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Abstract

Commonly used performance models, such as PVsyst, Sandia Array Performance Model
(SAPM), and PV _LIB, treat the PV array as being constructed of identical modules. Each of the
models attempts to account for mismatch losses by applying a simple percent reduction factor
to the overall estimated power. The present work attempted to reduce uncertainty of mismatch
losses by determining a representative set of performance coefficients for the SAPM that were
developed from a characterization of a sample of modules. This approach was compared with
current practice, where only a single module’s thermal and electrical properties are testing.
However, the results indicate that minimal to no improvements in model predictions were
achieved.
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Nomenclature

AOI Angle of Incidence

E;, Beam Irradiance

Epos Plane of Array Irradiance

DOE Department of Energy

Isc Short Circuit Current

I/p Max Power Point Current

Pyp Max Power Point Power

POA Plane of Array

PV Photovoltaic

PVID Photovoltaic Module Identification Number
PVsyst Photovoltaic Software

SAPM Sandia Array Performance Model
SNL Sandia National Laboratories

T Cell Temperature

Vup Max Power Point Voltage

Voc Open Circuit Voltage



1 Introduction

Photovoltaic (PV) arrays have typically been assembled by connecting multiple modules in series
and then combining them in parallel. Connecting the modules in series creates what is often
referred to as a string, where the overall voltage is the sum of each individual module voltage.
The current, in this situation, is equal to the output of the worst performing module. The parallel
connection of multiple strings forces the strings to have the same voltage, and the overall current
is the sum of each string. Unfortunately, the string configuration has been susceptible to losses
caused by mismatch conditions.

Several PV modules of the same type may not have the same voltage and/or current outputs
due to manufacturing tolerances, degradation, or fault conditions. The connection of these modules
in series will produce an overall power that is below the expected output according to the manu-
factures nameplate specifications. The loss in power caused by the different individual module
outputs in a series can be referred to as mismatch losses [13]. Mismatch losses were evident in the
present work. For instance, five modules were combined in series to create a string. The current
and voltage (IV) curves for each module are plotted on the left side of Figure 1. It is evident that
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Figure 1. Left: Individual module current and voltage curves
show a variation in current output for the five modules used in
the present work. Right: The combination of the five modules,
plotted on the left, connected in series provided an output that had
a degraded IV curve when compared to the ideal.

the current output for each of the modules varied slightly. This variation between the individual
modules created a non-ideal IV curve when the modules were combined in series as shown on the
right side of Figure 1. The actual IV curve had a slightly degraded current output compared to the
ideal IV curve that was created from a model. Current modeling techniques have not accurately
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factored this condition into the estimations.

Commonly used performance models, such as PVsyst [2], Sandia Array Performance Model
(SAPM) [9], and PV _LIB [1], treat the PV array as being constructed of identical modules. Each of
the models attempts to account for mismatch losses by applying a simple percent reduction factor
to the overall estimated power. For instance, PVsyst has a module quality loss factor and SAPM
has used a nameplate loss factor that can be applied to individual modules. The two models also
have an array mismatch loss factor which derates the overall power output provided by the model.
For example, PVsyst modeling software includes a tool that can estimate the array mismatch loss
factor based on a statistical analysis. The analysis creates a statistical sample of modules based on a
gaussian or square distribution to determine the VI, etc. [3]. Beyond this tool there exists little
basis for setting these derate factors except for intuition. As a consequence, additional uncertainty
is ascribed to predicted system performance arising from these derate factors.

Further, these PV performance models are typically applied using a set of coefficients deter-
mined for a single, representative module rather than from a statistical sample of modules. While
some manufacturers may test larger samples of modules, IEC 61215/61646 only requires that a
single module be tested for electrical performance. Even when multiple modules are character-
ized, methods are not documented and validated to determine model coefficients that will accurate
predict performance of a string of such modules. Using coefficients from only a single module is
likely to introduce bias errors into the estimation of PV system power.

At a recent workshop hosted by Sandia and attended by representatives from the PV modeling,
manufacturing, finance and system integrator communities, uncertainty about mismatch losses was
identified as a significant gap in current performance models [4]. Field measurements of mismatch
losses, however, have shown the effect to be relatively small even for modules with significantly
different current-voltage characteristics [11]. Modeling studies have also shown that the effect of
mismatch on power production is relatively small [5]. It is small relative to other uncertainties in
performance models [7].

Although the effect of mismatch loss may be small in comparison to other modeling uncertain-
ties, any reduction in the uncertainty of power prediction is welcome. Moreover, a 1% difference
in predicted power generally translates to a proportional difference in annual energy and hence
revenue from a PV system. To illustrate, the impact of power predictions using coefficients from
a single module by comparing one-year system performance predictions using SAPM for two
nominally identical modules recently characterized at SNL was investigated. These two modules
differed in measured Py;p by 2W, which is less than the manufacturer’s binning criteria of 2.5W.
To minimize all other effects, all of the derates were set to 100% (i.e. no reduction in power),
and a common set of coefficients were used to represent the effects of angle of incidence (AOI),
spectral irradiance and cell temperature (T¢). The predicted power differed by 0.7% between the
two modules, highlighting the significance of the choice of coefficients used in the predictions.
The mismatch derate value was then set to the standard 2%. Unsurprisingly, this did not reduce
the difference in predicted system power between the two; it simply shifted the predicted power of
each down by 2%.

Reducing uncertainty regarding the determination of mismatch loss factors thus will provide



a meaningful improvement in performance modeling. The present work introduces a method to
determine a representative set of performance coefficients for the SAPM that were developed from
characterization of a sample of modules. The proposed approach was validated with field and
laboratory measurements. The method combined measured module performance characteristics
into a representative set of coefficients that accurately described performance of an array comprised
of the characterized modules.

The intent of the present work was to define the impact of SAPM coefficients derived from
three different methods. The following chapters describe the experiment methodology, results, and
conclusions. The methodology, Chapter 2, describes module testing procedures, statistical analysis
approach, and the formulation of the string level models. The results chapter (Chapter 3) reviews
the experiment and model results. It also compares the proposed approach with current practice.
Finally, Chapter 4, provides a concise conclusion that summarizes the project outcomes.






2 Methodology

The current work evaluated three different methods to determine coefficients for the Sandia Array
Performance Model (SAPM) [King]. The intent was to test a set of modules or a string of modules
in order to best represent the performance of a string of similar modules. The evaluation included
individual thermal and electrical characterization of eleven Suntech STP0802-12 modules, and the
characterization of two strings of five modules each. The evaluation followed a three-step process
as described in Figure 2. First, each module was individually subjected to thermal and electrical

Step 1: Performance Tests (Section 2.1) Step 2: Statistical Analysis Step 3: String level models
(Section 2.2) (Section 2.3)

Set of 11 modules were thermally and Characteristic module that
electrically tested to determine SAPM is based on statistics of the
coefficients and parameters. tested modules and string.

Figure 2. Three step process for determining module coefficients:
(1) performance tests, (2) statistical analysis, and (3) string level
model.

testing and module-level coefficients were determined for the SAPM. The performance tests also
included the evaluation of two strings to develop SAPM coefficients for a single characteristic
module. The module-level coefficients were aggregated into string-level coefficients based on
a statical analysis performed in step 2. Finally, the performance of two strings comprised of five
modules each was characterized, and string-level model predictions were compared with the string-
level measurements.

2.1 Module Testing

Individual module tests were conducted over two time frames. The first modules labeled with
photovoltaic identification numbers (PVID) 2691 to 2696 were tested between March 6 and May 5,
2011. The second batch of tests were done from June 12 to October 2, 2013 and included modules
PVID 2697 to 2703. These tests were conducted on the two-axis solar tracker shown in Figure 3.
The thermal and electrical tests measured current-voltage (IV) curves at different temperatures
and irradiance values. For instance, during the thermal tests IV curves were measured while the
module was subjected to steady irradiance near one sun. The electrical tests measured IV curves
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Figure 3. Modules under test on two-axis solar tracker.

over a wide range of different irradiance and temperature conditions. Analysis of the test results
determined coefficients and parameters for the SAPM which can then be used to predict module
performance at different irradiance and temperature operating conditions.

2.2 Statistical Analysis

The statistical analysis considered three different methods to determine coefficients and parame-
ters for the SAPM. The intent of each technique was to find the characteristic module that could
be used to accurately model a string. A physically-informed method, termed here the “Average
Module Method”, generally, estimated string-level coefficients and parameters by averaging the
corresponding values for individual modules. The “Average Module Method” was compared with
two other methods for determining string-level model coefficients and parameters: random se-
lection of a single, individual module as representative of all modules comprising a string (the
“Random Module Method”), and direct determination of string-level coefficients and parameters
from electrical testing of the string (the “Average String Method”). The “Random Module Method”
simply selected (at random) one of the characterized modules as representative of all modules in
the string and models the string by scaling the module-level coefficients for the selected module.
The “Average String Method” required electrical characterization of the actual string of modules,
from which string-level coefficients and parameters for the SAPM can be determined using the
same methods as are used for module data.
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Random Module

The SAPM depends on sets of coefficients and parameters to define each module type. The ‘“Ran-
dom Module Method” was considered common practice. The approach tests and evaluates a single
module to determine the coefficients and parameters for a particular type of module. This approach
assumes that the module chosen for testing was representative of all modules from a particular
manufacturer. This method was applied to the present work as a control to compare with the two
other methods (“Average String Method” and “Average Module Method”).

Average String Method

The “Average String Method” considered the average of the coefficients and parameters derived
from tests performed on two strings. More specifically, electrical and thermal tests were conducted
on two strings that each had five modules. The tests revealed the SAPM coefficients and parameters
which were then used to model the string. The third method, known as the “Average Module
Method” evaluated a set of modules to determine the SAPM coefficients and parameters.

Average Module Method

The proposed “Average Module Method” for determining string-level coefficients and parameters
considers a sub-set of modules. Here, the notation ( * ) denotes a string-level coefficient to distin-
guish from the corresponding module level coefficient.

If all modules in a series-connected string are identical in electrical performance, then the
performance model for the string is found by multiplying voltage terms by the number of modules
in series, N. Consequently, string-level coefficients are obtained in the obvious manner, e.g.:

Isco = Isco, Ouse = Olrge (D
Ns = NNs,Voco = NVoco,n = ”73VOC = Npv,, @)

When modules are similar in performance, but not identical, as is often observed when several
modules from a production lot are characterized, the coefficients for the performance models for
each module vary.

Here, we obtain the coefficients for a string of modules from N sets of coefficients for individually-
characterized modules. We assume that each characterized module represents an equal fraction of
the production lot and we weight each module equally. We assume that irradiance and temperature
conditions are uniform across all modules in the string.

Coefficients for Voc: Voco, A, BVoc
At open circuit string voltage is the sum of the voltage for each module:
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N N

Voc =Y Voc.i =Y Voc,+Nsnid(Te)In(Ee) + Broe, (Te — To) 3)
i=1 i=1
Accordingly
N
Voc =Y Voc.i “)
i=1
1 N
= ; n; )
. N
BVOC = Z BVOC,i (6)
i=1

The value for the diode factor n is estimated by averaging rather than summation because for a
string of N modules each with Ng cells in series, the number of cells in series is Ng = NNj.

Coefficients for Isc: Oyq., Isco

In a string of slightly mismatched modules operating at short circuit, some cells in the string will be
in reverse bias. If mismatch is sufficient and bypass diodes are present, these diodes may conduct
current to protect cells from damage. In theory string short circuit current is determined from
the module-level I-V curves provided that the curves are measured for both negative and positive
biases. However, module characterization rarely includes measuring current at reverse bias, and
here we apply several assumptions to overcome the limits of the data:

1. We assume that bypass diodes are present across Np series-connected cells in each module
for a total of B = Ng/Np bypass diodes in each series-connected string of cells in a module.

2. We represent the nominal turn-on voltage for a bypass diode as Vp. We adopt a convention
here that Vp is always positive, i.e., Vg is the magnitude of the turn-on voltage.

3. We assume that the IV curve out to a reverse bias of Vp can be approximated by a linear
extrapolation from the IV curve at positive bias.

4. We assume that either all bypass diodes in a module are conducting or that no bypass diodes
in the same module are conducting. In other words, we treat each module in the string as an
electrical element, which either conducts current through cells or through bypass diodes but
not a combination of both cells and bypass diodes.

We first estimate the temperature coefficient by averaging:

1 N
Qe = + Z Qi (N

N3
Averaging seems appropriate because the magnitude of oy is typically small (i.e., on the order of
0.1% or less) and the noise in short circuit current measurements transfers to a fairly wide range of

uncertainty around 0.
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We estimate [sc( by first estimating an IV curve for each module at STC conditions, extrapo-
lating each module?s STC IV curve to reverse bias, and then iterative solving Kirchoff?s equations
to determine the voltage drop over each series-connected module and the current. Iteration is used
in order to account for conduction through bypass diodes that introduces a cusp in each module’s
I-V characteristic at -Vp. The following algorithm solves the Kirchoff equations for voltage and
current through a string of series-connected modules accounting for modules for which current
flows through the bypass diode. The system of equations for voltage and current is solved without
constraining voltage, i.e., as if no bypass diodes were present, then voltage for modules with bias
less than -Vp is set to -Vp to represent conducting bypass diodes, then the system of equations is
reduced in dimension to omit these modules and the reduced system is solved.

1. For each module define an STC IV curve by translating a measured IV curve to STC condi-
tions.

2. Linearly extend each STC IV curve to negative bias, e.g., by fitting a line using least squares
to IV curve data for 0<V<0.5Vyp, to obtain a slope m; corresponding to each intercept

Isco,i
3. Initialize V; =0, i=1, K, N and converge = false.
4. White NOT(converge)

(a) Set P =#{i | V; <-Vp }. P counts the number of modules with conducting bypass
diodes.

(b) Define an index J(i), i = 1, K, N-P such that VJ(,-) <-Vp.

(¢) Form the (N-P+1)x(N-P+1) design matrix

1 K 1 0

. —m](l) 0 0 1
X = 0 0 0 M
0 0 —mJ(N_p) 1
and solve
VJ(I) PVp
x M _ | Isca
Vin—p) M
1 Isc j(n-P)

(d) Ifany V) < -Vp set converge = false and V ;) = max{-Vp,V,}.

5. The algorithm produces values V; for the bias for each module, and a value fsco = I for the
short circuit current for the string of modules.

Coefficients for Vyp: 3VMP’ Vmpo, éz, CA'3
Although voltage for a string is the sum of voltages for each module, at the string’s maximum
power point the voltage across each module is not the module’s maximum power voltage. However,
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typically for either modules or strings, in the vicinity of maximum power the voltage vs. power
curve has a wide and relatively shallow peak. Thus can be predicted with an acceptably small error
even when estimated V/p has a greater error, e.g., on the order of a few volts. We estimate string
model coefficients for V,;p by averaging:

Viep = Vigpo + CoNNgid (Te)In(E, ) + C3NNg (28 (Te ) In(E,) ) + By,,» (Te — Tp)
N
=) Vupi
,Zl ’ (8)

N
= VMPOJ' + Cz’iNSnl'S(Tc)ln(Ee) + C37,'N5(l’li5(Tc)ln(Ee))2 + BVMP,i(TC — T())
i—1

1

From which we obtain

N
By = Y By ©)
i=1
R N
Varo = Y, Viro,i (10)
i=1
L1 IZV;
G==) G; (11)
N3
| i
G=—=) G3; (12)
N3

The coefficient 71 is determined from V¢ by Eq. 5

Coefficients for Iyp: Oy,,p, Iupo, G2, G
As was done for Iscwe determine ¢y, by averaging, because values for ¢y, are typically small
and are subject to significant uncertainty:

1 N
Oryp = N Z Ohyp; (13)
i=1

We average to obtain a value for C; because these coefficients are typically very small in magni-
tude:

n 1Y
C) = N;Cu (14)
By definition, Cy + C; = 1 so we compute
Co=1-C (15)

Finally, to make the predictive model consistent with the STC power rating P;pg for the module

in question we set

j— Puro (16)

Vmpo
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2.3 String Model

The SAPM [9] was developed for flat-plate, crystalline silicon modules but has been found to ade-
quately describe electrical performance of a wide variety of PV technologies [4]. SAPM comprises
the following fundamental equations to describe the electrical performance of a single module:

Ebfz(A01)+dediffSF

Epos = a7n
Isc = Iscofi(AM)Epoa(1+ a(Tc — T5,)) (18)
Isc
E.= 19
Isco(1+ oy (Te — T,)) 1
Iyp = IMPO(COEe + ClEez)(l + almp (TC o TO» (20)
Ix = Ixo(CaEe + CsE; ) (1 4 0, (Te — T,)) @2y
Ixx = Ixxo(CeEe + C1EZ) (1 + 0y, (Te — Ty)) (22)
(1) — KIc+27315 o3
q
Voc = Voco + Nsnd(Te)In(Ee) + Byye (Tc — To) (24)
Vip = Viupo + CoNy S (Te)In(E,) + C3Ny (8 (Tc)In(Ee))* + Bv,.,(Tc = To) (25)

Effective plane-of-array irradiance, Eppa, (suns) is the incident broadband solar irradiance
that reaches the module’s cells, and is estimated from incident broadband beam irradiance E,
(W/m2) and diffuse irradiance Ey;rr (W/m2). Eppa is reduced by reflection losses at the module’s
surface, expressed by the empirical function f (unit-less) of angle of incidence AOI (degrees),
and by soiling losses, represented by the factor SF. The coefficients Isco, Iypo, Voco, Vmpo define
short-circuit current, maximum power current, open circuit voltage, and maximum power voltage
at standard test conditions (STC); herein we assume that STC is defined at Ty and Eg = 1000
W/m?2. Igc is determined from Epgy after adjustment by the empirical function f; (unit-less) of
absolute air mass AM (unit-less) to account for the effect of solar spectrum on short-circuit current.
Effective irradiance E, (suns) is computed from Iy and is used to determine all other values of
current and voltage. The coefficients Ixo and Iyxo define current at the voltage midway between
0 and Vyp, and between Vyp and Voc, respectively. The coefficients ¢, (1/C), qup(l/C), B,
(V/C), and By,,, (V/C) define how current and voltage change with cell temperature; the empirical
coefficients Cy, Cy, C; and C3, describe how maximum power current and voltage, respectively,
change with effective irradiance . The thermal voltage 6(T¢) (V) is expressed in terms of the
Boltzmann’s constant k=1.38x1072% (J/K) and the elementary charge q=1.6x10"'° (C). The term
N is the number of series-connected cells and n (unit-less) is the diode quality factor.

Coefficients and parameters for the SAPM can be readily determined using the results of the
thermal and electrical tests [8]. The SAPM can describe the performance of a string of series-
connected modules if appropriate string-level coefficients are determined.The Suntech STP080S-
12/Bb modules consist of 36 cSi cells in series and are rated to produce 17.2 volts, 4.65 amps, and
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80 Watts at STC as described in Table 1. Analysis of the individual module tests determined the
coefficients oy, y,,,» Bv,.> Bv,,» Co, C1, Cz, and C; and parameters Ly, Voc0, Inpo, and V0 for
the SAPM as shown in Table 2. The statistical analysis calculated an average value for each of the

coefficients and parameters.
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3 Results

The experiment compared predicted power using the SAPM with coefficients determined by three
methods (“Average Module Method”, “Random Module Method”, and “Average String Method”)
to the measured performance of the system. The coefficients and parameters used in each of
the methods are described in Section 3.1. Power prediction results for each of the methods are
described in Section 3.2.

3.1 Method Coefficients & Parameters
Random Module Method

The coefficients and parameters for the “Random Module Method” were derived from module
2695 as shown in Table A.1.

Average String Method

The coefficients and parameters for the “Average String Method” were derived from the string level
tests (Table A.2). The results from the two tests were then averaged to create the values used to
model the PV string.

Average Module Method

The average module was defined by first extracting coefficient and parameter values from a set of
actual modules. Coefficient and parameter data from each of the modules is described in Table A.1.
The “Average Module Method” defined the characteristic parameter based on the average value,
which is given at the bottom of Table A.1. The only exception was the Igco estimate. Igco was not
based on an average value; instead it was estimated based on the equations described in Section 2
due to the physical nature of the system.

The parameter values estimated for the “Average Model Method” included Isco, Vsco, Iypo,
and Vypo. The average Igco value at STC was calculated to be 4.86 Amps. The distribution for
Isco module data was slightly skewed to the right as shown in the top right graph in Figure 4.
Furthermore, the modeled Igc value used in the “Average Module Method” was calculated to be
4.919 Amps, which is about 1% greater than the average. The average I;pp was calculated to be
4.53 Amps as shown graphically with the right skewed distribution plotted in the top left graph
of Figure 4. Seven of the eleven Vgco values recorded were greater then 21.9 Volts. Therefore,
the average value was calculated to be 21.94 Volts as shown in the graph that is located on the
bottom right of Figure 4. The final parameter value, max power point voltage Vspo, had a normal
distribution as shown in the bottom right graph of Figure 4. The average Vjspg was found to be
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17.68 Volts. The coefficients oy, y,,,, betay,,., and betay,,, for the characteristic module were
calculated in a similar manner.

The “Average Model Method” calculated o, 0y,,,, betay,,., and betay,,, values to be 5.73e-
4, 6.98e-5, -0.069, and -0.073 respectively. These values are the average of the sample tested
as shown in Table 2. The histogram for each of the coefficients are plotted in Figure 5. The
oy, values for the sample set ranged from 4.93e-4 to 6.47e-4 as shown in the top left graph of
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Figure 5. The o, values ranged from -3.1e-5 to 2.72e-4 and have a mean value of 6.98e-5. The
histogram for the voltage coefficient, By,., and Py,,,, are plotted on the bottom of Figure 5. The
voltage coefficient fBy,. had an average value of -0.069. The By,,, coefficient had a distribution
that was skewed to the right and an average value of -0.073. These coefficients helped define the
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module?s dependence on temperature. The modules dependency on irradiance was captured with
the coefficients Cy, C;, C,, and C3.

The distribution of Cy, C;, C,, and C3 coefficients extracted form the set of modules tested is
shown in Figure 6. The frequency of coefficient values remains constant for Cp as shown in the top
left graph in Figure 6. The minimum and max values were found to be 0.96 and 0.99 respectively.
The average value was calculated to be 0.98, which was very close to the median value of 0.979.
The C; coefficient had a similar distribution to Cp as shown in the top right graph of Figure 6. The
average and median values were calculated to be 0.019 and 0.02 respectively. The C, coefficient
had a left skewed distribution with an average value of -0.37. Finally, the Cs coefficient histogram
resembled a normal distribution with an average value equal to -18.19.
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Figure 6. Histogram for Cy, Cy, C, and Cs.

The average values for the coefficients and parameters, with the exception of Igcq, represented
a characteristic module for the “Average Module Method”. The coefficients and parameters cal-
culated for this approach were used to model string performance at different operating conditions.
The results were compared with the other two approaches that included “Random Module Method”
and the “Average String Method”.

3.2 String Level Model Results

The string level models used the coefficients and parameters defined by the characteristic module
and applied the SAPM equations to estimate performance. The evaluation of the model’s abilities
first compared the coefficients from the “Average Module Method” with the “Random Module
Method” and the “Average String Method”. The performance results from each of the methods
were compared to discover the most effective approach.
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Sandia Performance Model Coefficients & Parameters

The SAPM coefficients and parameters were slightly different for the three methods evaluated in
the present work. The respective values for each method are plotted against each other in Figure 7.
The parameter values, Isco, Iy7po, Voco, and Vypg were very similar for each method. For instance
the Imp0O values did not vary by more than 2%. The temperature dependent coefficients, on the
other hand, had slight variations for the different methods. For instance, the Iy/p values were
calculated to be 6.98e-5, 2.72e-4, and -2.7¢e-5 for the “Average Module Method”, “Random Module
Method” and the “Average String Method” respectively. The irradiance dependent values also had
variations between the three methods. C;, C,, and C3 had different results for the three methods as
shown in Figure 7. However, Cy was the exception for the irradiance dependent coefficients and
each method produced very similar values.
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Figure 7. SAPM coefficients and parameters extracted from the
“Average Module Method”, “Random Module Method”, and the
“Average String Method”.

The comparison of the SAPM coefficients and parameters for each of the methods indicated
small differences. This suggested that the string level model results for each method would have
small variations. Section 4.2.2 provides an assessment of each method versus the actual string
performance to define the degree of fit. It also compared each method’s residual results with each
other.

Estimated Power

The calculated coefficients and parameters provided by each of the three methods were applied
to the SAPM to represent a string of five modules. The model was provided with actual weather
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inputs such as outside air temperature, solar irradiance, and average module temperature. The
model was run for two sets of weather conditions. First, the model was subjected to weather that
was experienced by String 1. The String 1 actual system contained modules 2691 to 2696. The
second iteration was weather that String 2, which contained modules 2697 to 2703, was exposed
to. The model results for the two iterations were compared with the actual performance from the
respective string. The actual and modeled results were plotted against each other as shown in the
left graph of Figures 8 and 9. Also, the percent difference between the actual and modeled was
plotted with respect to actual power and is shown in the right graph of Figure 8 and 9.

The String 1 results are shown in Figure 8. The graph on the left side of Figure 8 plots the
prediction for each method versus the actual results. The three methods all follow the best-fit line
that has a slope of one and an intercept of 0. Additionally, the percent error results for each method
were very similar and basically plot right on top of one another. There were slight differences
between the three methods as indicated by the calculated mean squared error (MSE). The MSE
was 8.122, 7.213, and 7.218 for the “Average Module Method”, “Random Module Method”, and
the “Average String Method” respectively.
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Figure 8. String 1 model versus actual fit and percent error re-
sults.

The results form the second model iteration was compared with String 2. Similar to String 1,
the three methods performed very similar. The graph on the left side of Figure 9 shows a strong
linear correlation between the model and actual performance. Each of the methods had an R? value
very close to 1. Also, the percent error versus actual power for each of the methods was very close.
The MSE results for each of the methods varied slightly. The “Random Module Method” had a
MSE error of 10.0, followed by “Average Module Method” at 9.81, and then the “Average String
Module Method” with a MSE of 8.211.
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sults.

The two model iterations that compared results with String 1 and 2 indicated that the three
methods provided very similar results. The overall model fit, as described by the linear correlation
between the actual and modeled results are very good. For instance the slopes of the linear fit line
were all above 0.98 as shown in Table 1 for the String 1 and 2 results, which was very close to
the optimal value of 1.0. Additionally, the intercepts for the two model iterations for each of the
methods were close to zero with a minimal value of 2.35 and a max of 5.53. The results from
each of the methods were very close, but the “Average String Method” had the best overall slope,
intercept, R?, and MSE for each of the string level model iterations.

Table 1. Modeled versus actual power prediction results for each
method used in the present work.

Method | Slope | Intercept | R2 | MSE
String 1

Average Module | 0.992 | 3.614 0.99975 | 8.122
Random Module | 0.992 | 2.732 0.99991 | 7.213
Average String 0.996 | 2.350 0.99984 | 7.218
String 2

Average Module | 0.981 | 5.532 0.99959 | 9.815
Random Module | 0.981 | 4.317 0.9996 | 10.00
Average string 0.985 | 4.227 0.99976 | 8.211
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4 Conclusion

The present work evaluated the potential benefit of testing multiple modules to generate SAPM
coefficients and parameters. The experiment performed a statistical evaluation of eleven modules
with the intent to define a characteristic module. The characteristic module, which theoretically
would provide an optimal representation of the module type, could then be used to model string
level performance. The model could then take into account string level degradation due to module
mismatch system behavior. This approach, defined as the “Average Module Method”, was im-
plemented on a set of Suntech STPO80S-12/Bb modules. The results produced by the “Average
Module Method” were compared with two other approaches. The first approach was the “Ran-
dom Module Method” that represented current testing techniques at PSEL. The third approach
was named the “Average String Method” used the thermal tests from a string of five modules to
develop the SAPM characteristic coefficients and parameters. Each of the methods was subjected
to actual weather data and was compared with the actual system.

The three methods performed very similarly. Each of them was able to represent system be-
havior very well and produce an R? value very close to 1.0. There were slight variations in the
linear correlation tests but all of their slopes were close to 1.0 and their intercepts were less 5.5.
The method with the best results was the “Average String Method” that had the best overall slope,
intercept, R%, and MSE for each of the model iterations. The next best approach was the “Average
Module Method” followed by the “Random Module Method”. However, the variations between
the methods was very small and may not be justify extra effort to perform an increased number of
electrical and thermal tests to derive the SAPM coefficients and parameters.
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A Module test results

Table A.1. Module thermal & electrical test results
D | Lo | Voo | Lo | Vo | Joay | Jovs) | B [ By, |G |G |G | Gy
2692 | 494 | 22.05 | 457 | 17.74 | 5.76 9.3 -0.067 | -0.071 | 0.97 | 0.03 | -0.47 | -22.21
2693 | 4.85 | 22.00 | 449 | 17.78 | 6.17 26.6 -0.068 | -0.073 | 0.96 | 0.04 | -0.18 | -16.00
2694 | 476 | 21.88 | 4.46 | 17.72 | 6.31 27.2 -0.068 | -0.071 | 0.99 | 0.02 | -0.41 | -18.49
2695 | 479 | 21.84 | 4.51 | 17.64 | 6.47 6.3 -0.0676 | -0.071 | 0.99 | 0.003 | -0.42 | -17.4
2696 | 4.87 | 21.99 | 4.53 | 17.77 | 6.47 6.3 -0.0676 | -0.071 | 0.98 | 0.02 | -0.39 | -20.56
2697 | 4.89 | 21.91 | 455 | 17.65 | 5.52 -3.10 | -0.0716 | -0.075 | 0.99 | 0.009 | -0.45 | -19.34
2698 | 495 | 21.94 | 4.56 | 17.63 | 4.93 4.10 -0.070 | -0.073 | 0.97 | 0.028 | -0.37 | -18.29
2700 | 491 | 21.95 | 4.54 | 17.66 | 5.16 -0.70 | -0.0715 | -0.074 | 0.98 | 0.014 | -0.34 | -17.87
2701 | 4.89 | 21.81 | 4.53 | 17.53 | 5.19 2.90 -0.070 | -0.073 | 0.99 | 0.008 | -0.32 | -15.25
2702 | 492 | 22.0 | 4.55 | 17.66 | 5.85 0.60 -0.072 | -0.074 | 0.97 | 0.024 | -0.41 | -19.50
2703 | 492 | 21.99 | 455 | 17.69 | 5.23 -2.70 | -0.0712 | -0.074 | 0.98 | 0.014 | -0.31 | -15.18
Avg | 488 | 21.94 | 453 | 17.68 | 5.73 6.98 -0.069 | -0.073 | 0.98 | 0.019 | -0.37 | -18.19

Table A.2. String thermal & electrical test results
ID Lsco Voco L, p0 Vi pO ?11614) Exllf)"ﬁ 5 ) BV{)(‘ BVm " CO C C C3
String 1 | 492 | 109.84 | 4.54 | 88.53 | 5.23 -2.7 -0.35 | -0.37 | 097 | 0.03 | -0.34 | -17.1
String 2 | 492 | 110.2 | 4.55 | 88.75 | 5.23 -2.7 -0.36 | -0.37 | 0.96 | 0.03 | -0.18 | -13.9
Avg 492 | 110.0 |45 | 88.64 | 523 -2.7 -0.36 | -0.37 | 0.96 | 0.03 | -0.26 | -15.5
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