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Explosion Source Wavefronts
Columns:  media types (ISO = isotropic, TI = transverse isotopic, ORTO = orthorhombic)

Rows:  wavefield variables (Vx, Vz = particle velocities,  P = pressure,  Wy = particle rotation rate)

Conclusions / Observations
Explicit time-domain finite-difference numerical algorithm demonstrates known anisotropic seismic phenomena of:

1) Complex wavefront shapes,     2) Pressure / rotation propagating with both P / S speeds,        

3) Split (fast and slow) shear waves,                4) Shear waves from isotropic explosion.

5) Orthorhombic explicit stress-free surface compares well with double-halfspace (air over   

rock) model responses:

5.1)  Smaller model implies smaller computational memory and faster execution, but

5.2)  No air waves (e.g., infrasound) generated.

6) Air / rock or vacuum / rock (i.e., stress-free surface) is a strong generator of shear energy.

7)  Rotated modulus tensor axes next R&D task!

Many geophysicists concur that an orthorhombic elastic medium, characterized by three
mutually orthogonal symmetry planes, constitutes a realistic representation of seismic
anisotropy in shallow crustal rocks. This symmetry condition typically arises via a dense
system of vertically-aligned microfractures superimposed on a finely-layered horizontal
geology:

.

From Tsvankin, 1997, Geophysics. From Schoenberg and Helbig, 1997, Geophysics.

However, various geological deformation processes will rotate the symmetry planes away
from alignment with the global XYZ coordinate planes:

Mathematically, the elastic stress-strain constitutive relations for an orthorhombic body
contain nine independent moduli. In turn, these moduli can be determined by observing (or
prescribing) nine independent P-wave and S-wave phase speeds along different directions
(Brown, 1989):

The anisotropic elastic velocity-stress system, a set of 9 coupled, first-order, linear,
inhomogeneous PDEs forms the mathematical basis for our explicit time-domain finite-
difference (FD) numerical algorithm. All partial derivatives are discretized with centered
and staggered FD operators that are 2nd-order in time and 4th-order in space:

Intro to Orthorhombo

Present algorithmic 

assumption:  3 principal 

axes of orthorhombic 

elastic modulus tensor 

aligned with global XYZ 

coordinate axes.

Rotated principal axes 

lead to significant 

algorithmic complications! 

Subject of future R&D.

6 P-Wave Speeds / Directions: 6 S-Wave Speeds / Directions:

Initial modeling utilizes the 

“standard model” of a VF+TI 

(vertical fractures + transverse

isotropic) elastic model of 

Schoenberg and Helbig (1997), 

plus its TI and isotropic 

counterparts.
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P- and S-wavefronts cleanly exit edges and corners of computational grid without generating any visible reflected or diffracted energy!

Note: 

1) Air waves (~350 m/s)

generated by conven-

tional underground

explosion.

2) SV-waves generated

by conventional 

explosion source.

3) Nodal lines in source

radiation pattern.

4) Surface reflected

and converted modes.

5) SV triplications.

6) Surface head wave?

7) And
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