SANDIA REPORT
SAND200X-XXXX
Unlimited Release

Printed October 2016

Optimized Finite-Difference Coefficients
for Acoustic Modeling

Leiph A. Preston

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories




Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government, nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or
assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represent
that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof, or any of their
contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency
thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd.
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders @ntis.fedworld.gov

Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online



mailto:reports@adonis.osti.gov
http://www.osti.gov/bridge
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND200X-XXXX
Unlimited Release
Printed October 2016

Optimized Finite-Difference Coefficients for
Acoustic Modeling

Leiph A. Preston
Geophysics Department
Sandia National Laboratories
P.O. Box 5800
Albuquerque, New Mexico 87185-MS0750

Abstract

Although using standard Taylor series coefficients for finite-difference
operators is optimal in the sense that in the limit of infinitesimal space and
time discretization, the solution approaches the correct analytic solution to the
acousto-dynamic system of differential equations, other finite-difference
operators may provide optimal computational run time given certain error
bounds or source bandwidth constraints. This report describes the results of
investigation of alternative optimal finite-difference coefficients based on
several optimization/accuracy scenarios and provides recommendations for
minimizing run time while retaining error within given error bounds.
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PML
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MPML
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NOMENCLATURE

Finite-difference

Perfectly Matched Layers

Convolutional perfectly matched layers

Multi-axial perfectly matched layers

Second order accuracy in time; fourth order accuracy in space
Courant-Friedrichs-Lewy



1. INTRODUCTION

This paper briefly describes the implementation and testing of a variety of optimized
second order in time and fourth order in space (0O(2,4)) finite-difference coefficients for
the acoustic propagation code Paracousti (Preston, 2016). Since coefficients can be
optimized for a variety of criteria, seven different cases were studied to determine which
one (or ones) produce the most accurate replication of a known analytical solution.
Phase and group speed are two basic characteristics that can be easily calculated and
optimized against for homogeneous media. The goal of this optimization is to find the
coefficients for each test case that minimizes the required number of grid nodes per
wavelength in order to match some maximum error bound. Since computational cost
(run time) is proportional to the node spacing to the fourth power, even relatively small
drops in the required number of grid nodes per wavelength can have large impacts on
run time.



2. METHODS

2.1 Model Setup

All seven test cases use the same basic homogenous acoustic model. The acoustic
sound speed (Vp) is set to 150 m/s throughout with 10 node thickness Convolutional
Perfectly Matched Layer (CPML) boundaries on all sides. Model extents are 150 m by
200 m by 150 m. The source location in all cases is placed 40 m from the top (z) and
left (x) sides of the model and in the middle of the model in the y-dimension. An
explosive source with a 8 Hz gaussian waveform is utilized (the frequency refers to the
spectral peak of the double differentiation of the gaussian pulse). Receivers are located
on a line 60 m from the left side of the model and in the middle of the y-dimension,
running top to bottom. Although all receivers were analyzed in these studies, only the
receiver at 125 m from the top of the model are displayed in this report for examples.
The time step and grid node spacing varied for each test case based on the computed
grid nodes per wavelength required for the given optimized coefficients being tested.

2.2 Phase and Group Speed Equations

The equations for the numerical phase and group speed of the solution to the velocity-
pressure system of equations on a standard staggered grid such as Paracousti are well
known and given in Aldridge and Haney (2008). For completeness a summary is given
here as well. For phase speed, assuming uniform grid spacing in each dimension for
0O(2,4) accuracy:
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sampling parameter (s = A ); h is the grid node spacing; Ais the wavelength of the
propagating waveform; 6 and ¢ are the angles of propagation relative to the z-axis and

x-axis, respectively; ¢, .. and c, are the finite-difference coefficients; 7 is the ratio of

the time step to the maximum time step allowed for stability (Courant-Friedrichs-Lewy
(CFL) condition), given by:
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Given its complexity, the fully expressed formula will not be given here, but is fully
derived in Aldridge and Haney (2008).

2.3 Procedure

All test cases, except the baseline case, use the same basic methodology. The
baseline case is considered standard operating procedure; thus, maximum errors for
the baseline case are used as bounding errors in all the other test cases. Maximum
errors for the baseline case are 0.375% for phase speed, 1.2% for group speed, 2e-6
(unitless) weighted sum of square errors, and 3e-3 (unitless) sum of absolute errors.

Maximum (extremum) phase or group speed error refers to the maximum allowed
percent deviation from the true phase or group speed curves. For a homogeneous
medium the true phase and group speed curves are constant with respect to
wavenumber (or frequency) and propagation direction and equal to the sound speed of
the medium. However, in a numerical algorithm the numerical phase and group speeds
do depend on wavenumber and propagation direction and tend to increasingly diverge
from the ideal phase and group speeds as wavenumber increases, i.e., smaller
wavelengths. These numerical phase and group speed curves also depend on the time
step relative to the CFL time step limit and the finite-difference coefficients. The number
of grid nodes per wavelength for any given combination of wave numbers, time step
relative to CFL, and finite-difference coefficients is defined as the minimum
wavenumber at which the numerical phase and/or group speed error exceeds the
defined maximum error limits. Also, different directions of propagation are evaluated
and the one that gives the strictest wavenumber is utilized.

The weighted sum of square (or absolute) errors also utilizes the phase and group
speed curves, but it is the weighted sum of the square (or absolute) errors across all
wave numbers that is the metric instead of maximum deviation. The weight function is a
function of wavenumber and could, in principle be any arbitrary function. In all cases
studied in this report, the weight function is the normalized spectra for a twice
differentiated gaussian wavelet. This spectra is zero at zero frequency, peaks and then
decays toward zero again at higher frequencies. The spectra is converted from
frequency to wavenumber in order to form the weight function. This means that errors
at very low wave numbers and also very high wave numbers will have minimal
contribution to the total error, but instead the total error will be dominated by errors at
wave numbers near the peak of the spectrum. In addition, group speed errors are
weighted at approximately 1/3 of the phase speed errors at all wave numbers. Only the
basic shape of the weight function is used. The wavenumber axis is stretched or
compressed until the total error is approximately equal to the error limit. The maximum
wavenumber having a spectral amplitude of 1% of the peak value of the spectrum is
used to define the number of grid nodes per wavelength for the given time step relative
to CFL and finite-difference coefficients. In addition, just as when using the error
extremum, different propagation directions are utilized to find the strictest wavenumber
for all directions.



3. TEST CASES

3.1 Baseline

The baseline case consists of using standard Taylor Series O(2,4) coefficients of 9/8
and -1/24 for the inner and outer coefficients, respectively. Also, the models are run at
99% of the CFL time step limit. We use 10 grid nodes per wavelength for the baseline
case. This equates to a maximum phase speed error of 0.375% and group speed error
of 1.2% (Figure 1). For this relatively small model with two compute domains it required
67 s run time. Results versus the analytic solution are shown in Figure 2. There is very
good agreement between the solutions. For the following figures, the numerical phase
and group speed curves are shown as a function of sampling parameter (s =
wavelength per grid node) relative to the ideal (ideal = 1.0). CA = coordinate axis
propagation; DB = body diagonal propagation. Also, comparisons of analytic to
synthetic traces using a gaussian source time function are shown for each case.

3.2 Case 1: Optimized Taylor Series Time Step

This test case simply uses the same Taylor Series O(2,4) coefficients as in the baseline
case, but a search is made to find the optimum time step relative to CFL condition that
minimizes run time. Maximum error conditions of 0.375% for phase speed and 1.2% for
group speed are used for the maximum error limits. The minimum computed run time
occurs at 60% of the CFL limit with 6.16 grid nodes per minimum wavelength required to
reach the same error tolerances as for the baseline case (Figure 3). This model
required 15 s run time, a ~4.5x improvement over the baseline case, and it shows
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Figure 1: Baseline case phase and group speed curves
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Figure 2: Baseline case gaussian pulse

excellent agreement with the analytic solution. This case actually had the closest
agreement to the analytical solution of any of the cases run, including the baseline case
(Figure 4).

3.3 Case 2: Optimized Coefficients for Phase Speed Only

This is the first case where the O(2,4) coefficients are allowed to vary in order to find the
optimal run time. Only the phase speed curves were used in this case. The maximum
phase speed error was set at 0.375%. The optimum run time was found to occur at
50% of the CFL limit for the inner and outer coefficients of 1.14337598613568 and
-0.0490462530034956, respectively (Figure 5). These values give 4.46 grid nodes per
minimum wavelength and required only 7 s to run, a nearly 10x improvement over
baseline. However, the output traces are clearly not as good of a match to the analytic
solution as baseline or Case 1 (Figure 6). Although the phases align reasonably well
the amplitudes of the middle and last pulses are off by a few percent.

3.4 Case 3: Optimized Coefficients for Group Speed Only

This case is similar to Case 2 except that only the group speed curve is used to find the
optimal run time. The maximum group speed error was set to 1.2%, the same as the
group speed error of the baseline case. The optimum run time was found to occur at
60% of the CFL limit for the coefficients 1.14098247159559 and -0.0509925422379543
(inner and outer) (Figure 7). With these coefficients and time step a minimum of 5.07
grid nodes per minimum wavelength is required. This case took 8 s to run, amounting
to over an eight-fold speedup compared to baseline. However, this is the poorest fit to

11
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the analytic solution of any of the cases tested. Clear phase misalignments are present
with amplitude error as well (Figure 8).

3.5 Case 4: Optimized Coefficients for Phase and Group Speed

Due to the imperfections found in Cases 2 and 3, a combination of the phase and group
speeds were used, setting maximum phase error to 0.375% and group speed error to
1.2%. In this case the optimum run time was found at 50% of the CFL limit for the inner
an outer coefficients 1.14422873564654 and -0.0493171268197933 (Figure 9). These
parameters give 5.22 grid nodes per minimum wavelength. This case required 11 s of
run time, which is a factor of 6 improvement over the baseline. This case shows better
fit to the analytic solution than either Case 2 or 3, but it still shows clear deviations in
phase and amplitude compared to analytic (Figure 10).

3.6 Case 5: Optimized Coefficients for Weighted Square Errors

This case uses the sum of weighted square errors from both the phase and group
speed curves, but with the group speed errors down-weighted by 1/3 at all wave
numbers. As described above, the second time derivative of a gaussian pulse was
used as the weight function in wavenumber space. The wavenumber of the peak of the
gaussian was allowed to vary in order to find the weight function that gave a total error
approximately equal to the limit of 2e-6. This is the same error as is found for the
baseline case. The optimum run time was found to occur at 55% of the CFL limit for the
inner and outer coefficients 1.12457173168659 and -0.041831528643767 (Figure 11).
These parameters allow only 4.7 grid nodes per minimum wavelength. This case
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Figure 5: Case 2 phase and group speed curves
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required 7 s of run time, so, similar to Case 2, there is a nearly 10x run time
improvement over the baseline case. In contrast to Case 2, the fit to the analytic
solution is excellent in both phase and amplitude (Figure 12). This is the second best fit
of all of the test cases, including the baseline, and is only minimally different than the
Case 1 fit.

3.7 Case 6: Optimized Coefficients for Weighted Absolute Errors

This final case is similar to Case 5. The only difference is that the sum of the weighted
absolute errors from both phase and group speed curves is utilized instead of square
errors. An error limit of 3e-3 was used in this case, which is the same as that found for
the baseline case. The optimum run time occurs at 45% of the CFL limit for the
coefficients 1.1252025604248 and -0.0418246587117513 (Figure 13). With these
parameters 5.05 grid nodes per minimum wavelength is required. This case required
10 s to run. It also shows a slightly worse fit to the analytic solution than baseline, Case
1 or Case 5, but it is still an excellent fit and a better fit than the other cases tested
(Figure 14).
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Table 1: Summary of cases, run times, and quality rank

Case Run time (s) Quality Rank Notes

Baseline 67
1 15 Taylor, 60% CFL
2 7 Opt Phase Only
3 8 Opt Group Only
4 11 Opt Phase+Group
5 7 Opt Square Error
6 10 Opt Absolute Error

Table 2: Utilized finite-difference coefficients for each case

Case Inner Coefficient Outer Coefficient % CFL Limit

Baseline 1.125 -0.0416666666666667 99
1 1.125 -0.0416666666666667 60
2 1.14337598613568 -0.0490462530034956 50
3 1.14098247159559 -0.0509925422379543 60
4 1.14422873564654 -0.0493171268197933 50
5 1.12457173168659 -0.041831528643767 55
6 1.1252025604248 -0.0418246587117513 45

15
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4. RESULTS AND DISCUSSION

4.1 Results Summary

As mentioned above and in Table 1, Case 1 has the highest quality fit to the analytic
solution. However, the top four quality rankings all have excellent fits with only very
small differences among them. Thus, any of the cases within the top 4 would be
considered high quality and useable in synthetic calculations. These are the baseline
case, Case 1, Case 5, and Case 6. Given that Case 5 runs over twice as fast as Case
1 and nearly 10 times as fast as the baseline case, this suggests that Case 5 would be
the best choice. The one problem with Case 5 (and 6) is that they are not general.
They are specific to only one family of source time functions that are self-similar in
terms of wavenumber-scale invariance. However, it may be possible that some general
source time functions could be sufficiently similar to the gaussian used here that these
findings could be used in such a simulation and still have excellent results. As long as
the frequencies where the general source is peaked have near-ideal phase and group
speeds, the results still should remain valid. Of course, different weight functions, albeit
self-similar, could also be utilized as a proxy for more general source time functions.
However, if truly source agnostic results are needed, then Case 1 provides the best
option of those studied.

4.2 Discussion

The standard Taylor Series coefficients and optimized weighted sum of errors provide
the best fits to band-limited source time functions, whereas optimized coefficients for

extremum errors are poorer. Below, | will discuss the qualities of each of these three

classes of coefficients and its implication on the results.

The Taylor Series coefficients are based on fitting progressively higher order
polynomials to a function in the neighborhood of a given point. As such, these are the
only coefficients that will tend toward ideal at the low frequency (low wavenumber) limit.
All other coefficients will tend to some non-ideal phase or group speed at the low
frequency limit. Taylor coefficients do stray from ideal as frequency increases. Due to
this fact, phase and group speed curves can exceed error limits at a lower frequency
than may be possible for non-standard coefficients. However, since the Taylor
coefficients stay in the vicinity of the ideal phase and group speeds over a broader
bandwidth, we might expect that Taylor coefficients would be best for a general case
where nothing is known of the source.

On the other hand, perhaps we can do better just by keeping phase and/or group speed
curves within given error bounds out to higher frequencies than Taylor coefficients can
permit. For example, maybe we can give up the requirement that in the low frequency
limit that the solution goes to the correct phase and/or group speed if we know that the
far field wavelet vanishes in the low frequency limit. By shifting the phase and/or group
speed curves off ideal at low frequencies we can keep the curve within error bounds out
to higher frequencies. Indeed, that is what the optimized coefficients based on maximal
error bounds found. We can expand the frequency range, allowing a drop in run time by

20



about a factor of 2 over Taylor coefficients. Unfortunately, there is still too much low
frequency energy in the gaussian far field wavelet that the departure from ideal is too
severe to provide an adequate fit. Of course, a different source wavelet with less low
frequency content may show an improved fit, i.e., a more restrictive bandwidth of the
source. Also, setting tighter error bounds would improve fit, but at the expense of longer
run times.

An answer to the above issues is to use the total summed error over all frequencies and
use information about the source to guide the optimization. This optimization allows the
phase and group speeds to stray from ideal where the source has little energy and to
match the ideal at the peak frequency of the far field source wavelet. So, the phase and
group speed curves do not approach the ideal at the low frequency limit, but do stay
closer to ideal throughout. The coefficients based on maximal error bounds tend to
have their low frequency limit very near one (ideal). This maximizes the bandwidth over
which the phase and/or group speed is within error bounds. However, instead of being
nearly 0.375% in error, for example, in phase speed at the low frequency limit such as
for the extremum error cases, the coefficients based on sum of errors is less than 0.1%
in error at the same limit. Thus, low frequency energy in the source is more accurately
propagated.
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5. CONCLUSIONS

This report has described results of optimization studies for finite-difference coefficients
in order to minimize run time within given error bounds under a variety of error bound
measure scenarios. Case 1, standard Taylor Series coefficients with variable time step
stability criteria, provides the best overall fit to analytic far field waveforms and should
be used when nothing is known about the source. However, of nearly equal accuracy,
but with half the run time, Case 5, which uses the weighted sum of square errors from
both the phase and group speed, provides the best option if information about the
source is known.
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