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Abstract

As optimization, user capabilities, and data-taking abilities are incorporated

into next-generation power grids, or smart grids, they face cyber threats. The

traditional electrical grid could only be damaged by physical attacks; however the

smart grid can suffer remote/cyber attacks, which have not been studied extensive-

ly in the literature. The electrical grid forms the backbone of the modern society

and its security has significant implications in military settings. This paper applies

game theory to model three-levels (power plants, transmission, and distribution

networks) of defenses and attacks in smart grid network security. We characterize

both the attacker and the defender (who interact at three network levels: distri-

bution, transmission, and power plants) best responses and equilibrium strategies.

We find that the defender’s best response is not only a function of direct attacks but

also of the spread from connected networks. Sensitivity analyses of the equilibrium

strategies show that when success probability of an attack against power plants

reaches a threshold, the defender increases defending efforts for power plants. In

contrast, the attack effort at all levels is not affected by this probability. This paper

provides some novel insights to modeling and analyzing the emerging threats to the

growing smart grid networks.
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INTRODUCTION

Economically and efficiently producing electricity is an issue of global concern. As soci-

eties become increasingly reliant on modern technologies, concerns about having enough

energy become more prevalent (Garrity, 2008). A smart electric grid is designed for

this purpose for optimal power and resource distribution with increased automation,

real-time data-taking capabilities, integrated new smart technologies and appliances, en-

hanced electricity storage, and peak saving technologies (Wei, 2010; Bidram and Davoudi,

2012; Sorebo and Echols, 2012).

However, the integration of cyber components and “smart” technologies also signif-

icantly increases the vulnerably to remote/cyber attacks. Particularly, interconnecting

among different layers in a large network enables globe control over individual electricity

consumers instead of isolated control and presents advantages such as improved coordi-

nation of electricity usage with risk of serious potential cascading damage effects. The

United States Department of Defense is among the biggest energy consumers in the world

and the single largest energy consumer in the U.S. (Reitenbach, 2012). Modern terror-

ist groups such as ISIS and al Qaeda seem capable of launching a main cyber attack

against the West (Paganini, 2014), which could have devastating impacts on the military.

Therefore, cyber-security issue has be extensively studied to support the development of

smart grids (Carin et al., 2008; Gu, 2008; Yan et al., 2012; Wang and Lu, 2013). In

2009, evidence was found that foreign spies had already hacked into parts of the United

States power grid and scouted out much of its structure; no direct damage was caused

but the stolen information could be the difference between success and failure of a large-

scale cyber-attack (Gorman, 2009). Metke and Ekl (2010) provide a review of security

technologies developed for smart grids. Defense strategies for smart grids are likely to

be different than those for traditional grids. There has been a lot of valuable research

devoted to analyzing security of traditional electric grid against intelligent and delicate

attacks (Salmeron et al., 2004, 2009). Many papers consider physical attacks where some

segments of electricity flow could be interdicted by the attacker with the goal of iden-

tifying the optimal or semi-optimal defense strategies (e.g., Bier at al., 2007). In order
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to provide insights into the interactions in defending smart grids, this paper models the

complex strategic interactions of a defender and an attacker within the context of the

smart grid with game theory. To illustrate the game-theoretic model, we simulate opti-

mal attack and defense strategies on three separate levels: power plants, transmission,

and distribution networks. In opposition to these parties will be the major threats to the

smart grid including smart thieves/stalkers, hackers, and cyber warfare.

The strategic model designed and solved will offer quantitative insights for protecting

and designing the smart grid to be resilient against cyber threats. Zahedi (2011) provides

a systems model to show the interconnected nature, the topography and benefits of the

smart grid, but does not address the inherent risks. Chen et al. (2011) construct nested

sets of petri nets to model large-scale simultaneous attacks against smart grid in order to

avoid the impracticability of creating a large petri net at once and to allow distributed

knowledge of cyber-physical attacks. Petri nets show an advantage over traditional at-

tack trees in handling simultaneous attacks. However, they also state that this method

requires currently unavailable data, which could be obtained from experts generating

many different low-level petri nets and combining them to create a high-level petri net.

Salve et al. (2015) provide a comprehensive review to examine current research in issues

of cyber security in smart grids.

Game theory has been widely used in capturing the strategic interactions between the

attacker and the defender on critical infrastructure protection (Bier et al., 2007; Zhuang

and Bier, 2007; Dighe et al., 2009; Golalikhani and Zhuang, 2011; Hausken and Zhuang,

2011; Zhuang and Bier, 2011; Levitin and Hausken, 2012; Shan and Zhuang, 2013a, b;

Shan and Zhuang, 2014a,b). Salmeron et al. (2004) evaluate vulnerability of electrical

grids by studying bilevel mathematical models and algorithms. Later on, Salmeron et al.

(2009) use Benders decomposition to solve this bilevel optimization problem to identify

the optimal interdiction plan. Tas and Bier (2014, 2015) focus on vulnerability of power

grid to cascading failures when facing an intelligent attacker. To increase the efficiency

in identifying good interdiction plans, Bier et al. (2007) proposes a simple and efficient

method based on greedy algorithm. Yuan et al. (2014) propose a Column-and-Constraint
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Generation algorithm to efficiently solve a defender-attacker-defender model. Roy et al.

(2010) discuss the different variations of games including static and dynamic games and

how to apply them in modeling network security. Our research is an implementation

of the concepts in Roy et al. (2010) by using game theory to model the cyber network

of smart grids. Game theory offers a practical way to model the strategic interactions

between attacker and defender of smart grids with available data and potentially bridge

the gap between theory and practice on smart grid defenses. On cyber networks, Gu et al.

(2008) offer an interesting model for defending a sensor network, which provides critical

information about its environment such as positions of hostile targets, against a search-

based attack. This model offers up an interesting defense strategy of sacrificing nodes to

detect a hidden attacker, allowing the defender to take actions against them. Bursztein

et al. (2007) construct a game to test a networks resilience against both attacks and

internal faults. They suggest the construction of a model that describes dependencies,

responses, and time.

Multiple levels of attacks and defenses have been studied (Levitin, 2003; Haphuriwat

and Bier, 2011; Levitin and Hausken, 2012; Hausken, 2013 & 2014; Levitin et al., 2013 &

2014). Cox (2009) and Levitin et al. (2012) investigate attacks and survival of networks.

Cascading failures on the network with interdependent components have been examined

by Lakdawalla and Zanjani (2002), Kunreuther and Heal (2003), and Hausken (2006).

NETWORK TOPOLOGY

The smart grid is a large network with many different interconnected components: Fig-

ure 1 shows a schematic diagram by highlighting its essential form (Flick and More-

house, 2011). Power is generated by power plants and transmitted and distributed to

the consumers’ households. Advanced Metering Infrastructure (AMI) is the key network

structure underlying a smart grid, and has smart meters and other smart devices as its

main components (Sorebo 2012). The main function of AMI is to record real-time pow-

er usage that is transmitted back to the utility companies (Sorebo 2012). Using this
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information the utility companies can monitor and control power generation and trans-

mission according to real-time need. We acknowledge that network topology might not

be necessarily an adequate way to characterize the vulnerability and/or performance of

an electricity network. However, network topology provides a great visualization tool to

understand the interconnected nature of electricity networks. Besides, electricity flow,

especially of a smart grid, would be too complicated to model and yield valuable insights.

The simple topology adopted here represents a first attempt in modeling cyber security

of complicated smart grid networks.
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Figure 1: Networks schematic highlighting threats to power plants, transmissions, and
distribution networks.

Threats and Attacks Types

With the incorporation of new technologies into the smart grid, new cyber threats must

be addressed to have a secure grid, such as from smart thieves or stalkers. With AMI large

amounts of personal information such as real-time power usage will be collected. This

information if obtained by a smart thief or stalker could be used to map out a potential

victim’s entire life allowing the thief or stalker to better plan out potential crimes.

Malicious motives for attacking the grid are diverse but fit into two main categories:

personal gain and political activism, known as hacktivism (Krapp 2005). Hackers attack-

ing the grid for personal gains will use the addition of malware to the grid software in
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attempts to gain money, power, or vengeance. For example, by introducing ransomware

(a specific type of malware that holds systems hostage for a ransom), a hacker could hold

a consumer’s electricity hostage until they were paid off (Sorebo 2012). These attacks

can be very subtle with an example being the RansomSMS-AH, which blocks Internet

access until the victim sends a text message to a premium rate SMS phone number

generating revenue for the hacker. A similar attack to the electronic database at Hol-

lywood Presbysterian Medical Center blocks access of healthcare providers to patient

data (Dobuzinskis 2005). They can also be unsubtle and as simple as a note demanding

pay-off for the reinstatement of power. By attacking the smart grid, activists affect a

massive amount of people and would draw a large amount of public attention to their

cause. For this reason the smart grid makes a very appealing target to activist groups.

Non-malicious attacks against the grid normally come from hackers trying to prove their

skills to themselves and the larger hacking community.

Crippling a nation’s infrastructure will greatly hinder its ability to operate in a war

scenario. As a result the smart grid will make a likely target for foreign enemies trying to

remotely damage the country. This has already occurred in some Middle East countries

with stuxnet and flame both significantly damaging Iranian nuclear infrastructure (Faranz

and Sonne, 2012). With the development of the smart grid, the avenues of attack and

potential for spread greatly increase.

NOTATIONS, ASSUMPTIONS, AND MODEL

Notations

For simplicity, this paper assumes that there is one attacker, or threat, and that the

intent of the attacker is to inflict the maximal damage at minimal costs, while the defender

intents to maximize protection at minimal costs. The variables, functions, and parameters

used throughout the paper are listed in Table 1.

As illustrated in Figure 1, we focus on three types of networks (power plant, trans-

mission, and distribution) in the smart grid and each network consists of different nodes.
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Table 1: Notations that are used in this paper

Variable or Parameter Interpretation
Decision Variables
ap = 0, 1, ..., np number of nodes in network of type p attacked
au = 0, 1, ..., nu number of nodes in network of type u attacked
ah = 0, 1, ..., nh number of nodes in network of type h attacked
dp = 0, 1, ..., np number of nodes in network of type p defended
du = 0, 1, ..., nu number of nodes in network of type u defended
dh = 0, 1, ..., nh number of nodes in network of type h defended

Function Definition
Pk(ak, dk) Probability of network of type k operating
Iak>dk Indicator function of the event that attacks are more intense than

defense of network of type k
UD Defender’s utility function
UA Attacker’s utility function

System Parameter
k ∈ {p, u, h} Network type

p A power plant, parent Network
u A transmission, child Network
h A distribution, grandchild Network
nk Number of nodes in network of type k
mk Minimal number of operating nodes required for functioning of

network of type k
sk Number of successful attacks against nodes in network of type k
pk Success probability of attacking each node within a network of type k
Vk Defender loss from breakdown of a network of type k
vk Attacker gain from breakdown of a network of type k
gkj Probability that damage caused to network of type k is spread to

network of type j.
If k = p, j = u; if k = u, j = h

Ck Unit cost (per node) to defend nodes in network of type k
ck Unit cost (per node) to attack nodes in network of type k
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In particular, we assume that there are nk nodes at each of the three layers of networks,

where k = p (power plant), u (transmission) or h (distribution). In order to specify

the unique relationships between networks characterized by the one-direction effect, we

refer to the network of power plants as a parent network to the network of transmis-

sions, which itself is a parent network to the distribution network (grandchild). That

is, electricity was generated/distributed by a parent network to its child network. As a

result, the shutdown of a parent network will most likely affect the electricity supply to

its child network. Due to the limitation of current technologies in electricity distribution,

selling electricity back from a child network to a parent network is not widely spread in

practice and thus breakdown of a distribution network is not expected to affect its parent

network too much. Conversely, the distribution network is named as a child network to

the network of transmissions, which in turn is a child network to the network of power

plants.

Table 1 lists the decision variables of the attacker and the defender. We assume

that each node/component of a network is a potential target to attack or defend. Note

that as a first step toward understanding the defense of a smart grid, we assume that

the attacker’s decision is not on where to attack but instead on the efforts to invest,

which translates to how many nodes to attack. Similarly, the defender decides on how

much efforts to devote to defense. Table 1 contains four functions studied in the paper:

1) probability of network of type k operating is denoted by Pk(ak, dk), which is a key

to both the attacker’s and the defender’s objective functions. Basically, the attacker

minimizes the operating probabilities of each network weighted by their valuations while

the defender maximizes those probabilities; 2) indicator function of the event that the

attacks are more intense than defense of network of type k is represented by Iak>dk ,

whose main function is to determine whether or not the attacks on a parent network is

sufficiently intense to affect its child network; and 3) utility functions of the defender and

the attacker are denoted by UD and UA. Note that the cascading failure studied here is

different from cascading effects considered for traditional electricity grid (e.g., Tas and

Bier, 2014). In Tas and Bier (2014), cascading failures are due to power flow interdiction
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affecting the downstream power flow. In contrast, we are considering that some critical

nodes of a parent network under cyber-attacks without adequate defense affects other

critical nodes of the child network. It could be due to communication failures or other

mechanisms than power flow interdiction.

Finally, system parameters are listed in Table 1: network type is denoted by k, which

could be p (power plants), u (transmissions), or h (a distribution network). We have nk

as the number of nodes in network k and mk as the minimal number of operating nodes

in network k in order for that network to function. Number of successfully attacked

nodes in network k is labeled as sk while pk represents the success probability of an

individual attack on a node. Defender’s loss (attacker’s gain) from breakdown of network

k is denoted by Vk (vk). We have gkj as the probability that damage to network k is

spread to its child network j, which only occurs if attacks are more intense than defenses.

Unit cost to defend (attack) nodes in network k is Ck (ck). Note that when a network

breaks down, its main functionality in supplying critical loads is impaired even though

there might be electricity flow in parts of the network. As a first step toward addressing

this critical issue, we are only focusing on complete or 100% failures instead of partial

failures.

Modeling Concepts and Assumptions

The defender’s objective is to maximize the probabilities of each network functioning

weighted by their corresponding consequences of breakdown to the defender within its

budget limit since a breakdown of a network of power plants is probably more catastroph-

ic than that of a distribution network, which impacts much less individuals. On the other

hand, the attacker intents to maximize the breakdown probability of each network, which

is weighted by the attacker’s valuation of the breakdown, without formidable cost. There

are nk nodes at each of the three layers of networks, where k ∈ {p,u,h} and the defense

(attack) efforts are between 0 and nk. We construct the model based on the following

assumptions: first, attacks on the parent network with intensity higher than defenses

will negatively affect its child network (e.g., intense attacks on transmission network are
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likely to affect the distribution network). Second, attacks on the child network will not

affect its parent network (e.g., attacks on utilities are not expected to much affect power

generation). The first two model constructs characterize the one-directional relationship

of the connections between parent and child networks. This is consistent with the obser-

vation that in most of the cases, failures in transmission lines cause power outages to all

the downstream circuits. Third, attacks and defenses are focused on each node (not its

connections). Due to redundancy in the grid, attacks on the connections are expected

to cause much less damage than attacks on the nodes. Fourth, the attacker’s decision is

on how much attack efforts to devote to each network in each network but not on which

nodes to attack. The probability of a network functioning normally as a function of at-

tack and defense efforts are explained in details later in the paper. Note the defender’s

efforts are not physical protection of critical nodes but efforts in updating cyber-security

policies, training security personnel and so on. On the other hand, the attacker’s efforts

are less known but might involve providing resources for cyber-attacks, opportunity costs

of hacking attempts against targeted network and so on. Fifth, the probability of break-

down is a function of both attack and defense efforts and independent between different

nodes of the same network.

We assume that a minimal of dk−ak ≥ mk+1 components is required for network k to

function. That is, a node operates normally if the defender invests more than the sum of

the attacker efforts and a maintained level specific to that network. Note that every node

in this study is assumed to be a critical node. Defense effort can be perceived as including

maintenance effort and an insufficient amount could cause the network to fail without

attacks. To relax the first assumption, we assume that if attacks were more intense than

the defense at a parent network, with a certain probability the functioning of the child

network would also be affected. For example, we assume that if a network of power plants

is affected, with probability gpu, the network of transmissions would also fail. Note that

this spread effect is one directional and only from parent networks to child networks. As

a first step toward solving this emerging and novel problem, the tenth assumption is that

both the defender and the attacker have complete information about the structure of the
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game, such as target valuations, costs, and the success probability of attacking each node.

Moreover, we also assume that to both the defender and attacker power plants have a

higher value to the defender than transmissions and distribution networks and that utility

companies have a higher value than distribution networks. This is represented for the

defender and the attacker respectively as follows,

Vp > Vu > Vh and vp > vu > vh (1)

From the defender’s perspective, securing the smart grid is the ultimate goal since

its normal operations can bring so many societal and economic benefits. To increase

security is arguably equivalent to decreasing the probability of breakdown of its com-

ponent networks. The probability of a network functioning normally as a function of

attack and defense efforts are explained in details later in the paper. Briefly, both the

defender and the attacker are assumed to be able to influence the probability of network

breakdown (i.e., the network malfunctions and could not deliver sufficient electricity to

critical loads). The defender’s objective is to maximize the probabilities of each network

functioning weighted by their corresponding consequences of breakdown to the defender.

The defender’s objective function values is also penalized by the defense cost. Basically,

the defender is trading off between security benefits and defense costs. In contrast, while

the true objective of the attacker are usually unknown to the defender and could deviate

from the assumed one, we adopt a reasonable assumption that the attacker intents to

maximize the breakdown probability of each network, which is weighted by the attack-

er’s valuation of the breakdown, with formidable cost. We formulate the optimization

problem as unconstrained; however, the unit costs of defending (attacking) would pre-

vent unlimited defense (attack) efforts. Therefore, at optimality, we expect the defender

(attacker) to balance between defending (attacking) to increase functioning (breakdown)

probability of each network and defense (attack) costs.
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Objective Functions

To operationalize the objective of defending the smart grid, the defender’s objective

function is as follows:

Ud(ap, au, ah; dp, du, dh) =

max
dp,du,dh

PpVp + PuVu + PhVh︸ ︷︷ ︸
[Defender gain for network operation]

− Iap>dpgpuVu − Iau>duguhVh︸ ︷︷ ︸
[Spread of network failure]

−Cpdp − Cudu − Chdh︸ ︷︷ ︸
[Defense cost]

(2)

where dp = 0, ..., np, du = 0, ..., nu, dh = 0, ..., nh.

The defender’s objective is to maximize the operating probability of three different networks

of the grid, while minimizing the spread of damages weighted by its valuation of each network

and cost of defense by deciding upon amount of defense units to be deployed among the three

types of networks. In particular, the defender’s objective function contains Pp, Pu, Ph as the

probability that networks of power plants, transmissions and distribution functions normally,

which are weighted by their importance to the defender (or the smart grid). We use Vp, Vu,

and Vh to represent the importance of the three types of network. Moreover, we assume that

there could be spread of attack impacts from parent network to child network. Specifically,

if the attack is more intense than defense as the network of power plants (i.e., Iap>dp = 1),

operation of its child network (transmissions) will be negatively impacted with probability gpu,

which is again weighted by the importance of network of transmissions Vu. Similarly, if the

attack is more intense than defense at the network of transmissions (i.e., Iau>du = 1), operation

of its child network (distribution) will be negatively impacted with probability guh as weighted

by the importance of distribution network Vh. Finally, if the defender invests dp, du, dh on

the three networks, the total cost is the sum of their unit cost multiplied by their efforts

(Cpdp + Cudu + Chdh), which the defender tries to minimize.

The attacker’s objective function is as follows:
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Ua(ap, au, ah; dp, du, dh) =

max
ap,au,ah

(1− Pp)vp + (1− Pu)vu + (1− Ph)vh︸ ︷︷ ︸
[Attacker gain from network failure]

+ Iap>dpgpuvu + Iau>duguhvh︸ ︷︷ ︸
[Spread of network failure]

− cpap − cuau − chah︸ ︷︷ ︸
[Attack cost]

)

(3)

where ap = 0, ..., np, au = 0, ..., nu, ah = 0, ..., nh.

The attacker’s objective is to maximize the breakdown probability of three different net-

works of the grid and the spread of damages weighted by its valuation of each network, while

minimizing cost of attacks by deciding upon amount of attack units to be applied against the

three types of networks. In particular, the breakdown probabilities of the three networks are

represented by (1−Pp), (1−Pu), and (1−Ph), which are weighted by their relative significance

to the attacker (vp, vu, and vh). The attacker also intents to have a significant spread from

attacks on a parent network to operation of its child network, which could happen if the attacks

are more intense than the defense for a given network (i.e., Iap>dp = Iau>du = 1). Therefore,

the attacker also wants to maximize the spread probabilities (gpu and guh) weighted by their

valuations to the attacker (vu and vh). Finally, the attacker’s objective also contains cost, which

is the sum of attack costs on each of the three networks (Cpdp + Cudu + Chdh).

GAME-THEORETIC MODEL FORMULATION

We first study the probability of a network of type k functioning under attacks. The attacker

decides upon how many nodes of each network type to attack (ak, where k = p, u, and h),

while the defender decides upon how many nodes of each network type to defend (dk, where

k = p, u, and h). The probability of each network operating is modeled based upon a binomial

random variable, which is the number of successful attacks. That is, the probability describes a

binomial distribution, where the probability of success is the probability of a successful attack

on a node of network k (pk). In particular, we have

Pk(ak, dk) = Pk(sk ≥ mk+1|dk, ak) =



0 if 0 ≤ dk ≤ mk∑dk−mk+1
sk=0

(
ak
sk

)
pk

sk(1− pk)ak−sk if mk ≤ dk < ak + mk

1 if dk ≥ ak + mk

(4)
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In other words, Equation (4) states that the probability of network k functioning equals

the probability that the number of successful attacks is greater than the minimum number

of operating nodes required for the functioning of network k (mk) given certain defense and

attack efforts. Implicitly, we assume that defense efforts will cancel the same amount of attack

efforts. We choose binomial distributions to model the probability of network operating because

binomial distributions are distributions of the number of successes in a sequence of Bernoulli

trials. Since the normal operation of each network can be reasonably perceived as equivalent to

the normal operation of at least the minimal number of critical nodes required for maintenance.

The operation of each node is stochastically determined by the success probability of an attack

and can be considered as independent bernoulli trials.

The right-hand-side of Equation (5) lists the three possible values for that probability: if

defense efforts are less than or equal to mk, the network will break down since no sufficient

maintainance/defense efforts have been invested; if defense efforts are greater than the attack

efforts (ak) plus mk, the network will function normally since sufficient defense efforts are in

place and cancel the amount of attack efforts; and if defense efforts are in between, the outcome

of the attacks in terms of breaking down the network follows a binomial distribution. For

example, the minimal required number of critical nodes for the network of transmission, which

has six nodes, are two and the attacker attacks three nodes of this network. If the defense on

this network is more than five nodes, the network will operate normally since the defense efforts

is more than the sum of both attack efforts and maintenance requirement. If the defense on this

network is between two and five nodes, the network might normally operate with a probability

of the cumulative sums of probability that no node will fail, probability that one node will fail,

probability that two nodes will fail and probability that three nodes will fail and can be obtained

by assuming the number of successful attacks (or equivalently, number of failed nodes) follows

a binomial distribution with parameter equaling the probability of a successful against a single

node. Finally, if the defense is less than two nodes, this network will fail even without attacks.

In other words, defense efforts can be also be perceived as maintenance efforts and must meet

the minimal requirement for the network to operate.

We also study a sequential game where the defender moves first. We first define the best

responses of both players.

Definition 1 Attacker’s strategy (âp, âu, âh) is a best response to defender’s strategy (dp, du, dh)
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if and only if

âp, âu, âh = argmax
ap,au,ah

Ua(ap, au, ah; dp, du, dh)

Definition 2 Similarly, defender’s strategy (d̂p, d̂u, d̂h) is a best response to attacker’s strategy

(ap, au, ah) if and only if

d̂p, d̂u, d̂h = argmax
dp,du,dh

Ud(ap, au, ah; dp, du, dh)

Then we define a Subgame perfect Nash equilibrium.

Definition 3 A pair of defender’s and attacker’s strategies (d∗p, d
∗
u, d

∗
h; âp, âu, âh) is called a

subgame perfect Nash equilibrium if and only if

âp, âu, âh = argmax
ap,au,ah

Ua(ap, au, ah; d∗p, d
∗
u, d

∗
h)

d∗p, d
∗
u, d

∗
h = argmax

dp,du,dh

Ud(âp, âu, âh; d∗p, d
∗
u, d

∗
h)

NUMERICAL ILLUSTRATIONS

In the following subsections, we study the attacker’s best response assuming that he can choose

ak = {0, 1, . . ., nk}, where k = p, u, or h in response to defender’s decision (dk = {0, 1, . . .,

nk}, where k = p, u, or h). In addition, we study the defender’s best response assuming she can

choose dk = {0, 1, . . . , nk}, where k = p, u, or h in response to the attacker’s decision (ak = {0,

1, . . ., nk}, where k = p, u, or h). Finally, we illustrates equilibrium strategies of both the

attacker and the defender within the context of a sequential game where the defender moves

first by deciding on resource allocations and also conduct sensitivity analysis to examine the

effects of key parameters on equilibriums.

For the numerical illustrations, we used the baseline parameter values listed in Table 2 to

solve the attacker’s and defender’s best response functions.

Attacker’s Best Response

Figures 2(a)-(c) show the attacker’s best responses at the network fronts of power plants, trans-

missions, and distributions, respectively. First, Figure 2(a) shows that the attacker’s best
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Table 2: Baseline Parameter Values in Illustrations
Parameter Value Parameter Value Parameter Value

pp .1 Vh 2 guh .5
pu .3 Cp .4 vp 5
ph .5 Cu .3 vu 3
np 5 ch .2 vh 1
nu 6 cp .5 mp 2
nh 10 cu .3 mu 2
Vp 5 ch .1 mh 3
Vu 4 gup .5

response for attacking a power plant does not depend on the defense at the network of trans-

missions. This result is mainly related to the assumption that the spread of damage is one

directional (e.g., only from parent to child network but not the converse). However, since the

attacker makes decisions at all three levels, many different other factors might also play a role.

Second, Figures 2(b)-(c) show that the best-response function of the attacker completely de-

pends on the defense of the intended target network of the attack. This implies that the spread

of damage from parent networks does not affect the attacker choice. We speculate that the

selection of particular values of system parameters might contribute to the observed pattern

within the context of decision-making at all three levels. Later in the paper, we conduct exten-

sive sensitivity analyses of the parameters to explore this possibility. Figure 2 appears to imply

that it is in the best interest of the attacker to directly attack their intended target and not to

rely on spread to damage the connected network.
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Figure 2: Attacker’s best responses at power plants, transmissions, and distribution
networks.
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Defender’s Best Response

Figures 3(a)-(c) show the defender’s best response at the network fronts of power plants, trans-

missions, and distributions, respectively. We observe that the defender’s best response does

depend on spread unlike the attacker. This is evident from the interdependent relationships

illustrated in the power plant and utility company diagrams and missing from the distribution

network as shown in Figures 3(a)-(c), respectively. With the chosen set of baseline parameter

values, the risk of spread poses a large threat to the whole system of three networks and might

play a major role in determining defender’s best responses. Therefore, the defender is inter-

ested in limiting the spread of attacks on parent networks as much as possible and thus must

defend on all levels with a focus on parent networks. The distribution network graph shows
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Figure 3: Defender’s best responses at power plants, transmissions, and distribution
networks.

some intriguing results. It appears that it is in the best interest of the defender to only run a

maintenance level of defense at the distribution network. Since our model only considers one

directional spread of damage, attacks on a single distribution network might cause negligible

amount of damage to the smart grid. Therefore, it is in the best interest of the defender to con-

centrate resources on transmissions and power plants, where the potential for greater damage

is much higher.

Sensitivity Analysis of Equilibrium Strategies

We also study a sequential game where the defender moves first. Figure 4(a) shows the sensitiv-

ity analysis with respect to pp for the attacker and defender equilibrium strategies and utilities.

When the probability of a successful attack against network p is low, the utility for the defender
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is high and the utility of the attacker is low. They remain the same until pp= 0.5 where the

defender’s utility begins to decrease and the attacker’s utility increases. The defender’s equi-

librium strategy of defending network p (d∗p) remains 0 until pp=0.5, where d∗p increases to 5.

In contrast, the attacker’s equilibrium strategy of attacking each of the three networks (a∗p, a
∗
u,

and a∗h) remains the same regardless of the value of pp. Note the defender’s equilibrium strategy

of defending network p decreases as pp goes from 0.9 to 1. This suggests that the defender is

trading off between defense effectiveness and defense cost since if the attack is known to be

successful, the defender will save on the defense cost.
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Figure 4: Sensitivity analysis with regard to pp, gpu, and guh.

Figures 4(b) and (c) show the sensitivity analysis for gpu and guh, respectively. Figure 4(b)

shows that the attacker and defender efforts are static until the probability of spread reaches

0.6. At this point, the utility of the attacker slightly increases and the defender utility remains

the same. Moreover, we see that the defender does not defend any nodes until the probability

reaches this threshold value. This pattern is not observed in Figure 4(c) where we see that the

utility of both the defender and the attacker remains the same for the whole range between 0

and 1. These results imply that the value of spread to the defender is very low. In this case, the

defender gives up defense if the probability of a successful attack against network p is low (e.g.,

pp < 0.6) and resumes defense efforts when that probability is alarmingly large (e.g., pp ≥ 0.6).
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CONCLUSION AND FUTURE RESEARCHDIREC-

TIONS

In this paper, we formulate a game-theoretic model to study the strategic interactions between

a defender and an attacker at the three network fronts of power plants, transmissions and

distributions within the context of smart grid. We find that the attacker’s best responses at all

three network types are not affected by the interdependent relationships between the networks.

On the other hand, the defender’s best responses at networks of power plants and transmissions

are not only a function of the number of nodes attacked at that particular level of network, but

also the attack strategy at its parent or child network (above the transmission network level)

due to the interdependent relationships between the networks.

Sensitivity analysis for equilibrium strategies in a sequential game, where the defender moves

first, with respect to the success probability of an attack against a node in the network of power

plants shows that until the probability increases to a critical point, the utilities for both the

defender and attacker remain the same. The defender does not defend the network of power

plants until the probability reaches the critical value. In contrast, the attacker always attacks

any one node of the three networks. Furthermore, the defender’s equilibrium utility decreases

while the attacker’s equilibrium utility increases. This suggests that the attacker’s equilibrium

strategy does not take into account the spread of damage across networks if attack costs are

sufficiently low to allow attacking every nodes.

In the attacker’s best response functions, we see that the spread does not affect the attacker’s

decision-making process. In the defender’s best response, we find that on the distribution level,

the defender should not invest more than a maintenance level of resources, as it is not worthwhile

to protect against attacks. This would suggest some future refinement of the modeling approach

since in a real-world scenario, transmissions would be expected to protect their consumer base

from attacks. If there was no defense support at distributions, consumers would become easy

victims for smart thieves and stalkers, as a result no consumer concerned about privacy would

accept the smart grid.

There is a number of interesting future research directions. One is to consider continuous

levels of attack and defense, which would generate an alternative and more complex optimization

problem for both the defender and the attacker. Another is to allow decentralized defense so
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that the defender for power plant network and transmissions and the defender for distributions

are separate decision-makers. Instead of a topological model, we could also study a flow-based

model for smart grids and compare the two models. In addition, instead of 100% blackout of

all loads served by a network, we could also consider partial failure of networks. For simplicity,

we assume that defense efforts are always effective in countering the attack efforts, which would

be relaxed in the future. In addition, we would also consider the criticality of different nodes

to their corresponding networks. A small number of nodes are considered for the numerical

illustration, we could expand the scale of the model to better reflect the real-world network.
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