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Abstract

The transformation of the distribution grid from a centralized to decentralized architecture, with 
bi-directional power and data flows, is made possible by a surge in network intelligence and grid 
automation. While changes are largely beneficial, the interface between grid operator and 
automated technologies is not well understood, nor are the benefits and risks of automation. 
Quantifying and understanding the latter is an important facet of grid resilience that needs to be 
fully investigated.

The work described in this document represents the first empirical study aimed at identifying and 
mitigating the vulnerabilities posed by automation for a grid that for the foreseeable future will 
remain a human-in-the-loop critical infrastructure. Our scenario-based methodology enabled us 
to conduct a series of experimental studies to identify causal relationships between grid-operator 
performance and automated technologies and to collect measurements of human performance as 
a function of automation. Our findings, though preliminary, suggest there are predictive patterns 
in the interplay between human operators and automation, patterns that can inform the rollout of 
distribution automation and the hiring and training of operators, and contribute in multiple and 
significant ways to the field of grid resilience.
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1.  INTRODUCTION

The nation’s electric grid, which the National Academy of Engineering calls the greatest 
engineering achievement of the 20th Century [1] has always been “smart” to a degree.  Ever 
since Thomas Edison unveiled the Pearl Street electric system in 1882, devices have 
communicated voltage information to the grid operator and meters have measured kilowatt-hours 
so a utility could charge for usage. But a range of grid events (e.g., the 1965 blackout [2] and the 
blackout of August 2003 [3], which darkened some 50 million homes and businesses and cost 
billions of dollars), and regulatory policy (e.g., the Public Utilities Regulatory Policies Act of 
1978 [4], the Energy Policy Act of 1992 [5], the Energy Policy Act of 2005 [6], and various state 
regulatory actions) proved to be the catalyst for what may be the greatest engineering feat of the 
21st Century [7]: the nation’s so-called “smart grid.”  Spearheaded by the US Department of 
Energy (DOE), with funding provided by the American Recovery and Reinvestment Act of 2009 
[8], the modernization of the electric grid represents a technological leap forward, a concerted 
effort by utilities and the government alike to enhance the safety and reliability of the nation’s 
top critical infrastructure, while also enabling 21st Century capabilities, such as the integration of 
renewable resources and more efficient load control.    

Much of this transformation is directed at the distribution grid, which is transitioning from a 
centralized to a decentralized architecture, with bi-directional power and data flows, and is made 
possible by a surge in network intelligence and grid automation. While these advanced 
technologies lower operational costs, add restoration capabilities and enable the integration of 
renewables, they are also changing the way human operators view and run the grid, resulting in 
potential vulnerabilities that are not well understood. 

The work described in this document, a three-year Sandia-funded Laboratory Directed Research 
and Development (LDRD) project titled “Improving Grid Resilience through Informed Decision-
Making,” or IGRID, represents the first empirical study aimed at identifying and mitigating the 
vulnerabilities posed by automation for a grid that for the foreseeable future will remain a 
human-in-the-loop critical infrastructure. As such, the research described herein is both 
pioneering and preliminary, providing a foundation for what we believe will become a 
burgeoning field of inquiry.

1.1. Human-in-the-Loop Critical Infrastructure

Our nation’s rise to prominence as one of the world’s most productive and innovative economies 
reflects broad access in the US to abundant, reliable and cheap energy.  Today, it is our electric 
power system that almost singularly drives our digital economy and elevates our health, safety 
and overall standard of living. Without a functioning electric grid, every critical infrastructure in 
the U.S.—from banking to water to telecommunications—would fail and our economy would 
falter.

But as our dependence on the grid grows, so do the threats, both natural and manufactured, 
levied against it.  Weather-related and other natural disasters, which cause the bulk of power 
outages, are projected to increase in intensity and frequency, with a hotter, moister atmosphere 
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primed to trigger disasters [9]. And studies by the National Security Agency and others show that 
malware directed at the grid continues to evolve and grow [10]. As a consequence, the 
distribution grid faces an increasing risk of disruptions and the prospect of prolonged electrical 
outages [11]. 

Understanding how a system operator maintains situational awareness and makes critical 
decisions in response to complex unplanned events, such as a major hurricane or cyber attack, is 
an essential aspect of grid resilience that, to date, has been largely overlooked for the distribution 
grid.   Yet multiple studies show the majority of major industrial, military and aviation accidents, 
including the failure of the Fukishima nuclear plant in 2013 and the crash of the Air France jet in 
2014, are attributed to human error and to the loss of situational awareness [12] [13].  Today, 
situational awareness has become a key element of human-reliability research for domains that 
involve complex and challenging environments [14] but to date, research specific to the 
distribution grid, has been lacking.

But there is another facet of resilience, apart from unplanned events, that is the focus of 
increasing concern: the growth in automation across industrial and commercial domains. 
Particularly concerning is the lack of domain-specific data for the distribution grid. Despite the 
billions of dollars invested nationwide in grid automation, the work described in this report is the 
first to look at how automation impacts decision-making during high stress, unplanned outage 
events.  Unknown, for example, is how much—and under what conditions—automation can 
diminish an operator’s situational awareness and impact an operator’s ability to interpret data 
and make appropriate decisions. Also unknown is how the balance between human and artificial 
intelligence might be optimized in order to achieve greater operational efficiency, reliability and 
overall grid resilience. 

For this research project, we looked specifically at the dynamic interplay between distribution 
operators and advanced distribution automation.   On the one hand, the increase in automation 
offers the prospect of greater efficiency, which can translate into reduced outage times; on the 
other, the increase raises the specter that operators can become mentally detached from the grid 
and lose awareness of its actual state, also known as being “out-of-the-loop”[15].  The 
consequences of being out-of-the-loop, as was shown for the blackout of 2003 [16] are that 
operators mentally detach, believing the machine is in control, and become less aware of aberrant 
data and alarms and therefore react slowly to dangerous situations [17]. 
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Figure 1. Information flow for a “smart” distribution grid.  
Operator actions are reflected on the right, machine-directed actions on the left. 
As automation increases, the balance will shift to the left but may diminish the 

operator’s situational awareness.

1.2. Collaborative Pilot Study in Vermont

The experimental phase of this project, and virtually all our data gathering, was conducted in 
Vermont, where the Sandia team partnered with Green Mountain Power (GMP), the state’s 
largest electric utility and owner of more than 70 percent of its service territory, and also Oracle, 
a vendor of advanced distribution management software. The advantages to conducting this 
research in Vermont were twofold: 1) we could collect and analyze data, including high-
resolution SCADA data, from a utility that had recently upgraded its network and was actively 
deploying advanced automation technologies; and 2) we could leverage Sandia’s history of 
research collaborations in Vermont [18], extending back to 2008, to gain unprecedented access 
to the company’s control rooms and operators.

In 2010, Vermont was awarded energy stimulus funds administered by the US Department of 
Energy (DOE) back through the American Recovery and Reinvestment Act (ARRA). The 
resulting so-called eEnergy Vermont $138 million smart grid project1 funded the installation of 
smart meters on 85 percent of Vermont homes and the rollout of network sensors, distributed 
automation equipment and communications technologies statewide (both at the transmission and 
distribution levels), making Vermont the first state in the nation to have a statewide smart grid 
(not utility or region based.) Working together, Vermont’s 20 utilities coordinated the upgrade of 

1 ARRA provided 50 percent, or $69M, of the total project costs.
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the state’s electric infrastructure to roll out a communications system that relays information 
about usage, voltage, existing or potential outages, and equipment performance to the control 
center and also sends commands from the operator back to the network.  As part of this 
modernization effort, approximately 95 percent of all substations were equipped with 
supervisory control and data acquisition (SCADA) systems, with the expectation that the 
SCADA data would give operators’ significantly more visibility into grid operations, allowing 
them to anticipate, mitigate and respond more quickly to emergent problems [19].

Key to the success of this project was Sandia’s ability to forge essential partnerships. On the 
electric-utility side, Sandia worked with GMP, a utility committed to grid modernization, 
including distributed energy resources, system awareness and control. On the control-systems 
side, Sandia developed a relationship with Oracle, whose Network Management System © 
(NMS) software can support automated outage restoration including Fault Location, Isolation, 
and Service Restoration (FLISR) actions. 

The three-way partnership between Sandia, GMP and Oracle, was designed so that each party 
could contribute expertise in specific areas, while aiming for objectives beneficial to each party 
and to the group as a whole. GMP wanted to 1) have confidence that advanced technologies (i.e., 
automation) would perform as expected (i.e., enhance grid performance) prior to their 
deployment; 2) better understand the overall return-on-investment for automation; and 3) obtain 
data that could lead to improved operator training and effectiveness. Oracle wanted to 1) receive 
quality feedback on their NMS software; and 2) quantify the benefits of automation, measured in 
customer minutes interrupted (CMI.) Sandia interests were in advancing resilience of the 
distribution grid and doing so by collecting data from system operators in a realistic, grid-
simulated setting.
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2. RESEARCH OBJECTIVES

Sandia’s overarching research objective for the IGRID project was to bring focus to—and 
compile and analyze data on—an unrecognized but critical facet of grid resilience: the 
performance of the distribution-grid operator who is ultimately responsible for the safe and 
reliable flow of electricity to the end user. In designing our research plan, we set forth the 
following goals:

• To identify causal relationships between automation and grid operator performance;
• To develop measures of human performance as a function of automation; and 
• To instantiate the impact of 1) and 2) on grid performance through the development of a 

cause-effect model 

We wanted to demonstrate the linkages among automation, operator expertise and system 
restoration, as reflected in grid-performance metrics, in order to quantify under what 
circumstances automation helps or hinders outage restoration and by how much; and to collect 
data that would ultimately advance the rollout of advanced distribution automation. We 
anticipated that a set of carefully controlled experiments would increase utilities’ willingness to 
invest in automation by demonstrating the relation between automation and outage metrics and 
also provide useful information on the strategic deployment of automation.  In addition, we 
anticipated that our work would produce interesting observations regarding the human-machine 
interface and how it might be improved both from a design perspective and from a training 
perspective. 

It is nonetheless important to note that the research described in this report is preliminary and 
involves data and system operators from one utility in Vermont.  That said, we believe that the 
vulnerabilities and challenges we have identified exist at other utilities, several of which have 
described the roll-out of automation as an unresolved human-factors challenge. In short, we 
believe our research opens the window on an area of considerable operational uncertainty and 
concern for distribution utilities across the US. 
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3. TECHNICAL APPROACH

With little evidence in the research literature that the human dimension of grid resilience has 
received much attention, we developed a multi-faceted approach to IGRID that included the 
following elements: 

• Development of a methodology for measuring levels of automation and depicting the 
dynamic interplay between automation and operator; 

• Baseline human factors research to identify the tasks and critical decisions required of 
operators and to define operator expertise; 

• Selective review of GMP historic data, including SCADA data, outage logs and operator 
logs to identify which combination of variables or sets of conditions result in the highest 
outage metrics (see the Appendix); 

• Simulator study to measure operator interactions with automation 
• Game-theoretic modeling effort to study automation-operator interactions under multiple 

outage parameters.

Because automation is a broad catch-term and applicable to multiple devices and processes2, we 
focused our research efforts on one automated technology: the smart re-closer, which is a new 
fault-protection device being installed by utilities across the US, including GMP.  These 
automated re-closers can operate independently of the operator, opening and closing in response 
to voltage drops and other transient fault conditions.  When supported by advanced DMS 
software, they can operate completely automatically to isolate faults and reroute power flow to 
reduce the number of customers affected by an outage. Even when they are not operating in a 
fully automated manner, control room operators can operate these devices remotely to achieve 
fault isolation and service restoration functions.

Such devices are considered integral to grid modernization, moving the grid closer to a self-
healing network by restoring power to the greatest number of customers in the shortest period of 
time.  They can also be operated in multiple modes: as manual switches, without advanced 
capability; with operator oversight (the operator must agree to the restoration plan offered by the 
DMS; and as fully independent/automated devices that communicate directly with SCADA to 
reroute power. 

Because they are so central to advanced grid functionality and have the multiple capabilities 
described above, the re-closers were the ideal technology for investigating the impact of 
automation on operator performance.  With GMP as a partner, providing access to its control 
rooms and operators, and with Oracle providing access to its Network Management © (NMS) 
system and its FLISR-enabled NMS training simulator, Sandia created a technical approach 
rooted in empirical and observational research, one that allowed us to investigate operator 
decision-making and performance during grid restoration, with and without automation.

2 Automation for the electric grid is defined as “automatically controlled operation by mechanical or 
electric devices that optimize the flow of electricity and data to enable a fully controllable, interconnected 
and flexible distribution system.”
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3.1.      Measuring Grid Automation

To fully understand the dynamic interplay between the operator and automated grid 
technologies, we needed a repeatable method for observing, measuring and documenting the 
level of automation. Our methodology, which reflects work described elsewhere in this report 
and is fully documented in Haass et al (XX), is based on an inventory of operator-to-system 
interfaces and a set of data, including historic SCADA data, identifying the nature and frequency 
of actions executed by humans and machines in near real-time (see Table 1).

Table 1. Example SCADA log keyword matrix. 
Table entries where the SCADA logs did not include sufficient information to 
calculate the level of automation are marked as not applicable (N/A).

Information Acquisition Information Analysis Decision Selection Action Implementation

Machine

Automated Action RTU no on/off line low limit exceeded N/A device change of state 
[OPEN, OFF]

Result of operator 
commanded action

N/A N/A N/A control succeeded [OPEN, 
CLOSED, TAG]

Operator N/A N/A N/A

Command machine 
action

N/A operator control, note 
added

N/A Operator control [OPEN, 
CLOSED, TAG]

Armed with that data, we created a visual display showing the system’s automation dynamics for 
a specific interval of time.  It should be noted that the data could also be incorporated into real-
time visualization systems already present in control rooms.

We found that when the level of automation approaches zero, system operations require more 
effort from system operators. One can therefore infer that when low levels of automation are 
routinely associated with certain subsystems or operator actions that investing in more 
automation may reduce operator workload or improve efficiency. Conversely, when levels of 
automation are routinely high, system operators may be vulnerable to distraction or 
complacency, both of which can result in decreased situation awareness. As repeatedly 
demonstrated for other domains [6], it is at these times that system performance is most 
vulnerable to automation failures. 

Figure 3, for example, depicts the levels of automation for a 31-day period during which a strong 
snowstorm entered Vermont (day 9), causing widespread damage and power interruptions. This 
event, and efforts by operators and field crews to restore power, is apparent in the level of 
automation. After a stable period of highly automated operation from day 4 to day 9, the level of 
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automation oscillates frequently between low and high automation, as automated systems 
perform fault isolation functions and human operators respond to alarms and work to restore 
service. 

Figure 2. Variance in levels of automation vary during 31-day periods of operation.

A more detailed example of a single power outage is shown in Figure 5. Here the level of 
automation can be seen from the time the first device failed at approximately 23.5 hours to the 
time of service restoration at approximately 25.75 hours. The event began with a failure at re-
closer R2, which caused the upstream breaker, R1, to open automatically. Later, at 
approximately 24.75 hours and 25.5 hours, operators performed two remote switching operations 
as part of their restoration efforts. Both switching operations began in fully manual mode and 
transitioned to fully automated processes, triggered by computerized actions, such as voltage 
alarms, that responded to the grid’s new operating configuration. 

Figure 3. Level of automation from device failure to completed service restoration.

The IGRID method makes it possible to measure and track the changing level of automation as a 
critical infrastructure moves through its natural system dynamics and provides a detailed view of 
the factors that affect overall system performance, including operator workload and weaknesses 
or gaps in system automation. We found, for example, that when the level of automation 
approaches zero, system operations require more effort from system operators. One can therefore 
infer that when low levels of automation are routinely associated with certain subsystems or 
operator actions that investing in more automation may reduce operator workload or improve 
efficiency. Conversely, when levels of automation are routinely high, system operators may be 
vulnerable to distraction or complacency, both of which can result in decreased situation 
awareness. As repeatedly demonstrated for other domains [6], it is at these times that system 
performance is most vulnerable to automation failures. 

We believe this method can guide infrastructure investment decisions by highlighting 
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subsystems or operating conditions where increased automation is needed and also guide the 
design of the human-computer interface to ensure operator remains mentally engaged during 
highly automated periods so his/her situational awareness is maintained.  The method is also 
adaptable: the moment-by-moment details can be analyzed for specific time periods (for 
example, weekly, or monthly), during critical events (such as storms or system upgrades), or for 
specific subsystems.

3.2.   Situational Awareness Among Distribution Grid Operators

As a parallel effort to our automation work, we began gathering baseline information on operator 
tasks, responsibilities and skill sets in order to build a foundation of knowledge related to 
situational awareness and critical-thinking skills. (The full scope of this work is described in 
Stevens-Adams, et al, 2015.)  Granted access by GMP to their two control rooms and 14 
operators, we were able to observe the operators’ work routines and, by applying human-factors 
methodologies to interviews with the operators, we were able to collect information specific to 
switching, a central activity for every distribution operator.  Switching, as the name implies, 
refers to the opening and closing of switches (also known as breakers) to isolate faults and 
reroute power.  Most so-called switching is planned and orchestrated under controlled conditions 
to allow for maintenance of the electrical network. In contrast, unplanned switching is required 
when there are unexpected grid outages (e.g., trees falling on lines during stormy weather, 
animals chewing through lines, cars running into poles, etc.) and necessary for power restoration. 
We learned that unplanned switching can place high cognitive demands on an operator, 
depending on the type, location and timing of the outage, requiring the operator to pinpoint the 
fault location, evaluate options to re-route power and coordinate with the field crews so the break 
can be repaired and the flow of power restored.  

While conducting our observational studies, we also gathered data on background noise during 
an outage, including the frequency of audible alarms, ringing phones and number of customers 
(including the police) pressuring the utility for a restoration times. Given the heightened activity, 
unplanned switching tasks are often stressful and potentially overwhelming, requiring rapid, 
critical decision-making and a high level of cognitive effort. By the end of our in situ 
observational study we were able to construct a task diagram3 that lays out the demands and 
skills required for a simple but unplanned grid-restoration event (see Figure XX), a diagram that 
set the stage for our upcoming experimental work. 

3 To construct the task diagram, we relied on a widely accepted human-factors methodology call applied 
cognitive task analysis.
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Figure 4. Task diagram of unplanned switching.

In Figure 4, the diamond shapes indicate tasks in which the grid operator (GO) had to make a 
critical decision; mostly involved with switching. The diagram highlights the importance of 
operator communication with the field crew (FC) and interaction with SCADA interfaces and 
tools. Using the widely accepted critical decision method XX, we also constructed a critical cue 
inventory, to list the multitude of cues and sources of information an operator tracks during grid 
restoration.



18

Table 2. Critical cue inventory of unplanned switching.

Cue category Description

Alarm (visual, auditory) On computer via Supervisory Control And Data Acquisition 
(SCADA)

• Intrusion 
• Communication
• Nuisance
• Normal
• Emergency situations

Printer
Control board

Phone ringing (visual, auditory) Customer calls
Field crew calls
Management

Weather (visual, auditory) Hot or cold
Sunny/clear
Wind
Snow/wintry conditions

Control board (visual) Visual of current outages/problems
Means to see entire footprint

Assists in determining number of affected customers
Assists in determining how to reroute power, plan switching

Security cameras (visual) Monitoring authorized and unauthorized access to buildings
Monitoring hydrostations

Weather channel/news stations/meteorology sites (visual, auditory) Monitoring wind patterns
Monitoring storm developments

Radio (auditory) Field crew calls

Co-workers (visual, auditory) Communication between operators

Email (visual, auditory) Requests from field crew
Communication with upper management
Communication with engineering department

Time of day (visual, auditory) Field crews scheduled during day
Customer usage greatest 6a-10p
Assists in predicting load
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Finally, we created the timeline for a specific outage event, asking GMP operators to choose an 
incident that 1) they could remember in a fair amount of detail; 2) was a recent occurrence and/or 
especially memorable; and 3) was supported by SCADA data (see Figure 5). 

Figure 5. Timeline of unplanned switching incident.

What we found of significance was that the operator and field crews share situational awareness 
throughout the restoration process, each depending on the other from fault detection to full 
service restoration. Whereas operators have a view of the entire network, including customer 
load and operating parameters, and know the location of switches and other rerouting devices, 
they only have an abstract, or white-tower, view of an outage. In contrast, the field crew interacts 
physically with the grid, acting as a forensic team to identify the precise location and cause of a 
fault. With the proliferation of FLISR-enabled switches, the relationship between the operator 
and the field crew will substantially shift.  At a minimum, we believe that operators will have to 
develop a new mental model of grid restoration and will also have to both trust, and know when 
not to trust, automation.

3.3. Defining Operator Expertise

One challenge of grid modernization is that most of today’s control-room operators were trained 
in an analog environment and have skills that reflect a combination of field experience and 
control room confidence, but these skills do not align with digital architecture of the 21st Century 
grid. Yet expertise in the control room has never been well defined, either for analog or digital 
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operations.  With utilities increasingly investing in automation, the domain is long overdue for a 
sweeping look at expertise; it is important to understand how operator performance, combined 
with changes in automation may, or may not impact the grid. It is also important to understand 
expertise in order to optimize the design of the human-machine interface and roll-out of 
advanced grid visualization software.  Although limited in scope, this is the first study of its kind 
to characterize expertise in the distribution control room; see Stevens-Adams, 2016 [23.]

We conducted our research by individually interviewing 13 control room operators, three 
managers, and one human resources executive at GMP, either in a conference room or the 
control room. We conducted the control-room interviews during a ‘quiet’ time so as not to 
impact the operator’s job performance and asked questions pertaining to the importance of 
experience in the control room, the traits that distinguish experts from non- experts and what 
attributes an expert in the control room possesses. We also asked the operators to assess the 
expertise of their colleagues. In addition, we asked operators to explain how they currently 
execute switching operations and how that approach might change as the grid becomes more 
automated. 

We found the operators’ experience varied, ranging from a so-called apprentice, with just two 
months on the job, to a First-Class (1C), or expert, operator, with more than 37 years at GMP. 
Operators are promoted from Second-Class (2C) to 1C based on their ability to handle complex 
tasks and to complete them under decreasing amounts of supervision. Operators that reach the 
1C level are expected to work independently.

Based on the responses we obtained, we determined that an ‘expert’ operator typically has 7-9 
years of control-room experience and also possesses certain traits, such as the ability to remain 
calm, cool, and collected under pressure.  He or she is also adaptable, can effectively multi-task, 
can synthesize large amounts of data quickly and efficiently navigate the operating system and 
has had exposure to many types of events.  Although our findings are based on one distribution 
utility, we believe (based on informal interviews at multiple other utilities), they are 
representative of the domain and provide a solid baseline against which to consider expertise in 
the face of increasing automation. 

3.4. The IGRID Experimental Approach

We began the experimental phase of the IGRID project in 2016, building on our previous 
cognitive research to lay out a technical approach that would produce quantitative data on the 
benefits of automation.  Because GMP gave us access to their operators and Oracle gave us 
access to their Network Management System© (NMS) software, we had an exceptional 
opportunity to collect data under simulated, but close-to-realistic, conditions.  We decided to 
develop a set of outage scenarios for the portion of the GMP grid already identified as a test bed 
for the rollout of FLISR technology, including the feeders where the automated re-closers4 
(Vipers©) will be installed, and to recruit GMP operators serving as test subjects.

4 These re-closers are accompanied by advanced, automated switchgear that, with support from the Oracle 
NMS, can automatically generate and execute restoration plans.
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Oracle agreed to upload a model of the GMP grid into their NMS, a time-consuming and 
complicated process involving the export of GMP’s GIS data to Oracle, along with assets and 
electrical values and an impedance model.  In addition, the NMS had to be configured to 
incorporate GMP’s power-engineering software into FLISR and ensure FLISR-enabled SCADA 
capabilities.  GMP agreed to support that effort, making its engineering and IT staff available to 
assist in the data transfer.

Working in parallel, Sandia, GMP and Oracle designed a scenario-based set of experiments.  The 
objective was to create  scenarios that would enable us to measure and better understand operator 
response to simulated outages that varied in both their degree of complexity and level of 
automation support, and to track operator performance by both restoration times and by 
Customer Minutes Interrupted (CMI), which is the sum of all customer interruption durations 
and a key performance metric for the distribution grid.  We hypothesized that changes in 
automation would be reflected in the shape and size of outage histograms (see Figure XX), 
allowing us to quantify how operator-automation balance affects these metrics. 

3.4.1. Scenario-Based Methodology

The scenarios we created range in complexity from simple to intricate, sorted into pairs based on 
multiple variables, such as the number of outages, anticipated number of operator switching 
actions, number of customers out of power, etc. (see Figure XX.)  Within each pair, one scenario 
is designed to be executed in manual mode; the other scenario is FLISR-enabled and will 
automatically generate a switching plan that the operator can choose to accept to reject. 

Figure 6. Sandia visualization of outages experienced by one utility over the course of several months, 
binning number of outages by duration (x-axis) and frequency (y-axis). Each color represents a 

different cause.  
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We designed each scenario as realistically as possible, reviewing historical outage data for this 
portion of the GMP network to identify potential causes of disruptions and to ensure the 
verisimilitude of the complexity associated with each disruption. In the end, we developed five 
detailed scenarios, all of which were vetted and refined by former GMP operators to clarify 
interactions, and make the scenario process as close as possible to an actual disruption, including 
alarms, phone calls from external parties, and other elements beyond the NMS interface.  We 
also inserted scripts meant to mimic interactions with field crews and others, such as the state 
police.  To further add realism, we recruited a subject matter expert (SME), a highly experienced 
former GMP operator, to write the scripts and to serve as the voice of the field crews (or other 
callers), reading from the scripts in the scenario. Overall, the scenarios provided a likely path, as 
determined by our SME, for operators to follow, serving therefore as a de facto baseline of 
operator performance, though (as we shall see) the scenario script does not prevent actions 
beyond the expected path from being pursued. 

As we developed the scenarios, we also created a detailed work breakdown structure (WBS) so 
we could capture the interchanges between the operator and external parties, including the 
originator and receiver of the communication or action, the means of communication or action, 
and the content of the communication or action. The WBS was beneficial in three ways:

• First, in error correction of the scenarios (e.g., identifying inconsistencies in switching or 
identification of assets used in the scenario);

• Second, in identifying the elements of each scenario that should be timed (e.g., the time 
from receipt of an alarm to awareness of its cause and subsequent dispatch of the field 
crew) during the course of the experiment; and

• Third, identifying elements of each scenario for which timing would be neither operator-
response dependent nor predictable (e.g., the time for a repair crew to reach a location 
once dispatched, the time for a repair crew to exact a repair once provided a switching 
plan).

The latter category was valuable in scenario execution within the experiment, as it created 
opportunities for acceleration of the scenario far beyond real timing, allowing for more scenarios 
to be explored (and for more data to be gathered) in a shorter period of time. Elements for which 
timing was deemed to be important, were often grouped. Grouping occurred because the 
sequencing of individual tasks within the sequence could vary. Grouping also occurred to make 
certain that the method of data capture (discussed later in this document) was consistent at the 
beginning and end of the sequence. 

We also used the work breakdown structure to define the difficulty of the scenario based on the 
number of steps needed to return the system to a state in which all customers have power (note 
that this does not mean full system restoration). Automation represented whether the scenario 
included guidance within the NMS on a preferred path for use of FLISR-enabled controls within 
the NMS, or no guidance from the NMS. 
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3.4.2 Execution of the Experiment
Because GMP has not yet implemented NMS in its control operations, we needed to put our test 
subjects through NMS training, sufficient to establish an acceptable degree of proficiency. 
Oracle supported this effort by conducting training sessions at GMP and offering follow-up 
phone support. We also asked two GMP operators to participate in a pilot test to ensure, prior to 
the experiment, that our approach was technically and logistically sound and that our analytic 
framework allowed for effective data capture and analysis.  Unfortunately, our pilot testers—
having been through the scenarios— could not participate in the experiment, thus shrinking our 
subject pool, but the testing proved invaluable: we identified multiple problems, including 
software issues, that needed to be fixed in advance of the experiment. 

We ran the experiments from June 28-July 1, 2016, during which time we tested a total of six 
GMP operators, or almost 75 percent of the available GMP operator pool (not counting the pilot 
testers.)  Before each scenario was activated in the NMS, our SME briefed the operator on 
prevailing conditions, including weather, time-of-year, and crew availability, that could influence 
his decision-making.  He also instructed the operator to restore the outages they encountered as 
safely and efficiently as possible. Although a simulator is not equivalent to a real-time 
environment, each operator was encouraged to treat the simulated scenarios as real events and to 
take into consideration all the factors that would normally influence their decision-making with 
respect to outage restoration.

We conducted the experiments in a private room at GMP, one operator at a time to minimize 
distractions and ensure privacy.  The Sandia human-factors expert oversaw the experiments, 
ensuring their consistency and was supported in her data collection by a GMP employee and also 
by the SME, who interacted directly with the test subjects by playing the role of the field crew, 
making phone calls to the operator, etc.  They captured data on the timing of particular actions 
(both human – human and human – machine interactions) using several methods: stopwatch for 
human-to-human interactions; screen capture software for general interactions with the NMS 
software environment; and NMS timing data for actions recorded by the NMS in the scenario. 
They also recorded times where appropriate, identified inconsistencies with the planned scenario 
actions, and corrected the path of the scenario when diversions occurred. Additionally, each 
operator was interviewed at the end of the experiment and asked to review the decisions he made 
during each of the scenarios and to assist the observers in clarifying the operator’s decision-
making process.

It is important to note that the participation of our test subjects was strictly voluntary per the 
requirements of Sandia’s Human Studies Board5.  We also made it clear to all that participants 
could withdraw from the study at any time, without penalty, and that their identities and results 
would forever remain confidential.
.   

5  The experimental plan proposed by the IGRID team was thoroughly vetted by Sandia’s HSN to ensure 
that the rights, including privacy, of all participants were protected and that no one would be coerced or 
pressured in any way to participate.
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Figure 7. Sample spreadsheet of outage scenarios.
The scenarios are sorted into pairs based on overall complexity, with one 

scenario in each pair FLISR-enabled.

3.4.3. Preliminary Results

Sandia created an analytic framework to document operator actions, restoration times per outage 
and per scenario and link the latter to CMI, sorted by both operator and scenario. 
Data analysis from the experiments is ongoing. Nonetheless, some observations can be made 
based on the data collection effort that are helpful to outlining future activities.

1. Expertise, Speed, and Accuracy
Researchers proposed that experienced operators, defined in other research as part of this overall 
effort (Stevens-Adams & Hannigan, 2016), would perform tasks faster and with greater accuracy 
than non-experts. In the collected data, the most experienced operator was slowest at completing 
the tasks. Post-exercise interviews did not clarify whether this was due to the operator being 
measured and deliberate in his actions, or due to a lack of proficiency and confidence with the 
system on which the operator had recently been trained.  Table 3 outlines the level of expertise as 
defined in this study for each participant, and also their level of familiarity with the portion of the 
GMP system used in the scenarios.

Table 3. Participants’ levels of expertise and system familiarity for the IGRID experiment.

P1 P2 P3 P4 P5 P6

Operator Expertise High Low High Low High Low

System Familiarity Low Low High Low Low Low

2. Situational Awareness and Critical Thinking
Researchers postulated that operator situational awareness would decline both as the scenarios 
became more complex and as the NMS provided FLISR solutions. The experimental data 
collected suggests this may be the case for the use of the NMS system. Given the instructions 
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provided, to “restore the outages they encountered as safely and efficiently as possible,” many 
operators appeared to be racing to achieve a solution as fast as possible. This strongly implies 
reduced situational awareness in decision-making on the part of the operators.
Observed behavior of operators also revealed that some operators take actions outside of the 
expert-suggested path to restoration. Some operators opened and closed switches in the system to 
try and identify the location of disruptions within the scenarios. When this happened, the 
simulated system responded as the real-world system would, avoiding actions that might lead to 
cascading outages through system protection devices. The guarantee that these protective devices 
will work every time in reality, or that switches and protective devices subject to action on a 
more frequent than design basis planned will protect both utility equipment as well as consumer 
equipment and utility- and consumer-owned distributed generation resources from further 
consequence is a question for operations planners. These findings lead directly into the next 
finding.

3.  Consistency of Action
Within the experiments, the sequence of procedures expected from each of the operators was 
inconsistent at best, likely reflecting different perceptions of the system and the way an operator 
should interact with it and with other elements of the operational team (e.g., field crews). These 
actions, combined with some of those identified above, suggest that steps to create a more 
rigorous and consistent training procedure for the way operators interact with control systems 
and field crews, may be of value.

4. Trust in Automation
Post-experiment interviews with operators suggest that automation provides value, and is seen as 
the future of grid operations.  But most suggested in these interviews that trust in automation 
would be an issue. That was seen in the actions taken in the FLISR-driven scenarios. In most 
cases, the FLISR solution was seen, but not acted on; rather, the operator used it as a guide for a 
manual operation. This behavior may change with time, but it suggests that confidence in the 
products of the automated system will evolve rather than be in place to begin. It also suggests an 
opportunity for…

5. Adequate Sample Size
Working with GMP on this effort was wonderfully productive in terms of developing a sound 
experimental design and testing procedure, including our scenario-based methodology, but the 
small size of the utility, and the number of operators, both experienced and non-experienced, 
meant that the data collected has limited value from a statistical analysis perspective. Identifying 
a utility with the proper number of operators to satisfy basic statistical limitations on collected 
data is an area for future examination, though trying to identify such utilities may lead beyond 
smaller distribution-focused entities like GMP. 

6. Errors in Experiment Execution
As with other experiments, this one was not without technical flaws. But the flaws seen in this 
case proved to be illustrative, revealing an interesting interaction between the NMS and the 
operator. In reviewing the data, for example, we saw that in one case, the NMS for the scenario 
in question had provided an erroneous FLISR option, associated with one of the other scenarios, 
with switching at a location completely unrelated to the outage posed. The operator chose to 
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follow the erroneous FLISR option, trusting the automated input provided. It took the operator 
several minutes to notice the difference, correct the system changes made following the FLISR 
option, and begin analyzing the system to restore based on the system fault.
This raises natural questions regarding the accuracy of information received by the operator via 
the NMS, of the underlying confidence and surety required by the operator in this information, 
and the potential for malicious actors or error in code deployment to lead to such errors, which 
have the potential to create disruptive events. This is a growing concern with the expansion of 
distributed generation assets connected to distribution utility systems, and of the need for these 
combined systems to operate without concern for erroneous reporting of this type.

3.4.4. Analysis

We presented each of the five trials (scenarios) to the six participants in random order. The 
finalized list of scenarios is included in Table 4. Two scenarios were run with FLISR automation 
turned off, while three were run with it on. The target difficulty encapsulates the total number 
and complexity of tasks required of the operator if the scenario were run to full recovery 
completion, as in a full check of loads and voltage measurements and release of the field crew.. 
However, because the scenarios were only run to full restoration (all customers online) instead of 
full recovery (all customers online and system returned to normal topology), the difficulty and 
recovery time should not be used to judge the results herein.

Table 4. Final scenarios 

Target 
Difficulty

Target Full 
Recovery Time

Number 
of Events

Ideal Switching 
Operations

FLISR 
automation?

Scenario 1 MED 0hr38’ 2 4 YES

Scenario 3 HIGH 1hr34’ 1 3 NO

Scenario 4 MED 5hr30’ 1 8 YES

Scenario 5 LOW 1hr22’ 1 5 YES

Scenario 6 LOW 0hr26’ 1 7 NO

In three individual trials, data was not accepted as valid, either because the experiment 
administrator mistakenly ended the session before all customers were online, or because the 
administrator did not adequately follow the scenario’s script:

a) Participant 1, scenario 1: Administrator did not adequately follow scenario script.
b) Participant 1, scenario 6: FLISR generated an incorrect solution, FLISR was intended to 

be inactive in this scenario.
c) Participant 4, scenario 3: Administrator ended session before all customers were online.
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With this data removed, Figure 8 illustrates the time to full restoration for each scenario across 
all participants. Restoration times for scenario 4 were longest on average, and scenario 4 had the 
largest variance across participants. We also noted that many of the participants disagreed with a 
particular piece of the FLISR solution in scenario 4. Also in scenario 4, some participants did to 
not use the remote control options for all possible switches, but instead chose to dispatch crews 
for manual switching in these cases.

Figure 8. Box and whisker plot of restoration time.
 Restoration times for each scenario in the experiment are shown for all 

participants.

There are similarities in some of the distributions, namely between scenarios 3 and 6, which are 
the two scenarios that lacked FLISR capability and also between FLISR-enabled scenarios 1 and 
5, although scenario 5 has a lower median restoration time. Judging simply from these 
distributions, there is no strong indication that adding FLISR automation improves overall 
restoration times.

Figure 9 illustrates the variation in restoration times among participants across all scenarios. It is 
apparent that participants 1 and 2 are consistently faster across all scenarios than the other 
participants, having both a lower variance and lower median restoration time. For participant 1, 
however, we had to discard two trials because of the experimental errors noted above. 
Interestingly, participants 3, 4, and 5 have similar median restoration times, but widely varying 
distributions.
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Figure 9. Box and whisker plot of restoration times for each participant for each scenario.

Figure 9 depicts how each participant performed compared to the mean restoration time for each 
scenario. Negative deviations indicate faster performance than the scenario mean. Whereas 
participant 2 was the only participant consistently faster across all scenarios, participant 3 was 
the only participant consistently slower across all scenarios. Notably, participant 3 was also the 
only expert across both operator and system knowledge categories, while participant 2 was a 
novice in both of these categories.

Purely based on observation, participant 3 was slowest to navigate the NMS interface but 
participants 1, 2, 5, and 6 also struggled at times with the NMS. Participant 4 had a noticeably 
heightened grasp of the NMS interface by comparison, but at times acted so quickly that 
mistakes were made, or cues from the experiment administrator had to be skipped.

Judging from this information, there is a slight suggestion that expertise may lead to longer 
restoration times, but this is not statistically significant. Anecdotally, participant 3 was much 
more deliberate in actions and made very sure that every FLISR suggestion was well-understood. 
Some of participant 3’s lag may be attributed to the lack of familiarity with the NMS interface 
but much of it may be attributed to a more cautious approach that is reflective of expertise. We 
should also note that the fastest participant (2), who was a novice, was confused at some points 
by NMS interface and had to slow down.  
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Figure 10. Deviation from scenario mean restoration time for each participant.

While time to full restoration is a helpful and accessible statistic to measure participant 
performance, the performance of the grid (and by association, the utility) depends on both the 
magnitude of customer outages and their duration. For that reason, we chose CMI as the more 
appropriate measure of grid performance for this study.  Faced with data complexities, we 
calculated CMI for only one of the scenarios, but believe with additional effort, we can calculate 
it for the remaining scenarios.  We also generated a timeline depicting customers out for scenario 
4 (Figure 7) showing the range in operator contributions to CMI.

Figure 11. Timeline of customers offline across all participants for scenario 4.
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Figure 7 provides excellent insight into the impact of operator performance on grid reliability 
and resilience. Participants 1 and 6 had nearly identical restoration times for scenario 4, yet their 
paths to restoration (blue and brown lines in Figure 7) are very different. Participant 1 reroutes 
power via remote control of SCADA-enabled reclosers more quickly than participant 6. 
Participant 6, on the other hand, communicates with field crews in between each decision to pick 
up a block of customers, leading to the more stepwise restoration timeline. Note also that 
participants 3 and 4 (green and red lines) both have very steep transitions to a low number of 
customers offline, indicating that they performed three automated switching sequences in 
extremely fast order. We believe this behavior is indicative of trust in the NMS FLISR 
automated solution. It takes participant 3 much longer to arrive at the FLISR solution than 
participant 4 – perhaps because of their relative levels of familiarity and comfort with the NMS 
interface.

Figure 8 illustrates the potential for strong difference between CMI and total restoration time for 
scenario 4. Even though participant 3 had the longest restoration time, participant 5 is the one 
who had the highest CMI measure. Other than this discrepancy, however, longer restoration 
times are associated with higher CMI.

Figure 12. CMI and restoration times for scenario 4 for all participants.

3.5. Game-Theoretic Modeling

To add an important theoretical underpinning to the IGRID project, we conducted a game-
theoretic modeling effort. Our aim was to develop an attacker-defender model in parallel with 
IGRID’s experimental work (described above) to further illuminate the interactions between 
operator and automation. Our work builds on a game-theoretic model developed by Jones et.al. 
[11] with two players in the game: an attacker who attempts to gain control of a resource and a 
defender who tries to prevent access. 

While many models for automated power grids have focused on Fault Location, Isolation and 
System Recovery (FLISR) algorithms, few consider the interaction between operator and 
automation. Our goal is not to determine the optimal FLISR algorithm, but to assume that the 
FLISR algorithm is a black box that the operator works with.  In taking this approach, our 
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objectives were to 1) demonstrate that the relationship between the operator and automation is 
worth studying and 2) identify when automation improves grid performance versus when 
automation is a risk and the operator needs to operate the grid in manual mode. 

3.5.1. Representation of the Power Grid

We represent the power grid as a mathematical graph  where  is the set of vertices in graph and  
is the set of all edges in the graph where an edge connects any two vertices. To translate a power 
grid to a mathematical graph, we first described the edges as switches, which can be opened and 
closed, but are also directional based on whether the switch allows for unidirectional or bi-
directional power flow. We also tracked the type of switch (manual/automated) and the current 
status of each switch (open/closed) and defined the vertices of the graph as customers on the line 
connecting the switches, with their number weighted by the number of customers on that line.  

Our conceptual approach is depicted in Figure X, which is a graphic representation of a power 
grid.  The edges are represented by lines where dashed/solid edges represent the open/closed 
property while grey/black represent the automated/non-automated property. Circles represent the 
vertices with their respective weights. Any vertex with a weight of 0 is a feeder and vertices are 
colored based on the power line they are located on. Any fault that occurs on the grid or any 
flipping of switches by the operator will change properties of the edges.

Figure 13. Mathematical graph representation of a power grid. 
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3.5.2. Attacker-Defender Moves

The game-theoretic model consists of two players, the attacker and the defender who take turns 
flipping switches in the power grid. The attacker does not have rationality or a goal but is an 
undefined phenomenon, such as weather or equipment failure, that causes an outage. The 
attacker is tracked, however, by two parameters: the number of attacks and the time at which 
each attack occurs. 

In contrast, the defender is the grid operator whose goal is to restore power to the grid with 
minimal cost defined by a selected metric, which could be speed or safety or both.) Once an 
attack occurs, if the system is automated, a FLISR generated solution will be available to the 
operator. The operator has the choice of whether to blindly follow the FLISR generated solution 
or to create his own solution. If the operator chooses to create his own solution, he must choose 
which switches to flip and when based on how he wants to isolate the fault and what customers 
he wants to restore first. A priori, it may not be obvious why the operator would not follow the 
FLISR generated solution or why an operator would choose to wait before flipping switches, a 
topic for further investigation. 

3.5.3. Parameters and Metrics

Every action in the restoration process takes a certain amount of time to perform before the next 
action can be performed. These times depend on the automation (i.e. it is faster to flip an 
automated switch as opposed to a manual switch) and operator expertise (i.e. a highly skilled 
operator may be faster at deciding which switches to flip than a lesser-skilled operator). For now 
we have the following set of parameters, although ideally they would come from a distribution of 
data obtained from the IGRID experiments.)
 

Parameter Description

Flip time The amount of time it takes for a single switch to be flipped. 
Depends on automated/non-automated

Approve FLISR The amount of time it takes for an operator to approve a FLISR 
solution. This may vary depending on the skill level of the operator

Decision Time The amount of time it takes for an operator to decide which 
switches to flip (for non-FLISR solutions). This may vary 
depending on the skill level of the operator. 
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We chose CMI as our reliability metric because it aligns with the key metric for our experimental 
work. : Customer Minutes Interrupted (CMI). 

3.5.5. Examples

We present two examples of operator-autumation interaction based on one of the IGRID 
scenarios but modified to demonstrate important factors in the interaction between operator and 
automation.  The times to complete different actions are demonstrative and do not reflect real 
world data. The assumptions made are:

Parameter Value

Flip time Automated switch – 1 minute
Manual switch – 5 minutes

Approve FLISR 1 minute

Decision Time Operator with high skill level – 2 minutes
Operator with low skill level – 5 minutes 

3.5.5.1. Example 1 – The Automation Fails 

In this example, we look at two options: 
1) the operator accepts the FLISR-generated solution and lets the switches operate automatically; 
2) The automated switches fail and cannot be flipped automatically so the operator chooses to 
not follow the FLISR generated solution. 

We outline three restoration process for the above options below.  This example shows that the 
operator reduced CMI by opting to not follow the FLISR generated solution because he could get 
more customers up sooner by manually flipping switches.  This example demonstrates the 
importance of the operator not solely relying on the FLISR generated solution. 
1.  Fully automated
This is the ideal case where the switches are not damaged, allowing the operator to follow the 
FLISR solution. For this solution, we are assigning an arbitrary time of 73 minutes for the fault 
to be physically repaired by a crew, which we will use as a constant in the subsequent cases. 
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2.  Automation fails and operator blindly follows FLISR generated solution
In this case, the operator accepts the FLISR generated solution without hesitation (same steps as 
in Section 1), but needs to flip switches manually so the restoration process takes longer. 

3.  Automation fails but operator’s skill level is high
In this case, the operator acknowledges he cannot take advantage of automatic switching and 
therefore does not follow the FLIS- generated solution. Instead, he/she designs his/her own 
restoration process, with reducing CMI being a priority. 
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Figure 14. In this model, the operator outperforms the FLISR-generated solution.

3.5.5.2. Example 2 – Waiting to implement strategy
In this example, we assume a bad storm has created multiple faults. We outline the recovery 
times for two cases: 1) the operator readily accepts the FLISR generated solution; or 2) the 
operator acknowledges the storm is bad and waits to begin the recovery process until he has 
more information about both faults.  A review of the literature suggests that FLISR solutions 
cannot handle multiple faults at once but deal sequentially with each fault. [26, 27] 

We therefore explore two options: one, where the operator addresses the first fault, restoring 
power using the FLISR-generated solution, and then addresses the second fault using the FLISR-
generated solution for that fault but without any coordination or overlap between the two events.  
In this example, the FLISR solution has devastating consequences because it reroutes power for 
the first fault onto the line where the second fault occurs. In the second case, however, the 
operator waits for the storm to subside before starting the recovery process and enacts a very 
different restoration strategy.  This example demonstrates that when critical thinking skills are 
important, such as recognizing the storm was severe and waiting to implement grid restoration, 
an operator can outperform FLISR. This example also demonstrates that in almost every 
circumstance, it behooves an operator to consider the broader picture before blindly accepting a 
FLISR solution. 
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1. Operator does not wait
In this case, the operator quickly accepts the FLISR solution for the first fault and when the 
rerouting is completed, he quickly accepts the FLISR solution for the second fault. Again, we 
assume a constant repair time of 73 minutes for the first fault and but reduce that time to 60 
minutes for the second fault because the field crew is already dispatched. 

2.   Operator waits
In this case, the operator observes the storm is strong and, based on experience, anticipates 
multiple faults. He therefore decides to wait until the storm has passed, which takes 40 minutes. 
Able to dispatch two crews, he can manage the two outages in parallel because they are on different 
feeders.
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Overall, the goal of designing this game-theoretic model was to study the interactions between 
operators of the power grid and automation and to help pinpoint when automation helps and 
when it hinders grid restoration.   Automation is fairly new in the recovery process of the power 
grid, and little work has been done to study how automation should be integrated into the current 
recovery process. This work does not provide an analytical solution but the model demonstrates 
the outcomes that can be expected from the examples we provided.  The model also lends itself 
to a Monte Carlo approach, where based on some probability distribution, we could select 
switches to flip for the recovery process. By running these simulations many times, we can 
quantify the average CMI for a given set of fault characteristics or calculate an upper bound for 
the CMI, information that provides a useful context and set of parameters for operators to 
consider when making restoration decisions. 

.

Figure 15. Differences between an operator who waits and one who accepts FLISR.
The operator who waits before implementing a restoration plan still outperforms 
the FLISR solution because the latter requires sequential restoration whereas the 
operator can, in theory, restore multiple outages in parallel. 
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4. CONCLUSIONS

1. Our analysis of GMP’s historic data suggest that both level of operator expertise and
and the state of the grid are indicators of whether automation is a benefit or a detriment to grid 
restoration.  Experts consistently improve when you give them automation; novices improve but 
only during non-peak activity periods.  During peak periods, their performance goes down.

2. Our experimental work indicates there are predictive patterns in the interplay between human 
operators and automation, namely that operator-machine interactions become less predictable as 
outage complexity increases and that under stressful conditions, i.e., complex, unplanned and 
unpredictable outages, the human operating in manual mode always outperforms the automation.

3. Our experimental work, admittedly based on a small sample size, also indicates that operators’ 
level of expertise, which determines autonomy in the control room, is inversely correlated with 
performance when automation is present. The more senior/expert operators appear to be more 
distrustful of automation and therefore slower to restore the grid.

4. Our experiment also suggests the rollout of automated switching, that will profoundly affect 
how the operator interacts with the grid, but more work needs to be done to understand the 
opportunities and vulnerabilities in this space.

5. Our game-theoretic modeling can benefit utilities by allowing operators to practice and 
investigate different ways for working with automation in a simulated environment.

6. Our methodology for measuring automation reveals key patterns in operator-automation 
interactions that can inform resource optimization.

6. Overall, our research brings a predictive element to grid operations, enabling utilities to match 
automation to the state of the grid, and/or level of operator that in turn suggests improved system 
control and resilience.

Moreover, although our research is still in the nascent stage, we now have an effective —and 
extensible—platform for expanding our research on the operator-automation interface and 
collecting more data on such important topics as situational awareness, decision-making, 
expertise, proficiency, trust, etc.  Our methodology also allows us to investigate a broad range of 
other challenges facing the grid-operator interface, including cyber intrusion, extreme weather, 
blue-sky events and the rapid increase in intermittent renewables. 
We are also confident that our research has myriad practical applications, examples of which are 
listed here:
- Offers a way to look at grid behavior as a function of operator behavior, which can lead to 

better system planning and improved grid performance metrics
- Provides a scientific basis for operator training, which is needed to reduce vulnerabilities and 

maintain/increase operator performance
- Supports the development of more effective human-machine interfaces and real-time 

decision-support tools
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- Provides data to justify a utility’s investment in automation and support the roll-out of 
distribution automation [28]

- Can inform, and be integrated with, other grid resilience efforts
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APPENDIX

Analysis of Historical GMP Outage Data
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Background
The goal of this analysis is to determine which factors contribute to customer hours out (CHO) 
during a power outage.  Each observation in this dataset is one outage event that occurred 
somewhere in the portion of the electrical grid owned and operated by Green Mountain Power in 
Vermont. For each observation there is information about the time and date of the outage, the 
cause of the outage according to the operator, where the outage occurred (which feeder), whether 
it occurred during a major storm, whether the affected feeder was automated, and the level of 
expertise of the operators. This analysis seeks to determine how each of these factors affects 
CHO in conjunction with one another. To do so, two analyses are performed:

1) descriptive statistics are computed to identify which specific sets of conditions are 
observed to result in the greatest CHO on average, and

2) a statistical model is fit to determine how factors interact with one another to affect CHO 
on average, in a more general sense.

Methods
Factors and Data
Data were collected on 14,776 outages between August 1st, 2014 and October 19th, 2015. The 
time and date information were used to calculate time of day, day of week, and season. Time of 
day is a binary factor where 0 = peak hours (9:00 AM – 8:00 PM) and 1 = off-peak hours. Day of 
week is a binary factor where 0 = weekday (Monday – Friday) and 1 = weekend. Season is 
divided into three categories: 0 = winter (December - February), 1 = summer (June - August), 
and 2 = off-season. The operators coded the cause of the outage event as one of 55 categories. 
These were binned into more general causes. The resulting bins are shown in Table 1 along with 
frequency and percent of total outages. The operators also flagged outage events that occurred 
during a major storm, resulting in a binary factor where 0 = no major storm and 1 = major storm. 
Feeders were identified that have an automation component, and outages occurring on these 
feeders were considered 1 = Automated, and outages on all other feeders were considered 0 = 
Not Automated. Unfortunately it is unknown whether or not the automation feature was 
implemented on a given feeder during an outage event. Feeders were also categorized as being 
either 0 = urban or 1 = rural, based upon location of the feeder with respect to cities in Vermont. 
In general, feeders within the city of Rutland were considered urban, and all others were 
considered rural. Appendix A shows the automation and urban/rural designations for each feeder 
ID.
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Finally, Sandia obtained the operator schedule for the year of 2015 (starting January 11th, 2015) 
as well as designations of “expert” versus “non-expert” for each operator. A level of expertise 
was assigned to each outage event observed during this time frame. An outage event could either 
have 0 = no coverage by an expert (no experts on shift for any part of outage), 1 = partial expert 
coverage (at least one expert for some but not all of the outage event), 2 = full expert coverage 
(at least one expert on shift for entire duration of outage), or NA for outage events that took 
place before January 11th, 2015. 

Table 1. Frequency Table for Cause
Cause Frequency Percent of Total

Unexpected Grounding  2731  18.48
ANIMAL - RACCOON 14 0.094748
ANIMAL - BIRD 201 1.360314
ANIMAL - SQUIRREL WITH GUARD 919 6.219545
ANIMAL - SQUIRREL WITHOUT GUARD 391 2.646183
ANIMAL - OTHER 37 0.250406
EQUIP - Surge/Lightning Arrester 57 0.385761
EQUIP - Cutout 394 2.666486
EQUIP - Capacitor 1 0.006768
EQUIP - Regulators 8 0.054142
EQUIP - Line Recloser/Breakers 21 0.142122
EQUIP - Transformers - Broken Bushing 14 0.094748
EQUIP - Insulator 93 0.629399
EQUIP - Services and Serv Drops (Inc. 
Secondary) 199 1.346779

EQUIP - URD Secondary Cable (Only GMP 
Owned) 49 0.331619

EQUIP - URD Primary Cable 51 0.345154
ACCDNT  - Car 239 1.617488
EQUIP - URD Failure Misc. 43 0.291012
Unexpected Line Open  1742  11.79
ACCDNT  - Logger Landowner Tree 82 0.554954
ANIMAL - BEAVERS DROPPING TREES ONTO 
LINES 8 0.054142

ERROR - Tree Trimmer 9 0.06091
TREE - Other - Out ROW 179 1.211424
TREE - Other - In ROW 740 5.008121
TREE - Other - Limb 552 3.735788
Planned Outage 167 1.130211
ACCDNT - Muni Request 5 0.033839
Line Open Failure  262 1.77 
EQUIP - Wire Splices Primary Compression 
or Automatic 37 0.250406

EQUIP - Compression Type Connector 83 0.561722
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EQUIP - Bolt Type Connector 67 0.453438
EQUIP - Wire Break (Primary Only and not 
Trees) 75 0.50758

Preventable Foreseeable  7635  51.67
EQUIP - Transformers - Overload 69 0.466973
EQUIP - Transformers - Improper or No 
Voltage 52 0.351922

EQUIP - Transformers - Leaking Transformer 4 0.027071
EQUIP - MTC (Midpoint Terminating 
Cabinet) 6 0.040606

WEATHER - Flooding 6 0.040606
WEATHER - Lightning 488 3.302653
WEATHER - Snow Load/Wire Slap 1050 7.106118
WEATHER - Other 131 0.886573
TREE Snow/Ice - Out ROW 996 6.740661
TREE Snow/Ice - In ROW 1157 7.830265
TREE Wind - In ROW 2224 15.05143
TREE Wind - Out ROW 1341 9.075528
ACCDNT - Fire 78 0.527883
GMP - Planned Non Emergency 33 0.223335
Error  46 0.31 
ERROR - Field Worker 1 0.006768
GMP - Emergency 45 0.304548
Supplier  67 0.45 
SUPPLIER - National Grid 30 0.203032
SUPPLIER - Other 37 0.250406
Other  2293 15.52 
OTHER 15 0.101516
Unknown 1373 9.292095
EQUIP - Transformers - Misc. 350 2.368706
EQUIP - Other 305 2.064158
GMP - Other 113 0.764754
ACCDNT  - Other 106 0.71738
ERROR - Other 26 0.175961
(blank) 5 0.033839

Statistical Approach
Descriptive Statistics
A factor is a variable that is discrete and typically has non-numeric values. Each factor has at 
least two possible values, which are called levels. For example, the Time of Day factor has two 
levels: peak and off-peak. Treatments are combinations of levels of all factors. For example, one 
treatment in this data set would be: cause = LineOpenFailure, Time of Day = peak, Day of Week 
= Weekday, Season = Winter, Urban/Rural = Rural, Automation = Not-Automated, Major Storm 
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= No, and Expertise = Partial. In order to determine which sets of specific conditions contribute 
to the largest values of CHO on average, we calculated descriptive statistics on treatments. All 
treatments were identified, and the average CHO was calculated for all observations in each 
treatment. The treatments were ordered by mean CHO in order to identify those conditions under 
which CHO is observed to be highest, on average. 
ANOVA Model
The purpose of the statistical model is to identify statistically significant factors (categorical) that 
are associated with the response of interest, CHO (continuous). Typically, an ANOVA would be 
the most appropriate data analysis method, however, in this case a standard ANOVA model 
could not be used. An ANOVA compares the means of groups defined by various factors to one 
another. The ANOVA model requires various assumptions to be met in order for the statistical 
tests regarding the mean comparisons to be valid. Perhaps the most important of these 
assumptions, homogeneity of variance, was not met. Many response variable transformations 
were attempted to remedy the heterogeneity of variance, including an optimized power 
transformation, but none were successful. 
Instead, other non-parametric approaches were explored in order to circumvent the problem of 
heterogeneity of variance. The Aligned Rank Transform (ART) was ultimately selected since it 
is non-parametric, is able to model multiple factors simultaneously, and can include interaction 
terms (Wobbrock et al, 2011). There are two main steps to calculating the ART. The first step in 
the ART procedure is to align the response for each effect (main and interaction). This alignment 
step works by estimating marginal means and removing their effects on the response for all but 
one (the one for which the response is aligned). The second step in the ART procedure is to rank 
the responses for each aligned version of the data. This concludes the ART procedure, and we 
are left with an aligned, ranked version of CHO for each effect (main and interaction). 
Next, an ANOVA was performed on the ART data. When using the ART data in an ANOVA, all 
effects (main and interaction) should be included in the model, but only the hypothesis test that 
corresponds to the effect for which the response is aligned is accurate. This means that to fit a 
model with multiple effects, the model must be fit once for each effect (but including all effects 
in the model), where the response is CHO aligned and ranked for the given effect. If variable 
selection is desired, then the highest order effect with the greatest p-value is removed and all 
models are refit. This process is repeated until only statistically significant effects remain. 
In the case of this dataset, the design is not fully factorial. That is, not all combinations of factor 
levels occur in the dataset. As a result, the packages that are currently available in R for ART 
could not be used. Thus we implemented ART and used it to accommodate the complex outage 
data. The ART procedure described in Wobbrock et al. was followed for these calculations, and 
the code was implemented in R.
Only two-way and three-way interactions were considered in the model. Conceivably, since there 
are eight factors an eight-way interaction is possible. However, very high order interactions are 
increasingly difficult to interpret, so we limited our scope to three-way interactions. Furthermore, 
since there are not observations for all possible three-way interactions, only those interactions for 
which there are data were included in the model. This resulted in 18 possible three-way 
interactions. A three-way interaction has three two-way interactions associated with it that it 
accounts for. For our analysis, we also included the two two-way interactions that were not 
associated with one of the 18 three-way interactions. 
Although the ART procedure allows for the fitting of a multi-factor model with interaction terms 
and accurate hypothesis tests regarding these terms, one limitation is that post hoc comparisons 
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cannot be made for interaction effects. Instead, we give interaction plots and describe the 
patterns observed. Unfortunately, we are not able to test these relationships statistically.

Results
Exploratory Data Analysis
Table 2 shows the range, mean, and standard deviation for three response variables: customers 
affected, duration of outage (in hours), and CHO. Additionally, Figures 1-8 that follow plot the 
densities of the eight factors for all three response variables. Although the analysis focuses on 
CHO, this summary table and the figures may serve as references to distinguish between outage 
events with higher CHO caused by greater number of customers as opposed to those caused by a 
longer duration. 

Table 2. Descriptive statistics for response variables, broken down by factor
Predictor Output Range Mean Standard 

Deviation
Major 
Storm

Yes Hours 0.0908 - 
139.7

18.41 21.74

 Customers 0 - 1,949 46.28 157.44
 CHO 0 - 71,790 672.8 3,008.97
 No Hours 0.0844 - 

739.9
2.411 11.78

 Customers 0 - 5,428 45.62 186.3
  CHO 0 - 29,520 97.14 553.2
Cause Unexpected 

Grounding
Hours 0.124 - 

22.86
1.727 1.4

 Customers 0 - 2,102 27 143.49
  CHO 0 - 9,663 53.33 395.53
 Unexpected Line 

Open
Hours 0.0864 - 

739.9
6.27 41.77

 Customers 0 - 3,407 62.67 228.96
  CHO 0 - 29,520 174.5 1,181.48
 Line Open Failure Hours 0.0878 - 

5.974
1.835 1.32

 Customers 0 - 1,790 134.2 361
  CHO 0 - 1,671 158.9 373.16
 Preventable 

Foreseeable
Hours 0.0869 - 

133.2
7.911 15.27

 Customers 0 - 5,428 52.19 196.31
  CHO 0 - 71,790 312.2 1,911.26
 Error Hours 0.119 - 

11.38
1.525 1.89

 Customers 0 - 1,703 264.6 430
  CHO 0 - 1,038 186.4 263.21
 Supplier Hours 0.0847 - 3.805 5.05
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31.37
 Customers 0 - 2,641 383.7 519.49
 CHO 0 - 4,872 778.1 1,040.59
 Other Hours 0.0844 - 

139.7
4.482 10.07

 Customers 0 - 2,640 34.8 140.45
  CHO 0 - 63,300 158.6 1,130.28
Time of 
Day

Peak Hours 0.0844 - 
739.9

5.705 17.77

 Customers 0 - 3,723 43.96 180
 CHO 0 - 71,790 209.4 1,451.35
 Off-peak Hours 0.0864 - 

133.2
5.875 12.38

 Customers 0 - 5,428 48.51 181.54
  CHO 0 - 66,630 231.4 1,529.64
Season Summer Hours 0.0878 - 

34.11
2.209 2.07

 Customers 0 - 3,407 46.04 192.91
  CHO 0 - 17,920 106.5 603.93
 Winter Hours 0.0908 - 

139.7
13.83 19.83

 Customers 0 - 2,640 48.3 173.58
 CHO 0 - 71,790 516.3 2,571.81
 Off Hours 0.0844 - 

739.9
2.393 13.98

 Customers 0 - 5,428 44.27 180.67
  CHO 0 - 29,520 87.01 491.76
Day of 
Week

Weekday Hours 0.084 - 671 6.399 16.38

 Customers 0 - 5,428 47.15 184.79
 CHO 0 - 71,790 249.5 1,660.03
 Weekend Hours 0.0878 - 

739.9
3.639 13.73

 Customers 0 - 3,407 41.02 165.54
  CHO 0 - 17,920 111.1 535.81
Automation Auto Hours 0.162 - 

77.95
3.542 8

 Customers 0 - 1,217 36.61 144.83
 CHO 0 - 1,787 75.03 232.26
 Not-Auto Hours 0.0844 - 

739.9
5.826 15.99

 Customers 0 - 5,428 45.98 181.38
  CHO 0 - 71,790 221.5 1,499.86



50

Urban/Rura
l

Urban Hours 0.0878 - 
739.9

7.086 33.24

 Customers 0 - 1,232 37.3 111.57
 CHO 0 - 8,217 147.3 563.88
 Rural Hours 0.0844 - 671 5.722 14.79
 Customers 0 - 5,428 46.08 182.74
  CHO 0 - 71,790 220.8 1,506.91
Expertise None Hours 0.099 - 

9.387
1.677 1.08

 Customers 0 - 3,407 53.33 217.2
  CHO 0 - 5,063 90.76 398.66
 Partial Hours 0.211 - 

739.9
5.169 33.15

 Customers 0 - 2,641 42.87 172.71
  CHO 0 - 17,920 155.6 765.22
 Full Hours 0.084 - 

10.81
1.835 1.32

 Customers 0 - 5,428 47.51 202.82
 CHO 0 - 8,052 75.68 355.8
 NA Hours 0.0908 - 

139.7
9.279 16.66

 Customers 0 - 2,498 44.08 158.46
  CHO 0 - 71,790 350.1 2,059.84

Figure 1. Density of customers, hours, and CHO for levels of Major Storm
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Figure 2. Density of customers, hours, and CHO for levels of Cause
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Figure 3. Density of customers, hours, and CHO for levels of Time of Day

Figure 4. Density of customers, hours, and CHO for levels of Season
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Figure 5. Density of customers, hours, and CHO for levels of Day of Week
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Figure 6. Density of customers, hours, and CHO for levels of Automation
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Figure 7. Density of customers, hours, and CHO for levels of Urban/Rural
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Figure 8. Density of customers, hours, and CHO for levels of Expertise

When performing an ANOVA, including an ANOVA on ART data, the purpose is to determine 
if there is a statistically significant difference between group means. A boxplot can be useful in 
approximating whether or not there is a difference between group means. Figures 9-16 are 
boxplots of CHO for each factor. In each figure, the first subfigure includes all data points, and 
the second subfigure is zoomed in to see the group medians more clearly. The horizontal black 
line in each box represents the median, and the lower and upper limits of the box represent the 
25th and 75th percentiles of the data. The problem of heterogeneity of variance is made obvious 
by observing the percentiles. For a given figure, boxes that have a large difference in height 
indicate heterogeneity of variance. 

Figure 9. Boxplot of CHO for levels of Major Storm
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Figure 10. Boxplot of CHO for levels of Cause
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Figure 11. Boxplot of CHO for levels of Time of Day
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Figure 12. Boxplot of CHO for levels of Season



61

Figure 13. Boxplot of CHO for levels of Day of Week
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Figure 14. Boxplot of CHO for levels of Automation



63

Figure 15. Boxplot of CHO for levels of Urban/Rural



64



65

Figure 16. Boxplot of CHO for levels of Expertise 
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Descriptive Statistics
The mean CHO was calculated for each treatment in the data. There were a total of 428 
treatments that were observed in the data. (Note that based on the levels of each factor, there are 
2688 total possible treatments in theory, but many of these were not observed in the data set). 
The results for the treatments with the top ten values of mean CHO are displayed in Table 3. The 
complete table can be found in Appendix B. It is important to note that this table gives only the 
observed ranking and mean CHO; it does not test for statistically significant differences between 
the treatments.

Table 3. Treatments with the top ten greatest observed mean CHO

Cause Time of Day Season Urban/Rural Automation
Major 
Storm Expertise

Day of 
Week Mean_CHO

Supplier off-peak off Rural Not-Auto NO partial weekday 4125.605

UnexpectedLineOpen off-peak winter Rural Not-Auto NO none weekday 2531.543

UnexpectedLineOpen peak summer Rural Not-Auto NO partial weekend 1834.663

Other peak summer Rural Not-Auto NO partial weekend 1797.53

PreventableForeseeable off-peak summer Urban Not-Auto NO partial weekend 1685.658

UnexpectedLineOpen off-peak summer Rural Not-Auto NO full weekend 1631.592

Other off-peak winter Urban Not-Auto YES no info weekend 1577.687

UnexpectedGrounding off-peak winter Rural Not-Auto YES no info weekday 1284.5

Supplier off-peak winter Rural Auto YES no info weekday 1209.878

Supplier off-peak off Rural Not-Auto NO no info weekday 1034.34

Inferential Data Analysis
We fit an ANOVA model to the ART data that included all eighteen three-way interactions and 
two two-way interactions. We performed backwards variable selection by removing the least 
significant effects, one at a time, until only statistically significant effects remained in the model. 
The results of the final model are given in Table 4. Fifteen of the three-way interactions were 
statistically significant, and both of the two-way interactions were statistically significant.

Table 4. F-tests for each effect in the final model
Term SS (Type 

III)
df F p

Cause*Time*Season 5.8816e+0
8

1
2

4.3411 6.152e-07 **
*

Time*Season*Urban/Rural 4.3174e+0
8

2 17.3441 2.995e-08 **
*

Time*Season*Day of Week 2.7450e+0
9

2 110.5799 < 2.2e-16 **
*

Time*Major Storm*Urban/Rural 1.2564e+0
8

1 10.0969 0.0014883*

Time*Major Storm*Day of Week 8.2222e+0
7

1 6.6305 0.0100342 *

Time*Urban/Rural*Expertise 5.6980e+0 3 15.2462 6.670e-10 **
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8     *

Time*Expertise*Automation 2.3266e+0
8

3 6.2275 0.0003197 *
**

Time*Expertise*Day of Week 2.5948e+0
9

3 70.2457 < 2.2e-16 **
*

Time*Automation*Day of Week 1.4018e+0
8

1 11.2628 0.0007928 *
**

Season*Urban/Rural*Day of Week 1.4657e+0
8 

2 5.8846 0.0027886 *
*

Season*Automation*Day of Week 2.5767e+0
8 

2 10.4147 3.021e-05 **
*

Major Storm*Urban/Rural*Day of 
Week

4.9220e+0
8

1 39.6846 3.070e-10 **
*

Major Storm*Automation*Day of 
Week

3.5126e+0
8 

1 28.4432 9.792e-08 **
*

Urban/Rural*Expertise*Day of Week 2.1828e+0
8

3 5.8476 0.0005490 *
**

Expertise*Automation*Day of Week 1.3154e+0
9

3 35.3594 < 2.2e-16 **
*

Cause*Expertise 3.9726e+1
0

1
8

225.3765 < 2.2e-16 **
*

Cause*Day of Week 2.5676e+1
0

6 379.0228 < 2.2e-16 **
*

* p < 0.05, ** p < 0.01, *** p < 0.001
Unfortunately, using the ART it is not possible to test for contrasts above the main effect level. 
Instead, for each significant term an interaction plot will be displayed (Figures 17 – 33). A 
qualitative description of general patterns and the most obvious effects will be given, some with 
accompanying mean CHO values in hours. Again, these contrasts have not been tested for 
statistical significance. 
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Cause*Time*Season
When an outage is caused by the supplier during the off-season, mean CHO is higher (1444) for 
off-peak hours compared to peak hours (495). When an outage is caused by an error, during the 
peak hours it has the greatest mean CHO in the winter and the off-season, and during the off-
peak hours it has the greatest mean CHO in the summer. When an outage is caused by a 
LineOpenFailure during peak hours, the mean CHO is nearly constant throughout the year (~30). 
However if it occurs during off-peak hours during the off-season then mean CHO is much 
greater (473). 

Figure 17. Interaction plot of CHO for Time of Day, Cause, and Season
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Time*Season*Urban/Rural
When the outage takes place in an urban setting during peak hours, mean CHO is similar in the 
off-season and summer months (~60) and greater in the winter (250). However, if the outage 
occurs during off-peak hours it is higher in the summer (108) and higher yet in the winter (324). 
In general, rural outages and those that take place in the winter have higher mean CHO.

Figure 18. Interaction plot of CHO for Time of Day, Urban/Rural, and Season

Time*Season*Day of Week
If an outage occurs on the weekend during the off-season, mean CHO is about the same for peak 
and off-peak outages (~90). Compared to the off-season, a weekend outage in the winter results 
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in a higher mean CHO during off-peak hours and a lower mean CHO during peak hours. 
Compared to the off-season, a weekend outage in the summer results in higher mean CHO 
during both peak (202) and non-peak hours (162). In general, weekday outages in the off-season 
and summer have lower mean CHO compared to weekend outages, but the opposite is true 
during the winter.

Figure 19. Interaction plot of CHO for Time of Day, Day of Week, and Season

Time*Major Storm*Urban/Rural
For outages during a major storm in an urban area, mean CHO is higher during non-peak (417) 
versus peak hours (309). In general, outages in rural areas have greater mean CHO than those in 
urban areas, especially during a major storm. 

Figure 20. Interaction plot of CHO for Time of Day, Urban/Rural, and Major Storm



71

Time*Major Storm*Day of Week
A weekday, major storm outage has lower mean CHO during peak (823) hours than during off-
peak hours (736). A weekend outage during peak hours results in about the same mean CHO, 
whether or not it occurred during a major storm. On the other hand, a weekend outage during 
off-peak hours has greater mean CHO during a major storm (232) compared to when there is no 
major storm (110). In general, mean CHO is about the same when it’s not a major storm for all 
days of the week and times of day, but it is much greater on weekdays during a major storm for 
both peak and off-peak times.
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Figure 21. Interaction plot of CHO for Time of Day, Day of Week, and Major Storm

Time*Urban/Rural*Expertise
When an outage occurs with only non-experts in the room for the entire outage in a rural area, 
mean CHO is greater during off-peak (126) hours compared to peak hours (69); and when it 
occurs in an urban area mean CHO is greater during peak hours (111) compared to non-peak 
hours (22). When an outage occurs with partial coverage by an expert, mean CHO is about the 
same for rural outages in both peak and off-peak times (157). However, with partial coverage by 
an expert for an urban outage, mean CHO is greater during off-peak times (246) than peak times 
(31). In general, when an outage is fully covered by an expert, mean CHO is about the same for 
urban and rural outages in both the peak and off-peak times.

Figure 22. Interaction plot of CHO for Time of Day, Expertise, and Urban/Rural
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Time*Expertise*Automation
When an outage occurs during peak hours and it is partially covered by an expert, if the feeder is 
not automated the outage events have greater mean CHO (157) compared to when the feeder is 
automated (80). However, when a partially covered outage occurs during off-peak hours, if the 
feeder is not automated the outage events have smaller mean CHO (156) compared to when the 
feeder is automated (196). When the outage is not covered at all by an expert, the pattern is 
reversed. In this case if the outage occurs during peak hours, outages on automated feeders have 
greater mean CHO (133) compared to those on non-automated feeders (70). When the outage 
occurs during off-peak hours, outages on automated feeders have smaller mean CHO (29) 
compared to those on non-automated feeders (125). In general, outages that are fully covered by 
an expert operator have the lowest mean CHO, and those outages have greater mean CHO when 
they occur on the non-automated feeders. This pattern appears to hold across all hours of the day.
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Figure 23. Interaction plot of CHO for Time of Day, Expertise, and Automation

Time*Expertise*Day of Week
For outages that are partially covered by an expert, mean CHO on weekdays is about the same in 
the peak and off-peak hours (~123), however, on weekends it is greater during peak hours (349) 
than off-peak hours (247). For outages that are not covered at all by an expert operator, outages 
occurring during peak hours result in mean CHO that is about the same on all days of the week 
(~71); however, outages during off-peak hours result in mean CHO that is greater on a weekday 
(190) compared to the weekend (65). In general, when an outage is fully covered by an expert 
operator mean CHO is slightly lower on weekdays (~67) versus weekends (~105), regardless of 
time of day. 

Figure 24. Interaction plot of CHO for Time of Day, Expertise, and Day of Week
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Time*Automation*Day of Week
When an outage occurs on an automated feeder on a weekday, mean CHO is higher during peak 
hours (92) versus off-peak hours (63). However, outages on automated feeders on weekends 
result in greater mean CHO during off-peak (92) as opposed to peak hours (27). In general, 
outages on non-automated feeders have higher mean CHO on weekdays (~255) as opposed to 
weekends (~115), regardless of time of day.

Figure 25. Interaction plot of CHO for Time of Day, Automation, and Day of Week
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Season*Urban/Rural*Day of Week
Outages that occur in the winter on a weekend result in about the same mean CHO for both 
urban and rural settings (~108), but winter weekday outages have greater mean CHO in rural 
settings (618) compared to urban settings (317). In general, outages that occur during the off-
season have about the same mean CHO (~73), regardless of the day of the week or urban vs. 
rural. In general, outages that occur during the summer tend to have mean CHO that is greater on 
the weekend (~187) compared to the weekday (~48), regardless of urban versus rural outages.

Figure 26. Interaction plot of CHO for Urban/Rural, Season, and Day of Week
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Season*Automation*Day of Week
For weekday winter outages on non-automated feeders mean CHO is greater (610) than those on 
the weekend (103). For weekday winter outages on automated feeders mean CHO is also greater 
(195) compared to those on the weekend (141). In general, summer and off-season outages result 
in mean CHO that is about the same in on weekdays for both automated and non-automated 
feeders (~64), but on non-automated feeders with weekend summer outages mean CHO is 
greater (190).

Figure 27. Interaction plot of CHO for Automation, Season, and Day of Week
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Major Storm*Urban/Rural*Day of Week
Outages in urban areas are lowest in mean CHO when a major storm is not involved on a 
weekday (43), and mean CHO is higher for weekend outages (88).  If a major storm is involved 
in an urban area, mean CHO is higher on weekdays (407) versus weekends (131). In general, 
outages in rural areas result in about the same mean CHO any day of the week if a major storm is 
not involved (~103), but if a major storm is involved in a rural outage then mean CHO is higher 
for weekdays only (807). 

Figure 28. Interaction plot of CHO for Day of Week, Urban/Rural, and Major Storm
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Major Storm*Automation*Day of Week
In general, outages on non-automated feeders when a major storm is not involved result in mean 
CHO that is about the same on weekdays and weekends (~102), but if a major storm is involved 
then mean CHO is greater on weekdays (794) versus weekends (123) for non-automated feeders. 
In general, mean CHO for outages on feeders that are automated is the same on weekdays and 
weekends, but is higher if the outage occurs in a major storm (~227) as opposed to not (~56).
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Figure 29. Interaction plot of CHO for Day of Week, Automation, and Major Storm

Urban/Rural*Expertise*Day of Week
When an outage is partially covered by an expert operator, on a weekday, mean CHO is higher 
for rural (122) versus urban outages (28). However, when an outage is partially covered by an 
expert operator, on a weekend, mean CHO is higher for urban (352) versus rural outages (310). 
In general, outages where there are either no expert operators or full coverage by an expert 
operator result in mean CHO that is about the same (~82), regardless of day of week or urban 
versus rural settings.
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Figure 30. Interaction plot of CHO for Day of Week, Expertise, and Urban/Rural

Expertise*Automation*Day of Week
When an outage is partially covered by an expert, if the outage occurs on a weekday then mean 
CHO is about the same for automated and non-automated feeders (~112). However, if a partially 
covered outage occurs on the weekend, then mean CHO is greater for non-automated feeders 
(323) versus automated feeders (147). When an outage is not covered by an expert operator at 
all, weekday outages result in mean CHO that is higher for automated feeders (162) versus non-
automated feeders (108). However, when there is no expert coverage on weekend outages, mean 
CHO is about the same for feeders regardless of automation (~56).  In general, when an outage is 
fully covered by an expert operator, mean CHO is slightly higher for non-automated feeders 
(~88) versus automated feeders (~32), regardless of the day of the week.
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Figure 31. Interaction plot of CHO for Day of Week, Expertise, and Automation

Cause*Expertise
Outages with full coverage by an expert operator result in mean CHO that is highest for Supplier 
(498), followed by LineOpenFailure and Error (~259), followed by the other causes (~118). 
Outages that are partially covered by an expert and are caused by the Supplier result in the 
highest mean CHO compared to all other combinations of cause and expertise (1133). In general, 
outages with no or partial expert operator coverage that are caused by UnexpectedLineOpen and 
Error tend to have higher mean CHO (~228) than those caused by LineOpenFailure, Other, 
PreventableForeseeable, and UnexpectedGrounding with the same expertise (~88).  
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Figure 32. Interaction plot of CHO for Cause and Expertise

Cause*Day of Week
Mean CHO is highest for weekday outages cause by Supplier (802) compared to all other 
combinations of day of week and cause. In general, mean CHO is higher on weekdays compared 
to weekends for outages caused by LineOpenFailure, Other, PreventableForeseeable, and 
Supplier, and mean CHO is nearly identical and is higher on weekends (~267) compared to 
weekdays (~168) for UnexpectedLineOpen and Error. In general, when an outage is caused by 
an UnexpectedGrounding, mean CHO is lowest, regardless of day of week (~51). 
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Figure 33. Interaction plot of CHO for Cause and Day of Week

Conclusion
The goal of this analysis was to investigate the relationship between eight predictive factors and 
CHO. We started with the full model, which included all possible three-way interaction effects, 
and we performed backward selection to reduce the model until it contained only statistically 
significant effects. An aligned rank transform was used to accommodate the violation of the 
ANOVA’s assumption of constant variance. Since this procedure was used, contrasts could not 
be tested for the interaction terms in the model. All eight factors were statistically significant, 
and all factors were involved in interaction terms. This means that the effect of one factor on 
CHO cannot be described without placing it in the context of other factors. For each effect, 
interaction plots were displayed and a description was given. 
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Appendix A
Feeder ID Urban/Rural Automated/Not Automated
71G1 Rural Not Automated
78G2 Rural Not Automated
71G3 Rural Not Automated



86

34G1 Rural Not Automated
PS-G43 Rural Not Automated
SJ-G63 Rural Not Automated
LO-G26 Rural Not Automated
BA-G71 Rural Not Automated
QU-G16 Rural Not Automated
EM-G76 Rural Not Automated
39G1 Rural Not Automated
RA-G22 Rural Not Automated
H2-G60 Rural Not Automated
CF-G16 Rural Not Automated
PO-G27 Rural Not Automated
32G7 Rural Not Automated
70G4 Rural Not Automated
 Rural Not Automated
CV-G64 Rural Not Automated
TH-G16 Rural Not Automated
81G1 Rural Not Automated
RC-G51 Rural Not Automated
M-G27 Rural Not Automated
BF-G62 Rural Not Automated
63J2 Rural Not Automated
PN-G46 Rural Not Automated
EN-G26 Rural Not Automated
HR-G37 Rural Not Automated
HR-G38 Rural Not Automated
WY-G81 Rural Not Automated
19G4 Rural Not Automated
SM-G62 Rural Not Automated
BAY-G4 Rural Not Automated
LJ-G13 Rural Not Automated
CA-G37 Rural Not Automated
44G1 Rural Not Automated
9G2 Rural Not Automated
EB-Y38 Rural Not Automated
WK-G81 Rural Not Automated
46Y1 Rural Not Automated
56G2 Rural Not Automated
63G4 Rural Not Automated
83G1 Rural Not Automated
37G7 Rural Not Automated
28G2 Rural Not Automated
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BE-G29 Rural Not Automated
CH-G11 Rural Not Automated
WR-G24 Rural Not Automated
14G2 Rural Not Automated
PO-G7 Rural Not Automated
EJ-G7 Rural Not Automated
SR-G72 Urban Not Automated
LJ-G12 Rural Not Automated
DO-G22 Rural Automated
PA-G20 Rural Not Automated
53G3 Rural Not Automated
WY-G80 Rural Not Automated
WM-G92 Rural Not Automated
BR-G70 Rural Not Automated
VR-G57 Rural Not Automated
EL-G40 Rural Not Automated
EL-G41 Rural Not Automated
19G7 Rural Not Automated
15L19 Rural Not Automated
BV-G44 Rural Not Automated
SP-J1 Rural Not Automated
BS-G32 Rural Not Automated
BAY-G3 Rural Not Automated
MH-G13 Rural Not Automated
H7-G7 Rural Not Automated
39G3 Rural Not Automated
39G2 Rural Not Automated
FH-J26 Rural Not Automated
33Y3 Rural Not Automated
UH-G21 Rural Not Automated
60J1 Rural Not Automated
27G5 Rural Not Automated
SA-G23 Rural Not Automated
83G2 Rural Not Automated
WO-G92 Rural Not Automated
GM-G62 Rural Not Automated
BL-G24 Rural Not Automated
57G1 Rural Not Automated
MC-G13 Rural Not Automated
45G1 Rural Not Automated
MI-G36 Rural Not Automated
GT-G47 Urban Not Automated
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SB-G93 Rural Not Automated
UH-G23 Rural Not Automated
85G2 Rural Not Automated
56G1-1 Rural Not Automated
14G1 Rural Not Automated
RO-G62 Rural Not Automated
60J2 Rural Not Automated
WK-G82 Rural Not Automated
90G1 Rural Not Automated
EA-G52 Rural Not Automated
53G2 Rural Not Automated
BR-G71 Rural Not Automated
56G1 Rural Not Automated
BAY-G6 Rural Not Automated
RI-G68 Rural Not Automated
28G1 Rural Not Automated
47G1 Rural Not Automated
PA-G21 Rural Not Automated
74G1 Rural Not Automated
CV-G65 Rural Not Automated
EM-G75 Rural Not Automated
WK-G83 Rural Not Automated
33G2 Rural Not Automated
WI-G11 Rural Not Automated
SS-G36 Rural Not Automated
ME-G12 Urban Not Automated
62J1 Rural Not Automated
53G1 Rural Not Automated
GI-G71 Rural Not Automated
SD-G10 Rural Not Automated
NR-G33 Urban Not Automated
81G2 Rural Not Automated
BE-G28 Rural Not Automated
TA-G12 Rural Not Automated
51G2 Rural Not Automated
3G3 Rural Not Automated
NB-G72 Rural Not Automated
WI-G31 Rural Not Automated
36G2 Rural Not Automated
19G5 Rural Not Automated
67G3 Rural Not Automated
44G2 Rural Not Automated
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74G2 Rural Not Automated
69K1 Rural Not Automated
BR-G58 Rural Not Automated
AP-G11 Rural Not Automated

3321 Rural Not Automated
MS-G50 Rural Automated
SH-G35 Rural Not Automated
16G1 Rural Not Automated
9G4 Rural Not Automated
WM-G91 Rural Not Automated
NS-G63 Rural Not Automated
NR-G34 Urban Not Automated
48G1 Rural Not Automated
CS-G34 Rural Not Automated
SN-G40 Rural Automated
CH-G10 Rural Not Automated
48G2 Rural Not Automated
SF-G20 Rural Not Automated
67G2 Rural Not Automated
MS-G51 Rural Automated
BAY-G5 Rural Not Automated
RA-G23 Rural Not Automated
69K2 Rural Not Automated
61G3 Rural Not Automated
BF-G63 Rural Not Automated
DM-G6 Rural Not Automated
H6-G66 Rural Not Automated
SB-G91 Rural Not Automated
MC-G14 Rural Automated
WF-G23 Rural Not Automated
ST-G45 Rural Not Automated
BA-G72 Rural Not Automated
ME-Y86 Rural Not Automated
BV-G43 Rural Not Automated
FA-G6 Rural Not Automated
SO-G33 Rural Not Automated
SK-G60 Rural Not Automated
65J1 Rural Not Automated
M-G24 Rural Not Automated
ER-G51 Urban Not Automated
LO-G27 Rural Not Automated
HY-G24 Rural Not Automated
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32G4 Rural Not Automated
63G1 Rural Not Automated
BU-G47 Rural Not Automated
78G1 Rural Not Automated
61G1 Rural Not Automated
43G2 Rural Not Automated
37G8 Rural Not Automated
47G2 Rural Not Automated
M-G23 Rural Not Automated
NA-G26 Rural Not Automated
72G1 Rural Not Automated
NE-G16 Rural Not Automated
PM-G14 Rural Not Automated
GT-G49 Urban Not Automated
NB-G73 Rural Not Automated
3G1 Rural Not Automated
40G7 Rural Not Automated
NT-G53 Rural Not Automated
PN-G45 Rural Not Automated
ER-G53 Urban Not Automated
SK-G59 Rural Not Automated
AP-G10 Rural Not Automated
43G3 Rural Not Automated
40G6 Rural Not Automated
PS-G42 Rural Not Automated
FH-J28 Rural Not Automated
78G4 Rural Not Automated
90G4 Rural Not Automated
ER-G52 Urban Not Automated
27G7 Rural Not Automated
SR-G71 Urban Not Automated
NT-G52 Rural Not Automated
RI-G66 Rural Not Automated
BEL-G1 Rural Not Automated
27G6 Rural Not Automated
PM-G16 Rural Not Automated
OV-G7 Rural Not Automated
MC-G12 Rural Not Automated
M-G26 Rural Not Automated
PO-J31 Rural Not Automated
FA-G4 Rural Not Automated
19G3 Rural Not Automated
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34G2 Rural Not Automated
LS-G62 Rural Automated
38G1 Rural Not Automated
38G3 Rural Not Automated
JE-G57 Rural Not Automated
19G6 Rural Not Automated
VR-G58 Rural Not Automated
LA-G61 Urban Not Automated
SNO-G96 Rural Not Automated
NW-G12 Rural Not Automated
78G3 Rural Not Automated
63J3 Rural Not Automated
36Y5 Rural Not Automated
41G1 Rural Not Automated
SB-G94 Rural Not Automated
NIM-G1 Rural Not Automated
SS-G37 Rural Not Automated
SL-W1 Rural Not Automated
LA-G62 Urban Not Automated
GI-G70 Rural Not Automated
66J1 Rural Not Automated
90G5 Rural Not Automated
90G2 Rural Not Automated
90G3 Rural Not Automated
6Y2 Rural Not Automated
37J5 Rural Not Automated
SO-G32 Rural Not Automated
71G2 Rural Not Automated
HY-G25 Rural Not Automated
67G1 Rural Not Automated
SR-G73 Urban Not Automated
BS-G124 Rural Not Automated
WO-G91 Rural Not Automated
73G1 Rural Not Automated
BS-G31 Rural Not Automated
26H1 Rural Not Automated
BS-G123 Rural Not Automated
GMP-G77 Rural Not Automated
SB-G92 Rural Not Automated
22J1 Rural Not Automated
LS-G61 Rural Automated
H3-G3 Rural Not Automated
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SR-G70 Urban Not Automated
BU-G48 Rural Not Automated
PS-G41 Rural Not Automated
RD-G33 Rural Not Automated
38G2 Rural Not Automated
SO-G34 Rural Not Automated
SO-G35 Rural Not Automated
BL-G25 Rural Not Automated
61G2 Rural Not Automated
33Y4 Rural Not Automated
51G1 Rural Not Automated
EA-G51 Rural Not Automated
NE-G17 Rural Not Automated
PM-G15 Rural Not Automated
2H2 Rural Not Automated
32G8 Rural Not Automated
NA-G27 Rural Not Automated
3G2 Rural Not Automated
9G3 Rural Not Automated
SNO-G97 Rural Not Automated
43G4 Rural Not Automated
37J6 Rural Not Automated
37H1 Rural Not Automated
37H3 Rural Not Automated
GT-G48 Urban Not Automated
BEL-2 Rural Not Automated
16G2 Rural Not Automated
36G1 Rural Not Automated
DQ-1 Rural Not Automated
ro-g62 Rural Not Automated
SJ-G64 Rural Not Automated

3312 Rural Not Automated
MI-G37 Rural Not Automated
PM-G17 Rural Not Automated
QU-G17 Rural Not Automated
73G5 Rural Not Automated
H3-J77 Rural Not Automated
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Appendix B
Cause

Time of 
Day Season

Urban/Rura
l

Automatio
n

Major 
Storm

Expertis
e

Day of 
Week

Mean_CH
O

Supplier off-peak off Rural Not-Auto NO partial weekday 4125.605

UnexpectedLineOpen off-peak winter Rural Not-Auto NO none weekday 2531.543

UnexpectedLineOpen peak summer Rural Not-Auto NO partial
weeken
d 1834.663

Other peak summer Rural Not-Auto NO partial
weeken
d 1797.53

PreventableForeseeable off-peak summer Urban Not-Auto NO partial
weeken
d 1685.658

UnexpectedLineOpen off-peak summer Rural Not-Auto NO full
weeken
d 1631.592

Other off-peak winter Urban Not-Auto YES no info
weeken
d 1577.687

UnexpectedGrounding off-peak winter Rural Not-Auto YES no info weekday 1284.5

Supplier off-peak winter Rural Auto YES no info weekday 1209.878

Supplier off-peak off Rural Not-Auto NO no info weekday 1034.34

Supplier off-peak off Rural Not-Auto NO full weekday 1027.929

UnexpectedLineOpen peak winter Rural Auto NO no info weekday 957.1308

Supplier off-peak winter Rural Not-Auto YES no info weekday 956.5701

PreventableForeseeable peak winter Rural Not-Auto YES no info weekday 951.1976

UnexpectedLineOpen peak summer Rural Not-Auto NO none
weeken
d 937.9616

Supplier off-peak winter Rural Not-Auto NO no info weekday 922.415

Supplier peak winter Rural Not-Auto YES no info weekday 906.8622

PreventableForeseeable off-peak winter Rural Not-Auto YES no info weekday 865.0546

UnexpectedGrounding peak summer Rural Not-Auto NO partial weekday 842.1084

UnexpectedGrounding peak winter Rural Not-Auto YES no info weekday 821.7163

Other peak winter Rural Not-Auto YES no info weekday 734.0392

LineOpenFailure off-peak off Rural Not-Auto NO full weekday 727.7639

UnexpectedLineOpen peak off Urban Not-Auto NO none
weeken
d 692.4377

PreventableForeseeable peak winter Rural Auto YES no info weekday 654.2357

Supplier peak off Rural Not-Auto NO partial weekday 631.0327

Error peak off Rural Not-Auto NO no info
weeken
d 628.9111

PreventableForeseeable peak summer Rural Auto NO partial weekday 589.1912

UnexpectedLineOpen off-peak winter Rural Not-Auto NO no info weekday 575.2895

PreventableForeseeable off-peak winter Urban Not-Auto YES no info weekday 557.4849

Other off-peak winter Rural Not-Auto YES no info weekday 543.1412

Supplier peak off Rural Not-Auto NO no info weekday 540.5442

Other off-peak off Rural Not-Auto NO partial
weeken
d 530.804

UnexpectedLineOpen off-peak off Urban Not-Auto NO full weekday 480.2535

Other peak winter Urban Not-Auto YES no info weekday 473.863

Error peak winter Rural Not-Auto NO full weekday 455.6255

UnexpectedLineOpen off-peak off Rural Not-Auto NO none weeken 412.665
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d

LineOpenFailure off-peak off Rural Not-Auto NO no info
weeken
d 411.4471

PreventableForeseeable peak winter Urban Not-Auto YES no info weekday 397.754

Supplier peak off Rural Not-Auto NO full weekday 395.7897

Other off-peak winter Rural Not-Auto YES no info
weeken
d 383.8389

UnexpectedLineOpen off-peak summer Rural Not-Auto NO full weekday 364.4961

UnexpectedLineOpen off-peak winter Rural Not-Auto YES no info weekday 364.403

UnexpectedLineOpen off-peak off Rural Not-Auto NO no info weekday 363.3859

Error peak winter Rural Not-Auto NO no info weekday 360.7967

PreventableForeseeable peak off Rural Auto NO none weekday 358.0657

Other off-peak winter Urban Not-Auto YES no info weekday 349.5182

UnexpectedLineOpen peak off Urban Not-Auto NO none weekday 346.8153

Other off-peak summer Rural Not-Auto NO partial
weeken
d 342.9846

Other peak off Rural Not-Auto NO partial
weeken
d 333.6644

PreventableForeseeable peak summer Urban Not-Auto NO full
weeken
d 313.0744

Error peak winter Rural Not-Auto NO partial weekday 310.3732

Supplier off-peak winter Rural Not-Auto NO partial weekday 293.6267

PreventableForeseeable off-peak winter Rural Not-Auto NO no info weekday 293.214

Other off-peak off Rural Auto NO partial
weeken
d 292.687

Error off-peak summer Rural Not-Auto NO full weekday 290.3003

UnexpectedLineOpen off-peak off Rural Not-Auto NO none weekday 288.5926

Other off-peak winter Rural Auto YES no info
weeken
d 286.337

UnexpectedGrounding off-peak summer Rural Not-Auto NO none weekday 283.633

UnexpectedLineOpen peak winter Rural Not-Auto YES no info weekday 282.8834

Error peak off Rural Not-Auto NO none weekday 276.2625

UnexpectedLineOpen off-peak off Rural Not-Auto NO partial
weeken
d 252.0442

Other off-peak winter Rural Not-Auto NO partial weekday 246.8772

Error peak off Rural Not-Auto NO full weekday 246.4137

PreventableForeseeable off-peak summer Rural Not-Auto NO partial
weeken
d 246.0683

Error off-peak winter Rural Not-Auto NO no info weekday 245.6755

PreventableForeseeable peak off Rural Not-Auto NO partial
weeken
d 244.431

Other off-peak off Rural Not-Auto NO none weekday 244.0457

Other peak winter Rural Auto YES no info weekday 227.3818

Error peak off Rural Not-Auto NO full
weeken
d 223.5383

Error off-peak off Rural Not-Auto NO none
weeken
d 215.8292

PreventableForeseeable peak winter Rural Not-Auto NO full weekday 204.614

Other off-peak off Rural Auto NO partial weekday 195.1954
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PreventableForeseeable off-peak off Rural Not-Auto NO no info
weeken
d 193.9513

PreventableForeseeable off-peak summer Rural Auto NO partial
weeken
d 192.6292

PreventableForeseeable off-peak off Rural Not-Auto NO none weekday 189.2395

PreventableForeseeable peak winter Rural Not-Auto NO no info weekday 186.4388

PreventableForeseeable off-peak off Urban Not-Auto NO full
weeken
d 185.4543

PreventableForeseeable peak summer Rural Not-Auto NO full
weeken
d 179.0681

Other peak winter Rural Not-Auto NO partial weekday 178.9473

PreventableForeseeable off-peak summer Rural Not-Auto NO full
weeken
d 178.6758

PreventableForeseeable off-peak winter Urban Not-Auto YES no info
weeken
d 177.8726

PreventableForeseeable off-peak winter Rural Not-Auto YES no info
weeken
d 177.3136

UnexpectedGrounding peak off Rural Not-Auto NO none weekday 175.9941

Supplier off-peak summer Rural Not-Auto NO full weekday 175.4772

UnexpectedLineOpen off-peak off Rural Not-Auto NO no info
weeken
d 173.0822

PreventableForeseeable off-peak winter Rural Not-Auto NO no info
weeken
d 172.0679

PreventableForeseeable off-peak off Rural Not-Auto NO no info weekday 166.4925

UnexpectedLineOpen off-peak off Rural Not-Auto NO partial weekday 162.6567

Other peak winter Rural Auto NO no info weekday 159.5046

PreventableForeseeable off-peak winter Rural Not-Auto NO full weekday 153.0016

Other off-peak winter Rural Auto YES no info weekday 146.4396

UnexpectedGrounding off-peak off Rural Not-Auto NO full
weeken
d 145.797

UnexpectedLineOpen peak off Rural Not-Auto NO no info
weeken
d 141.9221

PreventableForeseeable peak off Urban Not-Auto NO partial weekday 139.9519

PreventableForeseeable off-peak summer Rural Auto NO full
weeken
d 138.9897

PreventableForeseeable off-peak off Rural Auto NO no info
weeken
d 136.7383

PreventableForeseeable peak summer Rural Not-Auto NO partial weekday 136.6439

Other off-peak winter Rural Not-Auto NO no info weekday 136.1776

PreventableForeseeable off-peak summer Urban Not-Auto NO full weekday 135.4244

PreventableForeseeable off-peak off Rural Not-Auto NO partial
weeken
d 127.6986

LineOpenFailure off-peak winter Rural Not-Auto NO no info weekday 127.4713

UnexpectedLineOpen peak summer Rural Not-Auto NO partial weekday 126.7273

PreventableForeseeable peak off Rural Not-Auto NO partial weekday 126.1428

PreventableForeseeable off-peak summer Rural Not-Auto NO partial weekday 126.1398

PreventableForeseeable peak summer Rural Not-Auto NO partial
weeken
d 125.704

PreventableForeseeable peak off Urban Not-Auto NO none
weeken
d 125.1492

Other peak winter Rural Auto YES no info weeken 123.7735
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UnexpectedLineOpen peak off Urban Not-Auto NO no info weekday 123.2315

Other off-peak winter Rural Not-Auto NO full weekday 121.6156

Other peak winter Rural Not-Auto NO no info
weeken
d 120.9368

PreventableForeseeable peak off Rural Not-Auto NO full
weeken
d 116.6161

PreventableForeseeable off-peak off Rural Auto NO no info weekday 116.5582

PreventableForeseeable peak off Rural Not-Auto NO none weekday 115.0698

PreventableForeseeable peak off Rural Not-Auto NO no info weekday 113.664

UnexpectedLineOpen peak summer Rural Auto NO none
weeken
d 111.7114

PreventableForeseeable peak off Rural Not-Auto NO full weekday 110.2024

PreventableForeseeable off-peak off Rural Not-Auto NO partial weekday 106.8783

PreventableForeseeable off-peak summer Urban Not-Auto NO full
weeken
d 106.6903

UnexpectedLineOpen peak winter Rural Not-Auto YES no info
weeken
d 104.2167

Other off-peak off Urban Not-Auto NO no info weekday 100.4276

UnexpectedLineOpen off-peak summer Urban Not-Auto NO full weekday 99.84

UnexpectedLineOpen off-peak off Rural Not-Auto NO full
weeken
d 99.54037

Other off-peak off Rural Not-Auto NO partial weekday 99.09455

PreventableForeseeable off-peak winter Rural Not-Auto NO none weekday 96.87111

Other off-peak off Rural Auto NO no info weekday 96.80018

Other off-peak off Rural Not-Auto NO no info
weeken
d 93.04107

Other peak off Urban Not-Auto NO full weekday 92.77371

Other off-peak winter Rural Not-Auto NO partial
weeken
d 92.75444

Other peak winter Rural Not-Auto YES no info
weeken
d 90.57617

UnexpectedLineOpen off-peak winter Rural Not-Auto NO no info
weeken
d 84.76063

PreventableForeseeable off-peak off Urban Not-Auto NO full weekday 84.19694

PreventableForeseeable off-peak off Rural Not-Auto NO full weekday 83.97012

PreventableForeseeable off-peak winter Rural Not-Auto NO full
weeken
d 83.82596

Other off-peak off Rural Not-Auto NO full
weeken
d 83.08708

Other off-peak off Rural Not-Auto NO none
weeken
d 83.05699

PreventableForeseeable peak winter Rural Not-Auto YES no info
weeken
d 80.34699

UnexpectedGrounding peak off Rural Not-Auto NO none
weeken
d 80.02511

Other peak winter Rural Not-Auto NO no info weekday 79.25006

UnexpectedLineOpen off-peak summer Urban Not-Auto NO none weekday 78.885

PreventableForeseeable off-peak winter Rural Auto YES no info weekday 78.57111

PreventableForeseeable off-peak winter Rural Auto NO no info weekday 77.74556
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Other peak winter Rural Not-Auto NO full weekday 77.72379

PreventableForeseeable peak off Rural Not-Auto NO no info
weeken
d 76.80637

PreventableForeseeable off-peak winter Rural Not-Auto NO partial
weeken
d 76.46417

UnexpectedGrounding off-peak off Rural Auto NO full
weeken
d 76.10667

UnexpectedLineOpen off-peak off Rural Not-Auto NO full weekday 75.81074

Other peak off Rural Not-Auto NO no info weekday 75.30832

UnexpectedLineOpen off-peak off Urban Not-Auto NO no info weekday 72.45708

UnexpectedGrounding off-peak off Rural Not-Auto NO no info weekday 71.75074

LineOpenFailure peak off Rural Not-Auto NO no info weekday 69.86681

LineOpenFailure peak summer Rural Not-Auto NO full weekday 69.37444

PreventableForeseeable peak off Urban Not-Auto NO full weekday 68.82722

UnexpectedLineOpen peak off Rural Not-Auto NO no info weekday 68.447

Other off-peak summer Rural Not-Auto NO none weekday 66.73132

UnexpectedLineOpen peak winter Urban Not-Auto NO no info weekday 66.55583

UnexpectedGrounding peak summer Rural Not-Auto NO partial
weeken
d 65.514

UnexpectedGrounding peak off Urban Not-Auto NO partial
weeken
d 65.46222

UnexpectedLineOpen peak off Rural Auto NO full weekday 65.41565

Other peak winter Rural Not-Auto NO full
weeken
d 65.29865

UnexpectedGrounding peak off Urban Not-Auto NO full
weeken
d 65.01417

UnexpectedGrounding off-peak summer Rural Not-Auto NO full weekday 64.29122

Other off-peak off Urban Not-Auto NO no info
weeken
d 63.67963

Other off-peak off Rural Not-Auto NO no info weekday 63.65787

Other peak summer Rural Not-Auto NO full
weeken
d 63.46895

PreventableForeseeable peak off Rural Not-Auto NO none
weeken
d 62.45199

UnexpectedLineOpen peak off Rural Auto NO partial weekday 62.0425

PreventableForeseeable peak summer Rural Not-Auto NO full weekday 61.86364

UnexpectedLineOpen off-peak winter Urban Not-Auto YES no info weekday 61.53667

PreventableForeseeable off-peak off Rural Not-Auto NO full
weeken
d 61.49186

Other peak off Rural Not-Auto NO no info
weeken
d 61.4499

Other peak summer Rural Not-Auto NO none weekday 60.66659

PreventableForeseeable peak off Urban Not-Auto NO no info
weeken
d 60.31042

Other peak off Rural Not-Auto NO partial weekday 57.05853

Other off-peak off Rural Not-Auto NO full weekday 57.01548

PreventableForeseeable peak winter Rural Not-Auto NO none
weeken
d 56.76625

Other peak winter Urban Not-Auto NO full weekday 56.74465

PreventableForeseeable off-peak summer Rural Not-Auto NO full weekday 56.48609
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Other off-peak summer Rural Not-Auto NO full weekday 55.41411

UnexpectedGrounding off-peak summer Rural Not-Auto NO full
weeken
d 55.34762

Other off-peak off Rural Auto NO none
weeken
d 51.55315

PreventableForeseeable off-peak summer Rural Not-Auto NO none
weeken
d 50.55789

UnexpectedGrounding peak winter Rural Not-Auto NO no info weekday 50.38401

Other peak off Rural Not-Auto NO full
weeken
d 50.13088

PreventableForeseeable peak summer Rural Not-Auto NO none weekday 49.81412

Other off-peak winter Urban Not-Auto NO none weekday 49.62222

UnexpectedLineOpen peak off Rural Not-Auto NO none
weeken
d 48.02083

Other peak winter Urban Not-Auto YES no info
weeken
d 47.98574

UnexpectedGrounding off-peak off Rural Auto NO no info
weeken
d 47.88

Other peak off Rural Not-Auto NO full weekday 45.93757

UnexpectedLineOpen peak off Rural Not-Auto NO none weekday 45.32832

UnexpectedGrounding off-peak off Rural Not-Auto NO partial weekday 44.66346

UnexpectedLineOpen peak summer Rural Not-Auto NO full
weeken
d 43.25606

UnexpectedLineOpen off-peak summer Rural Not-Auto NO none
weeken
d 43.09676

Error off-peak off Rural Not-Auto NO no info weekday 42.9202

Other off-peak summer Rural Not-Auto NO partial weekday 42.72128

UnexpectedGrounding peak summer Rural Not-Auto NO full weekday 42.70417

UnexpectedLineOpen peak summer Rural Not-Auto NO full weekday 42.62923

PreventableForeseeable peak off Urban Not-Auto NO none weekday 42.55576

Supplier peak summer Rural Not-Auto NO full weekday 42.3125

Other peak off Rural Not-Auto NO none
weeken
d 41.47861

PreventableForeseeable peak off Rural Auto NO full
weeken
d 39.40375

PreventableForeseeable peak summer Rural Auto NO full
weeken
d 38.32028

PreventableForeseeable peak winter Rural Not-Auto NO partial weekday 38.10154

UnexpectedLineOpen peak winter Urban Not-Auto YES no info weekday 37.79144

LineOpenFailure off-peak winter Rural Not-Auto NO no info
weeken
d 37.66917

Other peak summer Rural Not-Auto NO partial weekday 37.31969

Other off-peak winter Rural Auto NO no info weekday 37.15

UnexpectedGrounding off-peak off Rural Not-Auto NO none weekday 36.56631

UnexpectedLineOpen peak off Rural Not-Auto NO partial
weeken
d 36.55296

Other off-peak summer Rural Not-Auto NO none
weeken
d 35.78822

UnexpectedLineOpen peak off Rural Not-Auto NO full weekday 35.39722

PreventableForeseeable off-peak off Rural Not-Auto NO none
weeken
d 35.31619
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Other peak off Urban Not-Auto NO none
weeken
d 35.06118

UnexpectedLineOpen peak off Rural Not-Auto NO partial weekday 34.55972

UnexpectedLineOpen peak off Rural Not-Auto NO full
weeken
d 33.73781

Other peak off Rural Auto NO full weekday 33.39691

Other off-peak summer Urban Not-Auto NO full weekday 33.10315

UnexpectedLineOpen off-peak off Rural Auto NO no info weekday 32.69704

PreventableForeseeable peak winter Urban Not-Auto NO full weekday 32.545

UnexpectedGrounding peak off Rural Not-Auto NO no info
weeken
d 32.52699

Other peak off Urban Not-Auto NO no info
weeken
d 32.42208

UnexpectedLineOpen off-peak summer Rural Not-Auto NO partial weekday 32.03761

Other peak off Rural Auto NO none
weeken
d 31.83597

Other off-peak summer Rural Auto NO full weekday 31.81167

PreventableForeseeable off-peak winter Rural Not-Auto NO partial weekday 31.58294

PreventableForeseeable off-peak winter Urban Not-Auto NO no info
weeken
d 31.46611

UnexpectedGrounding off-peak off Rural Not-Auto NO none
weeken
d 31.41748

Other off-peak winter Rural Not-Auto NO no info
weeken
d 30.59338

UnexpectedGrounding off-peak summer Rural Not-Auto NO partial weekday 29.40611

UnexpectedGrounding off-peak summer Rural Not-Auto NO none
weeken
d 29.16382

PreventableForeseeable off-peak winter Urban Not-Auto NO full weekday 28.4162

PreventableForeseeable off-peak off Rural Auto NO none
weeken
d 27.96111

UnexpectedLineOpen peak off Urban Not-Auto NO full
weeken
d 27.68194

Other off-peak winter Urban Not-Auto NO full weekday 26.84278

PreventableForeseeable off-peak winter Urban Not-Auto NO partial weekday 26.61556

LineOpenFailure peak off Rural Not-Auto NO full weekday 26.16701

PreventableForeseeable peak winter Urban Not-Auto NO no info
weeken
d 25.81833

UnexpectedGrounding peak off Urban Not-Auto NO no info
weeken
d 25.78106

UnexpectedGrounding off-peak summer Rural Not-Auto NO partial
weeken
d 24.94458

PreventableForeseeable peak summer Rural Auto NO partial
weeken
d 24.61965

PreventableForeseeable off-peak summer Rural Not-Auto NO none weekday 24.39823

PreventableForeseeable peak summer Rural Not-Auto NO none
weeken
d 24.30854

UnexpectedGrounding peak summer Rural Not-Auto NO none
weeken
d 23.73576

PreventableForeseeable peak winter Rural Not-Auto NO no info
weeken
d 23.49181

PreventableForeseeable off-peak off Rural Auto NO full
weeken
d 22.92174
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PreventableForeseeable peak winter Rural Auto NO no info weekday 22.84657

Supplier off-peak winter Urban Not-Auto YES no info weekday 22.34528

UnexpectedGrounding off-peak off Urban Not-Auto NO full weekday 22.18367

UnexpectedGrounding off-peak winter Urban Not-Auto NO full weekday 21.24889

Other peak summer Rural Not-Auto NO full weekday 20.45508

UnexpectedGrounding off-peak summer Rural Auto NO full
weeken
d 20.42

UnexpectedLineOpen off-peak winter Rural Not-Auto YES no info
weeken
d 20.29815

Other peak winter Rural Not-Auto NO none weekday 20.14833

UnexpectedGrounding off-peak off Rural Not-Auto NO full weekday 20.13138

UnexpectedGrounding off-peak winter Rural Not-Auto NO no info
weeken
d 19.96672

UnexpectedGrounding peak winter Rural Not-Auto NO partial weekday 19.92507

Other off-peak winter Rural Auto NO no info
weeken
d 19.58

Other peak off Urban Not-Auto NO none weekday 19.53306

Other peak summer Rural Not-Auto NO none
weeken
d 18.70677

UnexpectedLineOpen off-peak winter Rural Not-Auto NO partial weekday 17.80361

PreventableForeseeable peak winter Rural Not-Auto NO full
weeken
d 17.6902

UnexpectedGrounding off-peak off Rural Not-Auto NO no info
weeken
d 17.33101

PreventableForeseeable off-peak off Rural Auto NO none weekday 17.32

UnexpectedLineOpen peak summer Urban Not-Auto NO full weekday 17.1025

Other peak off Rural Auto NO no info weekday 17.08932

Other off-peak off Urban Not-Auto NO none
weeken
d 16.70481

PreventableForeseeable off-peak summer Rural Auto NO full weekday 16.56676

Other off-peak summer Rural Not-Auto NO full
weeken
d 16.49299

PreventableForeseeable peak winter Rural Not-Auto NO none weekday 16.47578

UnexpectedGrounding peak winter Urban Not-Auto YES no info weekday 16.39

Other off-peak winter Rural Auto NO full weekday 16.19222

UnexpectedGrounding peak winter Rural Not-Auto NO no info
weeken
d 15.70654

PreventableForeseeable peak winter Urban Not-Auto YES no info
weeken
d 15.62905

Other peak off Rural Auto NO full
weeken
d 15.57094

UnexpectedGrounding peak off Rural Not-Auto NO full weekday 15.12227

Other off-peak off Rural Auto NO full weekday 14.98086

Other off-peak off Urban Not-Auto NO none weekday 14.91083

Other peak off Urban Not-Auto NO no info weekday 14.90536

UnexpectedGrounding peak summer Rural Not-Auto NO full
weeken
d 14.88266

Other off-peak off Urban Not-Auto NO full weekday 14.86847

Other off-peak winter Rural Not-Auto NO full
weeken
d 14.08208
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Supplier peak winter Urban Not-Auto YES no info weekday 13.96139

UnexpectedGrounding off-peak winter Rural Not-Auto NO no info weekday 13.90036

Other peak off Rural Not-Auto NO none weekday 13.17609

UnexpectedGrounding off-peak off Urban Not-Auto NO none
weeken
d 13.17028

Other off-peak summer Rural Auto NO partial
weeken
d 13.145

UnexpectedLineOpen peak winter Urban Not-Auto NO full weekday 12.90611

Other off-peak winter Rural Not-Auto NO none weekday 12.86139

Other off-peak off Rural Auto NO no info
weeken
d 12.70593

UnexpectedLineOpen peak winter Rural Not-Auto NO no info weekday 12.54061

UnexpectedLineOpen off-peak summer Rural Not-Auto NO none weekday 12.07741

Other peak summer Rural Auto NO full weekday 11.80722

UnexpectedGrounding peak off Urban Not-Auto NO no info weekday 11.72339

UnexpectedGrounding off-peak off Rural Auto NO no info weekday 11.59407

Other peak off Urban Not-Auto NO partial weekday 11.48747

PreventableForeseeable off-peak off Rural Auto NO full weekday 11.47048

Error peak off Rural Not-Auto NO no info weekday 11.42731

Error peak winter Rural Not-Auto NO no info
weeken
d 11.38444

UnexpectedGrounding peak off Rural Not-Auto NO no info weekday 11.22072

Other off-peak summer Rural Auto NO full
weeken
d 11.16597

PreventableForeseeable off-peak winter Urban Not-Auto NO no info weekday 10.94042

LineOpenFailure peak off Rural Not-Auto NO none
weeken
d 10.92597

UnexpectedGrounding off-peak summer Urban Not-Auto NO full
weeken
d 10.87556

UnexpectedGrounding peak off Rural Not-Auto NO partial weekday 9.388484

LineOpenFailure peak off Rural Not-Auto NO partial weekday 9.360556

UnexpectedLineOpen peak off Rural Auto NO full
weeken
d 9.2625

LineOpenFailure off-peak winter Rural Not-Auto NO full weekday 9.107778

UnexpectedLineOpen off-peak summer Rural Not-Auto NO partial
weeken
d 9.099306

Other off-peak winter Urban Not-Auto NO no info weekday 8.975139

LineOpenFailure off-peak off Rural Not-Auto NO none
weeken
d 8.745

UnexpectedGrounding peak off Rural Not-Auto NO full
weeken
d 8.525328

Other peak summer Rural Auto NO partial weekday 8.414889

Error peak off Rural Not-Auto NO partial weekday 8.376667

LineOpenFailure peak off Rural Not-Auto NO none weekday 8.354306

Other peak summer Urban Not-Auto NO none
weeken
d 8.208611

Other peak winter Urban Not-Auto NO no info weekday 8.205357

UnexpectedLineOpen peak summer Rural Auto NO full weekday 8

UnexpectedGrounding peak off Rural Auto NO no info weekday 7.562986
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UnexpectedGrounding peak winter Rural Not-Auto NO full weekday 7.525397

UnexpectedGrounding peak winter Urban Not-Auto NO no info weekday 7.4275

UnexpectedGrounding off-peak off Urban Not-Auto NO no info weekday 6.910417

PreventableForeseeable off-peak off Urban Not-Auto NO no info weekday 6.796528

Other peak off Rural Auto NO no info
weeken
d 6.643889

UnexpectedGrounding peak winter Rural Not-Auto NO full
weeken
d 6.588056

UnexpectedLineOpen off-peak off Urban Not-Auto NO no info
weeken
d 6.565

UnexpectedLineOpen off-peak summer Rural Auto NO full weekday 6.524444

Other peak summer Urban Not-Auto NO full weekday 6.4675

UnexpectedGrounding off-peak summer Urban Not-Auto NO full weekday 6.427153

Other peak summer Urban Not-Auto NO partial weekday 6.083278

UnexpectedGrounding off-peak off Urban Not-Auto NO full
weeken
d 5.897167

UnexpectedGrounding off-peak off Rural Not-Auto NO partial
weeken
d 5.838924

Other off-peak summer Urban Not-Auto NO none weekday 5.506667

UnexpectedGrounding peak summer Rural Auto NO full weekday 5.456667

UnexpectedLineOpen peak summer Urban Not-Auto NO partial
weeken
d 5.206111

PreventableForeseeable peak off Rural Auto NO partial weekday 5.022056

UnexpectedGrounding off-peak winter Rural Not-Auto YES no info
weeken
d 4.808611

Error off-peak off Rural Not-Auto NO full weekday 4.748333

UnexpectedLineOpen peak winter Rural Not-Auto NO partial weekday 4.584722

PreventableForeseeable peak off Rural Auto NO full weekday 4.439722

UnexpectedGrounding peak summer Urban Not-Auto NO full
weeken
d 4.215833

Other peak winter Rural Not-Auto NO partial
weeken
d 4.208681

Other peak winter Rural Not-Auto NO none
weeken
d 4.207685

UnexpectedLineOpen peak off Urban Not-Auto NO full weekday 4.034815

UnexpectedGrounding peak off Urban Not-Auto NO none weekday 3.850972

UnexpectedLineOpen off-peak winter Rural Not-Auto NO full weekday 3.785722

LineOpenFailure peak off Rural Not-Auto NO partial
weeken
d 3.720139

UnexpectedGrounding peak winter Rural Not-Auto NO partial
weeken
d 3.564722

PreventableForeseeable peak off Urban Not-Auto NO no info weekday 3.487778

UnexpectedLineOpen peak summer Rural Auto NO partial weekday 3.441667

UnexpectedLineOpen peak summer Rural Not-Auto NO none weekday 3.406944

UnexpectedGrounding peak summer Rural Not-Auto NO none weekday 3.353389

Supplier peak summer Rural Not-Auto NO full
weeken
d 3.336111

Other off-peak off Rural Auto NO full
weeken
d 3.293434

UnexpectedGrounding off-peak off Urban Not-Auto NO no info weeken 3.238889
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Error peak summer Rural Not-Auto NO full weekday 3.182778

UnexpectedLineOpen peak off Rural Auto NO partial
weeken
d 3.087778

Other off-peak off Rural Auto NO none weekday 3.0625

Other peak summer Urban Not-Auto NO full
weeken
d 3.051597

LineOpenFailure off-peak off Rural Not-Auto NO none weekday 3

UnexpectedGrounding off-peak summer Rural Auto NO full weekday 2.994405

Other off-peak off Urban Not-Auto NO full
weeken
d 2.9

Supplier peak off Rural Not-Auto NO no info
weeken
d 2.8825

LineOpenFailure off-peak summer Rural Not-Auto NO full weekday 2.765

Error off-peak winter Rural Auto NO no info weekday 2.72537

PreventableForeseeable peak off Rural Auto NO no info
weeken
d 2.676111

UnexpectedGrounding off-peak winter Rural Not-Auto NO none
weeken
d 2.629167

UnexpectedGrounding peak off Rural Not-Auto NO partial
weeken
d 2.548457

UnexpectedGrounding off-peak winter Rural Not-Auto NO full
weeken
d 2.401111

UnexpectedLineOpen off-peak winter Urban Not-Auto NO no info weekday 2.222222

UnexpectedGrounding peak off Rural Auto NO none
weeken
d 2.168889

Other peak winter Rural Auto NO no info
weeken
d 2.126111

UnexpectedLineOpen peak off Rural Auto NO no info weekday 2.030139

UnexpectedGrounding peak winter Rural Not-Auto YES no info
weeken
d 1.863889

UnexpectedLineOpen off-peak off Rural Auto NO no info
weeken
d 1.7625

UnexpectedLineOpen peak winter Rural Not-Auto NO partial
weeken
d 1.72

PreventableForeseeable off-peak off Urban Not-Auto NO none weekday 1.705833

UnexpectedGrounding off-peak winter Rural Not-Auto NO full weekday 1.699848

Other peak summer Urban Not-Auto NO none weekday 1.69

UnexpectedLineOpen off-peak winter Rural Auto NO no info weekday 1.688056

Other off-peak off Urban Not-Auto NO partial weekday 1.687292

UnexpectedLineOpen peak off Rural Auto NO none weekday 1.673333

PreventableForeseeable peak off Urban Not-Auto NO full
weeken
d 1.594444

Other off-peak summer Urban Not-Auto NO full
weeken
d 1.570556

UnexpectedGrounding peak off Urban Not-Auto NO none
weeken
d 1.541736

UnexpectedGrounding peak winter Rural Not-Auto NO none
weeken
d 1.49713

PreventableForeseeable peak off Rural Auto NO no info weekday 1.450926

UnexpectedLineOpen off-peak off Urban Not-Auto NO full
weeken
d 1.447917
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UnexpectedLineOpen off-peak off Rural Auto NO partial weekday 1.437778

Other peak off Urban Not-Auto NO partial
weeken
d 1.328056

Other peak winter Urban Not-Auto NO partial weekday 1.301944

LineOpenFailure peak winter Urban Not-Auto NO no info weekday 1.295833

UnexpectedLineOpen peak summer Rural Auto NO full
weeken
d 1.260833

Other peak summer Rural Auto NO none
weeken
d 1.240556

Other peak off Urban Not-Auto NO full
weeken
d 1.22463

UnexpectedGrounding off-peak off Rural Auto NO full weekday 1.156019

UnexpectedGrounding off-peak summer Rural Auto NO partial weekday 1.145556

UnexpectedLineOpen peak off Urban Not-Auto NO no info
weeken
d 1.091667

UnexpectedLineOpen peak winter Rural Not-Auto NO full weekday 1.070463

PreventableForeseeable peak winter Urban Not-Auto NO no info weekday 1.064722

UnexpectedGrounding peak off Rural Auto NO full weekday 1.015722

UnexpectedLineOpen off-peak off Rural Auto NO full weekday 0.984722

UnexpectedLineOpen peak winter Urban Not-Auto NO no info
weeken
d 0.965

Other peak off Rural Auto NO partial
weeken
d 0.691667

Other off-peak winter Urban Not-Auto NO no info
weeken
d 0.689444

UnexpectedLineOpen peak winter Rural Not-Auto NO no info
weeken
d 0.66746

UnexpectedGrounding peak off Rural Auto NO no info
weeken
d 0.654722

UnexpectedGrounding peak summer Urban Not-Auto NO full weekday 0.554778

Other peak off Rural Auto NO none weekday 0.53375

PreventableForeseeable peak summer Rural Auto NO full weekday 0.488194

UnexpectedGrounding peak off Urban Not-Auto NO full weekday 0.438125

Supplier peak winter Rural Not-Auto NO full weekday 0.408611

Other peak winter Rural Auto NO full weekday 0.253333

LineOpenFailure off-peak summer Rural Not-Auto NO full
weeken
d 0.207037

PreventableForeseeable peak summer Urban Not-Auto NO full weekday 0.183056

Supplier peak summer Rural Not-Auto NO none weekday 0

Other peak off Rural Auto NO partial weekday 0

Supplier peak summer Rural Not-Auto NO partial weekday 0

PreventableForeseeable off-peak off Urban Not-Auto NO partial weekday 0

UnexpectedLineOpen peak off Urban Not-Auto NO partial weekday 0

PreventableForeseeable peak summer Urban Not-Auto NO partial weekday 0

LineOpenFailure off-peak off Rural Not-Auto NO no info weekday 0

UnexpectedGrounding off-peak winter Urban Not-Auto YES no info weekday 0

UnexpectedGrounding off-peak off Rural Auto NO none
weeken
d 0

LineOpenFailure peak off Urban Not-Auto NO none weeken 0
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