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Silicate Hydrolysis Reaction: Q3 Cluster
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. 0 Criscenti, Kubicki, Brantley, 2006, JPC A, 110, 198-206.




Al-Si Cluster Energies and 2’Al Chemical Shifts (1) .

=  Coordination change from [#Al to [°lAl in feldspar composition crystals and glasses must occur during
acidic dissolution (Hellman et al., 1990).

=  Evidence for [®JAl on the surface of some leached aluminosilicates has been observed in NMR spectra
(Hamilton, 1999; Tsomaia et al., 2002).

=  Hypothesis: This coordination change takes place at the surface while the Al-tetrahedron is linked to other
tetrahedra.

= Conclusion: Energy difference between Q3 [*IAl and Q3 °IAl linked to three Si-tetrahedra is small enough to
allow for the conversion of Q3 Al to Q3 lAl in a hydrated layer of feldspar.
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Nuclear Waste Glass Dissolution
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Upscaling: Glass Dissolution Gaps ) e

Atomic/Quantum
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**No consensus on how Gap 2

activation energies for bond-  *“*Mesoscale models are used to test dissolution
breaking should be modeled scenarios —not completely predictive.

in QM/DFT calculations **Not clear how to link mesoscale models directly
**Not clear how to go from to continuum models or develop new constitutive
the energy of breaking one equations from them.
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+»Aluminosilicate crystal dissolution = Nuclear
Waste Glass Dissolution

Criscenti, L.J. and Sassani, D. 2010. Upscaling Atomistic Mechanisms to Continuum Models for
Nuclear Waste Glass Dissolution, FMM NEAMS Project Report/SAND Report 2010-6707P




Integrated Modeling & Experimental Plan () i

(27AI and 2°Si I\/IAS-NMR\
data for series of Na-
Ca-Al-Si-O & _—f
Na-B-Al-Si-O glass
\ compositions )

(2771 and 295i MAS-NMR )
data on gels: Compare
Q1-Q* ratios in gel to
bulk glass

\_ J

Reactive surface site
density (model vs. TFS
probe determination)

Diffusion Rates
through Gel
Structures

Glass-water reactive-
- transport microfluidic
experiments

Predictive Kinetic
uC Model

Criscenti et al. 2011, Progress toward Bridging from Atomistic to Continuum Modeling to Predict Nuclear Waste
Glass Dissolution, SAN2011-8250.




Gap 3: Adding Boron to Glass Modeling =

NaoO s :
Composition-dependent FF (Kieu et al. 2011)
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Molecular Modeling of Na-Borosilicate Glass ()&=,
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Kwon, K.D. and L.J. Criscenti (2013) Na borosilicate glass surface structures: A classical molecular
dynamics simulations study. Journal of the Mineralogical Society of Korea, 26, 119-127.

Pierce et al., 2014. Modeling the Glass-Water Reaction from Interface to Pore-Scale: Recent Advances
and Current Limitations, IJAGS, DOI: 10.111/ijag.12077.




First Principles Study of Hydrolysis Reaction Barriers
in a Na-Borosilicate Glass
Hydrolysis reactions at the 3B-O-Si bridge
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Reaction energies and barriers may be used
to construct constitutive models for the
dissolution and alteration of borosilicate
glasses

Fenter et al., GCA, 2014, 598-611 Orthoclase
(001)

SUMMARY
Reaction barriers in acidic conditions for
dissolution of B-O-B and B-O-Si bridges are
lower than in neutral and basic conditions.
Barriers for B-O-B and B-O-Si hydrolysis lower
than for Si-O-Si hydrolysis in acidic conditions
but more similar in basic conditions.

3B(Q?)-0-Si(Q3) bridge - deprotonated conditions
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Zapol, He, Kwon, Criscenti (2013) First-Principles Study of Hydrolysis Reaction Barriers in a Sodium Borosilicate
Glass, International Journal of Applied Glass Science, 4, 395-407.




Glass is Used to Bond/Join Materials

= Glass bonding/joining Applications
= Glass-bonded composites
= Glass-bonded alumina
= Low temperature co-fired ceramic (LTCC) electronic packaging
= Seals

= Hermetic glass to metal (GtM) seals
— Air bags “motors”
— Medical implants
— Microelectronics

= Energy conversion
— Solid oxide fuel cells (SOFCs)
— Concentrated solar

Feedthroughs for
pressure & flow sensors Airbag igniter feedthroughs

(Schott Electronic Packaging) (Schott Electronic Packaging) 0




Glass-Metal Interface W=

=To design/develop advanced filled glass
composites.

=To develop experimentally-validated

modeling/simulation tools to predict glass
chemistry-structure-property relations.

Glass-Ceramic

Approach

Characterize & model glass chemistry-
structure-property relations

In a simple/model 3-component barium
alumino-silicate (BAS) glasses

In more complex, commercial-like 6-7
component glasses

Rxn Zone

Test, refine, & validate modeling/simulation by
comparison to experiment

Stainless

Characterize & model glass chemistry-
structure-property relations at interfaces




Molecular Dynamics Simulation Methods |

* (Classical Molecular |
* Simulation Cell Size:
* 3000 for 3-component glasses
2000 for 6-7 component
glasses
L AMMPS* MD software
Pedone®* Interatomic Potentials used

because parameters available for multi-

)ynamics

NENECER

component glasses like those used Glass SiO, AlLO; BaO/CaO
commercially.
. U= ¢ p. I — ey _q] 4 G
UE) = =L+ Dy |{1 - et — 1]+ BAS1 | 75 0 25
Long-range Short-range Morse Repulsive
Coulomb Contribution BAS2 70 5 25
BAS3 60 15 25
*S Plimpton, “Fast Parallel Algorithms for Short-Range Molecular- BASS8 66.7 0 33.3
Dynamics”, ] Comp Phys, 117 [1], 1-19 (1995).
CAS1 75 0 25
**A pedone et al., “A new self-consistent empirical
interatomic potential model for oxides, silicates, and silica- CAS 2 70 5 25
based glasses ”, J Phys Chem B, 110, 11780-11795 (2006).
CAS3 60 15 25




Measured aPDF Peaks Are Consistent With Nearest 7 i

Neighbor (NN) Distances From MD Simulations taboratores
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» MD Model Predictions Consistent With Experiment - aPDF

» Modeling Captures Structural Detail Not Possible Experimentally



Ba-O Distances )

Uncorrected EXAFS Radial distribution

MD pair distribution function function
5 - — Ba-0O .| M. Brumbach
45 - —Ba-0 (bridging oxygen) sl i
) ——Ba-0 (non-bridging oxygen) > | |
4 - e .l _
ot
3.5 = 1
> ° ; : : 5 : :
‘2 2.5 - Radial Distance (A)
[¢)]
£ 2 3.050 1 NN Distance w/ Increasing Al,O,
15 - 3.000 o y . ard
2950 - 3" NN (aPDF)
1 - ol
= 2900 -
0.5 - 2 2.850 - = Ba-O (MD)
0 S 2.800 m u
| T T 1 ~ 2750 |
0 2 4 6 8 g
Distance (A) 2.700 - . a 2nd NN (aPDF)
2.650 %
* Ba creates NBOs 2,600 1 ° | c Ba-0 (,EXAFS)
* MD & experiment indicate poorly-defined CNs 0 5 10 15 20

Rai and Mountjoy (2014) Ba-O =2.79 A Mole% Al,0;




Ongoing Work: Silica Gel and Fracture Modeling

Crack Width

Rimsza and Du, in press, Langmuir

Rimsza et al. (this afternoon)!
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Molecular Dynamics Simulation Methods Il () &=,

* Glass created: s 1
— Based on desired composition =1 e e
— Through a typical melt-quench process (NVT, =3
NVE) *Xiang, Y. et al. 2013 5
o+
e Structural data includes: &
M
— Radial distribution functions é_Ts
—  Bond angle distributions = R sssior
. . . . (@) ——Avg. 4-9 (heating-low)
— Q" distributions (Q = Al or Si; n = number of CTE ——Aug. 49 (heating ransition)
brldglng OXygenS 34.8 ——Avg. 4-9 (heating-high)
) P t I I . 34.7 L L . \ . ,
° 0 500
roperty calculations: Temperature (K) ™ 2500
— Coefficient of thermal expansion (CTE)
calculated from heating and cooling cycles 1055000.00
under the NPT ensemble. **Stechert et al. 106000000 00 5000 1000.0 1500.0 2000.0 2500.0
’ = Cyclel
2012 . S 1065000.00 // ——Cyde2
— Heat capacity calculated as sIope_ of enth.alpy § 1070000.00 V4 ——yde3
vs. temperature from same heating/cooling T 107500000 / C ——Cycled
simulations. < 108000000 // P ——Cydles
% 1085000.00 / ~——Cycle6
< p e Cycle7
*Xiang, Y. et al. “Structure and properties of sodium aluminosilicate E 1090000.00 P / 8
glasses from molecular dynamics simulations”, J. Chem. Phys., 139(7), 1095000.00 - vles
044507 (2013). -1100000.00 - Temperature (K) —— Y
**Stechert, T.R. et al. “Predicted structure, thermo-mechanical

properties and Li ion transport in LiAIF4 glass”, J. Non-Crystalline Solids,



29Si MAS-NMR Q; & Q, Peaks Are Accurately Prediﬁfd,,

National _

From MD Coordinates, But The Q;:Q, Ratio Differs— ™
Si(0Si), Si(0Si),Al Si(0Si),Ba Q,(Ba)

6 =-102.1 ppm d=-74.4 ppm d=-92.5 ppm

* Calculated 2°Si chemical shifts using MD
coordinates.

* Employed correlation from Sherrif et al. (1991)
based on silicate mineral structures.

* Factors included bond valence (s;), angle of the
bridging oxygen, Si-O bond distance, and distance
to the 2" nearest neighbors.

S =(exp[(r0—1;)/0.37]) Q,(Ba) _-//T—:" } l Q,
I l

€ -7/0 80 90 -100 -110 -120 -130

Calculation

N
Q=3"|5,(1-3cos’6,)/3R’ |log D,
i=l1

-60 80 -100 -120 -140

5(78i)=701.6Q2—-45.7 T. Alam 295j Chemical Shift (ppm)




Simulated BAS And CAS Glasses Have ) i
Similar But Different Structures And Properties taboatores
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7| Netora

= Glass Structure & Properties Can Be Modeled With MD Code and the Pedone FF
= Good first-order agreement between experiment & model structures
= Good agreement between experiment & model densities
= Modeling is an efficient means to assess chemistry-structure relations

= There is Room for Improvement in Modeling & Experiment
= Differences between modeling and experiment suggest room to improve potentials
= Property predictions are challenging, and may be limited to predicting trends
= Modeling low concentration constituents in the bulk is not practical
= Modeling Interface segregation may be a practical approach for surface active elements
= Enhanced experimental technique & analysis are needed to test/validate modeling
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