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Abstract— We discuss the multiple pursuer-based intercept
of a threat unmanned aerial system (UAS) with stochastic
dynamics via multiple pursuing UASs, using forward stochastic
reachability and receding horizon control techniques. We for-
mulate a stochastic model for the threat that can emulate the
potentially adversarial behavior and is amenable to the existing
scalable results in forward stochastic reachability literature.
The optimal state for the intercept for each individual pursuer
is obtained via a log-concave optimization problem, and the
open-loop control paths are obtained via a convex optimization
problem. With stochasticity modeled as a Gaussian process, we
can approximate the optimization problem as a quadratic pro-
gram, to enable real-time path planning. We also incorporate
real-time sensing into the path planning by using a receding
horizon controller, to improve the intercept probabilities. We
validate the proposed framework via hardware experiments.

I. INTRODUCTION

Protecting assets in urban environments has become an
increasingly relevant problem with the widespread use of
drones. Traditional defense mechanisms, like ballistic de-
fenses and RF/GPS jamming options, are not viable due to
the potential for collateral damage. We propose an air-to-air
approach, entitled Aerial Suppression of Airborne Platforms
(ASAP) (Figure 1), which uses defensive unmanned aerial
systems (UASs) in coordination with ground-based systems.
The objective of ASAP is to detect, track, and, if needed,
neutralize small threat UAS using multiple pursuer UASs.
By moving airborne sensors and precision defense systems
away from ground interference and near to potential threat
vehicles, this approach exploits geometric advantages, such
as multiple perspectives, significantly increased angular cross
section, and the ability to use short-range precision maneu-
vers for neutralization.

In this paper, we focus on the tracking component of
ASAP, i.e, the interception of a small threat whose intentions
may or may not be adversarial. Using a differential game
framework [1]–[4], researchers have presumed a worst-case
scenario, with purely adversarial threats, and constructed
conservative controllers. Backward reachability and viability
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Fig. 1: High-level depiction of Aerial Suppression of Air-
borne Platform (ASAP) system

calculations can also be used to compute the set of states
from which the intercept of an adversarial dynamical threat
is possible [5], [6]. While these methods provide absolute
and probabilistic guarantees of intercept, respectively, they
are computationally intractable as the dimensionality of the
problem increases, and require large offline computations.
Moreover, the worst-case scenario may be overly conserva-
tive, depending on the actual intentions of the threat, and
create an unintentionally large set of possible threat locations.

Another approach is to use forward reachable sets [7], [8]
to compute possible positions of the threat. These methods
do not incorporate the stochastic information available on the
threat dynamics via sensing, and therefore also tend to be
overly conservative as they do not distinguish between loca-
tions of the threat with higher likelihood. In [9], the intercept
problem is posed as a partially observable Markov decision
process (POMDP) and solved approximately using graph
theory algorithms. Our paper builds on the results presented
in [10], which provided a globally optimal solution, using
multiple convex optimization problems, to the path planning
problem for a single pursuer in pursuit of a nonadversarial
stochastic target. We also leverage recent results on forward
stochastic reachability for affine systems [11].

In this paper, we presume the threat attempts to move
towards the asset with bounded control authority. We assume
the threat dynamics follow a known model derived from our
knowledge of the likely targets and the observed trajectory
prior to our engagement. To mitigate the computational
intractability associated with the traditional differential game
approach, we assume that the threat’s actions are independent
of the pursuers’ actions. We incorporate known additive
stochastic disturbances to account for the uncertainty in this
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threat model. We leverage existing scalable results in forward
stochastic reachability to solve the multiple pursuer-based
intercept problem. Using the probability measure associated
with the state of the threat at future times of interest, we
formulate optimization problems to compute the optimal
state for intercept for the pursuers and the associated open-
loop controllers. Finally, we incorporate real-time sensing
of the position of the threat and pursuers to the intercept
planning problem via receding horizon control.

The main contributions of this paper are 1) a stochastic
model for a potentially adversarial threat, 2) extension of
our solution to the single-pursuer problem [10] to multiple
pursuers, 3) incorporation of real-time sensor data into the
path-planning algorithm using a receding horizon framework,
and 4) experimental validation of the Fourier transform-based
forward stochastic reachability techniques. Our approach has
two main advantages: 1) it is not overly conservative, as it
does not create an unnecessarily large set of possible threat
positions, and 2) the resulting convex optimization yields
computationally tractable problems and enables computation
of a globally optimal solution in the space of open-loop
controllers for the pursuers. While we restrict our model to
Gaussian stochastic processes for real-time tractability, our
approach generalizes to other continuous disturbance pro-
cesses, for example, an exponential disturbance process [10].

This paper is organized as follows: Section II formulates
the problem statement. Section III describes our stochastic
model for the threat, the forward stochastic reachability-
based solution to the multiple pursuer-based intercept prob-
lem, and the implementation of pursuit via receding horizon
control. Section IV validates the results in an experimental
testbed, and Section V provides conclusions and future
directions.

II. PRELIMINARIES

We denote random vectors with bold case, non-random
vectors with an overline, and a discrete interval by N[a,b] for
a, b ∈ N and a ≤ b, which inclusively enumerates all natural
numbers in between a and b. We denote the Minkowski sum
as ⊕, the Kronecker product as ⊗, xp×q ∈ Rp×q as a matrix
with all of its elements as x ∈ R, and In as the identity
matrix of size n. The Cartesian product of the set S with
itself k ∈ N times is Sk. The Fourier transform operator is
denoted by F , and the inverse Fourier transform operator is
denoted by F−1.

A. System formulation

We describe the lateral and rotational movement of the
quadrotor in the inertial frame. We neglect the rotor inertia
and analyze the quadrotor at the hovering condition, which
allows approximation of the angles measured in the quadro-
tor frame with the Euler angles that determine the quadro-
tor attitude. Nonlinear dynamics describing the rigid body

quadrotor are obtained using Newton-Euler formalism [12],

ẍ =
u1
m

(cosψ sin θ + cos θ sinφ sinψ) (1a)

ÿ =
u1
m

(sinψ sin θ − cosψ cos θ sinφ) (1b)

z̈ =
u1
m

(cosφ cos θ)− g (1c)

φ̈ =
Iyy − Izz
Ixx

θ̇ψ̇ +
u2
Ixx

(1d)

θ̈ =
Izz − Ixx
Iyy

φ̇ψ̇ +
u3
Iyy

(1e)

ψ̈ =
Ixx − Iyy

Izz
θ̇φ̇+

u4
Izz

(1f)

in which x, y and z describe the lateral movement, and φ,
θ, and ψ approximate the roll, pitch, and yaw angles. The
collective thrust is described by u1, and the moments around
the x, y, and z axes created by the difference in the motor
speeds are described by u2, u3, and u4, respectively. The
quadrotor mass is m and g denotes the acceleration due to
gravity. The inertia around x, y, and z axes are described by
Ixx, Iyy , and Izz , respectively.

Let the number of pursuers be Np and T ∈ N be the time
horizon. We model each pursuer Pi for i ∈ N[1,Np] as

xPi [k + 1] = APxPi [k] +BPuPi [k] (2)

with state xPi [k] ∈ X ⊆ R12, bounded input uPi [k] ∈
UP ⊂ R4, and matrices AP , BP obtained by linearizing
(1) around the hovering point with u1 = mg and known
parameters. Let xPi [0] ∈ X denote the known initial
state of the pursuer Pi. Given τ ∈ N[1,T ], an open-loop
control policy πPiτ : X → UτP for the pursuer depends
only the on the initial state xPi [0], that is, πPiτ (xPi [0]) =

[(uPi [τ − 1])
>

(uPi [τ − 2])
>
. . . (uPi [0])

>
]
>

. Let MPi
τ

denote the set of admissible open-loop control policies, and
CP (τ) = [BP APBP A2

PBP . . . Aτ−1P BP ] ∈ R12×(4τ).
From (2), we have for every πPiτ ∈M

Pi
τ ,

xPi [τ ] = AτPxPi [0] + CP (τ)πPiτ (xPi [0]). (3)

The threat G dynamics are given by

xG[k + 1] = AGxG[k] +BG(uG[k] + w[k]) (4)

with state xG[k] ∈ X , bounded input uG[k] ∈ UG ⊂ R4,
disturbance w[k] ∈ W ⊆ R4, matrices AG, BG obtained by
linearizing (1) around the hovering point with u1 = mg
with the parameters estimated in the detection phase of
ASAP. Similarly to πPiτ and MPi

τ , we define an open-
loop control policy πGτ : X → UτG with πGτ (xG[0]) =

[(uG[τ − 1])
>

(uG[τ − 2])
>
. . . (uG[0])

>
]
>

, and MG

τ as
the set of admissible open-loop control policies. We presume
an open-loop controller for the threat to reach a stationary
asset at xa ∈ X , and describe additional assumptions on
πGτ (xG[0]) in Section III-A.

Since our model of the threat’s actions is based on
sensed data and assumptions about its intent, we per-
turb the threat’s predicted control actions by an IID ran-



ΨxG

(
β; τ, xG[0], πGτ

)
= exp

(
jβ
>
xcertainG [τ ;xG[0], πGτ ]

)
ΨW τ

(
(CG(τ))

>
β
)
, β ∈ R12 (5a)

ψxG

(
y; τ, xG[0], πGτ

)
= F−1

{
ΨxG

(
β; τ, xG[0], πGτ

)}
(−y), y ∈ R12 (5b)

dom process with known probability density ψw. As dis-
cussed in [10], the independence assumption on the pro-
cess may be relaxed to a T th-order strict stationarity as-
sumption on the process [13, Section 10.3] when we are
provided with the joint density ψWT

(·) of the concate-
nated disturbance random vector W T . For τ ∈ N[1,T ],

W τ = [(w[τ − 1])
>

(w[τ − 2])
>
. . . (w[0])

>
]
>
∈ R4τ .

Let xG[0] denote the known initial state of the threat G, and
we define CG(τ) = [BG AGBG A2

GBG . . . Aτ−1G BG] ∈
R12×(4τ). From (4), we have for every πGτ ∈M

G

τ ,

xG[τ ] = AτGxG[0] + CG(τ)πGτ (xG[0]) + CG(τ)W τ . (6)

We denote the unperturbed state of the threat by
xcertainG [τ ;xG[0], πGτ ] obtained by setting wk = 0 in (4),

xcertainG [τ ;xG[0], πGτ ] = AτGxG[0] + CG(τ)πGτ (xG[0]). (7)

B. Deterministic forward reachable sets for the pursuers

For planning feasible trajectories for the pursuers, we will
use the forward deterministic reach set, which is the set of
all states that can be reached by a deterministic system at a
time of interest when starting at a known initial condition.
Formally, the forward deterministic reach set for Pi at time
τ ∈ N[1,T ] is described by

ReachPi(τ ;xPi [0]) = {y ∈ X : ∃πPiτ ∈M
Pi
τ , xPi [τ ] = y}

= {AτPxPi [0]} ⊕ CP (τ)UτP (8)

where (8) follows from (3). From (8), it follows that
ReachPi(τ ;xPi [0]) is a polytope when UP is a polytope.
Computation of (8) for linear systems is straightforward
with established tools, such as MPT [14], ET [15]. While
implementing (8), we can compute the polytopes CP (τ)UτP
offline and translate by AτPxPi [0] when ReachPi(τ ;xPi [0])
is desired. This segregation of computation effort follows
from the superposition principle. It eliminates redundant
computations and provides significant computational savings
due to the high computational costs associated with comput-
ing affine maps of high-dimensional polytopes.

Figure 2 shows the forward reach set for the linearized
quadrotor dynamics. As expected, the reach set is symmetric
in x and y directions. Due to bounded control authority, the
displacement in z direction that can be achieved decreases
as the desired displacement in x-y plane increases. The
computation of Figure 2 took 2.36 seconds when performed
using MATLAB on an Intel Core i7 CPU with 3.4 GHz
clock rate and 16 GB RAM.

C. Stochastic forward reachability for the threat

For the stochastic system (4), the state xG[τ ] for τ > 0
is a random vector characterized by its support and the

(a) (b)

Fig. 2: Forward reach set ReachPi(τ ;xPi [0]) computed for
pursuer Pi (2) at τ = 7 and xPi [0] located at the origin. See
Section IV-A for numerical values.

probability measure. The support, FSReach(τ, xG[0]), is
referred to as the forward stochastic reach set, and the
probability measure Pτ,xG[0],πGτ

xG as the forward stochastic
reach probability measure (FSRPM) [10]. The FSRPM also
defines a forward stochastic reach probability density (FS-
RPD) ψxG(·; τ, xG[0], πGτ ) for the random vector xG[τ ] with

Pτ,xG[0],πGτ
xG {xG[τ ] ∈ S} =

∫
S
ψxG(y; τ, xG[0], πGτ )dy (9)

for any Borel set S ⊆ X . For a continuous FSRPD, we have

FSReach(τ, xG[0], πGτ )

= closure
({
y ∈ X : ψxG

(
y; τ, xG[0], πGτ

)
> 0
})
. (10)

Using Fourier transforms, we have recently developed
computationally efficient methods to exactly calculate the
FSRPD and the FSRPM for arbitrary disturbances [10], [11].
The characteristic function (CF) Ψx of the random vector x
is defined as the Fourier transform of a probability density
function ψx. We define the CF of W τ as

ΨW τ
(α) = F{ψW τ

(·)}(−α) (11)

where α ∈ R4τ and ψW τ
is the joint probability density

of the random vector W τ . From [10, Property P2], (6),
and (7), we characterize the CF and FSRPD of xG[τ ]
as given in (5). Furthermore, (5b) admits a closed-form
expression for the FSRPD when w is a Gaussian random
vector which we exploit in Section III-A. This result enables
scalable calculations of the threat’s possible positions and
their associated likelihood.

D. Problem statement

Define a closed convex set CatchSet(xPi [τ ]) ⊆ X for
each pursuer Pi, parameterized by the pursuer’s current state
xPi [τ ]. Pursuer Pi intercepts or catches the threat G at
τ ∈ N[1,T ] if xG[τ ] ∈ CatchSet(xPi [τ ]). The probability of



minimize
πGT (xG[0])

q
∑T
k=1 ‖x

certain
G [k;xG[0], πGT ]− xa‖

2

2 +
(
πGT (xG[0])

)>
πGT (xG[0])

subject to

{
xcertainG [k;xG[0], πGT ] =AkGxG[0] + [CG(k) 012×4(T−k)]π

G
T (xG[0]) k = 1, 2, . . . , T

πGT (xG[0]) ∈MG

T

(12)

intercept by pursuer Pi is described by the catch probability
function,

CatchPr(τ, xPi [τ ];xG[0], πGτ )

= Pτ,xG[0],πGτ
xG {xG[τ ] ∈ CatchSet(xPi [τ ])} (13)

=

∫
CatchSet(xPi [τ ])

ψxG(y; τ, xG[0], πGτ )dy. (14)

We define the team state and the team catch probability at
time τ ∈ N[1,T ] as

xteam[τ ] , [xP1
[τ ], xP2

[τ ], ..., xPN [τ ]] ∈ XNp , (15)

TeamCatchPr(τ, xteam[τ ];xG[0], πGτ )

= max
i∈N[1,Np]

CatchPr(τ, xPi [τ ];xG[0], πGτ ). (16)

We then define the optimal team catch probability as

TeamCatchPr(τ∗, xteam[τ∗];xG[0], πGτ )

= max
τ∈N[1,T ]

TeamCatchPr(τ, xteam[τ ];xG[0], πGτ )

(17)

Problem 1: Given the initial states of the pursuers and
of the threat, the stochastic dynamics of the threat, and
the deterministic dynamics of the pursuer, compute the
maximum team catch probability within the time horizon T
and admissible open-loop controllers for the team of pursuers
Pi, i ∈ N[1,Np] to achieve interception.

Problem 1.a: Model a potentially adversarial threat as a
stochastic dynamical system, including design of an open-
loop controller for the threat, that is independent of the
pursuer’s actions and drives the threat to the asset’s location,
with bounded control authority.

Problem 2: Implement Problem 1 in a receding horizon
control framework to incorporate real-time state information.

III. STOCHASTIC THREAT INTERCEPT WITH MULTIPLE
PURSUERS

A. Modeling the threat dynamics

We address Problem 1.a by posing the threat modeling
problem as the optimization problem (12) for some q > 0.
The optimization problem computes an open-loop controller
that optimizes a quadratic cost function to emulate the
potentially adversarial behavior of the threat. We denote the
solution to problem (12) as πG,optT (xG[0]). This modeling ap-
proach for the threat requires information about the stochastic
dynamics of the threat, the bounds on the control authority,
and the parameter q in the optimization problem (12).

For real-time tractability, we approximate the problem
(12) by solving the corresponding infinite-horizon deter-
ministic linear quadratic regulator. We saturate the con-
trol actions when it exceeds the bounded control author-
ity for the threat. From Section II-C and [11, Propo-
sition 1], for w ∼ N (µw,Σw), we have xG[k] ∼
N (µxG [k;xG[0], πG,optT ],ΣxG [k;xG[0], πG,optT ]) with

µxG [k;xG[0], πG,optT ]

= xcertainG [k;xG[0], πG,optT ] + CG(k)(1k×1 ⊗ µw)

= AkGxG[0] + CG(k)
(
πG,optT (xG[0]) + 1k×1 ⊗ µw

)
,

(18a)

ΣxG [k;xG[0], πG,optT ]

= CG(k)(Ik ⊗ Σw)
(
CG(k)

)>
. (18b)

We will use µxG [k; ·] and ΣxG [k; ·] when it is unambiguous.
Note that one may use other cost functions in (12) to

emulate different threat behavior models. Since (12) needs
to be solved frequently, convexity properties or formulations
that have good convex approximations are recommended.
The optimization problem proposed in (12) may be modified
to solve for a closed loop nonlinear controller that can
account for more aggressive behaviors. However, it would
make the computation difficult and lead to a potential loss
of real-time tractability.

B. Multiple pursuer-based threat intercept

For individual pursuer Pi, the problem of maximizing the
catch probability can be posed as an optimization problem
at time τ ∈ N[1,T ],

maximize
xPi [τ ]

CatchPr
(
τ, xPi [τ ];xG[0], πG,optT

)
subject to xPi [τ ] ∈ ReachPi(τ ;xPi [0])

. (19)

Recall that the Gaussian distribution is log-concave [16,
Section 2.3]. Further, integration of a log-concave func-
tion over a convex set is log-concave [17]. This implies
CatchPr

(
τ, xPi [τ ];xG[0], πG,optT

)
is log-concave in y, from

(14). As in [10, Prob. C], we can evaluate (19) for a global
optimum in near real-time by converting it into a convex
optimization problem,

minimize
xPi [τ ]

− log
(

CatchPr
(
τ, xPi [τ ];xG[0], πG,optT

))
subject to xPi [τ ] ∈ ReachPi(τ ;xPi [0])

.

(20)

By a change of variables and the assumption that the catch
set CatchSet(012×1) is small enough to approximate the
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Algorithm 1 (High-level) Position control (Low-level), i ∈ N[1,Np]
Pursuer Pi

QAV 250

xG[τ ] xPi(t)

x∗Pi [τ
∗]

πPi,optτ∗ (xPi [τ ])

ZOH sampling Ts
xteam[τ ]

ψxG(·; k, xG[τ ], πG,optT )

µxG [k; ·],ΣxG [k; ·]

k ∈ N[τ,τ+T ] t ∈ [τ, τ∗]

xd,i(t)pi(t)

Fig. 3: Flowchart depicting the receding horizon implementation of the multiple pursuer-based intercept problem. The initial
states for the pursuers xPi [0] and the threat xG[0] in the mentioned equations should be replaced with the current states
xPi [τ ] and the threat xG[τ ] respectively.

minimize
xPi [τ ]

(
xPi [τ ]− µxG

[
k;xG[0], πG,optT

])>(
ΣxG [τ ;xG[0], πG,optT ]

)−1 (
xPi [τ ]− µxG

[
k;xG[0], πG,optT

])
subject to xPi [τ ] ∈ ReachPi(τ ;xPi [0])

. (21)

integrand in (14) to be a constant, we have

− log
(

CatchPr
(
τ, xPi [τ ];xG[0], πG,optT

))
≈

(xPi [τ ]− µxG [τ ; ·])>(ΣxG [τ ; ·])−1(xPi [τ ]− µxG [τ ; ·])
2

− log
(

volume(CatchSet(012×1))|2πΣxG [τ ; ·]|
−1
2

)
.

(22)

Since − log
(

volume(CatchSet(012×1))|2πΣxG [τ ; ·]|
−1
2

)
is

independent of xPi [τ ], we can approximate (20) as a
quadratic program (21) for real-time tractability.

We use (3) to synthesize the open-loop controller for each
pursuer to reach the state prescribed by (21). Defining a cost
function Jπ : Uτ∗ → R, we compute the optimal open-loop
controller for the pursuer Pi as follows

minimize
π
Pi
τ∗ (xPi [0])

Jπ(πPiτ∗(xPi [0]))

subject to
{

CP (τ∗)πPiτ∗(xPi [0]) = x∗Pi [τ
∗]−Aτ∗

P xPi [0]

πPiτ∗(xPi [0]) ∈ Uτ∗

P

.

(23)

The objective function Jπ(πPiτ∗) = 0 provides a feasible
open-loop controller, and Jπ(y) = y>Ry,R ∈ R(4τ∗)×(4τ∗)

provides an open-loop controller policy that minimizes the
control effort. Let πPi,optτ∗ (xPi [τ ]) denote the optimal solu-
tion to (23).

We summarize our solution to Problem 1 in Algorithm 1.
We first obtain the FSRPD associated with the threat model
for all τ ∈ N[1,T ]. We then solve (21) and (23) for each
pursuer individually. Using the computed x∗Pi [τ ], we evaluate
the team state x∗team[τ ] via (15), and the optimal team catch
probability and the optimal time to intercept via (16) and
(17).

Note that depending on the threat and the pursuers dy-
namics, it is possible that (19) might yield capture locations
that have low probability of capture. We remedy this by

Algorithm 1 Multiple pursuer-based threat intercept

Input: Initial threat location xG[0], probability density func-
tion ψw(·), initial pursuer locations xPi [0], admissible
control sets MPi

τ and MG

τ , threat dynamics AG, BG,
pursuer dynamics AP , BP , and asset location xa

Output: Optimal team catch probability
TeamCatchPr

(
τ∗, x∗team[τ∗];xG[0], πG,optT

)
, optimal

time to intercept τ∗, optimal team state x∗team[τ∗],
and optimal open-loop controllers for each pursuer
πPiτ∗(xPi [0])

1: Compute πG,optT (xG[0]) from (12)
2: for τ = 0, 1, 2, ...., T do
3: Compute ψxG(·; τ, xG[0], πG,optT ) from (18)
4: for all Pi do
5: Compute CatchPr

(
τ, x∗Pi [τ ];xG[0], πG,optT

)
from (21)

6: Compute πPiτ (xPi [0]) from (23)
7: end for
8: Compute x∗team[τ ] from (15)
9: Compute TeamCatchPr

(
τ, x∗team[τ ];xG[0], πG,optT

)
from (16)

10: end for
11: Compute TeamCatchPr

(
τ∗, x∗team[τ∗];xG[0], πG,optT

)
and τ∗ from (17)

12: return τ∗, x∗team[τ∗], πPiτ∗ , and
TeamCatchPr

(
τ∗, x∗team[τ∗];xG[0], πG,optT

)

incorporating real-time sensing information using a receding
horizon control as discussed in Section III-C. Also, one can
enforce more coordination between the pursuers by changing
the team catch probability (16) at the potential loss of
structure exploited in Algorithm 1.



C. Receding horizon control

In Section III-B, we proposed open-loop controllers for the
pursuers for the multiple pursuer-based threat interception,
i.e, control actions that only depend on the initial states of
the pursuers and the threat. To address Problem 2, we now
incorporate real-time state information in a receding horizon
control framework.

The receding horizon control-based planner is described
in Figure 3. At every instant τ ∈ N, we use the current
state information of the threat and the pursuers to solve for
the optimal intercept and the open-loop controllers for each
pursuer πPi,optτ∗ (xPi [τ ]) using Algorithm 1. We apply the first
element of πPi,optτ∗ (xPi [τ ]) and then repeat the process.

We anticipate that in most circumstances, the receding
horizon controller will have a higher likelihood of successful
interception than the open-loop controller, as demonstrated
in Section IV. This is because we incorporate real-time state
information and re-solve the optimization problems (21) and
(23) at every instant. However, if, for example, variance is
low enough and the optimal open-loop controller happens
to coincide with a globally optimal state for intercept, the
receding horizon controller may actually perform worse.
This is because the inherent tracking of the threat done in
real-time by the receding horizon control framework may
force the pursuers to converge to a locally optimal state
for intercept. A rigorous comparison of these controllers is
the subject of ongoing work, via a Martingale approach.
An additional advantage of the receding horizon control
approach is that real-time state information and re-planning
of the pursuer trajectory should also provide some robustness
to the uncertainty in the threat’s model.

IV. EXPERIMENTAL VALIDATION

A. Experimental setup

We implemented the proposed solution to multiple
pursuer-based threat interception in the MAHRES lab at
UNM in a 3m × 3m × 3m environment. We used QAV
250 frame-based quadrotors with Odroid XU-4 micro pro-
cessors running Robotic Operating System (ROS) for on-
board processing, and Pixracer PX4 for attitude and position
control. The Odroid XU-4 on each quadrotor communicates
to a workstation, an Intel Xeon CPU with 1.6 GHz clock
rate and 16GB RAM, which servers as the ROS Master.
The workstation implements Algorithm 1 in MATLAB and
computes the optimal state for intercept using Gurobi [18].
We transform the optimal state for intercept to a desired
trajectory for each pursuer by first constructing a series of
waypoints using (23), and then fitting polynomials pi(t) of
degree Nd over these waypoints (Figure 3). The coefficients
of these polynomials are published to a ROS topic on the
ROS master using MATLAB’s Robotic Systems Toolbox.
The pursuers subscribe to this topic and track the desired
trajectory using their on-board processors.

We choose Ts = 0.5 seconds, T = 10, Np = 1, Nd = 5,
UP = [−5, 5]

4, UG = [−5, 5]
4, µw = 04×1, Σw = 0.05I4,

q = 10, and the catch set as Box(012×1, 0.25). We restrict

each quadrotor to fly at a fixed altitude, since the linearized
model of the quadrotor does not permit much displacement
along z-direction (see Figure 2b), and it ensures that the
quadrotors do not collide.

B. Experiment 1: Robustness to threat’s model uncertainty

In this experiment, we controlled the threat manually to
produce a real-time trajectory that is not consistent with the
threat model described in Section III-A. Figures 5 and 6
show that the pursuer intercepts the threat despite the model
mismatch, demonstrating the robustness provided by the
receding horizon control framework. Figure 4 shows the
optimal probability, optimal time steps to intercept, and the
computational time during the experiment run. As expected,
the probability of intercept increases as the pursuer comes
closer to the threat. An update in the desired trajectory occurs
on average every 0.33 seconds. Due to the centralized nature
of the algorithm, the computation time will increase linearly
with Np. The significant drop in the computation time at the
last update is because the threat was intercepted, implying
no additional computation was required.

C. Experiment 2: Open-loop vs receding horizon control

In this experiment, the threat moves along one of the
trajectories prescribed by the stochastic model discussed in
Section III-A. We compare the performance between the
open-loop (Figures 7(a)–(d)) and receding horizon control
(Figures 7(e)–(h)) strategies. Figure 8 shows that, due to
incorporation of the real-time sensing data, the pursuer using
the receding horizon control strategy intercepts the threat
0.9 seconds earlier than the pursuer using an open-loop
controller.

Videos of the experiments are posted at https://
youtu.be/eFGg7U7gEQw and https://youtu.be/
H0BZrk9Goxg respectively.

V. CONCLUSION AND FUTURE WORK

We proposed a solution to the problem of the multiple
pursuer-based intercept of a threat with stochastic dynamics
and have validated the results on an experimental testbed.
Using existing results from reachability, we demonstrated
that the optimal time and state for intercept can be ob-
tained by solving a convex optimization problem that can
be approximated via a quadratic program. We obtain cor-
responding open-loop controllers via an additional linear or
quadratic problem. We implemented the proposed solution
to multiple pursuer-based intercept in a receding horizon
control framework to obtain better intercept probabilities.

Future directions include exploring the relationship be-
tween the intercept likelihoods provided by the receding
horizon control and the open-loop control, and variations of
team catch probability that incorporates more complex forms
of coordination.
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(a) (b) (c) (d)

Fig. 6: Overhead and sideview snapshots of Experiment 1 with receding horizon control. (a) Start of the experiment (b) Pursuer
moving towards the optimal location of intercept that was computed online (c) Pursuer at the optimal location of intercept (d)
Successful intercept with xG[τ ] ∈ CatchSet(xPi [τ ]). See Experiment 1 video at https://youtu.be/eFGg7U7gEQw.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7: Overhead time-stamped snapshots of Experiment 2 with open-loop control (OLC) (a)–(d) and receding horizon control
(RHC) (e)–(h). The black circle marks the location of the asset. The snapshots (a), (d) were taken at 0.0 s; (b), (f) at 0.8 s;
(c), (g) at 1.4 s; and, (h), (d) at 2.3 s. We see that the RHC-based pursuer intercepts the threat 0.9 s before the OLC-based
pursuer. See Experiment 2 video at https://youtu.be/H0BZrk9Goxg.

Fig. 8: Comparison of open-loop control (OLC) with reced-
ing horizon control (RHC) in Experiment 2.


