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Silicate Hydrolysis Reaction: Q3
Si Cluster   

H3O
+

Q3
Si

1.69 Å

1.65 Å

1.79 Å

1.60 Å

2.10 Å

1.79 Å

H3O+

Q2
Si

Si(OH)4

Si

H

O

Reactants

Products

Transition State
[5]Si

Criscenti, Kubicki, Brantley, 2006, JPC A, 110, 198-206.

Hypothesis: Activation energy of hydrolysis is a 
function of polymerization Q3Si > Q2Si > Q1Si
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Criscenti, Brantley, Mueller, Tsomaia, Kubicki, 2005, GCA, 69, 2205-2220. 

Al-Si Cluster Energies and 27Al Chemical Shifts
 Coordination change from [4]Al to [6]Al in feldspar composition crystals and glasses must occur during 

acidic dissolution (Hellman et al., 1990).

 Evidence for [6]Al on the surface of some leached aluminosilicates has been observed in NMR spectra 
(Hamilton, 1999; Tsomaia et al., 2002).

 Hypothesis: This coordination change takes place at the surface while the Al-tetrahedron is linked to other 
tetrahedra.

 Conclusion: Energy difference between Q3 [4]Al and Q3 [6]Al linked to three Si-tetrahedra is small enough to 
allow for the conversion of Q3 [4]Al to Q3 [6]Al in a hydrated layer of feldspar.
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Nuclear Waste Glass Dissolution

Gin et al., 2013, An international initiative on long-term behavior of high-level nuclear waste glass, 
Materials Today, 16, 243-248.



Upscaling: Glass Dissolution Gaps
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Ab initio (QM/DFT)
calculations to determine
bond-breaking energies

Atomic/Quantum

“Mesoscale”

Continuum

Al
Si

Stochastic Monte Carlo 
Modeling of the dissolution 

and re-precipitation of 
crystal units SiO4 and AlO4

Constitutive equations
developed to fit leach 

data from bulk 
experiments.

fluid

Gap 1

Gap 2

Gap 1
No consensus on how 
activation energies for bond-
breaking should be modeled 
in QM/DFT calculations
Not clear how to go from 
the energy of breaking one 
bond to dissolving “crystal 
units”

Gap 2
Mesoscale models are used to test dissolution 
scenarios – not completely predictive.
Not clear how to link mesoscale models directly 
to continuum models or develop new constitutive 
equations from them.

Gap 3
Aluminosilicate crystal dissolution  Nuclear 
Waste Glass Dissolution

Criscenti, L.J. and Sassani, D. 2010. Upscaling Atomistic Mechanisms to Continuum Models for 
Nuclear Waste Glass Dissolution, FMM NEAMS Project Report/SAND Report 2010-6707P



Integrated Modeling & Experimental Plan

Multicomponent 
Glass Surfaces & 

Gel Structures

Activation 
Energy Barriers for

Glass Surface
Bond Breaking

Diffusion Rates 
through Gel 
Structures

Database of Glass-Composition 
Dependent

Structures & ΔEs

Predictive Kinetic
µC  Model

27Al and 29Si MAS-NMR 
data for series of Na-

Ca-Al-Si-O & 
Na-B-Al-Si-O glass 

compositions

27Al and 29Si MAS-NMR 
data on gels: Compare 
Q1-Q4 ratios in gel to 

bulk glass

P

Reactive surface site 
density (model vs. TFS 
probe determination)

Glass-water reactive-
transport microfluidic

experiments

Criscenti et al. 2011, Progress toward Bridging from Atomistic to Continuum Modeling to Predict Nuclear Waste 
Glass Dissolution, SAN2011-8250.



Gap 3:  Adding Boron to Glass Modeling

Our 
MD simulations

“T glass”
Stéphane Gin’s
dissolution work

Windisch Jr. et al. (2011)
dissolution work

Composition-dependent FF (Kieu et al. 2011)

SiO2

(mol%)
B2O3

(mol%)
Na2O
(mol%)

R K

Density
(g/cm3)

EXP.* Our 
MD

SB 69.5 30.5 0 0 2.28 2.04 2.01

SBN12 59.66 28.14 12.20 0.43 2.11 2.37 2.39

SBN14 67.73 18.04 14.23 0.80 3.74 2.45 2.44
LAMMPS code with 
1,004 or 1,005 atoms

O
Si
B
Na



Molecular Modeling of Na-Borosilicate Glass

Kwon, K.D. and L.J. Criscenti (2013) Na borosilicate glass surface structures: A classical molecular 

dynamics simulations study. Journal of the Mineralogical Society of Korea, 26, 119-127. 

Pierce et al., 2014. Modeling the Glass-Water Reaction from Interface to Pore-Scale: Recent Advances 

and Current Limitations, IJAGS, DOI: 10.111/ijag.12077.

[3]B[4]B

Total number of atoms vs. distance Fraction of atoms vs. distance

Bulk
Glass

Glass
Surface
SBN-14



First Principles Study of Hydrolysis Reaction Barriers 
in a Na-Borosilicate Glass
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Zapol, He, Kwon, Criscenti (2013) First-Principles Study of Hydrolysis Reaction Barriers in a Sodium Borosilicate 
Glass, International Journal of Applied Glass Science, 4, 395-407.

SUMMARY
• Reaction barriers in acidic conditions for 

dissolution of B-O-B and B-O-Si bridges are 
lower than in neutral and basic conditions.

• Barriers for B-O-B and B-O-Si hydrolysis lower 
than for Si-O-Si hydrolysis in acidic conditions 
but more similar in basic conditions.

Hydrolysis reactions at the 3B-O-Si bridge

3B(Q2)-O-Si(Q3) bridge - deprotonated conditions

FUTURE WORK
• Reaction energies and barriers may be used 

to construct constitutive models for  the 
dissolution and alteration of borosilicate 
glasses

• Fenter et al., GCA, 2014,  598-611 Orthoclase 
(001)
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Glass is Used to Bond/Join Materials

 Glass bonding/joining Applications
 Glass-bonded composites

 Glass-bonded alumina
 Low temperature co-fired ceramic (LTCC) electronic packaging

 Seals
 Hermetic glass to metal (GtM) seals

– Air bags “motors”
– Medical implants
– Microelectronics

 Energy conversion
– Solid oxide fuel cells (SOFCs)
– Concentrated solar

Airbag igniter feedthroughs
(Schott Electronic Packaging)

Feedthroughs for
pressure & flow sensors

(Schott Electronic Packaging)



Glass-Metal Interface

To design/develop advanced filled glass 
composites.

To develop experimentally-validated   
modeling/simulation tools to  predict glass 
chemistry-structure-property relations.

Approach

Characterize & model glass chemistry-
structure-property relations 

In a simple/model 3-component barium 
alumino-silicate (BAS) glasses

In more complex, commercial-like 6-7 
component  glasses 

Test, refine, & validate modeling/simulation by 
comparison to experiment

Characterize & model glass chemistry-
structure-property relations at interfaces



Molecular Dynamics Simulation Methods I

*S Plimpton, “Fast Parallel Algorithms for Short-Range Molecular-
Dynamics”, J Comp Phys, 117 [1], 1-19 (1995).

**A Pedone et al., “A new self-consistent empirical 
interatomic potential model for oxides, silicates, and silica-
based glasses”, J Phys Chem B, 110, 11780-11795 (2006). 

Glass SiO2 Al2O3 BaO/CaO

BAS1 75 0 25

BAS2 70 5 25

BAS3 60 15 25

BAS8 66.7 0 33.3

CAS1 75 0 25

CAS2 70 5 25

CAS3 60 15 25

Short-range MorseLong-range 
Coulomb

Repulsive 
Contribution
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 MD Model Predictions Consistent With Experiment - aPDF
 Modeling Captures Structural Detail Not Possible Experimentally

Si-Ba
Al-Ba
Ba-Ba



Ba-O Distances

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8

In
te

n
si

ty
 (

A
.U

.)

Distance (Å)

Ba-O
Ba-O (bridging oxygen)
Ba-O (non-bridging oxygen)

2.600

2.650

2.700

2.750

2.800

2.850

2.900

2.950

3.000

3.050

0 5 10 15 20

D
is

ta
n

ce
 (

A
n

g.
)

Ba-O (MD)

3rd NN (aPDF)

2nd NN (aPDF)

Ba-O (EXAFS)

14

• Ba creates NBOs
• MD & experiment indicate poorly-defined CNs

Uncorrected EXAFS Radial distribution 
function

NN Distance w/ Increasing Al2O3

Mole% Al2O3

MD pair distribution function

Radial Distance (Å)

P
ea

k 
Po

si
ti

o
n

 (
Å

)
In

te
n

si
ty

In
te

n
si

ty

Distance (Å)

M. Brumbach

Rai and Mountjoy (2014) Ba-O =2.79 Å



Ongoing Work: Silica Gel and Fracture Modeling
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Rimsza and Du, in press, Langmuir Rimsza et al. (this afternoon)!
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Molecular Dynamics Simulation Methods II
• Glass created:

– Based on desired composition 

– Through a typical melt-quench process (NVT, 
NVE)  *Xiang, Y. et al. 2013

• Structural data includes:
– Radial distribution functions

– Bond angle distributions

– Qn distributions (Q = Al or Si; n = number of 
bridging oxygens

• Property calculations:
– Coefficient of thermal expansion (CTE) 

calculated from heating and cooling cycles 
under the NPT ensemble. **Stechert et al. 
2012

– Heat capacity calculated as slope of enthalpy 
vs. temperature from same heating/cooling 
simulations. 

*Xiang, Y. et al. “Structure and properties of sodium aluminosilicate 
glasses from molecular dynamics simulations”, J. Chem. Phys., 139(7), 
044507 (2013).
**Stechert, T.R. et al. “Predicted structure, thermo-mechanical 
properties and Li ion transport in LiAlF4 glass”, J. Non-Crystalline Solids, 
358, 1917-1923, (2012).
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29Si MAS-NMR Q3 & Q4 Peaks Are Accurately Predicted 
From MD Coordinates, But The Q3:Q4 Ratio  Differs

Si(OSi)4

 = -102.1 ppm
Si(OSi)3Al

 = -74.4 ppm
Si(OSi)3Ba

 = -92.5 ppm

• Calculated 29Si chemical shifts using MD 
coordinates.

• Employed correlation from Sherrif et al. (1991) 
based on silicate mineral structures.

• Factors included bond valence (si), angle of the 
bridging oxygen, Si-O bond distance, and distance 
to the 2nd nearest neighbors.
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T. Alam



BAS 2

25 BaO - 5 Al2O3 - 70 SiO2

CAS 2

25 CaO - 5 Al2O3 - 70 SiO2

Simulated BAS And CAS Glasses Have
Similar But Different Structures And Properties

CAS glasses have lower CTEs below Tg, 
and higher CTEs above Tg

Cp increases with increasing Al203
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T. Zeitler



 Glass Structure & Properties Can Be Modeled With MD Code and the Pedone FF
 Good first-order agreement between experiment & model structures 
 Good agreement between experiment & model densities
 Modeling is an efficient means to assess chemistry-structure relations

 There is Room for Improvement in Modeling & Experiment
 Differences between modeling and experiment suggest room to improve potentials
 Property predictions are challenging, and may be limited to predicting trends
 Modeling low concentration constituents in the bulk is not practical
 Modeling Interface segregation may be a practical approach for surface active elements
 Enhanced experimental technique & analysis are needed to test/validate modeling
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