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Abstract

This report outlines recent enhancements to the TDAAPS algorithm first described by
Symons et al., 2005.  One of the primary additions to the code is the ability to specify
an attenuative media using standard linear  fluid mechanisms to match reasonably
general frequency versus loss curves, including common frequency versus loss curves
for the atmosphere and seawater.  Other improvements that will be described are the
addition of improved numerical boundary conditions via various forms of Perfectly
Matched  Layers,  enhanced  accuracy  near  high  contrast  media  interfaces,  and
improved physics options.
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1.  INTRODUCTION

The Time-Domain Atmospheric Acoustic Suite, TDAAPS, was originally described in Symons
et al., 2005.  This suite of algorithms simulates 3-D linear acoustic wave propagation within a
moving media acoustic model.  It was originally designed with atmospheric acoustics with wind
as the primary media of interest.  However, it is not restricted to that domain.  Any acoustic
application  with  a  moving  (or  stationary)  media  where  linear  wave  propagation  is  a  good
approximation is applicable, including hydroacoustics.

This report will  briefly summarize the main characteristics of the TDAAPS algorithm in the
introduction.   In  subsequent  sections,  it  will  describe  major  new features  of  the  algorithm,
including  the  addition  of  attenuation,  PML  numerical  boundaries,  increased  stability  and
accuracy near high contrast material interfaces such as at the air-earth boundary, and enhanced
physics in the pressure updating equations. 

This introduction is meant only to give the necessary background for TDAAPS that will be built
upon in later  sections.   For  more  detailed information on TDAAPS,  please see the  original
TDAAPS SAND report (Symons et al., 2005).

1.1. Non-Attenunative Moving Acoustic Equations

The original TDAAPS algorithm solves the non-attenuative,  linearized, coupled set of first-order
differential equations for an inviscid fluid with the dependent variables perturbation pressure,

p( x⃗ , t ) ,  and  the  three  components  of  the  perturbed  material  particle  velocity  vector,
w⃗( x⃗ ,t ) .  The ambient medium wind vector v⃗ ( x⃗ ) , the bulk modulus κ( x⃗) , and density
ρ ( x⃗) are functions of 3-D position but not of time.  Of course, the atmosphere, for example,

is actually changing as a function of time as well and TDAAPS does have the ability to use time-
varying media.  However, throughout this report, I will assume that the change in medium over
the duration of wave propagation is small and can be ignored, for simplicity.

The coupled velocity-pressure first-order system of equations with moving media are:

∂wi

∂ t
+ 1
ρ
∂ p
∂ xi

+w j

∂vi

∂ x j

+v j

∂wi

∂ x j

= 1
ρ f i

∂ p
∂ t
+κ

∂w j

∂ x j

+v j
∂ p
∂ x j

=∂e
∂ t

 (1)

Using Einstein summation convention for repeated indices; f⃗ are the force sources and e
are the energy density sources corresponding to moment density sources.  Note that the first two
terms on the lefthand sides of the equations are the terms associated with a fixed (stationary
media) acoustic wave propagation.   The first two terms on the lefthand side of the pressure
equation  (second  equation  of  Equation  1)  is  derived  from  the  pressure-volumetric  strain
constitutive relationship.
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1.2 Finite-Difference Formulation
TDAAPS utilizes a standard staggered grid in space and a double-time-step approach to solving 
equation (1) on a discrete, regular, rectangular grid.  In this volume discretization the left, back, 
top corner corresponds to xmin, ymin, zmin with grid points equally spaced in each dimension with 
spacing dx, dy, dz, respectively, and number of grid nodes of I, J, K (Figure 1).  In the standard 
staggered grid, the pressure nodes are located at the corners of a cell and the velocity 
components are located on edge mid-points in order to allow centered finite differencing (Figure 
2).  All medium parameters (wind, bulk modulus, and density) are co-located with the pressure 
nodes.  Due to the fact that pressure and velocity component equations also contain those self-
same dependent variables, the equations would normally be solved via implicit time marching 
methods.  However, TDAAPS uses a double-time-step approach.  In this approach there are 
actually two sets of dependent variables.  One set lives on even time step points and the other 
lives on odd time step points.  This allows explicit time stepping with centered time derivatives.  
The cost is extra memory usage and, once numerical boundary conditions are imposed, a more 
strict time step requirement.  Time updating also uses a staggered time step approach, with 
pressure updating on integer time steps and velocities updating on half-integer time steps.

Equation 1 is solved using 2nd order accurate temporal and 4th order accurate spatial finite-
difference operators.  By default standard Taylor series coefficients are used for the respective 
operators, but the user may input operators of his or her choice in order to optimize performance 
in certain situations.
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Figure 2: Generic grid cell
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2.  ATTENUATION
2.1 Introduction
Attenuation refers to the loss of energy from the propagating wavefield into some other form of
energy, such as heat, molecular dissipation, or any irreversible process.  Geometric spreading,
reflection, refraction, and wavefield scattering are already included in the general non-attenuative
equations given in Equation 1 and are not considered “attenuation” in this report.  However, it
should  be  remarked  that  scattering  of  the  wavefield  on  a  smaller  scale  than  is  resolvable
numerically could be attempted to be modeled as an attenuation process in certain circumstances.

2.2 Mathematical Formulation
We borrow the idea of a standard linear solid from the seismological literature (e.g., Aki and
Richards, 2002) and implement a so-called standard linear fluid in order to simulate attenuation
in TDAAPS.  We still retain the assumption of an inviscid fluid, but allow attenuation of the
compressional  components.   This  report  closely  follows  the  notation  and  derivation  of  the
equations as described in Aldridge (in prep) for the full elastic standard linear solid system.

The physical idea of a standard linear solid/fluid is that of a spring and dashpot in series.  When
one pulls on the system, there is an immediate response due to the spring, followed by a slower
relaxation  due  to  the  dashpot.   Mathematically  this  can  be  represented  as  a  delta  function
followed by a one-sided decaying exponential, defining a single standard linear fluid mechanism
or rate-of-relaxation function.  Adding together several standard linear fluid mechanisms, one
obtains the full attenuation model.  To incorporate this idea, we generalize the pressure ( P ) -
volumetric  strain ( ε )  relationship  (the  first  two terms  on the lefthand side  of  the second
equation in Equation 1) to be a convolution of the strain tensor with time-dependent medium
parameters ( Κ )

P( x⃗ ,t )=−Κ( x⃗ ,t )∗ε( x⃗ ,t )  (2)

Where we define Κ according to the assumed functional form

Κ( x⃗ , t )=κ( x⃗ )[δ(t )−∑
r=1

R

ar( x⃗)ωr( x⃗)exp(−ω r( x⃗) t )H (t )]  (3)

Where κ is the bulk modulus at infinite frequency, δ(t ) is the delta function, and H (t ) is
the Heavyside step function.  There are R rate-of-relaxation functions in this attenuation 
model.  Each rate-of-relaxation function is defined by two parameters, ar( x⃗) and ωr( x⃗) , 
which are the amplitude scalar and relaxation frequency, respectively, for the mechanism.  Note 
that these two parameters can be functions of 3-D space.

A favorable aspect of the above equations is that they can be relatively efficiently implemented 
in a time-domain algorithm such as TDAAPS.  To do this, first we plug Equation 3 into Equation
2 and then time-differentiate the resulting equation, giving

∂ P ( x⃗ , t )
∂ t

=−κ( x⃗)
∂w k ( x⃗ , t )
∂ x k

−κ( x⃗)∑
r=1

R

pr( x⃗ , t )  (4)
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where pr( x⃗ , t) is a memory variable defined by

pr( x⃗ ,t )=−ar( x⃗)ωr( x⃗ )exp(−ωr( x⃗) t )H (t)
∂w k ( x⃗ , t)
∂ xk

 (5)

Differentiating the memory variable equation with respect to time, one obtains

∂ pr( x⃗ , t )
∂ t

+ωr ( x⃗) pr( x⃗ ,t )+ar( x⃗)ωr( x⃗)
∂w k ( x⃗ , t )
∂ xk

=0  (6)

Comparing Equation 4 and the second line (pressure equation) of Equation 1, one notices that the
second term of equation 4 is the only term that needs added.  In addition to that term, a set of R 
partial differential equations, given by Equation 6, is augmented to the original system to give a 
new set of linear, first-order partial differential equations called the velocity-memory-pressure 
system of equations.  To reiterate, the new set of equations are the R equations defined by 
Equation 6, plus the modified form of Equation 1:

∂wi ( x⃗ , t )
∂ t

+ 1
ρ ( x⃗)

∂ P( x⃗ ,t )
∂ xi

+w j ( x⃗ , t)
∂vi ( x⃗ )
∂ x j

+v j( x⃗ )
∂wi( x⃗ ,t )
∂ x j

= 1
ρ ( x⃗)

f i( x⃗ , t )

∂P ( x⃗ , t )
∂ t

+κ( x⃗)
∂w j ( x⃗ ,t )
∂ x j

+κ( x⃗)∑
r=1

R

pr( x⃗ , t )+v j ( x⃗ )
∂P ( x⃗ ,t )

x j

=
∂e ( x⃗ ,t )
∂ t

 (7)

2.3 Numerical Implementation
Equations 6 and 7 represent the system of equations TDAAPS solves for an attenuative moving 
acoustic inviscid fluid for linearized acoustic wave propagation.  The discretization in space and 
time is precisely the same as for the non-attenuative case described in Section 1.  The one 
addition is that there will be 2*R 3-D memory variables:  one set of R for even time steps and a 
second set of R for the odd time steps, just as the other dependent variables.  The memory 
variables are stored in the same locations as the pressure variables and are updated concurrently 
with pressure.  The attenuation model consists of N m piece-wise homogeneous non-
overlapping regions that cover the entire 3-D model domain.  Each 3-D pressure grid point in the
model has an index (0 ... N m−1) that associates it with one of the N m  sets of R ωr and

ar parameters.

In the following sections, we will document the finite-difference forms of the system of 
equations given in Equations 6 and 7.  First, however, we will non-dimensionalize the system of 
equations.

2.3.1 Non-Dimensional Formulation
This derivation closely follows the formulations outlined in Aldridge and Haney (2008) for the 
elastic system of equations and in Aldridge (in prep) for the acoustic equations.  Define 
characteristic units for sound speed and density as S c and S ρ , respectively.  Then non-
dimensional sound speed and density are defined as
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ĉ ( x⃗ , t )=
c( x⃗ , t )

S c

ρ̂ ( x⃗ , t )=
ρ( x⃗ ,t )

S ρ
Also, defining Sw and S P as the units for particle velocities and pressure, one can complete 
the system of non-dimensional equations with an equation relating the four characteristic units.  
In a stationary acoustic whole space in the far field the pressure from a point source will be 
related to the radial particle velocity, wr via

P=ρc wr

suggesting that the appropriate relationship among the four characteristic units should be
S P=S ρ S c S w .  With these definitions, the remaining independent and dependent variables in 

non-dimensional form are:

κ̂ ( x⃗ , t )=
κ( x⃗ , t )
Sρ S c

2 , v̂ x( x⃗ ,t )=
v x( x⃗ ,t )

S c

, v̂ y( x⃗ ,t )=
v y ( x⃗ , t )

S c

, v̂ z( x⃗ , t )=
v z( x⃗ , t)

S c

ŵ x ( x⃗ ,t )=
w x ( x⃗ , t )

Sw

, ŵ y ( x⃗ , t )=
w y( x⃗ ,t )

Sw

, ŵ z( x⃗ ,t )=
w z( x⃗ , t )

S w

, P̂( x⃗ ,t )=
P ( x⃗ , t )

S P

Finally, we redefine the memory variables so that

p̂r( x⃗ , t)= 1
ω r( x⃗)

pr( x⃗ ,t )

This allows a slightly more computationally efficient form of the equations.
  2.3.2 Finite-Difference Coefficients
The non-dimensionalized equations use the characteristic units, spatial node spacings for x, y and
z dimensions, d x , d y , d z , respectively, and time step, d t , to define the finite-difference 
coefficients used in the numerical implementation.  As stated in Section 1, we utilized fourth-
order accurate spatial derivatives and second order accurate temporal derivatives.  For the 
moving media acoustic equations, we require both staggered and non-staggered spatial 
derivatives.  

The staggered fourth-order accurate non-dimensional finite-difference coefficients are:

pi=S c

d t

d i

cinner , qi=S c

d t

d i

couter  

where subscript i is x , y , or z , forming 6 coefficients.  For Taylor Series approximates,

cinner=
9
8

and couter=−
1
24

.  For the non-staggered fourth-order accurate non-dimensional 

finite-difference coefficients we have

ri=S c

2 ht

hi

dinner , s i=S c

2 ht

hi

d outer

where, again, subscript i is x , y , or z , forming an additional 6 coefficients.  The Taylor 

Series approximates are d inner=
2
3

 and d outer=−
1

12
.  Finally, for 2-D centered interpolation

of dependent variables, we utilize a 4-point formula with 
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a0,−1=a0,0=a1,−1=a1,0=
1
4

2.3.3 X-Component of Particle Velocity
The non-dimensional finite-difference equations for the particle velocities are identical in the 
attenuative and non-attenuative cases and are

ŵ x (xi+
d x

2
, y j , zk , tl+

d t

2
)=ŵ x ( xi+

d x

2
, y j , z k ,t l−

3d t

2
)

−v̂ x (xi+
d x

2
, y j , zk ){r x [ ŵ x( xi+

3d x

2
, y j , z k ,t l−

d t

2
)−ŵ x (xi−

d x

2
, y j , zk , tl−

d t

2
)]+

+ sx [ ŵ x (xi+
5d x

2
, y j , zk , tl−

d t

2
)−ŵ x ( xi−

3 d x

2
, y j , z k ,t l−

d t

2
)]}

−v̂ y( xi+
d x

2
, y j , z k ){r y [ŵ x ( xi+

d x

2
, y j+d y , zk , tl−

d t

2
)−ŵ x ( xi+

d x

2
, y j−d y , zk , tl−

d t

2
)]+

+s y [ ŵ x (xi+
d x

2
, y j+2 d y , z k , tl−

d t

2
)−ŵ x( xi+

d x

2
, y j−2d y , zk , tl−

dt

2
)]}

−v̂ z( xi+
d x

2
, y j , z k ){r z [ ŵ x ( xi+

d x

2
, y j , z k+d z ,t l−

d t

2
)−ŵ x (xi+

d x

2
, y j , z k−d z ,t l−

dt

2
)]+

+sz [ ŵ x( xi+
d x

2
, y j , z k+2d z ,t l−

d t

2
)−ŵ x (xi+

d x

2
, y j , zk−2 d z , tl−

d t

2
)]}

−
̂∂v x

∂ x
( xi+

d x

2
, y j , zk , tl−

d t

2
)ŵ x( xi+

d x

2
, y j , zk )

−
̂∂v x

∂ y
( xi+

d x

2
, y j , zk )∑

m=0

1

∑
n=−1

0

amn ŵ y( xi+m d x , y j+(n+
1
2
)d y , z k ,t l−

d t

2
)

−
̂∂v x

∂ z
( xi+

d x

2
, y j , zk )∑

m=0

1

∑
n=−1

0

amn ŵ z( xi+m d x , y j , zk+(n+
1
2
)d z , t l−

dt

2
)

− 1

ρ̂ (xi+
d x

2
, yl , zk )

{ p x [ P̂( xi+d x , y j , zk , tl )+P̂ (xi+d x , y j , z k ,t l−d t)

−P̂ (xi , y j , z k , t l)− P̂( xi , y j , zk , tl−d t)]+q x [ P̂ (xi+2d x , y j , zk , tl )

+P̂( xi+2 d x , y j , z k ,t l−d t)−P̂ (xi−d x , y j , z k ,t l)− P̂( xi−d x , y j , zk , tl−d t)] }
+ 1

ρ̂ (xi+
d x

2
, yl , zk )

f̂ x( xi+
d x

2
, y j , z k , t l−

d t

2
)

where the following definitions are for the shorthand notations
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ρ̂ (xi+
d x

2
, y j , zk )=

1
2
[ρ̂( xi , y j , zk )+ρ̂(xi+d x , y j , z k)]

v̂ x (xi+
d x

2
, y j , zk )=

1
2
[ v̂ x( xi , y j , zk )+v̂ x (xi+d x , y j , z k )]

v̂ y( xi+
d x

2
, y j , z k)=

1
2
[ v̂ y( xi , y j , zk )+v̂ y( xi+d x , y j , zk )]

v̂ z( xi+
d x

2
, y j , z k)=

1
2
[ v̂ z( xi , y j , zk )+v̂ z( xi+d x , y j , zk )]

In addition, the spatial derivatives of the wind vectors
̂∂v x

∂ x
( xi+

d x

2
, y j , z k)=

2 dt S c

d x

[ v̂ x (xi+d x , y j , z k)− v̂ x( xi , y j , zk )]

̂∂v x

∂ y
( xi+

d x

2
, y j , z k)=

d t S c

2 d y
[ v̂ x (xi+d x , y j+d y , zk )+v̂ x (xi , y j+d y , zk )

−v̂ x (xi+d x , y j−d y , zk )−v̂ x (xi , y j−d y , zk )]
̂∂v x

∂ z
( xi+

d x

2
, y j , z k)=

d t S c

2 d z
[ v̂ x (xi+d x , y j , z k+d z)+v̂ x (xi , y j , z k+d z)

−v̂ x (xi+d x , y j , z k−d z)−v̂ x (xi , y j , z k−d z)]
Lastly, the x-component of the force source vector

f̂ x( xi+
d x

2
, y j , zk , tl−

d t

2
)=

2 d t S c

S P

f x( xi+
d x

2
, y j , z k ,t l−

d t

2
)

2.3.4 Y-Component of Particle Velocity

The non-dimensional finite-difference equations for the particle velocities are identical in the 
attenuative and non-attenuative cases and are
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ŵ y ( xi , y j+
d y

2
, zk , tl+

d t

2
)=ŵ y( xi , y j+

d y

2
, z k , tl−

3d t

2
)

−v̂ x (xi , y j+
d y

2
, z k ){r x [ ŵ y ( xi+d x , y j+

d y

2
, zk , tl−

d t

2
)−ŵ y( xi−d x , y j+

d y

2
, z k , tl−

d t

2
)]+

+s x [ ŵ y (xi+2d x , y j+
d y

2
, z k , tl−

d t

2
)−ŵ y (xi−2d x , y j+

d y

2
, z k , t l−

d t

2
)]}

−v̂ y( xi , y j+
d y

2
, zk ){r y [ ŵ y ( xi , y j+

3 d y

2
, zk , tl−

d t

2
)−ŵ y (xi , y j−

d y

2
, z k , t l−

d t

2
)]+

+ s y [ ŵ y (xi , y j+
5d y

2
, z k , t l−

d t

2
)−ŵ y ( xi , y j−

3 d y

2
, zk , tl−

d t

2
)]}

−v̂ z( xi , y j+
d y

2
, zk ){r z [ ŵ y (xi , y j+

d y

2
, zk+d z , tl−

d t

2
)−ŵ y (xi , y j+

d y

2
, z k−d z , tl−

d t

2
)]+

+s z [ ŵ y ( xi , y j+
d y

2
, zk+2 d z , tl−

d t

2
)−ŵ y (xi , y j+

d y

2
, z k−2 d z , t l−

d t

2
)]}

−
̂∂v y

∂ y
(xi , y j+

d y

2
, zk ,t l−

d t

2
) ŵ y (xi , y j+

d y

2
, z k )

−
̂∂v y

∂ x
(xi , y j+

d y

2
, zk )∑

m=0

1

∑
n=−1

0

amn ŵ x (xi+(n+
1
2
) , y j+m d y , z k ,t l−

d t

2
)

−
̂∂v y

∂ z
(xi , y j+

d y

2
, zk )∑

m=0

1

∑
n=−1

0

amn ŵ z( xi , y j+m d y , z k+(n+
1
2
)d z , tl−

d t

2
)

− 1

ρ̂ (xi , yl+
d y

2
, z k)

{ px [ P̂ (xi , y j+d y , zk , tl )+P̂ (xi , y j+d y , zk , t l−d t)

−P̂ (xi , y j , z k , t l)− P̂( xi , y j , zk , tl−d t)]+q x [ P̂ (xi , y j+2 d y , z k ,t l)

+P̂ (xi , y j+2 d y , z k ,t l−d t)−P̂ (xi , y j−d y , zk , tl )−P̂ (xi , y j−d y , zk , tl−d t)] }
+ 1

ρ̂ (xi , yl+
d y

2
, z k)

f̂ y( xi , y j+
d y

2
, zk , tl−

d t

2
)

where the following definitions are for the shorthand notations
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ρ̂ (xi , y j+
d y

2
, z k)=

1
2
[ρ̂ (xi , y j , z k)+ρ̂( xi , y j+d y , z k)]

v̂ x (xi , y j+
d y

2
, z k)=

1
2
[ v̂ x (xi , y j , z k)+ v̂ x( xi , y j+d y , z k)]

v̂ y( xi , y j+
d y

2
, zk )=

1
2
[ v̂ y (xi , y j , z k)+ v̂ y (xi , y j+d y , zk )]

v̂ z( xi , y j+
d y

2
, zk )=

1
2
[ v̂z (xi , y j , z k)+ v̂ z(xi , y j+d y , zk )]

In addition, the spatial derivatives of the wind vectors
̂∂v y

∂ y
(xi , y j+

d y

2
, z k)=

2d t S c

d y

[ v̂ y ( xi , y j+d y , z k)− v̂ y (xi , y j , z k)]

̂∂v y

∂ x
(xi , y j+

d y

2
, z k)=

d t S c

2d x
[ v̂ y ( xi+d x , y j+d y , z k)+ v̂ y (xi+d x , y j , z k)

−v̂ y (xi−d x , y j+d y , zk )−v̂ y( xi−d x , y j , zk )]
̂∂v y

∂ z
(xi , y j+

d y

2
, z k)=

d t S c

2d z
[ v̂ y ( xi , y j+d y , z k+d z)+v̂ y ( xi , y j , zk+d z)

−v̂ y( xi , y j+d y , z k−d z)−v̂ y( xi , y j , zk−d z) ]
Lastly, the y-component of the force source vector

f̂ y (xi , y j+
d y

2
, zk ,t l−

d t

2
)=

2 d t S c

S P

f x( xi , y j+
d y

2
, zk , tl−

d t

2
)

2.3.5 Z-Component of Particle Velocity
The non-dimensional finite-difference equations for the particle velocities are identical in the 
attenuative and non-attenuative cases and are
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ŵ z( xi , y j , z k+
d z

2
, t l+

d t

2
)=ŵ z( xi , y j , zk+

d z

2
, tl−

3d t

2
)

−v̂ x (xi , y j , z k+
d z

2
){r x [ ŵ z( xi+d x , y j , z k+

d z

2
,t l−

d t

2
)−ŵ z( xi−d x , y j , zk+

d z

2
, tl−

d t

2
)]+

+sx [ ŵ z( xi+2 d x , y j , z k+
d z

2
,t l−

d t

2
)−ŵ z( xi−2 d x , y j , z k+

d z

2
, t l−

d t

2
)]}

−v̂ y( xi , y j , zk+
d z

2
){r y [ ŵ z(xi , y j+d y , zk+

d z

2
, t l−

d t

2
)−ŵ z(xi , y j−d y , zk+

d z

2
, t l−

d t

2
)]+

+s y [ ŵ z(xi , y j+2 d y , zk+
d z

2
, t l−

dt

2
)−ŵ z( xi , y j−2 d y , z k+

d z

2
, t l−

d t

2
)]}

−v̂ z( xi , y j , zk+
d z

2
){r z [ ŵ z(xi , y j , z k+

3 d z

2
,t l−

d t

2
)−ŵ z( xi , y j , zk−

d z

2
, tl−

d t

2
)]+

+ sz [ŵ z (xi , y j , z k+
5d z

2
, tl−

d t

2
)−ŵ z(xi , y j , z k−

3 d z

2
,t l−

d t

2
)]}

−
̂∂v z

∂ z
(xi , y j , z k+

d z

2
,t l−

dt

2
)ŵ z(xi , y j , z k+

d z

2
)

−
̂∂v z

∂ y
(xi , y j , z k+

d z

2
)∑

m=0

1

∑
n=−1

0

amn ŵ y( xi , y j+(n+
1
2
)d y , zk+m d z , tl−

d t

2
)

−
̂∂v z

∂ x
(xi , y j , z k+

d z

2
)∑

m=0

1

∑
n=−1

0

amn ŵ x (xi+(n+
1
2
)d x , y j , zk+m d z , tl−

d t

2
)

− 1

ρ̂ (xi , yl , z k+
d z

2
)
{ px [ P̂ (xi , y j , z k+d z , tl )+P̂ (xi , y j , z k+d z ,t l−d t)

−P̂ (xi , y j , z k ,t l)−P̂ ( xi , y j , z k ,t l−d t)]+q x [ P̂ (xi , y j , z k+2 d z , t l)

+P̂ (xi , y j , z k+2d z , t l−d t )−P̂ (xi , y j , z k−d z , tl )−P̂( xi , y j , z k−d z ,t l−dt )] }
+ 1

ρ̂ (xi , yl , z k+
d z

2
)

f̂ z( xi , y j , zk+
d z

2
, t l−

d t

2
)

where the following definitions are for the shorthand notations
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ρ̂ (xi , y j , z k+
d z

2
)=1

2
[ρ̂ (xi , y j , z k)+ρ̂( xi , y j , zk+d z)]

v̂ x (xi , y j , z k+
d z

2
)=1

2
[ v̂ x (xi , y j , z k)+ v̂ x( xi , y j , zk+d z)]

v̂ y( xi , y j , zk+
d z

2
)=1

2
[ v̂ y (xi , y j , z k)+ v̂ y (xi , y j , z k+d z)]

v̂ z( xi , y j , zk+
d z

2
)=1

2
[ v̂z (xi , y j , z k)+ v̂z (xi , y j , z k+d z)]

In addition, the spatial derivatives of the wind vectors
̂∂v z

∂ z
( xi , y j , z k+

d z

2
)=

2d t S c

d z

[ v̂ z(x i , y j , z k+d z)− v̂z( xi , y j , z k)]

̂∂v z

∂ y
( xi , y j , z k+

d z

2
)=

d t S c

2d y
[ v̂ z(xi , y j+d y , zk+d z)+ v̂ z(xi , y j+d y , zk )

−v̂ z(xi , y j−d y , zk+d z)− v̂ z(xi , y j−d y , zk )]
̂∂v z

∂ x
( xi , y j , z k+

d z

2
)=

d t S c

2d x
[ v̂ z(xi+d x , y j , z k+d z)+v̂ z( xi+d x , y j , zk )

−v̂ z( xi−d x , y j , zk+d z)− v̂ z(xi−d x , y j , z k)]
Lastly, the z-component of the force source vector

f̂ z(xi , y j , z k+
d z

2
,t l−

d t

2
)=

2 d t S c

S P

f z (xi , y j , z k+
d z

2
, t l−

d t

2
)

2.3.6 Pressure
The pressure updating formula contains extra terms associated with memory variables compared 
to the non-attenuative moving media case.
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P̂( xi , y j , zk , tl+d t)= P̂( xi , y j , zk , t l)
−v̂ x (xi , y j , z k) {r x[ P̂ (xi+d x , y j , z k , tl )−P̂ (xi−d x , y j , z k ,t l)]

+s x[ P̂ (xi+2 d x , y j , zk , tl )−P̂ (xi−2 d x , y j , zk , tl )] }
−v̂ y( xi , y j , zk ) {r y[ P̂ (xi , y j+d y , z k ,t l)− P̂( xi , y j−d y , z k , t l)]

+s y [ P̂( xi , y j+2 d y , z k , tl )−P̂ (xi , y j−2 d y , z k ,t l)]}
−v̂ z( xi , y j , zk ) {r z [ P̂ (xi , y j , z k+d z ,t l)− P̂( xi , y j , zk−d z , t l)]

+sz [ P̂ (xi , y j , z k+2d z ,t l)− P̂( xi , y j , zk−2 d z , t l)]}

−κ̂(x i , y j , z k ){p x [ŵ x( xi+
d x

2
, y j , z k ,t l+

d t

2
)+ŵ x (xi+

d x

2
, y j , zk , t l−

d t

2
)

−ŵ x (xi−
d x

2
, y j , zk , t l+

dt

2
)−ŵ x (xi−

d x

2
, y j , z k , t l−

d t

2
)]

+qx [ŵ x (xi+
3d x

2
, y j , zk , tl+

d t

2
)+ŵ x( xi+

3d x

2
, y j , z k ,t l−

d t

2
)

−ŵ x( xi−
3d x

2
, y j , zk , t l+

dt

2
)−ŵ x (xi−

3 d x

2
, y j , z k ,t l−

d t

2
)]

p y [ŵ y ( xi , y j+
d y

2
, zk , t l+

dt

2
)+ŵ y( xi , y j+

d y

2
, z k , t l−

d t

2
)

−ŵ y ( xi , y j−
d y

2
, zk , t l+

dt

2
)−ŵ y( xi , y j−

d y

2
, z k , t l−

d t

2
)]

+q y [ŵ y( xi , y j+
3 d y

2
, z k , tl+

d t

2
)+ŵ y (xi , y j+

3d y

2
, zk , tl−

d t

2
)

−ŵ y (xi , y j−
3d y

2
, zk , t l+

dt

2
)−ŵ y( xi , y j−

3 d y

2
, z k ,t l−

d t

2
)]

+p z [ŵ z( xi , y j , zk+
d z

2
, tl+

d t

2
)+ŵz (xi , y j , z k+

d z

2
, t l−

d t

2
)

−ŵ z(xi , y j , z k−
d z

2
,t l+

d t

2
)−ŵ z( xi , y j , zk−

d x

2
,t l−

d t

2
)]

+q z [ŵ z(xi , y j , z k+
3 d z

2
, t l+

d t

2
)+ŵ z( xi , y j , zk+

3d z

2
, tl−

d t

2
)

−ŵ z( xi , y j , zk−
3 d z

2
, tl+

d t

2
)−ŵ z(xi , y j , z k−

3d z

2
, t l−

d t

2
)]}

−κ̂(x i , y j , z k )∑
r=1

R
1
2

d tωr [ p̂r(xi , y j , z k ,t l+dt)+ p̂r(xi , y j , z k ,t l)]

+ê ( xi , y j , zk , tl+d t)−ê (xi , y j , z k , tl )
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Since all material parameters including wind vector components are on the same raster as 
pressure, no averaging of these quantities is required.

2.3.7 Memory Variables
There are R memory variable equations, each with the same form.  The r th memory variable 
equation is

p̂r( xi , y j , zk , t l+d t )=
2−d tωr

2+d tωr

p̂r (xi , y j , z k , t l)

−
2 ar

2+d tωr
{p x [ŵ x( xi+

d x

2
, y j , z k , t l+

d t

2
)+ŵ x (xi+

d x

2
, y j , zk , tl−

d t

2
)

−ŵ x (xi−
d x

2
, y j , z k , t l+

d t

2
)−ŵ x( xi−

d x

2
, y j , zk ,t l−

d t

2
)]

+q x[ŵ x ( xi+
3 d x

2
, y j , z k ,t l+

d t

2
)+ŵ x (xi+

3d x

2
, y j , zk , t l−

d t

2
)

−ŵ x (xi−
3 d x

2
, y j , z k , t l+

d t

2
)−ŵ x( xi−

3d x

2
, y j , zk , tl−

d t

2
)]

p y[ŵ y( xi , y j+
d y

2
, z k , tl+

d t

2
)+ŵ y (xi , y j+

d y

2
, z k , t l−

d t

2
)

−ŵ y( xi , y j−
d y

2
, z k , t l+

d t

2
)−ŵ y (xi , y j−

d y

2
, z k , t l−

d t

2
)]

+q y [ŵ y (xi , y j+
3d y

2
, z k ,t l+

d t

2
)+ŵ y( xi , y j+

3 d y

2
, z k , tl−

d t

2
)

−ŵ y( xi , y j−
3 d y

2
, z k , t l+

d t

2
)−ŵ y (xi , y j−

3d y

2
, zk , t l−

dt

2
)]

+pz [ŵ z(xi , y j , z k+
d z

2
,t l+

d t

2
)+ŵ z(xi , y j , z k+

d z

2
,t l−

d t

2
)

−ŵ z( xi , y j , zk−
d z

2
, tl+

d t

2
)−ŵz (xi , y j , z k−

d x

2
, tl−

d t

2
)]

+qz [ŵ z( xi , y j , zk+
3d z

2
, t l+

d t

2
)+ŵ z(xi , y j , z k+

3d z

2
,t l−

d t

2
)

−ŵ z(xi , y j , z k−
3d z

2
,t l+

d t

2
)−ŵ z( xi , y j , zk−

3 d z

2
, tl−

d t

2
)]}

2.3.8 Numerical Efficiency
Cache coherency is important for computational efficiency.  Since each ( xi , y j , zk ) grid point 
is associated with one of N m attenuation models, the R ωr and ar coefficients associated 
with that grid point must be efficiently loaded in order to avoid double index dereferencing, 

23



which with C/C++ is relatively slow.  To maximize cache efficiency, the pressure and memory 
variable updating is done in stages.  In the first stage the parameters for the first attenuation 
mechanism, ω0 and a0 , are copied to a temporary 1-D array for all xi for a fixed

y j , z k .  Then the non-attenuative portions of the pressure updating equations are computed 
concurrently with updating the first memory variable, p̂0 , which is then added to the non-
attenuative portion of the pressure.  Finally, each remaining R-1 mechanisms is loaded 
sequentially into the 1-D array, the corresponding memory variable updated, and added to the 
pressure.  In tests this method provided a 2.5 x speedup over updating in the order that the 
equations as written may suggest.

24



3.  ABSORBING BOUNDARY CONDITIONS
3.1 Introduction
It is more efficient in most cases to limit the simulation domain spatially for both computational 
and practical reasons.  However, if the computational domain were simply truncated at the edges 
of spatial domain of interest, strong reflections of waves would occur that would not be naturally 
present.  This will greatly contaminate the simulations, especially in later time, and are 
undesirable.  To mitigate against these domain boundary reflections, absorbing boundary 
conditions (ABC) are established, which as their name implies, greatly reduce the incoming and 
reflected outgoing waves impinging on a domain boundary.  Several different types of absorbing 
boundary conditions have been proposed, with one of the simplest being the so-called wavefield 
taper, or sponge, boundary conditions (Cerjan et al., 1985).  Although simple to implement, these
boundary conditions typically require relatively thick zones around the domain boundaries to be 
effective and have poor grazing incidence performance.  Another popular absorbing boundary 
condition is the perfectly matched layer (PML) boundary condition introduced by Beringer 
(1994).  These boundary conditions in theory are perfect (meaning no reflection at the interface 
between the interior and absorbing boundary condition layer), but in practice do have a small 
reflection at this interface.  The PML allows much thinner ABC layer thicknesses and much 
smaller overall reflection amplitudes relative to the wavefield taper zones.  Again, however, 
PMLs perform poorly for grazing incidence waves on the boundary layer.  To combat this, a 
variant of the PML, called the convolutional PML (CPML) was introduced (Komatitsch and 
Martin, 2007).  Although this does perform better at grazing incidence, it only delays the poor 
performance to somewhat larger angles of incidence, often producing interface waves that 
remain trapped in the ABC layer and which emanate energy back into the interior at near-grazing
incidence.  A second problem, with both PMLs and CPMLs, is that they are known to be 
unstable in certain anisotropic media.  One solution to both of the above issues is the so-called 
multiple PML (MPML) (Meza-Fajardo and Papageorgiou, 2008).  Both PMLs and CPMLs only 
damp the wavefield in the direction perpendicular to domain boundary and do not damp the 
wavefield at all for motion parallel to the boundary.  This is actually what allows, in theory, the 
perfect reflectionless interface between the interior and PML layer.  However, it also allows for 
interface waves to develop that propagate parallel to the boundary and build up instead of 
attenuate.  The MPML introduces a small attenuation for motion parallel to the boundary called 
the cross-factor.  Use of the cross-factor does destroy the “perfectness” of the interior-PML 
interface, but it does greatly reduce, and in many cases eliminate, interface waves and 
instabilities caused by anisotropy.  Typically cross-factors of 1-5% of the the perpendicular 
absorption is sufficient to practically eliminate these undesirable effects.  The original PML is a 
special case of a CPML, which itself is a special case of an MPML.  Thus, in TDAAPS the 
MPML is the only PML-type ABC that is implemented internally, with requests for a PML or 
CPML just setting the appropriate parameters of the MPML to produce the desired PML-type.  
This does increase computational effort but for a CPML it amounts to about 5% slowdown 
relative to using special code for a CPML only.

3.2 MPML Implementation
 Similar to physical attenuation described in Chapter 2, implementation of an MPML utilizes 
memory variables.  However, unlike physical attenuation, an MPML applies memory variables 
in all dependent variables update equations (pressure and the three components of velocity).  
There are a total of 15 MPML memory variables and equations that augment the system 
provided in Chapter 2 that must be solved in the ABC layers.  One needs at least one MPML 
memory variable for each derivative direction per update variable, which accounts for 9 of the 
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memory variables for the updates of the 3 components of velocity.  For the pressure updating, 
however, there are 6 memory variables.  This is due to the fact that physical attenuation only 
depends on the divergence of the velocity vector; thus, 3 memory variables are needed just for 
the 3 divergence terms.  The remainder of the pressure updating equations also have spatial 
derivatives and thus requires 3 separate memory variables.

3.2.1 MPML Parameters
The MPML implemented in TDAAPS is parameterized by 4 factors: the MPML width ( w ), 
the theoretical reflection percentage desired at the domain boundary ( R ), a “cutoff” frequency
( α ), and the cross-factor ( χ ).  The MPML width is the thickness of the ABC layer from 
each domain boundary in nodes, with 10 being a typical number.  The theoretical reflection 
percentage is not directly linked to the actual reflection coefficient, since making this too small, 
can actually increase reflections in practice due to there being too sharp an onset to the layer at 
the interior-PML interface.  The best value for this varies somewhat, but it tends not to be overly 
sensitive to this parameter, but a value of 0.001% tends to work well in many instances.  The 
“cutoff” frequency is really a cutoff between behaving more like an original PML above this 
frequency and tapering to less attenuation below this frequency (introduced in the CPML and has
a value of 0 for a pure PML).  A value of π f peak where f peak is near the peak of the 
spectrum expected in the far field is recommended.  Finally, the MPML cross-factor, which as 
described above gives the fractional amount of attenuation in the direction parallel to the 
boundary relative to perpendicular to it.  A pure CPML and PML have the cross-factor as 0, but 
typically values of 0.01 to 0.05 work in most instances.  Internally the above parameters are 
converted to values that are actually used in the algorithm.  The PML attenuation factor, σ , is
defined as

σmax=
−1.5 log(R)vmax

w d h

where vmax is the maximum wavespeed in the current model and d h is the node spacing.  
Another parameter that affects performance of all PMLs is the shape of the taper that goes from 
the PML-interior interface to the domain boundary.  In TDAAPS, a quadratic that varies from 0 
at the PML-interior interface to σmax at the domain boundary is used.  For CPMLs, one also 
needs a taper function for α .  In TDAAPS, we use a linear function that actually has a value 
of α at the interior-PML interface and goes to 0 at the domain boundary.  The cross-factor is 
constant throughout the PML layer.  Once these parameters are given two functions are defined 
that simplify computations

b⊥(xi , y j , zk)=exp(−2 dt (σ(xi , y j , zk)+α(xi , y j , zk)))

a⊥( xi , y j , z k)=σ( xi , y j , zk )
(b(xi , y j , z k)−1)

(σ( xi , y j , zk )+α( xi , y j , zk ))
for perpendicular attenuation.  For the MPML, when χ is non-zero, the parallel directions are 
defined by

b∥( xi , y j , zk )=exp(−2χ dtσ (xi , y j , z k))
a∥( xi , y j , zk )=b∥(xi , y j , z k)−1

It is important to note that these functions of space must be defined, as appropriate, for whole 
and half-integer locations.  Also, within edge and corner layers, two or three PML layers are 
combined.  For example, at an X-Y edge, the PML layer for a purely X layer is combined with a 
purely Y layer.
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The memory variable updating equations are the same in each case.  For memory variable g r

where r is one of the 15 memory variables

gr(x i , y j , zk ,t l+d t )=b (xi , y j , zk )gr(xi , y j , zk , t l)+a ( xi , y j , z k)Dr( xi , y j , z k , tl+dt /2)
=G (gr , Dr)

where b and a are parameters of the MPML defined above as either the parallel or 
perpendicular variety, and are functions of space only, and Dr is a term that depends on a sum
of terms that contain a derivative of space in a certain direction.  

The following are rearrangements of the equations given in Chapter 2 with the addition of the 
MPML.  Note that for simplicity the source terms are not included in the equations below, but 
are added in the same manner as given in Chapter 2, i.e., they are not affected by the MPML.  
However, in practice, source terms should not be placed within the PML layer.  All terms have 
the same definitions as given in Chapter 2 if not provided here.

3.2.2 X-Component of Particle Velocity

Dvxx=−v̂ x (xi+
d x

2
, y j , zk ){r x[ ŵ x ( xi+

3 d x

2
, y j , z k , t l−

d t

2
)−ŵ x (xi−

d x

2
, y j , zk , tl−

d t

2
)]+

+s x [ ŵ x( xi+
5 d x

2
, y j , z k ,t l−

d t

2
)−ŵ x (xi−

3d x

2
, y j , zk , tl−

d t

2
)]}

−
̂∂v x

∂ x
( xi+

d x

2
, y j , z k ,t l−

d t

2
) ŵ x( xi+

d x

2
, y j , z k)

− 1

ρ̂( xi+
d x

2
, yl , z k )

{ px [ P̂( xi+d x , y j , zk , tl )+P̂( xi+d x , y j , zk , tl−d t)

−P̂( xi , y j , zk , t l)−P̂ (xi , y j , z k , t l−d t )]+qx [ P̂( xi+2 d x , y j , z k ,t l)

+P̂ (xi+2d x , y j , z k , tl−d t )−P̂( xi−d x , y j , zk , tl )−P̂ (xi−d x , y j , z k ,t l−d t )]}
Dvxy=−v̂ y( xi+

d x

2
, y j , z k){r y[ ŵ x (xi+

d x

2
, y j+d y , zk ,t l−

d t

2
)−ŵ x (xi+

d x

2
, y j−d y , z k ,t l−

d t

2
)]+

+s y [ ŵ x (xi+
d x

2
, y j+2 d y , zk , t l−

d t

2
)−ŵ x( xi+

d x

2
, y j−2 d y , zk ,t l−

d t

2
)]}

−
̂∂v x

∂ y
( xi+

d x

2
, y j , z k)∑

m=0

1

∑
n=−1

0

amn ŵ y( xi+m d x , y j+(n+
1
2
)d y , z k ,t l−

d t

2
)
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Dvxz=−v̂ z(xi+
d x

2
, y j , zk ){r z [ ŵ x( xi+

d x

2
, y j , z k+d z , tl−

d t

2
)−ŵ x( xi+

d x

2
, y j , z k−d z , tl−

d t

2
)]+

+ sz [ ŵ x (xi+
d x

2
, y j , zk+2 d z , tl−

d t

2
)−ŵ x( xi+

d x

2
, y j , z k−2d z , tl−

d t

2
)]}

−
̂∂v x

∂ z
( xi+

d x

2
, y j , z k)∑

m=0

1

∑
n=−1

0

amn ŵ z( xi+m d x , y j , z k+(n+
1
2
)d z , t l−

d t

2
)

g vxx=G( gvxx , Dvxx)
g vxy=G( gvxy , Dvxy)
g vxz=G (g vxz , Dvxz )

ŵ x (xi+
d x

2
, y j , zk , tl+

d t

2
)=ŵ x (xi+

d x

2
, y j , z k , t l−

3d t

2
)+Dvxx+Dvxy+Dvxz+g vxx+gvxy+g vxz

3.2.3 Y-Component of Particle Velocity

Dvyx=−v̂ x (xi , y j+
d y

2
, z k){r x [ ŵ y (xi+d x , y j+

d y

2
, z k ,t l−

d t

2
)−ŵ y ( xi−d x , y j+

d y

2
, zk , tl−

d t

2
)]+

+s x [ ŵ y (xi+2d x , y j+
d y

2
, zk , tl−

d t

2
)−ŵ y (xi−2 d x , y j+

d y

2
, zk , tl−

d t

2
)]}

−
̂∂v y

∂ x
(xi , y j+

d y

2
, z k)∑

m=0

1

∑
n=−1

0

amn ŵ x (xi+(n+
1
2
) , y j+m d y , z k , tl−

d t

2
)

Dvyy=−v̂ y( xi , y j+
d y

2
, zk ){r y [ŵ y (xi , y j+

3d y

2
, z k , t l−

d t

2
)−ŵ y( xi , y j−

d y

2
, zk , tl−

dt

2
)]+

+ s y[ ŵ y( xi , y j+
5 d y

2
, z k , tl−

d t

2
)−ŵ y (xi , y j−

3d y

2
, z k ,t l−

d t

2
)]}

−
̂∂v y

∂ y
(xi , y j+

d y

2
, z k , t l−

d t

2
) ŵ y( xi , y j+

d y

2
, zk )

− 1

ρ̂( xi , yl+
d y

2
, zk )

{ p x [ P̂( xi , y j+d y , z k , t l)+ P̂( xi , y j+d y , z k , t l−d t)

−P̂ (xi , y j , z k , t l)−P̂ (xi , y j , z k ,t l−d t )]+q x [ P̂ ( xi , y j+2 d y , zk , t l)

+P̂ (xi , y j+2 d y , z k ,t l−d t )−P̂ (xi , y j−d y , zk ,t l )−P̂( xi , y j−d y , z k ,t l−d t)]}
Dvyz=−v̂z (xi , y j+

d y

2
, z k){r z [ ŵ y( xi , y j+

d y

2
, zk+d z ,t l−

d t

2
)−ŵ y (xi , y j+

d y

2
, z k−d z , tl−

d t

2
)]+

+ sz [ ŵ y (xi , y j+
d y

2
, z k+2 d z , t l−

d t

2
)−ŵ y (xi , y j+

d y

2
, z k−2d z ,t l−

d t

2
)]}

−
̂∂v y

∂ z
(xi , y j+

d y

2
, z k)∑

m=0

1

∑
n=−1

0

amn ŵ z(xi , y j+md y , zk+(n+
1
2
)d z ,t l−

d t

2
)
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g vyx=G( gvyx , Dvyx)
g vyy=G( gvyy , Dvyy)
g vyz=G (g vyz , Dvyz )

ŵ y ( xi , y j+
d y

2
, zk , t l+

d t

2
)=ŵ y( xi , y j+

d y

2
, z k , tl−

3d t

2
)+Dvyx+Dvyy+Dvyz+g vyx+gvyy+g vyz

3.2.4 Z-Component of Particle Velocity

Dvzx=−v̂x ( xi , y j , zk+
d z

2
){r x[ ŵ z( xi+d x , y j , zk+

d z

2
, tl−

d t

2
)−ŵz (xi−d x , y j , z k+

d z

2
, t l−

d t

2
)]+

+ sx [ ŵ z(xi+2d x , y j , z k+
d z

2
, tl−

d t

2
)−ŵ z(xi−2d x , y j , z k+

d z

2
, tl−

d t

2
)]}

−
̂∂v z

∂ x
(xi , y j , z k+

d z

2
)∑

m=0

1

∑
n=−1

0

amn ŵ x (xi+(n+
1
2
)d x , y j , z k+md z , t l−

d t

2
)

Dvzy=−v̂ y (xi , y j , z k+
d z

2
){r y[ ŵ z( xi , y j+d y , z k+

d z

2
,t l−

d t

2
)−ŵ z( xi , y j−d y , z k+

d z

2
, tl−

d t

2
)]+

+ s y [ŵ z (xi , y j+2 d y , z k+
d z

2
,t l−

d t

2
)−ŵ z( xi , y j−2d y , zk+

d z

2
, tl−

d t

2
)]}

−
̂∂v z

∂ y
(xi , y j , z k+

d z

2
)∑

m=0

1

∑
n=−1

0

amn ŵ y ( xi , y j+(n+
1
2
)d y , z k+md z ,t l−

d t

2
)

Dvzz=−v̂ z( xi , y j , zk+
d z

2
){r z [ ŵ z(xi , y j , z k+

3d z

2
,t l−

d t

2
)−ŵ z( xi , y j , zk−

d z

2
, tl−

d t

2
)]+

+s z [ŵ z(xi , y j , z k+
5d z

2
,t l−

d t

2
)−ŵ z( xi , y j , zk−

3 d z

2
, tl−

d t

2
)]}

−
̂∂v z

∂ z
(xi , y j , z k+

d z

2
, t l−

d t

2
)ŵ z( xi , y j , zk+

d z

2
)

− 1

ρ̂( xi , yl , zk+
d z

2
)
{p x [ P̂ (xi , y j , z k+d z ,t l)+ P̂( xi , y j , zk+d z ,t l−d t )

−P̂( xi , y j , zk ,t l )−P̂( xi , y j , zk , tl−d t)]+qx [ P̂ (xi , y j , z k+2d z ,t l )

+P̂( xi , y j , zk+2 d z , tl−d t)− P̂( xi , y j , zk−d z , t l)−P̂ (xi , y j , z k−d z , tl−d t)] }
g vzx=G (g vzx , Dvzx)
g vzy=G (g vzy , Dvzy )
g vzz=G( gvzz , Dvzz)

ŵ z(xi , y j , z k+
d z

2
,t l+

d t

2
)=ŵ z( xi , y j , zk+

d z

2
, t l−

3d t

2
)+Dvzx+Dvzy+Dvzz+g vzx+g vzy+g vzz

3.2.5 Physical Memory Variables
The physical memory variables (akin to Section 2.3.7) are changed within an MPML.
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Dmx=p x [ŵ x( xi+
d x

2
, y j , z k , t l+

d t

2
)+ŵ x (xi+

d x

2
, y j , zk , t l−

d t

2
)

−ŵ x (xi−
d x

2
, y j , zk , tl+

d t

2
)−ŵ x ( xi−

d x

2
, y j , z k , t l−

d t

2
)]

+qx [ŵ x (xi+
3d x

2
, y j , zk , tl+

d t

2
)+ŵ x( xi+

3d x

2
, y j , z k ,t l−

d t

2
)

−ŵ x( xi−
3d x

2
, y j , zk , tl+

d t

2
)−ŵ x ( xi−

3 d x

2
, y j , z k , t l−

d t

2
)]

Dmy=p y [ŵ y( xi , y j+
d y

2
, zk , tl+

d t

2
)+ŵ y (xi , y j+

d y

2
, z k , t l−

d t

2
)

−ŵ y( xi , y j−
d y

2
, zk , tl+

d t

2
)−ŵ y (xi , y j−

d y

2
, z k , t l−

d t

2
)]

+q y[ŵ y (xi , y j+
3d y

2
, z k ,t l+

d t

2
)+ŵ y ( xi , y j+

3 d y

2
, zk , tl−

d t

2
)

−ŵ y( xi , y j−
3 d y

2
, zk , tl+

d t

2
)−ŵ y (xi , y j−

3d y

2
, z k , t l−

d t

2
)]

Dmz= pz [ŵ z(xi , y j , z k+
d z

2
,t l+

d t

2
)+ŵ z( xi , y j , z k+

d z

2
, t l−

d t

2
)

−ŵ z( xi , y j , zk−
d z

2
, tl+

d t

2
)−ŵ z( xi , y j , zk−

d x

2
, tl−

d t

2
)]

+q z [ŵ z( xi , y j , zk+
3 d z

2
, t l+

d t

2
)+ŵ z(xi , y j , z k+

3d z

2
,t l−

d t

2
)

−ŵ z( xi , y j , zk−
3d z

2
, tl+

d t

2
)−ŵ z(xi , y j , z k−

3d z

2
, t l−

d t

2
)]

gmx=G (gmx , Dmx)
gmy=G (gmy , Dmy)
gmz=G(g mz , Dmz)

p̂r( xi , y j , zk , tl+d t)=
2−d tωr

2+d tωr

p̂r (xi , y j , z k , tl )

−
2 ar

2+d tωr

{Dmx+Dmy+Dmz+gmx+gmy+gmz }
3.2.6 Pressure

D px=−v̂ x (xi , y j , z k ){r x [ P̂ (xi+d x , y j , z k , t l)− P̂( xi−d x , y j , zk , t l )]
+sx [ P̂( xi+2 d x , y j , z k ,t l)− P̂( xi−2 d x , y j , z k ,t l)]}
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D py=−v̂ y( xi , y j , zk ) {r y [ P̂ (xi , y j+d y , zk , tl )−P̂ (xi , y j−d y , z k , t l)]
+s y [ P̂ ( xi , y j+2d y , zk , t l)−P̂( xi , y j−2 d y , z k , t l)]}

D pz=−v̂ z(xi , y j , z k) {r z [ P̂( xi , y j , zk+d z , t l)−P̂ (xi , y j , z k−d z , t l)]
+s z [ P̂( xi , y j , zk+2 d z , tl )−P̂ (xi , y j , z k−2 d z ,t l)]}

g px=G( g px , D px)
g py=G( g py , D py)
g pz=G(g pz , D pz)
P̂( xi , y j , zk , t l+d t)= P̂( xi , y j , zk , tl )+D px+D py+D pz

−κ̂(xi , y j , z k )[ Dmx+Dmy+Dmz+gmx+gmy+gmz ]+g px+g py+g pz

−κ̂(xi , y j , z k)∑
r=1

R
1
2

d tωr [ p̂r (xi , y j , z k , t l+d t )+ p̂r (xi , y j , z k , t l)]
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3.3 Performance
The performance of the MPML is demonstrated both in an absolute sense and relative to the 
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Figure 3: Comparison of Sponge and CPML absorbing boundary conditions for the X-
component of particle velocity.

Figure 4: Comparison of Sponge and CPML for Z-component of
particle velocity.



A vertical force source with a 100 Hz Ricker source-time-function was placed at the center of the
grid and recorded 10 m below and offset 15 m in x for the sponge-MPML comparison.  The 
comparison of the X, and Z particle velocities and pressure are shown in Figures 3-5.  The Y-
component is not shown due to the fact that along this recording plane, no Y particle velocity 
will be theoretically produced.  As can be observed, the initial portion of the pulse is virtually 
identical between the two ABC conditions.  However, discrepancies emerge in later portions of 
the pulse.  Also, notice the continued fluctuations following the main pulse in the sponge case; 

these are reflections from the domain boundaries that we want to eliminate.  The MPML has no 
noticeable deviations from zero following the main pulse, which is the correct, desirable result.  
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Figure 5: Comparison of Sponge and CPML for pressure.



The absolute MPML performance example shows a snapshot of the pressure wavefield in the XZ
plane at a time where the primary pulse is interacting with the MPML boundary zone (Figure 6). 
Note the very effective absorption of the wavefield at the boundary and little to no noticeable 
reflection back into the domain.  The maximum outgoing amplitude impinging on the MPML 
zone is  ~1e-4 Pa, whereas the maximum amplitude reflected back into the interior is ~1e-8 Pa, 
indicating a reflection coefficient on the order of 0.01%.  This is greater than the theoretical 
reflection coefficient, but is still indicative of a superior absorbing boundary condition. 
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Figure 6: Demonstration of CPML performance
in a homogeneous model on the XZ plane for

pressure.



4.  PHYSICS IMPROVEMENTS
4.1 Introduction
TDAAPS was originally designed for atmospheric acoustic modeling and, as such, includes 
some assumptions that are generally true in the atmosphere but may not be true in some other 
fluid media.  Ostashev et al. (2005) derive the acoustic equations in full and also with several 
simplifying assumptions that are generally true in the atmosphere.  The assumptions that 
TDAAPS makes is that 1) ∇⋅⃗v=0 , i.e., the fluid is incompressible, and 2) ∇ P0=0 , i.e., 
the spatial variation in the ambient medium pressure is small enough for acoustic wave 
propagation as to be negligible.  The latter assumption definitely precludes computation of very 
long period atmospheric gravity waves, but TDAAPS also ignores temporal variations in density,
which would be important for these types of waves as well.  However, there may be instances, 
even in the atmosphere, especially where gradients in wind may be strong, that these terms may 
be important enough to retain.  As such, a compile time flag 
(-DUSE_FULL_PRESSURE_UPDATING=1) is available that will use all the first-order (linear)
terms in the moving media acoustic velocity-pressure system of equations.  These additional 
terms only alter the pressure updating equations and, when used, add about 20% to the 
computation time.  The default is to use the above two assumptions that apply most commonly in
the atmosphere.

4.2 Theory
Ostashev et al. (2005) derive the moving acoustic equations in full and, thus, the derivation is not
repeated here.  The velocity updating equations remain as stated in Chapter 1; only the pressure 
updating equations are altered and are given by
∂ p
∂ t
+γ p

∂v k

∂ xk

+κ
∂wk

∂ x k

+wk

∂P 0

∂ xk

+vk

∂ p
∂ x k

=∂e
∂ t

Where γ is the ratio of specific heats at constant pressure to constant volume.  Note the 
symmetry in the ambient ( vk and P0 ) and perturbation ( wk and p ) terms.  However, 
it would be desirable to eliminate P0 from the above equations and this can accomplished 
using the assumption that the atmosphere (or other fluid medium) is in quasi-equilibrium among 
the ambient medium parameters.  Thus, the gradient in ambient pressure P0 can be rewritten 
in terms of gradients of the ambient wind.  Using this assumption the above equation becomes
∂ p
∂ t
+γ p

∂v k

∂ xk

+κ
∂wk

∂ x k

−ρw k v j

∂ vk

∂ x j

+vk
∂ p
∂ x k

=∂e
∂ t

This latter equation forms the basis for the numerical implementation in the following section.
4.3 Implementation
When all first-order terms in the moving acoustic equations are included, gradients of the 
ambient medium wind vectors are required for the pressure updating equations, similar to how 
they are used in the velocity updating equations.  The following equations will redefine the

D px , D py , and D pz equations used in Section 3.2.6 to include all the linear terms.  The 
remainder of the terms in Section 3.2.6 remain unchanged.  Recall that within the interior of the 
domain, where no PML-type ABC is used, all the gi terms are 0.
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4.3.1 Pressure Updating Including All Linear Terms
D px=−v̂ x (xi , y j , z k ){r x [ P̂ (xi+d x , y j , z k ,t l)− P̂( xi−d x , y j , zk ,t l )]

+sx [ P̂( xi+2 d x , y j , z k ,t l)− P̂ ( xi−2 d x , y j , z k ,t l)]}
−γ P̂( xi , y j , zk , t l) {c x [ v̂ x( xi+d x , y j , zk )−v̂ x (xi−d x , y j , z k )]}

+ρ( xi , y j , z k )B x (xi , y j , z k ,t l)
where γ is the ratio of the specific heats at constant pressure to constant volume and is 1.4 for 
air.  This medium parameter is currently constant throughout the computational domain, but 
could be upgraded to be position dependent in a future version.  cx are the 2nd order accurate 
coefficients for the gradient in the wind components

cx=S c

d t

d x

The term Bx is
Bx (xi , y j , z k ,t l)= {W̄ x (xi , y j , z k ,t l){c x [ v̂ x( xi+d x , y j , zk )−v̂ x (xi−d x , y j , z k )]}

+W̄ y (xi , y j , z k , t l){c x [ v̂ y (xi+d x , y j , z k)− v̂ y (xi−d x , y j , z k )]}
+W̄ z(xi , y j , z k , t l){c x [ v̂z (xi+d x , y j , z k)− v̂ z(xi−d x , y j , z k)]}}v̂ x ( xi , y j , z k )

where
W̄ x ( xi , y j , zk ,t l )=1 /4 {ŵ x( xi+d x /2, y j , zk , t l+d t /2)+ŵ x ( xi+d x /2, y j , z k ,t l−d t /2)

+ŵ x (xi−d x /2, y j , zk , tl+d t /2)+ŵ x( xi−d x /2, y j , z k ,t l−d t /2)}

W̄ z( xi , y j , z k , t l)=1/ 4 {ŵ z( xi , y j , zk+d z /2, tl+d t /2)+ŵ z(xi , y j , z k+d z /2,t l−d t /2)
+ŵ z(xi , y j , z k−d z /2,t l+d t /2)+ŵ z( xi , y j , zk−d z /2, tl−d t /2)}

The remaining terms D py and D pz are

D py=−v̂ y( xi , y j , zk ) {r y [ P̂ (xi , y j+d y , zk , tl )−P̂ (xi , y j−d y , z k ,t l)]
+s y [ P̂ ( xi , y j+2d y , zk , t l)−P̂( xi , y j−2 d y , z k , tl )]}

−γ P̂ ( xi , y j , z k ,t l) {c y [ v̂ y (x i , y j+d y , zk )− v̂ y (xi , y j−d y , zk )]}
+ρ(xi , y j , z k)B y (xi , y j , z k ,t l)

D pz=−v̂ z(xi , y j , z k) {r z [ P̂( xi , y j , zk+d z , t l)−P̂ (xi , y j , z k−d z , tl )]
+s z [ P̂( xi , y j , zk+2 d z , t l)−P̂ (xi , y j , z k−2 d z , t l)]}

−γ P̂( xi , y j , zk , t l) {c z [ v̂ z( xi , y j , zk+d z)− v̂ z(xi , y j , z k−d z)]}
+ρ(xi , y j , z k )B z( xi , y j , z k ,t l)

with c y and cz similarly defined as cx above and
B y( xi , y j , zk , tl )={W̄ x( xi , y j , zk , tl ){c y [ v̂ x( xi , y j+d y , z k)− v̂ x( xi , y j−d y , z k )]}

+W̄ y (xi , y j , z k ,t l){c y [v̂ y( xi , y j+d y , z k )−v̂ y ( xi , y j−d y , z k)]}
+W̄ z(xi , y j , z k , t l){c y [ v̂ z( xi , y j+d y , z k)− v̂ z(xi , y j−d y , zk )]}} v̂ y (xi , y j , z k )
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W̄ y (xi , y j , z k , tl )=1/ 4 {ŵ y( xi , y j+d y /2, z k , t l+d t /2)+ŵ y (xi , y j+d y /2, zk , tl−d t /2)
+ŵ y( xi , y j−d y /2, z k , tl+d t /2)+ŵ y (xi , y j−d y /2, zk ,t l−d t /2)}



Bz( xi , y j , zk , tl )={W̄ x( xi , y j , zk , tl ){cz [ v̂ x( xi , y j , zk+d z)− v̂ x( xi , y j , zk−d z)]}
+W̄ y( xi , y j , zk , tl ){c z [ v̂ y (xi , y j , z k+d z)−v̂ y( xi , y j , zk−d z)]}

+W̄ z(xi , y j , z k , t l){c z [ v̂ z( xi , y j , zk+d z)− v̂z (xi , y j , z k−d z)]}} v̂ z(xi , y j , z k)
with other terms as defined above.

4.4 Example
An example of the effect of the extra physics terms for a realistic atmospheric model is shown in 
Figure 7.  This example is from a model with complex topography and 3-D variations in sound 
speed, density, and wind.  On the large scale, there is little to no discernible difference between 
the traces when using or neglecting the extra physics terms.  However, the inset shows a 10x 
enlargement of the trailing end of the primary pulse and its coda.  Note the subtle differences are 
on the order of ~1% of the peak amplitude of the primary pulse.

4.5 Stability
The numerical stability of the original and augmented system of equations (with or without 
attenuation) is partially determined by the accuracy of the underlying ambient medium 
parameters.  Implicit in the equations given throughout this document is that the ambient 
medium itself obeys the same physical and mathematical laws that are used to derive the acoustic
equations.  This, along with the assumption of quasi-equilibrium in the ambient medium, in turn 
implies a certain relationship exists among wind vectors and their gradients.  If this is not true, 
then this disequilibrium may manifest itself as “sources” within the domain that will grow 
continually with time.  Even very small disequilibria could eventually grow to large enough 
magnitude to make simulation results unusable given enough time.  In practice, these 
disequilibria points arise most often within the atmosphere right above the topography.  These 
are indeed the areas that would be suspected to have the highest likelihood of error either directly
due to codes that compute ambient media states or introduced during interpolation of those 
models onto the TDAAPS grid.  Wind gradients are also large near the topographic surface, 
which also increases the likelihood for error.  The terms added in this chapter are relatively small
except in areas with large wind gradients, such as near the surface.  Indeed, when all linear terms
are included, there tends to be fewer and slower growing disequilibria points than when they are 
not used.  However, even using the full updating equation for pressure does not eliminate this 
problem completely.
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Another tactic that is used to mitigate against disequilibria points is to ensure that nodes right 
next to topography do not smear wind gradients into regions, such as the solid earth, where the 
wind and wind gradients should be zero.  The finite-difference equations average (either 
arithmetically or harmonically) medium parameters for equations that do not directly reside at 
the storage location for the parameters they are differencing or averaging.  TDAAPS will force 
wind gradients to be zero for updating points whose harmonically averaged density is greater 
than 500 / Sρ .  Obviously, this was designed for the atmosphere but could be altered to apply 
to any fluid where there is a reasonably great density contrast, but as the density contrast reduces 
it is expected that the amount of disequilibrium would decrease and so become less of an issue.

It should be noted that TDAAPS employs the “order-switching” formalism introduced in Preston
et al. (2008) that reduces the finite-difference order from 4th to 2nd order in space for nodes 
adjacent to high contrast interfaces such as occurs at the air-earth interface.  This is required for 
stability and for accuracy.  

Finally, when attenuation is used in the model, it will mitigate against these disequilibria 
instabilities since it naturally attenuates these numerically growing “sources.”  How much 
attenuation may be necessary to eliminate these instabilities will depend on the wind gradient 
near the topography and it may in some circumstances be completely eliminated by the actual 
attenuation in the medium.  In other instances, however, unrealistically large attenuation may be 
required to eliminate these instabilities and other methods may need to be explored to fully 
eliminate this problem.
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Figure 7: Effects of using all the first order terms in a realistic atmospheric model.
"Standard" refers to the usual method of neglecting terms, whereas "added terms"

refers to the inclusion of all first order terms.  The right inset shows a 10x enlargement
of the tail end of the primary pulse and coda.



5. DETERMINING ATTENUATION PARAMETERS
5.1 Introduction
As mentioned in Chapter 2, there are 2*R  parameters that must be given in order to define an 
attenuation model: R ar amplitude scalars and R ωr decay frequencies.  This chapter shows
how one determines these parameters given a loss versus frequency curve.  This will be 
demonstrated for a typical atmospheric acoustic loss function and for seawater.

5.2 Theory
The definition of an attenuation mechanism is provided in Section 2.2.  However, how do these 
attenuation mechanisms defined in terms of acoustic moduli relate to loss versus frequency?  
Aldridge (in prep) also derives the loss versus frequency given a standard linear solid that we can
utilize to obtain acoustic loss versus frequency.  First define two functions in the frequency 
domain

A( f )=∑
r=1

R ar

1+(ω/ωr)
2

B( f )=∑
r=1

R ar(ω/ωr)
1+(ω/ω r)

2

Then the attenuation function is defined as

α( f )= ωc∞ √ √(1−A( f ))2+B( f )2−(1−A( f ))
2 [(1−A( f ))2+B( f )2]

where c∞ is the phase speed at infinite frequency ( c∞=√κ/ρ ) .  The units are 1/length, 
which typically, with the sound speed given as m/s, will be 1/m.  This also implies that the phase 
speed is a function of frequency and is given by

c( f )=c∞√ 2 [(1−A( f ))2+B( f )2]

√(1−A( f ))2+B( f )2+(1−A( f ))
Given an αtrue( f ) one can find the  R ar and R ωr that will produce an attenuation 
function α( f ) above that best fits the true one in some sense.  The Matlab function 
acousticAttenSeek.m takes a vector of frequencies where αtrue( f ) is known, the αtrue( f ) at 
those frequencies, the phase speed at infinite frequency, the number of attenuation mechanisms 
that you want ( R ), and a reference frequency.  It will output R amplitude scalars and R
decay frequencies as well as the ratio of the phase velocity at the reference frequency to that at 
infinite frequency that best fit the input loss function in a least squares sense.

Of course, this solution is purely mathematical, and does not know anything about any physical 
limitations on these output parameters.  All of the amplitude scalars and decay rates must be real,
positive numbers as the most general restriction.  Beyond that, there are rules that should be true 
in order for them to represent a physical system bounds by the constraints of causality.  One 
obvious constraint is that c (0) must be real and positive.  This places the constraint that

∑
r=1

R

ar<1

Other than this simple constraint, the general requirements for arbitrary R mechanisms is not 
known.  In practice, the author is not aware of any output from acousticAttenSeek.m for any 
attenuation model that fits the basic constraints above that appear to violate causality, but, of 
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course, this does not mean that a model doesn't exist that would produce parameters that are 
physically impossible.  The most likely result of a physically impossible attenuation model 
would be instability of the solution.

5.3 Atmospheric Attenuation Example

The Matlab code acousticAtten.m computes the attenuation (1/m) as a function of frequency 
based on the ISO 9613-1 (1993) standard.  Figure 8 shows the ISO standard attenuation over the 
frequency range 10 Hz to 10 kHz compared to the best fit in a least squares sense attenuation 
model with 1 and 2 mechanisms.  The fit is excellent for a 2 mechanism model, meaning that this
model would be an adequate representation of the physical attenuation over this frequency range.
The 1-mechanism model is unable to fit some of the curve's variations in this band.
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Figure 8: Acoustic attenuation factor fits for a 1 and 2 mechanism
model.



Figure 9 shows the subtle phase speed dependence on frequency for the 2-mechanism model.
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Figure 9: Sound speed dispersion implied by the 2 mechanism
model.



5.4 Seawater Attenuation Example

The Matlab code seawaterAtten.m also computes the attenuation (1/m) as a function of 
frequency for seawater.  This is based on equations given in Ainslie and McColm (1998) that use
only the physical loses due to pure water, boric acid, and magnesium sulfate, which are the 
primary contributors to attenuation in seawater in the Hz to kHz range.  Figure 10 shows the 
Ainslie and McColm attenuation model over the frequency range 10 Hz to 10 kHz and the best 
fit 1 and 2 mechanism attenuation models.  Once again, the fit is excellent over this bandwidth 
for the 2 mechanism model, whereas the 1 mechanism model cannot fit the inflections of the 
curve.
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Figure 10: Seawater attenuation factor fits for 1- and 2-mechanism
attenuation models.



6. VALIDATION TESTS
6.1 Introduction
Code validation is important to help verify that the physics and the code implementation of the 
physics give expected results.  One means of validation is comparison of results of two different 
codes under the same conditions.  Validation of TDAAPS 2 was made against two different 
codes.  The original TDAAPS, which is a non-attenuative code, was used to validate TDAAPS 2 
in the case that the attenuation parameters are used but set to coincide with a non-attenuative 
model.  To test the attenuation aspect of the code, the new code was tested against Parelasti, the 
Geophysics Department's finite-difference anelastic algorithm in the case of fixed medium for 
TDAAPS and zero shear wave speed for Parelasti with identical attenuation parameters.  A 
moving acoustic, attenuative comparison was not made since no codes were available for testing.

For these test cases a simple homogeneous acoustic model was used.  The sound speed and 
density were set to 2500 m/s and 2000 kg/m3, respectively, for comparisons with Parelasti.  The 
non-attenuative models used a homogeneous sounds speed of 340 m/s and density of 1.2 kg/m3.

6.2 Non-Attenuative Acoustic Comparison

The purpose of these comparisons is to test whether the attenuation code reduces to the non-
attenuative output when attenuation parameters are set to zero.  Two basic test cases were 
considered.  The first consisted of a fixed media (no wind) model comparison between the 
original TDAAPS without attenuation and TDAAPS 2 with attenuation turned on, but all 
amplitude factors set zero, meaning that the attenuation portion of the code is exercised, but no 
attenuation will result.  Figures 11-13 shows the excellent comparison of the two codes in the 
case of a vertical point source in the center of the grid using a 10 Hz Ricker wavelet source-time-
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Figure 11: X-component of velocity comparison for fixed acoustic
models.



function recorded 10 m below and 40 m offset in the X direction for the X-component of 
velocity, Z-component of velocity, and pressure.  The Y-component of velocity is theoretically 
zero.
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Figure 13: Pressure comparison for fixed acoustic model.

Figure 12: Z-component of velocity comparison for fixed acoustic
model.



The second case is a moving media case with the same homogeneous sound speed and density 
model.  The wind is a vortex centered at the center of the grid with wind speed increasing 
radially to a Mach number (wind speed/sound speed) of 0.20, a very strong wind.  The same 
source and receiver locations were used as in the first case.  Comparisons are also excellent on all
components of velocity and pressure (Figures 14-17).  Note that the Y-component of particle 
velocity is also shown, since, due to the wind, there will be detectable signal on this component.
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Figure 14: X-component velocity comparison with wind model.
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Figure 15: Y-component of velocity comparison for wind model.

Figure 16: Z-component of velocity comparison for wind model.
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Figure 17: Pressure comparison for wind model.



6.3 Fixed Acoustic Attenuative Medium Comparison
This comparison tests the attenuation acoustic code to ensure that it gives the same answers as 
Parelasti using an anelastic model with the shear wave speed set to zero.  We used attenuation 
parameters appropriate for a seismic model with an equivalent Q of 100 for 2 attenuation 
mechanisms.  The relaxation frequencies and amplitude factors utilized were 3.061493 Hz with 
amplitude 0.025949 for the first and 66.091248 Hz with amplitude 0.018347 for the second.  A 
100 Hz Ricker source-time-function vertical force source located at the center of the grid was 
recorded 10 m below and 40 m offset in X for the X-component of particle velocity, Z-
component of velocity, and pressure.  Again, note that the Y-component of velocity is 
theoretically zero for this configuration of source and receiver.  Agreement between the two 
codes is excellent on all traces (Figures 18-20).
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Figure 18: X-component of velocity comparison for attenuative
model.
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Figure 19: Z-component of velocity comparison for attenuative
model.

Figure 20: Pressure comparison for attenuative model.
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7.  CONCLUSIONS

We have outlined improvements that have been made to TDAAPS in order to model acoustic
wave propagation in attenuative,  moving media which can include realistic  3-D atmospheric
conditions  and topography.  In addition, improved absorbing boundary conditions allow more
accurate simulation results in a smaller computational domain, saving resources and time.  The
optional usage of all the linear terms in the linear acoustic wave equations does mitigate against
instabilities  in  the  solution  in  some cases  and  expands  the  capability  of  acoustic  modeling
beyond air or water to other materials in which these terms could not be neglected.  Methods for
computing the attenuation parameters from desired attenuation factor versus frequency response
were also provided.  Finally, the improved code, TDAAPS 2, has been validated against the
original TDAAPS in non-attenuative cases and against an anelastic solver.
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