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Abstract

Although using standard Taylor series coefficients for finite-difference 
operators is optimal in the sense that in the limit of infinitesimal space and 
time discretization, the solution approaches the correct analytic solution to the 
acousto-dynamic system of differential equations, other finite-difference 
operators may provide optimal computational run time given certain error 
bounds or source bandwidth constraints.  This report describes the results of 
investigation of alternative optimal finite-difference coefficients based on 
several optimization/accuracy scenarios and provides recommendations for 
minimizing run time while retaining error within given error bounds.
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NOMENCLATURE

FD Finite-difference
PML Perfectly Matched Layers
CPML Convolutional perfectly matched layers
MPML Multi-axial perfectly matched layers
O(2,4) Second order accuracy in time; fourth order accuracy in space
CFL Courant-Friedrichs-Lewy
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1.  INTRODUCTION

This paper briefly describes the implementation and testing of a variety of optimized 
second order in time and fourth order in space (O(2,4)) finite-difference coefficients for 
the acoustic propagation code Paracousti (Preston, 2016).  Since coefficients can be 
optimized for a variety of criteria, seven different cases were studied to determine which 
one (or ones) produce the most accurate replication of a known analytical solution.  
Phase and group speed are two basic characteristics that can be easily calculated and 
optimized against for homogeneous media.  The goal of this optimization is to find the 
coefficients for each test case that minimizes the required number of grid nodes per 
wavelength in order to match some maximum error bound.  Since computational cost 
(run time) is proportional to the node spacing to the fourth power, even relatively small 
drops in the required number of grid nodes per wavelength can have large impacts on 
run time.
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2.  METHODS
2.1 Model Setup
All seven test cases use the same basic homogenous acoustic model.  The acoustic 
sound speed (Vp) is set to 150 m/s throughout with 10 node thickness Convolutional 
Perfectly Matched Layer (CPML) boundaries on all sides.  Model extents are 150 m by 
200 m by 150 m.  The source location in all cases is placed 40 m from the top (z) and 
left (x) sides of the model and in the middle of the model in the y-dimension.  An 
explosive source with a 8 Hz gaussian waveform is utilized  (the frequency refers to the 
spectral peak of the double differentiation of the gaussian pulse).  Receivers are located 
on a line 60 m from the left side of the model and in the middle of the y-dimension, 
running top to bottom.  Although all receivers were analyzed in these studies, only the 
receiver at 125 m from the top of the model are displayed in this report for examples.  
The time step and grid node spacing varied for each test case based on the computed 
grid nodes per wavelength required for the given optimized coefficients being tested.

2.2 Phase and Group Speed Equations
The equations for the numerical phase and group speed of the solution to the velocity-
pressure system of equations on a standard staggered grid such as Paracousti are well 
known and given in Aldridge and Haney (2008).  For completeness a summary is given 
here as well.  For phase speed, assuming uniform grid spacing in each dimension for 
O(2,4) accuracy:

�

where

�

and � is the numerical phase speed; �  is the true phase/group speed; � is the 

sampling parameter (� ); �  is the grid node spacing; � is the wavelength of the 
propagating waveform; � and � are the angles of propagation relative to the z-axis and 
x-axis, respectively; � and � are the finite-difference coefficients; � is the ratio of 
the time step to the maximum time step allowed for stability (Courant-Friedrichs-Lewy 
(CFL) condition), given by:

�

where �  is the time step.
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Given its complexity, the fully expressed formula will not be given here, but is fully 
derived in Aldridge and Haney (2008).

2.3 Procedure
All test cases, except the baseline case, use the same basic methodology.  The 
baseline case is considered standard operating procedure; thus, maximum errors for 
the baseline case are used as bounding errors in all the other test cases.  Maximum 
errors for the baseline case are 0.375% for phase speed, 1.2% for group speed, 2e-6 
(unitless) weighted sum of square errors, and 3e-3 (unitless) sum of absolute errors.

Maximum (extremum) phase or group speed error refers to the maximum allowed 
percent deviation from the true phase or group speed curves.  For a homogeneous 
medium the true phase and group speed curves are constant with respect to 
wavenumber (or frequency) and propagation direction and equal to the sound speed of 
the medium.  However, in a numerical algorithm the numerical phase and group speeds 
do depend on wavenumber and propagation direction and tend to increasingly diverge 
from the ideal phase and group speeds as wavenumber increases, i.e., smaller 
wavelengths.  These numerical phase and group speed curves also depend on the time 
step relative to the CFL time step limit and the finite-difference coefficients.  The number 
of grid nodes per wavelength for any given combination of wave numbers, time step 
relative to CFL, and finite-difference coefficients is defined as the minimum 
wavenumber at which the numerical phase and/or group speed error exceeds the 
defined maximum error limits.  Also, different directions of propagation are evaluated 
and the one that gives the strictest wavenumber is utilized.

The weighted sum of square (or absolute) errors also utilizes the phase and group 
speed curves, but it is the weighted sum of the square (or absolute) errors across all 
wave numbers that is the metric instead of maximum deviation.  The weight function is a 
function of wavenumber and could, in principle be any arbitrary function.  In all cases 
studied in this report, the weight function is the normalized spectra for a twice 
differentiated gaussian wavelet.  This spectra is zero at zero frequency, peaks and then 
decays toward zero again at higher frequencies.  The spectra is converted from 
frequency to wavenumber in order to form the weight function.  This means that errors 
at very low wave numbers and also very high wave numbers will have minimal 
contribution to the total error, but instead the total error will be dominated by errors at 
wave numbers near the peak of the spectrum.  In addition, group speed errors are 
weighted at approximately 1/3 of the phase speed errors at all wave numbers.  Only the 
basic shape of the weight function is used.  The wavenumber axis is stretched or 
compressed until the total error is approximately equal to the error limit.  The maximum 
wavenumber having a spectral amplitude of 1% of the peak value of the spectrum is 
used to define the number of grid nodes per wavelength for the given time step relative 
to CFL and finite-difference coefficients.  In addition, just as when using the error 
extremum, different propagation directions are utilized to find the strictest wavenumber 
for all directions.
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3.  TEST CASES

3.1 Baseline
The baseline case consists of using standard Taylor Series O(2,4) coefficients of 9/8 
and -1/24 for the inner and outer coefficients, respectively.  Also, the models are run at 
99% of the CFL time step limit.  We use 10 grid nodes per wavelength for the baseline 
case.  This equates to a maximum phase speed error of 0.375% and group speed error 
of 1.2% (Figure 1).  For this relatively small model with two compute domains it required 
67 s run time.  Results versus the analytic solution are shown in Figure 2.  There is very 
good agreement between the solutions.  For the following figures, the numerical phase 
and group speed curves are shown as a function of sampling parameter (s = 
wavelength per grid node) relative to the ideal (ideal = 1.0).  CA = coordinate axis 
propagation; DB = body diagonal propagation.  Also, comparisons of analytic to 
synthetic traces using a gaussian source time function are shown for each case.

3.2 Case 1: Optimized Taylor Series Time Step
This test case simply uses the same Taylor Series O(2,4) coefficients as in the baseline 
case, but a search is made to find the optimum time step relative to CFL condition that 
minimizes run time.  Maximum error conditions of 0.375% for phase speed and 1.2% for 
group speed are used for the maximum error limits.  The minimum computed run time 
occurs at 60% of the CFL limit with 6.16 grid nodes per minimum wavelength required to 
reach the same error tolerances as for the baseline case (Figure 3).  This model 
required 15 s run time, a ~4.5x improvement over the baseline case, and it shows 
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excellent agreement with the analytic solution.  This case actually had the closest 
agreement to the analytical solution of any of the cases run, including the baseline case 
(Figure 4).

3.3 Case 2: Optimized Coefficients for Phase Speed Only
This is the first case where the O(2,4) coefficients are allowed to vary in order to find the 
optimal run time.  Only the phase speed curves were used in this case.  The maximum 
phase speed error was set at 0.375%.  The optimum run time was found to occur at 
50% of the CFL limit for the inner and outer coefficients of 1.14337598613568 and 
-0.0490462530034956, respectively (Figure 5).  These values give 4.46 grid nodes per 
minimum wavelength and required only 7 s to run, a nearly 10x improvement over 
baseline.  However, the output traces are clearly not as good of a match to the analytic 
solution as baseline or Case 1 (Figure 6).  Although the phases align reasonably well 
the amplitudes of the middle and last pulses are off by a few percent.

3.4 Case 3: Optimized Coefficients for Group Speed Only
This case is similar to Case 2 except that only the group speed curve is used to find the 
optimal run time.  The maximum group speed error was set to 1.2%, the same as the 
group speed error of the baseline case.  The optimum run time was found to occur at 
60% of the CFL limit for the coefficients 1.14098247159559 and -0.0509925422379543 
(inner and outer) (Figure 7).  With these coefficients and time step a minimum of 5.07 
grid nodes per minimum wavelength is required.  This case took 8 s to run, amounting 
to over an eight-fold speedup compared to baseline.  However, this is the poorest fit to 
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Figure 3:  Case 1 phase and group speed curves

Figure 4:  Case 1 Gaussian Pulse



the analytic solution of any of the cases tested.  Clear phase misalignments are present 
with amplitude error as well (Figure 8).

3.5 Case 4: Optimized Coefficients for Phase and Group Speed
Due to the imperfections found in Cases 2 and 3, a combination of the phase and group 
speeds were used, setting maximum phase error to 0.375% and group speed error to 
1.2%.  In this case the optimum run time was found at 50% of the CFL limit for the inner 
an outer coefficients 1.14422873564654 and -0.0493171268197933 (Figure 9).  These 
parameters give 5.22 grid nodes per minimum wavelength.  This case required 11 s of 
run time, which is a factor of 6 improvement over the baseline.  This case shows better 
fit to the analytic solution than either Case 2 or 3, but it still shows clear deviations in 
phase and amplitude compared to analytic (Figure 10).

3.6 Case 5: Optimized Coefficients for Weighted Square Errors
This case uses the sum of weighted square errors from both the phase and group 
speed curves, but with the group speed errors down-weighted by 1/3 at all wave 
numbers.  As described above, the second time derivative of a gaussian pulse was 
used as the weight function in wavenumber space.  The wavenumber of the peak of the 
gaussian was allowed to vary in order to find the weight function that gave a total error 
approximately equal to the limit of 2e-6.  This is the same error as is found for the 
baseline case.  The optimum run time was found to occur at 55% of the CFL limit for the 
inner and outer coefficients 1.12457173168659 and -0.041831528643767 (Figure 11).  
These parameters allow only 4.7 grid nodes per minimum wavelength.  This case 
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required 7 s of run time, so, similar to Case 2, there is a nearly 10x run time 
improvement over the baseline case.  In contrast to Case 2, the fit to the analytic 
solution is excellent in both phase and amplitude (Figure 12).  This is the second best fit 
of all of the test cases, including the baseline, and is only minimally different than the 
Case 1 fit.

3.7 Case 6: Optimized Coefficients for Weighted Absolute Errors
This final case is similar to Case 5.  The only difference is that the sum of the weighted 
absolute errors from both phase and group speed curves is utilized instead of square 
errors.  An error limit of 3e-3 was used in this case, which is the same as that found for 
the baseline case.  The optimum run time occurs at 45% of the CFL limit for the 
coefficients 1.1252025604248 and -0.0418246587117513 (Figure 13).  With these 
parameters 5.05 grid nodes per minimum wavelength is required.  This case required 
10 s to run.  It also shows a slightly worse fit to the analytic solution than baseline, Case 
1 or Case 5, but it is still an excellent fit and a better fit than the other cases tested 
(Figure 14).
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Table 1: Summary of cases, run times, and quality rank

Table 2:  Utilized finite-difference coefficients for each case

Case Run time (s) Quality Rank Notes

Baseline 67 3

1 15 1 Taylor, 60% CFL

2 7 6 Opt Phase Only

3 8 7 Opt Group Only

4 11 5 Opt Phase+Group

5 7 2 Opt Square Error

6 10 4 Opt Absolute Error

Case Inner Coefficient Outer Coefficient % CFL Limit

Baseline 1.125 -0.0416666666666667 99

1 1.125 -0.0416666666666667 60

2 1.14337598613568 -0.0490462530034956 50

3 1.14098247159559 -0.0509925422379543 60

4 1.14422873564654 -0.0493171268197933 50

5 1.12457173168659 -0.041831528643767 55

6 1.1252025604248 -0.0418246587117513 45
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Figure 7:  Case 3 phase and group speed curves

Figure 8:  Case 3 Gaussian Pulse
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Figure 9:  Case 4 phase and group speed curves

Figure 10:  Case 4 Gaussian Pulse
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Figure 11:  Case 5 phase and group speed curves

Figure 12:  Case 5 Gaussian Pulse
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Figure 13:  Case 6 phase and group speed curves

Figure 14:  Case 6 Gaussian Pulse



4.  RESULTS AND DISCUSSION

4.1  Results Summary
As mentioned above and in Table 1, Case 1 has the highest quality fit to the analytic 
solution.  However, the top four quality rankings all have excellent fits with only very 
small differences among them.  Thus, any of the cases within the top 4 would be 
considered high quality and useable in synthetic calculations.  These are the baseline 
case, Case 1, Case 5, and Case 6.  Given that Case 5 runs over twice as fast as Case 
1 and nearly 10 times as fast as the baseline case, this suggests that Case 5 would be 
the best choice.  The one problem with Case 5 (and 6) is that they are not general.  
They are specific to only one family of source time functions that are self-similar in 
terms of wavenumber-scale invariance.  However, it may be possible that some general 
source time functions could be sufficiently similar to the gaussian used here that these 
findings could be used in such a simulation and still have excellent results.  As long as 
the frequencies where the general source is peaked have near-ideal phase and group 
speeds, the results still should remain valid.  Of course, different weight functions, albeit 
self-similar, could also be utilized as a proxy for more general source time functions.  
However, if truly source agnostic results are needed, then Case 1 provides the best 
option of those studied.

4.2 Discussion
The standard Taylor Series coefficients and optimized weighted sum of errors provide 
the best fits to band-limited source time functions, whereas optimized coefficients for 
extremum errors are poorer.  Below, I will discuss the qualities of each of these three 
classes of coefficients and its implication on the results.

The Taylor Series coefficients are based on fitting progressively higher order 
polynomials to a function in the neighborhood of a given point.  As such, these are the 
only coefficients that will tend toward ideal at the low frequency (low wavenumber) limit.  
All other coefficients will tend to some non-ideal phase or group speed at the low 
frequency limit.  Taylor coefficients do stray from ideal as frequency increases.  Due to 
this fact, phase and group speed curves can exceed error limits at a lower frequency 
than may be possible for non-standard coefficients.  However, since the Taylor 
coefficients stay in the vicinity of the ideal phase and group speeds over a broader 
bandwidth, we might expect that Taylor coefficients would be best for a general case 
where nothing is known of the source.

On the other hand, perhaps we can do better just by keeping phase and/or group speed 
curves within given error bounds out to higher frequencies than Taylor coefficients can 
permit.  For example, maybe we can give up the requirement that in the low frequency 
limit that the solution goes to the correct phase and/or group speed if we know that the 
far field wavelet vanishes in the low frequency limit.  By shifting the phase and/or group 
speed curves off ideal at low frequencies we can keep the curve within error bounds out 
to higher frequencies.  Indeed, that is what the optimized coefficients based on maximal 
error bounds found.  We can expand the frequency range, allowing a drop in run time by 
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about a factor of 2 over Taylor coefficients.  Unfortunately, there is still too much low 
frequency energy in the gaussian far field wavelet that the departure from ideal is too 
severe to provide an adequate fit.  Of course, a different source wavelet with less low 
frequency content may show an improved fit, i.e., a more restrictive bandwidth of the 
source.  Also, setting tighter error bounds would improve fit, but at the expense of longer 
run times.

An answer to the above issues is to use the total summed error over all frequencies and 
use information about the source to guide the optimization.  This optimization allows the 
phase and group speeds to stray from ideal where the source has little energy and to 
match the ideal at the peak frequency of the far field source wavelet.  So, the phase and 
group speed curves do not approach the ideal at the low frequency limit, but do stay 
closer to ideal throughout.  The coefficients based on maximal error bounds tend to 
have their low frequency limit very near one (ideal).  This maximizes the bandwidth over 
which the phase and/or group speed is within error bounds.  However, instead of being 
nearly 0.375% in error, for example, in phase speed at the low frequency limit such as 
for the extremum error cases, the coefficients based on sum of errors is less than 0.1% 
in error at the same limit.  Thus, low frequency energy in the source is more accurately 
propagated.
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5. CONCLUSIONS

This report has described results of optimization studies for finite-difference coefficients 
in order to minimize run time within given error bounds under a variety of error bound 
measure scenarios.  Case 1, standard Taylor Series coefficients with variable time step 
stability criteria, provides the best overall fit to analytic far field waveforms and should 
be used when nothing is known about the source.  However, of nearly equal accuracy, 
but with half the run time, Case 5, which uses the weighted sum of square errors from 
both the phase and group speed, provides the best option if information about the 
source is known.
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