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Disposal Concept for Crystalline Repository

 Crystalline rocks are common in many stable continental regions

 Low permeability matrix rock and sparse fracture system  

 Geochemically reducing conditions

 Rock characteristics favorable for repository construction
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Fracture Characterization Methods

 A realistic representation of fractures in granite rock is needed

 Discrete Fracture Network and Equivalent Continuum 
Methods used

 The Fractured Continuum Model (FCM) used in this study  

 FCM based on discrete fracture and effective continuum 
approaches (McKenna and Reeves, 2005, Kalinina et al. 2012, 
and Hadgu et al. 2016)
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Flow and Transport Simulations

 Test case simulations of flow and transport in crystalline rock

 Relevant fracture data used

 Specified simulation domain and grid discretization

 FCM used to generate permeability and porosity of selected 
number of realizations

 Effective permeability and breakthrough curves evaluated

 PFLOTRAN (Lichtner et al., 2015)massively parallel subsurface 
flow and reactive transport code used in a high performance 
computing environment
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Test Case Fracture Parameters 

Fracture Set
Mean 
trend 

(degrees)

Mean 
plunge 

(degrees)

 
Ru

(m)
R0

(m)

Number 
of 

fractures 

North-South Vertical 90 0 22 2.5 500 15 2,100
East-West Vertical 0 0 22 2.7 500 15 2,000
West-East	Horizontal 360 90 10 2.4 500 15 2,300

Fracture radius R follows a truncated power law distribution: 
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Fracture orientation ϴ follows Fisher distribution: 

Fracture statistics used for test case:

 = scaling factorR0 = radius lower limit, Ru = radius upper limit, = concentration parameter
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Simulation Model Setup

 Domain: 1000 m x 1000 m x 1000 m
 Grid block size:  10 m x 10 m x 10 m

 Number of grid blocks: 1,000,000

 Porosity: Anisotropic 

 Permeability: Anisotropic

 Initial Conditions: Hydrostatic pressure

 Isothermal Conditions (T = 25 ◦C) 

 Boundary Conditions:
 Pressure at West Face: 1.001 MPa

 Pressure at East Face: 1.0 MPa



Generation of Permeability and Porosity Fields

 Permeability and porosity fields generated using FCM with 
ELLIPSIM

 Specified fracture parameter distributions used in 
geostatistical representation of fractured domain

 Two sets of 25 realizations were selected

 Matrix rock permeability of 10-22 m2 used to suppress matrix 
flow

 Matrix rock porosity of 0.01 used
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Example Permeability and Porosity Fields
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Permeability of a Realization Porosity of a Realization
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Fluid Flow Simulation

 Steady state flow utilized 
 to estimate effective permeability for each realization

 To generate flow field for transport simulation 

 Darcy’s law and east face flux used to calculate effective 
permeability

� =
−����∆�

��
q = flux, 

keff = effective permeability, 

P = pressure difference,  = dynamic viscosity

L = distance between west and east faces



Effective Permeability Evaluation

10



Transport Simulations: Tracer Breakthrough 
Curves Evaluation:

 PFLOTRAN numerical simulator used (advection-diffusion)

 Porosity and steady state flow fields for each realization 
utilized as input to transport simulations

 Transport of dissolved, nonreactive tracer through domain

 Tracer transport simulated with and without matrix diffusion

 Output used to calculate normalized breakthrough curve for 
each realization
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Tracer Breakthrough Curves
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Tracer Breakthrough Curves:
Effect of Matrix Diffusion
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Tracer Distributions: No Matrix Diffusion

 Matrix Diffusion Excluded

 FCM Tracer Transport Results (after 1 x 103 and 1 x 105 years 
simulation time)
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Tracer Distributions: With Matrix Diffusion

 Matrix Diffusion included

 FCM Tracer Transport Results (after 1 x 103 and 1 x 105 years 
simulation time)

Tracer distributions after 103 years Tracer distributions after 104 years
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Tracer Distributions: With Matrix Diffusion, 
Contd.

 Matrix Diffusion included

 FCM Tracer Transport Results (after 1 x 105 and 1 x 106 years 
simulation time)

Tracer distributions after 105 years Tracer distributions after 106 years



Conclusions

 Flow and Transport simulations conducted using the FCM 
with applications to a generic nuclear waste repository in 
crystalline rock

 Advection in matrix rock excluded using low permeability

 Transport simulations conducted with and without matrix 
diffusion

 Inclusion of advection and diffusion through small fractures 
and matrix are important 

 FCM can be applied to large domains with large number of 
fractures

 Further testing of FCM to be based on measured field data
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