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Reservoirs for unconventional 

resources and …

Problem Statement

Caprock of subsurface CO2 storage and … 

…and for geologic storage of nuclear waste

Gonzales and Johnson (1984)

Why study nano-porous materials

Copied from NETL “small CO2 EOR Primer.pdf”

…Enhanced oil recovery …

IPCC (2005)

 Plenty of pores at sub-micron scale

 Recent subsurface energy activities highlight the significance of nanopores



More motivations…

 Plenty of pores at sub-micron scale (nano-pores) in shales and carbonate rocks   

have become increasingly important for emerging problems such as unconventional 

gas and oil resources, geologic storage of CO2 and nuclear waste disposal

 Advances in analytical capabilities with laser, X-ray, electron, and ion beams 

offer emerging tools for characterizing pore structures, mineralogy, and reactions

at the sub-micron scale

 Multiscale imaging capabilities – integration of experimental and numerical tools

to probe the structure and properties of materials across scales (e.g., core to 

nanometer scale) are rapidly advanced

 Digital rock physics – data interrogation about how to take nanometer scale 

information and apply it to the thin-section or larger scale for accurate prediction of 

coupled geophysical, mechanical, and chemical processes



Multiscale characterization of physical, chemical, 

and mechanical heterogeneity of nano-porous geomaterials

1 m 10-9m10-6m10-3m

Optical and Confocal Microscopy

Electron Microscopy

(Ultra) Small Angle Neutron Scattering

mSEM, Maps Mineralogy



Liège chalk

• Cretaceous Liège chalk (Belgium): Outcrop sample as a surrogate for reservoir 

rocks in the North Sea

• Clear signs of recrystallization, contact cements, and particle interlocking (Hjuler

and Fabricius, JPSE 2009) but well-preserved coccolithophores

• ~95 wt% calcite with clays, quartz and mica

• Long-term chemical flooding testing in a tri-axial system ( Nermoen et al., 

JGR2015; Zimmermann et al., 2015 AAPG Bull)



Chemical flooding in the tri-axial cell
Nermoen et al., JGR2015

Experimental Setup

Nermoen et al., JGR2015

• MgCl2 (0.22M) flooding following NaCl (0.66M) accelerates axial creep rate

• Permeability initially decreases, rebounded, and then reaches the plateau

3.8cm diameter

7cm height

NaCl (1-7d)

MgCl2 (7-56d, 67d-1072d)

DW(56-67d)



Multiscale FIB-SEM Analysis

 FIB-SEM analysis of unaltered and altered 

samples (1000 image slices at 10 nm resolution)

 Energy dispersive X-ray spectroscopy (EDS)

mapping of flooded area and 3D EDS mapping

 Plasma FIB over 1-2mm scale at 1 µm 

resolution

Nermoen et al., JGR2015

512 days sample

EDS analysis
(25 nm resolution)
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Plasma FIB-SEM
 Altered sample

 Wide-cut (2 mm wide)

 2.1 mm x 0.89 mm @ 

1µm res.

 299 image slices with 

100 nm thickness

Imaging examples

MicroCT image (Unaltered sample)
 ~2 cm x 0.8 cm @ 16 µm res.

 Porosity = ~ 40% and volume rendering image (right)



FIB-SEM images

Dissolution, precipitation, 

and compaction

Compaction dominant

Transition (width=~8m, 10 nm res.)

Rhombohedral

Chemically 

Altered 

zone

Chemically 

unaltered 

zone



Morphological Watershed Segmentation

 Each image in 3-D image stack shows both foreground and background 

through pores

 Typical filter sets fail to distinguish solid from pores

 Watershed segmentation is promising, but often results in over-segmentation

 Morphological segmentation through smooth filters improve segmentation

(Morphological segmentation implemented in Fiji)

 Radius (r), tolerance (t), and connectivity (c) are the 
parameters for this segmentation. 

 The radius value is used in creating the gradient of the image.
 Tolerance: the intensity for the search of the regional minima. 

Increasing tolerance decreases the number of segments.
 Connectivity: voxel connectivity (6,26). 6 produces more 

rounded segments.
 Main problem of watershed segmentation is over 

segmentation due to the presence of false minima.

Key parameters
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Morphological Watershed Segmentation

Overlaid Basins Catchment Basins Overlaid Dams

Parameters: r=7; t=12; c=26;

Original Image

Dimensions: 

1024x884x1000 pixels

After alignment and 3D Median 

Filter

Dimensions: 993x654x700 pixels

(Image used in Segmentation)

Binary Image

(Black: solid and white: Pore)



FIB-SEM images

Porosity = 12-13%

Porosity = ~36%

Porosity = 7.7%
Porosity = ~42%

Chemically 

Altered 

zone

Chemically 
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Porosity < 10%

(BSE at 1 um res.)



Summary

► Recent advances in multiscale imaging capabilities provide 
rich 3D data (e.g., FIB-SEM, EDS, BES, MicroCT) to account for 
chemo-mechanical processes in a core flooding test

► Coupled chemo-mechanical processes are localized, 
depending on micro-hydrodynamics and reaction fronts

► Chemically altered zone shows very heterogeneous pore 
distribution with high porosity, while mechanically 
compacted zone shows low porosity with less heterogeneous 
patterns

► Pore scale single- and multi-phase flow modeling and 
reactive transport modeling are being performed to assess 
mechanistic understanding of chemo-mechanical processes 
during core-flooding
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