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Tactical Operations: A Significant Leap 
for Unmanned Systems (UMS)

• US DoD’s future visions include dramatic expansion of UMS roles
– UMS Integrated Roadmap: “autonomous ‘wingman’ capable of human-like tactical 

behaviors, in-stride support …. tactical decision making while in enemy contact; 
advanced perception of individual humans in urban environments” by 2022 

– Work: robot “first through a breach” by 2025

• Evolution of unmanned missions
– Today: Mostly uncontested, slow, planned, support role

– Future: Dynamic, tactical, collaborative, adversarial environments

• What determines superiority in unmanned operations?
– Autonomy (control and perception) will play a major (decisive?) role

– Reactive, dynamic behavior by heterogeneous teams

• Today’s state of practice

– Operationally: Teleoperation dominates; rely on humans for perception, decisions

– Commercially: Autonomous perception & control in structured environments using 
extensive training data and supervision

– Research: Autonomous geometric mapping, simple swarming, semantic labeling

Contention: UMS control methods that prevail today will 
not scale to a dynamic, tactical operational future



Tactical Operations with Unmanned Systems

Long-term goal: Operate UMS teams tactically at human (or faster) speeds, 
with human (or better) effectiveness, against adversaries & defenses

Navigate known environments

Navigate unknown / denied env.

Take action in unknown env.

Dynamic tactical engagements

Alter priorities on-the-fly

Strategic mission decisions

Capabilities Technologies

GPS, path planning

SLAM (Simult. Local. & Map.)

Rapid Abstraction

Tactical Reasoning

AI / Online Mission Plan. / ???

AI / Strategic Reasoning / ???

Drive / fly with joystick

“Go win the battle / war!”

“Go through that facility, bring 
back a map and pictures”

“Find all the _____ in there 
and ______ them.”

“Take the hill”

Level of Instruction

Likely ethical limit



Relate to DOD Autonomy COI

• Autonomy Community of Interest has established a taxonomy that 
is useful for placing autonomy R&D into operational context

Bornstein et al., 2015

Improve 
individual UMS 

capabilities

Enable more 
intuitive 
human 

instruction

Increase level 
of autonomy, 

enabling 
larger teams



One Controlling Many (OCM):

Fundamental algorithms & architecture to 
enable dynamic, tactical UMS 

engagements via operator control –
regardless of level of platform autonomy



Sandia’s “One Controlling Many” Internal 
R&D Investment

• Defining characteristics of our approach

– Single operator 

– Multiple heterogeneous multifunctional unmanned systems 

– Dynamic, simultaneous heterogeneous objectives

– Operator directs mission needs (e.g. show me what is behind that shed), not
specific UxV actions (e.g. UGV #2 drive NE 10 m and turn to face SE)

– Reactive / adaptive behavior in response to observations

– Operations integrated with real-time mod / sim engine to provide 3D 
common operating picture

– Layered & modular

Goal: Demonstrate a system that makes unmanned systems 
as responsive to command intent as squads of soldiers



New Mission Focus for Unmanned 
Combat

• Close-quarters tactical operations against unpredictable adversaries
– Limited pre-planning: Need to respond rapidly to events on the ground

– Use parts of available techniques (teleoperation, swarms, resource assignment)

• Operator: Closely controls outcomes, performs highest level thinking
– High level perception, tactics, prioritization, monitor / correct autonomy

– Directs system by specifying desired outcomes

– Automate the rest (asset-task assignments & execution)

• Teams of 4-5 diverse, multi-functional agents
– Use existing platform-level autonomy                                                                                  

& interoperate platforms from multiple suppliers

– Team size limited primarily by operator attention

Dynamic, tactical missions in which human 
and control system both apply intelligence



Sandia Architecture for Heterogeneous 
UMS Control (SAHUC)

• Command & control is layered, modular, & distributed

• Custom message set facilitates tactical command & control

Interacts with 
centralized GUI

Can be centralized 
or distributed

Can be centralized 
or distributed

On-vehicle control 
(almost all cases)

Teleop, 
ManWaypts Sensor 

Data

Human operator / 
interface

High level optimizer

Mid level behavior 
controllers / estimators

Platform control

MLBC1 MLBC2 MLBCn…..

PC1 PC2 PCm

Objective, 
WeightList

AssignList
CostList

AutoWaypoints Actor

…..

Framework allows multiple vehicle types, multiple operating systems, and 
control codes from multiple developers to work together in fast, tactical ops 

Modular algorithms

Link to previously 
approved UUR video



OCM / SAHUC: Capabilities 
Demonstrated

• Single operator controlling heterogeneous UMS team

– Real-time mission definition

– Variable levels of autonomy used within single mission

• Real time task management

– Real time task creation

– Automatic assignments based on heterogeneous capabilities

– Automatic re-assignments / handoffs

• Mix of centralized and decentralized modular control elements

– Different software implementations unified by the architecture

 Windows / Linux

 ROS / Umbra / Matlab

Relatively basic vehicle-level autonomy limits 
complexity of assigned behaviors
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Rapid Abstraction:

Ability to automatically generate abstract 
labels for relevant objects, enabling 

object-centered actions within 
autonomous missions



Rapid Abstraction Approach

• To increase level of autonomy requires the ability to rapidly identify 
objects

• For defense & security applications, there are 2 important obstacles:

– The general problem is hard / unsolved

– Limited realistic training data 

 Particularly relative to popular “deep learning” methods

• Three pronged approach:

– 1 - “Physics based” multi-sensor fusion

 Train algorithms to identify features / properties – independent of specific targets 

– 2 - Intelligently control sensing vehicle motion to optimize sensor perspective

– 3 - Use multi-physics sensors to complement most common sensors (LIDAR, 
visible cameras)

 E.g. to identify material properties

• Ultimately:

– Integrate object ID with mapping



Physics-Based Multi-Sensor Fusion

• Build object definitions from 
relational combinations of features / 
properties

– Define with graphs

– May be learned or constructed a priori

• Detect features / properties 
independently via various methods

• Scene mapping:

– Detect features / properties in scene

– Search for object matches (full or 
probabilistic) within scene graph

– Simplify with geometric segmentation 
(SLAM)



Proof-of-Concept Demonstration

• Detect people in 
decoy-filled 
environment

• Demonstrate 
several core 
principles

– Hierarchical fusion 
methods

– Perspective 
changes

– Integration of 
multi-physics 
sensors

RGB face 
detection

RGB+D (MS Kinect) 
skeleton tracking

Hyperspectral 
skin detection



Proof-of-Concept Results (1)

Frame-by-frame composite detection

Bayesian tracking / 
classification update

Rotating sensors

Translating sensors

Actual human is 
rapidly identified

Actual human is 
rapidly identified



Proof-of-Concept Results (2)

• Perspective change 
(even subtle) matters

Rotating sensors Translating sensors

Rotating sensors Translating sensors

Initial Results Highlight Value of Approach:

1) Learned features, defined objects a priori

2) Perspective changes help

3) Multi-physics sensors reduce false positives



• Rapid abstraction (RA) and tactical reasoning (TR) are big technical 
leaps required to be able to use UMS in fast-paced tactical 
applications

• OCM approach relies on human for RA and TR; tries to relieve them 
of all other duties and translate their goals seamlessly

• RA is the gateway to higher-level, more intuitive instruction

• Need to integrate object labeling with 3D mapping and make it fast

Summary and Next Steps

Questions?



Backups



Teleoperation

• Today’s prevailing control methods: Teleoperation / Waypoint Control

• Common missions
– ISR (“Go to location and loiter”)

– Drone strikes (“Go to location, fire smart weapon when so ordered”)

– EOD (“Make a series of small and simple movements – very slowly”)

• Characteristics
– Actions fully attributable to operator

– Performance is tightly coupled to comm link characteristics

 Response time = (motor response to visual stimulus ~150 ms) + (uplink delays) + (increased 
recognition time due to poor sensor bandwidth) + (downlink delays) > 150 ms

– Real-time cooperation between agents requires high quality awareness of environment, 
red force, blue force = additional bandwidth & immersive interfaces

Are there smarter ways to make a UMS team function as a single unit?

nytimes.com

robotshop.com



Cooperative Control

• “Swarm” control 

• Common missions
– Converge on a source (RF, chemical plume, etc.)

– Spread around a perimeter

– Fly in formation

• Characteristics
– Decentralized control algorithms – scale well to large N

– Assets are single-functional & homogeneous (or treated as such)

– One objective at a time, typically with one target

– Mission outputs depends primarily on moving to correct state (e.g. position)

Swarming is a part of UMS team operations, but not sufficient. Can we do better?

V. Kumar TED talk

V. Kumar TED talk



Key Elements

• Architecture for information sharing and control

• Layered assignment and control algorithms

• Interface to human operator



Sandia Architecture for Heterogeneous 
UMS Control (SAHUC)

• Intelligent control elements are flexibly distributed across platforms

– UMS from multiple manufacturers, algorithms from multiple developers

 Some UMS are capable of greater autonomy than others

 Need to be interoperable, re-use mid & high level autonomy algorithms

– Human operator contributes significant intelligence

• Need a way for all agents to share & access critical info at all times

– Robot Operating System (ROS) does a decent job at a low level

– Did not find a high-level data architecture that met our needs, so we 
created our own

• Architecture determines how, where, and when data is passed

– Implementation can have variable levels of centralization

– Most agents might need to update most data structures

– Economize Shared 3D Environment Map



Control Algorithm Summary

• High level optimizer

– Makes cost-minimizing 
assignments of agents 
to assets

• Mid level behavior controllers

– Compute estimated costs 

– Execute assigned behaviors

 Different behaviors may use different control techniques

 Implemented a simple set of behaviors

– Attention functions efficiently create emergent behaviors 

– Methods for heterogeneous collaboration

 Adaptations of linear swarm control

 Hybrid distributed model predictive control
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Interface to Human Operator

• Operator must comprehend & 
influence multiple events in real time

– Operations integrated with 3D real-time model

– Model gives context to real sensor feeds 

– Mission metrics, gaps computed in real-time 

• Operator commands via desired 
mission outcomes, not instructions

– Operator populates the Objective structure 
through a GUI

 Objective is translated into top-level cost functions

– WeightList allows optional manipulation of priorities

• Operator can always reach down to lower layers of control, through a 
single interface

– Force assignment of asset to objective

– Force waypoints

– Teleoperate directly

3D model view Real sensor 
feeds
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