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Disposal Concept for Crystalline Repository @ =

= Crystalline rocks are common in many stable continental regions
= Low permeability matrix rock and sparse fracture system
=  Geochemically reducing conditions

= Rock characteristics favorable for repository construction




Fracture Characterization Methods ) e,

= A realistic representation of fractures in granite rock is needed

= Discrete Fracture Network and Equivalent Continuum
Methods used

= The Fractured Continuum Model (FCM) used in this study

= FCM based on discrete fracture and effective continuum
approaches (McKenna and Reeves, 2005, Kalinina et al. 2012,
and Hadgu et al. 2016)
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Flow and Transport Simulations

= Test case simulations of flow and transport in crystalline rock
= Relevant fracture data used
= Specified simulation domain and grid discretization

= FCM used to generate permeability and porosity of selected
number of realizations

= Effective permeability and breakthrough curves evaluated

= PFLOTRAN (Lichtner et al., 2015)massively parallel subsurface
flow and reactive transport code used in a high performance
computing environment




Test Case Fracture Parameters

Fracture statistics used for test case:

Mean Mean R R Number
Fracture Set trend | plunge | «x o (m“) (m°) of
(degrees) | (degrees) fractures
North-South Vertical 90 0 22 2.5 500 15 2,100
East-West Vertical 0 0 22 2.7 500 15 2,000
West-East Horizontal 360 90 10 2.4 500 15 2,300

Fracture radius R follows a truncated power law distribution:

a—l/a
R=R 1—u+u &
=R, Ru

Fracture orientation © follows Fisher distribution:

K-sin@-ek€oso

£(0) =
o = scaling factor, R, = radius lower limit, R, = radius upper limit, k= concentration parameter
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Simulation Model Setup

= Domain: 1000 m x 1000 m x 1000 m
= Grid block size: 10mx10mx 10 m
= Number of grid blocks: 1,000,000

= Porosity: Anisotropic
= Permeability: Anisotropic

= |nitial Conditions: Hydrostatic pressure
= |sothermal Conditions (T = 25 °C)

= Boundary Conditions:
= Pressure at West Face: 1.001 MPa
" Pressure at East Face: 1.0 MPa




Generation of Permeability and Porosity Fields @) &z.

= Permeability and porosity fields generated using FCM with
ELLIPSIM

= Specified fracture parameter distributions used in
geostatistical representation of fractured domain

= Two sets of 25 realizations were selected

= Matrix rock permeability of 1022 m? used to suppress matrix
flow

= Matrix rock porosity of 0.01 used




Example Permeability and Porosity Fields @ =

Porosity

0.01
0.009

Permeability of a Realization Porosity of a Realization




Fluid Flow Simulation WE=S

= Steady state flow utilized
= to estimate effective permeability for each realization
= To generate flow field for transport simulation

= Darcy’s law and east face flux used to calculate effective
permeability

—kof AP
1=—

g = flux,

k¢ = effective permeability,

AP = pressure difference, u = dynamic viscosity
L = distance between west and east faces




Effective Permeability Evaluation ez,

e First 25 realizations + Second 25 realizations
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Transport Simulations: Tracer Breakthrough
Curves Evaluation:

= PFLOTRAN numerical simulator used (advection-diffusion)

= Porosity and steady state flow fields for each realization
utilized as input to transport simulations

" Transport of dissolved, nonreactive tracer through domain
= Tracer transport simulated with and without matrix diffusion

= Qutput used to calculate normalized breakthrough curve for
each realization




Tracer Breakthrough Curves )

=

——runl03 - keff = 1.39E-17 m2

o
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—runll? - keff = 1.09E-18 m2

ot
o

—run92 - keff = 4.72E-19 m2
——run97 - keff = 1.79E-22 m2
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Tracer Breakthrough Curves: W=
Effect of Matrix Diffusion
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Tracer Distributions: No Matrix Diffusion ) jge,

= Matrix Diffusion Excluded

= FCM Tracer Transport Results (after 1 x 103 and 1 x 10° years
simulation time)

Tracer distributions after 103 years Tracer distributions after 10° years
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Tracer Distributions: With Matrix Diffusion (i) &=,

= Matrix Diffusion included

= FCM Tracer Transport Results (after 1 x 103 and 1 x 10° years
simulation time)

Tracer distributions after 103 years Tracer distributions after 104 years




Tracer Distributions: With Matrix Diffusion, =
Contd.

» Matrix Diffusion included

= FCM Tracer Transport Results (after 1 x 10° and 1 x 10° years
simulation time)

Tracer distributions after 10° years Tracer distributions after 106 years
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° Sandia
Conclusions L

= Flow and Transport simulations conducted using the FCM
with applications to a generic nuclear waste repository in
crystalline rock

= Advection in matrix rock excluded using low permeability

" Transport simulations conducted with and without matrix
diffusion

" |nclusion of advection and diffusion through small fractures
and matrix are important

= FCM can be applied to large domains with large number of
fractures

" Further testing of FCM to be based on measured field data
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