBNL, NERSC, and LANL, and we are exploring
a tutorial at Supercomputing 2017. Commensurate with our NESAP collaborations, our team also collaborated with
OLCF’s CAAR team on the optimization of XGC1 resulting in an 18% improvement in point-to-point communication
performance.
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[6] G. Aupy, A. Benoit, T. Héfault, Y. Robert, and J. Dongarra. Optimal checkpointing period: Time vs. energy.
In Proceedings of the 4th International Workshop on Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems (PMBS13), November 2013.

[7] P. Balaprakash, S. M. Wild, and P. D. Hovland. An experimental study of global and local search algorithms
in empirical performance tuning. In Proceedings of the 10th International Meeting on High-Performance Com-
puting for Computational Science (VECPAR 2012), July 2012. Available at http://www.mcs.anl.gov/
˜wild/papers/2012/PBSWPH12.pdf.

[8] P. Balaprakash, R. Gramacy, and S. M. Wild. Active-learning-based surrogate models for empirical performance
tuning. In Proceedings of IEEE International Conference on Cluster Computing (CLUSTER 2013), pages 1–8,
September 2013. doi: 10.1109/CLUSTER.2013.6702683.

[9] P. Balaprakash, A. Tiwari, and S. M. Wild. Framework for optimizing power, energy, and performance
(poster). In International Conference for High Performance Computing, Networking, Storage, and Analy-
sis (SC13), November 2013. URL http://sc13.supercomputing.org/sites/default/files/
PostersArchive/post154.html.

[10] P. Balaprakash, S. M. Wild, and P. D. Hovland. An experimental study of global and local search algorithms in
empirical performance tuning. In High Performance Computing for Computational Science - VECPAR 2012, 10th
International Conference, Kobe, Japan, July 17-20, 2012, Revised Selected Papers, Lecture Notes in Computer
Science, pages pp. 261–269. Springer, 2013. ISBN 978-3-642-38717-3. doi: 10.1007/978-3-642-38718-0 26.

[11] P. Balaprakash, A. Tiwari, and S. M. Wild. Multi-objective optimization of HPC kernels for performance, power,
and energy. In S. A. Jarvis, S. A. Wright, and S. D. Hammond, editors, High Performance Computing Systems.
Performance Modeling, Benchmarking and Simulation, volume 8551 of Lecture Notes in Computer Science,
pages 239–260. Springer International Publishing, 2014. doi: 10.1007/978-3-319-10214-6 12.

[12] P. Balaprakash, L. A. B. Gomez, M. S. Bouguerra, S. M. Wild, F. Cappello, and P. D. Hovland. Analysis of
the tradeoffs between energy and run time for multilevel checkpointing. In S. A. Jarvis, S. A. Wright, and S. D.
Hammond, editors, High Performance Computing Systems. Performance Modeling, Benchmarking, and Simula-
tion – PMBS 2014, volume 8966 of Lecture Notes in Computer Science, pages 249–263. Springer International
Publishing, 2015. doi: 10.1007/978-3-319-17248-4 13. Acceptance rate 26%.

[13] P. Balaprakash, A. Tiwari, S. M. Wild, L. Carrington, and P. D. Hovland. AutoMOMML: Automatic Multi-
objective Modeling with Machine Learning. In M. J. Kunkel, P. Balaji, and J. Dongarra, editors, High Per-
formance Computing: 31st International Conference, ISC High Performance 2016, Frankfurt, Germany, June
19-23, 2016, Proceedings, pages 219–239. Springer International Publishing, 2016. ISBN 978-3-319-41321-1.
doi: 10.1007/978-3-319-41321-1 12.

6

http://www.cs.utah.edu/formal_verification/fmr/#sorrel
http://www.cs.utah.edu/formal_verification/fmr/#sorrel
http://www.mcs.anl.gov/~wild/papers/2012/PBSWPH12.pdf
http://www.mcs.anl.gov/~wild/papers/2012/PBSWPH12.pdf
http://sc13.supercomputing.org/sites/default/files/PostersArchive/post154.html
http://sc13.supercomputing.org/sites/default/files/PostersArchive/post154.html


[14] T. Barnes, B. Cook, J. Deslippe, D. Doerfler, B. Friesen, Y. H. He, T. Kurth, T. Koskela, M. Lobet, T. Malas,
L. Oliker, A. Ovsyannikov, A. Sarje, J.-L. Vay, H. Vincenti, S. Williams, P. Carrier, N. Wichmann, M. Wagner,
P. Kent, C. Kerr, and J. Dennis. Evaluating and optimizing the nersc workload on knights landing. In Performance
Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS), 2016.

[15] B. Behzad, S. Byna, S. M. Wild, Prabhat, and M. Snir. Improving parallel I/O autotuning with performance
modeling. In Proceedings of the 23rd International Symposium on High-Performance Parallel and Distributed
Computing (HPDC14), 2014. doi: 10.1145/2600212.2600708.

[16] B. Behzad, S. Byna, S. M. Wild, Prabhat, and M. Snir. Dynamic model-driven parallel I/O performance tuning.
In Cluster Computing (CLUSTER), 2015 IEEE International Conference on, pages 184–193, September 2015.
doi: 10.1109/CLUSTER.2015.37.

[17] M. Casas, B. R. de Supinski, G. Bronevetsky, and M. Schulz. Fault resilience of the algebraic multi-grid solver.
In Proceedings of the 26th ACM International Conference on Supercomputing (IcS), pages 91–100. ACM, 2012.

[18] N. Chaimov, S. Biersdorff, and A. D. Malony. Tools for machine-learning-based empirical autotun-
ing and specialization. International Journal of High Performance Computing Applications, 2013. doi:
10.1177/1094342013493124. URL http://hpc.sagepub.com/content/early/2013/07/12/
1094342013493124.abstract.

[19] N. Chaimov, B. Norris, and A. Malony. Multi-target autotuning for accelerators. In Proceedings of the 20th
IEEE International Conference on Parallel and Distributed Systems (ICPADS), 2014.

[20] N. Chaimov, B. Norris, and A. Malony. Toward Multi-Target Autotuning for Accelerators. In 20th IEEE
International Conference on Parallel and Distributed Systems (ICPADS 2014), pages 534–541, Dec. 2014.

[21] C. Chen. Polyhedra scanning revisited. In Proceedings of the 33rd ACM SIGPLAN conference on Programming
Language Design and Implementation, PLDI ’12, pages 499–508, June 2012. ISBN 978-1-4503-1205-9. doi:
10.1145/2254064.2254123. URL http://doi.acm.org/10.1145/2254064.2254123.

[22] R. S. Chen and J. K. Hollingsworth. ANGEL: A Hierarchical Approach to Multi-Objective Online Auto-Tuning.
In Proceedings of the 5th International Workshop on Runtime and Operating Systems for Supercomputers, ROSS
’15, pages 4:1–4:8, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3606-2. doi: 10.1145/2768405.
2768409. URL http://doi.acm.org/10.1145/2768405.2768409.

[23] C. Choudary, J. Godwin, J. Holewinski, D. Karthik, D. Lowell, A. Mametjanov, B. Norris, G. Sabin, P. Sadayap-
pan, and J. Sarich. Stencil-aware GPU optimization of iterative solvers. SIAM Journal on Scientific Computing,
2013. URL http://www.mcs.anl.gov/uploads/cels/papers/P3008-0712.pdf. Also avail-
able as Preprint ANL/MCS-P3008-0712.

[24] D. Doerfer, J. Deslippe, S. Williams, L. Oliker, B. Cook, T. Kurth, M. Lobet, T. Malas, J.-L. Vay, , and H. Vin-
centi. Applying the roofline performance model to the intel xeon phi knights landing processor. In Intel Xeon
Phi User Group Workshop (IXPUG), 2016.

[25] A. Druinsky, P. Ghysels, X. S. Li, O. Marques, S. Williams, A. Barker, D. Kalchev, and P. Vassilevski. Compar-
ative performance analysis of an algebraic multigrid solver on leading multicore architectures. In International
Conference on Parallel Processing and Applied Mathematics (PPAM), 2015.

[26] A. Eichenberger, J. Mellor-Crummey, M. Schulz, N. Copty, J. DelSignore, R. Dietrich, X. Liu, E. Loh, and
D. Lorenz. OMPT and OMPD: OpenMP Tools Application Programming Interfaces for Performance Analysis
and Debugging. April 2013.

[27] M. Gamell, D. S. Katz, H. Kolla, J. Chen, S. Klasky, and M. Parashar. Exploring automatic, online failure
recovery for scientific applications at extreme scales. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’14, pages 895–906, Piscataway, NJ, USA,
2014. IEEE Press. ISBN 978-1-4799-5500-8. doi: 10.1109/SC.2014.78. URL http://dx.doi.org/10.
1109/SC.2014.78.

7

http://hpc.sagepub.com/content/early/2013/07/12/1094342013493124.abstract
http://hpc.sagepub.com/content/early/2013/07/12/1094342013493124.abstract
http://doi.acm.org/10.1145/2254064.2254123
http://doi.acm.org/10.1145/2768405.2768409
http://www.mcs.anl.gov/uploads/cels/papers/P3008-0712.pdf
http://dx.doi.org/10.1109/SC.2014.78
http://dx.doi.org/10.1109/SC.2014.78


[28] P. Ghysels, X. S. Li, F.-H. Rouet, S. Williams, and A. Napov. An efficient multicore implementation of a novel
hss-structured multifrontal solver using randomized sampling. SIAM Journal of Scientific Computing (SISC),
2016.

[29] L. A. B. Gomez, P. Balaprakash, M.-S. Bouguerra, S. M. Wild, F. Cappello, and P. D. Hovland. Energy-
performance tradeoffs in multilevel checkpoint strategies. In 2014 IEEE International Conference on Cluster
Computing (CLUSTER), pages 278–279, 2014. doi: 10.1109/CLUSTER.2014.6968749. Poster Extended Ab-
stract.

[30] R. B. Gramacy, M. A. Taddy, and S. M. Wild. Variable selection and sensitivity analysis via dynamic trees
with an application to computer code performance tuning. Annals of Applied Statistics, 7:51–80, 2013. doi:
10.1214/12-AOAS590.

[31] T. Herault, A. Bouteiller, G. Bosilca, M. Gamell, K. Teranishi, M. Parashar, and J. Dongarra. Practical Scalable
Consensus for Pseudo-Synchronous Distributed Systems. November 2015.

[32] K. Huck, A. Malony, S. Shende, and D. Jacobsen. Integrated measurement for cross-platform OpenMP per-
formance analysis. In L. DeRose, B. R. de Supinski, S. L. Olivier, B. M. Chapman, and M. S. Müller, ed-
itors, Using and Improving OpenMP for Devices, Tasks, and More, volume 8766 of Lecture Notes in Com-
puter Science, pages 146–160. Springer International Publishing, 2014. ISBN 978-3-319-11453-8. doi:
10.1007/978-3-319-11454-5 11. URL http://dx.doi.org/10.1007/978-3-319-11454-5_11.

[33] K. A. Huck, K. Potter, D. W. Jacobsen, H. Childs, and A. D. Malony. Linking performance data into scientific
visualization tools. In Proceedings of the First Workshop on Visual Performance Analysis, pages 50–57. IEEE
Press, 2014.

[34] S. Hukerikar, K. Teranishi, P. Diniz, and R. Lucas. Opportunistic Application-level Fault Detection through
Adaptive Redundant Multithreading. In Proc. of the IEEE Intl. Conf. on High Performance Computing and
Simulation (HPCS 2014), July 2014.

[35] S. Hukerikar, P. Diniz, and R. Lucas. Enabling Application Resilience through Programming Model based Fault
Amelioration. Sept. 2015.

[36] K. Z. Ibrahim, E. Epifanovsky, S. Williams, and A. I. Krylov. Cross-scale efficient tensor contractions for cou-
pled cluster computations through multiple programming model backends. Journal of Parallel and Distributed
Computing (JPDC), 2017.

[37] F. Isaila, P. Balaprakash, S. M. Wild, D. Kimpe, R. Latham, R. Ross, and P. D. Hovland. Collective I/O tuning
using analytical and machine learning models. In 2015 IEEE International Conference on Cluster Computing
(CLUSTER), pages 128–137. IEEE, 2015. doi: 10.1109/CLUSTER.2015.29. Acceptance rate 24%.

[38] M. Khan, P. Basu, G. Rudy, M. Hall, C. Chen, and J. Chame. A script-based autotuning compiler system to
generate high-performance cuda code. ACM Transactions on Architecture and Code Optimization, Jan. 2013.

[39] T. Koskela. Roofline hackathon. URL http://www.nersc.gov/users/training/events/
roofline-training-2162017-2172017/.

[40] M. Laurenzano, M. Tikir, L. Carrington, and A. Snavely. Pebil: Efficient static binary instrumentation for linux.
In Performance Analysis of Systems Software (ISPASS), 2010 IEEE International Symposium on, pages 175–183,
2010. doi: 10.1109/ISPASS.2010.5452024.

[41] Lawrence Livermore National Laboratory. ROSE compiler infrastructure. http://rosecompiler.org,
April 2013.

[42] T. Ligocki. Roofline toolkit. URL https://bitbucket.org/berkeleylab/
cs-roofline-toolkit.

[43] Y. J. Lo, S. Williams, B. V. Straalen, T. J. Ligocki, M. J. Cordery, L. Oliker, and M. W. Hall. Roofline model
toolkit: A practical tool for architectural and program analysis. In Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems (PMBS), 2014.

8

http://dx.doi.org/10.1007/978-3-319-11454-5_11
http://www.nersc.gov/users/training/events/roofline-training-2162017-2172017/
http://www.nersc.gov/users/training/events/roofline-training-2162017-2172017/
http://rosecompiler.org
https://bitbucket.org/berkeleylab/cs-roofline-toolkit
https://bitbucket.org/berkeleylab/cs-roofline-toolkit


[44] A. Malony and K. Huck. General hybrid parallel profiling. In Parallel, Distributed and Network-Based
Processing (PDP), 2014 22nd Euromicro International Conference on, pages 204–212, Feb 2014. doi:
10.1109/PDP.2014.38.

[45] A. Malony, S. Biersdorff, S. Shende, H. Jagode, S. Tomov, G. Juckeland, R. Dietrich, D. Poole, and C. Lamb.
Parallel Performance Measurement of Heterogeneous Parallel Systems with GPUs. In International Conference
on Parallel Processing (ICPP 2011), pages 176–185. IEEE Computer Society, Sept. 2011. doi: 10.1109/ICPP.
2011.71.

[46] A. Mametjanov and B. Norris. Autotuning of Vectorization in Stencil Computations. Workshop on Optimizing
Stencil Computations (WOSC’13), Indianapolis, Indiana, October 2013.

[47] A. Mametjanov, D. Lowell, C.-C. Ma, and B. Norris. Autotuning stencil-based computations on GPUs. In
Proceedings of IEEE Cluster 2012, Sep. 2012. URL http://www.mcs.anl.gov/uploads/cels/
papers/P2094-0512.pdf. Also available as Preprint ANL/MCS-P2094-0512.

[48] A. Mametjanov, P. Balaprakash, C. Choudary, P. D. Hovland, S. M. Wild, and G. Sabin. Autotuning FPGA
design parameters for performance and power. In 2015 IEEE 23rd Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 84–91, 2015. doi: 10.1109/FCCM.2015.54. Ac-
ceptance rate 22.10%.

[49] A. Mametjanov, P. Balaprakash, C. Choudary, P. D. Hovland, S. M. Wild, G. Sabin, and G. Wolfe. Improv-
ing FPGA design parameter exploration: Timing, power, and area. Preprint ANL/MCS-P7000-0117, Argonne
National Laboratory, Mathematics and Computer Science Division, Jan 2017.

[50] Z. Meng, A. Koniges, Y. H. He, S. Williams, T. Kurth, B. Cook, J. Deslippe, and A. L. Bertozzi. Openmp
parallelization and optimization of graph-based machine learning algorithms. In 12th International Workshop on
OpenMP (iWOMP), 2016.

[51] T. Nelson, A. Rivera, P. Balaprakash, M. Hall, P. D. Hovland, E. Jessup, and B. Norris. Generating efficient tensor
contractions for GPUs. In 2015 44th International Conference on Parallel Processing (ICPP), pages 969–978,
2015. doi: 10.1109/ICPP.2015.106. Acceptance rate 32.5%.

[52] B. Norris, W. Spear, and A. Malony. Performance analysis of applications in the context of architectural rooflines.
In Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering, ICPE ’17, pages
345–348, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4404-3. doi: 10.1145/3030207.3030232. URL
http://doi.acm.org/10.1145/3030207.3030232.

[53] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and B. R. de Supinski. Exploring hardware overprovisioning
in power-constrained, high performance computing. In Proceedings of the 27th International ACM Conference on
International Conference on Supercomputing, ICS ’13, pages 173–182, New York, NY, USA, 2013. ACM. ISBN
978-1-4503-2130-3. doi: 10.1145/2464996.2465009. URL http://doi.acm.org/10.1145/2464996.
2465009.

[54] J. Peraza, A. Tiwari, M. Laurenzano, L. Carrington, and A. Snavely. Pmac’s green queue: A framework for
selecting energy optimal dvfs configurations in large scale mpi applications. In Submission to CCPE Special
Issue on Analysis of Performance and Power for Highly Parallel Systems.

[55] A. Roy, P. Balaprakash, P. D. Hovland, and S. M. Wild. Exploiting performance portability in search algo-
rithms for autotuning. In 2016 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 1535–1544, 2016. doi: 10.1109/IPDPSW.2016.85.

[56] O. Sarood, A. Langer, L. Kale, B. Rountree, and B. de Supinski. Optimizing power allocation to cpu and mem-
ory subsystems in overprovisioned hpc systems. In Cluster Computing (CLUSTER), 2013 IEEE International
Conference on, pages 1–8, Sept 2013. doi: 10.1109/CLUSTER.2013.6702684.

[57] L. Savoie, D. K. Lowenthal, B. R. de Supinski, T. Islam, K. Mohror, B. Rountree, and M. Schulz. I/O Aware
Power Shifting. In Parallel and Distributed Processing Symposium, 2016 IEEE International, pages 740–749.
IEEE, 2016.

9

http://www.mcs.anl.gov/uploads/cels/papers/P2094-0512.pdf
http://www.mcs.anl.gov/uploads/cels/papers/P2094-0512.pdf
http://doi.acm.org/10.1145/3030207.3030232
http://doi.acm.org/10.1145/2464996.2465009
http://doi.acm.org/10.1145/2464996.2465009


[58] H. Shan, K. McElvain, C. W. Johnson, S. Williams, and W. E. Ormand. Parallel implementation and performance
optimization of the configuration-interaction method. In Supercomputing (SC), 2015.

[59] H. Shan, S. Williams, W. de Jong, and L. Oliker. Thread-level parallelization and optimization of nwchem for
the intel mic architecture. In Proceedings of the Sixth International Workshop on Programming Models and
Applications for Multicores and Manycores, PMAM ’15, pages 58–67, New York, NY, USA, 2015. ACM. ISBN
978-1-4503-3404-4. doi: 10.1145/2712386.2712391. URL http://doi.acm.org/10.1145/2712386.
2712391.

[60] H. Shan, S. Williams, C. Johnson, and K. McElvain. A locality-based threading algorithm for the configuration-
interaction method. In Parallel and Distributed Scientific and Engineering Computing (PDSEC), June 2017.

[61] V. C. Sharma, Z. Rakamaric, and G. Gopalakrishnan. FUSED: A Low-cost online Soft-Error Detector. In 10th
Workshop on Silicon Errors in Logic - System Effects (SELSE), 2014.

[62] V. C. Sharma, G. Bronevetsky, and G. Gopalakrishnan. Detecting soft errors in stencil based computations. In
11th IEEE Workshop on Silicon Errors in Logic - System Effects (SELSE), 2015.

[63] S. Shende and A. Malony. The TAU Parallel Performance System. International Journal of High Performance
Computing Applications, 20(2, Summer):287–311, 2006. ACTS Collection Special Issue.

[64] E. Solomonik, D. Matthews, J. Hammond, and J. Demmel. Cyclops Tensor Framework: Reducing commu-
nication and eliminating load imbalance in massively parallel contractions. In The IEEE 27th International
Symposium on Parallel Distributed Processing (IPDPS), pages 813–824, 2013. doi: 10.1109/IPDPS.2013.112.

[65] S. Sreepathi, E. DAzevedo, B. Philip, and P. Worley. Communication characterization and optimization of appli-
cations using topology-aware task mapping on large supercomputers. In ACM/SPEC International Conference
on Performance Engineering (ICPE), 2016.

[66] O. Subasi, S. Di, L. Bautista-Gomez, P. Balaprakash, O. Unsal, J. Labarta, A. Cristal, and F. Cappello. Spatial
support vector regression to detect silent errors in the exascale era. In 2016 16th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pages 413–424, 2016. doi: 10.1109/CCGrid.
2016.33. Acceptance rate 20.0%.
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