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Overview

 High-Temperature Falling Particle Receivers for CSP

 Packed Particle Bed Reactor for Solar 
Thermochemical H2 Production
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Advantages of Particle Receivers

 Direct heating and storage of particles

 Higher temperatures than conventional molten salts
 Enables more efficient power cycles

 Higher solar fluxes for increased receiver efficiency

 No freezing or decomposition

 Reduced costs
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History
Particle Receiver Research at Sandia

 1980’s
 Feasibility study, modeling, bench-scale testing

 2007 – 2008
 First on-sun particle receiver test at Sandia

 Batch run – no continuous operation

 “Low” temperatures (up to ~300 ˚C)

 Low thermal efficiency (~50%)

 Goal of current work (2013 – present)
 Higher temperature (> 700 ˚C particle outlet)

 Higher thermal efficiency (> 90%)

 Provide heat and storage for solarized supercritical CO2 Brayton cycle
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Sandia National Laboratories
(DOE SunShot Award 2012 - 2016)
Collaborators:  Georgia Tech, Bucknell U., King Saud University, DLR
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 1 MWt on-sun 
demonstration of 
recirculating free-
falling particle 
receiver system

 Achieved nearly 
800 C average 
particle outlet 
temperature

 Up to 70 – 80% 
efficiency



Conventional Linear Particle Release
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Zig-Zag Release
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Parallel-Line Release Pattern
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On-Sun Tower Testing
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Over 600 suns peak flux on receiver
(July 20, 2015)



On-Sun Tower Testing
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Particle Flow Through Mesh Structures
(June 25, 2015)



 Evaluation of heat transfer coefficients & particle flow

Particle to Working Fluid Heat Exchanger 
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Fluidized-Bed Heat 
Exchanger

www.solexthermal.com

Moving Packed-
Bed Shell-and-
Tube and Shell-
and-Plate Heat 

Exchanger



Solarized Supercritical CO2 Brayton
Cycle with Particle Heating & Storage
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sCO2 Brayton Cycle
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A theoretically simple process.

Requires low pO2.
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Cascading Pressure Reactor

• Direct solar absorption by reactive particles
• Internal heat recovery between TTR and TWS

• Continuous on-sun operation
• Temperature and product separation
• Pressure separation by particle bed
• Non-monolithic oxide
• Reaction kinetics decoupled from reactor 

operation

• Thermal reduction pressure (0.1-10Pa)
• Decreased solid-solid heat recovery 

requirement
• Decreased pump work requirement
• Compatibility with MW-scale plant

An improvement of an earlier moving packed bed concept

83 kPa

30 Pa

100 Pa
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Slip-Stick Receiver

• Particle gate controls the flow rate onto the slip-stick plate
• Slip-stick plate motion pattern controls forward velocity/residence time

Operation:
• Rough vacuum (10-4 atm)
• High temperature (1500 °C)
• Refractory insulation keeps wall 

T<100°C
• Designed with “lift-off” dome
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Slip-Stick Receiver Operation
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Slip-Stick Receiver Operation
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Slip-Stick Receiver Operation
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Slip-Stick Receiver Operation
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Pressure Separation by Moving Packed Bed

83 kPa

30 Pa

100 Pa

83 kPa

30 Pa

100 Pa
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Gas Permeation: Detailed Approach
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Staging Pressure Separation

H2

Concept

Prototype
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H2 Permeation: WS to Buffer 3
83 kPa10 kPa H2

T=800°C
=0.4
Dp=300 m 

IDi=15 mm
IDf=50 mm
incline=45°
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H2 permeation vastly decreased by including buffer stage.
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83 kPa10 kPa H2O
T=800°C
=0.4
Dp=300 m 

IDi=15 mm
IDf=50 mm
incline=45°
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H2 and H2O pressure profiles are virtually identical.

H2O Permeation: WS to Buffer 3
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Void fraction affects pressure separation capacity.
Adequate total pressure margins are required.

Permeation vs. Void Fraction

Nominal =0.4 
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Particle size affects permeation significantly, but is not of qualitative importance.

Permeation vs. Particle Size

Nominal Dp=300 m 
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Temperature variations are of negligible importance.

Permeation vs. Temperature

Nominal T=800°C  
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Buffer 3 to TR Chamber Permeation

10 kPa800 Pa 

H2

H2 loss almost completely eliminated

�̇��,���� = 1.2��/�

�̇��,���� = 400��/�

800 Pa30 Pa 

B3B2

B2TR

B3
B2
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Staged Testing

Single TR Chamber
~20 kPa Oxidation

Cascading TR Chambers
~20 kPa Oxidation

Cascading TR Chambers
Ambient Pressure Oxidation



Thank you

Ivan Ermanoski iermano@sandia.gov
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O2 Permeation From TR Chamber

H2

�̇��,��� = 677��/�

Oxide reoxidation is of negligible importance


