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ABSTRACT

To provide a seamless integration of manufacturing processing simulation and fiber
microstructure modeling, two new stochastic 3D microstructure reconstruction methods
are proposed for two types of random fiber composites: random short fiber composites,
and Sheet Molding Compounds (SMC) chopped fiber composites. A Random
Sequential Adsorption (RSA) algorithm is first developed to embed statistical
orientation information into 3D RVE reconstruction of random short fiber composites.
For the SMC composites, an optimized Voronoi diagram based approach is developed
for capturing the substructure features of SMC chopped fiber composites. The proposed
methods are distinguished from other reconstruction works by providing a way of
integrating statistical information (fiber orientation tensor) obtained from material
processing simulation, as well as capturing the multiscale substructures of the SMC
composites.

1. INTRODUCTION

Fuel efficiency and low carbon emission regulations are playing a major role in
raising the demand for lightweight composite automotive components to replace the
traditional metal parts. Fiber composites materials are identified as one of the most
promising candidates for automotive lightweighting due to the competitive mechanical
properties, non-toxic, fast cycle times and part consolidation potential [1-3]. There are
two types of fiber composites: long fiber (unidirectional or woven) composites, and
short fiber composites. The short fiber composites have the advantages of the processing
ease and a relatively low processing cost compared to the continuous fiber composites.
Furthermore, both isotropic and anisotropic properties can be achieved in short fiber
composites. In this work, we focus on modeling the microstructure of short random-
fiber composites. Based on the ‘Processing-Microstructure-Property’ modeling chain
[4], numerous efforts in materials experiment [5, 6] and simulation [7-12] are carried
out to achieve high performance short random-fiber composites materials by carefully
controlling material microstructures through appropriate manufacturing process. The
property of short random fiber composites materials highly depends on microstructure
features such as aspect ratio, volume fraction, orientation, and substructure. However,
modeling and simulating of short random-fiber composites materials properties via
materials microstructures are still fields of active research, yet to be fully explored.

To expand the use of random-fiber composites materials, accurate prediction of
materials constitutive behavior is required. Three major categories of methods have
been introduced [7]. The first category is the analytical homogenization method based
on Eshelby’s strain concentration tensor [13]. Fibers are modeled as the second phase
inclusions in the resin matrix. This method is applicable to the prediction of fiber
composites properties with unidirectional fiber distribution. and it can also be extended



to account for random orientations by embedding orientation averaging process [14].
The second category of methods are based on the classical laminated plate theory
(CLPT) where fiber material is approximated as a set of parallel layers of in-plane
randomly oriented fibers. This method is computationally powerful in modeling fiber
composites with laminated structure [1]. However, the aforementioned two categories
of methodologies are limited in assessing nonlinear material properties, because those
methods are lacking a quantitative description of the complex microstructure or a
statistical description of the uncertainties in microstructure and material properties. The
third category is the microstructure-based Finite Element Analysis (FEA) method.
Advanced finite element technologies enable the direct material property evaluation on
a Representative Volume Element (RVE).

RVE explicitly captures the materials’ geometrical features on the micro-level.
RVE-based FEA analysis has been widely accepted in 2D material property simulation,
however, some material properties such as the anisotropy of material, the stress transfer
effect and the inter-filler interaction can only be accurately captured in 3D [8]. There
exists even less works on 3D RVE reconstruction of short random-fiber materials’
microstructure, due to the high complexity in the micro-architectures, such as random
orientation distribution, irregularly shaped substructures, high compactness induced by
a large fiber volume fraction, large fiber aspect ratios, and fiber curvature. To this end,
the challenge is how to generate digital microstructure reconstructions of short fiber
composites in 3D space. The statistically equivalent reconstructions match the pre-
specified microstructure statistical information, which are obtained from either image-
based microstructure characterization or material processing simulations.

There are three major categories of RVE reconstruction methods for the random
fiber system. The first category is based on the Random Sequential Adsorption (RSA)
algorithm. This algorithm is firstly introduced in [15]. Objects (e.g. fibers) are generated
and placed in the cubical space iteratively. There is no overlapping between the objects.
The principle of RSA is quite straightforward and easy to apply in the random-fiber
system. The fibers and fiber tows are usually represent by ellipsoids, cylinders or
straight lines. Bohm et al. [16] introduced a modified RSA approach and generated
RVEs of metal matrix composites. The fiber entities are represented by arrangements
of identical cylindrical, spheroidal or spherical reinforcements. The fiber orientation
distribution is purely random in the RVE model. Tu et al. [17] applied a similar RSA
approach and generated RVEs to simulate the thermo-conductivity and elastic modulus
behavior of fiber composites. The fiber volume fraction is up to about 30% while
overlapping is allowed in the RVE. The fiber orientation distribution is again purely
random in the RVE model. Kari et al. [ 18] proposed a modified RSA which sequentially
places different sizes of fibers in the RVE to achieve a high fiber volume fraction.
However, the generated fiber size distributions are not realistic. Pan et al. [19] employed
a modified RSA algorithm and generated a RVE of a random-fiber composite with
fibers entity represented by long cylinder. The fibers are placed in sublayers, which are
subsequently stacked to generate a 3D body. The fiber volume fraction is 13.5%. In a
more recent work of Pan et al. [7], fiber kinks are introduced to achieve a higher fiber
volume fraction and to avoid overlapping. The resulting volume fraction is 35%—40%.
However, the fiber kinks structure is not realistic. Furthermore, the fiber orientation is
generated randomly in the 2D XY-plane without a component in the Z direction.

The second category of reconstruction methods are Monte Carlo-based methods.
Firstly an initial configuration of arbitrary fibers’ locations and orientations is created.



Secondly, the fibers are rearranged following certain rules to eliminate overlapping.
Gusev et al. [20, 21] used the Monte Carlo-based method in modeling material
properties of short fiber reinforced composites. The fiber volume fraction and aspect
ratio limits are similar to the RSA method and again there is no specific orientation
information embedded in the Gusev's model, i.c., the fiber orientation distribution is
purely random.

The third category is the image analysis-based method. With the microscopy
techniques such as scanning electron microscopy (SEM) and confocal microscopy [22]
or X-ray tomography [23], the fiber microstructure features can be observed and
quantified from the microstructures. Gerd et al. [9, 24] generated a multi-layer model of
fiber composites on the basis of 2D SEM information and validate the model by
comparing to the 3D information obtained by the synchrotron tomography. The
reconstructed model matches quite well with the synchrotron tomography information
with respect to the microstructure statistics. In the work of Faessel et al. [25],
microstructure images are obtained by synchrotron radiation tomography. The 3D fiber
RVE is reconstructed based on the X-ray absorption radiographs. However the
statistical information of microstructure features, especially the fiber orientation
distribution, is not representative because of small window sizes of the 2D microscopic
images. On the other hand, the synchrotron radiation tomography can only generate
exactly the same microstructure as the specific material sample. In computational
material design, it is important to generate a large number of statistically equivalent
microstructure models for quantifying the uncertainties in the microstructure and the
resultant properties. Furthermore, the tomography techniques are expensive and
demanding on the sample preparation.

As summarized above, the existing RSA or Monte Carlo-based microstructure
reconstruction methods do not consider the statistical fiber orientation information in
reconstructions. It is assumed that the fibers are distributed randomly in the 2D or 3D
space. However, the fiber orientation has a significant effect on the material properties
of fiber composites [5, 26-28]. The patterns of fiber orientation distribution are strongly
influenced by the processing methods and conditions. Great efforts have been made in
predicting the evolution of fiber orientation distribution during material processing [10,
29]. The elastic properties of fiber composites have been predicted analytically from the
fiber orientation information [11, 12]. However, the analytical method is limited in
handling plastic properties while predicting large deformation behavior is urgent for
fiber composites materials. This calls for a solution to embed statistical fiber orientation
information into the RVE for subsequent finite element analysis. Furthermore, existing
models fail to capture the special microstructure features of Sheet Molding Compounds
(SMC), where the microstructure of SMC is featured by the random distribution of fiber
tows, formed by dozens of aligned fibers (Figure 7 (a-c)).

The purpose of this paper is to develop 3D stochastic reconstruction methods to
enable the 3D modeling of both random fiber composites and the SMC chopped fiber
composites. The remainder of this paper is organized as follows: In Section 2, the
general framework of the proposed 3D RVE reconstruction for fiber composites
materials is introduced. In Section 3, the basic knowledge of orientation tensor and the
principle of recovering the fiber probability distribution function (PDF) from orientation
tensor are briefly reviewed as a part of the technical background. In Section 4, an
improved RSA model is introduced to illustrate how to employ the statistical fiber
orientation information (PDF) in the reconstruction of random fiber composites. In



Section 5, a Voronoi diagram-based two-level reconstruction algorithm is proposed for
the reconstruction of SMC chopped fiber composites. A case study is done as a
demonstration of the proposed Voronoi diagram-based algorithm. For the time being
the processing modeling and FEM simulation work are still in process and are not
included in this paper. Section 6 concludes the paper.

2.  FRAMEWORK FOR RANDOM SHORT FIBER 3D RVE
RECONSTRUCTION

The proposed framework for random fiber 3D RVE reconstruction includes four
main steps, as shown in Figure 1. In Step 1, key microstructure descriptors are identified
as the quantitative representation of microstructure features based on the available
information from processing simulation and microstructure images. In Step 2, key
microstructure descriptors are quantified. For example, the fiber orientation probability
distribution function is recovered from the fiber orientation tensor (Section 3) and
descriptors such as aspect ratio are quantified based on image analysis. In Step 3,
statistically equivalent RVE are reconstructed in the 3D space (Sections 4 and 5). In
Step 4, the reconstructed RVE is validated by comparing the input statistical information
and that of the reconstructed RVEs (Section 4.2 and Section 5.4).

The proposed methods can be distinguished from any other existing works in two
regards: (1) The statistical fiber orientation tensor obtained from processing simulation
(e.g. compression molding, injection molding) is considered in microstructure
reconstruction; and (2) The tow structure features of SMC are captured.

1 Focus of this paper
Identification of key ' Quantification of
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Figure 1. Framework for random short fiber 3D RVE reconstruction
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Figure 2. Cartesian coordinate system for random short fiber 3D RVE reconstruction
3. RECOVERY OF FIBER ORIENTATION DISTRIBUTION FROM
ORIENTATION TENSOR MATRIX

Orientation of a single short fiber can be represented by the angles (0, @) as shown
in Figure 2. Hence, the orientation state of a point in space can be described by a

Probability Distribution Function (PDF) y(0, ¢). The probability of finding a fiber with
the two angles between 01 and 0,+d0, and ¢ and @(+de, are given by

P(6,<0<6,+d6.4,<$ < +dg) = y(6,.¢,)sin 6,d0d¢ (1)
In Cartesian coordinate system, orientation of a single short fiber can be equivalently

represented by a unit vector P= (Py, P2, P3), thus one can write the distribution function
y(P) as a function of P. The three components of vector P are given by

p, =sinfcos ¢ (2a)
p, =sinfsin g (2b)
p, =cosf . (2¢)

3.1 The concept of fiber orientation tensor

The PDF is too verbose for numerical calculations of three-dimensional fiber
orientation in complex geometries [10, 29]. Orientation tensor, especially the second-
order tensor, a much compact description of fiber orientation as defined in the following
has been widely used in the calculation of fiber orientation in flow molding process.

The most commonly used second-order and fourth-order orientation tensors are:

a, = [ Apw(P)dP
S

; (3a)

ay, = [Bp,pcpwy (P)AP (3b)
N

where S is the surface of the unit sphere. From the definition, it is evident that orientation

tensors are symmetric and has the following normalized properties:



a,=a, (4a)
a, =1 . (4b)

The lower order tensor can be derived from higher order tensor as:

Qe = 4y (52)

Bitimm = Yy (5b)

3.2 Recovery of fiber orientation distribution function

As mentioned above, orientation tensor is low order orientation information of
orientation distribution. To construct a microstructure RVE, the fiber orientation
probability distribution function needs to be recovered from the fiber orientation tensor
matrix following the formulation developed by Tucker et al. [14]. By expanding the
distribution function in orthogonal functions of the components of P :

315
V/(P) - _+_byfl, (P) ,/szlﬂd( )+ > (6)
where b, , b, are the deviatoric versions of the orientation tensors:
0, i#]
517 = 1 IZJ (73)
1
by=a;- g‘su (70)
bijkl Ay — (5 ay + é‘zka + é‘ilajk + 5jkail + §jlaik + 5klaij)
, (70
(5 Oy +0,0,+6,0,)
and f;(P), f,;, (P) are tensor bas1s functions of P .
f;(P)=p,p, ——5[}, (8a)
1
fijkl(P) =DpP;P D _7(é‘ljpkpl + 5kpjp1 + 51p,pk +0 PPt o PPt 5k1p,pj)
(8b)

(5 5k1 +51k5 +5i15_,-k)

As shown n equation (6), one needs infinite set of orientation tensors to fully recover
the distribution function. However, this form provides an approximation of the
distribution function with a finite set of orientation tensors by truncating the series in
equation (6). The higher the order of information is included in the recovery, a higher
accuracy will be obtained. Since most processing simulations only keep the second-
order tensor as the orientation state variable, in this paper the distribution function is
recovered from only the second-order tensor and the forth-order tensor. The second-
order tensor is the orientation state directly obtained from the processing simulation and
the forth-order tensor is the closure approximation based on the second-order tensor.
There are two ways to form the closure approximation [14]. The first one is the linear



closure approximations which are exact for a completely random distribution of fiber
orientation:

g y

1 1
El = 7(51"“/(1 + é‘ikajl + é‘ilajk + §jkai1 + 5jlaik + 5klaij) _g(é‘ijé‘kl + é‘iké‘jl + 51‘15;/;) .9

The second one is the quadratic closure approximation which is exact for the perfect
uniaxial alignment of fibers.

b = aya,, . (10)

By mixing the quadratic and linear forms according to some microstructure image
measurements of orientations, one can get a more accurate approximation:

a,, =(- il + &) (11)

where f is a generalization of Herman's orientation factor; it is equal to zero for

randomly oriented fibers and unity for perfectly aligned fibers. Orientation tensor and
orientation distribution function do not have one-to-one mappings. For a specific
orientation tensor, changing the value of f will lead to a different resultant distribution.

There are several candidate approximation algorithms for converting tensor to PDF. In
this paper f'is taken as zero to build RVE with a more randomly distribution nature.

One can get a more aligned distribution by increasing the value of f* [30]. Figure 3
shows two examples of the PDF recovered through orientation tensor.
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Figure 3. Orientation tensor and the corresponding Probability Distribution Function

4. 3D RVE RECONSTRUCTIONS OF RANDOM SHORT FIBER
COMPOSITES



4.1 An improved RSA algorithm for random short fiber composites
reconstruction

Traditionally, the Random Sequential Adsorption (RSA) algorithms do not take
fiber orientation distribution into consideration, so they can only generate pure
randomly distributed-composite microstructures. In this work, an improved RSA
algorithm is developed to generate statistically equivalent random microstructures that
match the input fiber orientation distribution. The details of the algorithm are
demonstrated as following (Figure 4):

1) Input fiber parameters: The fibers are represented by cylinders with the same
diameter and length. The input of the reconstruction algorithm includes: fiber
diameter, fiber length, number of fibers and the PDF of fiber orientation.

2) Determine fiber orientation: The fiber orientation is generated based on the PDF
retrieved from fiber orientation tensor as explained in Section 3. Orientations with
higher probability in the PDF are more likely to be chosen.

3) Determine the location of fiber ends: One end of a fiber is randomly generated. Then
the nearest distance between the newly generated fiber and the existing fibers are
calculated and compared to the fiber predefined diameter. If there is overlap of
fibers, the fiber location will be re-picked until there is no overlap. By tuning the
threshold of the nearest distance one can control the density of the fiber.

4) Fibers are generated and placed into the 3D space sequentially. The non-overlapping
constraint must be satisfied in the generation process, i.e., each point in the RVE
space cannot be occupied by more than one fiber.

5) Stopping criterion: The algorithm will stop either when the number of fibers reaches
a predefined value, or when fiber generating (Step 3 and 4) has been tried
unsuccessfully for a predefined number of times, which usually happens when the
volume fraction is high and close to its upper limit when using the RSA method [1,
13, 16, 31].

Input fiber parameters for the fiber
reconstruction

l

Randomly generate the orientation of
fiber based on PDF for a new fiber

l

Randomly generate the location of one |[+———
end of the fiber
Check whether there is Y
overlapping exist ?
NO

Meets the ending
criterion ?

Figure 4. Flow chart of the RVE generation algorithm for random short fiber composites
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Figure 1. 3D RVE achieving different targets of input fiber orientation tensor

4.2 Case study 1: Reconstruction of random short fiber composites with specific
fiber orientation distribution

To illustrate the improved RSA algorithm, three different second order orientation
tensors are used for demonstration. They correspond to three typical fiber orientation
distribution patterns. In Figure 5, the length and diameter of a fiber are defined as 20
and 5, respectively. 650 fibers are generated in each RVE to ensure a relative compact
reconstruction with a small orientation tensor error which will be assessed in Section
4.3. The fiber volume fraction (VF) information is summarized in Table I. Even though
higher VF can be achieved by adding more fibers (more than 650), this is not the focus
of this work.

According to Equation (3), a higher eigenvalue of the components of the tensor
indicates a higher probability distribution of fiber in the relative orientation. For the first
case (Figure 5 (a)), the input tensor orientation tensor with eigenvalues (0.45, 0.45, and
0.1) corresponds to an almost transversely isotropic RVE with only little tendency
aligned along the Z direction. For the second case (Figure 5 (b)), the input tensor
orientation tensor with eigenvalues (0.25, 0.25, and 0.5) corresponds to a more
randomly distributed fiber RVE. For the third case (Figure 5 (b)), the input orientation
tensor with eigenvalues (0.125, 0.125, and 0.725) corresponds to an almost vertically
aligned fiber distribution. The input orientation tensor (in) and the actual orientation
tensor (out) of the reconstructed RVEs are listed in Figure 5. As shown in Figure 5,
fibers distribute mainly transversely in Figure 5 (a). Fibers distribute randomly in Figure
5 (b). Fibers distribute vertically along Z direction in Figure 5 (¢). Our tests confirm that
the fiber distribution in the reconstructed RVE matches well with the three input
orientation tensors.

4.3 Validation of the RVE reconstructions

The reconstructed 3D random short fiber RVE is validated by comparing the
reconstruction’s fiber orientation tensor matrix to the target orientation tensor matrix. A
perfect reconstruction will have zero error in such comparison:



Apo (12)

where AE is the orientation tensor error, a,, is the input second order orientation tensor
and a/, is the orientation tensor of the reconstructed RVE. The orientation tensor error

of the three RVEs in Figure 5 is summarized Table 1. As it can be noted, the error is
very small and negligible.

The statistical distribution of fiber orientation cannot be matched accurately unless
there are a sufficient number of fibers. Increasing the number of fibers in a RVE, the
reconstruction error of orientation tensor will decrease. However, a larger number of
fibers also lead to a shorter distance between fibers, which require a finer mesh for the
resin phase. It will increase the computational cost of FEM. To achieve a balance
between the accuracy and the computational cost, the convergence relation between the
orientation tensor error and the number of fibers is demonstrated using the case of
orientation tensor eigenvalue (0.25, 0.25, 0.5). Reconstructions of different numbers of
fibers are generated with this orientation tensor, and then the error of the reconstructed
orientation tensor is calculated by Equation (3), as shown in Figure 6. It is evident that
the error of orientation distribution converges to zero as the number of fibers increases:
AE =4.6% for 32 fibers and AE = 0.9% for 512 fibers. Therefore, it is concluded that
less than 1% error in fiber orientation tensor can be achieved with 512 fibers. Further
increasing the number of fibers will not decrease the orientation error significantly

(Figure 6).

Table 1. Summary of the information for the three reconstructions

RVE N;m of components in orientation tensor VE%) AEC%)
iber an an a33
a 650 0.45 0.45 0.1 18.1 2.30
b 650 0.25 0.25 0.5 17.1 1.34
c 650 0.125 0.125 0.75 18.3 2.18

304

Error(%)

Error(%)

256 512 1024 2048 4096 8192 16384 32768

Num of fibers

T T T T T T T T T T T T T
4 64 1024 16384

Num of fibers

Figure 2. Orientation error vs. Number of fiber

5.3D RVE RECONSTRUCTION OF SMC CHOPPED FIBER COMPOSITES

5.1 Fiber tow structures features of SMC chopped fiber material



The raw materials of SMC include resin and carbon/glass fiber bundles. The
diameter of the fiber is 10~14 pm, and the length of the fiber bundle is around 25mm.
In the fabrication process, the fiber bundles are chopped into short fiber tows, which are
mixed with resin by a series of processing steps including compounding, thicken and
compression moulding [32]. Figure 5.1 (a) shows a typical SMC microstructure.
Different from short random fiber composites, two important features of SMC are
observed: 1) The microstructure consists of randomly-oriented fiber tows; 2) Each fiber
tow consists of aligned fibers. All fibers have the same orientation inside each fiber tow.
Instead of tracing the orientation angle of each fiber, the fiber orientation is represented
by the statistical distribution of fiber tow orientations weighted by the fiber tow area.

5.2 Concept of Voronoi diagram

In the proposed SMC reconstruction algorithm, the concept of Voronoi diagram is
used to partition a whole space into subareas, each represents different orientations of
fiber tows. In mathematics, a Voronoi diagram is a partitioning of a space into regions
based on distance to points in a specific subset of the space. That set of points (called
seeds, sites, or generators) are specified beforehand, and for each seed there is a
corresponding region consisting of all points closer to that seed than to any other. These
regions are called Voronoi cells. Figure 7 (d) shows an example of 2D Voronoi diagram
with 15 Voronoi cells. As highlighted in Figure 7 (b-c), the geometry of SMC’s sub-
structure (fiber tow), is similar to the Voronoi cells. Therefore, we propose to use
Voronoi cells to represent the fiber tows in the RVE reconstruction. The key question
here is how to adjust the shape of Voronoi cells to match the statistical distribution of
the fiber tows’ geometry. In Section 5.3, an optimization-based reconstruction algorithm
is developed to generate Voronoi cells based on pre-specified size and aspect ratio. Once
the reconstruction is partitioned into multiple cells, the fiber orientation of each cell is
then assigned to match the predefined fiber orientation tensor. In FEA simulations of
composite properties, the properties of UD composites are assigned to each fiber tow
(Figure 7 (e)). The UD properties are predicted from the virtual tensile tests on UD RVE,
which has the same fiber VF as the SMC fiber tows.

7

=
=

Figure 7 (a) Microstructures of SMC fiber materials, (b-c) fiber tows and boundaries highlighted in
yellow, (d) 2D Voronoi diagram with 15 cells, (e) 2D reconstruction to capture the features in (a)



The long axis of a Voronoi cell (fiber bundle)
is defined as the longest distance between its
vertices i.e. the line AB.
The short axis is defined as the line CD.
cD|= EF x AB
|4B]

AB
Cella spect ratio = u

D

Figure 8. Illustration of the shape parameters of Voronoi cells and fiber tows

5.3 Tow structure reconstruction using Simulated Annealing (SA) optimization

The shape of a fiber tow is quantified by two parameters: tows area/volume and the
aspect ratio of the tows. The definition of aspect ratio in 2D is illustrated in Figure 8.
Such definition can be easily extended for 3D cases.

An optimization-based algorithm is introduced for reconstructing the tow structure
(Figure 9). First, the number of cells is defined and an initial Voronoi diagram is
generated by randomly arranging the seeds into the 2D or 3D reconstruction space. The
shapes of Voronoi cells are determined by the seed locations. A Simulated Annealing
(SA) algorithm is employed to move the seeds to the optimal locations such that the
sizes and aspect ratios of the Voronoi cells match the predefined distributions with the
least error. During each iteration in the SA optimization, the location of one randomly
selected seed is randomly perturbed. Subsequently, a candidate Voronoi diagram is
generated based on new seed locations. An evaluation of the shape parameters of the
fiber tows is conducted to determine whether the statistics of the new structure (the new
set of Voronoi cells) is closer to the target. The acceptance criterion is defined in
Equation (13).

— — 2 2
Er g, — (6{‘ did _gtarget) + Kl (Var(gcandidate)_Var(atarget)) (13 )
, a
— — 2 2
+I|:( Candidate_l/target) + K2 (Var(l/cand[date )_Var(l/target)) :|

AE = Ecandidate —E current (13b)
P =exp(-AE/ kt) (13¢)
where @, .. and V. are the mean aspect ratio and volume of the new set of
Voronoi cells, respectively. éarget,lzarget are the mean aspect ratio and volume of the

target Voronoi cells. In addition, the variance of the volume and aspect ratio are also
matched. var(...) stands for the variance calculator. 7, K|, K, are the weighting factors,

and kt is the annealing factor. In this paper, we recommend to use
K, =K,=30,kt =0.01. AE is the energy error. AE <0 indicates that the candidate

Voronoi diagram is closer to the target.



Target: shape of Voronoi diagram matching the random fiber tow structures

Determine the number of cells(N) |

Randomly arrange N points into
the reconstruction space

Randomly perturb the location of
one randomly selected point
!

Reject the new point
locations and take the
locationsin last iteration

Accept current | Generate the Voronoi diagram |
point locations

Evaluate the shape parameters of
Voronoi cells

YES oser to NG With probpbility(1-p)

target(AE<0)
?

With probability(p)
Figure 9. Flowchart of the optimization-based reconstruction algorithm

IfAE <0, the perturbed structure will be accepted as the new candidate structure;
if AE >0 the perturbed structure will be accepted with a small probability P. P will
decrease as the number of iteration increases (Equation (13)). Acceptance of a worse
structure with a small probability enables the optimal search not be trapped in local
optimums. The algorithm will stop either when £, decreases to a predefined value,

urrent
or when the run time limit is reached.

As fibers have the same orientation inside each fiber tow, the calculation of
orientation tensor is modified as:

a, =[BpyP)4dP (14)
S

where 4, is the area of the kth cell. After the reconstruction is partitioned into

multiple cells, the fiber orientation of each cell is then assigned to match the
predefined fiber orientation tensor.

5.4 Case study 2: reconstruction of SMC chopped fiber composites

In this section, the optimization-based SMC microstructure reconstruction
algorithm is demonstrated on a 3D case. By conducting image-based characterization
on the microscopic images of the SMC composites, the values of two input
microstructure descriptors can be determined: the mean area of the Voronoi cells, and
the mean and variance of the Voronoi cell’s aspect ratio. Given the total area of the
microstructure, the number of Voronoi cells can be calculated as the total area divided
by the mean cell area. In this work, the number of Voronoi cells is 32. The target mean
of aspect ratio is set as 2.5, the target variance of aspect ratio is set as 0.01 and the target
variance of cell volume is set as 10e+12. The shape parameters in this study are unitless
such that it can be mapped to any unit system easily. The total volume of the RVE and
the number of Voronoi cells are fixed so that the mean of cell volume is determined

accordingly. The terms (V V.

candidate " target

2
) in equation (13) equal to zero.
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Figure 3. 3D RVE reconstruction of SMC chopped fiber composites. Fiber tows are represented by
Voronoi diagram. (a) initial random configuration (b) AS (c) V (d) AS+V (e) surface of one cell in
the RVE reconstruction (f) one Voronoi cell filled with aligned fibers

Microstructures created based on different reconstruction targets are compared in
Figure 10. Figure 10 (a) is a purely randomly generated RVE. Figure 10 (b) is an RVE
reconstruction that only matches the target mean and variance of aspect ratio (AS).
Figure 10 (c) is an RVE reconstruction that only matches the mean and variance
of cell volume (V). Figure 10 (d) is an RVE reconstruction that matches the target mean
and variance of both aspect ratio and cell volume (AS+V). In Table 2 the accuracy of
the four RVE reconstructions are compared quantitatively. By comparing the
parameters of AS, V, AS+V to those of the initial RVE, it is evident that when taking
only a single target parameter into consideration the simulated annealing algorithm
works well in reducing the difference between target parameters and the initial
parameters. However, there is a tradeoff between meeting the target of cell volume and
that of the cell aspect ratio when considering both in the objective function.

Table 2. Parameters of Voronoi cells for the RVEs in Figure 10 (a) initial random configuration (b) RVE

reconstruction of matched AS (c) RVE reconstruction of matched V (d) RVE reconstruction of matched
AS+V

RVE O(target =2.5)  var()(target = 0.1)  var(V)(target = 10el3) I
(a)Random 1.27 0.04 4.14E+14 /

(b)AS 2.53 0.12 3.20E+14 0

)V 1.24 0.03 9.02E+13 >>Ic
(d)AS+V 2.19 0.13 1.42E+14 I=lc

The fiber orientation of each cell is generated based on the PDF as explained in
Sections 3 and 4. For a coarse Finite Element Analysis (FEA), each Voronoi cell is
assigned with the property of Unique Directional (UD) fiber composites of the same
Volume Fraction. For a more accurate analysis, each Voronoi cell can be filled with
aligned fibers entities, as shown in Figure 10 (e-f). It should be noted that a wide range
of volume fraction can be achieved by the proposed reconstruction algorithm. Inside
each fiber tow, all fibers are oriented to the same direction. The fully aligned fibers don’t
have the overlapping issue that exists in the random short fiber composites, so there is
no fiber volume fraction jamming limit as the RSA method [1, 13, 16, 31]. The highest



volume fraction achieved by RSA is around 30%. The proposed SMC reconstruction

has the same VF upper limit as the UD composites: % ~ 90.6%.

6. CONCLUSIONS

In this work, new stochastic 3D microstructure reconstruction methods are
developed for both the short random fiber composite and the SMC chopped fiber
composites, respectively. These methodologies are fully automated and provide a
seamless integration of the manufacturing processing simulation and the fiber
microstructure modeling. In the process of 3D RVE reconstruction, statistical fiber
orientation information is first recovered from fiber orientation tensor, which is
generated as an output from manufacturing process simulation. A random sequential
adsorption (RSA) algorithm is developed to embed statistical orientation information
into 3D RVE reconstruction of random short fibers. To the authors’ best knowledge,
this is the first work on stochastic reconstruction of chopped fiber composites
considering the statistical orientation information. In addition, an optimized Voronoi
diagram based approach is developed for capturing the multiscale substructure features
of SMC chopped fiber composites. The Voronoi diagram-based reconstruction is able
to achieve high volume fraction of fiber over 50% comparable to values achieved in
industrial-grade materials. The limitations of the proposed methods are summarized as
the future work. First, the dependency between the fiber orientation and the shape of
each cell is not considered in our reconstruction. In the real SMC microstructures, the
fibers tend to align parallel to the long axis of the cell. Second, more microscopic
information will be obtained to capture the layered structure of SMC in the 3D space.
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