

SANDIA REPORT

SAND2016-8612

Unlimited Release

September 2016

Technology Performance Level (TPL) Scoring Tool

Jochem Weber (PI), Jesse Roberts (co-PI), Ronan Costello, Diana Bull, Aurelien Babarit, Kim Neilson, Claudio Bittencourt, Ben Kennedy

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: <http://www.osti.gov/scitech>

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: <http://www.ntis.gov/search>

Technology Performance Level (TPL) Scoring Tool

Jochem Weber (PI)
National Renewable Energy Laboratory, Golden CO USA

Jesse Roberts (co-PI)
Sandia National Laboratories, Albuquerque NM USA

Ronan Costello
Wave Venture, Cornwall, UK

Diana Bull
Sandia National Laboratories, Albuquerque NM USA

Aurélien Babarit
LHEEA Lab., Ecole Centrale de Nantes – CNRS, Nantes, France

Kim Neilson
Ramboll, Copenhagen, Denmark

Claudio Bittencourt
DNV GL, London, UK

Ben Kennedy
Wave Venture, Cornwall, UK

Sandia National Laboratories
P.O. Box 5800
Albuquerque, New Mexico 87185-MS1124

ACKNOWLEDGMENTS

This study was supported by the Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Wind and Water Power Technologies Office (WWPTO).

Contents

Acknowledgments	4
1 Introduction:	6
2 Overall Structure:.....	6
3 Capabilities Scoring:.....	7

1 INTRODUCTION:

Three different ways of combining scores are used in the revised formulation. These are **arithmetic mean**, **geometric mean** and **multiplication with normalisation**.

Arithmetic mean is used when combining scores that measure similar attributes, e.g. used for combining costs. The arithmetic mean has the property that it is similar to a logical OR, e.g. when combining costs it does not matter what the individual costs are only what the combined cost is.

Geometric mean and **Multiplication** are used when combining scores that measure disparate attributes.

Multiplication is similar to a logical AND, it is used to combine ‘must haves.’ As a result, this method is more punitive than the geometric mean; to get a good score in the combined result it is necessary to have a good score in ALL of the inputs. e.g. the different types of survivability are ‘must haves.’

On balance, the revised TPL is probably less punitive than the previous spreadsheet, multiplication is used sparingly as a method of combining scores. This is in line with the feedback of the Wave Energy Prize judges.

2 OVERALL STRUCTURE:

The overall TPL score is calculated from scores for the seven high level capabilities arranged in three categories as follows.

Capability	Category
C1: Have market acceptable LCoE.	Economics
C2: Provide a secure (low risk) investment opportunity.	Economics
C3: Be reliable for grid operations.	Benefits
C4: Be beneficial to society.	Benefits
C5: Be acceptable to permitting & certification.	Acceptability
C6: Be acceptable with respect to safety.	Acceptability
C7: Be globally deployable.	Economics

The overall TPL is calculated as a weighted average (arithmetic mean) of the scores for these three categorizations. The weightings for the categories are 0.7:0.2:0.1 for economics, acceptability, and benefits respectively. The equation is:

$$TPL = 0.7 \cdot TPL_{eco} + 0.2 \cdot TPL_{acc} + 0.1 \cdot TPL_{ben} \quad (1)$$

The combined scores for each of the categories that are passed as inputs to equation 1 are calculated as a geometric mean of their respective inputs. The equations used are:

$$TPL_{eco} = (TPL_{C1} \cdot TPL_{C2} \cdot TPL_{C7})^{1/3} \quad (2)$$

$$TPL_{acc} = (TPL_{C5} \cdot TPL_{C6})^{1/2} \quad (3)$$

$$TPL_{ben} = (TPL_{C3} \cdot TPL_{C4})^{1/2} \quad (4)$$

3 CAPABILITIES SCORING:

C1 Have market competitive cost of energy

The TPL_{C1} value is calculated from two levels of nested sub-capabilities that have been identified through a systems engineering process. The sub-capabilities within C1 are:

C1	Have market competitive cost of energy
C1.1	Have as low CAPEX as possible
C1.1.1	Be a low cost design
C1.1.2	Be manufacturable at low cost
C1.1.3	Be inexpensive to transport
C1.1.4	Be inexpensive to install
C1.2	Have as low an OPEX as possible
C1.2.1	Be reliable (cost of maintenance)
C1.2.2	Be durable over the lifetime of the plant
C1.3	Be able to generate large amount of electricity from wave energy
C1.3.1	Absorb large amounts of wave energy
C1.3.2	Have high energy conversion efficiency of extracted energy to electrical energy
C1.4	Have high availability
C1.4.1	Be reliable (lost revenue w.r.t time taken)
C1.4.2	Be durable over the lifetime of the plant

C1 is scored as the geometric mean of the TPL scores for total cost, generation, availability, with equal weighting to each.

$$TPL_{C1} = (TPL_{COST} \cdot TPL_{C1.3} \cdot TPL_{C1.4})^{1/3} \quad (4)$$

The score for total cost is a combination of the CAPEX and OPEX scores and relies on a CAPEX:OPEX weighting of 70:30.

$$TPL_{COST} = \frac{1}{\frac{0.7}{TPL_{C1.1}} + \frac{0.3}{TPL_{C1.1}}} \quad (4)$$

C1.1 is scored as a weighted sum of the individual cost TPL scores in CAPEX.

$$TPL_{C1.1} = \frac{1}{\frac{0.36}{TPL_{C1.1.1}} + \frac{0.36}{TPL_{C1.1.2}} + \frac{0.09}{TPL_{C1.1.3}} + \frac{0.18}{TPL_{C1.1.4}}} \quad (4)$$

C1.2 is scored as a weighted sum of the individual cost TPL scores in OPEX.

$$TPL_{C1.2} = \frac{1}{\frac{0.7}{TPL_{C1.2.1}} + \frac{0.3}{TPL_{C1.2.2}}} \quad (4)$$

C1.3 is scored as the product of the inputs and then scaled to a range of 1-9. Each input is equally important.

$$TPL_{C1.3} = (TPL_{C1.3.1} \cdot TPL_{C1.3.2} - 1) \left(\frac{8}{9^2} \right) + 1 \quad (4)$$

C1.4 is scored as the weighted average (arithmetic mean) of its inputs. Weights are 50:50.

$$TPL_{C1.4} = 0.5 \cdot TPL_{C1.4.1} + 0.5 \cdot TPL_{C1.4.2} \quad (4)$$

C2 Provide a secure investment opportunity

The TPL_{C2} value is calculated from two levels of nested sub-capabilities that have been identified through a systems engineering process. The sub-capabilities within C2 are:

C2 Provide a secure investment opportunity	
C2.1	Be survivable
C2.1.1	Be able to survive extreme loads/responses
C2.1.2	Be able to cope with grid failures,
C2.1.3	Be able to avoid and survive to collisions
C2.1.4	Be survivable in installation (& temporary conditions)
C2.2	Be low risk under design conditions
C2.2.1	Be low uncertainty on OPEX
C2.2.2	Be low uncertainty on availability
C2.2.3	Be low uncertainty on energy production
C2.2.4	Be low uncertainty on CAPEX

C2 is scored as the geometric mean of its inputs. Each input is equally important.

$$TPL_{C2} = (TPL_{C2.1} \cdot TPL_{C2.2})^{1/2} \quad (4)$$

C2.1 is scored as the product of its inputs scaled to a range of 1-9. Each input is equally important.

$$TPL_{C2.1} = (TPL_{C2.1.1} \cdot TPL_{C2.1.2} \cdot TPL_{C2.1.3} \cdot TPL_{C2.1.4} - 1) \left(\frac{8}{9^4} \right) + 1 \quad (4)$$

C2.2 is calculated to reflect the impact of the inputs on cost of energy. It is the geometric mean of 1/combined cost, availability and energy production. Within the total cost the CAPEX:OPEX weighting is 70:30.

$$TPL_{C2.2} = \left(\frac{1}{\frac{0.3}{TPL_{C2.2.1}} + \frac{0.7}{TPL_{C2.2.4}}} \cdot TPL_{C2.2.2} \cdot TPL_{C2.2.3} \right)^{1/3} \quad (4)$$

C3 Be reliable for grid operations

The TPL_{C3} value is calculated from a single level of sub-capabilities that have been identified through a systems engineering process. The sub-capabilities within C3 are:

C3 Be reliable for grid operations	
C3.1	Be forecastable
C3.2	Have stable annual power production
C3.3	Be useful to the grid

C3 is scored as a weighted average (arithmetic mean) of its inputs.

$$TPL_{C3} = 0.33 \cdot TPL_{C3.1} + 0.33 \cdot TPL_{C3.2} + 0.33 \cdot TPL_{C3.3} \quad (4)$$

C4 Be beneficial to society

The TPL_{C4} value is calculated from a single level of sub-capabilities that have been identified through a systems engineering process. The sub-capabilities within C4 are:

C4	Be beneficial to society
C4.1	Be beneficial to local communities
C4.2	Be low carbon emission energy source
C4.3	Be a low polluting energy source
C4.4	Minimize impact on taxpayers

C4 is scored as a weighted average (arithmetic mean) of its inputs.

$$TPL_{C4} = 0.25 \cdot TPL_{C4.1} + 0.25 \cdot TPL_{C4.2} + 0.25 \cdot TPL_{C4.3} + 0.25 \cdot TPL_{C4.4} \quad (4)$$

C5 Be acceptable for permitting and certification

The TPL_{C5} value is calculated from a single level of sub-capabilities that have been identified through a systems engineering process. The sub-capabilities within C5 are:

C5	Be acceptable for permitting and certification
C5.1	Be environmentally acceptable
C5.2	Be acceptable to other users of the area
C5.3	Be grid compliant

C5 is scored as a geometric mean. Each input is equally important.

$$TPL_{C5} = (TPL_{C5.1} \cdot TPL_{C5.2} \cdot TPL_{C5.3})^{1/3} \quad (4)$$

C6 Be acceptable with respect to safety

The TPL_{C6} value has no sub-capabilities its value is determined by the assessor in consideration of the questions under this capability.

C7 Be deployable globally

The TPL_{C7} value has no sub-capabilities its value is determined by the assessor in consideration of the questions under this capability.

DISTRIBUTION

1 MS0899 Technical Library 9536 (electronic copy)

