

Rapid abstract perception to enable tactical unmanned system operations

Stephen P. Buerger^a (sbuerge@sandia.gov, 505-284-3381), Anup Parikh^a, Steven J. Spencer^a, and Mark W. Koch^b

a-Robotics Research & Development; b-Sensor Exploitation Applications

Sandia National Laboratories
Albuquerque, NM

April 11, 2017

Sandia National Laboratories is a multi-mission laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Sandia National Laboratories

Tactical Operations: A Significant Leap for Unmanned Systems (UMS)

- US DoD's future visions include dramatic expansion of UMS roles
 - UMS Integrated Roadmap: "autonomous 'wingman' capable of *human-like tactical behaviors*, in-stride support *tactical decision making while in enemy contact*; advanced perception of individual humans in urban environments" by 2022
 - Work: robot "first through a breach" by 2025
- Evolution of unmanned missions
 - Today: Mostly uncontested, slow, planned, support role
 - Future: Dynamic, tactical, collaborative, adversarial environments
- What determines superiority in unmanned operations?
 - Autonomy (control and perception) will play a major (decisive?) role
 - Reactive, dynamic behavior by heterogeneous teams
- Today's state of practice
 - Operationally: Teleoperation dominates; rely on humans for perception, decisions
 - Commercially: Autonomous perception & control in structured environments using extensive training data and supervision
 - Research: Autonomous geometric mapping, simple swarming, semantic labeling

Contention: UMS control methods that prevail today will not scale to a dynamic, tactical operational future

Sandia National Laboratories

Tactical Operations with Unmanned Systems

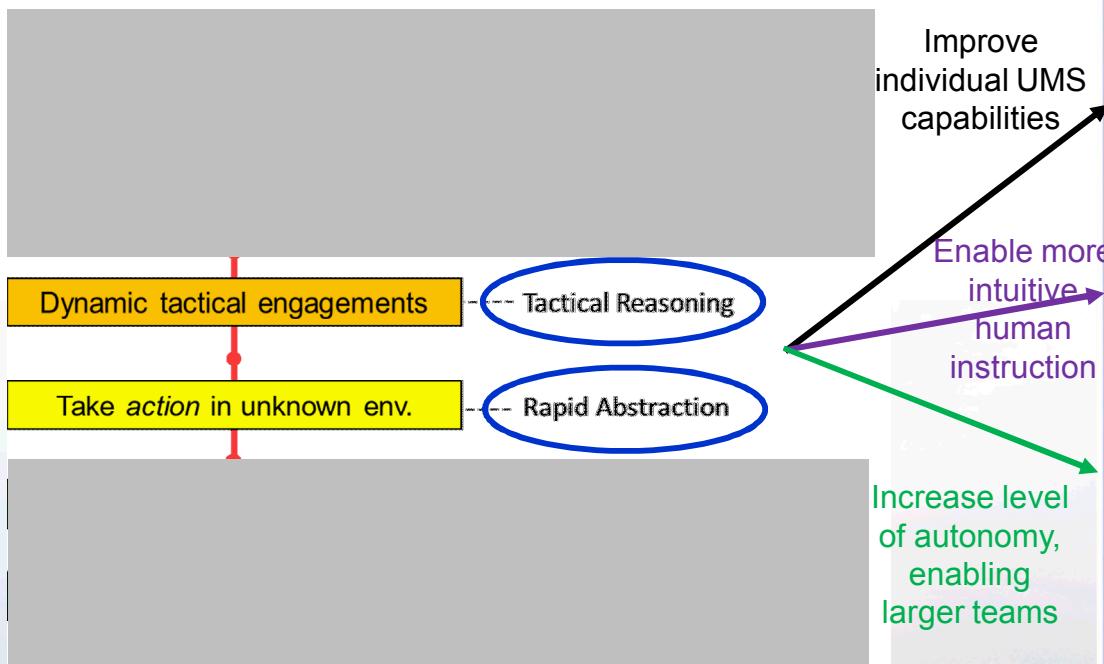
Long-term goal: Operate UMS teams tactically at human (or faster) speeds, with human (or better) effectiveness, against adversaries & defenses



Relate to DOD Autonomy COI

- Autonomy Community of Interest has established a taxonomy that is useful for placing autonomy R&D into operational context

Bornstein et al., 2015



Sandia National Laboratories

One Controlling Many (OCM):

Fundamental algorithms & architecture to
enable dynamic, tactical UMS
engagements via operator control –
regardless of level of platform autonomy

Sandia National Laboratories

Sandia's “One Controlling Many” Internal R&D Investment

Goal: Demonstrate a system that makes unmanned systems as responsive to *command intent* as squads of soldiers

- Defining characteristics of our approach
 - Single operator
 - Multiple heterogeneous multifunctional unmanned systems
 - Dynamic, simultaneous heterogeneous objectives
 - Operator directs mission needs (e.g. show me what is behind that shed), *not* specific UxV actions (e.g. UGV #2 drive NE 10 m and turn to face SE)
 - Reactive / adaptive behavior in response to observations
 - Operations integrated with real-time mod / sim engine to provide 3D common operating picture
 - Layered & modular

Sandia National Laboratories

New Mission Focus for Unmanned Combat

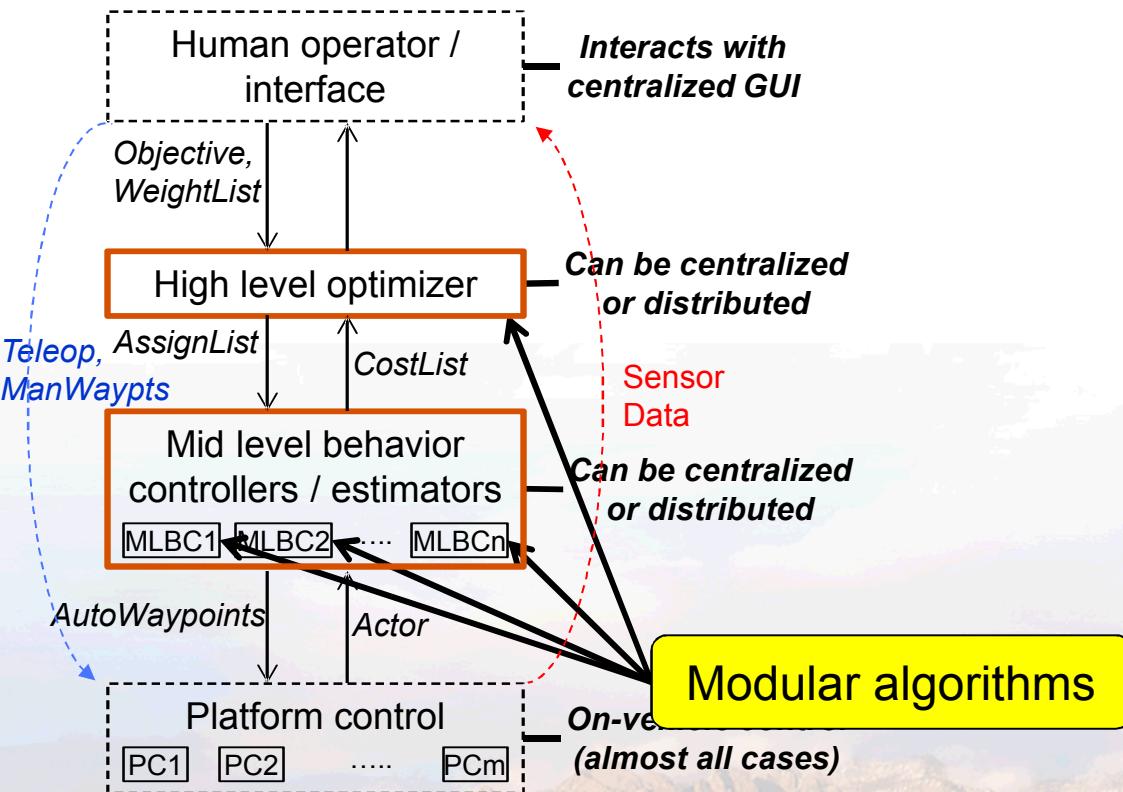
- **Close-quarters tactical operations against unpredictable adversaries**
 - Limited pre-planning: Need to respond rapidly to events on the ground
 - Use parts of available techniques (teleoperation, swarms, resource assignment)
- **Operator: Closely controls outcomes, performs highest level thinking**
 - High level perception, tactics, prioritization, monitor / correct autonomy
 - Directs system by specifying desired outcomes
 - Automate the rest (asset-task assignments & execution)
- **Teams of 4-5 diverse, multi-functional agents**
 - Use existing platform-level autonomy & interoperate platforms from multiple suppliers
 - Team size limited primarily by operator attention

Dynamic, tactical missions in which human and control system *both* apply intelligence

Sandia National Laboratories

Sandia Architecture for Heterogeneous UMS Control (SAHUC)

- Command & control is layered, modular, & distributed
- Custom message set facilitates tactical command & control



Framework allows multiple vehicle types, multiple operating systems, and control codes from multiple developers to work together in fast, tactical ops

OCM / SAHUC: Capabilities Demonstrated

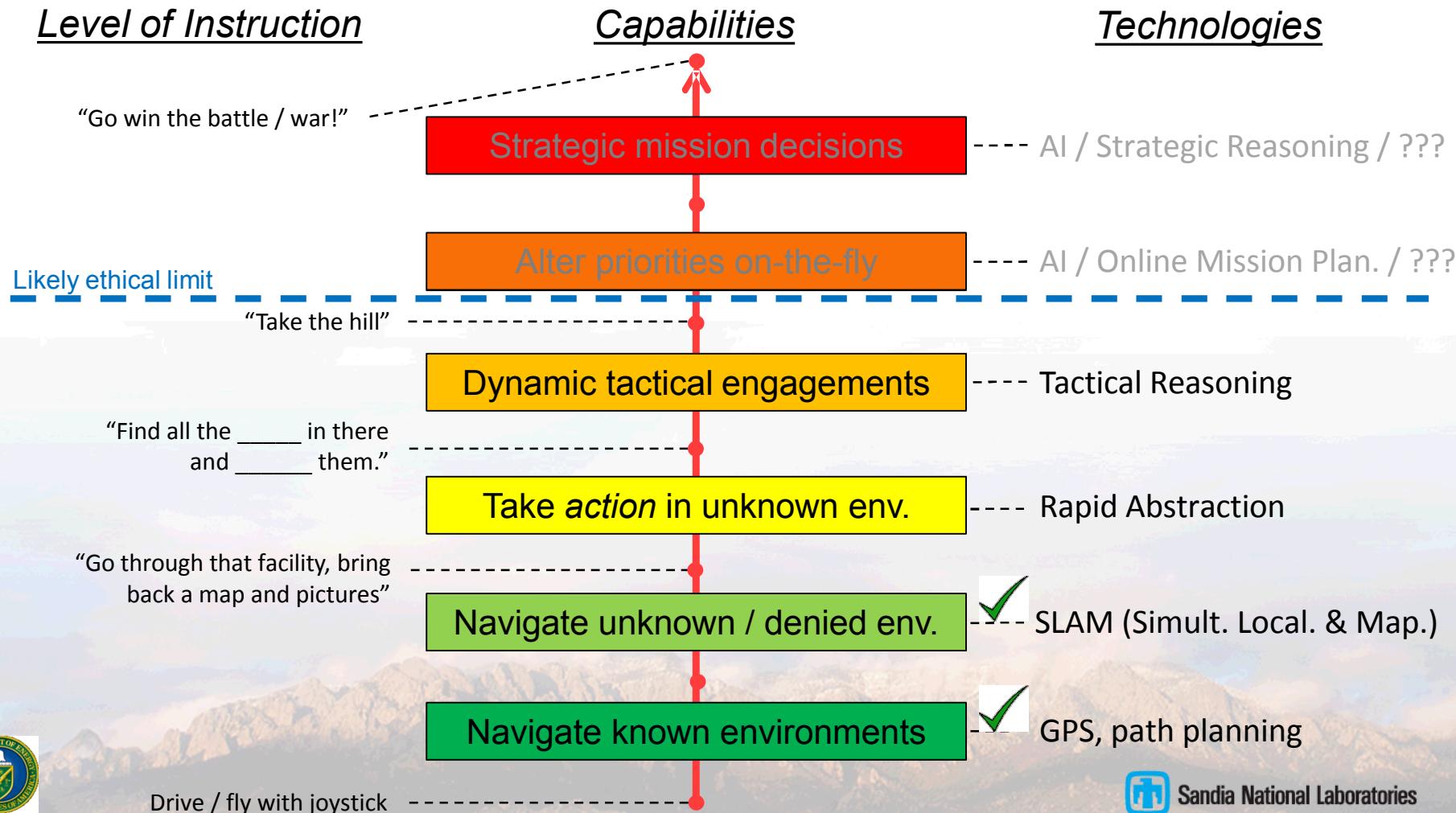
- Single operator controlling heterogeneous UMS team
 - Real-time mission definition
 - Variable levels of autonomy used within single mission
- Real time task management
 - Real time task creation
 - Automatic assignments based on heterogeneous capabilities
 - Automatic re-assignments / handoffs
- Mix of centralized and decentralized modular control elements
 - Different software implementations unified by the architecture
 - Windows / Linux
 - ROS / Umbra / Matlab

Relatively basic vehicle-level autonomy limits complexity of assigned behaviors

Sandia National Laboratories

Tactical Operations with Unmanned Systems

Long-term goal: Operate UMS teams tactically at human (or faster) speeds, with human (or better) effectiveness, against adversaries & defenses



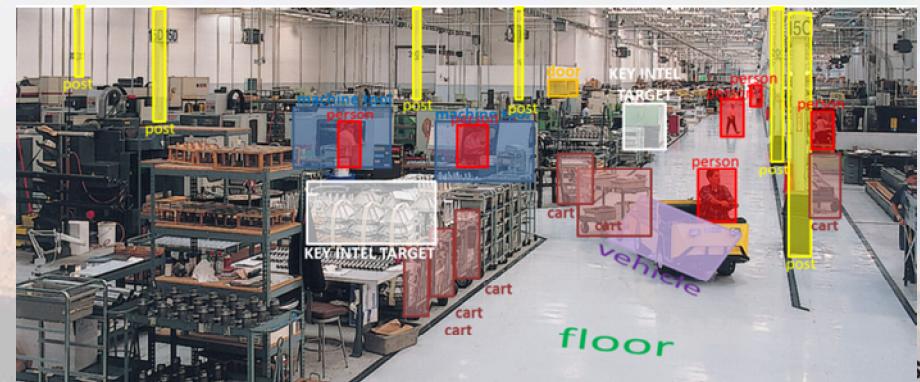
Rapid Abstraction:

Ability to automatically generate abstract labels for relevant objects, enabling object-centered actions within autonomous missions

Sandia National Laboratories

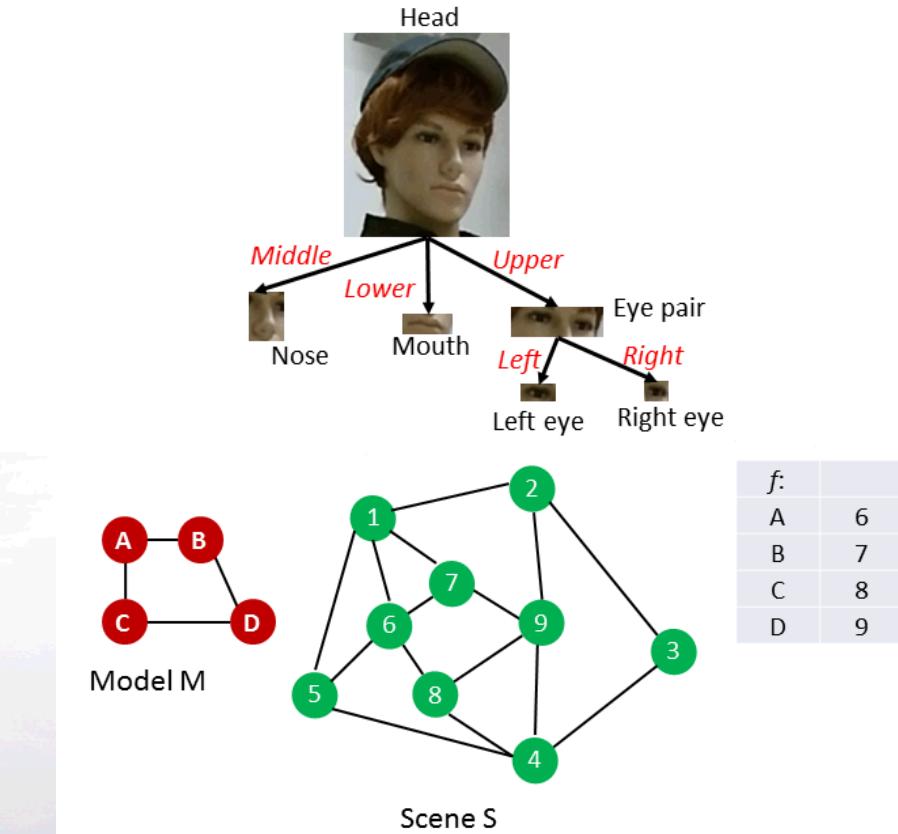
Rapid Abstraction Approach

- To increase level of autonomy requires the ability to rapidly identify objects
- For defense & security applications, there are 2 important obstacles:
 - The general problem is hard / unsolved
 - Limited realistic training data
 - Particularly relative to popular “deep learning” methods
- Three pronged approach:
 - 1 - “Physics based” multi-sensor fusion
 - Train algorithms to identify features / properties – *independent* of specific targets
 - 2 - Intelligently control sensing vehicle motion to optimize sensor perspective
 - 3 - Use multi-physics sensors to complement most common sensors (LIDAR, visible cameras)
 - E.g. to identify material properties
- Ultimately:
 - Integrate object ID with mapping



Physics-Based Multi-Sensor Fusion

- Build object definitions from relational combinations of features / properties
 - Define with graphs
 - May be learned or constructed a priori
- Detect features / properties independently via various methods
- Scene mapping:
 - Detect features / properties in scene
 - Search for object matches (full or probabilistic) within scene graph
 - Simplify with geometric segmentation (SLAM)



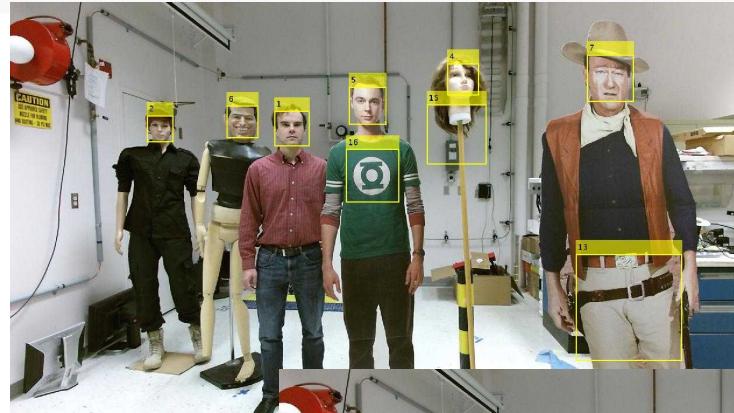
Sandia National Laboratories

Proof-of-Concept Demonstration

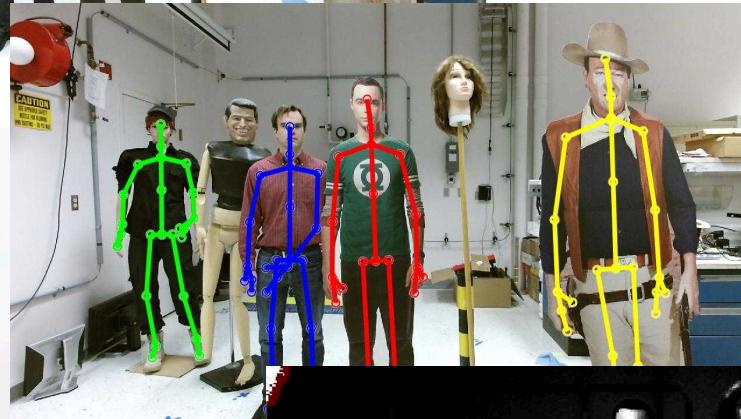
- Detect people in decoy-filled environment

- Demonstrate several core principles

- Hierarchical fusion methods
- Perspective changes
- Integration of multi-physics sensors



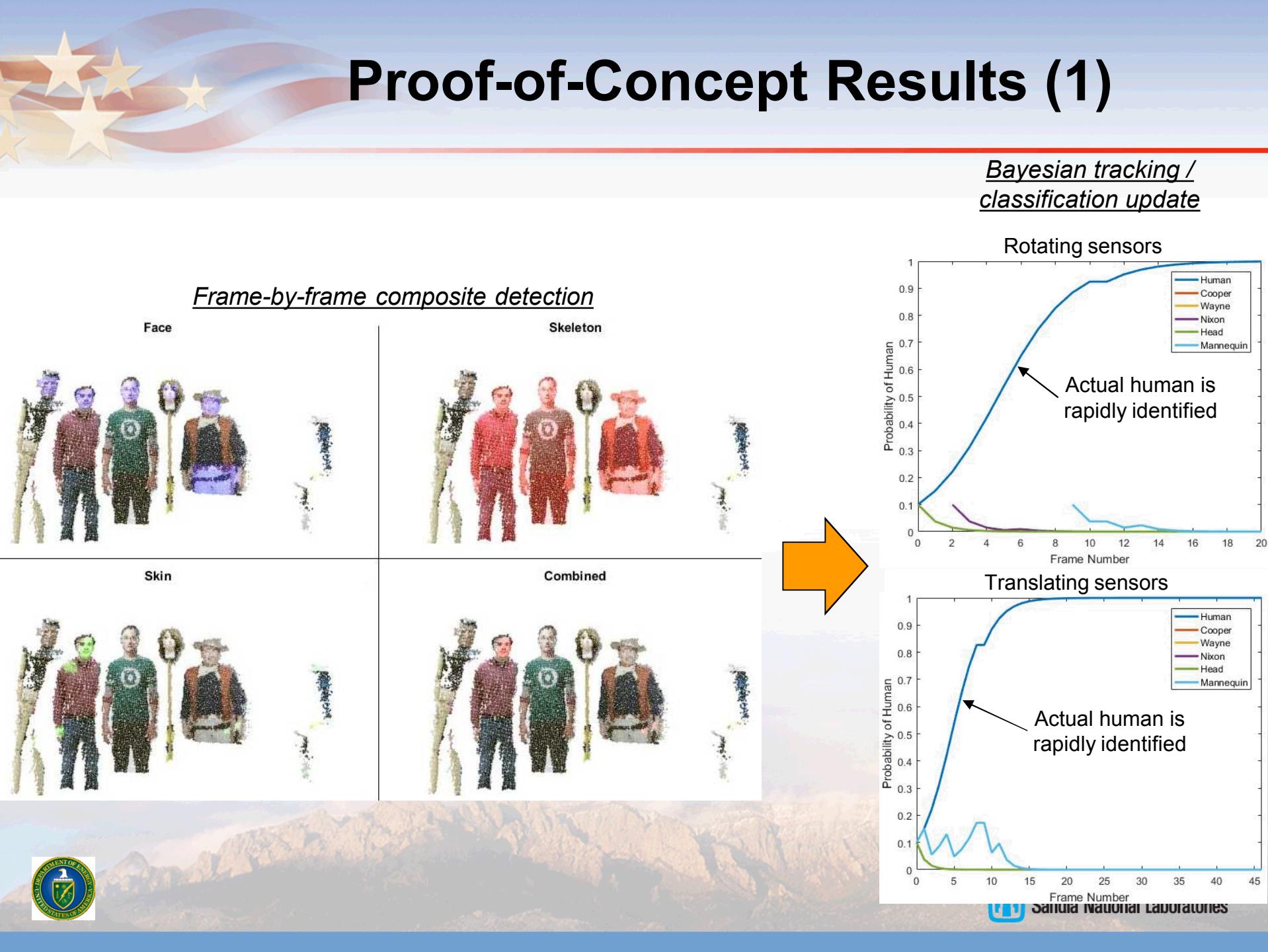
RGB face detection



RGB+D (MS Kinect) skeleton tracking

Hyperspectral skin detection

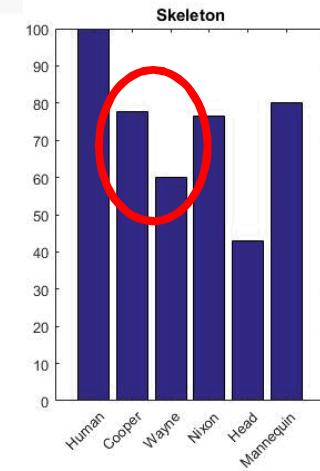
Proof-of-Concept Results (1)



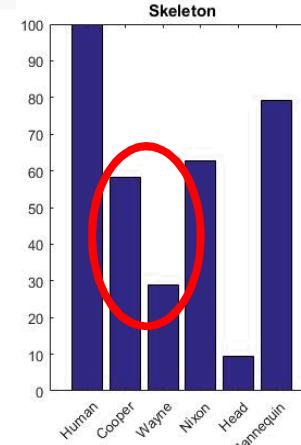
Proof-of-Concept Results (2)

- Perspective change (even subtle) matters

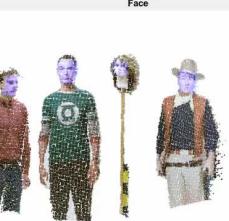
Rotating sensors



Translating sensors



Rotating



Skin

Initial Results Highlight Value of Approach:

- 1) Learned features, defined objects *a priori*
- 2) Perspective changes help
- 3) Multi-physics sensors reduce false positives

Combined

Sandia National Laboratories

Summary and Next Steps

- Rapid abstraction (RA) and tactical reasoning (TR) are big technical leaps required to be able to use UMS in fast-paced tactical applications
- OCM approach relies on human for RA and TR; tries to relieve them of all other duties and translate their goals seamlessly
- RA is the gateway to higher-level, more intuitive instruction
- Need to integrate object labeling with 3D mapping and make it *fast*

Questions?

Sandia National Laboratories

Backups

Sandia National Laboratories

Teleoperation

- Today's prevailing control methods: Teleoperation / Waypoint Control

- Common missions

- ISR (“Go to location and loiter”)
- Drone strikes (“Go to location, fire smart weapon when so ordered”)
- EOD (“Make a series of small and simple movements – very slowly”)

- Characteristics

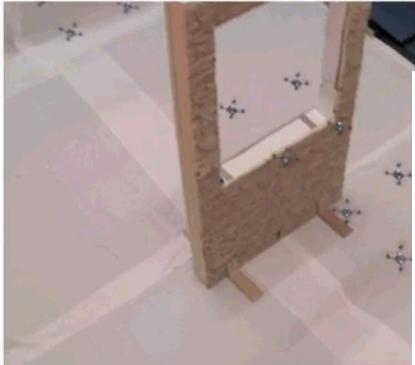
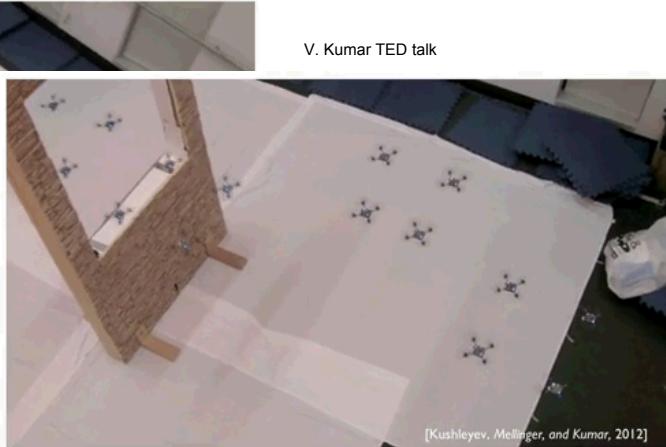
- Actions fully attributable to operator
- Performance is tightly coupled to comm link characteristics
 - Response time = (motor response to visual stimulus ~150 ms) + (uplink delays) + (increased recognition time due to poor sensor bandwidth) + (downlink delays) > 150 ms
- Real-time cooperation between agents requires high quality awareness of environment, red force, blue force = additional bandwidth & immersive interfaces

Are there smarter ways to make a UMS team function as a single unit?

Sandia National Laboratories

Cooperative Control

- “Swarm” control



V. Kumar TED talk

[Kushleyev, Mellingen, and Kumar, 2012]

V. Kumar TED talk

- Common missions

- Converge on a source (RF, chemical plume, etc.)
- Spread around a perimeter
- Fly in formation

- Characteristics

- Decentralized control algorithms – scale well to large N
- Assets are single-functional & homogeneous (or treated as such)
- One objective at a time, typically with one target
- Mission outputs depends primarily on moving to correct state (e.g. position)

Swarming is a part of UMS team operations, but not sufficient. Can we do better?

Key Elements

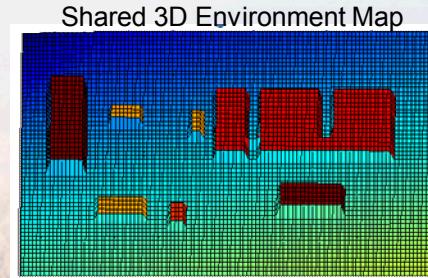
- Architecture for information sharing and control
- Layered assignment and control algorithms
- Interface to human operator

Sandia National Laboratories

Sandia Architecture for Heterogeneous UMS Control (SAHUC)

- Intelligent control elements are flexibly distributed across platforms
 - UMS from multiple manufacturers, algorithms from multiple developers
 - Some UMS are capable of greater autonomy than others
 - Need to be interoperable, re-use mid & high level autonomy algorithms
 - Human operator contributes significant intelligence
- Need a way for all agents to share & access critical info at all times
 - Robot Operating System (ROS) does a decent job at a low level
 - Did not find a high-level data architecture that met our needs, so we created our own
- Architecture determines how, where, and when data is passed
 - Implementation can have variable levels of centralization
 - Most agents might need to update most data structures
 - Economize

Actors (minus header)						
Actor ID	Actor Location	Active Status	GPS Status	Control Mode	Friend	Type
15	12,14,0, 180,0,0	1 (active)	3 (SBAS Fix)	2 (teleop)	1 (friend)	3 (UAV)
21	15,21,0, 92,0,0	1 (active)	2 (in)	4 (objective)	1 (friend)	2 (UCV)
...						



Sandia National Laboratories

Control Algorithm Summary

- **High level optimizer**
 - Makes cost-minimizing assignments of agents to assets

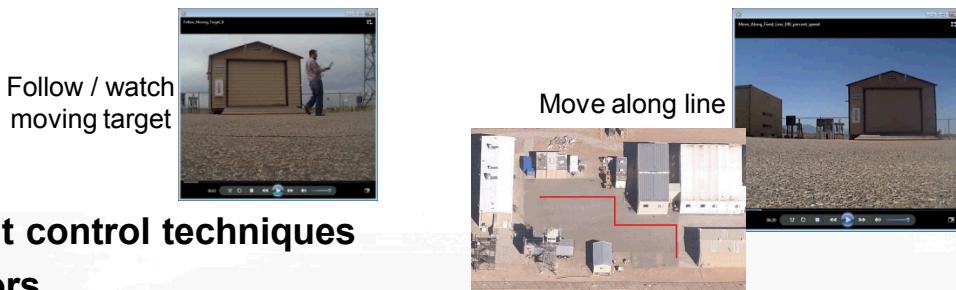
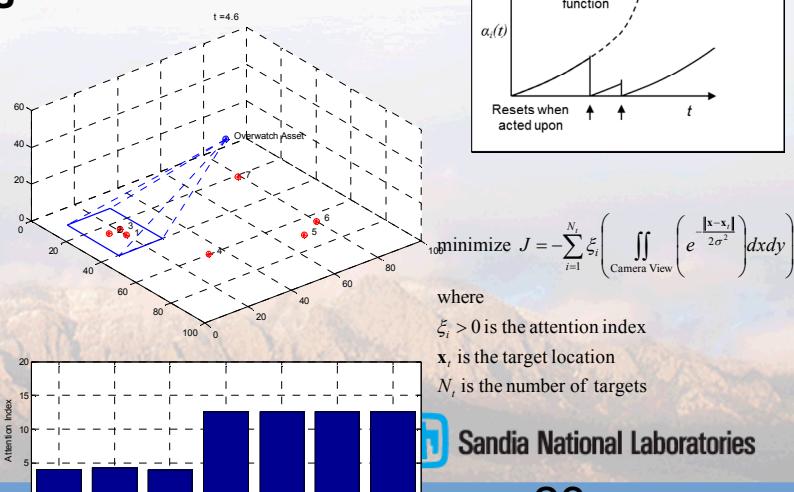
$$\min J = \sum_{i,j}^{N_A N_O} z_{ij} * \hat{C}(A_i, O_j)$$

Assignment variables
(binary or real valued, 0→1)

Estimated costs of assigned pairs

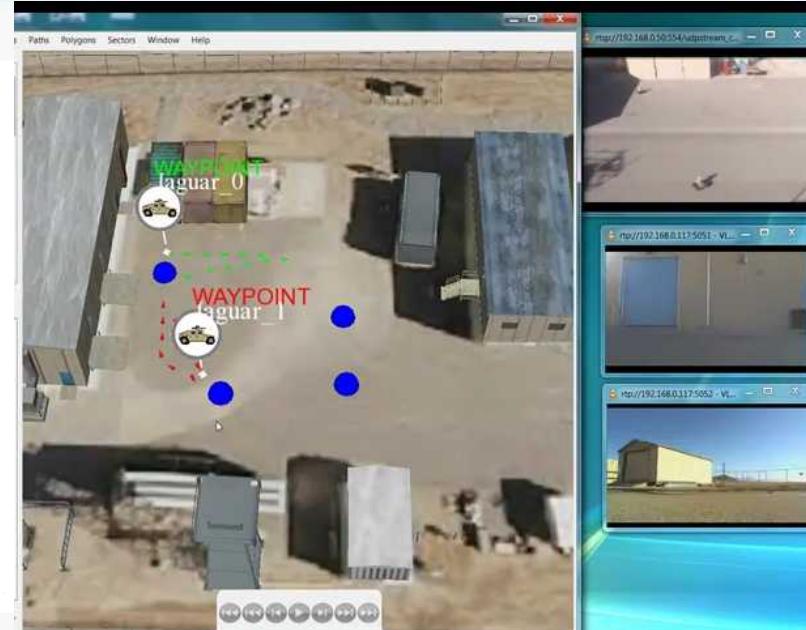
A_1 → O_1
 A_2 → O_2
 A_3 → O_2

- **Mid level behavior controllers**
 - Compute estimated costs
 - Execute assigned behaviors
 - Different behaviors may use different control techniques
 - Implemented a simple set of behaviors
 - **Attention functions** efficiently create emergent behaviors
- Methods for heterogeneous collaboration
 - Adaptations of linear swarm control
 - Hybrid distributed model predictive control



Interface to Human Operator

- Operator must comprehend & influence multiple events in real time
 - Operations integrated with 3D real-time model
 - Model gives context to real sensor feeds
 - Mission metrics, gaps computed in real-time
- Operator commands via desired mission outcomes, not instructions
 - Operator populates the *Objective* structure through a GUI
 - *Objective* is translated into top-level cost functions
 - *WeightList* allows optional manipulation of priorities
- Operator can always reach down to lower layers of control, through a single interface
 - Force assignment of asset to objective
 - Force waypoints
 - Teleoperate directly



3D model view

Real sensor feeds

Sandia National Laboratories