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Abstract

This report outlines recent enhancements to the TDAAPS algorithm first described by
Symons et al., 2005. One of the primary additions to the code is the ability to specify
an attenuative media using standard linear fluid mechanisms to match reasonably
genera frequency versus loss curves, including common frequency versus loss curves
for the atmosphere and seawater. Other improvements that will be described are the
addition of improved numerical boundary conditions via various forms of Perfectly
Matched Layers, enhanced accuracy near high contrast media interfaces, and
improved physics options.
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1. INTRODUCTION

The Time-Domain Atmospheric Acoustic Suite, TDAAPS, was originaly described in Symons
et a., 2005. This suite of algorithms ssimulates 3-D linear acoustic wave propagation within a
moving media acoustic model. It was originally designed with atmospheric acoustics with wind
as the primary media of interest. However, it is not restricted to that domain. Any acoustic
application with a moving (or stationary) media where linear wave propagation is a good
approximation is applicable, including hydroacoustics.

This report will briefly summarize the main characteristics of the TDAAPS agorithm in the
introduction. In subsequent sections, it will describe major new features of the algorithm,
including the addition of attenuation, PML numerical boundaries, increased stability and
accuracy near high contrast material interfaces such as at the air-earth boundary, and enhanced
physics in the pressure updating equations.

This introduction is meant only to give the necessary background for TDAAPS that will be built
upon in later sections. For more detailed information on TDAAPS, please see the original
TDAAPS SAND report (Symons et a., 2005).

1.1. Non-Attenunative Moving Acoustic Equations

The original TDAAPS agorithm solves the non-attenuative, linearized, coupled set of first-order
differential equations for an inviscid fluid with the dependent variables perturbation pressure,

p(X,t) , and the three components of the perturbed material particle velocity vector,
W(X,t) . The ambient medium wind vector V(X) , the bulk modulus (%) , and density

p (%) are functions of 3-D position but not of time. Of course, the atmosphere, for example,
is actually changing as a function of time aswell and TDAAPS does have the ability to use time-
varying media. However, throughout this report, | will assume that the change in medium over
the duration of wave propagation is small and can be ignored, for smplicity.

The coupled velocity-pressure first-order system of equations with moving media are:

awi+1ap+ avi+ awi_lf

ot P ox Wjaxj Vjax]-_p ! )
op,  OW; , op_oe
ot ox, 'ox, ot

Using Einstein summation convention for repeated indices; f are the force sourcesand e
are the energy density sources corresponding to moment density sources. Note that the first two
terms on the lefthand sides of the equations are the terms associated with a fixed (stationary
media) acoustic wave propagation. The first two terms on the lefthand side of the pressure
equation (second equation of Equation 1) is derived from the pressure-volumetric strain
constitutive relationship.



1.2 Finite-Difference Formulation

TDAAPS utilizes a standard staggered grid in space and a double-time-step approach to solving
equation (1) on adiscrete, regular, rectangular grid. In thisvolume discretization the left, back,
top corner correspondsto X .., V..., Z,.., With grid points equally spaced in each dimension with
spacing d,, d, d,, respectively, and number of grid nodes of I, J, K (Figure 1). In the standard
staggered grid, the pressure nodes are located at the corners of a cell and the velocity
components are located on edge mid-pointsin order to allow centered finite differencing (Figure
2). All medium parameters (wind, bulk modulus, and density) are co-located with the pressure
nodes. Due to the fact that pressure and velocity component equations also contain those self-
same dependent variables, the equations would normally be solved viaimplicit time marching
methods. However, TDAAPS uses a double-time-step approach. In this approach there are
actually two sets of dependent variables. One set lives on even time step points and the other
lives on odd time step points. This allows explicit time stepping with centered time derivatives.
The cost is extra memory usage and, once numerical boundary conditions are imposed, a more
strict time step requirement. Time updating also uses a staggered time step approach, with
pressure updating on integer time steps and velocities updating on half-integer time steps.

Equation 1 is solved using 2™ order accurate temporal and 4™ order accurate spatia finite-
difference operators. By default standard Taylor series coefficients are used for the respective
operators, but the user may input operators of hisor her choice in order to optimize performance
In certain situations.

3D Uniformly-Spaced Rectangular Grid

A
+y X

+z min xmal
2 oy
gridpoint (xu ¥42) — /e o e e e 0000 00 o 0 o Ymin
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(% ¥ 21

Z,,, ~ ®ess e ssessse s \
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ridpoint . : “last”
cgordpi'nates: Vi =Yun t(G=-Dd,, j=123.J

z, =z, +(k-1d,, k=123.K
Figure 1: Spatial discretization of the numerical volume for TDAAPS
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2. ATTENUATION

2.1 Introduction

Attenuation refers to the loss of energy from the propagating wavefield into some other form of
energy, such as heat, molecular dissipation, or any irreversible process. Geometric spreading,
reflection, refraction, and wavefield scattering are already included in the general non-attenuative
equations given in Equation 1 and are not considered “attenuation” in this report. However, it
should be remarked that scattering of the wavefiedd on a smaller scale than is resolvable
numerically could be attempted to be modeled as an attenuation process in certain circumstances.

2.2 Mathematical Formulation

We borrow the idea of a standard linear solid from the seismological literature (e.g., Aki and
Richards, 2002) and implement a so-called standard linear fluid in order to simulate attenuation
in TDAAPS. We dtill retain the assumption of an inviscid fluid, but allow attenuation of the
compressional components. This report closely follows the notation and derivation of the
equations as described in Aldridge (in prep) for the full elastic standard linear solid system.

The physical idea of a standard linear solid/fluid is that of a spring and dashpot in series. When
one pulls on the system, there is an immediate response due to the spring, followed by a sower
relaxation due to the dashpot. Mathematically this can be represented as a delta function
followed by a one-sided decaying exponential, defining a single standard linear fluid mechanism
or rate-of-relaxation function. Adding together several standard linear fluid mechanisms, one

obtains the full attenuation model. To incorporate this idea, we generalize the pressure( P ) -
volumetric strain ( ¢ ) relationship (the first two terms on the lefthand side of the second
equation in Equation 1) to be a convolution of the strain tensor with time-dependent medium
parameters( K )

P(X,t)=—K(X,t)*e(X,t) (2

Where we define K according to the assumed functional form

R

K(%,t)=x(X)[8(t)= 2 a (%) w,(X)exp(~o, (X)) H (t)] 3

r=1
Where « isthebulk modulus at infinite frequency, §(t) isthedeltafunction,and H(t) is
the Heavyside step function. Thereare R rate-of-relaxation functionsin this attenuation
model. Each rate-of-relaxation function is defined by two parameters, a (%) and o, (X) ,

which are the amplitude scalar and relaxation frequency, respectively, for the mechanism. Note
that these two parameters can be functions of 3-D space.

A favorable aspect of the above equationsis that they can be relatively efficiently implemented
in atime-domain algorithm such as TDAAPS. To do this, first we plug Equation 3 into Equation
2 and then time-differentiate the resulting equation, giving

OP(X,t)
ot

ow,(%,t)

=—x(X) 0X
k

SREDIACRY @
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where p,(%,t) isamemory variable defined by

X 3 3 - ow,(X,t
pr(x1t):_ar(x)('0r(X)exp(_mr<x)t)H(t)% (5)
k
Differentiating the memory variable equation with respect to time, one obtains
o p,(X,t R _ . _ow(%.t
M‘Hﬂr(X) pr<x’t)+ar(x)wr(X)M:O ©6)
ot ox,

Comparing Equation 4 and the second line (pressure equation) of Equation 1, one notices that the
second term of equation 4 is the only term that needs added. In addition to that term, aset of R
partial differential equations, given by Equation 6, is augmented to the original system to give a
new set of linear, first-order partial differential equations called the vel ocity-memory-pressure
system of equations. To reiterate, the new set of equations are the R equations defined by
Equation 6, plus the modified form of Equation 1.

ow(X,t), 1 aP(x.t), ow(X,t) 1

ot Tpx ox TMRUTETHIRITE TR )
- 8 R - -
8Pé1(,t)+K(y() Wa(x «(%) Z: )aPix,t)zﬁeg;,t)

]
2.3 Numerical Implementation
Equations 6 and 7 represent the system of equations TDAAPS solves for an attenuative moving
acoustic inviscid fluid for linearized acoustic wave propagation. The discretization in space and
timeis precisely the same as for the non-attenuative case described in Section 1. The one
addition is that there will be 2*R 3-D memory variables. one set of R for even time stepsand a
second set of R for the odd time steps, just as the other dependent variables. The memory
variables are stored in the same locations as the pressure variables and are updated concurrently
with pressure. The attenuation model consistsof N, piece-wise homogeneous non-
overlapping regions that cover the entire 3-D model domain. Each 3-D pressure grid point in the
model hasanindex (0..N_,—1) that associatesit withoneof the N_ setsof R o, and

a, parameters.

In the following sections, we will document the finite-difference forms of the system of
equations given in Equations 6 and 7. First, however, we will non-dimensionalize the system of
equations,

2.3.1 Non-Dimensional Formulation
This derivation closely follows the formulations outlined in Aldridge and Haney (2008) for the
elastic system of equations and in Aldridge (in prep) for the acoustic equations. Define

characteristic units for sound speed and density as S, and S, , respectively. Then non-
dimensional sound speed and density are defined as

14



p(x,t)="1

Also, defining S, and S, astheunitsfor particle velocities and pressure, one can complete
the system of non-dimensional equations with an equation relating the four characteristic units.
In a stationary acoustic whole space in the far field the pressure from a point source will be
related to the radial particle velocity, w, via
P=pcw,
suggesting that the appropriate relationship among the four characteristic units should be
S,=S,S.S,, . With these definitions, the remaining independent and dependent variablesin
non-dimensional form are:

A (> _K(Szlt) A (= _VX(_)th) N _Vy(S(’lt) A (= _VZ(_)th)
K(X,t)= SpS§’VX(X’t)_ S, V(X t)= s, ,VL,(X,1)= s,
e W (X)L w (X)W (X)L P(Xt)
W, (%,t)= s, W (X, t)= WL (X,t)= s, , P(X%,t)= S,

Finally, we redefine the memory variables so that

A (o 1 -

p(X,t) o p(X,t)
This alows adlightly more computationally efficient form of the equations.

2.3.2 Finite-Difference Coefficients

The non-dimensionalized equations use the characteristic units, spatial node spacings for x, y and
zdimensions, d,,d ,d, ,respectively, andtimestep, d, , to definethe finite-difference
coefficients used in the numerical implementation. As stated in Section 1, we utilized fourth-
order accurate spatial derivatives and second order accurate temporal derivatives. For the

moving media acoustic equations, we require both staggered and non-staggered spatial
derivatives.

The staggered fourth-order accurate non-dimensional finite-difference coefficients are:
d d
pi = Scd_: Cinner ’ qi :Scait Couter
wheresubscript 1 is X,y, or z ,forming 6 coefficients. For Taylor Series approximates,
_9 _1
Cinner - 8 24
finite-difference coefficients we have
=S 2h, d =S 2h d
ri_ (o hi inner 1 Si_ (o hi
where, again, subscript i is X,y, or z ,forming an additional 6 coefficients. The Taylor

and  Cyue= . For the non-staggered fourth-order accurate non-dimensional

outer

Series approximates are  d; o = % _1_12
of dependent variables, we utilize a 4-point formulawith

and de= . Finaly, for 2-D centered interpolation
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1
dy_1=gp=a;_1=a;5= Z

2.3.3 X-Component of Particle Velocity

The non-dimensional finite-difference equations for the particle velocities are identical in the
attenuative and non-attenuative cases and are

3d

d, d, d,
(x+ Y Zo o )W(xi+2—,yj,zk,t|—2—t)

2

dy 3d, dey . d
<X+ ’yJ’Zk) rw (X+ Y Ziot— 2 ) Wx(Xi_2_1yJ1zkatI_2_t)]+
N 5d, d R 3d, d
WX+ 2 Yk t'_j)_WX(Xi_T YirZk tl_j)]}
. X d, d R d, d
_Vy<Xi+2_’yj’Zk) r [WX(XI+2_’yj+dY’Zk!tI_2_t> WX(Xi+2_!y] dy,zk,t|_2_t)]+

dx d d d
+Sy[WX(XI+?’y]+2dY’ Zk’t| _Et)_wx(xl-i_?i y,—2dy,Zk,t|—?t)]]

—\7Z(xl+g—X Y2, rz[v(7x(xi+;l y.,z+d tl—g—t)—wx(xl-ir%,yj,zk d, t,—g—t)]+
+5s,[W,( > Y.z +2d, 0t d2) 0 (X +d? Y z—2d, tl—%)]}

T Yy Bt M+t Y, 2]

—2\;X(xi+g—x,yj,zk)nioni a,W,(x+md,,y,+(n+ )d ,Z, 0t %)

—2\;X(X,4—O|—,yJ . Z,) 2 _Zo: amW,(x+md,,y, ,zk+(n+§)dz,t|—g—t)

q ﬁ)( dX!yj1Zkltl)+ls(xi+dxlyj’zk!tl_dt)
@(Xi+2_x1y“zk)

_ls(xi1yjizk’tl)_|s(xi’yjizk’tl d)}—i_qx

+|5(Xi+2dx’yj1Zk’tl_dt)_|s(xi_dx1yj’Zk’ |)_ (Xi_dx’yjizk’tl_dt)”

- d

+ ! f(x+==

) d, 2
p(xi+2_ Y ’Zk)

where the following definitions are for the shorthand notations

P(x+2d,,y,.2.t)

d
,yj,Zk ;t|_2_t)
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A

LN 1 R
p(Xi+2_’yj ; Zk)ZE[F)(Xi Y ,Zk)+p(xi+dxayj . Z,)]

l ri A
=Y, ,zk)zi[vx(xi Y z) V(X +dy YL 2 )]

X

R 1. .
Vy(xi+_ Y 7Zk):_[Vy(Xi Y ’Zk)+vy(xi+dx’ Yi 2]

2 2

. X 1. R

VZ(Xi+2_’yj1zk):§[vz<xi’yj1Zk)+vz<xi+dx’yj1zk)]

In addition, the spatial derivatives of the wind vectors

oV, d, _2d,S, ., R

X (Xi+2_’ Nl k)_dx [Vx(Xi+dx7yj’Zk)_vx(xi’yj1Zk)]

v, , d, dsS. . .

oy (xi+2—, ],zk)—ZtTy[vx(xierx,yj+dy,zk)+vx(xi,yj+dy,zk)
—V,(x+d,,y,—d,,z)-V,(x,y,—d,,z])]

ov, d

d S
(Xi+2_x ’yj 7Zk)zg[\?x(xi+dx1yj’Zk+dz)+\?x(xi 1yj ' Zk+dz>

_\/Ax(xi_'_dx’ yj ) Zk_dz>_VAx(Xi ' yj ’Zk_dz)]
Lastly, the x-component of the force source vector
dt)_ZdtSCf ( +dx . dt)
2 - Sp XXi 27yj’Zk’| 2
2.3.4 Y-Component of Particle Velocity

. d,
fx<Xi+?1yj 7Zk!tl_

The non-dimensional finite-difference equations for the particle velocities are identical in the
attenuative and non-attenuative cases and are
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d d, d, 3d,
W(Xlly] y Z, b+ 2) wy<xi’yj+2_72k’tl_2_)

d d,
(X dX’yj Zk’tl 2)]+

d d
W (X 2dX’yj Zk’tl 2t)]
d, d d,
2 ) W (Xl’yj Zk’tI 2

d, d,
r [ (X+dx’y1 Zk!tl 2 )

R d
—V, (X ’yj+2_y1zk)

d
+s,[W, (x+2d,,y,+=, Z.t — 2)

r [W (Xl’y] 3d Zk'tl )]+

R d
_Vy<xi’yj+2_yizk)

N 5d d R 34 q
5 x ’yﬁ—zy’Zwt'——zﬂ—wy(xi,yi—Ty,zk,t.——z‘ﬂ]
5 d R d d, g Q
_VZ(Xi,yj+2y ’Zk)[rZ[Wy(Xi ’yj+2y 'Zk+dz’t'_2_)_wy(xi'yj+2y 1 Zy zlt|_2 )]+

d
d d
V(\/y(xi ’yj+_yizk_2dz’tl_5t)]]

d
+s,[W, (X, Y+, z+2d,,t— 5

ov d d
_ﬁ(xu j+2y z.,1, Z_t)W (Xliyj_l_ .z,
av, d, & < 1 d,
aT(xi,ijrZ— r;on; a W, x+(n+2) y,+md,,z.t, 2—)
o\ L2 d,
_a%(xliy]—}_z_y Z Z amn X|7y+mdyizk+(n+ )dzitl 2)
m=0n=
1 .
- px P(Xl’y]+d Zk’ )+P(Xi’yj+dyizk’tl_dt)

. d
p(xiay|+2_y’zk)
_FA)(Xi!yjizk'tl)_ﬁ)(xi'yjizkltl d)}"‘Qx P(x,y;+2d,,z.t)

If)(Xi'yi"'Zd 7Zk’tl_dt)_|f)(xi7yj d,,z.t )= (Xiiyj_dyizkitl_dt)”

d d
+ 1 f (x,,yJ Y.z ,t—=t)

. 2
p(Xi ) yl+2_y’zk)
where the following definitions are for the shorthand notations
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. d 1

p(Xi’yj+2_y’ k)_E[ (XI’yJ’Zk)+p(XI’yJ+d )]

. d 1 .

Vx(xi7yj+2_y' k)_z[ (Xi’yjizk)+vx(xi’yj+dy1zk)]

1. .
_[Vy(xi ’yj’zk)+vy(xi ’ yj+dy’zk)]

. d
V(% yj+2—y,zk)=2

; d 1, ;
Vz(xi ' Yj+2_y ' Zk):_[vz(xi Yo Zk)+vz(xi ’yj+dy1zk)]

2

In addition, the spatial derivatives of the wind vectors

M (xy ot 2) =292 1y (%, y,+4,,20-9, (%, 2,)]

6y |112’k dy i1J)] y\ i )&k

ov d S, R
G—Xy(xi,y]+2—y,zk):ﬁ{vy(xgrdx,yj+dy,zk)+vy(xi+dx,yj,zk)

(X dX’yJ+d ) (X dX'yJ’Zk)}

ov d d,S. .
#(xi,yj-i-z—y,zk) 2d ——[V,(%,y,+d,,z+d,)+V,(x,y;,z+d,)

\fy(xi ! yj +dy' Zk_dz)_VAy(Xi ! yj ’ Zk_dz)}
Lastly, the y-component of the force source vector
. d, d,, 2d.S, d d,
fy(xi!yj+?’zk’tl_2) SP (Xl’yj Zk’tl 2)
2.3.5 Z-Component of Patrticle Velocity
The non-dimensional finite-difference equations for the particle velocities are identical in the
attenuative and non-attenuative cases and are
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d, d, d, 3d,
W, (%, Y 2t o5 !tl+2_):Wz(Xi M 7t|_2_)
. d, N d, d., d, d
—Vi(% ’Yj’zk+2_) rW,(x+d,, Y, It !tl_z_t)_wz(xi_dw Yir&tso ,t|_2_t)]+

. d, d. . d, .
+s,[W,(x+2d,, yj’zk—’_? !tI_E)_WZ(Xi_ZdX! yj"zk+? ==

R d, d, d , d
—V,(X,Y;, Zk+2_) ry[W,(xi, yj+dyizk+2_'tl_2_t)_wz<xi !yj_dylzk+2_ ,t|—2_t)]+
N d, d R d, d
+Sy[w2(xi ’yi+2dy1zk+?’tl_§)_wz(xiayj_Zdy1Zk+7,t|_?t)]
R d, 3d, d, d, d,
_vz(xi,yj,zk+2—) rz[wz(xi,yj,zk+2—,t,—2—)—wz(xi,yj,zk—z—,t,—z—)]+
R 5d, d R 3d, d
+SZ[WZ(Xi’yj’zk+7’tl_§)_wz(xi!yj’zk_T!tl_Et)]]
ov, d, di .
oz (Xi Y 1Zk+2_ 1tl_2_)Wz(Xi Y Zk+2_)
aAVz dz - > N 1 dt
_5y (Xi ’yj 1Zk+2_>mzzon;1amnwy(xi ’ yj+(n+§)dyizk+mdz'tl_2_)
ov, d, & 1 d,
T ox (X Y 7Zk+2_>n;0n;1amnwx(xi+<n+§)dx7yj 4yt mdz7t|_2_>
— l d {pX ﬁ XI7yj7Zk+d2’t|)+ﬁ(xl’yj’zk+dZ’t|_dt)
f)(xi1y|1zk+2_z)
_ls<xi ’yj’Zk’tI)_ﬁ)(Xi’yj 7Zk’t|_dt)]+qx p(xi 7ijzk+2dz’t|)
+|5(Xi lyjizk+2dzltl_dt)_|s(xi7yj7Zk_dzitl)_l5(xiiyj7Zk_dzitl_dt)”
. d d
+ 1 fz(Xi’yj’Zk+_Z’tl__t)

2 2

PIX\ ¥ 2t57)
where the following definitions are for the shorthand notations
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. d,, 1
p(Xi’yj’Zk+2 ):E[ (Xl’yj1zk)+p(xl’y]’zk+d )]

R d,, 1

Vx(xn)’jazk"'Z )—2[ v, (;, Yis Z,)+V, (X, Y z+d )]
. d,\ 1. "
Vy(xi’yj'Zk+2_)zz[vy(xi'yjizk)+vy(xi’yj’zk+dz)]

H

R d, R R
V,(x,Y, ,zk+2—)=§[vz(xi Y0 Z)HV, (%Y, Z+d,)]
In addition, the spatial derivatives of the wind vectors

ov, d,. 2d,S,

E(Xi’yj’zk-i_z )_dz [ (X|’yJ!Z +d ) (XHyJ’Zk)]

oV, d, S ;
W(xi,yj,zk+2—)=2‘Oly V,(x,y,+d,, z+d )+V,(x,y,+d,,z)
. Vz(xi’yj_d Zk+d ) (Xl’yj dy'zk”

ov, d,, d.S;,. R
W(xi,yj,zk+2—)=2th[vZ(xi+dx,yj 2, +d,)+V,(x+d, Y, 7 )

V,(%—d,.y;,z+d,)-V,(x—d,.y,,z]]
Lastly, the z-component of the force source vector

N d, d,, 2d,S, d, d,
fz<xiayj',zk+7at|_§) S, (Xi’yj’zk+?’tl_5>

2.3.6 Pressure
The pressure updating formula contains extra terms associated with memory variables compared
to the non-attenuative moving media case.
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(xl,y],zk,t+d) (Xl’yJ’Zk7 )
x(Xliy]!Zk)[rx[ (X|+dxiyj1Zk1t|)_p(xi_dxiyj!Zk’tl)]
+Sx[|5(xi+2dxlyjizk’ )—P A<X 2dx’yj'zk7t|)”
_\/Ay(xiyyjlzk)[ [ (X|1y+d Zki) (Xi7yj dy,zt )]
+s[ (%, y;+2d,,2,.t)- (xi,yJ 2d,,z,.t )]}
\?Z(Xi1yjizk)(rz[ (Xi!yj’zk+dz1tl) (Xi1yj’zk d,.t)]
+s,[P(x%, Y z+2d,.t)- P(x,y;,z-2d,.t)]

(XY, 2] P XSy 2t (X ,  8
—K Xi’yj’zk px Wx Xi+?,y]-,zk, I+E +Wx Xﬁ-?,yj,zk, |
o d, doy d, d
_Wx<xi_?’yj :Zk’t|+§)_wx(xi_7’yj'azk’tl_ft)l
R 3d, d,, . 3d, d,
+0x Wx<Xi+T’y]’1Zk’tl+?)+wx<xi+ 2 1Yj7zk’t|_?)
R 3d, d., . 3d, d,
_Wx(xi_T’yj 1Zk’t|+§)—Wx(Xi—7 , yj’zk’tl_?)
R d d, dy d,
Py Wy(xi7yj 2 v L t+2)+W (Xi!yj+71zk1tl_3)
d d., . d d
(Xl’yj Zk’t+2) Wy(Xi1yj_7y’Zk7tI_?t)l
3d d, 3d, d,
+q w (Xl'y] Zk7t+2)+w (Xl’yj lzkltl_E)
N d d R 3d d
_Wy(xi'yj_Ty1Zk!tl+Et)_Wy(Xi1yj_7yizk'tl_5t)l
A dZ d'[ ~ dZ t
+p,| W, (x;, Y !Zk+? ’t|+?)+Wz(Xi Yo Zk"’?’ﬁ_f)
d, .d d,. d
_Wz<xi’yj!Zk_?’tl-i_Et)_Wz(Xi!yj ,Zk—?,tl—ft)]
A~ ( dZ t dt) ~ ( 3dZ t dt)
+qz WZ Xi’yj’zk+7’ I+E +Wz Xi'yj’zk+7’ I_E
R 3d, d,, 3d, d,
_WZ(Xi’yj ’Zk_T’tl-i_?)_Wz(xi’yj7Zk_7’tl_?>

—R (X, Y2 Z d,o [B,(X,Y,.Z.t+d)+B.(X. Y, Z.t)]
+e(x, Y.z, t+d) é(x,Y;,z.t)
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Since all material parameters including wind vector components are on the same raster as
pressure, no averaging of these quantitiesis required.

2.3.7 Memory Variables

th

There are R memory variable equations, each with the sameform. The r~ memory variable

equation is
( fod)= 220 g ()
r X|1 1Z ) r Xi’ -,Z f
p YirZaol 2+dt ©, p YiiZi»t
2+d,w, P W X+ ’yJ’Zk’t+2>+W( 1yj;Zk|tI 2)
dx d dx d
_WX(Xi_E’yj’zk’tl-’_é)_wx(xi_?yyj,Zk,t|—§t)l
N 3d d 3dx dt
Oy W, (X +— ,y,,zk,t+2)+w( T’Y;,Zk,tl—?)
3dx d 3dx d
‘Wx(xi—T’yj'Zk,t|+§)—Wx(xi—7,y,-,zk,tl—j)]
d, d, d, d,
py{vv(x Vit 2 t+2)+vv(x Ytz 2)

—W,(x,y,—= d Yozt + 2) W, (X, y,— d Lozt — i‘)l
+a, | W, (%, y,+—2 3d Z, t+i)+wy(xi,yj+37%,zk,t,—%)
—vi, (X, Y~ 3dy L Z b+ 2) Wy(xi,yj—%dy,zk,h—%)l
+p,|W, (X, ,yj,Zk+%,tl+%)+WZ(Xi Y ,zk+%,tl—%)

—Wz(xi,yj,zk—%,tﬁr%)—wz(xi,yj,zk—%,tl—%)l

3d, d 3d, d

*0, WZ(Xi’yj’Zk+ 2 ’tl+j)+wz(xi7yj,Zk+T,t|_Et)
3d, d 3d, d

_WZ(Xi’yi'Zk_ 5 't|+§t)_wz(xily]‘1Zk_?|t|_5t)]

2.3.8 Numerical Efficiency

Cache coherency isimportant for computational efficiency. Sinceeach (x;, Yi ,Z,) grid point
isassociated withoneof N attenuation models, theR w, and a, coefficients associated

with that grid point must be efficiently loaded in order to avoid double index dereferencing,
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which with C/C++ isrelatively slow. To maximize cache efficiency, the pressure and memory
variable updating is done in stages. In the first stage the parameters for the first attenuation

mechanism, o, and a, ,arecopiedtoatemporary 1-D array for al x; for afixed
Y;,Z, - Thenthe non-attenuative portions of the pressure updating equations are computed
concurrently with updating the first memory variable, p, , which isthen added to the non-
attenuative portion of the pressure. Finally, each remaining R-1 mechanismsis loaded
sequentialy into the 1-D array, the corresponding memory variable updated, and added to the

pressure. In tests this method provided a 2.5 x speedup over updating in the order that the
equations as written may suggest.
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3. ABSORBING BOUNDARY CONDITIONS

3.1 Introduction

It ismore efficient in most cases to limit the simulation domain spatially for both computational
and practical reasons. However, if the computational domain were ssimply truncated at the edges
of spatial domain of interest, strong reflections of waves would occur that would not be naturally
present. Thiswill greatly contaminate the simulations, especialy in later time, and are
undesirable. To mitigate against these domain boundary reflections, absorbing boundary
conditions (ABC) are established, which as their name implies, greatly reduce the incoming and
reflected outgoing waves impinging on adomain boundary. Several different types of absorbing
boundary conditions have been proposed, with one of the simplest being the so-called wavefied
taper, or sponge, boundary conditions (Cerjan et al., 1985). Although ssmple to implement, these
boundary conditions typically require relatively thick zones around the domain boundaries to be
effective and have poor grazing incidence performance. Another popular absorbing boundary
condition is the perfectly matched layer (PML) boundary condition introduced by Beringer
(1994). These boundary conditions in theory are perfect (meaning no reflection at the interface
between the interior and absorbing boundary condition layer), but in practice do have a small
reflection at thisinterface. The PML alows much thinner ABC layer thicknesses and much
smaller overall reflection amplitudes relative to the wavefield taper zones. Again, however,
PMLs perform poorly for grazing incidence waves on the boundary layer. To combat this, a
variant of the PML, called the convolutional PML (CPML) was introduced (Komatitsch and
Martin, 2007). Although this does perform better at grazing incidence, it only delays the poor
performance to somewhat larger angles of incidence, often producing interface waves that
remain trapped in the ABC layer and which emanate energy back into the interior at near-grazing
incidence. A second problem, with both PMLs and CPMLSs, isthat they are known to be
unstable in certain anisotropic media. One solution to both of the above issuesis the so-called
multiple PML (MPML) (Meza-Fajardo and Papageorgiou, 2008). Both PMLs and CPMLs only
damp the wavefield in the direction perpendicular to domain boundary and do not damp the
wavefield at all for motion parallel to the boundary. Thisisactually what allows, in theory, the
perfect reflectionless interface between the interior and PML layer. However, it also allows for
Interface waves to devel op that propagate parallel to the boundary and build up instead of
attenuate. The MPML introduces a small attenuation for motion parallel to the boundary called
the cross-factor. Use of the cross-factor does destroy the “ perfectness’ of the interior-PML
interface, but it does greatly reduce, and in many cases eliminate, interface waves and
instabilities caused by anisotropy. Typically cross-factors of 1-5% of the the perpendicular
absorption is sufficient to practically eliminate these undesirable effects. The original PML isa
specia case of aCPML, which itself isa special case of an MPML. Thus, in TDAAPS the
MPML isthe only PML-type ABC that isimplemented internally, with requests for a PML or
CPML just setting the appropriate parameters of the MPML to produce the desired PML-type.
This does increase computational effort but for a CPML it amounts to about 5% slowdown
relative to using special code for aCPML only.

3.2 MPML Implementation

Similar to physical attenuation described in Chapter 2, implementation of an MPML utilizes
memory variables. However, unlike physical attenuation, an MPML applies memory variables
in all dependent variables update equations (pressure and the three components of velocity).
There are atotal of 15 MPML memory variables and equations that augment the system
provided in Chapter 2 that must be solved in the ABC layers. One needs at least one MPML
memory variable for each derivative direction per update variable, which accounts for 9 of the
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memory variables for the updates of the 3 components of velocity. For the pressure updating,
however, there are 6 memory variables. Thisis due to the fact that physical attenuation only
depends on the divergence of the velocity vector; thus, 3 memory variables are needed just for
the 3 divergence terms. The remainder of the pressure updating equations also have spatial
derivatives and thus requires 3 separate memory variables.

3.2.1 MPML Parameters

The MPML implemented in TDAAPS is parameterized by 4 factors: the MPML width ( w ),
the theoretical reflection percentage desired at the domain boundary ( R ), a“cutoff” frequency
( o ), andthecross-factor ( x ). The MPML width is the thickness of the ABC layer from
each domain boundary in nodes, with 10 being atypical number. The theoretical reflection
percentage is not directly linked to the actual reflection coefficient, since making this too small,
can actually increase reflections in practice due to there being too sharp an onset to the layer at
theinterior-PML interface. The best value for this varies somewhat, but it tends not to be overly
sensitive to this parameter, but a value of 0.001% tends to work well in many instances. The
“cutoff” frequency isreally a cutoff between behaving more like an original PML above this
frequency and tapering to less attenuation below this frequency (introduced in the CPML and has
avaueof OforapurePML). Avaueof nf __ where f _ isnearthe peak of the
spectrum expected in the far field is recommended. Finally, the MPML cross-factor, which as
described above gives the fractional amount of attenuation in the direction parallel to the
boundary relative to perpendicular to it. A pure CPML and PML have the cross-factor as O, but
typically values of 0.01 to 0.05 work in most instances. Internally the above parameters are
converted to values that are actually used in the algorithm. The PML attenuation factor, o ,is
defined as

_ —15log(R)V,p,
B wd,
where v, isthe maximum wavespeed in the current model and d,, isthe node spacing.
Another parameter that affects performance of al PMLs s the shape of the taper that goes from
the PML-interior interface to the domain boundary. In TDAAPS, a quadratic that varies from 0
at the PML-interior interfaceto o, at thedomain boundary isused. For CPMLs, one also
needs ataper functionfor o . In TDAAPS, we use alinear function that actually has a value
of o attheinterior-PML interface and goesto O at the domain boundary. The cross-factor is
constant throughout the PML layer. Once these parameters are given two functions are defined
that simplify computations

bL(x,yj,z)=exp(—2dt(c(x;,y;, z)+a(x,y;, z)))
(b(x,y;,2)-1)

aL(XHy"Z):G(Xi’y"Z) : :

]' “ J “ (O(Xi’yj7Zk>+a(xilyj!zk')) o

for perpendicular attenuation. For the MPML, when  isnon-zero, the parallel directions are
defined by

bl|(x;, Yi, z)=exp(—2ydto(x, Yis z)

?”(_Xi,yj' ,2)=bll(x,y;,z)-1 _ _ _
It is important to note that these functions of space must be defined, as appropriate, for whole
and half-integer locations. Also, within edge and corner layers, two or three PML layers are
combined. For example, at an X-Y edge, the PML layer for apurely X layer is combined with a
purely Y layer.

max
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The memory variable updating equations are the same in each case. For memory variable g,
where r isoneof the 15 memory variables

gr(xi,yj' ,Zk,t|+dt):b(xi ' Y ,Zk)gr(xi,y; ) Zk,t|)+a(xi,yj ka)Dr(Xi;yj1Zk1tl+dt/2)
:G(gr , Dr)
where b and a areparametersof the MPML defined above as either the parallel or
perpendicular variety, and are functions of spaceonly, and D, isaterm that depends on asum
of termsthat contain a derivative of space in acertain direction.

The following are rearrangements of the equations given in Chapter 2 with the addition of the
MPML. Note that for smplicity the source terms are not included in the equations below, but
are added in the same manner as given in Chapter 2, i.e., they are not affected by the MPML.
However, in practice, source terms should not be placed within the PML layer. All terms have
the same definitions as given in Chapter 2 if not provided here.

3.2.2 X-Component of Particle Velocity
d, 3d, d, d, d
DVXX (X+ ’yj’zk) [W (X+ ’yJ’Zk’tl 2) Wx(xi_?'yiizkltl_j)]*_

. 5d, dt . 3d, d,
+Sx[Wx(Xi+T Y Zk 7t|_5>_WX(Xi_77yj ’Zk’tl_i)]

ov,  d, d d,
T ox (Xi+2_7yjle'tI_Z_t)Wx<Xi+2_’yjizk)
1 N N
- dx {px P(Xi+dx’yj’Zk’tl)+P(Xi+dx’yj’zk’tl_dt)
f)(xi"_z_’yl’zk)

P(%.Y; 2.t)—P(x,y,z,t,—d)+q,[P(x+2d,.y;, 2.t
+P(Xi+2dx1yj’Zk1tl_dt)_P(Xi_dx'yj1zk! I)_P<Xi_dx’yj1Zk1tl_dt)”

d, d
t _Wx(xi+7!yj_dyizk!tl_j)]-'-

. d, d, d
D :_Vy(xi+71yjizk) ry[wx(xi+77yj+dyizk7tl_?)

vxy

N d, ‘ d, d,
+5, [V, (X + +> -, y;+2d, zk,tl—E)—Wx(xi+—,yj—2dy,zk,t|—5)]
~ 1 0
2\; (x+d—,yj, ) D AW, x+mdx,y+(n+ )d,, z.t, g)
m=0n=-1
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. d, N d, d N d, d
Dvxz:_vz<xi+?’yj 1Zk) rz[Wx(Xi+?’yj ’Zk+dz’tl_3t)_wx(xi+?’yj 1Zk_dz’tl_§t)]+

o d d. . d d,
+SZ[WX( X _,y],Zk+2dz,t| 2) W( _’y]1zk 2dz’tl 2)]
ov,,  d, L 1 d
= (Xi+2_’yj’zk)mzz“0n=_ aW,(x+md,,y;,z, +(n+2)d t|—2—‘)

o= G ( G s Do)
9uy=C(Guy s Duy)
9,.=G(9,,.D,,)
d, d. . d,
(X+ ’yj7zk!t+2 )=w (Xi+2_!yj’zk1tl_
3.2.3 Y-Component of Particle Velocity

t
2—)+ Dot Dug+ Duet Guoct Guy+ G

d d,
W(X dx’yj Zkitl 2)]+

., d d
Dvyx:_vx(xi ’yj+7yizk)[rx[wy(xi+dx' Yj+7y’zk't|_ 2)

d

-]

d
+s,[W, (x+2d,,y,+=2,7,t— >

d d
?t)—wy(xi—de, y].Jr?y,zk t—

(xl,y +d,,z, .t )+P(x|,yj+d ,Z,,t,—d,)
6(Xi!yl+2_yizk>

_IS(Xi’yjizk’tl)_f)<xi’yjizk7tl d)]"‘Qx (X y;+2d,,z,t )
P(x 7yj+2dyizk!tl_dt)_P(Xi Yi—d, .zt - ( dyizkltl_dt)”
R d d d, d, d,
Dvyz:_vz<xi’yj+?yizk) r [ (Xl’yj y Zk+dz1tl 2) (XI’yJ 2 dZ’t| 2)]

N d d., d d
+5,[W, (x,y,+=, z+2d t,—?t)—wy(xi,yj+7y,zk—2dz,tl_?t)]

d,

d 1 0
——L(x,y,+5.2) > Z a_ W, (x, ,yj+mdy,zk+(n+£)dz,t|—2—

2 m=0 n——1 2

)
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Jyy=G(0yy:Dyy)

i d, d d

A 3d
2—t)=wy(xi , yj+2—y L Zo 1 —2—‘)+ Dyt Duyyt Duyet Gupet Guyy + Ouye

3.2.4 Z-Component of Particle Velocity

R d, d, d d, d

szx:_Vx(XnYJ 'Zk+7) rx[wz<xi+dx’yj 'Zk+7!tl_j)_wz(xi_dx'yj’Zk+E'tl_Et)]+
~ dZ dt ~ dZ dt
+SX[WZ(Xi+2dX!yj’Zk+7’tl_3)_wz(xi_2dx1yj’Zk+?’tl_3)]
oV, d, < A 1 d
_W(xi,y].,zk+2—)mz:‘6nglamwx(xi+(n+§)dx,yj,zk+mdz,t,—2—t)

d, d, d d, d

szy:_vy(xi!yjizk-’_?) ry[wz(xi!yj+dyizk+?ltl_?t)_wz(xi’yj_dyizk+31tl_5t):|+

~ dZ dt ~ dZ dt
+5,[W, (X, yj+2dy,zk+7 ,tl—?)—wz(xi , yj—2dy,zk+7 ,tl—E)]

oV, d, & < 1
——2(x;, Y, szrZ—)mZ::on;larmwy(xi , y].+(n+§)dy, z.+md, .t

dt
oy _)

2

A dz N 3dz d N dZ d

szz:—VZ(Xiiyj 1Zk+7) rZ[WZ(Xi ,yj,zk‘}‘T’tl—Et)—Wz(Xi’yj 7Zk_71t|_?t)]+
0 5d, d,, 3d, d
+SZ[WZ(Xi’yj’Zk+71tl_§)_wz(xiayjazk_T,tI_?t)]]

ov, d,
T35 (% ’yj’Zk+2_'tI_
1 {
_A dz [px
p(x,, 7Zk+2_)

_IS(Xi’yj ’Zk’t|)_|5(xi,yj’Zk’t|_dt)}+qx IS(Xi 1Y .z +2d,.t))
+P(x;, Yi .z+2d,,t,—d,)- P(Xiiyj ,z—d,,t)—P(x 'yj"zk_dz’tl_dt)”’
9u=G (G Du)
94=G(9uy: Dy
9..=G(0,,,D,)

dz dt
W2<Xi y yJ 'Zk+2_ ,t|+2_
3.2.5 Physical Memory Variables

The physical memory variables (akin to Section 2.3.7) are changed within an MPML.

d d,
2—t)vvz(xi Y zk+2—)

IE)(Xi ’yj’Zk+dZ’t|)+ IE)(Xi Y ’Zk+dz1tl_dt)

d,  3d,
):Wz(xi , yj 1 Zk+2_ 1t|_2_)+ szx+ szy+ szz+gvzx+gvzy+gvzz
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A~

N d, d, d, d,
Dmx: Py Wx(xi+?’ yj v Zy 1tl+?)+wx(xi+?1y]”zk !tI_E)

~ ( dx t dt) A ( dx t dt)
W (%= Y 2ot )W (-5 Zot =S
< d, 3d, d
+0, | W, ( +T’yj v L t+2)+W( T1yj"zk1t|_7t>
N 3d, d,, . 3d, d,
_Wx(xi_77YJ’Zk’tl"'E)_Wx(Xi_ 2 ’yj7zk’t|_?)
d d, d d
D=0y W, (X, y;+ y VZ b+ 2)+W (xi,yj+?y,zk,t|—5‘)
d d, d d
0,3~ Bt B0, 0y, B - )|
3d d, 3dy d,
+, |V, (X, Y+ > zk,t+2)+w(xi,yj+7,zk,t|—?)
3d d, 3d d
0,3, 300t )y, 2, )
d, d, . d, d,
=P, W (XHyJ!Zk ) 1tl+?)+wz<xi’yj’Zk+?’tl_?)
R d, d . d, d
_Wz(xi’yj’Zk_?’tl_{_it)_wz(xi’yj1zk_7’tl_?t)l
~ 4 dt ~ 3dZ dt
+d, Wz(xny]‘ ’Zk+7 1t|+5)+Wz(Xi ’ypzk"‘T’tl_E)
d, d 3d, d
_Wz(xi!yj’Zk_7'tl+5t)_wz(xi’yj1zk_7’tl_5t)]
Ir=G (s Dimy)
Iy=G (Gmy+ Dry)
9=G(0 D)
2—d, o,
pr(XliyJ’Zk’t-i_d) 2+dt rpr()(i7yj1zk1tl)
__2a D, +D,,+D,, 49+ 9+ Ol
2+dtoorl mx Ty T e S T Sy T S

3.2.6 Pressure
Dpx:_\fx(xi 1Y Zk){rx[P(Xi"‘dx: Yi»Zk )= P(x—d,, Yi ' Z )]

+Sx[|5(xi+2dx’yj' Z,t)—P(x—2d,, Yi 1Zk1t|)ﬂ‘
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Dpy:_\iy(xliyjizk>{ [A<X|’yj+dyizk7tl)_A(Xi’yj dy.zt )]
+s,[P (x,,yj+2d .z, t)—P(x,y,—2d,,z,t )]}
Dpz:_\?z(xhyjizk)[ JAP (Xi1yjlzk+dz1tl) (Xi'yjizk d,.t)]
+Sz[|s(xi!yj1Zk+2dz’tl)_|s(xi1yj!Zk_2dz’tl)]]

Ip=G(Gp: Do)

gpy:G(gpy’Dpy)

9,.=G(0p: Dy,)

(xl,y],zk,t-i-d) (x,,yj,zk, )+D,+D, +D,
—R(%,Y,+2)[ Dyt Dy # Dyt Gt Gyt O |+ 9t 9y + 9

R
A 1 N N
—Kk(x, 1yj'7zk)z Edtmr[ B, (X, !yj’zk1t|+dt>+ B, (X 7yj’zk1tl)]
=1
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3.3 Performance
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Figure 3: Comparison of Sponge and CPML absorbing boundary conditions for the X-
component of particle velocity.
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Figure 4: Comparison of Sponge and CPML for Z-component of
particle velocity.



A vertical force source with a100 Hz Ricker source-time-function was placed at the center of the
grid and recorded 10 m below and offset 15 min x for the sponge-MPML comparison. The
comparison of the X, and Z particle velocities and pressure are shown in Figures 3-5. The Y-
component is not shown due to the fact that along this recording plane, no Y particle velocity
will be theoretically produced. As can be observed, the initial portion of the pulseisvirtually
identical between the two ABC conditions. However, discrepancies emergein later portions of
the pulse. Also, notice the continued fluctuations following the main pulse in the sponge case;

e 101

—— Sponge | |
— CPML

4,

Pressure (Pa)

0 0.01 002 003 004 005 006 007 0.08 0.09
time (s)
Figure 5: Comparison of Sponge and CPML for pressure.
these are reflections from the domain boundaries that we want to eliminate. The MPML has no
noticeable deviations from zero following the main pulse, which is the correct, desirable result.
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0.3293

Figure 6: Demonstration of CPML performance
in a homogeneous model on the XZ plane for
pressure.
The absolute MPML performance example shows a snapshot of the pressure wavefield in the XZ
plane at atime where the primary pulseisinteracting with the MPML boundary zone (Figure 6).
Note the very effective absorption of the wavefield at the boundary and little to no noticeable
reflection back into the domain. The maximum outgoing amplitude impinging on the MPML
zoneis ~1e-4 Pa, whereas the maximum amplitude reflected back into the interior is~1e-8 Pa,
indicating areflection coefficient on the order of 0.01%. Thisisgreater than the theoretical
reflection coefficient, but is still indicative of a superior absorbing boundary condition.
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4. PHYSICS IMPROVEMENTS

4.1 Introduction

TDAAPS was originally designed for atmospheric acoustic modeling and, as such, includes
some assumptions that are generally true in the atmosphere but may not be true in some other
fluid media. Ostashev et a. (2005) derive the acoustic equations in full and also with several
simplifying assumptions that are generally true in the atmosphere. The assumptions that
TDAAPSmakesisthat 1) V-v=0 ,i.e, thefluidisincompressible,and2) V P,=0 ,i.e,
the spatial variation in the ambient medium pressure is small enough for acoustic wave
propagation as to be negligible. The latter assumption definitely precludes computation of very
long period atmospheric gravity waves, but TDAAPS also ignores temporal variations in density,
which would be important for these types of waves aswell. However, there may be instances,
even in the atmosphere, especially where gradients in wind may be strong, that these terms may
be important enough to retain. As such, acompiletimeflag
(-DUSE_FULL_PRESSURE_UPDATING=1) isavailable that will use al thefirst-order (linear)
terms in the moving media acoustic velocity-pressure system of equations. These additional
terms only alter the pressure updating equations and, when used, add about 20% to the
computation time. The default is to use the above two assumptions that apply most commonly in
the atmosphere.

4.2 Theory

Ostashev et a. (2005) derive the moving acoustic equations in full and, thus, the derivation is not
repeated here. The velocity updating equations remain as stated in Chapter 1; only the pressure
updating equations are altered and are given by

op oV, oW, oP, op _oe

ot TYPax T ax, TWMax, TVox, ot
Where vy istheratio of specific heats at constant pressure to constant volume. Note the
symmetry in theambient ( v, and P, ) and perturbation( w, and p )terms. However,
it would be desirable to eliminate P, from the above equations and this can accomplished
using the assumption that the atmosphere (or other fluid medium) isin quasi-equilibrium among
the ambient medium parameters. Thus, the gradient in ambient pressure P, can be rewritten
in terms of gradients of the ambient wind. Using this assumption the above equation becomes

9D oM (W, OV, 0D _0€

ot Y Pax T ax PYigx, VX, T at

This latter equation forms the basis for the numerical implementation in the following section.

4.3 Implementation
When all first-order termsin the moving acoustic equations are included, gradients of the
ambient medium wind vectors are required for the pressure updating equations, similar to how
they are used in the velocity updating equations. The following equations will redefine the

D, . D, ,and D, equationsusedin Section 3.2.6 toinclude all the linear terms. The

remainder of the termsin Section 3.2.6 remain unchanged. Recall that within the interior of the
domain, where no PML-type ABCisused, al the g, termsare0.

35



4.3.1 Pressure Updating Including All Linear Terms
Dpx:_\fx(xi Y Zk){rx[ls(xi"‘dx’ YirZg ) IS(Xi_dX7yj .z )]
+s,[ IS(Xﬁ‘de’ Y2k ’tl)_ ls<Xi_2dx1 YiiZk 1t|)H‘
—yPO Yzt )6 V(% +d,, v, 2) -V, (6 —d,. Y, 2)]]

_ _ +p(xilyj1_Zk_)Bx(Xi!yj1Zkltl) _
where vy istheratio of the specific heats at constant pressure to constant volume and is 1.4 for
air. This medium parameter is currently constant throughout the computational domain, but

could be upgraded to be position dependent in afuture version. ¢, arethe 2™ order accurate
coefficients for the gradient in the wind components

d,
C_SCd—

Theterm B, is
Bx(Xi’yj1zk’tl):{\/\_/x(xi’yj1Zk!tl){cx[\?x(xi+dx1yj’Zk)_\ix<xi_dx’yj’zk)]}
+V\_/y(xi7yj!Zk'tl)[cx[\?y(xi-i_dxlyjizk)_\?y(xi_dx’yjizk)]}

+Wz(xiayjazk,tl){cxwz(xi"‘dxayj"Zk)_\iz<xi_dx’)’j1Zk>]}}\7x(xiayjazk)
where
W (X, Y, 2.t )=1/4W,(x+d,/2,y,, 2.t +d/2)+W,(x+d,/2,y,,2,t,—d/2)
+W, (% —d,/2,Y,, 2,4 +d/2)+W,(x—d,/2,y;,2,,t,—d,/2),
W, (XY, 2, t) =14V, (x,y,+d,/2,2,,t+d/2)+W, (%, y;+d,/2,7,t,—d/2)
+wW,(x,y,—d,/2, zk,t+d/2)+w (x,y;—d,/2,z,t,—d/2)
W, (X, Y. 2. ty)= 1/4W(x,,yj,zk+d /2t+d/2)+W(x,,yJ,zk+d/2t| d,/2)
+W, (%, ¥, 2= d, /2, +d/2)+W, (X, y; 2 —d,/2,t—d/2)]
Theremainingterms D and D, are
Dpyz_VAy(XuyJaZk)[r[ (Xuy|+d  Z, ) - A<Xi’yj dy,z,t)]
+s,[P(x,y;+2d,,2,t)-P(x,y,—2d,,2,t )]}
—yP(x.y;,z.t) ¢, [V, (x,y;+d,,2)-V y(xi,yj d,.z)]]
+p(xi’yj’zk)By(Xiiyj’Zk’tl)
D, V(Xl7yjizk)[ AP (Xi!yj’Zk+dz!tl)_ls(xi1yj!Zk_dZ’tl)]
+s,[P(x, Y, z+2d,,t)-P(x,y;,z—2d,.t)]
Yﬁ)(xuyjizk’tl){c[ (Xuy]’zk"'d) (Xuy]!Zk dz)”

+p(X,,yJ,Zk) (X|’y11zk’ )
with ¢, and c, similarly definedas c, above and

By(xi’yj1Zk’tl):{V\_/x(Xi1yj’Zk!tl){cy[\?x(xliyj—i_d z,)—V A(Xi’yj_dwzk)]}
+V\7y(xi 1yj !Zk1tl){cy[\iy(xi!yj+d ) (Xl1yj d )]}
+V\_/z(xi’yj’Zk’tl){cy[\?z(xi’yj-i_dwz) (Xl’yj d )]} (Xl’yj’zk)
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B,(x;, Yi 1Z|_< ’t|):{Wx(Xi Y& !tl){cz[\?x(xi 1Y ’Zk+dz>_\7x(xi Y ,z.—d, )]}
j_Wy(Xi Y4t ){Czwy(xi Y4t dz)_VAy(Xi v Yio Zk_dz)]}
+W,(x, Yio Zk!tl){cz[\?z(xi Y ’Zk+dz)_\72(xi Yio Zk_dz)m'\iz(xi ' Yio Zk)
with other terms as defined above.

4.4 Example

An example of the effect of the extra physics terms for arealistic atmospheric model is shownin
Figure 7. Thisexampleisfrom amodel with complex topography and 3-D variations in sound
speed, density, and wind. On the large scale, there islittle to no discernible difference between
the traces when using or neglecting the extra physics terms. However, the inset shows a 10x
enlargement of the trailing end of the primary pulse and its coda. Note the subtle differences are
on the order of ~1% of the peak amplitude of the primary pulse.

4.5 Stability

The numerical stability of the original and augmented system of equations (with or without
attenuation) is partially determined by the accuracy of the underlying ambient medium
parameters. Implicit in the equations given throughout this document is that the ambient
medium itself obeys the same physical and mathematical laws that are used to derive the acoustic
equations. This, along with the assumption of quasi-equilibrium in the ambient medium, in turn
implies a certain relationship exists among wind vectors and their gradients. If thisisnot true,
then this disequilibrium may manifest itself as“sources’ within the domain that will grow
continually with time. Even very small disequilibria could eventually grow to large enough
magnitude to make simulation results unusable given enough time. In practice, these
disequilibria points arise most often within the atmosphere right above the topography. These
are indeed the areas that would be suspected to have the highest likelihood of error either directly
due to codes that compute ambient media states or introduced during interpolation of those
models onto the TDAAPS grid. Wind gradients are also large near the topographic surface,
which also increases the likelihood for error. The terms added in this chapter are relatively small
except in areas with large wind gradients, such as near the surface. Indeed, when all linear terms
are included, there tends to be fewer and slower growing disequilibria points than when they are
not used. However, even using the full updating equation for pressure does not eliminate this
problem completely.
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Another tactic that is used to mitigate against disequilibria pointsisto ensure that nodes right
next to topography do not smear wind gradients into regions, such as the solid earth, where the
wind and wind gradients should be zero. The finite-difference equations average (either
arithmetically or harmonically) medium parameters for equations that do not directly reside at
the storage location for the parameters they are differencing or averaging. TDAAPS will force
wind gradients to be zero for updating points whose harmonically averaged density is greater
than 500/S, . Obviously, this was designed for the atmosphere but could be altered to apply
to any fluid where there is areasonably great density contrast, but as the density contrast reduces
it is expected that the amount of disequilibrium would decrease and so become less of an issue.

It should be noted that TDAAPS employs the “ order-switching” formalism introduced in Preston
et a. (2008) that reduces the finite-difference order from 4t to 2 order in space for nodes
adjacent to high contrast interfaces such as occurs at the air-earth interface. Thisisrequired for
stability and for accuracy.

Finally, when attenuation is used in the model, it will mitigate against these disequilibria
instabilities since it naturally attenuates these numerically growing “sources.” How much
attenuation may be necessary to eliminate these instabilities will depend on the wind gradient
near the topography and it may in some circumstances be completely eliminated by the actual
attenuation in the medium. In other instances, however, unrealistically large attenuation may be
required to eliminate these instabilities and other methods may need to be explored to fully
eliminate this problem.
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Figure 7: Effects of using all the first order terms in a realistic atmospheric model.
"Standard" refers to the usual method of neglecting terms, whereas "added terms"
refers to the inclusion of all first order terms. The right inset shows a 10x enlargement
of the tail end of the primary pulse and coda.
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5. DETERMINING ATTENUATION PARAMETERS

5.1 Introduction
As mentioned in Chapter 2, there are 2*R parameters that must be given in order to definean
attenuation model: R a, amplitudescalarssand R o, decay frequencies. This chapter shows

how one determines these parameters given aloss versus frequency curve. Thiswill be
demonstrated for atypical atmospheric acoustic loss function and for seawater.

5.2 Theory

The definition of an attenuation mechanism is provided in Section 2.2. However, how do these
attenuation mechanisms defined in terms of acoustic moduli relate to loss versus frequency?
Aldridge (in prep) also derives the loss versus frequency given a standard linear solid that we can
utilize to obtain acoustic loss versus frequency. First definetwo functionsin the frequency
domain

R a
Alfl=) ————
(f) Zl 1+ w/o,)?
5oa(o/o)
B(f A\
(f) ;114—(00/00,)2
Then the attenuation function is defined as

o(f)=e J¢<1—A<f)>2+s<f>2—<1—A<f>>
¢ 2[(1-A(f))+B(f)]
where c, isthe phase speed at infinitefrequency ( c,=+v«k/p ). Theunitsare 1/length,

which typically, with the sound speed given as m/s, will be 1/m. Thisaso implies that the phase
speed is afunction of frequency and is given by

c(f):c 2[<1_A(f))2+8(f)z]

“V(L-ACHP+B(f P+(1-A(F))
Givenan o,,(f) onecanfindthe R a, andR o, thatwill produce an attenuation
function of(f) abovethat best fitsthe true onein some sense. The Matlab function
acousticAttenSeek.m takes a vector of frequencieswhere  a,,.( f) isknown, the o, (f) a
those frequencies, the phase speed at infinite frequency, the number of attenuation mechanisms
that youwant ( R ), and areference frequency. It will output R amplitudescalarssand R

decay frequencies as well asthe ratio of the phase velocity at the reference frequency to that at
infinite frequency that best fit the input loss function in aleast squares sense.

o0

Of course, this solution is purely mathematical, and does not know anything about any physical
limitations on these output parameters. All of the amplitude scalars and decay rates must be real,
positive numbers as the most general restriction. Beyond that, there are rules that should be true
in order for them to represent a physical system bounds by the constraints of causality. One

obvious constraint isthat ¢(0) must bereal and positive. This places the constraint that

R
Zar<1

r=1
Other than this simple constraint, the general requirements for arbitrary R mechanismsis not
known. In practice, the author is not aware of any output from acousticAttenSeek.m for any
attenuation model that fits the basic constraints above that appear to violate causality, but, of
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course, this does not mean that a model doesn't exist that would produce parameters that are
physically impossible. The most likely result of a physically impossible attenuation model
would be instability of the solution.

5.3 Atmospheric Attenuation Example

0.014

0.012 -

o

o

-
T

0.008 -

o

o

o

3]
T

attenuation factor (1/m)
o
o
o
i

0.002 |-

0 | | |
0 2000 4000 6000 8000 10000
frequency (Hz)

Figure 8: Acoustic attenuation factor fits for a 1 and 2 mechanism
model.

The Matlab code acousticAtten.m computes the attenuation (1/m) as a function of frequency
based on the 1SO 9613-1 (1993) standard. Figure 8 shows the SO standard attenuation over the
frequency range 10 Hz to 10 kHz compared to the best fit in aleast squares sense attenuation
model with 1 and 2 mechanisms. Thefit is excellent for a 2 mechanism model, meaning that this
model would be an adequate representation of the physical attenuation over this frequency range.
The 1-mechanism model is unable to fit some of the curve's variations in this band.
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Figure 9: Sound speed dispersion implied by the 2 mechanism
model.
Figure 9 shows the subtle phase speed dependence on frequency for the 2-mechanism model.
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5.4 Seawater Attenuation Example
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Figure 10: Seawater attenuation factor fits for 1- and 2-mechanism
attenuation models.

The Matlab code seawaterAtten.m also computes the attenuation (1/m) as a function of
frequency for seawater. Thisis based on equations given in Ainslie and McColm (1998) that use
only the physical loses due to pure water, boric acid, and magnesium sulfate, which are the
primary contributors to attenuation in seawater in the Hz to kHz range. Figure 10 showsthe
Ainglie and McColm attenuation model over the frequency range 10 Hz to 10 kHz and the best
fit 1 and 2 mechanism attenuation models. Once again, the fit is excellent over this bandwidth
for the 2 mechanism model, whereas the 1 mechanism model cannot fit the inflections of the
curve.
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6. VALIDATION TESTS

6.1 Introduction

Code validation is important to help verify that the physics and the code implementation of the
physics give expected results. One means of validation is comparison of results of two different
codes under the same conditions. Validation of TDAAPS 2 was made against two different
codes. Theorigina TDAAPS, which is a non-attenuative code, was used to validate TDAAPS 2
in the case that the attenuation parameters are used but set to coincide with a non-attenuative
model. To test the attenuation aspect of the code, the new code was tested against Parelasti, the
Geophysics Department's finite-difference anelastic algorithm in the case of fixed medium for
TDAAPS and zero shear wave speed for Parelasti with identical attenuation parameters. A
moving acoustic, attenuative comparison was not made since no codes were available for testing.

For these test cases a simple homogeneous acoustic model was used. The sound speed and
density were set to 2500 m/s and 2000 kg/m?, respectively, for comparisons with Parelasti. The
non-attenuative model s used a homogeneous sounds speed of 340 m/s and density of 1.2 kg/m3.

6.2 Non-Attenuative Acoustic Comparison
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Figure 11: X-component of velocity comparison for fixed acoustic
models.

The purpose of these comparisonsisto test whether the attenuation code reduces to the non-
attenuative output when attenuation parameters are set to zero. Two basic test cases were
considered. The first consisted of afixed media (no wind) model comparison between the
original TDAAPS without attenuation and TDAAPS 2 with attenuation turned on, but all
amplitude factors set zero, meaning that the attenuation portion of the code is exercised, but no
attenuation will result. Figures 11-13 shows the excellent comparison of the two codesin the
case of avertical point source in the center of the grid using a 10 Hz Ricker wavelet source-time-
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Figure 12: Z-component of velocity comparison for fixed acoustic
model.
function recorded 10 m below and 40 m offset in the X direction for the X-component of

velocity, Z-component of velocity, and pressure. The Y -component of velocity is theoretically
zero.
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Figure 13: Pressure comparison for fixed acoustic model.
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Figure 14: X-component velocity comparison with wind model.
The second case is a moving media case with the same homogeneous sound speed and density
model. Thewind isavortex centered at the center of the grid with wind speed increasing
radialy to a Mach number (wind speed/sound speed) of 0.20, avery strong wind. The same
source and receiver locations were used as in the first case. Comparisons are also excellent on all
components of velocity and pressure (Figures 14-17). Note that the Y -component of particle
velocity is aso shown, since, due to the wind, there will be detectable signal on this component.
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Figure 15: Y-component of velocity comparison for wind model.
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Figure 16: Z-component of velocity comparison for wind model.
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Figure 17: Pressure comparison for wind model.
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Figure 18: X-component of velocity comparison for attenuative
model.

6.3 Fixed Acoustic Attenuative Medium Comparison

This comparison tests the attenuation acoustic code to ensure that it gives the same answers as
Parelasti using an anelastic model with the shear wave speed set to zero. We used attenuation
parameters appropriate for a seismic model with an equivalent Q of 100 for 2 attenuation
mechanisms. The relaxation frequencies and amplitude factors utilized were 3.061493 Hz with
amplitude 0.025949 for the first and 66.091248 Hz with amplitude 0.018347 for the second. A
100 Hz Ricker source-time-function vertical force source located at the center of the grid was
recorded 10 m below and 40 m offset in X for the X-component of particle velocity, Z-
component of velocity, and pressure. Again, note that the Y -component of velocity is
theoretically zero for this configuration of source and receiver. Agreement between the two
codesis excellent on all traces (Figures 18-20).
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Figure 19: Z-component of velocity comparison for attenuative
model.
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Figure 20: Pressure comparison for attenuative model.
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7. CONCLUSIONS

We have outlined improvements that have been made to TDAAPS in order to model acoustic
wave propagation in attenuative, moving media which can include realistic 3-D atmospheric
conditions and topography. In addition, improved absorbing boundary conditions allow more
accurate ssmulation results in a smaller computational domain, saving resources and time. The
optional usage of al the linear terms in the linear acoustic wave equations does mitigate against
instabilities in the solution in some cases and expands the capability of acoustic modeling
beyond air or water to other materials in which these terms could not be neglected. Methods for
computing the attenuation parameters from desired attenuation factor versus frequency response
were aso provided. Finaly, the improved code, TDAAPS 2, has been validated against the
original TDAAPS in non-attenuative cases and against an anelastic solver.
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