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Introduction

> Problem Statement
= The fracture network are very complex system.

= Their properties are usually inferred from the observations at rock
outcrops, exploratory boreholes, quarries, and tunnels.

= These data are inherently spatially limited and a stochastic model is
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required to extrapolate the fracture properties over the large volumes of

rocks.
» This study

= Describes three different methods of generating fracture networks
developed for use in the fractured continuum model (FCM)

= Provides a few examples of how these methods impact the predictions of

simulated groundwater transport.

» Transport simulations using FCM will be presented next: “Numerical Modeling
of Flow and Transport in Fractured Crystalline Rock” (Hadgu, Kalinina, Klise

and Wang).

2




° Sandia
Continuum Fractured Model (FCM) )l
Grid Block Permeability (Chen, 1999)
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n, = Cos (a ﬁ) xSin(w m)

Grid Block Porosity

n, = Cos (a L) xCos(w L)
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er = Af b
b - fracture aperture
Y. V¢ - total volume of fractures d - fracture spacing
Vgr - grid block volume a - fracture plunge (90° - dip)

Af - fracture area w - fracture trend (strike - 90°)




FCM Extension to Multiple Fracture Sets ) 5.
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* m
ki = 2 kT
m=1

k;™ Is permeability tensor of fracture set m
N — number of fracture sets

» Transport in grid blocks with fracture is in the fraction of the grid block
representing total fracture volume.

» Transport in the grid block without fractures is in the pore volume defined by the
matrix porosity.
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° Sandia
Fracture Properties: Measured and Inferred @iz,

Measured Inferred
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FCM Methods for Generating Permeability
Field from Fracture Network Parameters
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Defining Fracture Defining Grid Block Calculating Effective
Network Properties. Parameters Grid Block Permeability
NS
NS
n Aped‘ure SGSIM
=  Spacing - Permeability Tensor
= Orientation _
« Length ELLIPSIM
/)( Output from DFN
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Test Case Fracture Properties

Mean Mean R R Number
Fracture Set trend | plunge | « o (m) (m") of
(degrees) | (degrees) fractures
North-South Vertical 90 0 22 2.5 500 15 2,100
East-West Vertical 0 0 22 2.7 500 15 2,000
West-East Horizontal 360 90 10 24 500 15 2,300

Fracture properties are loosely based on the SKB site in Sweden.

Fracture Aperture: function of fracture radius. ,

Domain:

d 1000 m x 1000 m x 1000 m

Grid block size:

d10mx10mx10m
Number of grid blocks:

4 1,000,000
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Fracture Network Generation with SGSIM

SGSIM:
> Correlation Ranges in Spatially Spacingx,y,z(Px.y,z)

X, YV, Z —) Correlated —) Strikex,y,z(Px,y,z)
> Correlation angles in Number Px,y,z Dipx,y,z(PX,y,2)

X, YV, Z

)
Any distribution can be
defined.

O Number of fractures k in a grid block is calculated using Poison distribution
f(k,A).

O Probability f(k,A) is assigned to each grid block using P, ,

O Correlation Ranges in X, y, z — based on fracture radius

O Correlation angles in X, y, z — based on fracture orientation

O Fracture aperture (b) can be defined by a distribution or calculated as a function
of fracture radius.

8




Sandia
rh National
Laboratories

Example of SGSIM Permeability Field

» No assumption regarding fracture
shape is required.

» Aperture, spacing, and orientation 2007
are defined by pdfs based on field E 400
observations. 5 .

» An exact number of fractures -

5004

cannot be generated.
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Fracture Network Generation with ELLIPSIM ()&,

O Ellipsim is a Boolean simulation program.

O Ellipsim generates a specified number of ellipses.

O Each ellipse set represents a specific fracture set.

O Ellipse centers are randomly placed within the modeling
domain.

d The ellipse radius and orientation are drawn from specified
probability distributions.

O The grid blocks located within a specific ellipse are assigned the
radius and orientation of this ellipse.

O The grid blocks that do not belong to any ellipse are considered
to be matrix blocks.

O The fracture aperture is calculated from fracture radius.




Example of Three Fracture Sets Generated rh) s
with ELLIPSIM

Vertical Fractures N-S Vertical Fractures E-W Horizontal Fractures W-E
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kxx, kyy, and kzz Permeability Fields for )
the Fracture Network with Three Fracture

Sets
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Fracture Network Generation by Converting ()&=,
DFN Output

Example of One Realization of Fracture Network

Converting DFN
to FCM

Fracture networks generated with DFN are connected because it is required
for the flow and transport simulations.
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Fracture Network Connectivity
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O DFN fracture network is
generated iteratively to
remove not connected
clusters and to generate
new fractures to assure
fracture connectivity.
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Fracture Network with Original and Sampled (i) &
Fracture Radius Distributions
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Breakthrough Curves for ELLIPSIM and DFN =, e,
Based Fracture Networks
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Tracer Transport Results at 1,000 Years for )

ELLIPSIM Fracture Network

D

Yotal Tracer [M]
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L 6 realizations out of 50
resulted in the continuous flow
and transport.

O The probability of the fracture
network to be connected is ~
12%.




° ﬁg%gﬁal
Conclusions i) s

O While the same fracture data are used as an input, the resulting fracture
networks reflect the differences in the underlying assumptions and are
affected by the method-specific limitation. .

O This is especially important to understand in the situations when little data
are available and the conditioning of the fracture network properties using
the actual observations is not possible.

O The differences in the fracture networks can result in significant
differences in the predictions of the flow and transport.

O The connectivity of the fracture network has great importance. However,
caution should be use in generating connectivity.

O The sparse fracture networks may not be connected.

O The selection of an appropriate method should be based on the site-
specific considerations.

O The selection should be based on the comparison between the different
methods. This especially concerns the capability of the method to
reproduce the results of field tests.
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