

Secondary: Far Field Infrasound

Danny Bowman and Rod Whitaker

9-13-17

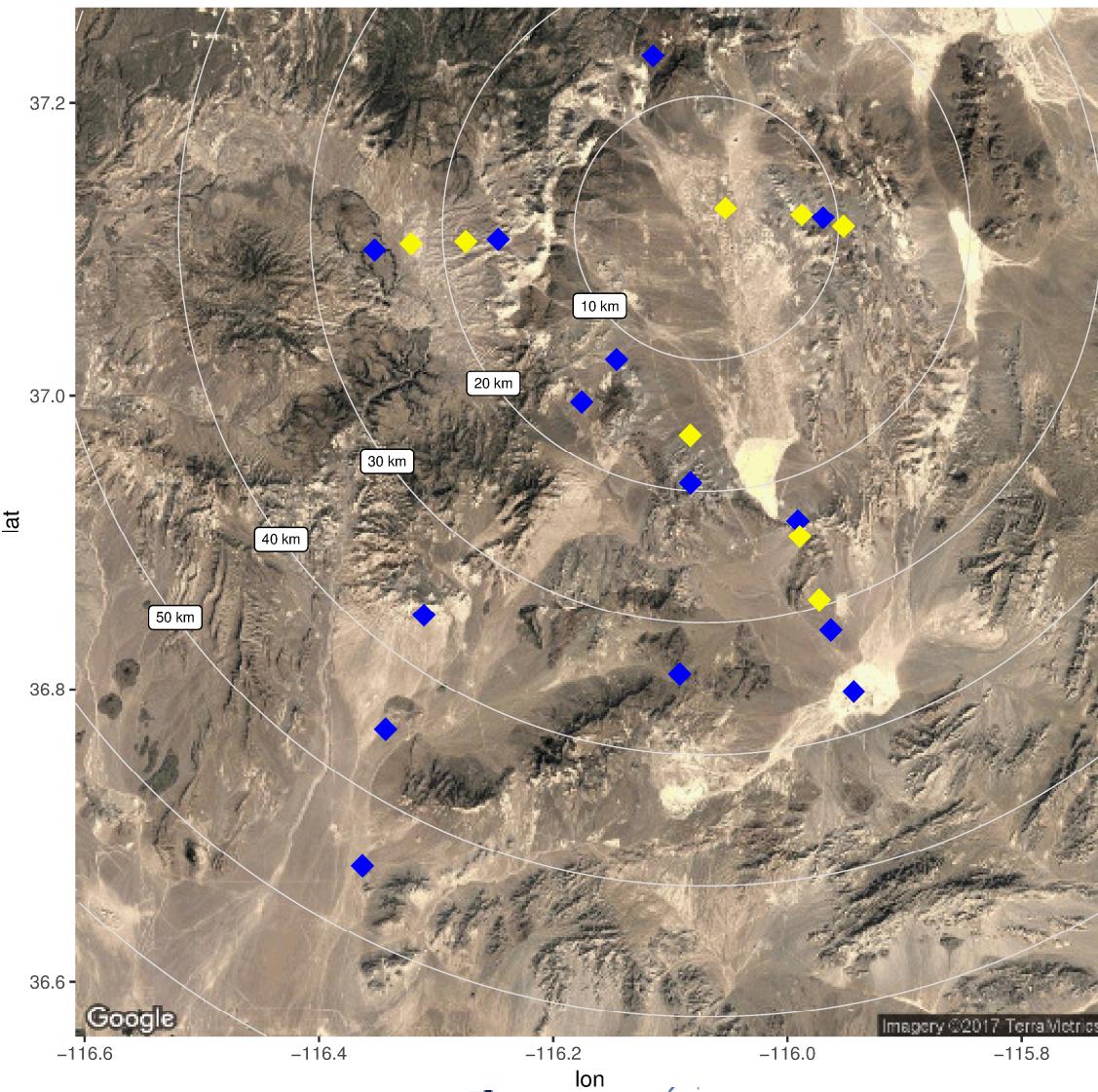
Outline

- ▶ System Design Description
- ▶ Readiness
- ▶ Risk
- ▶ Operations
- ▶ Post-Shot Deliverables
- ▶ Lessons Learned
- ▶ Next Steps

Diagnostics System Design

- ▶ Science objective of document: Detectability of buried explosion infrasound at tens of kilometers
- ▶ Secondary Diagnostic
- ▶ Summary of Sensors & Systems
 - Hyperion Digital, Hyperion Ultralight, and Gem infrasound sensors
 - Solar panel + battery + crate
 - Occupies the same site as broad band stations but relies on its own power
- ▶ Deployment
 - Place after DAG – 1, recover data after each DAG shot, remove stations after DAG – 4.

Hyperion Station



Gem Stations

Deployment Map: Co-located with broadbands

DAG Far Field Infrasound

Readiness

- ▶ Technical
 - Hardware/Assembly: Hyperion sensors + solar panels already at Sandia, Gems delivered Fall 2017
 - Qualification/Demonstration: Ground test at Sandia prior to shipping to NSTec to ensure sensors are operating correctly
- ▶ Hardware
 - Hyperions: Legacy octocopter sensors from SPE Phase 1
 - Gems: New
- ▶ Procedures/Checklists
 - Install after DAG –1 (this shot will not produce far field infrasound)
 - Data recovery run after each subsequent shot
 - Remove stations after DAG – 4

Readiness

- ▶ Installation Needs from the NNS

 - Accompany Sandia staff to broadband sites for installation
 - 8 car batteries

- ▶ Training: No additional training required

Risk

- ▶ Sensor/System Risks
 - Wildlife
 - No telemetry (possible data loss)
- ▶ Weather Risks
 - High wind levels obscuring subtle infrasound signal
 - Flooding/wind damage
- ▶ Risks to participation
 - Infrasound stations are entirely independent of co-located broadband stations, thus minimal risk to other diagnostics

Operations

- ▶ Access needed before shots: no access to DAG region required
- ▶ Location of personnel during shots: BEEF
- ▶ Timeline of Fielding Activities:
 - After DAG 1 and before DAG 2: install stations
 - After DAG 2 and 3, download data
 - After DAG 4, remove stations
- ▶ Fielding Team: Danny Bowman and Sarah Albert
- ▶ Resources needed from Execution Team
 - 8 car batteries
- ▶ Frequencies provided to NNSS: None
- ▶ Dry Run and Shot Expectations: Minimal
- ▶ ES&H Concerns: Remote field work
- ▶ Go/No Go Criteria: None after successful installation

Post Shot Data Deliverable

- ▶ Required deliverable: Data uploaded to UNR
- ▶ Timeline for delivery: 3 weeks post-recovery
- ▶ Quality analysis: Signal to noise level investigation
- ▶ Written documentation: Final report after DAG – 4 describing detections, travel times, comparisons to intermediate range infrasound array, and effects of atmospheric conditions on signal recovery.

Lesson Learned from Past Experiments

- ▶ Cables were chewed during a several week deployment at NNSS in November
- ▶ Care must be taken to avoid exposed cables on the ground
- ▶ Infrasound detections at 10-60 km range are extremely sensitive to atmospheric conditions and ground winds.

Next Steps

- ▶ Describe next steps
 - Verify availability of proposed sites
 - Determine if cables can be buried (ground disturbance)
 - Test stations at Sandia
 - Ship to NSTec and deploy in early summer 2018