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Abstract

The transformation of the distribution grid from a centralized to decentralized architecture, with
bi-directional power and data flows, is made possible by a surge in network intelligence and grid
automation. While changes are largely beneficial, the interface between grid operator and
automated technologies is not well understood, nor are the benefits and risks of automation.
Quantifying and understanding the latter is an important facet of grid resilience that needs to be
fully investigated.

The work described in this document represents the first empirical study aimed at identifying and
mitigating the vulnerabilities posed by automation for a grid that for the foreseeable future will
remain a human-in-the-loop critical infrastructure. Our scenario-based methodology enabled us
to conduct a series of experimental studies to identify causal relationships between grid-operator
performance and automated technologies and to collect measurements of human performance as
a function of automation. Our findings, though preliminary, suggest there are predictive patterns
in the interplay between human operators and automation, patterns that can inform the rollout of
distribution automation and the hiring and training of operators, and contribute in multiple and
significant ways to the field of grid resilience.
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1. INTRODUCTION

The nation’s electric grid, which the National Academy of Engineering calls the greatest
engineering achievement of the 20th Century [1] has always been “smart” to a degree. Ever
since Thomas Edison unveiled the Pearl Street electric system in 1882, devices have
communicated voltage information to the grid operator and meters have measured kilowatt-hours
so a utility could charge for usage. But a range of grid events (e.g., the 1965 blackout [2] and the
blackout of August 2003 [3], which darkened some 50 million homes and businesses and cost
billions of dollars), and regulatory policy (e.g., the Public Utilities Regulatory Policies Act of
1978 [4], the Energy Policy Act of 1992 [5], the Energy Policy Act of 2005 [6], and various state
regulatory actions) proved to be the catalyst for what may be the greatest engineering feat of the
215t Century [7]: the nation’s so-called “smart grid.” Spearheaded by the US Department of
Energy (DOE), with funding provided by the American Recovery and Reinvestment Act of 2009
[8], the modernization of the electric grid represents a technological leap forward, a concerted
effort by utilities and the government alike to enhance the safety and reliability of the nation’s
top critical infrastructure, while also enabling 215t Century capabilities, such as the integration of
renewable resources and more efficient load control.

Much of this transformation is directed at the distribution grid, which is transitioning from a
centralized to a decentralized architecture, with bi-directional power and data flows, and is made
possible by a surge in network intelligence and grid automation. While these advanced
technologies lower operational costs, add restoration capabilities and enable the integration of
renewables, they are also changing the way human operators view and run the grid, resulting in
potential vulnerabilities that are not well understood.

The work described in this document, a three-year Sandia-funded Laboratory Directed Research
and Development (LDRD) project titled “Improving Grid Resilience through Informed Decision-
Making,” or IGRID, represents the first empirical study aimed at identifying and mitigating the
vulnerabilities posed by automation for a grid that for the foreseeable future will remain a
human-in-the-loop critical infrastructure. As such, the research described herein is both
pioneering and preliminary, providing a foundation for what we believe will become a
burgeoning field of inquiry.

1.1. Human-in-the-Loop Critical Infrastructure

Our nation’s rise to prominence as one of the world’s most productive and innovative economies
reflects broad access in the US to abundant, reliable and cheap energy. Today, it is our electric
power system that almost singularly drives our digital economy and elevates our health, safety
and overall standard of living. Without a functioning electric grid, every critical infrastructure in
the U.S.—from banking to water to telecommunications—would fail and our economy would
falter.

But as our dependence on the grid grows, so do the threats, both natural and manufactured,
levied against it. Weather-related and other natural disasters, which cause the bulk of power
outages, are projected to increase in intensity and frequency, with a hotter, moister atmosphere



primed to trigger disasters [9]. And studies by the National Security Agency and others show that
malware directed at the grid continues to evolve and grow [10]. As a consequence, the
distribution grid faces an increasing risk of disruptions and the prospect of prolonged electrical
outages [11].

Understanding how a system operator maintains situational awareness and makes critical
decisions in response to complex unplanned events, such as a major hurricane or cyber attack, is
an essential aspect of grid resilience that, to date, has been largely overlooked for the distribution
grid. Yet multiple studies show the majority of major industrial, military and aviation accidents,
including the failure of the Fukishima nuclear plant in 2013 and the crash of the Air France jet in
2014, are attributed to human error and to the loss of situational awareness [12] [13]. Today,
situational awareness has become a key element of human-reliability research for domains that
involve complex and challenging environments [14] but to date, research specific to the
distribution grid, has been lacking.

But there is another facet of resilience, apart from unplanned events, that is the focus of
increasing concern: the growth in automation across industrial and commercial domains.
Particularly concerning is the lack of domain-specific data for the distribution grid. Despite the
billions of dollars invested nationwide in grid automation, the work described in this report is the
first to look at how automation impacts decision-making during high stress, unplanned outage
events. Unknown, for example, is how much—and under what conditions—automation can
diminish an operator’s situational awareness and impact an operator’s ability to interpret data
and make appropriate decisions. Also unknown is how the balance between human and artificial
intelligence might be optimized in order to achieve greater operational efficiency, reliability and
overall grid resilience.

For this research project, we looked specifically at the dynamic interplay between distribution
operators and advanced distribution automation. On the one hand, the increase in automation
offers the prospect of greater efficiency, which can translate into reduced outage times; on the
other, the increase raises the specter that operators can become mentally detached from the grid
and lose awareness of its actual state, also known as being “out-of-the-loop”[15]. The
consequences of being out-of-the-loop, as was shown for the blackout of 2003 [16] are that
operators mentally detach, believing the machine is in control, and become less aware of aberrant
data and alarms and therefore react slowly to dangerous situations [17].
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Figure 1. Information flow for a “smart” distribution grid.
Operator actions are reflected on the right, machine-directed actions on the left.
As automation increases, the balance will shift to the left but may diminish the
operator’s situational awareness.

1.2. Collaborative Pilot Study in Vermont

The experimental phase of this project, and virtually all our data gathering, was conducted in
Vermont, where the Sandia team partnered with Green Mountain Power (GMP), the state’s
largest electric utility and owner of more than 70 percent of its service territory, and also Oracle,
a vendor of advanced distribution management software. The advantages to conducting this
research in Vermont were twofold: 1) we could collect and analyze data, including high-
resolution SCADA data, from a utility that had recently upgraded its network and was actively
deploying advanced automation technologies; and 2) we could leverage Sandia’s history of
research collaborations in Vermont [ 18], extending back to 2008, to gain unprecedented access
to the company’s control rooms and operators.

In 2010, Vermont was awarded energy stimulus funds administered by the US Department of
Energy (DOE) back through the American Recovery and Reinvestment Act (ARRA). The
resulting so-called eEnergy Vermont $138 million smart grid project' funded the installation of
smart meters on 85 percent of Vermont homes and the rollout of network sensors, distributed
automation equipment and communications technologies statewide (both at the transmission and
distribution levels), making Vermont the first state in the nation to have a statewide smart grid
(not utility or region based.) Working together, Vermont’s 20 utilities coordinated the upgrade of

1 ARRA provided 50 percent, or $69M, of the total project costs.
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the state’s electric infrastructure to roll out a communications system that relays information
about usage, voltage, existing or potential outages, and equipment performance to the control
center and also sends commands from the operator back to the network. As part of this
modernization effort, approximately 95 percent of all substations were equipped with
supervisory control and data acquisition (SCADA) systems, with the expectation that the
SCADA data would give operators’ significantly more visibility into grid operations, allowing
them to anticipate, mitigate and respond more quickly to emergent problems [19].

Key to the success of this project was Sandia’s ability to forge essential partnerships. On the
electric-utility side, Sandia worked with GMP, a utility committed to grid modernization,
including distributed energy resources, system awareness and control. On the control-systems
side, Sandia developed a relationship with Oracle, whose Network Management System ©
(NMS) software can support automated outage restoration including Fault Location, Isolation,
and Service Restoration (FLISR) actions.

The three-way partnership between Sandia, GMP and Oracle, was designed so that each party
could contribute expertise in specific areas, while aiming for objectives beneficial to each party
and to the group as a whole. GMP wanted to 1) have confidence that advanced technologies (i.e.,
automation) would perform as expected (i.e., enhance grid performance) prior to their
deployment; 2) better understand the overall return-on-investment for automation; and 3) obtain
data that could lead to improved operator training and effectiveness. Oracle wanted to 1) receive
quality feedback on their NMS software; and 2) quantify the benefits of automation, measured in
customer minutes interrupted (CMI.) Sandia interests were in advancing resilience of the
distribution grid and doing so by collecting data from system operators in a realistic, grid-
simulated setting.

11



2. RESEARCH OBJECTIVES

Sandia’s overarching research objective for the IGRID project was to bring focus to—and
compile and analyze data on—an unrecognized but critical facet of grid resilience: the
performance of the distribution-grid operator who is ultimately responsible for the safe and
reliable flow of electricity to the end user. In designing our research plan, we set forth the
following goals:

* To identify causal relationships between automation and grid operator performance;

* To develop measures of human performance as a function of automation; and

» To instantiate the impact of 1) and 2) on grid performance through the development of a
cause-effect model

We wanted to demonstrate the linkages among automation, operator expertise and system
restoration, as reflected in grid-performance metrics, in order to quantify under what
circumstances automation helps or hinders outage restoration and by how much; and to collect
data that would ultimately advance the rollout of advanced distribution automation. We
anticipated that a set of carefully controlled experiments would increase utilities” willingness to
invest in automation by demonstrating the relation between automation and outage metrics and
also provide useful information on the strategic deployment of automation. In addition, we
anticipated that our work would produce interesting observations regarding the human-machine
interface and how it might be improved both from a design perspective and from a training
perspective.

It is nonetheless important to note that the research described in this report is preliminary and
involves data and system operators from one utility in Vermont. That said, we believe that the
vulnerabilities and challenges we have identified exist at other utilities, several of which have
described the roll-out of automation as an unresolved human-factors challenge. In short, we
believe our research opens the window on an area of considerable operational uncertainty and
concern for distribution utilities across the US.

12



3. TECHNICAL APPROACH

With little evidence in the research literature that the human dimension of grid resilience has
received much attention, we developed a multi-faceted approach to IGRID that included the
following elements:

* Development of a methodology for measuring levels of automation and depicting the
dynamic interplay between automation and operator;

» Baseline human factors research to identify the tasks and critical decisions required of
operators and to define operator expertise;

* Selective review of GMP historic data, including SCADA data, outage logs and operator
logs to identify which combination of variables or sets of conditions result in the highest
outage metrics (see the Appendix);

* Simulator study to measure operator interactions with automation

* Game-theoretic modeling effort to study automation-operator interactions under multiple
outage parameters.

Because automation is a broad catch-term and applicable to multiple devices and processes?, we
focused our research efforts on one automated technology: the smart re-closer, which is a new
fault-protection device being installed by utilities across the US, including GMP. These
automated re-closers can operate independently of the operator, opening and closing in response
to voltage drops and other transient fault conditions. When supported by advanced DMS
software, they can operate completely automatically to isolate faults and reroute power flow to
reduce the number of customers affected by an outage. Even when they are not operating in a
fully automated manner, control room operators can operate these devices remotely to achieve
fault isolation and service restoration functions.

Such devices are considered integral to grid modernization, moving the grid closer to a self-
healing network by restoring power to the greatest number of customers in the shortest period of
time. They can also be operated in multiple modes: as manual switches, without advanced
capability; with operator oversight (the operator must agree to the restoration plan offered by the
DMS; and as fully independent/automated devices that communicate directly with SCADA to
reroute power.

Because they are so central to advanced grid functionality and have the multiple capabilities
described above, the re-closers were the ideal technology for investigating the impact of
automation on operator performance. With GMP as a partner, providing access to its control
rooms and operators, and with Oracle providing access to its Network Management © (NMS)
system and its FLISR-enabled NMS training simulator, Sandia created a technical approach
rooted in empirical and observational research, one that allowed us to investigate operator
decision-making and performance during grid restoration, with and without automation.

2 Automation for the electric grid is defined as “automatically controlled operation by mechanical or
electric devices that optimize the flow of electricity and data to enable a fully controllable, interconnected
and flexible distribution system.”
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3.1. Measuring Grid Automation

To fully understand the dynamic interplay between the operator and automated grid
technologies, we needed a repeatable method for observing, measuring and documenting the
level of automation. Our methodology, which reflects work described elsewhere in this report
and 1s fully documented in Haass et al (XX), is based on an inventory of operator-to-system
interfaces and a set of data, including historic SCADA data, identifying the nature and frequency
of actions executed by humans and machines in near real-time (see Table 1).

Table 1. Example SCADA log keyword matrix.
Table entries where the SCADA logs did not include sufficient information to
calculate the level of automation are marked as not applicable (N/A).

Information Acquisition Information Analysis Decision Selection  Action Implementation

Machine

Automated Action ~ RTU no on/off line low limit exceeded N/A device change of state

[OPEN, OFF]

Result of operator ~ N/A N/A N/A control succeeded [OPEN,

commanded action CLOSED, TAG]
Operator N/A N/A N/A

Command machine N/A operator control, note N/A Operator control [OPEN,

action added CLOSED, TAG]

Armed with that data, we created a visual display showing the system’s automation dynamics for
a specific interval of time. It should be noted that the data could also be incorporated into real-
time visualization systems already present in control rooms.

We found that when the level of automation approaches zero, system operations require more
effort from system operators. One can therefore infer that when low levels of automation are
routinely associated with certain subsystems or operator actions that investing in more
automation may reduce operator workload or improve efficiency. Conversely, when levels of
automation are routinely high, system operators may be vulnerable to distraction or
complacency, both of which can result in decreased situation awareness. As repeatedly
demonstrated for other domains [6], it is at these times that system performance is most
vulnerable to automation failures.

Figure 3, for example, depicts the levels of automation for a 31-day period during which a strong
snowstorm entered Vermont (day 9), causing widespread damage and power interruptions. This
event, and efforts by operators and field crews to restore power, is apparent in the level of
automation. After a stable period of highly automated operation from day 4 to day 9, the level of

14



automation oscillates frequently between low and high automation, as automated systems
perform fault isolation functions and human operators respond to alarms and work to restore

service.

Thirty One Days of Automation

1

Level of Automation

| | | | |
5 10 16 20 25 30
Elapsed Days

Figure 2. Variance in levels of automation vary during 31-day periods of operation.

A more detailed example of a single power outage is shown in Figure 5. Here the level of
automation can be seen from the time the first device failed at approximately 23.5 hours to the
time of service restoration at approximately 25.75 hours. The event began with a failure at re-
closer R2, which caused the upstream breaker, R1, to open automatically. Later, at
approximately 24.75 hours and 25.5 hours, operators performed two remote switching operations
as part of their restoration efforts. Both switching operations began in fully manual mode and
transitioned to fully automated processes, triggered by computerized actions, such as voltage
alarms, that responded to the grid’s new operating configuration.
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Figure 3. Level of automation from device failure to completed service restoration.

The IGRID method makes it possible to measure and track the changing level of automation as a
critical infrastructure moves through its natural system dynamics and provides a detailed view of
the factors that affect overall system performance, including operator workload and weaknesses
or gaps in system automation. We found, for example, that when the level of automation
approaches zero, system operations require more effort from system operators. One can therefore
infer that when low levels of automation are routinely associated with certain subsystems or
operator actions that investing in more automation may reduce operator workload or improve
efficiency. Conversely, when levels of automation are routinely high, system operators may be
vulnerable to distraction or complacency, both of which can result in decreased situation
awareness. As repeatedly demonstrated for other domains [6], it is at these times that system
performance is most vulnerable to automation failures.

We believe this method can guide infrastructure investment decisions by highlighting

15



subsystems or operating conditions where increased automation is needed and also guide the
design of the human-computer interface to ensure operator remains mentally engaged during
highly automated periods so his/her situational awareness is maintained. The method is also
adaptable: the moment-by-moment details can be analyzed for specific time periods (for
example, weekly, or monthly), during critical events (such as storms or system upgrades), or for
specific subsystems.

3.2. Situational Awareness Among Distribution Grid Operators

As a parallel effort to our automation work, we began gathering baseline information on operator
tasks, responsibilities and skill sets in order to build a foundation of knowledge related to
situational awareness and critical-thinking skills. (The full scope of this work is described in
Stevens-Adams, et al, 2015.) Granted access by GMP to their two control rooms and 14
operators, we were able to observe the operators’ work routines and, by applying human-factors
methodologies to interviews with the operators, we were able to collect information specific to
switching, a central activity for every distribution operator. Switching, as the name implies,
refers to the opening and closing of switches (also known as breakers) to isolate faults and
reroute power. Most so-called switching is planned and orchestrated under controlled conditions
to allow for maintenance of the electrical network. In contrast, unplanned switching is required
when there are unexpected grid outages (e.g., trees falling on lines during stormy weather,
animals chewing through lines, cars running into poles, etc.) and necessary for power restoration.
We learned that unplanned switching can place high cognitive demands on an operator,
depending on the type, location and timing of the outage, requiring the operator to pinpoint the
fault location, evaluate options to re-route power and coordinate with the field crews so the break
can be repaired and the flow of power restored.

While conducting our observational studies, we also gathered data on background noise during
an outage, including the frequency of audible alarms, ringing phones and number of customers
(including the police) pressuring the utility for a restoration times. Given the heightened activity,
unplanned switching tasks are often stressful and potentially overwhelming, requiring rapid,
critical decision-making and a high level of cognitive effort. By the end of our in situ
observational study we were able to construct a task diagram? that lays out the demands and
skills required for a simple but unplanned grid-restoration event (see Figure XX), a diagram that
set the stage for our upcoming experimental work.

3 To construct the task diagram, we relied on a widely accepted human-factors methodology call applied
cognitive task analysis.
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Figure 4. Task diagram of unplanned switching.

In Figure 4, the diamond shapes indicate tasks in which the grid operator (GO) had to make a
critical decision; mostly involved with switching. The diagram highlights the importance of
operator communication with the field crew (FC) and interaction with SCADA interfaces and
tools. Using the widely accepted critical decision method XX, we also constructed a critical cue

inventory, to list the multitude of cues and sources of information an operator tracks during grid
restoration.
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Table 2. Critical cue inventory of unplanned switching.

Cue category

Description

Alarm (visual, auditory)

Phone ringing (visual, auditory)

Weather (visual, auditory)

Control board (visual)

Security cameras (visual)

Weather channel/news stations/meteorology sites (visual, auditory)

Radio (auditory)
Co-workers (visual, auditory)

Email (visual, auditory)

Time of day (visual, auditory)

On computer via Supervisory Control And Data Acquisition
(SCADA)

. Intrusion

. Communication

. Nuisance

. Normal

. Emergency situations
Printer

Control board

Customer calls
Field crew calls

Management

Hot or cold
Sunny/clear
Wind

Snow/wintry conditions

Visual of current outages/problems

Means to see entire footprint

Assists in determining number of affected customers

Assists in determining how to reroute power, plan switching

Monitoring authorized and unauthorized access to buildings

Monitoring hydrostations

Monitoring wind patterns

Monitoring storm developments
Field crew calls
Communication between operators

Requests from field crew
Communication with upper management

Communication with engineering department

Field crews scheduled during day
Customer usage greatest 6a-10p

Assists in predicting load

18



Finally, we created the timeline for a specific outage event, asking GMP operators to choose an
incident that 1) they could remember in a fair amount of detail; 2) was a recent occurrence and/or
especially memorable; and 3) was supported by SCADA data (see Figure 5).

s

1929 O 19:30 2022 < 2022 OO¥% 2029 <€ 20:34 Lo 20:41
SCADA Operator Field crew Operator Field crew Field crew Operator
alarms calls arrives on begins writing closes high determines closes line
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breakers dead the line via picked up correctly. 20:22.
all open). squirrel. SCADA. some Operator Event is
Bus fault in Requests Operator customers. closes each resolved.
a line open gives order recloser via
substation. for work. for field crew SCADA.
Lots of to close high Customers are
customers side breaker. picked up.
out. Mutual

agreement

that an

insulator does

* Operator expertise is an influence E:tﬂr;:ff t©

O Operator decision point

< Three way communication between operator and field crew; group problem solving & decision making

Figure 5. Timeline of unplanned switching incident.

What we found of significance was that the operator and field crews share situational awareness
throughout the restoration process, each depending on the other from fault detection to full
service restoration. Whereas operators have a view of the entire network, including customer
load and operating parameters, and know the location of switches and other rerouting devices,
they only have an abstract, or white-tower, view of an outage. In contrast, the field crew interacts
physically with the grid, acting as a forensic team to identify the precise location and cause of a
fault. With the proliferation of FLISR-enabled switches, the relationship between the operator
and the field crew will substantially shift. At a minimum, we believe that operators will have to
develop a new mental model of grid restoration and will also have to both trust, and know when
not to trust, automation.

3.3. Defining Operator Expertise
One challenge of grid modernization is that most of today’s control-room operators were trained
in an analog environment and have skills that reflect a combination of field experience and

control room confidence, but these skills do not align with digital architecture of the 215t Century
grid. Yet expertise in the control room has never been well defined, either for analog or digital
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operations. With utilities increasingly investing in automation, the domain is long overdue for a
sweeping look at expertise; it is important to understand how operator performance, combined
with changes in automation may, or may not impact the grid. It is also important to understand
expertise in order to optimize the design of the human-machine interface and roll-out of
advanced grid visualization software. Although limited in scope, this is the first study of its kind
to characterize expertise in the distribution control room; see Stevens-Adams, 2016 [23.]

We conducted our research by individually interviewing 13 control room operators, three
managers, and one human resources executive at GMP, either in a conference room or the
control room. We conducted the control-room interviews during a ‘quiet’ time so as not to
impact the operator’s job performance and asked questions pertaining to the importance of
experience in the control room, the traits that distinguish experts from non- experts and what
attributes an expert in the control room possesses. We also asked the operators to assess the
expertise of their colleagues. In addition, we asked operators to explain how they currently
execute switching operations and how that approach might change as the grid becomes more
automated.

We found the operators’ experience varied, ranging from a so-called apprentice, with just two
months on the job, to a First-Class (1C), or expert, operator, with more than 37 years at GMP.
Operators are promoted from Second-Class (2C) to 1C based on their ability to handle complex
tasks and to complete them under decreasing amounts of supervision. Operators that reach the
1C level are expected to work independently.

Based on the responses we obtained, we determined that an ‘expert’ operator typically has 7-9
years of control-room experience and also possesses certain traits, such as the ability to remain
calm, cool, and collected under pressure. He or she is also adaptable, can effectively multi-task,
can synthesize large amounts of data quickly and efficiently navigate the operating system and
has had exposure to many types of events. Although our findings are based on one distribution
utility, we believe (based on informal interviews at multiple other utilities), they are
representative of the domain and provide a solid baseline against which to consider expertise in
the face of increasing automation.

3.4. The IGRID Experimental Approach

We began the experimental phase of the IGRID project in 2016, building on our previous
cognitive research to lay out a technical approach that would produce quantitative data on the
benefits of automation. Because GMP gave us access to their operators and Oracle gave us
access to their Network Management System® (NMS) software, we had an exceptional
opportunity to collect data under simulated, but close-to-realistic, conditions. We decided to
develop a set of outage scenarios for the portion of the GMP grid already identified as a test bed
for the rollout of FLISR technology, including the feeders where the automated re-closers*
(Vipers©) will be installed, and to recruit GMP operators serving as test subjects.

4 These re-closers are accompanied by advanced, automated switchgear that, with support from the Oracle
NMS, can automatically generate and execute restoration plans.
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Oracle agreed to upload a model of the GMP grid into their NMS, a time-consuming and
complicated process involving the export of GMP’s GIS data to Oracle, along with assets and
electrical values and an impedance model. In addition, the NMS had to be configured to
incorporate GMP’s power-engineering software into FLISR and ensure FLISR-enabled SCADA
capabilities. GMP agreed to support that effort, making its engineering and IT staff available to
assist in the data transfer.

Working in parallel, Sandia, GMP and Oracle designed a scenario-based set of experiments. The
objective was to create scenarios that would enable us to measure and better understand operator
response to simulated outages that varied in both their degree of complexity and level of
automation support, and to track operator performance by both restoration times and by
Customer Minutes Interrupted (CMI), which is the sum of all customer interruption durations
and a key performance metric for the distribution grid. We hypothesized that changes in
automation would be reflected in the shape and size of outage histograms (see Figure XX),
allowing us to quantify how operator-automation balance affects these metrics.
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Figure 6. Sandia visualization of outages experienced by one utility over the course of several months,
binning number of outages by duration (x-axis) and frequency (y-axis). Each color represents a
different cause.

3.4.1. Scenario-Based Methodology

The scenarios we created range in complexity from simple to intricate, sorted into pairs based on
multiple variables, such as the number of outages, anticipated number of operator switching
actions, number of customers out of power, etc. (see Figure XX.) Within each pair, one scenario
is designed to be executed in manual mode; the other scenario is FLISR-enabled and will
automatically generate a switching plan that the operator can choose to accept to reject.
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We designed each scenario as realistically as possible, reviewing historical outage data for this
portion of the GMP network to identify potential causes of disruptions and to ensure the
verisimilitude of the complexity associated with each disruption. In the end, we developed five
detailed scenarios, all of which were vetted and refined by former GMP operators to clarify
interactions, and make the scenario process as close as possible to an actual disruption, including
alarms, phone calls from external parties, and other elements beyond the NMS interface. We
also inserted scripts meant to mimic interactions with field crews and others, such as the state
police. To further add realism, we recruited a subject matter expert (SME), a highly experienced
former GMP operator, to write the scripts and to serve as the voice of the field crews (or other
callers), reading from the scripts in the scenario. Overall, the scenarios provided a likely path, as
determined by our SME, for operators to follow, serving therefore as a de facto baseline of
operator performance, though (as we shall see) the scenario script does not prevent actions
beyond the expected path from being pursued.

As we developed the scenarios, we also created a detailed work breakdown structure (WBS) so
we could capture the interchanges between the operator and external parties, including the
originator and receiver of the communication or action, the means of communication or action,
and the content of the communication or action. The WBS was beneficial in three ways:
» First, in error correction of the scenarios (e.g., identifying inconsistencies in switching or
identification of assets used in the scenario);

* Second, in identifying the elements of each scenario that should be timed (e.g., the time
from receipt of an alarm to awareness of its cause and subsequent dispatch of the field
crew) during the course of the experiment; and

* Third, identifying elements of each scenario for which timing would be neither operator-
response dependent nor predictable (e.g., the time for a repair crew to reach a location
once dispatched, the time for a repair crew to exact a repair once provided a switching
plan).

The latter category was valuable in scenario execution within the experiment, as it created
opportunities for acceleration of the scenario far beyond real timing, allowing for more scenarios
to be explored (and for more data to be gathered) in a shorter period of time. Elements for which
timing was deemed to be important, were often grouped. Grouping occurred because the
sequencing of individual tasks within the sequence could vary. Grouping also occurred to make
certain that the method of data capture (discussed later in this document) was consistent at the
beginning and end of the sequence.

We also used the work breakdown structure to define the difficulty of the scenario based on the
number of steps needed to return the system to a state in which all customers have power (note
that this does not mean full system restoration). Automation represented whether the scenario
included guidance within the NMS on a preferred path for use of FLISR-enabled controls within
the NMS, or no guidance from the NMS.
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3.4.2 Execution of the Experiment

Because GMP has not yet implemented NMS in its control operations, we needed to put our test
subjects through NMS training, sufficient to establish an acceptable degree of proficiency.
Oracle supported this effort by conducting training sessions at GMP and offering follow-up
phone support. We also asked two GMP operators to participate in a pilot test to ensure, prior to
the experiment, that our approach was technically and logistically sound and that our analytic
framework allowed for effective data capture and analysis. Unfortunately, our pilot testers—
having been through the scenarios— could not participate in the experiment, thus shrinking our
subject pool, but the testing proved invaluable: we identified multiple problems, including
software issues, that needed to be fixed in advance of the experiment.

We ran the experiments from June 28-July 1, 2016, during which time we tested a total of six
GMP operators, or almost 75 percent of the available GMP operator pool (not counting the pilot
testers.) Before each scenario was activated in the NMS, our SME briefed the operator on
prevailing conditions, including weather, time-of-year, and crew availability, that could influence
his decision-making. He also instructed the operator to restore the outages they encountered as
safely and efficiently as possible. Although a simulator is not equivalent to a real-time
environment, each operator was encouraged to treat the simulated scenarios as real events and to
take into consideration all the factors that would normally influence their decision-making with
respect to outage restoration.

We conducted the experiments in a private room at GMP, one operator at a time to minimize
distractions and ensure privacy. The Sandia human-factors expert oversaw the experiments,
ensuring their consistency and was supported in her data collection by a GMP employee and also
by the SME, who interacted directly with the test subjects by playing the role of the field crew,
making phone calls to the operator, etc. They captured data on the timing of particular actions
(both human — human and human — machine interactions) using several methods: stopwatch for
human-to-human interactions; screen capture software for general interactions with the NMS
software environment; and NMS timing data for actions recorded by the NMS in the scenario.
They also recorded times where appropriate, identified inconsistencies with the planned scenario
actions, and corrected the path of the scenario when diversions occurred. Additionally, each
operator was interviewed at the end of the experiment and asked to review the decisions he made
during each of the scenarios and to assist the observers in clarifying the operator’s decision-
making process.

It is important to note that the participation of our test subjects was strictly voluntary per the
requirements of Sandia’s Human Studies Board>. We also made it clear to all that participants
could withdraw from the study at any time, without penalty, and that their identities and results
would forever remain confidential.

> The experimental plan proposed by the IGRID team was thoroughly vetted by Sandia’s HSN to ensure
that the rights, including privacy, of all participants were protected and that no one would be coerced or
pressured in any way to participate.
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Operator Other
FLISR Outage Substations Circuits Swtiching Operator Outage Customers Operator
Enabled Season Time of Day = Ewvents  involved Involved Actions Actions  Duration Out Stress Level Cause
No Early Spring Afternoon 4 3 4 17 g 1:23 2,325 13 Multiple
Yes Late Spring Afternoon 4 4 9 20 13 0:53 24,950 18 Multiple
Noe Early Spring am-early pm 4 3 B 20 17 3:01 1.85 Multiple
Yes Summer Afterncon 1 1 1 30 5 4:10 735 18 Car pole
No Summer Evening 1 1 1 10 4 4:28 602 15 Tree|
Yes Summer Afternoon 1 1 2 9 4 0:57 1402 2.2 Transformer

Figure 7. Sample spreadsheet of outage scenarios.
The scenarios are sorted into pairs based on overall complexity, with one
scenario in each pair FLISR-enabled.

3.4.3. Preliminary Results

Sandia created an analytic framework to document operator actions, restoration times per outage
and per scenario and link the latter to CMI, sorted by both operator and scenario.

Data analysis from the experiments is ongoing. Nonetheless, some observations can be made
based on the data collection effort that are helpful to outlining future activities.

1. Expertise, Speed, and Accuracy

Researchers proposed that experienced operators, defined in other research as part of this overall
effort (Stevens-Adams & Hannigan, 2016), would perform tasks faster and with greater accuracy
than non-experts. In the collected data, the most experienced operator was slowest at completing
the tasks. Post-exercise interviews did not clarify whether this was due to the operator being
measured and deliberate in his actions, or due to a lack of proficiency and confidence with the
system on which the operator had recently been trained. Table 3 outlines the level of expertise as
defined in this study for each participant, and also their level of familiarity with the portion of the
GMP system used in the scenarios.

Table 3. Participants’ levels of expertise and system familiarity for the IGRID experiment.
P1 P2 P3 P4 P5 P6

Operator Expertise High Low High Low | High | Low

System Familiarity Low Low High Low | Low | Low

2. Situational Awareness and Critical Thinking

Researchers postulated that operator situational awareness would decline both as the scenarios
became more complex and as the NMS provided FLISR solutions. The experimental data
collected suggests this may be the case for the use of the NMS system. Given the instructions
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provided, to “restore the outages they encountered as safely and efficiently as possible,” many
operators appeared to be racing to achieve a solution as fast as possible. This strongly implies
reduced situational awareness in decision-making on the part of the operators.

Observed behavior of operators also revealed that some operators take actions outside of the
expert-suggested path to restoration. Some operators opened and closed switches in the system to
try and identify the location of disruptions within the scenarios. When this happened, the
simulated system responded as the real-world system would, avoiding actions that might lead to
cascading outages through system protection devices. The guarantee that these protective devices
will work every time in reality, or that switches and protective devices subject to action on a
more frequent than design basis planned will protect both utility equipment as well as consumer
equipment and utility- and consumer-owned distributed generation resources from further
consequence is a question for operations planners. These findings lead directly into the next
finding.

3. Consistency of Action

Within the experiments, the sequence of procedures expected from each of the operators was
inconsistent at best, likely reflecting different perceptions of the system and the way an operator
should interact with it and with other elements of the operational team (e.g., field crews). These
actions, combined with some of those identified above, suggest that steps to create a more
rigorous and consistent training procedure for the way operators interact with control systems
and field crews, may be of value.

4. Trust in Automation

Post-experiment interviews with operators suggest that automation provides value, and is seen as
the future of grid operations. But most suggested in these interviews that trust in automation
would be an issue. That was seen in the actions taken in the FLISR-driven scenarios. In most
cases, the FLISR solution was seen, but not acted on; rather, the operator used it as a guide for a
manual operation. This behavior may change with time, but it suggests that confidence in the
products of the automated system will evolve rather than be in place to begin. It also suggests an
opportunity for...

5. Adequate Sample Size

Working with GMP on this effort was wonderfully productive in terms of developing a sound
experimental design and testing procedure, including our scenario-based methodology, but the
small size of the utility, and the number of operators, both experienced and non-experienced,
meant that the data collected has limited value from a statistical analysis perspective. Identifying
a utility with the proper number of operators to satisfy basic statistical limitations on collected
data is an area for future examination, though trying to identify such utilities may lead beyond
smaller distribution-focused entities like GMP.

6. Errors in Experiment Execution

As with other experiments, this one was not without technical flaws. But the flaws seen in this
case proved to be illustrative, revealing an interesting interaction between the NMS and the
operator. In reviewing the data, for example, we saw that in one case, the NMS for the scenario
in question had provided an erroneous FLISR option, associated with one of the other scenarios,
with switching at a location completely unrelated to the outage posed. The operator chose to
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follow the erroneous FLISR option, trusting the automated input provided. It took the operator

several minutes to notice the difference, correct the system changes made following the FLISR
option, and begin analyzing the system to restore based on the system fault.

This raises natural questions regarding the accuracy of information received by the operator via
the NMS, of the underlying confidence and surety required by the operator in this information,

and the potential for malicious actors or error in code deployment to lead to such errors, which

have the potential to create disruptive events. This is a growing concern with the expansion of

distributed generation assets connected to distribution utility systems, and of the need for these
combined systems to operate without concern for erroneous reporting of this type.

3.4.4. Analysis

We presented each of the five trials (scenarios) to the six participants in random order. The
finalized list of scenarios is included in Table 4. Two scenarios were run with FLISR automation
turned off, while three were run with it on. The target difficulty encapsulates the total number
and complexity of tasks required of the operator if the scenario were run to full recovery
completion, as in a full check of loads and voltage measurements and release of the field crew..
However, because the scenarios were only run to full restoration (all customers online) instead of
full recovery (all customers online and system returned to normal topology), the difficulty and
recovery time should not be used to judge the results herein.

Table 4. Final scenarios

Target Target Full Number | Ideal Switching | FLISR
Difficulty Recovery Time | of Events | Operations automation?
Scenario 1 MED Ohr38’ 2 4 YES
Scenario 3 HIGH 1hr34’ 1 3 NO
Scenario 4 MED 5hr30’ 1 8 YES
Scenario 5 LOW 1hr22’ 1 5 YES
Scenario 6 LOW Ohr26’ 1 7 NO

In three individual trials, data was not accepted as valid, either because the experiment
administrator mistakenly ended the session before all customers were online, or because the
administrator did not adequately follow the scenario’s script:
a) Participant 1, scenario 1: Administrator did not adequately follow scenario script.
b) Participant 1, scenario 6: FLISR generated an incorrect solution, FLISR was intended to
be inactive in this scenario.
c) Participant 4, scenario 3: Administrator ended session before all customers were online.
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With this data removed, Figure 8 illustrates the time to full restoration for each scenario across
all participants. Restoration times for scenario 4 were longest on average, and scenario 4 had the
largest variance across participants. We also noted that many of the participants disagreed with a
particular piece of the FLISR solution in scenario 4. Also in scenario 4, some participants did to
not use the remote control options for all possible switches, but instead chose to dispatch crews
for manual switching in these cases.
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Figure 8. Box and whisker plot of restoration time.
Restoration times for each scenario in the experiment are shown for all
participants.

There are similarities in some of the distributions, namely between scenarios 3 and 6, which are
the two scenarios that lacked FLISR capability and also between FLISR-enabled scenarios 1 and
5, although scenario 5 has a lower median restoration time. Judging simply from these
distributions, there is no strong indication that adding FLISR automation improves overall
restoration times.

Figure 9 illustrates the variation in restoration times among participants across all scenarios. It is
apparent that participants 1 and 2 are consistently faster across all scenarios than the other
participants, having both a lower variance and lower median restoration time. For participant 1,
however, we had to discard two trials because of the experimental errors noted above.
Interestingly, participants 3, 4, and 5 have similar median restoration times, but widely varying
distributions.
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Figure 9. Box and whisker plot of restoration times for each participant for each scenario.

Figure 9 depicts how each participant performed compared to the mean restoration time for each
scenario. Negative deviations indicate faster performance than the scenario mean. Whereas
participant 2 was the only participant consistently faster across all scenarios, participant 3 was
the only participant consistently slower across all scenarios. Notably, participant 3 was also the
only expert across both operator and system knowledge categories, while participant 2 was a
novice in both of these categories.

Purely based on observation, participant 3 was slowest to navigate the NMS interface but
participants 1, 2, 5, and 6 also struggled at times with the NMS. Participant 4 had a noticeably
heightened grasp of the NMS interface by comparison, but at times acted so quickly that
mistakes were made, or cues from the experiment administrator had to be skipped.

Judging from this information, there is a slight suggestion that expertise may lead to longer
restoration times, but this is not statistically significant. Anecdotally, participant 3 was much
more deliberate in actions and made very sure that every FLISR suggestion was well-understood.
Some of participant 3’s lag may be attributed to the lack of familiarity with the NMS interface
but much of it may be attributed to a more cautious approach that is reflective of expertise. We
should also note that the fastest participant (2), who was a novice, was confused at some points
by NMS interface and had to slow down.
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Figure 10. Deviation from scenario mean restoration time for each participant.

While time to full restoration is a helpful and accessible statistic to measure participant

performance, the performance of the grid (and by association, the utility) depends on both the
magnitude of customer outages and their duration. For that reason, we chose CMI as the more

appropriate measure of grid performance for this study. Faced with data complexities, we
calculated CMI for only one of the scenarios, but believe with additional effort, we can calculate
it for the remaining scenarios. We also generated a timeline depicting customers out for scenario

4 (Figure 7) showing the range in operator contributions to CMI.
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Figure 11. Timeline of customers offline across all participants for scenario 4.
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Figure 7 provides excellent insight into the impact of operator performance on grid reliability
and resilience. Participants 1 and 6 had nearly identical restoration times for scenario 4, yet their
paths to restoration (blue and brown lines in Figure 7) are very different. Participant 1 reroutes
power via remote control of SCADA-enabled reclosers more quickly than participant 6.
Participant 6, on the other hand, communicates with field crews in between each decision to pick
up a block of customers, leading to the more stepwise restoration timeline. Note also that
participants 3 and 4 (green and red lines) both have very steep transitions to a low number of
customers offline, indicating that they performed three automated switching sequences in
extremely fast order. We believe this behavior is indicative of trust in the NMS FLISR
automated solution. It takes participant 3 much longer to arrive at the FLISR solution than
participant 4 — perhaps because of their relative levels of familiarity and comfort with the NMS
interface.

Figure 8 illustrates the potential for strong difference between CMI and total restoration time for
scenario 4. Even though participant 3 had the longest restoration time, participant 5 is the one
who had the highest CMI measure. Other than this discrepancy, however, longer restoration
times are associated with higher CMI.
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Figure 12. CMI and restoration times for scenario 4 for all participants.
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3.5. Game-Theoretic Modeling

To add an important theoretical underpinning to the IGRID project, we conducted a game-
theoretic modeling effort. Our aim was to develop an attacker-defender model in parallel with
IGRID’s experimental work (described above) to further illuminate the interactions between
operator and automation. Our work builds on a game-theoretic model developed by Jones et.al.
[11] with two players in the game: an attacker who attempts to gain control of a resource and a
defender who tries to prevent access.

While many models for automated power grids have focused on Fault Location, Isolation and
System Recovery (FLISR) algorithms, few consider the interaction between operator and
automation. Our goal is not to determine the optimal FLISR algorithm, but to assume that the
FLISR algorithm is a black box that the operator works with. In taking this approach, our

30



objectives were to 1) demonstrate that the relationship between the operator and automation is
worth studying and 2) identify when automation improves grid performance versus when
automation is a risk and the operator needs to operate the grid in manual mode.

3.5.1. Representation of the Power Grid

We represent the power grid as a mathematical graph where is the set of vertices in graph and
is the set of all edges in the graph where an edge connects any two vertices. To translate a power
grid to a mathematical graph, we first described the edges as switches, which can be opened and
closed, but are also directional based on whether the switch allows for unidirectional or bi-
directional power flow. We also tracked the type of switch (manual/automated) and the current
status of each switch (open/closed) and defined the vertices of the graph as customers on the line
connecting the switches, with their number weighted by the number of customers on that line.

Our conceptual approach is depicted in Figure X, which is a graphic representation of a power
grid. The edges are represented by lines where dashed/solid edges represent the open/closed
property while grey/black represent the automated/non-automated property. Circles represent the
vertices with their respective weights. Any vertex with a weight of 0 is a feeder and vertices are
colored based on the power line they are located on. Any fault that occurs on the grid or any
flipping of switches by the operator will change properties of the edges.

Figure 13. Mathematical graph representation of a power grid.
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3.5.2. Attacker-Defender Moves

The game-theoretic model consists of two players, the attacker and the defender who take turns
flipping switches in the power grid. The attacker does not have rationality or a goal but is an
undefined phenomenon, such as weather or equipment failure, that causes an outage. The
attacker is tracked, however, by two parameters: the number of attacks and the time at which
each attack occurs.

In contrast, the defender is the grid operator whose goal is to restore power to the grid with
minimal cost defined by a selected metric, which could be speed or safety or both.) Once an
attack occurs, if the system is automated, a FLISR generated solution will be available to the
operator. The operator has the choice of whether to blindly follow the FLISR generated solution
or to create his own solution. If the operator chooses to create his own solution, he must choose
which switches to flip and when based on how he wants to isolate the fault and what customers
he wants to restore first. A priori, it may not be obvious why the operator would not follow the
FLISR generated solution or why an operator would choose to wait before flipping switches, a
topic for further investigation.

3.5.3. Parameters and Metrics

Every action in the restoration process takes a certain amount of time to perform before the next
action can be performed. These times depend on the automation (i.e. it is faster to flip an
automated switch as opposed to a manual switch) and operator expertise (i.e. a highly skilled
operator may be faster at deciding which switches to flip than a lesser-skilled operator). For now
we have the following set of parameters, although ideally they would come from a distribution of
data obtained from the IGRID experiments.)

Parameter Description

Flip time The amount of time it takes for a single switch to be flipped.
Depends on automated/non-automated

Approve FLISR The amount of time it takes for an operator to approve a FLISR
solution. This may vary depending on the skill level of the operator

Decision Time The amount of time it takes for an operator to decide which
switches to flip (for non-FLISR solutions). This may vary
depending on the skill level of the operator.
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We chose CMI as our reliability metric because it aligns with the key metric for our experimental
work. : Customer Minutes Interrupted (CMI).

3.5.5. Examples

We present two examples of operator-autumation interaction based on one of the IGRID
scenarios but modified to demonstrate important factors in the interaction between operator and
automation. The times to complete different actions are demonstrative and do not reflect real
world data. The assumptions made are:

Parameter Value

Flip time Automated switch — 1 minute
Manual switch — 5 minutes

Approve FLISR 1 minute

Decision Time Operator with high skill level — 2 minutes
Operator with low skill level — 5 minutes

3.5.5.1. Example 1 — The Automation Fails

In this example, we look at two options:

1) the operator accepts the FLISR-generated solution and lets the switches operate automatically;
2) The automated switches fail and cannot be flipped automatically so the operator chooses to
not follow the FLISR generated solution.

We outline three restoration process for the above options below. This example shows that the
operator reduced CMI by opting to not follow the FLISR generated solution because he could get
more customers up sooner by manually flipping switches. This example demonstrates the
importance of the operator not solely relying on the FLISR generated solution.

1. Fully automated

This is the ideal case where the switches are not damaged, allowing the operator to follow the
FLISR solution. For this solution, we are assigning an arbitrary time of 73 minutes for the fault
to be physically repaired by a crew, which we will use as a constant in the subsequent cases.

Time Action Customers Out
105 PM Outage starts and recloser 62 opens 636
111 PM Fault located somewhere between P-3 and GE plant 636
112 PM Isolate: Operator opens switch at P-4 (automated) 836
113 PM Restore: Operator closes switch at P-5 (automated) 121
142 PM Fault located between P3-1 and GE plant 121
147 PM |solate: Operator opens switch at P3-1 {not automated) 12
1:48 PM Restore: Operator closes switch at P-4 (automated) 1
301 PM Fault is repaired 1
304 PM Operator recloses swith at P3-1 (automated), closes recloser 62 0

(automated), and opens switch at P-5 (automated),
CMil= 9879
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2. Automation fails and operator blindly follows FLISR generated solution
In this case, the operator accepts the FLISR generated solution without hesitation (same steps as
in Section 1), but needs to flip switches manually so the restoration process takes longer.

Time Action Customers Out
105 PM Outage starts and recloser 62 opens 25
1:11 PM Fault located somewhere between P-3 and GE plant 25
1:17 PM Isolate: Operator opens switch at P-4 (non-automated) 25
123 PM Restore: Operator closes switch at P-5 (hon-automated) 121
142 PM Fault located between P3-1 and GE plant 121
148 PM Isolate: Operator opens switch at P3-1 {non-automated) 121
1:54 PM Restore: Operator closes switch at P-4 (non-automated}) 1
307 PM Fault is repaired 1
322 PM Operator recloses switch at P3-1 {non-automated), closes recloser 0

62 {non-automated) and opens switch at P-5 {non-automated)
CMi= 16367

3. Automation fails but operator’s skill level is high

In this case, the operator acknowledges he cannot take advantage of automatic switching and
therefore does not follow the FLIS- generated solution. Instead, he/she designs his/her own
restoration process, with reducing CMI being a priority.

Time Action Customers Out
105 PM Qutage starts and recloser 62 opens 86
1:11 PM Fault located somewhere between P-3 and GE plant =23
1:18 PM Isolate: Operator opens switch at P-4 {non-automated) and opens
switch at P-1 {(non-automated) in parallel

125 PM Restore: Operator closes switch at P-5 (non-automated) and closes
recloser 62 {non-automated) in parallel

142 PM Fault located between P3-1 and GE plant

149 PM lsolate: Operator opens switch at P3-1 {non-automated)

1:56 PM Restore: Operator closes switch at P-1 (hon-automated)

309 PM Fault is repaired

3:14 PM Operator closes switch at P3-1 {non-automated), closes switch at P-
4 (non-automated) and opens switch at P-5 (non-automated) in

parallel
CMI= 145849

PN 1)
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Example where some automated switches fail. The optimal solution where the automated switches are working is compared to two solutions where all switches
must be flipped manually; one where the operator blindly follows the FLISR generated solution and one where the operator designs his own solution.

Figure 14. In this model, the operator outperforms the FLISR-generated solution.

3.5.5.2. Example 2 — Waiting to implement strategy

In this example, we assume a bad storm has created multiple faults. We outline the recovery
times for two cases: 1) the operator readily accepts the FLISR generated solution; or 2) the
operator acknowledges the storm is bad and waits to begin the recovery process until he has
more information about both faults. A review of the literature suggests that FLISR solutions
cannot handle multiple faults at once but deal sequentially with each fault. [26, 27]

We therefore explore two options: one, where the operator addresses the first fault, restoring
power using the FLISR-generated solution, and then addresses the second fault using the FLISR-
generated solution for that fault but without any coordination or overlap between the two events.
In this example, the FLISR solution has devastating consequences because it reroutes power for
the first fault onto the line where the second fault occurs. In the second case, however, the
operator waits for the storm to subside before starting the recovery process and enacts a very
different restoration strategy. This example demonstrates that when critical thinking skills are
important, such as recognizing the storm was severe and waiting to implement grid restoration,
an operator can outperform FLISR. This example also demonstrates that in almost every
circumstance, it behooves an operator to consider the broader picture before blindly accepting a
FLISR solution.
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1. Operator does not wait

In this case, the operator quickly accepts the FLISR solution for the first fault and when the
rerouting is completed, he quickly accepts the FLISR solution for the second fault. Again, we
assume a constant repair time of 73 minutes for the first fault and but reduce that time to 60
minutes for the second fault because the field crew is already dispatched.

Time Action Customers Out
105 PM Outage starts and recloser 62 opens 636
1:11 PM Fault located somewhere between P-3 and GE plant 836
112 PM Isolate: Operator opens switch at P-4 (automated) 836
113 PM Restore: Operator closes switch at P-5 (automated) 121
142 PM Fault located between F3-1 and GE plant 121
143 PM Second outage and recloser 49 opens 1424
1:44 PM Second fault located at P-16
147 PM |solate: Operator opens switch at P3-1 {not automated) 1421
148 PM Restore: Operator closes switch at P-4 (automated) 14241
301 PM Fault is repaired 1421
308 PM Operator recloses swith at P3-1 (non-automated), closes recloser 62 75

(automated), and opens switch at P-5 (automated)
313 PM Isolate: Operator opens switch at P-10 (non-automated) 75
314 PM Restore: Operator closes switch at P-1 {hon-automated) 55
414 PM Fault is repaired 55

Operator recloses swith at P-10 (non-automated), closes recloser 49
{automated), and opens switch at P-1 (non-automated)
CMI= 167345

Q

425 PM

2. Operator waits

In this case, the operator observes the storm is strong and, based on experience, anticipates
multiple faults. He therefore decides to wait until the storm has passed, which takes 40 minutes.
Able to dispatch two crews, he can manage the two outages in parallel because they are on different
feeders.

Time Action Customers Out
105 PM Outage starts and recloser 62 opens 86
1:11 PM Fault located somewhere between P-3 and GE plant 826
1:42 PM Fault located between P3-1 and GE plant 86
1:43 PM Second outage and recloser 43 opens 1421
1:44 PM Second fault located at P-16 1421
1:45 PM Done waiting out storm 14

lzolate: Operator opens switch at P3-1 (nhot automated) and P-10 {non-

automated) in parallel

155 PM Restore: Dpt?raior closes switch at P-2 {non-automated) and P-1 (non- 646
automated) in parallel

3108 PM Fault is repaired 646

319 PM Operator recloses swith at P3-1 (non-automated), closes recloser 62 0

(autormated), opens switch at P-2 {non-autornated) and then in

parallel recloses swith at P-10 (non-automated), closes recloser 49

{automated), and opens switch at P-1 (non-automated)
CMI= 97764

1:50 PM 1424
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Overall, the goal of designing this game-theoretic model was to study the interactions between
operators of the power grid and automation and to help pinpoint when automation helps and
when it hinders grid restoration. Automation is fairly new in the recovery process of the power
grid, and little work has been done to study how automation should be integrated into the current
recovery process. This work does not provide an analytical solution but the model demonstrates
the outcomes that can be expected from the examples we provided. The model also lends itself
to a Monte Carlo approach, where based on some probability distribution, we could select
switches to flip for the recovery process. By running these simulations many times, we can
quantify the average CMI for a given set of fault characteristics or calculate an upper bound for
the CMI, information that provides a useful context and set of parameters for operators to
consider when making restoration decisions.

1500

-~ QOperator blindly follows FLISR generated solution
| Operator acknowledges large storm and waits before designing his own solution

1000

Customers Out
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0 I | | | I | | I I
0 20 40 60 80 100 120 140 160 180 200
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Example where a severe storm causes multiple faults. Two solutions are compared; one where the operator blindly follows the FLISR generated solution
(eventhough FLISR cannot deal with multiple faults) and one where the operator waits until the storm has passed and then designs his own solution.

Figure 15. Differences between an operator who waits and one who accepts FLISR.
The operator who waits before implementing a restoration plan still outperforms
the FLISR solution because the latter requires sequential restoration whereas the
operator can, in theory, restore multiple outages in parallel.
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4. CONCLUSIONS

1. Our analysis of GMP’s historic data suggest that both level of operator expertise and

and the state of the grid are indicators of whether automation is a benefit or a detriment to grid
restoration. Experts consistently improve when you give them automation; novices improve but
only during non-peak activity periods. During peak periods, their performance goes down.

2. Our experimental work indicates there are predictive patterns in the interplay between human
operators and automation, namely that operator-machine interactions become less predictable as
outage complexity increases and that under stressful conditions, i.e., complex, unplanned and
unpredictable outages, the human operating in manual mode always outperforms the automation.

3. Our experimental work, admittedly based on a small sample size, also indicates that operators’
level of expertise, which determines autonomy in the control room, is inversely correlated with
performance when automation is present. The more senior/expert operators appear to be more
distrustful of automation and therefore slower to restore the grid.

4. Our experiment also suggests the rollout of automated switching, that will profoundly affect
how the operator interacts with the grid, but more work needs to be done to understand the
opportunities and vulnerabilities in this space.

5. Our game-theoretic modeling can benefit utilities by allowing operators to practice and
investigate different ways for working with automation in a simulated environment.

6. Our methodology for measuring automation reveals key patterns in operator-automation
interactions that can inform resource optimization.

6. Overall, our research brings a predictive element to grid operations, enabling utilities to match
automation to the state of the grid, and/or level of operator that in turn suggests improved system
control and resilience.

Moreover, although our research is still in the nascent stage, we now have an effective —and
extensible—platform for expanding our research on the operator-automation interface and
collecting more data on such important topics as situational awareness, decision-making,
expertise, proficiency, trust, etc. Our methodology also allows us to investigate a broad range of
other challenges facing the grid-operator interface, including cyber intrusion, extreme weather,
blue-sky events and the rapid increase in intermittent renewables.

We are also confident that our research has myriad practical applications, examples of which are
listed here:

- Offers a way to look at grid behavior as a function of operator behavior, which can lead to
better system planning and improved grid performance metrics

- Provides a scientific basis for operator training, which is needed to reduce vulnerabilities and
maintain/increase operator performance

- Supports the development of more effective human-machine interfaces and real-time
decision-support tools
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- Provides data to justify a utility’s investment in automation and support the roll-out of
distribution automation [28]

- Can inform, and be integrated with, other grid resilience efforts
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APPENDIX

Analysis of Historical GMP Outage Data

Kate Cauthen, 6132
9/7/16

Background
The goal of this analysis is to determine which factors contribute to customer hours out (CHO)
during a power outage. Each observation in this dataset is one outage event that occurred
somewhere in the portion of the electrical grid owned and operated by Green Mountain Power in
Vermont. For each observation there is information about the time and date of the outage, the
cause of the outage according to the operator, where the outage occurred (which feeder), whether
it occurred during a major storm, whether the affected feeder was automated, and the level of
expertise of the operators. This analysis seeks to determine how each of these factors affects
CHO in conjunction with one another. To do so, two analyses are performed:

1) descriptive statistics are computed to identify which specific sets of conditions are

observed to result in the greatest CHO on average, and
2) a statistical model is fit to determine how factors interact with one another to affect CHO
on average, in a more general sense.

Methods

Factors and Data

Data were collected on 14,776 outages between August 15, 2014 and October 19, 2015. The
time and date information were used to calculate time of day, day of week, and season. Time of
day 1s a binary factor where 0 = peak hours (9:00 AM — 8:00 PM) and 1 = off-peak hours. Day of
week is a binary factor where 0 = weekday (Monday — Friday) and 1 = weekend. Season is
divided into three categories: 0 = winter (December - February), 1 = summer (June - August),
and 2 = off-season. The operators coded the cause of the outage event as one of 55 categories.
These were binned into more general causes. The resulting bins are shown in Table 1 along with
frequency and percent of total outages. The operators also flagged outage events that occurred
during a major storm, resulting in a binary factor where 0 = no major storm and 1 = major storm.
Feeders were identified that have an automation component, and outages occurring on these
feeders were considered 1 = Automated, and outages on all other feeders were considered 0 =
Not Automated. Unfortunately it is unknown whether or not the automation feature was
implemented on a given feeder during an outage event. Feeders were also categorized as being
either 0 = urban or 1 = rural, based upon location of the feeder with respect to cities in Vermont.
In general, feeders within the city of Rutland were considered urban, and all others were
considered rural. Appendix A shows the automation and urban/rural designations for each feeder
ID.
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Finally, Sandia obtained the operator schedule for the year of 2015 (starting January 11t%, 2015)
as well as designations of “expert” versus “non-expert” for each operator. A level of expertise
was assigned to each outage event observed during this time frame. An outage event could either
have 0 = no coverage by an expert (no experts on shift for any part of outage), 1 = partial expert
coverage (at least one expert for some but not all of the outage event), 2 = full expert coverage
(at least one expert on shift for entire duration of outage), or NA for outage events that took
place before January 11t 2015.

Table 1. Frequency Table for Cause

Cause Frequency | Percent of Total
Unexpected Grounding 2731 18.48
ANIMAL - RACCOON 14 0.094748
ANIMAL - BIRD 201 1.360314
ANIMAL - SQUIRREL WITH GUARD 919 6.219545
ANIMAL - SQUIRREL WITHOUT GUARD 391 2.646183
ANIMAL - OTHER 37 0.250406
EQUIP - Surge/Lightning Arrester 57 0.385761
EQUIP - Cutout 394 2.666486
EQUIP - Capacitor 1 0.006768
EQUIP - Regulators 8 0.054142
EQUIP - Line Recloser/Breakers 21 0.142122
EQUIP - Transformers - Broken Bushing 14 0.094748
EQUIP - Insulator 93 0.629399
EQUIP - Services and Serv Drops (Inc. 199 1.346779
Secondary)
EQUIP - URD Secondary Cable (Only GMP 49 0.331619
Owned)
EQUIP - URD Primary Cable 51 0.345154
ACCDNT - Car 239 1.617488
EQUIP - URD Failure Misc. 43 0.291012
Unexpected Line Open 1742 11.79
ACCDNT - Logger Landowner Tree 82 0.554954
GI:I;\QAL - BEAVERS DROPPING TREES ONTO 3 0.054142
ERROR - Tree Trimmer 9 0.06091
TREE - Other - Out ROW 179 1.211424
TREE - Other - In ROW 740 5.008121
TREE - Other - Limb 552 3.735788
Planned Outage 167 1.130211
ACCDNT - Muni Request 5 0.033839
Line Open Failure 262 1.77
EQUIP - er'e Splices Primary Compression 37 0.250406
or Automatic
EQUIP - Compression Type Connector 83 0.561722
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EQUIP - Bolt Type Connector 67 0.453438
EQUIP - Wire Break (Primary Only and not 75 0.50758
Trees)

Preventable Foreseeable 7635 51.67

EQUIP - Transformers - Overload 69 0.466973
EQUIP - Transformers - Improper or No 52 0351922
Voltage

EQUIP - Transformers - Leaking Transformer 4 0.027071
EQU'IP- MTC (Midpoint Terminating 6 0.040606
Cabinet)

WEATHER - Flooding 6 0.040606
WEATHER - Lightning 488 3.302653
WEATHER - Snow Load/Wire Slap 1050 7.106118
WEATHER - Other 131 0.886573
TREE Snow/Ice - Out ROW 996 6.740661
TREE Snow/Ice - In ROW 1157 7.830265
TREE Wind - In ROW 2224 15.05143
TREE Wind - Out ROW 1341 9.075528
ACCDNT - Fire 78 0.527883
GMP - Planned Non Emergency 33 0.223335
Error 46 0.31

ERROR - Field Worker 1 0.006768
GMP - Emergency 45 0.304548
Supplier 67 0.45

SUPPLIER - National Grid 30 0.203032
SUPPLIER - Other 37 0.250406
Other 2293 15.52

OTHER 15 0.101516
Unknown 1373 9.292095
EQUIP - Transformers - Misc. 350 2.368706
EQUIP - Other 305 2.064158
GMP - Other 113 0.764754
ACCDNT - Other 106 0.71738
ERROR - Other 26 0.175961
(blank) 5 0.033839

Statistical Approach
Descriptive Statistics

A factor is a variable that is discrete and typically has non-numeric values. Each factor has at
least two possible values, which are called levels. For example, the Time of Day factor has two
levels: peak and off-peak. Treatments are combinations of levels of all factors. For example, one
treatment in this data set would be: cause = LineOpenFailure, Time of Day = peak, Day of Week
= Weekday, Season = Winter, Urban/Rural = Rural, Automation = Not-Automated, Major Storm
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= No, and Expertise = Partial. In order to determine which sets of specific conditions contribute
to the largest values of CHO on average, we calculated descriptive statistics on treatments. All
treatments were identified, and the average CHO was calculated for all observations in each
treatment. The treatments were ordered by mean CHO in order to identify those conditions under
which CHO is observed to be highest, on average.

ANOVA Model

The purpose of the statistical model is to identify statistically significant factors (categorical) that
are associated with the response of interest, CHO (continuous). Typically, an ANOVA would be
the most appropriate data analysis method, however, in this case a standard ANOV A model
could not be used. An ANOVA compares the means of groups defined by various factors to one
another. The ANOVA model requires various assumptions to be met in order for the statistical
tests regarding the mean comparisons to be valid. Perhaps the most important of these
assumptions, homogeneity of variance, was not met. Many response variable transformations
were attempted to remedy the heterogeneity of variance, including an optimized power
transformation, but none were successful.

Instead, other non-parametric approaches were explored in order to circumvent the problem of
heterogeneity of variance. The Aligned Rank Transform (ART) was ultimately selected since it
is non-parametric, is able to model multiple factors simultaneously, and can include interaction
terms (Wobbrock et al, 2011). There are two main steps to calculating the ART. The first step in
the ART procedure is to align the response for each effect (main and interaction). This alignment
step works by estimating marginal means and removing their effects on the response for all but
one (the one for which the response is aligned). The second step in the ART procedure is to rank
the responses for each aligned version of the data. This concludes the ART procedure, and we
are left with an aligned, ranked version of CHO for each effect (main and interaction).

Next, an ANOVA was performed on the ART data. When using the ART data in an ANOVA, all
effects (main and interaction) should be included in the model, but only the hypothesis test that
corresponds to the effect for which the response is aligned is accurate. This means that to fit a
model with multiple effects, the model must be fit once for each effect (but including all effects
in the model), where the response is CHO aligned and ranked for the given effect. If variable
selection is desired, then the highest order effect with the greatest p-value is removed and all
models are refit. This process is repeated until only statistically significant effects remain.

In the case of this dataset, the design is not fully factorial. That is, not all combinations of factor
levels occur in the dataset. As a result, the packages that are currently available in R for ART
could not be used. Thus we implemented ART and used it to accommodate the complex outage
data. The ART procedure described in Wobbrock et al. was followed for these calculations, and
the code was implemented in R.

Only two-way and three-way interactions were considered in the model. Conceivably, since there
are eight factors an eight-way interaction is possible. However, very high order interactions are
increasingly difficult to interpret, so we limited our scope to three-way interactions. Furthermore,
since there are not observations for all possible three-way interactions, only those interactions for
which there are data were included in the model. This resulted in 18 possible three-way
interactions. A three-way interaction has three two-way interactions associated with it that it
accounts for. For our analysis, we also included the two two-way interactions that were not
associated with one of the 18 three-way interactions.

Although the ART procedure allows for the fitting of a multi-factor model with interaction terms
and accurate hypothesis tests regarding these terms, one limitation is that post hoc comparisons
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cannot be made for interaction effects. Instead, we give interaction plots and describe the
patterns observed. Unfortunately, we are not able to test these relationships statistically.

Results

Exploratory Data Analysis

Table 2 shows the range, mean, and standard deviation for three response variables: customers
affected, duration of outage (in hours), and CHO. Additionally, Figures 1-8 that follow plot the
densities of the eight factors for all three response variables. Although the analysis focuses on
CHO, this summary table and the figures may serve as references to distinguish between outage
events with higher CHO caused by greater number of customers as opposed to those caused by a

longer duration.
Table 2. Descriptive statistics for response variables, broken down by factor

Predictor Output Range Mean | Standard
Deviation
Major Yes Hours 0.0908 - 18.41 | 21.74
Storm 139.7
Customers | 0 - 1,949 46.28 | 157.44
CHO 0-71,790 672.8 | 3,008.97
No Hours 0.0844 - 2.411 | 11.78
739.9
Customers | 0-5,428 45.62 | 186.3
CHO 0 -29,520 97.14 | 553.2
Cause Unexpected Hours 0.124 - 1.727 | 1.4
Grounding 22.86
Customers | 0-2,102 27 143.49
CHO 0-9,663 53.33 | 395.53
Unexpected Line Hours 0.0864 - 6.27 |41.77
Open 739.9
Customers | 0 - 3,407 62.67 | 228.96
CHO 0 -29,520 174.5 | 1,181.48
Line Open Failure Hours 0.0878 - 1.835 | 1.32
5.974
Customers | 0-1,790 134.2 | 361
CHO 0-1,671 158.9 | 373.16
Preventable Hours 0.0869 - 7.911 | 15.27
Foreseeable 133.2
Customers | 0-5,428 52.19 | 196.31
CHO 0-71,790 312.2 1 1,911.26
Error Hours 0.119 - 1.525 [ 1.89
11.38
Customers [ 0-1,703 264.6 | 430
CHO 0-1,038 186.4 | 263.21
Supplier Hours 0.0847 - 3.805 | 5.05
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31.37

Customers | 0 - 2,641 383.7 | 519.49
CHO 0-4,872 778.1 | 1,040.59
Other Hours 0.0844 - 4.482 | 10.07
139.7
Customers | 0 - 2,640 34.8 |140.45
CHO 0-63,300 158.6 | 1,130.28
Time of Peak Hours 0.0844 - 5.705 | 17.77
Day 739.9
Customers | 0- 3,723 43.96 | 180
CHO 0-71,790 209.4 | 1,451.35
Off-peak Hours 0.0864 - 5.875 | 12.38
133.2
Customers | 0-5,428 48.51 | 181.54
CHO 0-66,630 231.4 | 1,529.64
Season Summer Hours 0.0878 - 2.209 | 2.07
34.11
Customers | 0 - 3,407 46.04 | 192.91
CHO 0-17,920 106.5 | 603.93
Winter Hours 0.0908 - 13.83 | 19.83
139.7
Customers | 0 - 2,640 48.3 | 173.58
CHO 0-71,790 516.3 | 2,571.81
Off Hours 0.0844 - 2.393 | 13.98
739.9
Customers | 0-5,428 44.27 | 180.67
CHO 0-29,520 87.01 | 491.76
Day of Weekday Hours 0.084 -671 |6.399 | 16.38
Week
Customers | 0-5,428 4715 | 184.79
CHO 0-71,790 249.5 | 1,660.03
Weekend Hours 0.0878 - 3.639 | 13.73
739.9
Customers | 0 - 3,407 41.02 | 165.54
CHO 0-17,920 111.1 | 535.81
Automation | Auto Hours 0.162 - 3.542 | 8
77.95
Customers | 0-1,217 36.61 | 144.83
CHO 0-1,787 75.03 | 232.26
Not-Auto Hours 0.0844 - 5.826 | 15.99
739.9
Customers | 0-5,428 4598 | 181.38
CHO 0-71,790 221.5 | 1,499.86
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Urban/Rura | Urban Hours 0.0878 - 7.086 | 33.24
I 739.9
Customers | 0 - 1,232 37.3 | 111.57
CHO 0-8,217 147.3 | 563.88
Rural Hours 0.0844 - 671 | 5.722 | 14.79
Customers | 0-5,428 46.08 | 182.74
CHO 0-71,790 220.8 | 1,506.91
Expertise None Hours 0.099 - 1.677 | 1.08
9.387
Customers | 0 - 3,407 53.33 | 217.2
CHO 0-5,063 90.76 | 398.66
Partial Hours 0.211 - 5.169 | 33.15
739.9
Customers | 0 - 2,641 42.87 [ 172.71
CHO 0-17,920 155.6 | 765.22
Full Hours 0.084 - 1.835 | 1.32
10.81
Customers | 0-5,428 47.51 | 202.82
CHO 0 -8,052 75.68 | 355.8
NA Hours 0.0908 - 9.279 | 16.66
139.7
Customers | 0-2,498 44.08 | 158.46
CHO 0-71,790 350.1 | 2,059.84

Figure 1. Density of customers, hours, and CHO for levels of Major Storm
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Figure 2. Density of customers, hours, and CHO for levels of Cause
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Figure 3. Density of customers, hours, and CHO for levels of Time of Day
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Figure 4. Density of customers, hours, and CHO for levels of Season
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Figure 5. Density of customers, hours, and CHO for levels of Day of Week
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Figure 6. Density of customers, hours, and CHO for levels of Automation
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Figure 7. Density of customers, hours, and CHO for levels of Urban/Rural
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Figure 8. Density of customers, hours, and CHO for levels of Expertise
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When performing an ANOVA, including an ANOVA on ART data, the purpose is to determine
if there is a statistically significant difference between group means. A boxplot can be useful in
approximating whether or not there is a difference between group means. Figures 9-16 are
boxplots of CHO for each factor. In each figure, the first subfigure includes all data points, and
the second subfigure is zoomed in to see the group medians more clearly. The horizontal black
line in each box represents the median, and the lower and upper limits of the box represent the
25t and 75™ percentiles of the data. The problem of heterogeneity of variance is made obvious
by observing the percentiles. For a given figure, boxes that have a large difference in height
indicate heterogeneity of variance.

Figure 9. Boxplot of CHO for levels of Major Storm
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Figure 11. Boxplot of CHO for levels of Time of Day
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Figure 12. Boxplot of CHO for levels of Season
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Figure 13. Boxplot of CHO for levels of Day of Week
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Figure 14. Boxplot of CHO for levels of Automation
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Figure 15. Boxplot of CHO for levels of Urban/Rural
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Figure 16. Boxplot of CHO for levels of Expertise
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Descriptive Statistics
The mean CHO was calculated for each treatment in the data. There were a total of 428
treatments that were observed in the data. (Note that based on the levels of each factor, there are
2688 total possible treatments in theory, but many of these were not observed in the data set).
The results for the treatments with the top ten values of mean CHO are displayed in Table 3. The
complete table can be found in Appendix B. It is important to note that this table gives only the
observed ranking and mean CHO; it does not test for statistically significant differences between
the treatments.

Table 3. Treatments with the top ten greatest observed mean CHO

Major Day of
Cause Time of Day Season Urban/Rural | Automation | Storm | Expertise | Week Mean_CHO
Supplier off-peak off Rural Not-Auto NO partial weekday 4125.605
UnexpectedLineOpen off-peak winter Rural Not-Auto NO none weekday 2531.543
UnexpectedLineOpen peak summer Rural Not-Auto NO partial weekend 1834.663
Other peak summer Rural Not-Auto NO partial weekend 1797.53
PreventableForeseeable off-peak summer Urban Not-Auto NO partial weekend 1685.658
UnexpectedLineOpen off-peak summer Rural Not-Auto NO full weekend 1631.592
Other off-peak winter Urban Not-Auto YES no info weekend 1577.687
UnexpectedGrounding off-peak winter Rural Not-Auto YES no info weekday 1284.5
Supplier off-peak winter Rural Auto YES no info weekday 1209.878
Supplier off-peak off Rural Not-Auto NO no info weekday 1034.34

Inferential Data Analysis
We fit an ANOVA model to the ART data that included all eighteen three-way interactions and
two two-way interactions. We performed backwards variable selection by removing the least
significant effects, one at a time, until only statistically significant effects remained in the model.
The results of the final model are given in Table 4. Fifteen of the three-way interactions were
statistically significant, and both of the two-way interactions were statistically significant.

Table 4. F-tests for each effect in the final model

Term SS (Type |df | F p
1))

Cause*Time*Season 5.8816e+0 | 1 | 4.3411 6.152e-07 **
8 2 *

Time*Season*Urban/Rural 4.3174e+0 | 2 | 17.3441 2.995e-08 **
8 *

Time*Season*Day of Week 2.7450e+0 |2 | 110.5799 <2.2e-16**
9 *

Time*Major Storm*Urban/Rural 1.2564e+0 | 1 | 10.0969 0.0014883*
8

Time*Major Storm*Day of Week 8.2222e+0 |1 | 6.6305 0.0100342 *
7

Time*Urban/Rural*Expertise 5.6980e+0 | 3 | 15.2462 6.670e-10 **
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8

Time*Expertise*Automation 2.3266e+0 | 3 | 6.2275 0.0003197 *
8 *%
Time*Expertise*Day of Week 2.5948e+0 | 3 | 70.2457 <2.2e-16**
9 *
Time*Automation*Day of Week 1.4018e+0 |1 | 11.2628 0.0007928 *
8 *%
Season*Urban/Rural*Day of Week 1.4657e+0 | 2 | 5.8846 0.0027886 *
8 *
Season*Automation*Day of Week 2.5767e+0 | 2 | 10.4147 3.021e-05 **
8 *
Major Storm*Urban/Rural*Day of 4.9220e+0 |1 | 39.6846 3.070e-10 **
Week 8 *
Major Storm*Automation*Day of 3.5126e+0 |1 | 28.4432 9.792e-08 **
Week 8 *
Urban/Rural*Expertise*Day of Week | 2.1828e+0 | 3 | 5.8476 0.0005490 *
8 *%
Expertise*Automation*Day of Week 1.3154e+0 | 3 | 35.3594 <2.2e-16 **
9 *
Cause*Expertise 3.9726e+1 |1 | 225.3765 <2.2e-16 **
0 8 *
Cause*Day of Week 2.5676e+1 |6 | 379.0228 <2.2e-16**
0 *

*p <0.05, ** p < 0.01, *** p < 0.001

Unfortunately, using the ART it is not possible to test for contrasts above the main effect level.
Instead, for each significant term an interaction plot will be displayed (Figures 17 — 33). A
qualitative description of general patterns and the most obvious effects will be given, some with
accompanying mean CHO values in hours. Again, these contrasts have not been tested for

statistical significance.
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Cause*Time*Season
When an outage is caused by the supplier during the off-season, mean CHO is higher (1444) for
off-peak hours compared to peak hours (495). When an outage is caused by an error, during the
peak hours it has the greatest mean CHO in the winter and the off-season, and during the off-
peak hours it has the greatest mean CHO in the summer. When an outage is caused by a
LineOpenFailure during peak hours, the mean CHO is nearly constant throughout the year (~30).
However if it occurs during off-peak hours during the off-season then mean CHO is much
greater (473).

Figure 17. Interaction plot of CHO for Time of Day, Cause, and Season
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Time*Season*Urban/Rural
When the outage takes place in an urban setting during peak hours, mean CHO is similar in the
off-season and summer months (~60) and greater in the winter (250). However, if the outage
occurs during off-peak hours it is higher in the summer (108) and higher yet in the winter (324).
In general, rural outages and those that take place in the winter have higher mean CHO.

Figure 18. Interaction plot of CHO for Time of Day, Urban/Rural, and Season
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Time*Season*Day of Week
If an outage occurs on the weekend during the off-season, mean CHO is about the same for peak
and off-peak outages (~90). Compared to the off-season, a weekend outage in the winter results
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in a higher mean CHO during off-peak hours and a lower mean CHO during peak hours.
Compared to the off-season, a weekend outage in the summer results in higher mean CHO
during both peak (202) and non-peak hours (162). In general, weekday outages in the off-season
and summer have lower mean CHO compared to weekend outages, but the opposite is true
during the winter.

Figure 19. Interaction plot of CHO for Time of Day, Day of Week, and Season
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Time*Major Storm*Urban/Rural
For outages during a major storm in an urban area, mean CHO is higher during non-peak (417)
versus peak hours (309). In general, outages in rural areas have greater mean CHO than those in
urban areas, especially during a major storm.

Figure 20. Interaction plot of CHO for Time of Day, Urban/Rural, and Major Storm
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A weekday, major storm outage has lower mean CHO during peak (823) hours than during oft-
peak hours (736). A weekend outage during peak hours results in about the same mean CHO,
whether or not it occurred during a major storm. On the other hand, a weekend outage during
off-peak hours has greater mean CHO during a major storm (232) compared to when there is no
major storm (110). In general, mean CHO is about the same when it’s not a major storm for all
days of the week and times of day, but it is much greater on weekdays during a major storm for
both peak and off-peak times.
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Figure 21. Interaction plot of CHO for Time of Day, Day of Week, and Major Storm
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Time*Urban/Rural*Expertise
When an outage occurs with only non-experts in the room for the entire outage in a rural area,
mean CHO is greater during off-peak (126) hours compared to peak hours (69); and when it
occurs in an urban area mean CHO is greater during peak hours (111) compared to non-peak
hours (22). When an outage occurs with partial coverage by an expert, mean CHO is about the
same for rural outages in both peak and off-peak times (157). However, with partial coverage by
an expert for an urban outage, mean CHO is greater during off-peak times (246) than peak times
(31). In general, when an outage is fully covered by an expert, mean CHO is about the same for
urban and rural outages in both the peak and off-peak times.

Figure 22. Interaction plot of CHO for Time of Day, Expertise, and Urban/Rural
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Time*Expertise*Automation

When an outage occurs during peak hours and it is partially covered by an expert, if the feeder is
not automated the outage events have greater mean CHO (157) compared to when the feeder is
automated (80). However, when a partially covered outage occurs during off-peak hours, if the
feeder is not automated the outage events have smaller mean CHO (156) compared to when the
feeder is automated (196). When the outage is not covered at all by an expert, the pattern is
reversed. In this case if the outage occurs during peak hours, outages on automated feeders have
greater mean CHO (133) compared to those on non-automated feeders (70). When the outage
occurs during off-peak hours, outages on automated feeders have smaller mean CHO (29)
compared to those on non-automated feeders (125). In general, outages that are fully covered by
an expert operator have the lowest mean CHO, and those outages have greater mean CHO when
they occur on the non-automated feeders. This pattern appears to hold across all hours of the day.
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Figure 23. Interaction plot of CHO for Time of Day, Expertise, and Automation
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Time*Expertise*Day of Week
For outages that are partially covered by an expert, mean CHO on weekdays is about the same in
the peak and off-peak hours (~123), however, on weekends it is greater during peak hours (349)
than off-peak hours (247). For outages that are not covered at all by an expert operator, outages
occurring during peak hours result in mean CHO that is about the same on all days of the week
(~71); however, outages during off-peak hours result in mean CHO that is greater on a weekday
(190) compared to the weekend (65). In general, when an outage is fully covered by an expert
operator mean CHO is slightly lower on weekdays (~67) versus weekends (~105), regardless of
time of day.

Figure 24. Interaction plot of CHO for Time of Day, Expertise, and Day of Week
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When an outage occurs on an automated feeder on a weekday, mean CHO is higher during peak
hours (92) versus off-peak hours (63). However, outages on automated feeders on weekends
result in greater mean CHO during off-peak (92) as opposed to peak hours (27). In general,
outages on non-automated feeders have higher mean CHO on weekdays (~255) as opposed to
weekends (~115), regardless of time of day.

Figure 25. Interaction plot of CHO for Time of Day, Automation, and Day of Week
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Outages that occur in the winter on a weekend result in about the same mean CHO for both
urban and rural settings (~108), but winter weekday outages have greater mean CHO in rural
settings (618) compared to urban settings (317). In general, outages that occur during the off-
season have about the same mean CHO (~73), regardless of the day of the week or urban vs.
rural. In general, outages that occur during the summer tend to have mean CHO that is greater on
the weekend (~187) compared to the weekday (~48), regardless of urban versus rural outages.
Figure 26. Interaction plot of CHO for Urban/Rural, Season, and Day of Week
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For weekday winter outages on non-automated feeders mean CHO is greater (610) than those on
the weekend (103). For weekday winter outages on automated feeders mean CHO is also greater
(195) compared to those on the weekend (141). In general, summer and off-season outages result
in mean CHO that is about the same in on weekdays for both automated and non-automated
feeders (~64), but on non-automated feeders with weekend summer outages mean CHO is
greater (190).

Figure 27. Interaction plot of CHO for Automation, Season, and Day of Week
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Outages in urban areas are lowest in mean CHO when a major storm is not involved on a
weekday (43), and mean CHO is higher for weekend outages (88). If a major storm is involved
in an urban area, mean CHO is higher on weekdays (407) versus weekends (131). In general,
outages in rural areas result in about the same mean CHO any day of the week if a major storm is
not involved (~103), but if a major storm is involved in a rural outage then mean CHO is higher
for weekdays only (807).

Figure 28. Interaction plot of CHO for Day of Week, Urban/Rural, and Major Storm
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In general, outages on non-automated feeders when a major storm is not involved result in mean
CHO that is about the same on weekdays and weekends (~102), but if a major storm is involved
then mean CHO is greater on weekdays (794) versus weekends (123) for non-automated feeders.
In general, mean CHO for outages on feeders that are automated is the same on weekdays and
weekends, but is higher if the outage occurs in a major storm (~227) as opposed to not (~56).
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Figure 29. Interaction plot of CHO for Day of Week, Automation, and Major Storm
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Urban/Rural*Expertise*Day of Week

When an outage is partially covered by an expert operator, on a weekday, mean CHO is higher
for rural (122) versus urban outages (28). However, when an outage is partially covered by an
expert operator, on a weekend, mean CHO is higher for urban (352) versus rural outages (310).
In general, outages where there are either no expert operators or full coverage by an expert
operator result in mean CHO that is about the same (~82), regardless of day of week or urban
versus rural settings.
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Figure 30. Interaction plot of CHO for Day of Week, Expertise, and Urban/Rural
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When an outage is partially covered by an expert, if the outage occurs on a weekday then mean
CHO is about the same for automated and non-automated feeders (~112). However, if a partially
covered outage occurs on the weekend, then mean CHO is greater for non-automated feeders
(323) versus automated feeders (147). When an outage is not covered by an expert operator at
all, weekday outages result in mean CHO that is higher for automated feeders (162) versus non-
automated feeders (108). However, when there is no expert coverage on weekend outages, mean
CHO is about the same for feeders regardless of automation (~56). In general, when an outage is
fully covered by an expert operator, mean CHO is slightly higher for non-automated feeders
(~88) versus automated feeders (~32), regardless of the day of the week.
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Figure 31. Interaction plot of CHO for Day of Week, Expertise, and Automation
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Outages with full coverage by an expert operator result in mean CHO that is highest for Supplier
(498), followed by LineOpenFailure and Error (~259), followed by the other causes (~118).
Outages that are partially covered by an expert and are caused by the Supplier result in the
highest mean CHO compared to all other combinations of cause and expertise (1133). In general,
outages with no or partial expert operator coverage that are caused by UnexpectedLineOpen and
Error tend to have higher mean CHO (~228) than those caused by LineOpenFailure, Other,
PreventableForeseeable, and UnexpectedGrounding with the same expertise (~88).
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Figure 32. Interaction plot of CHO for Cause and Expertise
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Mean CHO is highest for weekday outages cause by Supplier (802) compared to all other
combinations of day of week and cause. In general, mean CHO is higher on weekdays compared
to weekends for outages caused by LineOpenFailure, Other, PreventableForeseeable, and
Supplier, and mean CHO is nearly identical and is higher on weekends (~267) compared to
weekdays (~168) for UnexpectedLineOpen and Error. In general, when an outage is caused by
an UnexpectedGrounding, mean CHO is lowest, regardless of day of week (~51).
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Figure 33. Interaction plot of CHO for Cause and Day of Week
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Conclusion

The goal of this analysis was to investigate the relationship between eight predictive factors and
CHO. We started with the full model, which included all possible three-way interaction effects,
and we performed backward selection to reduce the model until it contained only statistically
significant effects. An aligned rank transform was used to accommodate the violation of the
ANOVA’s assumption of constant variance. Since this procedure was used, contrasts could not
be tested for the interaction terms in the model. All eight factors were statistically significant,
and all factors were involved in interaction terms. This means that the effect of one factor on
CHO cannot be described without placing it in the context of other factors. For each effect,
interaction plots were displayed and a description was given.
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Appendix A

Feeder ID | Urban/Rural | Automated/Not Automated
71G1 Rural Not Automated
78G2 Rural Not Automated
71G3 Rural Not Automated
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34G1 Rural Not Automated
PS-G43 Rural Not Automated
SJ-G63 Rural Not Automated
LO-G26 Rural Not Automated
BA-G71 Rural Not Automated
QU-G16 Rural Not Automated
EM-G76 Rural Not Automated
39G1 Rural Not Automated
RA-G22 Rural Not Automated
H2-G60 Rural Not Automated
CF-G16 Rural Not Automated
PO-G27 Rural Not Automated
32G7 Rural Not Automated
70G4 Rural Not Automated

Rural Not Automated
CV-G64 Rural Not Automated
TH-G16 Rural Not Automated
81G1 Rural Not Automated
RC-G51 Rural Not Automated
M-G27 Rural Not Automated
BF-G62 Rural Not Automated
63J2 Rural Not Automated
PN-G46 Rural Not Automated
EN-G26 Rural Not Automated
HR-G37 Rural Not Automated
HR-G38 Rural Not Automated
WY-G81 Rural Not Automated
19G4 Rural Not Automated
SM-G62 Rural Not Automated
BAY-G4 Rural Not Automated
LJ-G13 Rural Not Automated
CA-G37 Rural Not Automated
44G1 Rural Not Automated
9G2 Rural Not Automated
EB-Y38 Rural Not Automated
WK-G81 Rural Not Automated
46Y1 Rural Not Automated
56G2 Rural Not Automated
63G4 Rural Not Automated
83G1 Rural Not Automated
37G7 Rural Not Automated
28G2 Rural Not Automated
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BE-G29 Rural Not Automated
CH-G11 Rural Not Automated
WR-G24 Rural Not Automated
14G2 Rural Not Automated
PO-G7 Rural Not Automated
EJ-G7 Rural Not Automated
SR-G72 Urban Not Automated
L-G12 Rural Not Automated
DO-G22 Rural Automated

PA-G20 Rural Not Automated
53G3 Rural Not Automated
WY-G80 Rural Not Automated
WM-G92 Rural Not Automated
BR-G70 Rural Not Automated
VR-G57 Rural Not Automated
EL-G40 Rural Not Automated
EL-G41 Rural Not Automated
19G7 Rural Not Automated
15L19 Rural Not Automated
BV-G44 Rural Not Automated
SP-J1 Rural Not Automated
BS-G32 Rural Not Automated
BAY-G3 Rural Not Automated
MH-G13 Rural Not Automated
H7-G7 Rural Not Automated
39G3 Rural Not Automated
39G2 Rural Not Automated
FH-J26 Rural Not Automated
33Y3 Rural Not Automated
UH-G21 Rural Not Automated
60J1 Rural Not Automated
27G5 Rural Not Automated
SA-G23 Rural Not Automated
83G2 Rural Not Automated
WO-G92 Rural Not Automated
GM-G62 Rural Not Automated
BL-G24 Rural Not Automated
57G1 Rural Not Automated
MC-G13 Rural Not Automated
45G1 Rural Not Automated
MI-G36 Rural Not Automated
GT-G47 Urban Not Automated
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SB-G93 Rural Not Automated
UH-G23 Rural Not Automated
85G2 Rural Not Automated
56G1-1 Rural Not Automated
14G1 Rural Not Automated
RO-G62 Rural Not Automated
60J2 Rural Not Automated
WK-G82 Rural Not Automated
90G1 Rural Not Automated
EA-G52 Rural Not Automated
53G2 Rural Not Automated
BR-G71 Rural Not Automated
56G1 Rural Not Automated
BAY-G6 Rural Not Automated
RI-G68 Rural Not Automated
28G1 Rural Not Automated
47G1 Rural Not Automated
PA-G21 Rural Not Automated
74G1 Rural Not Automated
CV-G65 Rural Not Automated
EM-G75 Rural Not Automated
WK-G83 Rural Not Automated
33G2 Rural Not Automated
WI-G11 Rural Not Automated
SS-G36 Rural Not Automated
ME-G12 Urban Not Automated
62J1 Rural Not Automated
53G1 Rural Not Automated
GI-G71 Rural Not Automated
SD-G10 Rural Not Automated
NR-G33 Urban Not Automated
81G2 Rural Not Automated
BE-G28 Rural Not Automated
TA-G12 Rural Not Automated
51G2 Rural Not Automated
3G3 Rural Not Automated
NB-G72 Rural Not Automated
WI-G31 Rural Not Automated
36G2 Rural Not Automated
19G5 Rural Not Automated
67G3 Rural Not Automated
44G2 Rural Not Automated
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74G2 Rural Not Automated
69K1 Rural Not Automated
BR-G58 Rural Not Automated
AP-G11 Rural Not Automated
3321 | Rural Not Automated
MS-G50 Rural Automated
SH-G35 Rural Not Automated
16G1 Rural Not Automated
9G4 Rural Not Automated
WM-G91 Rural Not Automated
NS-G63 Rural Not Automated
NR-G34 Urban Not Automated
48G1 Rural Not Automated
CS-G34 Rural Not Automated
SN-G40 Rural Automated
CH-G10 Rural Not Automated
48G2 Rural Not Automated
SF-G20 Rural Not Automated
67G2 Rural Not Automated
MS-G51 Rural Automated
BAY-G5 Rural Not Automated
RA-G23 Rural Not Automated
69K2 Rural Not Automated
61G3 Rural Not Automated
BF-G63 Rural Not Automated
DM-G6 Rural Not Automated
H6-G66 Rural Not Automated
SB-G91 Rural Not Automated
MC-G14 Rural Automated
WF-G23 Rural Not Automated
ST-G45 Rural Not Automated
BA-G72 Rural Not Automated
ME-Y86 Rural Not Automated
BV-G43 Rural Not Automated
FA-G6 Rural Not Automated
SO-G33 Rural Not Automated
SK-G60 Rural Not Automated
65J1 Rural Not Automated
M-G24 Rural Not Automated
ER-G51 Urban Not Automated
LO-G27 Rural Not Automated
HY-G24 Rural Not Automated
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32G4 Rural Not Automated
63G1 Rural Not Automated
BU-G47 Rural Not Automated
78G1 Rural Not Automated
61G1 Rural Not Automated
43G2 Rural Not Automated
37G8 Rural Not Automated
47G2 Rural Not Automated
M-G23 Rural Not Automated
NA-G26 Rural Not Automated
72G1 Rural Not Automated
NE-G16 Rural Not Automated
PM-G14 Rural Not Automated
GT-G49 Urban Not Automated
NB-G73 Rural Not Automated
3G1 Rural Not Automated
40G7 Rural Not Automated
NT-G53 Rural Not Automated
PN-G45 Rural Not Automated
ER-G53 Urban Not Automated
SK-G59 Rural Not Automated
AP-G10 Rural Not Automated
43G3 Rural Not Automated
40G6 Rural Not Automated
PS-G42 Rural Not Automated
FH-J28 Rural Not Automated
78G4 Rural Not Automated
90G4 Rural Not Automated
ER-G52 Urban Not Automated
27G7 Rural Not Automated
SR-G71 Urban Not Automated
NT-G52 Rural Not Automated
RI-G66 Rural Not Automated
BEL-G1 Rural Not Automated
27G6 Rural Not Automated
PM-G16 Rural Not Automated
OV-G7 Rural Not Automated
MC-G12 Rural Not Automated
M-G26 Rural Not Automated
PO-J31 Rural Not Automated
FA-G4 Rural Not Automated
19G3 Rural Not Automated
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34G2 Rural Not Automated
LS-G62 Rural Automated

38G1 Rural Not Automated
38G3 Rural Not Automated
JE-G57 Rural Not Automated
19G6 Rural Not Automated
VR-G58 Rural Not Automated
LA-G61 Urban Not Automated
SNO-G96 Rural Not Automated
NW-G12 Rural Not Automated
78G3 Rural Not Automated
63J3 Rural Not Automated
36Y5 Rural Not Automated
41G1 Rural Not Automated
SB-G94 Rural Not Automated
NIM-G1 Rural Not Automated
SS-G37 Rural Not Automated
SL-wW1 Rural Not Automated
LA-G62 Urban Not Automated
GI-G70 Rural Not Automated
66J1 Rural Not Automated
90G5 Rural Not Automated
90G2 Rural Not Automated
90G3 Rural Not Automated
6Y2 Rural Not Automated
37J5 Rural Not Automated
SO-G32 Rural Not Automated
71G2 Rural Not Automated
HY-G25 Rural Not Automated
67G1 Rural Not Automated
SR-G73 Urban Not Automated
BS-G124 Rural Not Automated
WO0-G91 Rural Not Automated
73G1 Rural Not Automated
BS-G31 Rural Not Automated
26H1 Rural Not Automated
BS-G123 Rural Not Automated
GMP-G77 | Rural Not Automated
SB-G92 Rural Not Automated
22)1 Rural Not Automated
LS-G61 Rural Automated

H3-G3 Rural Not Automated
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SR-G70 Urban Not Automated
BU-G48 Rural Not Automated
PS-G41 Rural Not Automated
RD-G33 Rural Not Automated
38G2 Rural Not Automated
SO-G34 Rural Not Automated
SO-G35 Rural Not Automated
BL-G25 Rural Not Automated
61G2 Rural Not Automated
33Y4 Rural Not Automated
51G1 Rural Not Automated
EA-G51 Rural Not Automated
NE-G17 Rural Not Automated
PM-G15 Rural Not Automated
2H2 Rural Not Automated
32G8 Rural Not Automated
NA-G27 Rural Not Automated
3G2 Rural Not Automated
9G3 Rural Not Automated
SNO-G97 Rural Not Automated
43G4 Rural Not Automated
37J6 Rural Not Automated
37H1 Rural Not Automated
37H3 Rural Not Automated
GT-G48 Urban Not Automated
BEL-2 Rural Not Automated
16G2 Rural Not Automated
36G1 Rural Not Automated
DQ-1 Rural Not Automated
ro-g62 Rural Not Automated
SJ-G64 Rural Not Automated

3312 | Rural Not Automated
MI-G37 Rural Not Automated
PM-G17 Rural Not Automated
QU-G17 Rural Not Automated
73G5 Rural Not Automated
H3-177 Rural Not Automated
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Appendix B

Time of Urban/Rura | Automatio | Major Expertis | Day of Mean_CH
Cause Day Season | n Storm e Week (o]
Supplier off-peak | off Rural Not-Auto NO partial weekday 4125.605
UnexpectedLineOpen off-peak | winter Rural Not-Auto NO none weekday 2531.543
weeken
UnexpectedLineOpen peak summer | Rural Not-Auto NO partial d 1834.663
weeken
Other peak summer | Rural Not-Auto NO partial d 1797.53
weeken
PreventableForeseeable | off-peak | summer | Urban Not-Auto NO partial d 1685.658
weeken
UnexpectedLineOpen off-peak | summer | Rural Not-Auto NO full d 1631.592
weeken
Other off-peak | winter Urban Not-Auto YES no info d 1577.687
UnexpectedGrounding off-peak | winter Rural Not-Auto YES no info weekday 1284.5
Supplier off-peak | winter Rural Auto YES no info weekday 1209.878
Supplier off-peak | off Rural Not-Auto NO no info weekday 1034.34
Supplier off-peak | off Rural Not-Auto NO full weekday 1027.929
UnexpectedLineOpen peak winter Rural Auto NO no info weekday 957.1308
Supplier off-peak | winter Rural Not-Auto YES no info weekday 956.5701
PreventableForeseeable | peak winter Rural Not-Auto YES no info weekday 951.1976
weeken
UnexpectedLineOpen peak summer | Rural Not-Auto NO none d 937.9616
Supplier off-peak | winter Rural Not-Auto NO no info weekday 922.415
Supplier peak winter Rural Not-Auto YES no info weekday 906.8622
PreventableForeseeable | off-peak | winter Rural Not-Auto YES no info weekday 865.0546
UnexpectedGrounding peak summer | Rural Not-Auto NO partial weekday 842.1084
UnexpectedGrounding peak winter Rural Not-Auto YES no info weekday 821.7163
Other peak winter Rural Not-Auto YES no info weekday 734.0392
LineOpenFailure off-peak | off Rural Not-Auto NO full weekday 727.7639
weeken
UnexpectedLineOpen peak off Urban Not-Auto NO none d 692.4377
PreventableForeseeable | peak winter Rural Auto YES no info weekday 654.2357
Supplier peak off Rural Not-Auto NO partial weekday 631.0327
weeken
Error peak off Rural Not-Auto NO no info d 628.9111
PreventableForeseeable | peak summer | Rural Auto NO partial weekday 589.1912
UnexpectedLineOpen off-peak | winter Rural Not-Auto NO no info weekday 575.2895
PreventableForeseeable | off-peak | winter Urban Not-Auto YES no info weekday 557.4849
Other off-peak | winter Rural Not-Auto YES no info weekday 543.1412
Supplier peak off Rural Not-Auto NO no info weekday 540.5442
weeken
Other off-peak | off Rural Not-Auto NO partial d 530.804
UnexpectedLineOpen off-peak | off Urban Not-Auto NO full weekday 480.2535
Other peak winter Urban Not-Auto YES no info weekday 473.863
Error peak winter Rural Not-Auto NO full weekday 455.6255
UnexpectedLineOpen off-peak | off Rural Not-Auto NO none weeken 412.665
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weeken
LineOpenFailure off-peak | off Rural Not-Auto NO no info d 411.4471
PreventableForeseeable | peak winter Urban Not-Auto YES no info weekday 397.754
Supplier peak off Rural Not-Auto NO full weekday 395.7897
weeken
Other off-peak | winter Rural Not-Auto YES no info d 383.8389
UnexpectedLineOpen off-peak | summer | Rural Not-Auto NO full weekday 364.4961
UnexpectedLineOpen off-peak | winter Rural Not-Auto YES no info weekday 364.403
UnexpectedLineOpen off-peak | off Rural Not-Auto NO no info weekday 363.3859
Error peak winter Rural Not-Auto NO no info weekday 360.7967
PreventableForeseeable | peak off Rural Auto NO none weekday 358.0657
Other off-peak | winter Urban Not-Auto YES no info weekday 349.5182
UnexpectedLineOpen peak off Urban Not-Auto NO none weekday 346.8153
weeken
Other off-peak | summer | Rural Not-Auto NO partial d 342.9846
weeken
Other peak off Rural Not-Auto NO partial d 333.6644
weeken
PreventableForeseeable | peak summer | Urban Not-Auto NO full d 313.0744
Error peak winter Rural Not-Auto NO partial weekday 310.3732
Supplier off-peak | winter Rural Not-Auto NO partial weekday 293.6267
PreventableForeseeable | off-peak | winter Rural Not-Auto NO no info weekday 293.214
weeken
Other off-peak | off Rural Auto NO partial d 292.687
Error off-peak | summer | Rural Not-Auto NO full weekday 290.3003
UnexpectedLineOpen off-peak | off Rural Not-Auto NO none weekday 288.5926
weeken
Other off-peak | winter Rural Auto YES no info d 286.337
UnexpectedGrounding off-peak | summer | Rural Not-Auto NO none weekday 283.633
UnexpectedLineOpen peak winter Rural Not-Auto YES no info weekday 282.8834
Error peak off Rural Not-Auto NO none weekday 276.2625
weeken
UnexpectedLineOpen off-peak | off Rural Not-Auto NO partial d 252.0442
Other off-peak | winter Rural Not-Auto NO partial weekday 246.8772
Error peak off Rural Not-Auto NO full weekday 246.4137
weeken
PreventableForeseeable | off-peak | summer | Rural Not-Auto NO partial d 246.0683
Error off-peak | winter Rural Not-Auto NO no info weekday 245.6755
weeken
PreventableForeseeable | peak off Rural Not-Auto NO partial d 244.431
Other off-peak | off Rural Not-Auto NO none weekday 244.0457
Other peak winter Rural Auto YES no info weekday 227.3818
weeken
Error peak off Rural Not-Auto NO full d 223.5383
weeken
Error off-peak | off Rural Not-Auto NO none d 215.8292
PreventableForeseeable | peak winter Rural Not-Auto NO full weekday 204.614
Other off-peak | off Rural Auto NO partial weekday 195.1954
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weeken

PreventableForeseeable | off-peak | off Rural Not-Auto NO no info d 193.9513
weeken
PreventableForeseeable | off-peak | summer | Rural Auto NO partial d 192.6292
PreventableForeseeable | off-peak | off Rural Not-Auto NO none weekday 189.2395
PreventableForeseeable | peak winter Rural Not-Auto NO no info weekday 186.4388
weeken
PreventableForeseeable | off-peak | off Urban Not-Auto NO full d 185.4543
weeken
PreventableForeseeable | peak summer | Rural Not-Auto NO full d 179.0681
Other peak winter Rural Not-Auto NO partial weekday 178.9473
weeken
PreventableForeseeable | off-peak | summer | Rural Not-Auto NO full d 178.6758
weeken
PreventableForeseeable | off-peak | winter Urban Not-Auto YES no info d 177.8726
weeken
PreventableForeseeable | off-peak | winter Rural Not-Auto YES no info d 177.3136
UnexpectedGrounding peak off Rural Not-Auto NO none weekday 175.9941
Supplier off-peak | summer | Rural Not-Auto NO full weekday 175.4772
weeken
UnexpectedLineOpen off-peak | off Rural Not-Auto NO no info d 173.0822
weeken
PreventableForeseeable | off-peak | winter Rural Not-Auto NO no info d 172.0679
PreventableForeseeable | off-peak | off Rural Not-Auto NO no info weekday 166.4925
UnexpectedLineOpen off-peak | off Rural Not-Auto NO partial weekday 162.6567
Other peak winter Rural Auto NO no info weekday 159.5046
PreventableForeseeable | off-peak | winter Rural Not-Auto NO full weekday 153.0016
Other off-peak | winter Rural Auto YES no info weekday 146.4396
weeken
UnexpectedGrounding off-peak | off Rural Not-Auto NO full d 145.797
weeken
UnexpectedLineOpen peak off Rural Not-Auto NO no info d 141.9221
PreventableForeseeable | peak off Urban Not-Auto NO partial weekday 139.9519
weeken
PreventableForeseeable | off-peak | summer | Rural Auto NO full d 138.9897
weeken
PreventableForeseeable | off-peak | off Rural Auto NO no info d 136.7383
PreventableForeseeable | peak summer | Rural Not-Auto NO partial weekday 136.6439
Other off-peak | winter Rural Not-Auto NO no info weekday 136.1776
PreventableForeseeable | off-peak | summer | Urban Not-Auto NO full weekday 135.4244
weeken
PreventableForeseeable | off-peak | off Rural Not-Auto NO partial d 127.6986
LineOpenFailure off-peak | winter Rural Not-Auto NO no info weekday 127.4713
UnexpectedLineOpen peak summer | Rural Not-Auto NO partial weekday 126.7273
PreventableForeseeable | peak off Rural Not-Auto NO partial weekday 126.1428
PreventableForeseeable | off-peak | summer | Rural Not-Auto NO partial weekday 126.1398
weeken
PreventableForeseeable | peak summer | Rural Not-Auto NO partial d 125.704
weeken
PreventableForeseeable | peak off Urban Not-Auto NO none d 125.1492
Other peak winter Rural Auto YES no info weeken 123.7735
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UnexpectedLineOpen peak off Urban Not-Auto NO no info weekday 123.2315
Other off-peak | winter Rural Not-Auto NO full weekday 121.6156
weeken
Other peak winter Rural Not-Auto NO no info d 120.9368
weeken
PreventableForeseeable | peak off Rural Not-Auto NO full d 116.6161
PreventableForeseeable | off-peak | off Rural Auto NO no info weekday 116.5582
PreventableForeseeable | peak off Rural Not-Auto NO none weekday 115.0698
PreventableForeseeable | peak off Rural Not-Auto NO no info weekday 113.664
weeken
UnexpectedLineOpen peak summer | Rural Auto NO none d 111.7114
PreventableForeseeable | peak off Rural Not-Auto NO full weekday 110.2024
PreventableForeseeable | off-peak | off Rural Not-Auto NO partial weekday 106.8783
weeken
PreventableForeseeable | off-peak | summer | Urban Not-Auto NO full d 106.6903
weeken
UnexpectedLineOpen peak winter Rural Not-Auto YES no info d 104.2167
Other off-peak | off Urban Not-Auto NO no info weekday 100.4276
UnexpectedLineOpen off-peak | summer | Urban Not-Auto NO full weekday 99.84
weeken
UnexpectedLineOpen off-peak | off Rural Not-Auto NO full d 99.54037
Other off-peak | off Rural Not-Auto NO partial weekday 99.09455
PreventableForeseeable | off-peak | winter Rural Not-Auto NO none weekday 96.87111
Other off-peak | off Rural Auto NO no info weekday 96.80018
weeken
Other off-peak | off Rural Not-Auto NO no info d 93.04107
Other peak off Urban Not-Auto NO full weekday 92.77371
weeken
Other off-peak | winter Rural Not-Auto NO partial d 92.75444
weeken
Other peak winter Rural Not-Auto YES no info d 90.57617
weeken
UnexpectedLineOpen off-peak | winter Rural Not-Auto NO no info d 84.76063
PreventableForeseeable | off-peak | off Urban Not-Auto NO full weekday 84.19694
PreventableForeseeable | off-peak | off Rural Not-Auto NO full weekday 83.97012
weeken
PreventableForeseeable | off-peak | winter Rural Not-Auto NO full d 83.82596
weeken
Other off-peak | off Rural Not-Auto NO full d 83.08708
weeken
Other off-peak | off Rural Not-Auto NO none d 83.05699
weeken
PreventableForeseeable | peak winter Rural Not-Auto YES no info d 80.34699
weeken
UnexpectedGrounding peak off Rural Not-Auto NO none d 80.02511
Other peak winter Rural Not-Auto NO no info weekday 79.25006
UnexpectedLineOpen off-peak | summer | Urban Not-Auto NO none weekday 78.885
PreventableForeseeable | off-peak | winter Rural Auto YES no info weekday 78.57111
PreventableForeseeable | off-peak | winter Rural Auto NO no info weekday 77.74556
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Other peak winter Rural Not-Auto NO full weekday 77.72379
weeken
PreventableForeseeable | peak off Rural Not-Auto NO no info d 76.80637
weeken
PreventableForeseeable | off-peak | winter Rural Not-Auto NO partial d 76.46417
weeken
UnexpectedGrounding off-peak | off Rural Auto NO full d 76.10667
UnexpectedLineOpen off-peak | off Rural Not-Auto NO full weekday 75.81074
Other peak off Rural Not-Auto NO no info weekday 75.30832
UnexpectedLineOpen off-peak | off Urban Not-Auto NO no info weekday 72.45708
UnexpectedGrounding off-peak | off Rural Not-Auto NO no info weekday 71.75074
LineOpenFailure peak off Rural Not-Auto NO no info weekday 69.86681
LineOpenFailure peak summer | Rural Not-Auto NO full weekday 69.37444
PreventableForeseeable | peak off Urban Not-Auto NO full weekday 68.82722
UnexpectedLineOpen peak off Rural Not-Auto NO no info weekday 68.447
Other off-peak | summer | Rural Not-Auto NO none weekday 66.73132
UnexpectedLineOpen peak winter Urban Not-Auto NO no info weekday 66.55583
weeken
UnexpectedGrounding peak summer | Rural Not-Auto NO partial d 65.514
weeken
UnexpectedGrounding peak off Urban Not-Auto NO partial d 65.46222
UnexpectedLineOpen peak off Rural Auto NO full weekday 65.41565
weeken
Other peak winter Rural Not-Auto NO full d 65.29865
weeken
UnexpectedGrounding peak off Urban Not-Auto NO full d 65.01417
UnexpectedGrounding off-peak | summer | Rural Not-Auto NO full weekday 64.29122
weeken
Other off-peak | off Urban Not-Auto NO no info d 63.67963
Other off-peak | off Rural Not-Auto NO no info weekday 63.65787
weeken
Other peak summer | Rural Not-Auto NO full d 63.46895
weeken
PreventableForeseeable | peak off Rural Not-Auto NO none d 62.45199
UnexpectedLineOpen peak off Rural Auto NO partial weekday 62.0425
PreventableForeseeable | peak summer | Rural Not-Auto NO full weekday 61.86364
UnexpectedLineOpen off-peak | winter Urban Not-Auto YES no info weekday 61.53667
weeken
PreventableForeseeable | off-peak | off Rural Not-Auto NO full d 61.49186
weeken
Other peak off Rural Not-Auto NO no info d 61.4499
Other peak summer | Rural Not-Auto NO none weekday 60.66659
weeken
PreventableForeseeable | peak off Urban Not-Auto NO no info d 60.31042
Other peak off Rural Not-Auto NO partial weekday 57.05853
Other off-peak | off Rural Not-Auto NO full weekday 57.01548
weeken
PreventableForeseeable | peak winter Rural Not-Auto NO none d 56.76625
Other peak winter Urban Not-Auto NO full weekday 56.74465
PreventableForeseeable | off-peak | summer | Rural Not-Auto NO full weekday 56.48609
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Other off-peak | summer | Rural Not-Auto NO full weekday 55.41411
weeken
UnexpectedGrounding off-peak | summer | Rural Not-Auto NO full d 55.34762
weeken
Other off-peak | off Rural Auto NO none d 51.55315
weeken
PreventableForeseeable | off-peak | summer | Rural Not-Auto NO none d 50.55789
UnexpectedGrounding peak winter Rural Not-Auto NO no info weekday 50.38401
weeken
Other peak off Rural Not-Auto NO full d 50.13088
PreventableForeseeable | peak summer | Rural Not-Auto NO none weekday 49.81412
Other off-peak | winter Urban Not-Auto NO none weekday 49.62222
weeken
UnexpectedLineOpen peak off Rural Not-Auto NO none d 48.02083
weeken
Other peak winter Urban Not-Auto YES no info d 47.98574
weeken
UnexpectedGrounding off-peak | off Rural Auto NO no info d 47.88
Other peak off Rural Not-Auto NO full weekday 45.93757
UnexpectedLineOpen peak off Rural Not-Auto NO none weekday 45.32832
UnexpectedGrounding off-peak | off Rural Not-Auto NO partial weekday 44.66346
weeken
UnexpectedLineOpen peak summer | Rural Not-Auto NO full d 43.25606
weeken
UnexpectedLineOpen off-peak | summer | Rural Not-Auto NO none d 43.09676
Error off-peak | off Rural Not-Auto NO no info weekday 42.9202
Other off-peak | summer | Rural Not-Auto NO partial weekday 42.72128
UnexpectedGrounding peak summer | Rural Not-Auto NO full weekday 42.70417
UnexpectedLineOpen peak summer | Rural Not-Auto NO full weekday 42.62923
PreventableForeseeable | peak off Urban Not-Auto NO none weekday 42.55576
Supplier peak summer | Rural Not-Auto NO full weekday 42.3125
weeken
Other peak off Rural Not-Auto NO none d 41.47861
weeken
PreventableForeseeable | peak off Rural Auto NO full d 39.40375
weeken
PreventableForeseeable | peak summer | Rural Auto NO full d 38.32028
PreventableForeseeable | peak winter Rural Not-Auto NO partial weekday 38.10154
UnexpectedLineOpen peak winter Urban Not-Auto YES no info weekday 37.79144
weeken
LineOpenFailure off-peak | winter Rural Not-Auto NO no info d 37.66917
Other peak summer | Rural Not-Auto NO partial weekday 37.31969
Other off-peak | winter Rural Auto NO no info weekday 37.15
UnexpectedGrounding off-peak | off Rural Not-Auto NO none weekday 36.56631
weeken
UnexpectedLineOpen peak off Rural Not-Auto NO partial d 36.55296
weeken
Other off-peak | summer | Rural Not-Auto NO none d 35.78822
UnexpectedLineOpen peak off Rural Not-Auto NO full weekday 35.39722
weeken
PreventableForeseeable | off-peak | off Rural Not-Auto NO none d 35.31619
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weeken

Other peak off Urban Not-Auto NO none d 35.06118
UnexpectedLineOpen peak off Rural Not-Auto NO partial weekday 34.55972
weeken
UnexpectedLineOpen peak off Rural Not-Auto NO full d 33.73781
Other peak off Rural Auto NO full weekday 33.39691
Other off-peak | summer | Urban Not-Auto NO full weekday 33.10315
UnexpectedLineOpen off-peak | off Rural Auto NO no info weekday 32.69704
PreventableForeseeable | peak winter Urban Not-Auto NO full weekday 32.545
weeken
UnexpectedGrounding peak off Rural Not-Auto NO no info d 32.52699
weeken
Other peak off Urban Not-Auto NO no info d 32.42208
UnexpectedLineOpen off-peak | summer | Rural Not-Auto NO partial weekday 32.03761
weeken
Other peak off Rural Auto NO none d 31.83597
Other off-peak | summer | Rural Auto NO full weekday 31.81167
PreventableForeseeable | off-peak | winter Rural Not-Auto NO partial weekday 31.58294
weeken
PreventableForeseeable | off-peak | winter Urban Not-Auto NO no info d 31.46611
weeken
UnexpectedGrounding off-peak | off Rural Not-Auto NO none d 31.41748
weeken
Other off-peak | winter Rural Not-Auto NO no info d 30.59338
UnexpectedGrounding off-peak | summer | Rural Not-Auto NO partial weekday 29.40611
weeken
UnexpectedGrounding off-peak | summer | Rural Not-Auto NO none d 29.16382
PreventableForeseeable | off-peak | winter Urban Not-Auto NO full weekday 28.4162
weeken
PreventableForeseeable | off-peak | off Rural Auto NO none d 27.96111
weeken
UnexpectedLineOpen peak off Urban Not-Auto NO full d 27.68194
Other off-peak | winter Urban Not-Auto NO full weekday 26.84278
PreventableForeseeable | off-peak | winter Urban Not-Auto NO partial weekday 26.61556
LineOpenFailure peak off Rural Not-Auto NO full weekday 26.16701
weeken
PreventableForeseeable | peak winter Urban Not-Auto NO no info d 25.81833
weeken
UnexpectedGrounding peak off Urban Not-Auto NO no info d 25.78106
weeken
UnexpectedGrounding off-peak | summer | Rural Not-Auto NO partial d 24.94458
weeken
PreventableForeseeable | peak summer | Rural Auto NO partial d 24.61965
PreventableForeseeable | off-peak | summer | Rural Not-Auto NO none weekday 24.39823
weeken
PreventableForeseeable | peak summer | Rural Not-Auto NO none d 24.30854
weeken
UnexpectedGrounding peak summer | Rural Not-Auto NO none d 23.73576
weeken
PreventableForeseeable | peak winter Rural Not-Auto NO no info d 23.49181
weeken
PreventableForeseeable | off-peak | off Rural Auto NO full d 22.92174
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PreventableForeseeable | peak winter Rural Auto NO no info weekday 22.84657
Supplier off-peak | winter Urban Not-Auto YES no info weekday 22.34528
UnexpectedGrounding off-peak | off Urban Not-Auto NO full weekday 22.18367
UnexpectedGrounding off-peak | winter Urban Not-Auto NO full weekday 21.24889
Other peak summer | Rural Not-Auto NO full weekday 20.45508
weeken
UnexpectedGrounding off-peak | summer | Rural Auto NO full d 20.42
weeken
UnexpectedLineOpen off-peak | winter Rural Not-Auto YES no info d 20.29815
Other peak winter Rural Not-Auto NO none weekday 20.14833
UnexpectedGrounding off-peak | off Rural Not-Auto NO full weekday 20.13138
weeken
UnexpectedGrounding off-peak | winter Rural Not-Auto NO no info d 19.96672
UnexpectedGrounding peak winter Rural Not-Auto NO partial weekday 19.92507
weeken
Other off-peak | winter Rural Auto NO no info d 19.58
Other peak off Urban Not-Auto NO none weekday 19.53306
weeken
Other peak summer | Rural Not-Auto NO none d 18.70677
UnexpectedLineOpen off-peak | winter Rural Not-Auto NO partial weekday 17.80361
weeken
PreventableForeseeable | peak winter Rural Not-Auto NO full d 17.6902
weeken
UnexpectedGrounding off-peak | off Rural Not-Auto NO no info d 17.33101
PreventableForeseeable | off-peak | off Rural Auto NO none weekday 17.32
UnexpectedLineOpen peak summer | Urban Not-Auto NO full weekday 17.1025
Other peak off Rural Auto NO no info weekday 17.08932
weeken
Other off-peak | off Urban Not-Auto NO none d 16.70481
PreventableForeseeable | off-peak | summer | Rural Auto NO full weekday 16.56676
weeken
Other off-peak | summer | Rural Not-Auto NO full d 16.49299
PreventableForeseeable | peak winter Rural Not-Auto NO none weekday 16.47578
UnexpectedGrounding peak winter Urban Not-Auto YES no info weekday 16.39
Other off-peak | winter Rural Auto NO full weekday 16.19222
weeken
UnexpectedGrounding peak winter Rural Not-Auto NO no info d 15.70654
weeken
PreventableForeseeable | peak winter Urban Not-Auto YES no info d 15.62905
weeken
Other peak off Rural Auto NO full d 15.57094
UnexpectedGrounding peak off Rural Not-Auto NO full weekday 15.12227
Other off-peak | off Rural Auto NO full weekday 14.98086
Other off-peak | off Urban Not-Auto NO none weekday 14.91083
Other peak off Urban Not-Auto NO no info weekday 14.90536
weeken
UnexpectedGrounding peak summer | Rural Not-Auto NO full d 14.88266
Other off-peak | off Urban Not-Auto NO full weekday 14.86847
weeken
Other off-peak | winter Rural Not-Auto NO full d 14.08208
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Supplier peak winter Urban Not-Auto YES no info weekday 13.96139
UnexpectedGrounding off-peak | winter Rural Not-Auto NO no info weekday 13.90036
Other peak off Rural Not-Auto NO none weekday 13.17609
weeken
UnexpectedGrounding off-peak | off Urban Not-Auto NO none d 13.17028
weeken
Other off-peak | summer | Rural Auto NO partial d 13.145
UnexpectedLineOpen peak winter Urban Not-Auto NO full weekday 12.90611
Other off-peak | winter Rural Not-Auto NO none weekday 12.86139
weeken
Other off-peak | off Rural Auto NO no info d 12.70593
UnexpectedLineOpen peak winter Rural Not-Auto NO no info weekday 12.54061
UnexpectedLineOpen off-peak | summer | Rural Not-Auto NO none weekday 12.07741
Other peak summer | Rural Auto NO full weekday 11.80722
UnexpectedGrounding peak off Urban Not-Auto NO no info weekday 11.72339
UnexpectedGrounding off-peak | off Rural Auto NO no info weekday 11.59407
Other peak off Urban Not-Auto NO partial weekday 11.48747
PreventableForeseeable | off-peak | off Rural Auto NO full weekday 11.47048
Error peak off Rural Not-Auto NO no info weekday 11.42731
weeken
Error peak winter Rural Not-Auto NO no info d 11.38444
UnexpectedGrounding peak off Rural Not-Auto NO no info weekday 11.22072
weeken
Other off-peak | summer | Rural Auto NO full d 11.16597
PreventableForeseeable | off-peak | winter Urban Not-Auto NO no info weekday 10.94042
weeken
LineOpenFailure peak off Rural Not-Auto NO none d 10.92597
weeken
UnexpectedGrounding off-peak | summer | Urban Not-Auto NO full d 10.87556
UnexpectedGrounding peak off Rural Not-Auto NO partial weekday 9.388484
LineOpenFailure peak off Rural Not-Auto NO partial weekday 9.360556
weeken
UnexpectedLineOpen peak off Rural Auto NO full d 9.2625
LineOpenFailure off-peak | winter Rural Not-Auto NO full weekday 9.107778
weeken
UnexpectedLineOpen off-peak | summer | Rural Not-Auto NO partial d 9.099306
Other off-peak | winter Urban Not-Auto NO no info weekday 8.975139
weeken
LineOpenFailure off-peak | off Rural Not-Auto NO none d 8.745
weeken
UnexpectedGrounding peak off Rural Not-Auto NO full d 8.525328
Other peak summer | Rural Auto NO partial weekday 8.414889
Error peak off Rural Not-Auto NO partial weekday 8.376667
LineOpenFailure peak off Rural Not-Auto NO none weekday 8.354306
weeken
Other peak summer | Urban Not-Auto NO none d 8.208611
Other peak winter Urban Not-Auto NO no info weekday 8.205357
UnexpectedLineOpen peak summer | Rural Auto NO full weekday 8
UnexpectedGrounding peak off Rural Auto NO no info weekday 7.562986
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UnexpectedGrounding peak winter Rural Not-Auto NO full weekday 7.525397
UnexpectedGrounding peak winter Urban Not-Auto NO no info weekday 7.4275
UnexpectedGrounding off-peak | off Urban Not-Auto NO no info weekday 6.910417
PreventableForeseeable | off-peak | off Urban Not-Auto NO no info weekday 6.796528
weeken
Other peak off Rural Auto NO no info d 6.643889
weeken
UnexpectedGrounding peak winter Rural Not-Auto NO full d 6.588056
weeken
UnexpectedLineOpen off-peak | off Urban Not-Auto NO no info d 6.565
UnexpectedLineOpen off-peak | summer | Rural Auto NO full weekday 6.524444
Other peak summer | Urban Not-Auto NO full weekday 6.4675
UnexpectedGrounding off-peak | summer | Urban Not-Auto NO full weekday 6.427153
Other peak summer | Urban Not-Auto NO partial weekday 6.083278
weeken
UnexpectedGrounding off-peak | off Urban Not-Auto NO full d 5.897167
weeken
UnexpectedGrounding off-peak | off Rural Not-Auto NO partial d 5.838924
Other off-peak | summer | Urban Not-Auto NO none weekday 5.506667
UnexpectedGrounding peak summer | Rural Auto NO full weekday 5.456667
weeken
UnexpectedLineOpen peak summer | Urban Not-Auto NO partial d 5.206111
PreventableForeseeable | peak off Rural Auto NO partial weekday 5.022056
weeken
UnexpectedGrounding off-peak | winter Rural Not-Auto YES no info d 4.808611
Error off-peak | off Rural Not-Auto NO full weekday 4,748333
UnexpectedLineOpen peak winter Rural Not-Auto NO partial weekday 4.584722
PreventableForeseeable | peak off Rural Auto NO full weekday 4.439722
weeken
UnexpectedGrounding peak summer | Urban Not-Auto NO full d 4.215833
weeken
Other peak winter Rural Not-Auto NO partial d 4.208681
weeken
Other peak winter Rural Not-Auto NO none d 4.207685
UnexpectedLineOpen peak off Urban Not-Auto NO full weekday 4.034815
UnexpectedGrounding peak off Urban Not-Auto NO none weekday 3.850972
UnexpectedLineOpen off-peak | winter Rural Not-Auto NO full weekday 3.785722
weeken
LineOpenFailure peak off Rural Not-Auto NO partial d 3.720139
weeken
UnexpectedGrounding peak winter Rural Not-Auto NO partial d 3.564722
PreventableForeseeable | peak off Urban Not-Auto NO no info weekday 3.487778
UnexpectedLineOpen peak summer | Rural Auto NO partial weekday 3.441667
UnexpectedLineOpen peak summer | Rural Not-Auto NO none weekday 3.406944
UnexpectedGrounding peak summer | Rural Not-Auto NO none weekday 3.353389
weeken
Supplier peak summer | Rural Not-Auto NO full d 3.336111
weeken
Other off-peak | off Rural Auto NO full d 3.293434
UnexpectedGrounding off-peak | off Urban Not-Auto NO no info weeken 3.238889
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Error peak summer | Rural Not-Auto NO full weekday 3.182778
weeken
UnexpectedLineOpen peak off Rural Auto NO partial d 3.087778
Other off-peak | off Rural Auto NO none weekday 3.0625
weeken
Other peak summer | Urban Not-Auto NO full d 3.051597
LineOpenFailure off-peak | off Rural Not-Auto NO none weekday 3
UnexpectedGrounding off-peak | summer | Rural Auto NO full weekday 2.994405
weeken
Other off-peak | off Urban Not-Auto NO full d 2.9
weeken
Supplier peak off Rural Not-Auto NO no info d 2.8825
LineOpenFailure off-peak | summer | Rural Not-Auto NO full weekday 2.765
Error off-peak | winter Rural Auto NO no info weekday 2.72537
weeken
PreventableForeseeable | peak off Rural Auto NO no info d 2.676111
weeken
UnexpectedGrounding off-peak | winter Rural Not-Auto NO none d 2.629167
weeken
UnexpectedGrounding peak off Rural Not-Auto NO partial d 2.548457
weeken
UnexpectedGrounding off-peak | winter Rural Not-Auto NO full d 2.401111
UnexpectedLineOpen off-peak | winter Urban Not-Auto NO no info weekday 2.222222
weeken
UnexpectedGrounding peak off Rural Auto NO none d 2.168889
weeken
Other peak winter Rural Auto NO no info d 2.126111
UnexpectedLineOpen peak off Rural Auto NO no info weekday 2.030139
weeken
UnexpectedGrounding peak winter Rural Not-Auto YES no info d 1.863889
weeken
UnexpectedLineOpen off-peak | off Rural Auto NO no info d 1.7625
weeken
UnexpectedLineOpen peak winter Rural Not-Auto NO partial d 1.72
PreventableForeseeable | off-peak | off Urban Not-Auto NO none weekday 1.705833
UnexpectedGrounding off-peak | winter Rural Not-Auto NO full weekday 1.699848
Other peak summer | Urban Not-Auto NO none weekday 1.69
UnexpectedLineOpen off-peak | winter Rural Auto NO no info weekday 1.688056
Other off-peak | off Urban Not-Auto NO partial weekday 1.687292
UnexpectedLineOpen peak off Rural Auto NO none weekday 1.673333
weeken
PreventableForeseeable | peak off Urban Not-Auto NO full d 1.594444
weeken
Other off-peak | summer | Urban Not-Auto NO full d 1.570556
weeken
UnexpectedGrounding peak off Urban Not-Auto NO none d 1.541736
weeken
UnexpectedGrounding peak winter Rural Not-Auto NO none d 1.49713
PreventableForeseeable | peak off Rural Auto NO no info weekday 1.450926
weeken
UnexpectedLineOpen off-peak | off Urban Not-Auto NO full d 1.447917
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UnexpectedLineOpen off-peak | off Rural Auto NO partial weekday 1.437778
weeken
Other peak off Urban Not-Auto NO partial d 1.328056
Other peak winter Urban Not-Auto NO partial weekday 1.301944
LineOpenFailure peak winter Urban Not-Auto NO no info weekday 1.295833
weeken
UnexpectedLineOpen peak summer | Rural Auto NO full d 1.260833
weeken
Other peak summer | Rural Auto NO none d 1.240556
weeken
Other peak off Urban Not-Auto NO full d 1.22463
UnexpectedGrounding off-peak | off Rural Auto NO full weekday 1.156019
UnexpectedGrounding off-peak | summer | Rural Auto NO partial weekday 1.145556
weeken
UnexpectedLineOpen peak off Urban Not-Auto NO no info d 1.091667
UnexpectedLineOpen peak winter Rural Not-Auto NO full weekday 1.070463
PreventableForeseeable | peak winter Urban Not-Auto NO no info weekday 1.064722
UnexpectedGrounding peak off Rural Auto NO full weekday 1.015722
UnexpectedLineOpen off-peak | off Rural Auto NO full weekday 0.984722
weeken
UnexpectedLineOpen peak winter Urban Not-Auto NO no info d 0.965
weeken
Other peak off Rural Auto NO partial d 0.691667
weeken
Other off-peak | winter Urban Not-Auto NO no info d 0.689444
weeken
UnexpectedLineOpen peak winter Rural Not-Auto NO no info d 0.66746
weeken
UnexpectedGrounding peak off Rural Auto NO no info d 0.654722
UnexpectedGrounding peak summer | Urban Not-Auto NO full weekday 0.554778
Other peak off Rural Auto NO none weekday 0.53375
PreventableForeseeable | peak summer | Rural Auto NO full weekday 0.488194
UnexpectedGrounding peak off Urban Not-Auto NO full weekday 0.438125
Supplier peak winter Rural Not-Auto NO full weekday 0.408611
Other peak winter Rural Auto NO full weekday 0.253333
weeken
LineOpenFailure off-peak | summer | Rural Not-Auto NO full d 0.207037
PreventableForeseeable | peak summer | Urban Not-Auto NO full weekday 0.183056
Supplier peak summer | Rural Not-Auto NO none weekday 0
Other peak off Rural Auto NO partial weekday 0
Supplier peak summer | Rural Not-Auto NO partial weekday 0
PreventableForeseeable | off-peak | off Urban Not-Auto NO partial weekday 0
UnexpectedLineOpen peak off Urban Not-Auto NO partial weekday 0
PreventableForeseeable | peak summer | Urban Not-Auto NO partial weekday 0
LineOpenFailure off-peak | off Rural Not-Auto NO no info weekday 0
UnexpectedGrounding off-peak | winter Urban Not-Auto YES no info weekday 0
weeken
UnexpectedGrounding off-peak | off Rural Auto NO none d
LineOpenFailure peak off Urban Not-Auto NO none weeken 0
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