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Tactical Operations: A Significant Leap
for Unmanned Systems (UMS)

US DoD'’s future visions include dramatic expansion of UMS roles

- UMS Integrated Roadmap: “autonomous ‘wingman’ capable of human-like tactical
behaviors, in-stride support .... tactical decision making while in enemy contact,
advanced perception of individual humans in urban environments” by 2022

- Work: robot “first through a breach” by 2025

Evolution of unmanned missions
- Today: Mostly uncontested, slow, planned, support role
- Future: Dynamic, tactical, collaborative, adversarial environments

What determines superiority in unmanned operations?
- Autonomy (control and perception) will play a major (decisive?) role
- Reactive, dynamic behavior by heterogeneous teams

Today’s state of practice
- Operationally: Teleoperation dominates; rely on humans for perception, decisions

- Commercially: Autonomous perception & control in structured environments using
extensive training data and supervision

- Research: Autonomous geometric mapping, simple swarming, semantic labeling

Contention: UMS control methods that prevail today will
not scale to a dynamic, tactical operational future Sandia National Laboratories




Tactical Operations with Unmanned Systems

Long-term goal: Operate UMS teams tactically at human (or faster) speeds,
with human (or better) effectiveness, against adversaries & defenses

Level of Instruction Capabilities Technologies

“Go win the battle / war!

Likely ethical limit

“Take the hill”

Dynamic tactical engagements |---- Tactical Reasoning
“Find all the in there
and them” 2t S —

Take action in unknown env. ---- Rapid Abstraction

“Go through that facility, bring - - - - _________ 4

back a map and pictures” : : / .
Navigate unknown / denied env. |-~-- SLAM (Simult. Local. & Map.)

—[ GPS, path planning

117! Sandia National Laboratories




Relate to DOD Autonomy COI

Autonomy Community of Interest has established a taxonomy that
is useful for placing autonomy R&D into operational context

Bornstein et al., 2015

Technology Taxonomy
INTELLIGENCE: Machines That Are Team Players

Machine Perception, Reasoning & Intelligence —-
_ .Improve — rwn bl
individual UMS | : common Representations and Architectures L & =
g + Learning and Reasoning 'j‘--._ 3
capabilities + Understanding the Situation/Environment ﬁ" = et .
* Robust Capabilities

COLLABORATION: Combining Diverse Strengths

Human/Autonomous System Interaction and

’ Collaboration (HASIC):

* Calibrated Trust

» Common Understanding of Shared Perceptions
* Human-Agent Interaction

nable more

| |
Dynamic tactical engagements |--- Tactical Reasoning

Take action in unknown env. -4~ Rapid Abstraction
1

instruction

Scalable Teaming of Au!onomous Systems (STAS):
* Decentralized mission-level task allocation/assignment
» Robust self-organization, adaptation, and collaboration
Increase level |+ Space management operations

« Sensing/synthetic perception
of autonomy, Yot pecer

enabling VERIFICATION: Smart Machines You Can Trust

Test, Evaluation, Validation, & Verification (TEVV):
Iarger teams * Methods & Tools Assisting in Requirements Development and Analysis
« Evidence based Design and Implementation
* Cumulative Evidence through Research, Develop-
ment, Test, & Evaluation (RDT&E), Developmental
Testing (DT) and Operational Testing (OT)
* Run time behavior prediction and recovery
« Assurance Arguments for Autonomous Systems

117! Sandia National Laboratories




One Controlling Many (OCM):

Fundamental algorithms & architecture to
enable dynamic, tactical UMS
engagements via operator control —
regardless of level of platform autonomy

Sandia National Laboratories



Sandia’s “One Controlling Many” Internal
R&D Investment

Goal: Demonstrate a system that makes unmanned systems

as responsive to command intent as squads of soldiers

- Defining characteristics of our approach
- Single operator

— Multiple heterogeneous multifunctional unmanned systems
- Dynamic, simultaneous heterogeneous objectives

- Operator directs mission needs (e.g. show me what is behind that shed), not
specific UxV actions (e.g. UGV #2 drive NE 10 m and turn to face SE)

- Reactive / adaptive behavior in response to observations

- Operations integrated with real-time mod / sim engine to provide 3D
common operating picture

- Layered & modular
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New Mission Focus for Unmanned
Combat_

- Close-quarters tactical operations against unpredictable adversaries

- Limited pre-planning: Need to respond rapidly to events on the ground
- Use parts of available techniques (teleoperation, swarms, resource assignment)

- Operator: Closely controls outcomes, performs highest level thinking
- High level perception, tactics, prioritization, monitor / correct autonomy

- Directs system by specifying desired outcomes
- Automate the rest (asset-task assignments & execution)

Operator
Command& Contro

- Teams of 4-5 diverse, multi-functional agents  creeosoueineeece.

- Use existing platform-level autonomy .- L -
& interoperate platforms from multiple suppliers ol pranm !§
- Team size limited primarily by operator attention - Sondn e
‘-‘ Ty --. ______ \\'.,;“*"
Dynamic, tactical missions in which human N
and control system both apply intelligence
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Sandia Architecture for Heterogeneous
UMS Control (SAHUC)

- Command & control is layered, modular, & distributed
- Custom message set facilitates tactical command & control

Human operator/ i Interacts with
interface : centralized GUI

" Objective, \
WeightList \

C‘}fm be centralized

High level optimizer

!' ior distributed Link to previously
Téleop, AssignList ) ' /
i CostList ! Sensor approved UUR video
i i Data

Mid level behavior

i : an be centralized
‘1‘ controllers / estimators 2

'or distributed

R .t 2 Modular algorithms ]

+ _On-v
PC2| .- 1 (almost all cases)

Framework allows multiple vehicle types, multiple operating systems, and
control codes from multiple developers to work together in fast, tactical ops
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OCM / SAHUC: Capabilities
Demonstrated

- Single operator controlling heterogeneous UMS team
- Real-time mission definition
— Variable levels of autonomy used within single mission

- Real time task management

- Real time task creation

- Automatic assignments based on heterogeneous capabilities
- Automatic re-assignments / handoffs

- Mix of centralized and decentralized modular control elements

- Different software implementations unified by the architecture

« Windows / Linux
« ROS / Umbra/ Matlab

Relatively basic vehicle-level autonomy limits
complexity of assigned behaviors
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Tactical Operations with Unmanned Systems

Long-term goal: Operate UMS teams tactically at human (or faster) speeds,
with human (or better) effectiveness, against adversaries & defenses

Level of Instruction Capabilities Technologies

“Go win the battle / war!

Likely ethical limit

“Take the hill”

Dynamic tactical engagements |---- Tactical Reasoning
“Find all the in there
and them” 2t S —

Take action in unknown env. ---- Rapid Abstraction

“Go through that facility, bring - - - - _________ 4

back a map and pictures” : : J .
Navigate unknown / denied env. |-~-- SLAM (Simult. Local. & Map.)

—[ GPS, path planning
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Rapid Abstraction:

Ability to automatically generate abstract
labels for relevant objects, enabling
object-centered actions within
autonomous missions

Sandia National Laboratories




Rapid Abstraction Approach

- To increase level of autonomy requires the ability to rapidly identify
objects
- For defense & security applications, there are 2 important obstacles:
- The general problem is hard / unsolved
— Limited realistic training data
« Particularly relative to popular “deep learning” methods
- Three pronged approach:
- 1 - “Physics based” multi-sensor fusion
- Train algorithms to identify features / properties — independent of specific targets
- 2 - Intelligently control sensing vehicle motion to optimize sensor perspective

- 3 - Use multi-physics sensors to complement most common sensors (LIDAR,
visible cameras) T

- E.g. to identify material properties
- Ultimately:
- Integrate object ID with mapping




Physics-Based Multi-Sensor Fusion

- Build object definitions from
relational combinations of features /
properties

- Define with graphs

- May be learned or constructed a priori

- Detect features / properties
independently via various methods

- Scene mapping:
- Detect features / properties in scene

— Search for object matches (full or
probabilistic) within scene graph

- Simplify with geometric segmentation
(SLAM)

Head

Left eye Right eye
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Proof-of-Concept Demonstration

RGB face
detection

- Detect people in
decoy-filled
environment

RGB+D (MS Kinect)
- Demonstrate skeleton tracking
several core
principles
- Hierarchical fusion
methods
- Perspective
changes

— Integration of
multi-physics
sensors

nnnnnnn
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Hyperspectral
skin detection



Face

- Proof-of-Concept Results (1)

Frame-by-frame composite detection
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Initial Results Highlight Value of Approach:

1) Learned features, defined objects a priori
2) Perspective changes help

3) Multi-physics sensors reduce false positives
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Summary and Next Steps

- Rapid abstraction (RA) and tactical reasoning (TR) are big technical
leaps required to be able to use UMS in fast-paced tactical
applications

- OCM approach relies on human for RA and TR; tries to relieve them
of all other duties and translate their goals seamlessly

- RA is the gateway to higher-level, more intuitive instruction

- Need to integrate object labeling with 3D mapping and make it fast

[ Questions? J
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Teleoperation

- Today’s prevailing control methods: Teleoperation / Waypoint Control

- Common missions
- ISR (“Go to location and loiter”)
- Drone strikes (“Go to location, fire smart weapon when so ordered”)
- EOD (“Make a series of small and simple movements — very slowly”)

nytimes.com

- Characteristics
— Actions fully attributable to operator

- Performance is tightly coupled to comm link characteristics
Response time = (motor response to visual stimulus ~150 ms) + (uplink delays) + (increased
recognition time due to poor sensor bandwidth) + (downlink delays) > 150 ms
- Real-time cooperation between agents requires high quality awareness of environment,
red force, blue force = additional bandwidth & immersive interfaces

Are there smarter ways to make a UMS team function as a single unit? }
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Cooperative Control

. “Swarm” control

- -

V. Kumar TED talk

V. Kumar TED talk

. Common missions

- Converge on a source (RF, chemical plume, etc.)
- Spread around a perimeter
- Fly in formation

- Characteristics

Decentralized control algorithms — scale well to large N

Assets are single-functional & homogeneous (or treated as such)

One objective at a time, typically with one target

Mission outputs depends primarily on moving to correct state (e.g. position)

Swarming is a part of UMS team operations, but not sufficient. Can we do better? }




Key Elements

- Architecture for information sharing and control

- Layered assignment and control algorithms

- Interface to human operator

117! Sandia National Laboratories




Sandia Architecture for Heterogeneous
UMS Control (SAHUC)

- Intelligent control elements are flexibly distributed across platforms

- UMS from multiple manufacturers, algorithms from multiple developers

- Some UMS are capable of greater autonomy than others
- Need to be interoperable, re-use mid & high level autonomy algorithms

- Human operator contributes significant intelligence
- Need a way for all agents to share & access critical info at all times
- Robot Operating System (ROS) does a decent job at a low level
- Did not find a high-level data architecture that met our needs, so we
created our own
- Architecture determines how, where, and when data is passed
- Implementation can have variable levels of centralization
- Most agents might need to update most data structures

Shared 3D Environment Map

- Economize
Actor ID Actor Active GPS Control Friend Type
Location Status Status Mode
% 12,340, 1 3{sBas  2{lsop) 1 3
BOO0  fjechve)]  Fag {fiendl  (UAWY
| #5200, 1 i 4 L Z
280 {active} {obijpclive])  (fiemd) (UEV)
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Control Algorithm Summary

A
. .. . NaNo . A 0O,
- High level optimizer mnd= 5y z*C(A.0) A2 o,
< s s i 3
- Makes cost-minimizing / \
aSSIQnments of agents Assignment variables Estimated costs of assigned pairs
to assets (binary or real valued, 0—1)

- Mid level behavior controllers
. Follow / watch
- Compute estimated costs moving target

- Execute assigned behaviors
Different behaviors may use different control techniques
Implemented a simple set of behaviors

- Attention functions efficiently create emergent behaviors

- Methods for heterogeneous collaboration
» Adaptations of linear swarm control
Hybrid distributed model predictive control

6 N, x|
~ gninimize J = —25[ ” [ ]dxdy]
80 i=1
where

& > 0is the attention index

X, is the target location

N, is the number of targets

——————————————————————————

o —1——— 4 - ——r—
| | |
Sl - — — d— — — b —
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Interface to Human Operator

- Operator must comprehend & Jrr e — ._1..:&-_;%;
influence multiple events in real time i S e
- Operations integrated with 3D real-time model
- Model gives context to real sensor feeds
- Mission metrics, gaps computed in real-time

- Operator commands via desired
mission outcomes, not instructions

- Operator populates the Objective structure
through a GUI
- Objective is translated into top-level cost functions 500
B S —

- WeightList allows optional manipulation of priorities 3D model view

y

Real sensor
feeds

- Operator can always reach down to lower layers of control, through a
single interface
- Force assignment of asset to objective
- Force waypoints
— Teleoperate directly
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