
SANDIA REPORT
SAND2016-1649R
Unlimited Release
Printed February 2016

CUBIT
Geometry and Mesh Generation Toolkit
15.1 User Documentation

Ted Blacker, Steven J. Owen, Matthew L. Staten, Roshan W. Quadros, Byron Hanks,
Brett Clark, Ray J. Meyers, Corey Ernst, Karl Merkley, Randy Morris, Corey McBride,
Clinton Stimpson, Michael Plooster, Sam Showman

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy's National Nuclear Security Administration under contract DE-AC04-
94AL85000.

Approved for public release; further dissemination unlimited.

1

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@osti.gov
 Online ordering: http://www.osti.gov/scitech

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5301 Shawnee Rd
 Alexandria, VA 22312

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.gov
 Online order: http://www.ntis.gov/search

3

mailto:reports@osti.gov
http://www.osti.gov/scitech
mailto:orders@ntis.gov
http://www.ntis.gov/search

SAND2016-1649R
Unlimited Release

Printed February 2016

CUBIT
GEOMETRY AND MESH GENERATION TOOLKIT

15.1 USER DOCUMENTATION

Ted Blacker, Steven J. Owen, Matthew L. Staten, Roshan W. Quadros, Byron Hanks, Brett Clark
Computational Simulation Infrastructure Department, Org. 1543

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185-MS0897

Ray J. Meyers, Corey Ernst, Karl Merkley, Randy Morris, Corey McBride, Clinton Stimpson,
Michael Plooster

Elemental Technologies Inc.
17 N Merchant St.

American Fork, Utah

Sam Showman
Caterpillar, Inc., Peoria, IL

Abstract

CUBIT is a full-featured software toolkit for robust generation of two- and three-
dimensional finite element meshes (grids) and geometry preparation. Its main goal is
to reduce the time to generate meshes, particularly large hex meshes of complicated,
interlocking assemblies. It is a solid-modeler based preprocessor that meshes volumes
and surfaces for finite element analysis. Mesh generation algorithms include
quadrilateral and triangular paving, 2D and 3D mapping, hex sweeping and multi-
sweeping, tetrahedral meshing, and various special purpose primitives. CUBIT
contains many algorithms for controlling and automating much of the meshing
process, such as automatic scheme selection, interval matching, sweep grouping, and
also includes state-of-the-art smoothing algorithms

This report serves as the user’s documentation for the CUBIT software and provides
an overview of capabilities, instruction for software execution with a variety of
examples.

5

Table of Contents
CUBIT 15.1 User Documentation .. 1

Introduction ... 3
Introduction ... 3
CUBIT Mailing Lists .. 3
Hardware Requirements.. 4
How to Use This Manual .. 4
Key Features ... 5

Geometry Creation, Modification, and Healing ... 5
Non-Manifold Topology .. 5
Geometry Decomposition ... 5
Mesh Generation .. 5
Boundary Conditions .. 5
Element Types .. 6
Graphics Display Capabilities .. 6
Graphical User Interface .. 6
Command Line Interface .. 6

Licensing and Distribution .. 6
Problem Reports and Enhancement Requests ... 6
Trademark Notice ... 6

Environment Control .. 9
Environment Control .. 9
Session Control ... 9

Session Control ... 9
Starting and Exiting a CUBIT Session ... 9
Execution Command Syntax .. 10
Initialization Files ... 14
Environment Variables ... 14
Command Syntax ... 16
Command Line Help .. 18
Environment Commands .. 18
Saving and Restoring a Cubit Session .. 21
Interrupting Running Tasks .. 22

Recording and Playback ... 23
Command Recording and Playback ... 23
Journal File Creation and Playback .. 23
Controlling Playback of Journal Files .. 23
Automatic Journal File Creation .. 24
Idless Journal Files ... 26

Location Direction Specification .. 27
Location, Direction and Axis Specification ... 27
Drawing a Location, Direction, or Axis ... 27
Specifying an Axis ... 28
Specifying a Direction .. 29

i

Table of Contents

Specifying a Location ... 32
Specifying a Location on a Curve .. 36
Specifying a Plane .. 38

Listing Information ... 44
Listing Information ... 44
List Model Summary .. 44
List Geometry ... 45
List Mesh .. 46
List Special Entities .. 46
List Cubit Environment .. 47

GUI 49
Graphical User Interface .. 49
CUBIT Application Window ... 49
Control Panel .. 53
Graphics Window ... 57
Tree View ... 64
Property Editor ... 90
Command Line Workspace .. 93
Journal File Editor .. 95
Toolbars .. 97
Drop Down Menus ... 98

Graphics Window Control .. 104
Graphics Window Control .. 104
Graphics Clipping Plane ... 105
Colors 107
Drawing, Locating, and Highlighting Entities ... 110
Drawing Locations, Lines and Polygons .. 113
Entity Labels ... 114
Graphics Camera .. 116
Graphics Modes .. 118
Graphics Window Size and Position .. 120
Hardcopy Output .. 120
Graphics Lighting Model ... 121
Mesh Visualization ... 122
Miscellaneous Graphics Options .. 123
Mouse Based View Navigation: Zoom, Pan and Rotate .. 127
Saving Graphics Views .. 130
Updating the Display .. 131
Geometry, Mesh, and BC Entity Visibility .. 132
Command Line View Navigation: Zoom, Pan and Rotate ... 133

Entity Selection and Filtering ... 134
Entity Selection .. 134
Command Line Entity Specification .. 134
Extended Command Line Entity Specification .. 137
Selecting Entities with the Mouse .. 140

Geometry... 145

ii

Cubit 15.1 User Documentation

Geometry... 145
Model Definitions ... 145

ACIS Geometry Kernel .. 145
Mesh-Based Geometry ... 146
CUBIT Geometry Formats ... 149

Geometry Creation .. 150
Geometry Creation ... 150
Primitive Geometry .. 151
Bottom Up Creation ... 155

Transforms .. 179
Geometry Transforms ... 179
Align Command ... 179
Copy Command .. 179
Move Command ... 180
Reflect Command ... 181
Rotate Command .. 182
Scale Command .. 182

Booleans .. 182
Geometry Booleans .. 182
Intersect .. 183
Subtract 183
Unite 183

Decomposition .. 184
Geometry Decomposition ... 184
Web Cutting ... 184
Splitting Geometry ... 190
Section Command .. 207
Separating Surfaces from Bodies ... 207
Separating Multi-Volume Bodies ... 207

Cleanup and Defeaturing .. 208
Geometry Cleanup and Defeaturing ... 208
Tweaking Geometry ... 208
Removing Geometric Features ... 226
Healing 228
Auto Clean .. 231
Debugging Geometry ... 234
Finding Surface Overlap .. 235
Geometry Accuracy .. 237
Regularizing Geometry .. 237
Stitching Sheet Bodies .. 238
Trimming and Extending Curves ... 238
Validating Geometry .. 240

Imprint Merge ... 241
Geometry Imprinting and Merging .. 241
Examining Merged Entities .. 241
Imprinting Geometry .. 241

iii

Table of Contents

Merge Tolerance ... 243
Merging Geometry ... 244
Using Geometry Merging to Verify Geometry .. 245
Unmerging .. 246

Virtual Geometry .. 246
Virtual Geometry .. 246
Collapse Geometry ... 247
Composite Geometry .. 251
Partitioned Geometry ... 254
Deleting Virtual Geometry ... 259
Simplify Geometry ... 260

Geometry Orientation ... 263
Adjusting Orientation ... 263

Groups ... 264
Geometry Groups ... 264
Propagated Groups ... 265
Basic Group Operations ... 274
Groups in Graphics ... 276
Quality Groups ... 276

Attributes... 277
Geometry Attributes ... 277
Persistent Attributes ... 277
Entity IDs ... 279
Entity Names .. 280

Entity Measurement .. 283
Measure Between ... 283
Measure Small .. 284
Measure Angle ... 284
Measure Void ... 284

Metadata .. 285
Parts, Assemblies, and Metadata .. 285
Importing and Exporting Metadata .. 285
Metadata Attributes .. 286
Working With Parts and Assemblies .. 289

Geometry Deletion .. 292
Import .. 293

Importing Geometry ... 293
Importing ACIS Files ... 293
Importing Facet Files .. 294
Importing FASTQ Files .. 298
Importing Granite Files .. 298
Importing IGES Files ... 298
Importing STEP Files ... 299

Export .. 300
Exporting Geometry ... 300
Exporting ACIS Files ... 300

iv

Cubit 15.1 User Documentation

Exporting Facet Files .. 301
Exporting IGES Files ... 301
Exporting STEP Files ... 302

Mesh Generation ... 303
Mesh Generation ... 303

Element Types .. 303
Mesh Generation Process ... 303

Meshing the Geometry .. 304
Default Scheme and Interval Selection .. 305
Continuing Meshing After a Mesh Failure ... 305

Interval Assignment .. 305
Interval Assignment ... 305
Automatic Specification of Interval Size ... 306
Explicit Specification of Intervals .. 308
Explicit Specification of Intervals Using Interval Size .. 308
Additional Interval Constraints .. 309
Vertex Sizing and Automatic Curve Biasing ... 309
Interval Firmness .. 310
Interval Matching ... 311
Mesh Interval Preview .. 312
Periodic Intervals .. 312
Relative Intervals .. 312

Meshing Schemes ... 313
Automatic Scheme Selection .. 313
Meshing Schemes ... 316
Duplication ... 318
Conversion .. 321
Traditional .. 326
Parallel Meshing ... 373
Free 416

Mesh Quality Assessment ... 420
Mesh Quality Assessment .. 420
Automatic Mesh Quality Assessment .. 421
Coincident Node Check .. 422
Controlling Mesh Quality ... 422
Metrics for Edge Elements ... 423
Metrics for Hexahedral Elements ... 424
Mesh Quality Example Output ... 425
Mesh Quality Command Syntax .. 427
Metrics for Quadrilateral Elements .. 430
Metrics for Tetrahedral Elements ... 432
Mesh Topology Check ... 433
Metrics for Triangular Elements .. 436

Mesh Modification .. 437
Mesh Modification ... 437
Mesh Smoothing ... 438

v

Table of Contents

Align Mesh ... 448
Collapsing Mesh Edges .. 449
Creating and Merging Mesh Elements ... 449
Mesh Cleanup ... 452
Remeshing .. 454
Edge Swapping ... 456
Matching Tetrahedral Meshes .. 457
Mesh Coarsening .. 458
Mesh Refinement ... 459
Block Repositioning ... 472
Node and Nodeset Repositioning ... 472
Mesh Pillowing ... 473
Mesh Column Operations ... 475
Scaling the Number of Elements in a Hexahedral Mesh .. 479

Mesh Validity.. 485
Adaptivity and Sizing Functions ... 485

Mesh Adaptivity and Sizing Functions .. 485
Bias Sizing Function .. 487
Constant Sizing Function ... 492
Curvature Sizing Function .. 493
Exodus II-based Field Function ... 494
Geometry Adaptive Sizing Function (Skeleton Sizing) ... 496
Interval Sizing Function ... 501
Inverse Sizing Function .. 502
Linear Sizing Function ... 503
Geometry Adaptive Sizing for TriMesh and TetMesh Schemes 504

Mesh Deletion ... 505
Automatic Mesh Deletion .. 505

Free Meshes .. 505
Creating a free mesh ... 506
Creating Mesh-Based Geometry to fit a Free Mesh ... 506
Merging a free mesh ... 507
Free Mesh Transformation Operations ... 507
Smoothing a free mesh ... 510
Mesh quality on a free mesh ... 511
Mesh refinement on a free mesh .. 511
Cleaning up a free mesh ... 511
Assigning boundary conditions .. 512
Skinning a free mesh .. 513
Deleting free mesh elements .. 513
Bottom-up element creation ... 514
Exporting free meshes .. 514

Skinning a Mesh ... 514
Mesh Import .. 515

Importing a Mesh ... 515
Importing 2D Exodus Files .. 515

vi

Cubit 15.1 User Documentation

Importing Abaqus Files .. 516
Importing Exodus II Files ... 517
Importing I-DEAS Files ... 525
Importing Nastran Files .. 525
Importing Patran Files .. 525
Importing Fluent Files .. 526

Finite Element Model ... 527
Finite Element Model ... 527
Exodus... 527

Element Block Specification .. 527
Exodus II File Specification ... 537
Exodus II Model Title .. 538
Exodus Coordinate Frames .. 538
Defining Materials and Media Types ... 539
Exodus Boundary Conditions ... 540
Nodeset and Sideset Specification ... 541

Non Exodus ... 548
Cubit Boundary Conditions .. 548
CUBIT Initial Conditions ... 550
Using CFD Boundary Conditions .. 550
Using Contact Surfaces .. 551
Using Loads .. 552
Miscellaneous Boundary Condition Commands .. 555
Using Constraints ... 556
Using Restraints ... 556
Boundary Condition Sets .. 559

Export .. 560
Exporting Sierra Files ... 560
Defining PARAMS for NASTRAN ... 560
Instancing Parts with ABAQUS ... 560
Exporting an Exodus II File ... 561
Exporting the Finite Element Model .. 563
Exporting Fluent Grid Files .. 566
Transforming Mesh Coordinates .. 568
Export Mesh and Its Geometry Association ... 569

Step by Step Tutorials ... 571
Step-By-Step Tutorials.. 571

Additional Tutorials ... 571
Geometry Cleanup Process Flow .. 573
ITEM 575

ITEM Tutorial .. 575
ITEM Tutorial .. 576
ITEM Tutorial .. 577
ITEM Tutorial .. 579
ITEM Tutorial .. 585
ITEM Tutorial .. 588

vii

Table of Contents

ITEM Tutorial .. 592
ITEM Tutorial .. 597
ITEM Tutorial .. 598
ITEM Tutorial .. 602

Power Tools .. 604
Power Tools GUI Tutorial .. 604
Power Tools GUI Tutorial .. 605
Power Tools GUI Tutorial .. 609
Power Tools GUI Tutorial .. 613
Power Tools GUI Tutorial .. 616
Power Tools GUI Tutorial .. 617
Power Tools GUI Tutorial .. 621
Power Tools GUI Tutorial .. 628
Power Tools GUI Tutorial .. 633
Power Tools GUI Tutorial .. 636
Power Tools GUI Tutorial .. 638
Power Tools GUI Tutorial .. 647

Decomposition .. 653
Decomposition Tutorial .. 653
Example 1. Sweeping multiple adjacent volumes .. 658
Example 2. Interlocking rings .. 661
Example 3. Webcutting using the sweep option .. 663
Example 4. Using the Loft command ... 665
Example 5. Multiple sweep directions ... 667
Example 6. Employing Symmetry ... 670
Example 7. Using virtual geometry in geometry decomposition 683
Example 8. Sweeping volumes with narrow angles and surfaces 694

GUI 708
GUI Basic Tutorial ... 708
GUI Basic Tutorial ... 710
GUI Basic Tutorial ... 711
GUI Basic Tutorial ... 714
GUI Basic Tutorial ... 715
GUI Basic Tutorial ... 716
GUI Basic Tutorial ... 718
GUI Basic Tutorial ... 721
GUI Basic Tutorial ... 724
GUI Basic Tutorial ... 726
GUI Basic Tutorial ... 728
GUI Basic Tutorial ... 730

Command Line.. 731
Command Line Basic Tutorial ... 731
Command Line Basic Tutorial ... 733
Command Line Basic Tutorial ... 733
Command Line Basic Tutorial ... 734
Command Line Basic Tutorial ... 735

viii

Cubit 15.1 User Documentation

Command Line Basic Tutorial ... 736
Command Line Basic Tutorial ... 737
Command Line Basic Tutorial ... 739
Command Line Basic Tutorial ... 740
Command Line Basic Tutorial ... 742
Command Line Basic Tutorial ... 747
Command Line Basic Tutorial ... 747

ITEM ... 749
Immersive Topology Environment for Meshing (ITEM) ... 749

Guiding the user through the workflow. .. 749
Providing the user with smart options. ... 750
Automating geometry and meshing tasks. ... 750

How to Use the ITEM Wizard .. 751
The ITEM Workflow .. 751
Using an ITEM Panel ... 752
Undo Button ... 756
Magic Mesh Button .. 756
Getting Help ... 756

Setting up the Finite Element Model .. 757
Defining the Geometric Model ... 758
Generating a Mesh in ITEM ... 759

ITEM Meshing Suggestions ... 760
Validating the Mesh in ITEM ... 764
Clean Up ... 764

Clean Up the Geometry .. 764
Blend Surfaces .. 765
Resolving Problems with Conformal Assemblies .. 766
Contact Surfaces ... 770
Geometry Decomposition ... 770
Forced Sweepability ... 772
Bad geometry representation .. 773
Determining an Appropriate Merge Tolerance .. 774
Building a Sweepable Topology .. 776
Small details in the model .. 776
Determining the Small Feature Size ... 780
Recognizing Nearly Sweepable Regions ... 782

Appendix ... 785
Appendix ... 785
Alpha 785

Alpha Commands ... 785
Automatic Detail Suppression .. 785
Automatic Geometry Decomposition ... 787
Cohesive Elements ... 788
Deleting Mesh Elements .. 790
FeatureSize ... 791
Importing Abaqus Files .. 792

ix

Table of Contents

Mesh Cutting .. 792
Mesh Grafting ... 799
Optimize Jacobian .. 802
Randomize .. 803
Refine Mesh Boundary ... 803
Super Sizing Function .. 804
Test Sizing Function ... 805
Transition .. 806
Triangle Mesh Coarsening ... 808

Available Colors ... 810
Element Numbering .. 813

Node Numbering .. 814
Side Numbering .. 814
Triangular Shell Element Numbering .. 814

FullHex vs. NodeHex Representation... 816
APREPRO... 816

APREPRO .. 816
Using APREPRO in CUBIT .. 816
APREPRO Functions ... 818
APREPRO Journaling .. 827

Python ... 828
Importing Cubit into Python ... 828
Python Interface ... 829
CubitInterface ... 829
PyObservable .. 916
PyObserver ... 917
CubitFailureException .. 918
Body 918
Curve 920
Entity 926
GeomEntity .. 929
InvalidEntityException ... 934
InvalidInputException .. 934
Surface 934
Vertex 939
Volume 940

Navigation XML Files .. 943
FASTQ .. 944
Periodic Space Filling Models (Tile) .. 948

Initial setup ... 948
Creating Nodesets ... 948
Smoothing .. 949
Example .. 949

References ... 950

Credits ... 955
Credits ... 955

x

Cubit 15.1 User Documentation

Quick Reference.. 957
Quick Reference.. 957

Index ... 963

xi

Introduction | Environment | Geometry | Meshing | FE Model | ITEM | Tutorials | Appendix

CUBIT 15.1 USER DOCUMENTATION
Introduction - A quick overview of some of the main features and goals of the CUBIT Mesh

Generation Toolkit, licensing and distribution, hardware requirements, and where to go for help.
Environment Control - A description of the CUBIT user environment, including using

the graphical user interface, session control, command line syntax, journal files, graphics, entity
picking, saving and restoring etc..

Geometry - A description of CUBIT's geometry features including building geometry from
scratch, manipulating geometry in CUBIT, importing and exporting geometry formats, etc...

Mesh Generation - A description of CUBIT's mesh generation capabilities, including how to
mesh geometry, meshing and smoothing schemes, setting sizes and intervals, importing a mesh,
etc...

Finite Element Model - How to set up the finite element model for analysis,
including defining boundary conditions, material properties, exporting the finite element model,
etc.

Immersive Topology Environment for Meshing (ITEM) - A description of Cubit's
interactive meshing wizard including how to use the wizard, and a guide to geometry clean-
up, setting up the finite element model, mesh generation in ITEM, etc.

Step-By-Step Tutorials
Appendix
Credits
Quick Reference
Official CUBIT Web Page

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

1

http://cubit.sandia.gov/

CUBIT 15.1 User Documentation

2

INTRODUCTION
Introduction

• Key Features
• Hardware Requirements
• Licensing and Distribution
• Trademark Notice
• How to Use this Manual
• Cubit Mailing Lists
• Problem Reports and Enhancement Requests

Welcome to CUBIT, the Sandia National Laboratory automated mesh generation toolkit. CUBIT
is a full-featured software toolkit for robust generation of two- and three-dimensional finite
element meshes (grids) and geometry preparation. Its main goal is to reduce the time to generate
meshes, particularly large hex meshes of complicated, interlocking assemblies. It is a solid-
modeler based preprocessor that meshes volumes and surfaces for finite element analysis. Mesh
generation algorithms include quadrilateral and triangular paving, 2D and 3D mapping, hex
sweeping and multi-sweeping, tetrahedral meshing, and various special purpose primitives.
CUBIT contains many algorithms for controlling and automating much of the meshing process,
such as automatic scheme selection, interval matching, sweep grouping, and also includes state-
of-the-art smoothing algorithms
The CUBIT environment is designed to provide the user with a powerful toolkit of meshing
algorithms that require varying degrees of input to produce a complete finite element model.
Many CUBIT users want to experiment with capabilities as soon as possible. Hence, CUBIT
releases often contain algorithms which are not quite ready for production use. These features are
listed in the Appendix, and are accessible to the user by specifying a developer flag.
The overall goal of the CUBIT project is to reduce the time it takes a person to generate an
analysis model. Generating meshes for complex, solid model-based geometries requires a variety
of tools. Many CUBIT tools are completely automatic, while others require user input. Usually,
the automatic choices can be over-ridden by the user if necessary. Most meshing capabilities are
integrated into the common CUBIT framework; there are also stand-alone tools like Verde. The
user is encouraged to become familiar with all of the available tools, so that he can choose the
right one for the job.

CUBIT Mailing Lists
The CUBIT team maintains a couple of mailing lists to help our users.
1) The cubit-announce mailing list is a very low-volume mailing list intended to provide news of
new releases and other items of major importance. To subscribe to this list, send a message to:
majordomo@sandia.gov
with the body of the message being:

subscribe cubit-announce
2) The cubit users mailing list is a medium-volume mailing list intended for our users to
communicate with each other and ask help of the user community. It also contains the same
announcements as the cubit-announce mailing list. To send questions or comments to this list,
send email to:

3

mailto:majordomo@sandia.gov

Introduction

cubit@sandia.gov
Users can subscribe to the cubit mailing list by emailing majordomo@scico.sandia.gov with a
message body consisting of the single line:

subscribe cubit
An additional mailing list, cubit-help@sandia.gov, has been created for direct communication
with the CUBIT developers. These messages won't reach other users. This list should be used for
topics that are not of general interest to others, including some bugs.

Note: The recommended use of an electronic mailing list to
report bugs and request enhancements is not intended to
discourage face-to-face discussion with CUBIT developers,
but rather to minimize response time. Users are encouraged
to discuss bugs, enhancements or general meshing issues
with the CUBIT production meshing and development teams.

Hardware Requirements
Cubit is available on the following platforms:

• Red Hat 6 64 bit (or similar system with at least glibc 2.5 and libstdc++ 4.4)
• Windows Vista/7/8/8.1/10, 64 bit
• Mac 10.7+, 64 bit only

The Graphical User Interface version is available on all platforms.
For best results, local displays supporting OpenGL 1.5 or newer is recommended.

How to Use This Manual
This manual provides specific information about the commands and features of CUBIT. It is
divided into chapters, which roughly follow the process in which a finite element model is
created, from geometry creation to mesh generation to boundary condition application. Examples
are provided in the tutorial chapter. Appendices contain advanced topics, alpha commands,
summary of APREPRO functions, FASTQ reference, a troubleshooting guide, and references.

Integrated in CUBIT are algorithms and tools, which are in a user-
beware state. As they are further tested (often with the assistance
of users) and improved, the tool becomes more stable and
production-worthy. Since documentation of the tool is necessary
for actual use, we have included the documentation of all available
tools. However, a "hammer" icon is placed next to some
capabilities as a warning.

Certain portions of this manual contain information that is
vital for understanding and effectively using CUBIT. These
portions are highlighted with a "key" icon.

4

mailto:cubit@sandia.gov
mailto:majordomo@scico.sandia.gov
mailto:cubit-help@sandia.gov

Cubit 15.1 User Documentation

Key Features
Geometry Creation, Modification, and Healing
CUBIT usually relies on the ACIS solid modeling kernel for geometry representation; there is
also mesh-based geometry. Other solid model kernels are planned. Geometry is imported or
created within CUBIT. Geometry is created bottom-up or through primitives. CUBIT can also
read STEP, IGES, and FASTQ files and convert them to the ACIS kernel. SolidWorks,
AutoCAD, and some other commercial CAD systems can write SAT files directly.
Once in CUBIT, an ACIS model is modified through Booleans, or tweaking curves and surfaces.
Without changing the geometric definition of the model, the topology of the model may be
changed using virtual geometry. For example, virtual geometry can be used to composite two
surfaces together, erasing the curve dividing them.
Sometimes, an ACIS model is poorly defined. This often happens with translated models. The
model can be healed inside CUBIT.
Non-Manifold Topology
Typical assembly meshes require contiguous mesh across multiple parts in an assembly. CUBIT
accomplishes this by taking the two touching surfaces of neighboring volumes, and merging
them into a single surface. There will be only one mesh of the surface, and both volume meshes
will share that surface mesh. (In contrast, some meshing packages keep two surfaces, and take
steps to ensure their mesh connectivity and positions match.)
These shared surfaces are called non-manifold topology. Geometric models are usually imported
into CUBIT as manifold (non-shared) models; then, surfaces which pass a geometric and
topological comparison are "merged". A similar technique is used to merge model edges and
vertices across parts. These comparisons are performed automatically, and can optionally be
restricted to subsets of the model (to allow representations of such features as slide lines).
Geometry Decomposition
Solid models often require decomposition to make them amenable to hexahedral meshing.
CUBIT contains a wide variety of tools for interactive geometry decomposition, and a capability
for performing automatic geometry decomposition is also under development.
Mesh Generation
CUBIT contains a variety of tools for generating meshes in one, two and three dimensions.
While the primary focus of CUBIT is on generating unstructured quadrilateral and hexahedral
meshes, algorithms are also available for structured mesh generation and triangle/tetrahedral
mesh generation. Several algorithms for generating mixed hex-tet meshes are also being
developed.
Boundary Conditions
CUBIT uses different boundary conditions for EXODUS-II format and Non-Exodus formats
such as ABAQUS, for importing and exporting mesh data. EXODUS represents boundary
conditions on meshes using Element Blocks, Nodesets, and Sidesets. Element Blocks are used to
group elements by material type. Nodesets are used to group nodes. Other analysis programs can
apply nodal boundary conditions to these sets, such as enforced displacement or nodal
temperature values. Sidesets are used to group sides of elements, such as faces of hexes or edges
of quads. Other analysis programs can apply face-based and edge-based boundary conditions to
these sets, for example pressure or heat flux.
Using Element Blocks, Nodesets and Sidesets, a mesh and boundary conditions can be specified
in an analysis-independent manner. Typically this specification is combined with an additional

5

Introduction

data file which designates the specific type of boundary condition (temperature, displacement,
pressure, etc.), along with boundary condition values.
Non-Exodus export formats such as Abaqus support more specific boundary condition sets.
These sets may include displacements, temperatures, forces, heatflux, pressure, or contact pairs.
Element Types
CUBIT supports a wide variety of element types, including 1d, 2d, and 3d elements of various
orders. Each block has a unique element type. The element type is specified after the block is
created, and after mesh generation (recommended). Higher order nodes are generated when the
element type is specified. Higher order nodes are projected to curved geometry, depending on the
user-settable node constraint flag.
Graphics Display Capabilities
CUBIT uses the VTK package for its graphics and rendering engine. CUBIT can display
geometric and mesh entities in several modes, including hidden line, shaded, transparent or
wireframe modes. CUBIT supports screen picking of geometric and mesh entities, as well as
mouse-controlled view transformations like rotate, pan, and zoom. VTK takes advantage of
hardware acceleration on most supported platforms. Image files of any displayed image can also
be generated. CUBIT can also be run without graphics, to allow execution in batch mode or over
slow network connections.
Graphical User Interface
A full graphical user interface (GUI) with the standard look and feel consistent with major
platforms is available on all supported Cubit platforms. The GUI version can improve
productivity, making new users aware of the wide range of CUBIT capabilities, and freeing new
and experienced users from having to remember esoteric syntax. The GUI and non-GUI versions
create and play back identical journal files, making it easier to switch from one environment to
the other.
Command Line Interface
In the command line interface, commands are specified by text rather than mouse clicks.
Commands can be entered interactively or in batch mode by playing back a journal file. The
command line interface is available in the GUI through a window. The non-GUI version
supports graphical picking and echoing to the command line, and also mouse-driven view
transformations, but no menus and dialog boxes. The command line and GUI dialog boxes
support the APREPRO preprocessor, which allows parameterization of input. The non-GUI
version is available on all platforms, including Windows.

Licensing and Distribution
Please refer to https://cubit.sandia.gov/public/licensing.html for information on licensing and
distribution.
Problem Reports and Enhancement Requests
CUBIT bugs, problem reports and enhancement requests should be sent to cubit-
help@sandia.gov or cubit-dev@sandia.gov. The CUBIT production meshing team or
development team will review the email quickly. Users should expect some type of response
within two days. Bugs are usually entered by a developer into CUBIT's bug tracking system.

Trademark Notice
ACIS™ is a proprietary format developed by Spatial Corporation.
Granite™ is a proprietary format developed by Parametric Technology Corporation

6

https://cubit.sandia.gov/public/licensing.html
mailto:cubit@sandia.gov
mailto:cubit@sandia.gov
mailto:cubit-dev@sandia.gov
http://www.spatial.com/

Cubit 15.1 User Documentation

All other trademarks are the property of their respective owners.

7

ENVIRONMENT CONTROL
Environment Control

• Session Control
• Graphical User Interface
• Command Recording and Playback
• Graphics Window Control
• Entity Selection and Filtering
• Location, Direction, and Axis Specification
• Listing Information

The CUBIT user interface is designed to fill multiple meshing needs throughout the design to
analysis process. The user interface options include a full graphical user interface, a modern
command line interface as well as no-graphics and batch mode operation. This chapter covers the
interface options as well as the use of journal files, control of the graphics, a description of
methods for obtaining model information, and an overview of the help facility.

Session Control
Session Control

• Starting and Exiting a CUBIT Session
• Execution Command Syntax
• Initialization Files
• Environment Variables
• Command Syntax
• Command Line Help
• Environment Commands
• Saving and Restoring a CUBIT Session
• Interrupting Running Tasks

This section provides an overview to session control in CUBIT. This includes information on
starting and exiting a CUBIT session, running CUBIT in batch mode, initialization files, how to
enter commands, file manipulation, changing the working directory, memory manipulation and
more. Much of your ability to use CUBIT effectively depends on mastery of concepts in this
section. Even experienced users will find it useful to review this section periodically.

Starting and Exiting a CUBIT Session
The following commands are used to control CUBIT execution.
Starting the Session
The command line version of CUBIT can be started on UNIX machines by typing
"cubit" at the command prompt from within the CUBIT directory. If you have not yet
installed CUBIT, instructions for doing so can be found in Licensing, Distribution and
Installation. A CUBIT console window will appear which tells the user which CUBIT
version is being run and the most recent revision date. A graphics window will also
appear unless you are running with the -nographics option. For a complete list of

9

Environment Control

startup options see the Execution Command Syntax section of this document. CUBIT
can also be run with initialization files or in batch mode.
Windows File Association
Windows users have the option to associate .cub, .sat, and .jou files with CUBIT. This means
that double-clicking on one of these files will open it automatically in CUBIT. This option is
available during the installation process
Exiting the Session
The CUBIT session can be discontinued with either of the following commands

Exit
Quit

Resetting the Session
A reset of CUBIT will clear the CUBIT database of the current geometry and mesh model,
allowing the user to begin a new session without exiting CUBIT. This is accomplished with the
command

Reset [Genesis | Block | Nodeset | Sideset | QA_Records]
A subset of portions of the CUBIT database to be reset can be designated using the qualifiers
listed. Advanced options controlled with the Set command are not reset.
QA Records are stored in exodus, genesis, or cub files. If your file contains an excessive amount
of qa records and you don't need them, it is beneficial to reset them for faster file I/O.
You can also reset the number of errors in the current Cubit session, using the command

Reset Errors <value>
which will set the error count to the specified value, or zero if the value is left blank.
Abort Handling
In the event of a crash, Cubit will attempt to save the current mesh as "crashbackup.cub" in the
current working directory just before it exits.

To disable saving of the crashbackup.cub file set an environment
variable CUBIT_NO_CRASHSAVE equal to true. Or, use the following command:

Set Crash Save [On|Off]
This command will turn on or off crashbackup.cub creation during a crash on a per-instance
basis. To minimize the effects of unexpected aborts, use Cubit's automatic journaling feature,
and remember to save your model often.

Execution Command Syntax
To run CUBIT from the command line:

 cubit [options and args] [journalFile(s)]
 claro [options and args] [journalFile(s)|python historyFile(s)]

Claro is the GUI version of CUBIT, which includes a python interpreter. To run a python script
in CUBIT from the command line, run claro instead of cubit.
Command options for the command line are:

cubit
 -help (Print this summary)

10

Cubit 15.1 User Documentation

 -Include <$val> (Specify a journal file)
 -workingdir <$val> (Directory to use as working directory)
 -input $val (Playback commands in file $val)
 -solidmodel <$val> (Read .sat or .cub from file $val)
 -fastq <$val> (Read FASTQ file $val)
 -initfile <$val> (Read $val as initialization file instead
 of $HOME/.cubit)
 -batch (Batch Mode - No Interactive Command Input)
 -nographics (Do not display graphics windows)
 -nogui (Do not display graphical user interface)
 -noinitfile (Do not read .cubit file)
 -noecho (Do not echo commands to console)
 -nojournal (Do not write journal file)
 -nodeletions (Do not allow file deletions)
 -journalfile <$val> (Name of journal file, will be overwritten)
 -restore [$val] (Name of restore file (default = cubit_geom.save.sat))
 -maxjournal [$val] (Maximum number of journal files to write)
 -warning [$val] (Warning Messages On/Off)
 -information [$val] (Informational Messages On/Off)
 -debug <$val> (Set specified flags on, e.g. 1,3,7-9
 enables 1,3,7,8,9))
 -display <$val> (Specify display to be used for
 graphics window)
 -driver <$val> (Specify the type of driver to be used for
 graphics display)
 -nooverwritecheck (Do not perform file export overwrite check)
 -nobanner (Suppress printing of startup information)
 -version (Prints version information)
 -log <$val> (Copy all output to specified file)
 APREPRO variable pair (Quoted name value pair)

Each of these is optional. If specified, the quantities in square brackets, [$val], are optional and
the quantities in angle brackets, <$val>, are required.
Options are summarized in more detail below:
-help Print a short usage summary of the

command syntax to the terminal and exit.

-workingdir Set the working directory to be used at

startup. Journal files will be written to this
directory.

-initfile <$val> Use the file specified by <$val> as the
initialization file instead of the default set of
initialization files. See Initialization Files

-noinitfile Do not read any initialization file. This
overrides the default behavior described

11

Environment Control

in Initialization Files

-solidmodel <$val> Read the ACIS solid model geometry or
.cub file information from the file specified
by <$val> prior to prompting for interactive
input.

-batch Specify that there will be no interactive
input in this execution of CUBIT. CUBIT
will terminate after reading the initialization
file, the geometry file, and the
input_file_list.

-nographics Run CUBIT without graphics. This is
generally used with the -batch option or
when running CUBIT over a line terminal.

-nogui Run CUBIT without the graphical user
interface.

-display Sets the location where the CUBIT graphics
system will be displayed, analogous to the -
display environment variable for the X
Windows system. Unix only.

-driver <type> Sets the <type> of graphics display driver to
be used. Available drivers depend on
platform, hardware, and system installation.
Typical drivers include X11 and OpenGL.

-nojournal Do not create a journal file for this
execution of CUBIT. This option performs
the same function as the Journal Off
command. The default behavior is to create
a new journal file for every execution of
CUBIT.

-journalfile <file> Write the journal entries to <file>. The file
will be overwritten if it already exists.

-maxjournal <$val> Only create a maximum of <$val> default
journal files. Default journal files are of the
form cubit#.jou where # is a number in the
range 01 to 999.

-nodeletions Turn off the ability to delete files with
the delete file '<filename>' command.

-nooverwritecheck Turn off the file overwrite check flag. Files
that are written may then overwrite (erase)
old files with the same name with no
warning. This is typically useful when re-

12

Cubit 15.1 User Documentation

running journal files, in order to overwrite
existing output files. See the set File
Overwrite Check [ON|off] command.

-restore Restore the specified filename (or
"cubit_geom") mesh and ACIS files, e.g.
cubit_geom.save.g and cubit_geom.save.sat.

-noecho Do not echo commands to the console. This
option performs the same function as the
Echo Off command. The default behavior is
to echo commands to the console.

-debug=<$val> Set to "on" the debug message flags
indicated by <$val>, where <$val> is a
comma-separated list of integers or ranges
of integers, e.g. 1,3,8-10.

-information={on|off} Turn {on|off} the printing of information
messages from CUBIT to the console.

-warning={on|off} Turn {on|off} the printing of warning
messages from CUBIT to the console.

-Include=<path> Allows the user to specify a journal file
from the command line.

-fastq=<file> Read the mesh and geometry definition data
in the FASTQ file <file> and interpret the
data as FASTQ commands. See T. D.
Blacker, FASTQ Users Manual Version 1.2,
SAND88-1326, Sandia National
Laboratories, (1988). for a description of the
FASTQ file format.

<input_file_list> Input files to be read and executed by
CUBIT. Files are processed in the order
listed, and afterwards interactive command
input can be entered (unless the -batch
option is used.)

-log=<file> Copies all output to the specified file.

<variable=value> APREPRO variable-value pairs to be used
in the CUBIT session. Values can be either
doubles or character type (character values
must be surrounded by double quotes.).
Command options can also be specified
using the CUBIT_OPT environment
variable. (See Environment Variables .)

13

Environment Control

Passing Variables into a CUBIT Session
To pass an aprepro variable into a CUBIT Session, start cubit with the variable defined in quotes
i.e. cubit "some_var=2.3"

Initialization Files
CUBIT can execute commands on startup, before interactive command input, through
initialization files. This is useful if the user frequently uses the same settings.
On Unix or Windows, the following files are played back in order, if they exist, at startup:
<$CUBIT_DIR/.cubit.install
$HOMEDRIVE$HOMEPATH/.cubit
$HOME/.cubit
$(current working directory)/.cubit
Where $(current working directory) is determined by the program itself and words starting
with '$' are environment variables.
If the -initfile <filename> option is used on the command that starts cubit, then the other init
files are skipped and only the specified filename is played back.
The $CUBIT_DIR file is installation specific. The $HOME file is user specific. The $PWD file
is run-specific, read when starting up cubit from a particular meshing problem's subdirectory.
These files are typically used to perform initialization commands that do not change from one
execution to the next, such as turning off journal file output, specifying default mouse buttons,
setting geometric and mesh entity colors, and setting the size of the graphics window.

Environment Variables
CUBIT can interpret the following environment variables. These settings are only applicable to
the Command Line Version of CUBIT and do not apply to the Graphical User Interface. See also
the CUBIT_STEP_PATH and CUBIT_IGES_PATH environment variables. See also
the CUBIT_DIR, HOMEDRIVE and HOMEPATH settings.

DISPLAY The graphics window or GUI will pop-up on the

specified X-Window display. This is useful for
running CUBIT across a network, or on a machine
with more than one monitor. Unix only.

CUBIT_OPT Execution command line parameter options. Any
option that is valid from the command line may be
used in this environment variable. See Execution
Command Syntax.

CUBIT_Journal Specifies path and name to use for journal file. The
specified path may contain the following %-escape
sequences:
%a - abbreviated weekday name
%A - full weekday name
%b - abbreviated month name
%B - full month name
%d - date of the month [01,31]
%H - hour (24-hour clock) [00,23]

14

Cubit 15.1 User Documentation

%I - hour (12-hour clock) [01,12]
%j - day of the year [1,366]
%m - month number [1,12]
%M - minute [00,59]
%n - replaced with the next available number between
01 and 999.
%p - "a.m." or "p.m."
%S - seconds [00,61]
%u - weekday [1,7], 1 is Monday
%U - week of year [00,53]
%w - weekday [0,6], 0 is Sunday
%y - year without century [00,99]
%Y - year with century (e.g. 1999)
%% - a '%' character
The default value is "cubit%n.jou". This creates journal
files in the current directory named "cubit00.jou",
"cubit01.jou", "cubit02.jou", etc. To keep the same
naming scheme but create the files the /tmp directory,
set CUBIT_JOURNAL to "/tmp/cubit%n.jou"
To create journal files in directories according to the day
of the week, first create directories named "Mon",
"Tues", etc. CUBIT will not create them for you. Next
set CUBIT_JOURNAL to
"%a/%n.jou". This will create journal files named
"01.jou" through "999.jou" in the appropriate directory
for the current day of the week.

15

Environment Control

Command Syntax
The execution of CUBIT is controlled either by entering commands from the command line or
by reading them in from a journal file. Throughout this document, each function or process will
have a description of the corresponding CUBIT command; in this section, general conventions
for command syntax will be described. The user can obtain a quick guide to proper command
format by issuing the <keyword> help command; see Command Line Help for details.
CUBIT commands are described in this manual and in the help output using the following
conventions. An example of a typical CUBIT command is:

Volume <range> Scheme Sweep [Source [Surface] <range>] [Target
[Surface] <range>] [Rotate {on | OFF}]

The commands recognized by CUBIT are free-format and abide by the following syntax
conventions.

1. Case is not significant.
2. The "#" character in any command line begins a comment. The "#" and any characters

following it on the same line are ignored. Although note that the "#" character can also be
used to start an Aprepro statement. See the Aprepro documentation for more information.

16

Cubit 15.1 User Documentation

3. Commands may be abbreviated as long as enough characters are used to distinguish it
from other commands.

4. The meaning and type of command parameters depend on the keyword. Some parameters
used in CUBIT commands are:

Numeric: A numeric parameter may be a real number or an integer. A real number may
be in any legal C or FORTRAN numeric format (for example, 1, 0.2, -1e-2). An integer
parameter may be in any legal decimal integer format (for example, 1, 100, 1000, but not
1.5, 1.0, 0x1F).
String: A string parameter is a literal character string contained within single or double
quotes. For example, 'This is a string'.
Filename: When a command requires a filename, the filename must be enclosed in single
or double quotes. If no path is specified, the file is understood to be in the current
working directory. After entering a portion of a filename, typing a '?' will complete the
filename, or as much of the filename as possible if there is more than one possible match.
A filename parameter must specify a legal filename on the system on which CUBIT is
running. The filename may be specified using either a relative path (../cubit/mesh.jou), a
fully-qualified path (/home/jdoe/cubit/mesh.jou), or no path; in the latter case, the file
must be in the working directory (See Environment Commands for details.) Environment
variables and aliases may also be used in the filename specification; for example, the C-
Shell shorthand of referring to a file relative to the user's login directory
(~jdoe/cubit/mesh.jou) is valid.
Toggle: Some commands require a "toggle" keyword to enable or disable a setting or
option. Valid toggle keywords are "on", "yes", and "true" to enable the option; and "off",
"no", and "false" to disable the option.

5. Each command typically has either:

* an action keyword or "verb" followed by a variable number of parameters. For
example:

Mesh Volume 1
Here Mesh is the verb and Volume 1 is the parameter.
* or a selector keyword or "noun" followed by a name and value of an attribute of the
entity indicated. For example:

Volume 1 Scheme Sweep Source 1 Target 2
Here Volume 1 is the noun, Scheme is the attribute, and the remaining data are
parameters to the Scheme keyword.

The notation conventions used in the command descriptions in this document are:

• The command will be shown in a format that looks like this:
• A word enclosed in angle brackets (<parameter>) signifies a user-specified parameter.

The value can be an integer, a range of integers, a real number, a string, or a string
denoting a filename or toggle. The valid value types should be evident from the
command or the command description.

17

Environment Control

• A series of words delimited by a vertical bar (choice1 | choice2 | choice3) signifies a
choice between the parameters listed.

• A toggle parameter listed in ALL CAPS signifies the default setting.
• A word that is not enclosed in any brackets, or is enclosed in curly brackets ({required}

) signifies required input.
• A word enclosed in square brackets ([optional]) signifies optional input which can be

entered to modify the default behavior of the command.
• A curly bracket that is inside a square bracket (e.g. [Rotate {on|OFF}]) is only required

if that optional modifier is used.

Command Line Help
In addition to the documentation you are currently viewing, CUBIT can give help on command
syntax from the command line. For help on a particular command or keyword, the user can
simply type help <keyword>. In addition, if the user has typed part of a command and is
uncertain of the syntax of the remainder of the command, they can type a question mark ? and
help will be printed for the sequence of keywords currently entered. It is important to note that if
the user has typed the keywords out of order, then no help will be found. If the user is not sure of
the correct order of the keywords, the ampersand & key will search on all occurrences of
whatever keywords are entered, regardless of the order. The results of this type of command are
shown in the following listing.
CUBIT> volume 3 label ?
Completing commands starting with: volume, label.
Help not found for the specified word order.
CUBIT> volume 3 label &
Help for words: volume & label
Label Volume [on | off | name [only|id] | id | interval | size | scheme | merge | firmness]
CUBIT> label volume 3 ?
Completing commands starting with: label, volume.
Label Volume [on|off|name [only|ids]|ids|interval|size|scheme|merge|firmness]

Environment Commands

• Working Directory
• File Manipulation
• CPU Time
• Comment
• History
• Error Logging
• Determining the CUBIT Version
• Echoing Commands
• Digits Displayed

Working Directory
The working directory is the current directory where journal files are saved. To list the current
directory type

18

Cubit 15.1 User Documentation

pwd
The current path will be echoed to the screen. By default, the current directory is the directory
from which CUBIT was launched. The command to change the current directory is

cd "<new_path>"
The new path may be an absolute reference, or relative to the current directory. The <TAB>
key will complete unique file references.
File Manipulation
A helpful addition is the ability to do a directory listing of a directory. The command for this is

ls ['<file_name>']
or
dir ['<file_name>']

Note also that you can delete files from the command line. The command for this is
Delete File ['<file_name>']

The file name may include the wildcard character *, but not the wildcard character ?, since the ?
is used for command completion. File deletion from the command line can also be disabled. If
deletions are set to off files cannot be deleted from the cubit command line.

Set Deletions [ON|Off]
The mkdir command is used to create a new directory. The syntax for this command is:

Mkdir "<directory_name>"
This creates a new directory with the specified name and path. The command accepts an absolute
path, a relative path, or no path. If a relative path is specified, it is relative to the current working
directory, which can be seen by typing 'pwd' at the cubit command prompt. If no path is
specified, the new directory is created in the current working directory.
The command succeeds if the specified directory was successfully created, or if the specified
directory already exists. The command fails if the new directory's immediate parent directory
does not exist or is not a directory.
CPU Time
At times it is important to see how much cpu time is being used by a command. One function
available to do this is the timer command. The syntax for this command is:

Timer [Start|Stop]
The start option will start a CPU timer that will continue until the stop command is issued. The
elapsed time will be printed out on the command line. If no arguments are given, the command
will act like a toggle.
Comment
This keyword allows you to add comments without affecting the behavior of CUBIT.

Comment ['<text_to_print>'] [<aprepro_var>] [<numeric_value>]
The comment command can take multiple arguments. If an argument is an unquoted word, it is
treated as an aprepro variable and its value is printed out. Quoted strings are printed verbatim,
and numbers are printed as they would be in a journal string. For example:

CUBIT> #{x=5}
CUBIT> #{s="my string"}

19

Environment Control

CUBIT> comment "x is" x "and s is" s

User Comment: x is 5 and s is my string

Journaled Command: comment "x is" x "and s is" s

History
This command allows you to display a listing of your previous commands.

History <number_of_lines>
For example, if you type history 10, the most recent 10 commands will be echoed to the input
window.
Error Logging

[set] Logging Errors {Off | On File '<filename>'[Resume]}
This setting will allow users to echo error messages to a separate log file. The resume option will
allow output to be appended to existing files instead of overwriting them. For more information
on CUBIT environment settings see List Cubit Environment.
Determining the CUBIT Version
To determine information on version numbers, enter the command Version. This command
reports the CUBIT version number, the date and time the executable was compiled, and the
version numbers of the ACIS solid modeler and the VTK library linked into the executable. This
information is useful when discussing available capabilities or software problems with CUBIT
developers.
Echoing Commands
By default, commands entered by the user will be echoed to the terminal. The echo of commands
is controlled with the command:

[Set] Echo {On | Off}
Digits Displayed
CUBIT uses all available precision internally, but by default will only print out a certain number
of digits in order for columns to line up nicely. The user can override that with the "set digits"
command:

Set Digits [<num_to_list=-1>]
If the digits are set to -1, then the default number of digits for pretty formatting are used. If the
digits are set to a specific number, such as 15, more digits of accuracy can be displayed. This
may be useful when checking the exact position and size of geometric features.
The number of digits used for listing positions, vectors and lengths can be listed using the
following command:

List Digits
Examples:
CUBIT> set digits 6
Coordinates and lengths will be listed with up to 6 digits.
CUBIT> set digits 20
For this platform, max digits = 15. Coordinates and lengths will be listed with up to 15 digits.
CUBIT> set digits -1

20

Cubit 15.1 User Documentation

To reset digits to default, use 'set digits -1'
The number of coordinate and length digits listed will vary depending on the context.

Saving and Restoring a Cubit Session
There are currently two ways to save/restore a model in CUBIT. A file can be saved with either
the Exodus or CUBIT File method. The method of choice is determined by a set command. The
CUBIT method is the default.

Set Save [exodus|CUBIT] [Backups <number>]
CUBIT File Method

• New
• Open
• Save
• Import
• Export

The CUBIT file is a binary cross-platform compatible file for the storage of a Cubit model that is
compact in size and efficient to access. It includes both the geometry and the associated mesh,
groups, blocks, sidesets, and nodesets. Mesh and geometry are restored from the Cubit file in
exactly the same state as when saved. For example, element faces and edges are persistent, as
well as mesh and geometry ids. The Graphical User Interface version of CUBIT also provides a
toolbar with direct access to file operations using the CUBIT File method described here.

New
Creates a new blank model with default name, closing the current model. The
New command essentially acts like the reset command.

Open '<filename>'
Opens an existing *.cub file, closing the current model.

Save
A default file name is assigned when CUBIT is started (in very much the same
way the journal files are assigned on startup) in the form cubit01.cub, for
example. The current model filename is displayed on the title bar of the CUBIT
window. Typing save at any time during your session will save the current model
to the assigned *.cub file. The *.cub file includes the *.sat file and the mesh.
Groups, blocks, sidesets and nodesets are also saved within the *.cub file. To
change the name of the current model, or to save the model's current geometry to
a different file, use the save as command. Note that 'save <file.cub>' is NOT a
valid command.

Save
Save As 'filename.cub' [Overwrite]

21

Environment Control

The set file overwrite command can be toggled on and off to allow overwriting
when using the save as command. The command is defaulted to not allow
overwriting.

Set File Overwrite [On|OFF]
A backup file is created by default, allowing access to previous states of the
model. The backup files are named *.cub.1, *.cub.2... The user can set the total
number of backups created per model with the following command (the default
number of backups is 99,999):

Set Save Backups <number>
As soon as the number of model backups reaches the maximum, the lowest
numbered backup file will be removed upon subsequent backup creation.
To check on the status of a 'set' command, type in the command in question
without any options. For example, to check which save method is currently
toggled, type:

Set Save

Import
Appends a *.cub file to an existing model.

Import Cubit 'filename.cub' [merge_globally]

Export
In addition to saving an entire model, one can use the export command to save
only a portion of a model. The geometry and associated mesh, groups, blocks,
sidesets and nodesets are exported. Only bodies or free surfaces, curves or
vertices can be exported to a Cubit file.

Export Cubit 'filename.cub' entity-list

Interrupting Running Tasks
Many operations in the command line version of CUBIT can be interrupted using <Control>-C.
Pressing <Control>-C will attempt to interrupt the running process as soon as feasible, returning
the user back to the command line. Not all operations may be interrupted, and many can only be
interrupted at certain stages. Any current tasks are canceled as soon as it is feasible to do so,
including playback of journal files. The playback of a journal file is always stopped, even if the
current running task cannot be interrupted. The journal file will stop at the next opportunity,
when the current task is completed. Interrupted journal files may be resumed at the next
command. See the section titled Controlling Playback of Journal Files for more information on
controlling playback of journal files.
The GUI has a cancel button that can be used to interrupt the current command. The cancel
button will turn red when a command can be interrupted. The cancel button has an 'x' on it, and is
located on the status bar, which is at the bottom of the application.

22

Cubit 15.1 User Documentation

Recording and Playback
Command Recording and Playback
Sequences of CUBIT commands can be recorded and used as a means to control CUBIT from
ASCII text files. Command or "journal" files can be created within CUBIT, or can be created and
edited directly by the user outside CUBIT.

• Journal File Creation & Playback
• Controlling Playback of Journal Files
• Automatic Journal File Creation
• IDless Journal Files

Journal File Creation and Playback
Recording a Session
Command sequences can be written to a text file, either directly from CUBIT or using a text
editor. CUBIT commands can be read directly from a file at any time during CUBIT execution,
or can be used to run CUBIT in batch mode. To begin and end writing commands to a file from
within CUBIT, use the command

Record '<filename>'
Record Stop

Once initiated, all commands are copied to this file after their successful execution in CUBIT.
Replaying a Session
To replay a journal file, issue the command

Playback '<filename>'
Journal files are most commonly created by recording commands from an interactive CUBIT
session, but can also be created using automatic journaling or even by editing an ASCII text file.
Commands being read from a file can represent either the entire set of commands for a particular
session, or can represent a subset of commands the user wishes to execute repeatedly.
Two other commands are useful for controlling playback of CUBIT commands from journal
files. Playback from a journal file can be terminated by placing the Stop command after the last
command to be executed; this causes CUBIT to stop reading commands from the current journal
file. Playback can be paused using the Pause command; the user is prompted to hit a key, after
which playback is resumed.
Journal files are most useful for running CUBIT in batch mode, often in combination with the
parameterization available through the APREPRO capability in CUBIT. Journal files are also
useful when a new finite element model is being built, by saving a set of initialization commands
then iteratively testing different meshing strategies after playing that initialization file.

Controlling Playback of Journal Files
The following commands control the playback of Journal Files:

Stop
Pause
Sleep <duration_in_seconds>
Resume [<n>]
Where

23

Environment Control

Next [<n>]
The playback of a journal file can be interrupted in three ways. Pressing ctrl-c while the journal
file is playing will halt playback of the journal file. (This only works in the command line
version of CUBIT. See Interrupting Running Tasks for more information). Alternately, if the
stop or pause commands are encountered in the journal file and CUBIT is reading commands
from a terminal (as opposed to a redirected file), playback of the journal file will halt after that
command.
The sleep command pauses execution for the specified number of seconds. It can be used to
build a delay into journal files during presentations.
In the command line version of CUBIT you can resume playback of a journal file with the
resume command. If playback was interrupted because ctrl-c was pressed, it will resume at the
next command after the one that was interrupted. If playback stopped because of a stop or pause
command in the journal file, it will resume at the next line after the stop or pause command. If
the file was paused because of a sleep command in the file, it will resume automatically after the
specified duration.
If journal files that are playing back contain playback commands themselves, there may be
multiple current journal files. The where lists all current journal files and where the journal files
have paused. Each line contains the stack position (a number), the filename and the current line
in the file. Unless CUBIT is running in batch mode, the first line is always <stdin>. This just
means that CUBIT will return to the command prompt after the top-most journal file has
completed.
The remaining portion of any active journal file may be skipped by specifying the stack position
(first number on each line of the output from the where command) of the file where you want to
resume. Any remaining commands in active journal files with lower stack positions will be
skipped.
The next command steps through interrupted journal files line-by-line. The argument to the next
command is the number of lines to read before halting playback again. If no number is specified,
the command will advance one line.
Journal playback can also be set to stop automatically when it encounters an error during
playback. The command syntax is:

Set Stop Error {On|OFF}
Setting the stop error to "on" will cause the file to halt for each error. The setting is turned off by
default.

Automatic Journal File Creation
Controlling Automatic Journal File Creation
By default, CUBIT automatically creates a journal file each time it is executed. The file is
created in the current directory, and its name begins with the word "cubit " or "history",
depending on the version of CUBIT, followed by a number starting with cubit01.jou and
continuing up to a maximum of cubit999.jou. It is recommended that the user keep no more than
around 100 journal files in any directory, to avoid using up disk space and causing confusion. To
that end, when the journal name increments to more than cubit99.jou, a warning will be given on
startup telling the user that there are at least 99 journal files, and to please clean out unused files.
If the user has up through cubit999.jou, then the user is warned that there are too many journal
files in the current directory, and cubit999.jou will be re-used, destroying the previous contents.

24

Cubit 15.1 User Documentation

When starting cubit, the choice of journal file name to be used depends on whether it is creating
a historyXX.jou file, or a cubitXX.jou file. For historyXX.jou files, it will look for the highest
used number in the current directory and increment it by one. For example, if there are already
journal files with names history01.jou, history02.jou, and history04.jou, Cubit will use
history05.jou as the current journal file. For cubitXX.jou files, Cubit will fill in gaps, starting
with the lowest number. For example, if there are already journal files with names cubit01.jou,
cubit02, jou, and cubit04.jou, then Cubit will use cubit03.jou as the current journal file.
Journal file names end with a ".jou" extension, though this is not strictly required for user-
generated journal files. If no journaling is desired, the user may start CUBIT with the -nojournal
command line option or use the command :

[Set] Journal {Off | On}
Turning journaling back on resumes writing commands to the same journal file.
Most CUBIT commands entered during a session are journaled; the exceptions are commands
that require interactive input (such as Zoom Cursor), some graphics related commands, and the
Playback command.
Recording Graphics Commands
All graphics related commands may be enabled or disabled with the command:

Journal Graphics {On | Off}
The default is Journal Graphics Off .
Recording Entity IDs and Names
When an entity is specified in a command using its name, the command may be journaled using
the entity name, or by using the corresponding entity type and id. The method used to journal
commands using names is determined with the command:

Journal Names {On | Off}
The default is Journal Names On .
If an entity is referred to using its entity type and id, the command will be journaled with the
entity type and id, even if the entity has been named.
Recording APREPRO Commands
APREPRO commands may be echoed to the journal file using the following command

[set] Journal [Graphics|Names|Aprepro|Errors] [on|off]
See APREPRO Journaling for more information.
Recording Errors
The default mode for CUBIT is to not journal any command that does not execute successfully.
To turn this mode off and echo all commands to the journal file, regardless of the success status,
use the following command:

Journal Errors {On|OFF}
If a command did not execute successfully and the journal errors status is ON, then the
unsuccessful command will be written as a comment to the file. For example an unsuccessful
command might look like the following in the journal file

create brick x 10 x 10 z 10

25

Environment Control

Since CUBIT recognizes this as erroneous syntax, it will issue an error when the command is
issued, but will still write the command to the journal file as a comment, prefixing the command
with "##".
This option may be useful when tracking or documenting program errors.

Idless Journal Files
Journal files can also be created without reference to entity IDs. The purpose of this command is
to enable journal files created in earlier versions of CUBIT to be played back in newer versions
of CUBIT. Using the "IDless" method, commands entered with an entity ID will be journaled
with an alternative way of referring to the entity. Changes in CUBIT or ACIS often lead to
changes in entity IDs. For example, a webcut may result in volume 3 on the left and volume 4 on
the right. In another version of CUBIT, those entity IDs may be swapped (4 on the left and 3 on
the right). Playing an IDless journal file makes the actual ID of an entity irrelevant. The syntax
for this command is:

[set] Journal IDless {on|off|reverse}
The on option will enable idless journaling, and commands will be journaled without entity IDs.
For example, "mesh volume 1" may be journaled as "mesh volume at 3.42 5.66 6.32 ordinal 2".
Selecting the off option will cause commands to be journaled in the traditional manner (i.e., as
they are entered).
The reverse option allows you to convert idless journal files back into an ID-based journal file
where the new journal file will reflect current numbering standards for IDs.
If you issue the command Journal IDless without any additional options, then the current status
of ID journaling is printed. At startup, this should be "off".
The most likely scenario for converting older journal is to use the record command during
playback. The following is an example.
journal idless on
record "my_idless.jou"
playback "my_journal.jou"
record stop
journal idless off
To record an idless journal file back into an id-based journal file you might use the following
sequence.
journal idless reverse
record "new_id_based.jou"
playback "my_idless.jou"
record stop
journal idless off
Note: IDless conversions of APREPRO expressions are partially supported.
When IDless mode is set to ON, APREPRO functions such as Vx(id), that take an ID as an
argument, are converted to use (x, y, z, ord) as arguments such as Vx(x, y, z, ord), where (x, y, z)
is the center point coordinates and ord is the ordinal value. The ordinal values, 1..n, identifies
each entity in a set of n entities that have a common center point. An entity's ordinal value is
based on its creation order with respect to the other entities within the same set.
When IDless mode is set to REVERSE (using the above example) Vx(x, y, z, ord) will be
converted to Vx(id). Outside these APREPRO functions, APREPRO expressions are not
modified when converting a journal file to or from its IDless form. Hence, expressions reduced
to an entity ID, such as in the command "volume {x} size 10," are not modified. Therefore,

26

Cubit 15.1 User Documentation

when moving a journal file from one version of CUBIT to another, it may be necessary to
manually update IDs in APREPRO expressions.

Location Direction Specification
Location, Direction and Axis Specification

• Specifying a Location
• Specifying a Location on a Curve
• Specifying a Direction
• Specifying an Axis
• Specifying a Plane
• Drawing a Location, Direction, or Axis

Many commands require that a location or a direction be specified. Although entering the three
floating point numbers required to uniquely define a vector is perfectly acceptable, it may be
more convenient to specify the direction or location with respect to existing entities in the model.

For example, the following commands might be used for creating straight curves using location
and direction specification described here:

Create Curve [From] Location {options} Location {options}
Create Curve [From] Location {options} Direction {options} Length <val>

Drawing a Location, Direction, or Axis
Some commands require you to specify a location on a curve (i.e., webcutting with a plane
normal to a curve). This location can be previewed with the following options:

1. A fraction along the curve from the start of the curve, or optionally, from a specified
vertex on the curve.

2. A distance along the curve from the start of the curve, or optionally, from a specified
vertex on the curve.

3. An xyz position that is moved to the closest point on the given curve.
4. The position of a vertex that is moved to the closest point on the given curve.

Draw Location On Curve <curve id> {Fraction <f> | Distance <d> | Position
<xval><yval><zval> | Close_To Vertex <vertex_id>} [[From] Vertex
<vertex_id> (optional for 'Fraction' & 'Distance')]

Some commands require a specified axis (such as webcut with a cylinder) and it is sometimes
advantageous to view an axis before modifying geometry. To draw a preview of an axis use the
following command:

Draw Axis {options}
Some commands require a specified location or point (such as create curve spline) and it is
sometimes advantages to view a location before modifying or creating geometry. To draw a
preview of a location use the following command:

Draw Location {options} [color <color_name>][no_flush]

27

Environment Control

Similar commands for drawing lines and polygons may also be useful.

Specifying an Axis
Some commands require a specified axis (such as webcut with a cylinder) and it is sometimes
advantageous to view an axis before modifying geometry. An axis is simply a vector with a
specified origin. The following options determine an axis specification:

• Last
• Specify a direction and a location
• Revolve an axis about an axis

Last
Last

The last option recalls the last axis used in an axis command. The last axis does not carry over
from CUBIT session to CUBIT session.
Specify an origin and a vector

{Direction {options} [Origin [Location] {options}] [Length <val>] [Angle
<val>]}

To specify an axis simply specify a vector (a direction) and an origin (a location). Notice that the
command requires the axis direction first because the origin defaults to 0 0 0 when not specified.
An example of specifying an axis to draw a location using the swing command is as follows:

draw location 1 0 0 swing about axis direction z ang 45

Figure 1 - Swinging a point about the z-axis

The location 1 0 0 was swung 45 degrees about an axis defined by a vector in the z direction and
an origin at 0 0 0.
Revolve an axis about an axis

[Axis {options} Revolve [About] Axis {options} Angle <val>]
To revolve one axis around another use the revolve keyword. The following example revolves
the first axis (defined by the y-axis and origin) around the second axis (defined by the z-axis and
origin) by 45 degrees and draws the result.

28

Cubit 15.1 User Documentation

draw axis direction y revolve axis direction z angle 45

Figure 2 - Revolving an axis about another axis

Previewing an Axis
Sometimes it is helpful to preview an axis before using it in a command. An axis may be
previewed using the Draw command. The options for previewing an axis are the same as the
ones described above.

Draw Axis {options}

Specifying a Direction
Some commands require a specified a direction or vector for the command. A direction is
basically a xyz vector in the model. The following options determine a direction specification:

• [Vector] <xval yval zval>
• Last
• X|Y|Z|Nx|Ny|Nz
• [On] | [Tangent] [At] Curve <id> {location on curve options}
• [On] | [Normal] [At] Surface <id> [Location {options}]
• [From] { Location {options} | {Node|Vertex} <id> }[Project] {Location {options} |

[Entity] {Node|Vertex|Curve|Surface} <id> }
• [Rotate {options}]
• [Cross [With] Direction {options}]
• [Reverse]

Vector (XYZ values)
[Vector] <xval yval zval>

The most basic way to specify a direction is to just give the vector x-y-z components of the
direction. The given vector need not be a unit vector. The following three commands simply
draw a direction in the x-direction (1, 0, 0) as the Vector keyword is optional and unit vectors are
not required:

draw direction vector 1 0 0
draw direction 1 0 0
draw direction 10 0 0

29

Environment Control

Last Direction Used
Last

The last option recalls the last direction used in a command. For example, if the following
command is entered after the above vector commands a direction location would be drawn in the
x-direction (1, 0, 0).

draw direction last
Last directions do not carry over from CUBIT session to CUBIT session. The last direction
defaults to (1, 0, 0) if no direction has been used during the session.
Positive or Negative X,Y,Z Direction Vectors

X|Y|Z|Nx|Ny|Nz
The x|y|z|nx|ny|nz options assign the x direction, y direction, z direction, negative x direction,
negative y direction and negative z direction respectively.
On Curve Tangent

[On] | [Tangent] [At] Curve <id> {location on curve options}
The curve option simply finds a tangent vector on a curve. Note that the on, tangent and at
keywords are optional, as well as the location on the curve. If no location is specified, the tangent
at the start vertex of the curve is found. See the section above, Specifying a Location on a Curve,
for details on how to specify where along the curve the tangent vector is found.

draw direction curve 1
draw direction on curve 1
draw direction tangent at curve 1
draw direction tangent at curve 1 distance 3
draw direction tangent at curve 1 fraction .5
draw direction tangent at curve 1 distance 2 reverse

Figure 1 - Tangents to a Curve

On Surface Normal
[On] | [Normal] [At] Surface <id> [Location {options}]

The surface option simply finds a normal vector on a surface. Note that the "on", "normal" and
"at" keywords are optional, as well as the location on the surface. If no location is specified, the
normal vector at the center of the surface is found. If a location is specified, the location is
projected to the surface, then the normal vector is found.

draw direction on surface 1
draw direction on surface 1 location 1 2 0

30

Cubit 15.1 User Documentation

From Location
[From] {Location {options} | Node|Vertex <id>} [Project] {Location {options}
| [Entity]
{Node|Vertex|Curve|Surface} <id>}

The from location option finds a direction that is from one location to another or from a location
to an entity. If the second specification is an entity, the first location is projected to the entity to
find the direction.

draw direction from vertex 1 vertex 2
draw direction from location on curve 1 fraction .5 surface 3

Note that when using an entity for the second specification, the Project and Entity keywords are
generally optional. However, it is sometimes necessary to remove ambiguity from the previous
location specification. For example, the following will not parse correctly:

draw direction location on curve 1 distance 2 surface 3
In this case, the location on the curve is parsed as a distance 2.0 from surface 3. Instead, the
desired behavior is to find the location on curve 1 as a distance of 2.0 along the curve from the
start of the curve, and project it to surface 3 to find the direction. The following commands (all
equivalent) achieve this behavior:

draw direction location on curve 1 distance 2 project surface 3
draw direction location on curve 1 distance 2 entity surface 3
draw direction location on curve 1 distance 2 project entity surface 3

Rotate
[Rotate {options}]

The rotate option allows you to rotate the direction about another vector. You can string together
as many rotations as necessary. For example:

draw direction 1 0 0 rotate about z 135 rotate about curve 1 angle 50
Options that can be used with rotate are as follows:

{Ax|X|Ay|Y|Az|Z [Angle] <angle>} | { {[About] | Towards} Direction
{options} Angle <val> } [Rotate (options)] [Origin (location)]

Ax, Ay, Az (or X,Y,Z) angles can be entered in any order. The optional specification of another
rotate keyword in the options indicated that multiple nested rotations are permitted.
Cross

[Cross [With] Direction {options}]
The cross option allows you to find the vector cross product of the direction with another
direction.
Reverse

[Reverse]
This keyword simply reverses the direction specification.

31

Environment Control

Previewing a Direction
Sometimes it is helpful to preview a direction before using it in a command. A direction may be
previewed using the Draw command. The direction options are described above. See Specifying
a Location for a list of location options.

Draw Direction {direction_options} [Location (location_options)]

Specifying a Location
Some commands require a specified location or point (such as create curve spline) for the
command. A location is basically an x-y-z position in the model. The following options
determine a location specification:

• [Position] <xval yval zval>
• Last
• [At] {Node|Vertex} <id_list>
• [On] Curve <id_list> [location on curve options]
• [On] Surface <id_list> [Close_To | At Location {options} | CENTER]
• [On] Plane <options> [Close_To | At Location {options}]
• Center Curve <id_list>
• Extrema {Curve|Surface|Volume|Body|Group} <range> [Direction] {options} [Direction

{options}] [Direction {options}]
• Fire Ray Location {options} Direction {options} At

{Body|Volume|Surface|Curve|Vertex} <ids> [Maximum Hits <val>] [Ray Radius <val>]
• Between { Location <options> Location <options>} | { Location <options> Project

{Curve|Surface} <id> } [Stop] [Fraction <val>] }
• [Move [all] {<xval yval zval> | {Dx|X|Dy|Y|Dz|Z} <val> | Direction {options} Distance

<val>}]
• [Swing [all] [About] Axis {options} Angle <ang>]
• Multiple Location Specification

Position (XYZ values)
[Position] <xval yval zval>

The most basic way to specify a location is to just give the xyz values of the location. In this case
the following two commands both draw a location at the coordinates (1, 2, 3), as the Position
keyword is optional:

draw location position 1 2 3
draw location 1 2 3

Last Location Used in a Command
Last

The last option recalls the last location used in a command. For example, if the following
command is entered after the above position commands a location would be drawn at the
position (1, 2, 3).

draw location last

32

Cubit 15.1 User Documentation

Last locations do not carry over from CUBIT session to CUBIT session. The last location
defaults to (0, 0, 0) if no location has been used during the session.
Node or Vertex

[At] {Node|Vertex} <id_list>
Referring to a node or vertex simply returns the coordinates of that node or vertex. The
command can also handle multiple locations where multiple locations are needed to complete the
command string. The following draws a location at the coordinates of Vertex 5:

draw location vertex 5
On a Curve
Various options are available to specify a location on a curve. See the section Specifying a
Location On a Curve for details.
On a Surface

[On] Surface <id_list> [Close_To | At Location {options} | CENTER]
If a surface is used to specify a location without other options, the geometrical center of the
surface is found (the center keyword is optional - the default). Otherwise, you can specify
another general location and that location is projected to the surface. For example, the following
command will draw the location that is position (5,0,0) projected to surface 1:

draw location on surface 1 location 5 0 0
Any valid location options listed on this page can be used to specify the location that is projected
to the surface.
On a Plane

[On] Plane <options> [Close_To | At Location {options}]
A location can be defined at the closest point on a plane to a location. See Specifying a Plane for
plane options.
Center

Center Curve <id_list>
Finds the center of an arc - an error is returned if the curve is not an arc.
Extrema

Extrema {Curve|Surface|Volume|Body|Group} <range> [Direction] {options}
[Direction {options}] [Direction {options}]

The extrema option returns the location of the maximum value, on the specified entity or group,
in the specified direction. For example, the following places a vertex on a surface at the point of
maximum y-axis value.

create vertex location extrema surf 1 direction y
Fire Ray
The fire ray command allows a user to identify a location, or set of locations, on an object by
firing a ray at the object and determining the intersections. A ray can be fired at a list of bodies,
volumes, surfaces, curves, or vertices. The fire ray command is:

33

Environment Control

Fire Ray Location {options} Direction {options} At
{Body|Volume|Surface|Curve|Vertex} <ids> [Maximum Hits <val>] [Ray
Radius <val>]

The location options are described on this page. The direction options are described
under Specifying a Direction. The user can specify the maximum number of hits that he wishes
to receive back from the command. If this value is omitted, the command will return all
intersections found. When firing a ray at a curve, a ray radius must be used. The ray radius is the
distance from the curve the ray must be to be considered a "hit." If no ray radius is used, the
geometry engine default is used.
Between

Between {Location <options> Location <options> } | {Location <options>
Project {Curve|Surface} <range>} [Stop] [Fraction <val>]}

The between option finds a location that is between two locations or a location and an entity. An
optional fraction can be given to specify the fractional distance from the first location to the
second location or entity. For example, the following will draw a location at (5, 0, 0):

draw location between location 0 0 0 location 10 0 0
The following will draw a location at (2.5, 0, 0) - 25% of the distance from (0, 0, 0) to (10, 0, 0):

draw location between location 0 0 0 location 10 0 0 fraction .25
The second item can be an entity:

draw location between location 0 0 0 vertex 2
draw location between location 0 0 0 surface 1

In the second case, location (0, 0, 0) is projected to surface 1, then the location that is between (0,
0, 0) and the projected location is found.
Of course, any valid location can be used in the command. In the following example a location at
the top center of the brick is found:

brick x 10
draw location between location bet vert 3 vert 2
location bet vert 8 vert 5

The first location is between vertices 3 and 2, and the second location is between vertices 8 and
5.
Note: you can "swing" a location about an axis, "rotate" a direction about another direction,
"revolve" an axis about another axis and "spin" a plane about an axis. The only reason Cubit
needs to use different keywords for each entity type is because the Cubit command language
does not support expressions (as in using parentheses). The keyword stop is also used in the
location/direction/axis/plane parsing as a partial workaround to this limitation. Using this stop
keyword will aid in parsing out extended location specifications. Insert a stop after the first
location to let the parser know that where the specifications begin and end.
Move

Move [All] { <xval yval zval> | {Dx|X|Dy|Y|Dz|Z} <val> | Direction {options}
Distance <val> }

34

Cubit 15.1 User Documentation

Any location can be optionally moved either a xyz distance or a certain distance in a given
direction. As many moves as desired can be strung together. For example, the following will
return a location at (5, 0, 0):

draw location 0 0 0 move 5 0 0
These examples add another move that basically moves the location (5, 0, 0) in a direction 45
degrees up and to the right a distance of 10 (all three commands are equivalent - see sections on
directions and rotations):

draw location 0 0 0 move 5 0 0 move {10*sind(45)} {10*sind(45)} 0
draw location 0 0 0 move 5 0 0 move direction 1 1 0 distance 10
draw location 0 0 0 move 5 0 0 move direction 1 0 0 rotate about 0 0 1 angle
45 dist 10

Swing
Swing [All] [About] Axis {options} Angle <ang>

Any location can be "swung" (rotated) about an axis by a certain angle. (See the section
on specifying an axis for the axis syntax). As with moves, multiple swings can be strung
together. The following example rotates the location (2.5, 5, 5) thirty degrees about an axis
defined by Curve 11. Note that the right-hand rule is used to determine the direction of the swing
about the axis.

draw location 2.5 5 5 swing about axis curve 11 angle 30

Figure 1 - Swinging a Location

Multiple Location Specification
Location {options} Location {options}...

Multiple location specifications can be used in a single command. For example, the following
command uses several locations to create a spline curve at points (0,0,0), (1,2,3), (4,5,6), and
(7,8,9).

create curve spline location 0 0 0 location 1 2 3 location 4 5 6 location 7 8 9
Previewing a Location
Sometimes it is advantageous to preview a location before using it in a command. A location can
be previewed with the Draw command. All of the options that can be used to specify locations in
a command can be used to preview locations as well. See above for a description of these
options. The command syntax is:

35

Environment Control

Draw Location {options}
Specifying a Location on a Curve
Some commands require you to specify a location on a curve (i.e., webcutting with a plane
normal to a curve). The following are the options for specifying a location (or locations in the
case of the segment option) on a curve:

• {MIDPOINT|Start|End}
• Arc Center
• Fraction <val 0.0 to 1.0> [From Vertex <id> | Start|End]
• Distance <val> [From {Vertex|Curve|Surface} <id> | Start | End]
• {{Close_To|At} Location {options} | Position <xval><yval><zval> | {Node|Vertex}

<id>}
• Extrema [Direction] {options} [Direction {options}] [Direction {options}]
• Segment <num_segs>
• Crossing {Curve|Surface} <id_list> [Bounded|Near]}
• Previewing a Location

Arc Center
arc_center

The arc center option helps in identifying the location at the center of a given arc. Example:
create vertex location on curve 3 arc_center
Start, Midpoint, or End

{ MIDPOINT | Start | End |
These options simply specify the location that is the midpoint, start or end point of a curve. By
default, the midpoint is the understood location unless another location is specified.
Fraction

Fraction <val 0.0 to 1.0> [From Vertex <id> | Start|End] |
The fraction option simply finds the location that is a fractional distance along the curve. By
default, the fraction references the start of the curve; however, you can optionally specify which
vertex to reference from.
Distance

Distance <d> [From {Vertex|Curve|Surface} <id> | Start | End] |
The distance option not only can find a location that is a certain distance along the curve from
the start or end of the curve, but can also find a location (or locations if there is more than one
solution) on a curve that is a specified distance from another curve or a surface. If the From
Curve option is used both curves must lie in the same plane.

draw location on curve 13 distance 7 from curve 2

36

Cubit 15.1 User Documentation

Figure 1 - Location on a Curve a Distance from Another Curve

{Close_To|At} Location
{{Close_To|At} Location {options} | Position <xval><yval><zval>
|{Node|Vertex} <id>} |

These options take a location closest to the location on the curve.
Extrema

Extrema [Direction] {options} [Direction {options}] [Direction {options}]
The extrema option finds the maximum value location along a curve in a specified direction. For
example:

create vertex location on curve 1 extrema ny
Creates a vertex on curve 1 at the location where the y axis value of the curve is at a minimum.
Segment

Segment <num_segs>
The segment option finds locations spaced evenly along the curve such as to break the curve into
equal length "segments" (of course the curve is not modified). You must specify a minimum of
two segments (if two segments were specified a location would be found at the center of the
curve). The following example results in 4 locations:

draw location on curve 1 segment 5
create vertex on curve 1 segment 5

Figure 2 - Five Segments on a Curve

Crossing
Crossing {Curve|Surface} <id_list> [Bounded|Near]}

The crossing option finds locations at the intersection of the curve and another curve or surface.
By default, the curve(s) and surface are extended to infinity and the intersections are calculated;

37

Environment Control

if the bounded option is specified only intersections that lie on the bounded entities will be
returned. The near option is valid only for two linear curves. If near is specified the nearest
location between the two linear curves will be returned.
Previewing a Location on a Curve
A location on a curve can be previewed with the Draw command. All of the options that can be
used for specifying a location on a curve can be used to preview a location on a curve. See above
for a description of these options. The command syntax is:

Draw Location On Curve <curve id> {options}

Specifying a Plane
Some commands require a specified plane (such as sweep curve target) for the command. The
following options determine a plane specification:

• {Location|Vertex|Node} <origin> Direction <normal>
• {Location|Vertex|Node} <origin> Direction <vec on plane> Direction <vec on plane>
• {Location|Vertex|Node} <2 locations> Direction <vector on the plane>
• {Location|Vertex|Node} <3 locations>
• Surface <id> [at location <loc>]
• [Normal To] Curve <id> [loc on curve options]
• Direction <Normal> Coefficient <val>
• Arc Curve <id>
• Linear Curve <id> <id>
• X|Xplane|Yz|Zy|Y|Yplane|Zx|Xz|Z|Zplane|Xy|Yx
• Last

The following options apply to all of the plane specifications listed above:

• [Offset <val>]
• [Move { <xval yval zval> | {Dx|X|Dy|Y|Dz|Z} <val> | Direction {options} [Distance

<val>]]
• [[To] Location {options}]
• [Spin [About] Axis {options} Angle <ang>]]

Location and Normal Vector
{Location|Vertex|Node} <origin> Direction <normal>

The first way to specify a plane is to specify a starting point and a direction vector:
draw plane location 1 2 3 direction 0 1 1
draw plane vertex 1 direction tangent at curve 1

38

Cubit 15.1 User Documentation

Figure 1. Specifying a plane with a location and surface normal

To see the options for location specification, see Specifying a Location. Direction options can be
found at Specifying a Direction.
Location and Two Vectors on the Plane

{Location|Vertex|Node} <origin> Direction <vec on plane> Direction <vec on
plane>

It is also possible to select an origin point and 2 direction vectors on the plane.

.
Figure 2. Specifying a plane with a point and 2 in-plane vectors

Two Locations and Vector on the Plane
{Location|Vertex|Node} <2 locations> Direction <vector on the plane>

You can also specify 2 locations and 1 direction on the plane to define the plane.
draw plane vertex 1 2 direction 0 1 1

39

Environment Control

Figure 3. Specifying 2 locations and 1 direction on the plane

Three Points on the Plane
{Location|Vertex|Node} <3 locations>

A plane can be defined by three locations, vertices, or nodes. The locations are specified
using Location Specification.

draw plane vertex 1 2 3
draw plane vertex 1 2 location 3 4 5

Figure 4. A plane specified by three points

Plane defined by a Surface
Surface <id> [At Location <loc>]

The surface option uses and existing surface to define the plane. If it is not a planar surface, the
optional location specifier can be used to find the tangent plane of a specific point on the surface.

draw plane surface 1 at location 4 0 0

40

Cubit 15.1 User Documentation

Figure 5. Specifying a Tangent plane to a Surface

Plane Normal to a Curve
[Normal To] Curve <id> [loc on curve options]

The Normal to Curve option allows you to define a plane by using an existing curve. The
direction of the curve will define the surface normal of the new plane. The optional location
argument specifies which point to use on the curve if it is not a straight curve. If no location is
specified the plane will originate at the midpoint of the curve. See Specifying a Location on a
Curve for more information on location options.

brick x 10
cylinder radius 3 z 12
subtract body 2 from 1
webcut body 1 xplane
draw plane normal to curve 30

41

Environment Control

Figure 6. Draw Plane Normal to Curve

Plane Defined by a Non-linear curve
Arc Curve <id>

A plane can be defined by a single curve, provided that curve is not linear.
cylinder height 12 radius 3
draw plane arc curve 2
Plane Defined by a two linear curves

Linear Curve <id> <id>
A plane can be defined by a two linear curves, provided that the curves are not co-linear.
brick x 10
draw plane linear curve 2 3
Normal Vector and Coefficient

Direction <Normal> Coefficient <val>
The direction and coefficient option allows you to specify a plane based on a vector and an offset
from the origin. The Coefficient argument specifies how far to offset the plane from the origin

draw plane direction 1 2 3 coefficient 3
Coordinate Plane

X|Xplane|Yz|Zy|Y|Yplane|Zx|Xz|Z|Zplane|Xy|Yx
A plane can be defined from any coordinate plane or combination thereof. The coordinate planes
will pass through the origin unless optional specifiers are included.

draw plane xplane
webcut volume 1 plane xz

Last Location Used
Last

42

Cubit 15.1 User Documentation

The last option will return the plane most recently used in a command. Last locations do not
carry over from CUBIT session to CUBIT session. The last location defaults to (0, 0, 0) if no
location has been used during the session.
The following options apply to all of the plane specification methods described above.

• [Offset <val>]
• [Move {<xval yval zval>| {Dx|X|Dy|Y|Dz|Z} <val> | Direction {options}

[Distance <val>]]
• [[To] Location {options}]
• [Spin [About] Axis {options} Angle <ang>]]

A offset value will offset the plane in the direction of the surface normal.
The move option will displace the plane in the specified directions by the specified distance. The
direction options are outlined on Specifying a Direction.
The location option will move the plane to a specified location without rotating it.
See Specifying a Location for location options.
The spin option will rotate the plane around an axis. See Specifying an Axis for axis options.
Previewing a Plane
The ability to preview a plane prior to creating the plane or using it in a command is possible
with the following commands:
Draw Plane (options) [Graphics | {[Intersecting] {Body|Volume} <id_range>] [[Extended]
{Percentage|Absolute} <val>]}] [Color 'color_name']
The options for specifying a plane are described above in the section on Plane Specification. By
default, the commands draw the plane just large enough to intersect the bounding box of the
entire model with minimum surface area. Optionally, you can give a list of bodies to intersect for
this calculation. You can also extend the size of the surface by either a percentage distance or an
absolute distance of the minimum area size. The default color is blue, but you can specify a
different one. See the Appendix of the CUBIT Users Guide for available colors in CUBIT.
Preview a Cylindrical Plane
The ability to preview a cylindrical plane is possible with the following command:
Draw Cylinder Radius <val> Axis {x|y|z|Vertex <id_1> Vertex <id_2> | <xyz values>}
[Center <x_val> <y_val> <z_val>] [[Intersecting] Body <id_range>] [Extended
Percentage|Absolute <val>] [Color 'color_name']
The cylinder is defined by a radius and the cylinder axis. The axis is specified as a line
corresponding to a coordinate axis, the normal to a specified surface, two arbitrary points, or an
arbitrary point and the origin. The center point through which the cylinder axis passes can also
be specified.
By default, the commands draw the cylinder just large enough to just intersect the bounding box
of the entire model. Optionally, you can give a list of bodies to intersect for this calculation. You
can also extend the length of the cylinder by either a percentage distance or an absolute distance
of the cylinder length. The default color is blue, but you can specify a different one. See the
Appendix of the CUBIT Users Guide for available colors in CUBIT.

43

Environment Control

Listing Information
Listing Information
The List commands print information about the current model and session. There are five
general areas: Model Summary, Geometry, Mesh, Special Entities, and CUBIT Environment. The
descriptions of these areas includes example output based on the model generated by a journal
file listed below. The model consists of a 1x2x3 brick meshed with element size 0.1.

• List Model Summary
• List Geometry
• List Mesh
• List Special Entities
• List CUBIT Environment

Journal File Used for List Examples
brick x 1 y 2 z 3
body 1 size 0.1
mesh volume 1
block 1 volume 1
nodeset 1 surface 1
sideset 1 surface 2
group "my_surfaces" add surface 1 to 3
surface 2 name "BackSurface"
surface 3 name "BottomSurface"
surface 1 name "FrontSurface"
surface 4 name "LeftSurface"
surface 5 name "RightSurface"
surface 6 name "TopSurface"

List Model Summary
The following commands print identical summaries of the model: the number of entities of each
geometric, mesh, and special type

List Model
List Totals

The following output is generated from the list model command.
CUBIT> list model
Model Entity Totals:
 Geometric Entities:
 0 assemblies
 0 parts
 2 groups
 1 bodies
 1 volumes
 6 surfaces
 12 curves
 8 vertices
 Mesh Entities:

44

Cubit 15.1 User Documentation

 6000 hexes
 0 pyramids
 0 tets
 7876 faces
 0 tris
 9854 edges
 7161 nodes
 Special Entities:
 1 element blocks
 1 sidesets
 1 nodesets
Journaled Command: list model

List Geometry
The following commands list information about the geometry of the model.

List Names [Group|Body|Volume|Surface|Curve|Vertex|All]
List {Group|Body|Volume|Surface|Curve|Vertex} <range> [Ids]
List {geom_list} [Geometry|Mesh [Detail]]
List {Group|Body|Volume|Surface|Curve|Vertex} <range> {X|Y|Z}

The first command lists the names in use, and the entity type and id corresponding to each name.
Specifying all lists names for all types; other options list names for a specific entity type. The
names for an individual entity can be obtained by listing just that entity. Sample output from the
list names surface command is shown below. This output shows that, for example, Surface 2 has
the name ` BackSurface '.
______Name______ __Type__ Id _Propagated_
 BackSurface Surface 2 No
 BottomSurface Surface 3 No
 FrontSurface Surface 1 No
 LeftSurface Surface 4 No
 RightSurface Surface 5 No
 TopSurface Surface 6 No

List Names Example
The second command provides information on the number of entities in the model and their
identification numbers. If a range is given then detailed information is given on each entity in
that range, unless the ids option is also given. If the ids option is used, just a list of ids is printed.
This list can be very useful for large models in which several geometry decomposition operations
have performed. Sample output from the list surface command is shown below.
CUBIT> list surface ids
The 6 surface ids are 1 to 6.
CUBIT> list surf ids
The 108 surface ids are 192 to 266, 268 to 271, 273 to 301.

List Surface [range] Ids' Examples
The <range> can be very general using the general entity parsing syntax. Using a <range> gives
a brief synopsis of the local connectivity of the model, e.g. one can list the ids of the surfaces
containing vertex 2; as shown in the listing below.. An intermediately detailed synopsis can be
obtained by placing the range of entities in a group, then listing the group.

45

Environment Control

CUBIT> list surface in vertex 2 ids
The 3 entity ids are 1, 5, 6.
CUBIT> group "v2_surfs" equals surface in vertex 2
CUBIT> list v2_surfs Group Entity 'v2_surfs' (Id = 3)
It owns/encloses 3 entities: 3 surfaces.
Owned Entities: Mesh Scheme Interval: Edge
_____Name____ Type______Id +is meshed Count Size
FrontSurface Surface 1 map+ 1 H 0.1
 TopSurface Surface 6 map+ 1 H 0.1
RightSurface Surface 5 map+ 1 H 0.1

Using 'List' for Querying Connectivity.
The third command provides detailed information for each of the specific entities. This
information includes the entity's name and id, its meshing scheme and how that scheme was
selected, whether it is meshed and other meshing parameters such as smooth scheme, interval
size and count. The entity's connectivity is summarized by a table of the entity's subentities and a
list of the entity's superentities. Also, the nodesets, sidesets, blocks, and groups containing the
entity are listed.
Specifying geometry will additionally list the extent of the entity's geometric bounding box, the
geometric size of the entity, and depending on entity type, other information such as surface
normal. See also the list {entities} x command below. If multiple volumes, surfaces, or curves
are selected, it will list the total volume, area, or length of all entities, and the total geometric
bounding box. If multiple volumes are selected, the centroid listed will be the composite centroid
of the all of the volumes.
Specifying mesh will additionally list the number of mesh entities of each type interior to the
entity and on bounding subentities. Mesh detail will list the ids of the mesh entities as well,
following the format of the list ids command above.
The fourth command lists the entities sorted by either the x, y, or z coordinate of their geometric
center. For example, in a large, basically cylindrical model centered around z-axis, it is useful to
list the surfaces of a volume sorted by z to identify the source and target sweeping surfaces.

List Mesh
The following commands list mesh entity information.

List {Hex|Face|Edge|Node} <id_range>
List {Hex|Face|Edge|Node} <id_range> IDs

For both of these commands, the range can be very general, following the general entity parsing
syntax. The first command provides detailed information. For an entity, the information includes
its id, owning geometry, subentities and superentities. For a hex, the Exodus Id is also listed. For
a node, its coordinates are listed. The second command just lists the entity ids, and is usually
used in conjunction with complex ranges.

List Special Entities

List {special_type} <range>
Special entities include (element) blocks, sidesets and nodesets (representing boundary
conditions). Like the list geometry and list mesh commands, if no range is specified then the

46

Cubit 15.1 User Documentation

number of entities of the given type is summarized. Otherwise, listing a special entity prints the
mesh and geometry it contains.
(Some special entities are of interest mainly to developers and are not described here, e.g.
whisker sheets, and whisker hexes.)

List Cubit Environment
The user may list information about the current CUBIT environment such as message output
settings, memory usage, and graphics settings.
Message Output Settings
There are several major categories of CUBIT messages.

• Info (Information) messages tell the user about normal events, such as the id of a newly
created body, or the completion of a meshing algorithm.

• Warning messages signal unusual events that are potential problems.
• Error messages signal either user error, such as syntax errors, or the failure of some

operation, such as the failure to mesh a surface.
• Echo messages tell the user what was journaled.
• Debug messages tell developers about algorithm progress. There are many types of

Debug messages, each one concentrating on a different aspect of CUBIT.

By default, Info, Warning, Error, and Echo messages are printed, and Debug messages are not
printed. Information, Warning and Debug message printing can be turned on or off (or toggled)
with a set command; error messages are always printed. Debugging output can be redirected to a
file. Current message printing settings can be listed.

List {Echo|Info|Errors|Warning|Debug }
Set {Echo|Info|Warning} [On|Off]
[Set] Debug <index> [On|Off]
[Set] Debug <index> File <'filename'>
[Set] Debug <index> Terminal

Message flags can also be set using command line options, e.g. -warning={on|off} and -
information={on|off}. Debug flags can be set on with -debug=<setting>, where <setting> is a
comma-separated list of integers or ranges of integers denoting which flags to turn on. E.g. to set
debug flags 1, 3, and 8 to 10 on, the syntax is -debug=1,3,8-10.
In addition to the major categories, there are some special purpose output settings.

[Set] Logging {Off|On File <'filename'> [Resume]}
List Logging

If logging is enabled, all echo, info, warning, and error messages will be output both to the
terminal and to the logging file. The resume option will append to the logfile, if it exists, instead
of writing over it. If the logfile doesn't already exist, it will be created.

List Journal Title "<title_string>"
The List Journal command lists which types of CUBIT commands will be journaled and the file
to which the journaled commands are being written.

List Title

47

Environment Control

The List Title command will list the title to be written to the Exodus file. To assign a title to an
exodus file, use the Title command.

List Default Block
Set Default Block {ON|off}

The List Default Block command lists which type of geometric entities for which blocks will
automatically be generated at export if no other blocks have been specified. The Set Default
Block command will toggle whether these default blocks are written, or not, during the export
operation when no other blocks have been specified.

List Settings
The List Settings command lists the value of all the message flags, journal file and echo settings,
as well as additional information. The first section lists a short description of each debug flag and
its current setting. Next come the other message settings, followed by some flags affecting
algorithm behavior.
Sample output

CUBIT> list settings
Debug Flag Settings (flag number, setting, output to, description):
 1 OFF terminal Debug Graphics toggle for some debug options.
 2 OFF terminal Whisker weaving information
 3 OFF terminal Timing information for 3D Meshing routines.
 4 OFF terminal Graphics Debugging (DrawingTool)
 5 OFF terminal FastQ debugging
 6 OFF terminal Submapping graphics debugging
 7 OFF terminal Knife progress whisker weaving information
 8 OFF terminal Mapping Face debug / Linear Programming debug
 9 OFF terminal Paver Debugging
.
.
.
echo = On
info = On
journal = On
journal graphics = Off
journal names = On
journal aprepro = On
journal file = 'cubit11.jou'
warning = On
logging = Off
recording = Off
keep invalid mesh = Off
default names = Off
default block = Volumes
catch interrupt = On
name replacement character = '_', suffix character = '@'
Matching Intervals is fast, TRUE;
multiple curves will be fixed per iteration.
Note in rare cases 'slow', FALSE, may produce better meshes.
Match Intervals rounding is FALSE;
intervals will be rounded towards the user-specified intervals.
Graphical Display Information

List View

48

Cubit 15.1 User Documentation

List view prints the current graphics view and mode parameters; See Graphics Window .
Memory Usage Information
Users are encouraged to use Unix commands such as `top' to check total CUBIT memory use.
Developers may check internal memory usage with the following command:

List Memory [`<object type>']
Without an object type, the command prints memory use for all types of objects.

GUI
Graphical User Interface

• CUBIT Application Window
• Control Panel
• Graphics Window
• Tree View
• Property Editor
• Command Line Workspace
• Journal File Editor
• Toolbars
• Drop-Down Menus

The graphical user interface (GUI) can improve user productivity. It provides an easy way to
control CUBIT without learning command syntax. Many geometry commands are faster and
easier with the GUI. The underlying GUI components are constructed using a cross-platform
development environment. As such, the GUI will behave similarly across all platforms supported
by Cubit, yet each GUI will make use of platform specific widgets.
The GUI is built on top of the CUBIT command line. This means that GUI actions are translated
to a CUBIT command-line string and journaled. Users familiar with command-line syntax can
enter the same text in the GUI command-line window. Journal files can be created and played
back in both environments with the same results. Although many things are faster and easier in
the GUI, experienced users often use a combination of command line text and GUI button
operations.
The discussion of the Graphical User Interface and its features is based on the basic windows
contained within the CUBIT GUI Application Window. These are outlined in the subtopics listed
above.
A full graphical user interface (GUI) with the standard look and feel consistent with major
platforms is available on all supported Cubit platforms. The GUI version can improve
productivity, making new users aware of the wide range of CUBIT capabilities, and freeing new
and experienced users from having to remember esoteric syntax. The GUI and non-GUI versions
create and play back identical journal files, making it easier to switch from one environment to
the other.

CUBIT Application Window
The default CUBIT Application Window is shown in the following image.

49

Environment Control

Figure 1. The CUBIT Application Window

Graphics Window- The current model will be displayed here. Graphical picking and view
transformations are done here.
Power Tools - Geometry tree hierarchy view, geometry analysis and repair tool, meshing tool,
meshing quality tool, and ITEM Wizard.
Property Editor - The Property Editor lists attributes of the current entity selection. Some of
these properties can be edited from the window.
Command Panel - Most Cubit commands are available through the command panels. The
panels are arranged topologically, by mode.
Command Line Workspace - The command line workspace contains both the cubit command
and error windows. The command window is used to enter cubit commands and view the output.
The error window is used to view cubit errors.
Drop Down Menus - Standard file operations, Cubit setup and defaults, display modes, and
other functionality is available in the pull-down menus.
Toolbars - The most commonly used features are available by clicking toolbar icons.
Context Sensitive Help in the GUI
The Graphical User Interface has a context-sensitive help system. To obtain help using a specific
window or control panel, press F1 when the focus is in the desired window. It may be necessary
to click inside a text box to switch focus to a particular window. If no context specific help is
available, it will open the cubit help documentation where you can search for a particular topic.

50

Cubit 15.1 User Documentation

Customizing the Application Window
All windows in the CUBIT Application can be Floated or Docked. In the default
configuration, all windows are docked. When a window is docked the user can click on
the area indicated below.

Figure 2. A docked window. Click and drag to float.

By dragging with the left mouse button held down, the window will be un-docked from the
Application Window. Dragging the window to another location on the Application Window and
releasing the mouse button will cause it to dock again in a new location. The bounding box of the
window will automatically change to fit the dimensions of the window as it is dragged. Releasing
the mouse button while the window is not near an edge will cause the window to Float. To stop
the window from automatically docking, hold the CONTROL key down while dragging.

51

Environment Control

Figure 3. A Floating Window

When a window is floating, as shown in Figure 3, it is possible to dock it by clicking the
title bar of the window and dragging it to its new docked location.

52

Cubit 15.1 User Documentation

Note: Double clicking on the title bar of an floating window will cause the window to
redock in its last docked position.
Control Panel
Command Panel Functionality
The Command Panel is arranged first by mode on the top row of buttons. Modes are arranged by
task. All of the geometry related tasks, for instance, can be found under the Geometry mode.
When a mode is selected, a second row of buttons becomes available. The second row of buttons
shown depends on the selected mode. For example, if Geometry, Meshing, or Materials and BCs
is selected, the second button row will show entity types. Entities are those specific to the mode.

• Geometry panel entity level buttons include Volumes, Surfaces, Curves, Vertices, and
Groups.

• Meshing panel entity level buttons include Volumes, Surfaces, Curves, Vertices, Groups,
Hexes, Tets, Quads, Tris, Bars, and Nodes.

• Materials and BCs entity level buttons include Exodus Nodesets, Exodus Sidesets,
Exodus Blocks, Create Boundary Conditions, Modify Boundary Conditions, List
Boundary Conditions, Draw Boundary Conditions, Make a Boundary Condition current,
and Delete Boundary Conditions.

The second row of buttons for Analysis Setup and Post Processing are not arranged by entity.
Rather, the buttons show specific capabilities.
The third row of buttons contains Actions, such as Create, Delete, Modify, and so forth. The
following shows an example of Geometry/Volume actions.

Selecting an Action will display a command panel. The Geometry/Volume/Create command
panel is shown below.

53

Environment Control

All command panels are constructed similarly. Each abstracts a set of Cubit commands. Options
are selected using checkboxes, radio buttons, combo boxes, edit fields, and other standard GUI
widgets. Each command panel includes an Apply button. Pressing the Apply button will generate
a command to Cubit. Nothing happens until and unless the Apply button is pressed.

Note: The edit fields are free form, which means the user may enter any valid
string into the fields. Any string that is valid for the command line is valid
for the command panel edit fields.

Where possible, default values are placed into edit fields. At any time, with the cursor placed
over a blank portion of the command panel, the user may right-click to select Reset Data which
will clear all fields and replace default values.

ID Input Entry Methods
The ID Input Fields provide a location where Geometric IDs, required for the current command,
can be entered. IDs can be entered in several ways:
Simple Keyboard entry
ID numbers can be entered directly in the field. Each ID must be separated with a space. Select
the field first before typing.
Graphical selection
IDs can be entered automatically by selecting entities directly in the Graphics Window. The
current entity available for selection is based on the current entity selection mode. In some cases,
not all entities of the current entity selection mode will be available for picking. The program
may automatically filter the applicable entities based on the context of the current command
Geometry Tree selection

54

Cubit 15.1 User Documentation

IDs may be entered by selecting the corresponding geometric entity from the geometry tree. To
select multiple entities use the <ctrl> key.
Ranges
A range of IDs may be typed into the field. For example:

1 to 5
will automatically enter all IDs from 1 to 5 inclusive in the field. Keywords such as all and
except can also be used. Any range that can be entered directly on a CUBIT command line can
also be used in the ID input field. See Command Line Entity Specification for a description of
the syntax.
As Part of Other Entities
Syntax can be entered in the ID Input field that will specify an entity based upon its topological
relationship to other entities For example, if a Vertex Selection Type Button was highlighted,
entering

in surf 1
will automatically enter all vertices in surface 1 into the Input Field. CUBIT has a rich set of
syntax rules for specifying entities based upon topology relationships. See Command Line Entity
Specification for a description.
In Groups
Entities that are part of groups may be specified in the ID Input Field. For example, if the Vertex
Selection Type Button is highlighted, entering:

in picked
will automatically enter all vertices in the picked group into the active ID Input Field.
Dragged and Dropped
Entities can be dragged and dropped into the ID Input Field from the Tree View window.

Right-Click Context Menu for ID Input Fields
When the right mouse button is selected while in an ID Input Field, the following menu options
will appear:

• Done Selecting - Enters current selection and removes cursor from selection window
• Select Other - Displays selection dialog
• Select All - Selects all available entities and puts "select all" in input window
• Highlight - Highlight the current selection
• Zoom To - Zooms to current entity in the selection field within the graphics window
• Rotate About - Change center of rotation to the center of selected entity
• Draw - Draws the entities listed in the input field within the graphics window
• Isolate - Turns visibility off for all entities other than the selected entities. Similar to

draw command, but entities remain hidden with a graphics refresh. Select All Visible in
the graphics window to turn visibility back on.

• Visibility Off - Removes the current entity from the input window and hides it on the
graphics screen

• Mesh - Mesh the listed entities using either an assigned scheme or a default scheme
where none is assigned

• Delete Mesh - Deletes mesh on all entities listed in the input window

55

Environment Control

• Reset Entity - rehighlights the entities listed in the input field within the graphics
window

• List Info - Displays a sub menu of choices including basic, geometry, and mesh.
Selecting the basic option will list schemes, visibility, and interval assignments. The
geometry option will add information about the geometry and geometry engine. The
mesh option will list information about mesh entities.

• Delete - Deletes the current geometric object in the input window.

Value Fields
Integer and real values pertinent to the command are entered in this window. Input placed in
parenthesis { } will be evaluated when the command is executed. For example:

{10*0.02}
is valid input. Additionally, any APREPRO syntax is valid in the Value Field, including
mathematical functions and boolean operations. See the section, APREPRO for a description of
syntax.

Advancing Pickwidgets
Some command panels have several id input fields such as the Mesh>Hex>Create panel. A
convenience feature implemented for such panels is an advancing pickwidget feature. Pressing
the middle mouse button after selecting an entity will advance to the next id input field.

Command Panels
The Command Panels provide a graphical means of accessing almost all of the CUBIT
functionality. The main CUBIT Command Panel is divided into six modes. Each of these modes
pertains to a major component of the CUBIT application. To view information about each of the
tools in the Control Panel select the help icon on each panel to access context specific help.

56

Cubit 15.1 User Documentation

Figure 1. The CUBIT Control Panel

A brief description of the functionality of the Control Panel window follows.
Control Panel Functionality

Graphics Window
Viewing Curve Valence
To view your model based on a color-coded curve valence scale, click on the curve valence
button on the Display Toolbar. Curve valence refers to the number of surfaces attached to each
curve. Curves with exactly two surfaces attached are shown in blue. Curves with exactly one
surface are shown in red. Curves with more than two attached surfaces are shown in white.
This tool is useful for quickly visualizing merged/unmerged topology. Merged curves will
usually have a valence > 2, while unmerged curves typically have a valence of 2. Curves with a
valence of 1 may indicate a floating surface.

57

Environment Control

Graphics Window

Figure 1. Graphics Window

The graphics window is used to view and select entities. Select one of the options
below:

• View Navigation
• Selecting Entities
• Key Press Commands
• Right Click Commands for the GUI Graphics Window
• Viewing Curve Valence

Key Press Commands for the GUI
Several commands have a key press shortcut. These commands will be executed with
respect to the currently selected entities; see the following table:

Shortcut
Key Command

l List information about the current entity to the output
window.

58

Cubit 15.1 User Documentation

i Toggle the visibility of the selected entity (make invisible or
visible).

e Echo entity id to command line.

Select the next entity.

Select the previous entity.

0 Toggle picking of vertices.
1 Toggle picking of curves.
2 Toggle picking of surfaces.
3 Toggle picking of volumes.
4 Toggle picking of groups.

 0 Toggle picking of mesh nodes

 1 Toggle picking of mesh edges.

 2 Toggle picking of mesh faces.

3 Toggle picking of mesh hexes.

F5 Refresh graphics window

S Activate/inactivate graphics clipping plane

Right Click Commands for the GUI Graphics Window
Clicking the Right mouse button in the graphics window will bring up a menu. One of two
menus will appear, depending on whether an entity is currently selected.

With Entity Selected

• Select Other- Brings up a dialog with alternate entity selections
• Zoom To - Zoom to the selected entity
• Rotate About - Changes the center of rotation to the centroid of this entity
• Draw - Draw the selected entity
• Isolate - Turn all but the selected entities invisible
• Add to BC/Group/Part - Opens a dialog box where you can add the selected entity to an

existing boundary condition, group, or part.
• Remove from BC/Group/Part - Opens a dialog box where you can remove the selected

entity from an existing boundary condition, group, or part.
• Add to Picked Group - Add this entity to the picked group.
• Remove from Picked Group - Remove this entity from the picked group
• Visibility Off - Turn selected entities invisible
• Mesh - Mesh the selected entities
• Measure - Measures between two entities, or two vertices on a curve.

59

Environment Control

• Delete Mesh - Delete the mesh on selected entities (but not interval or scheme
information)

• Reset Entity - Reset selected entities by deleting mesh and interval information
• List Info - Show the menu of additional list commands
• Delete - Delete selected entities

Without Entity Selected

• Reset Zoom - Reset zoom to original configuration
• Refresh- Refresh the graphics display
• All Visible - Make all entities visible
• Display Options - Opens Options Menu to display options

Selecting Entities in the GUI
Geometry, mesh entities, and boundary conditions can be selected with the left mouse button
directly in the graphics window. Before selecting any entity, however, the correct selection mode
must be chosen. This dictates which entity types will be available for selection in the graphics
window. The Select Toolbars, which are located above the graphics window by default, are used
to change the entity selection modes.

Figure 1. The Selection Toolbar for Geometry and Mesh Entities

Figure 2. The Selection Toolbar for Boundary Conditions

60

Cubit 15.1 User Documentation

Figures 1 and 2 shows the selection toolbars. Selecting one of the entity selection modes will
only permit selection of that particular entity type within the graphics window. These selections
will not override a Pick Widget in the command panel.
If both volume and surface entities are picked on the select toolbar, a single click will select the
surface while a double click will select the volume. More detailed information on selecting and
specifying entities can be found in Entity Selection and Filtering .

Pre-Selection
When the mouse cursor is over an entity type that has been selected from the Pick toolbar, that
entity will become highlighted. This is called pre-selection and is used as a graphical guide to
show which entity will be picked when the mouse button is clicked.
Graphics pre-selection may slow down your graphics speed for large models. You can disable
pre-selection from the Tools->Options dialog box.

Polygon and Box Select
The polygon/box selection feature allows you to select entities by drawing a box or polygon on
the screen. To draw box on the screen press and hold the <CTRL> button* while clicking and
dragging the left mouse button. Release the left mouse to complete the box select. To create a
polygon selection, press and hold the <CTRL>* button while clicking and dragging the left
mouse button. Click the left mouse button to create another side for the polygon. Press either of
the other buttons to close the polygon and complete the selection. Only entities that are in active
selection mode will be selected. To change between the polygon or box method, press the Toggle
Between Polygon/Box Select button on the Select Toolbar. Clicking the Toggle Selected
Enclosed/Extended button will toggle between Enclosed Selection and Extended Selection.
Enclosed selection will only select entities that are fully enclosed within the bounding box or
polygon. Extended selection will select entities that are either fully OR partially enclosed within
the bounding box. Toggling the the Select X-Ray will select entities that are hidden behind other
entities. X-ray selection will only apply to smoothshade and hiddenline graphics modes.
*Note: For Mac computers use the command (or apple) button for polygon or box select.

View Navigation in the GUI
There are two different default paradigms for view navigation: Cubit command line and Cubit
GUI. The user is allowed to customize the mouse settings as desired. Mouse settings in the GUI
are modified by accessing the Tools pull-down menu, then select Options. The Mouse Settings
dialog is shown below (See Mouse-Based Navigation for the command line version).

61

Environment Control

Figure 1. Mouse Settings Dialog

Rotations
Where the cursor is in the graphics window will dictate how the view will be rotated. If the
cursor is outside of an imaginary circle, shown in Figure 2, the view will be rotated in 2d, around
an axis normal to the screen. If it is inside the circle, as in Figure 3, the rotations will be in 3d,
about the current view spin center. The spin center can be changed to any x-y-z location. The
most common way is by zooming to an entity, which changes the spin center to the centroid of
that entity. The "view at" command will change the spin center without zooming:

View at vertex 3

62

Cubit 15.1 User Documentation

Figure 2. With the mouse pointer outside the circle the view is rotated about an axis normal

to the screen

Figure 3. With the mouse pointer inside the circle the view is rotated about the current spin

center

Zooming
To zoom, press the appropriate buttons or keys and move the cursor vertically, as shown in
Figure 4. The wheel on a wheel mouse will also zoom.

63

Environment Control

Figure 4. Move the mouse pointer vertically to zoom in and out

Panning
To pan, press the appropriate buttons or keys and move the cursor horizontally or vertically, as
shown in Figure 5.

Figure 5. Move the mouse pointer horizontally or vertically to pan the view

Tree View
Power Tools
The power tools contain useful tools to help users through the mesh generation process.
The Immersive Topology Environment for Meshing, also known as ITEM. This panel contains a
wizard-like environment which guides the user through the mesh generation process through a
series of panels and diagnostics. The geometry tree tab contains a hierarchy of all the entities in
the model. It includes assemblies, boundary conditions, groups, and geometry entities. The
geometry tool allows users to create new boundary conditions/assemblies/groups, add entities to
existing boundary conditions/assemblies/groups, make entities visible/invisible, and rename
entities. The geometry repair and analysis tools contains diagnostics and tools for analyzing and

64

Cubit 15.1 User Documentation

repairing geometry, although many of these can now be found in the ITEM environment as well.
The mesh quality and meshing power tools aid in mesh generation and verification.
The geometry and mesh comparison tool identifies correlation between existing geometry and
mesh. The defeaturing tool assists users with defeaturing geometry in a more automated fashion.

Figure 1. Power Tools Window

• Geometry Tree
• Geometry Analysis and Repair Tools
• Meshing Tools
• Mesh Quality Tools
• Immersive Topology Environment for Meshing (ITEM)
• Defeaturing Tool

To familiarize yourself with the power tools environment (excluding ITEM), we recommend that
you try the power tools tutorial.
To familiarize yourself with ITEM wizard, we recommend that you try the ITEM tutorial.

65

Environment Control

Geometry Tree
The geometry tree provides a complete graphical hierarchical representation of the parent child
relationship of all geometric entities. The tree is populated as the model is constructed by Cubit.
In addition to showing a hierarchy of geometric entities, the tree also shows Assembly Data,
active Groups, and active Boundary Condition entities.
The tree works directly with the graphics window and picking. Selecting an entity in the tree will
select the same entity in the graphics window. Selecting an entity in the graphics window will
highlight the tree entry if that entry is currently visible. If an entity's visibility is turned off, the
icon next to that entity in the geometry tree will disappear.
If the tree entry is not visible the user may press the Find button located at the bottom of the tree.
The first occurrence of the selected entity will be shown on the tree.
Virtual entities have a small (v) after the name to indicate that they are virtual entities.

66

Cubit 15.1 User Documentation

Figure 1. Geometry Tree Window

Drag and Drop
The Tree View window supports drag and drop of geometric entities into existing boundary
condition sets. To create boundary conditions, see the Materials and Properties menu on the main
control panel, or right-click on one of the boundary condition labels and select the "Create New"

67

Environment Control

option from the context menu. Geometric entities or groups can be added to blocks, nodesets, or
sidesets by dragging and dropping inside the tree view window. Assembly data may also be
organized in the geometry tree window through drag and drop.

Picked Group
The current selections in the graphics window can be added to a "picked group" by selecting the
"Add to Picked Group" from the Right click menu. Selections can also be added to the picked
group by dragging and dropping onto the group from the geometry tree window. The picked
group can be substituted into any commands that use groups. To remove an item from the picked
group, use the "Remove from Group" option in the right click menu in the geometry tree or from
the graphics window.

Figure 2. Picked Group

Right-Click Menu Functions
The geometry tree's context menu is sensitive to the type of item and the number of items
selected. Functions that apply to the item type and number of selected items are available
from the context menu. These include the following:

• Zoom To - Available for all geometric entities
• Rotate About - Change the center of rotation to the centroid of the entity without

zooming
• Fly-In - Animated zoom feature
• Locate - Labels the selected entity in the graphics window
• Draw - Draw this entity by itself.
• Isolate - Similar to Draw command, but the display will not be refreshed with a graphics

reset. To redisplay the model, select All Visible from the graphics window right-click
menu.

• Transparency On/Off - Toggles transparency mode
• Visibility On/Off - Toggles visibility

68

Cubit 15.1 User Documentation

• Rename - Allows you to rename entities from the tree. Clicking on a highlighted entity
in the tree will do the same thing. This will also work for boundary condition entities
(blocks, nodesets and sidesets)

• Mesh - Mesh selected entity at current settings.
• Delete Mesh - Available for meshed entities
• Reset Entity - Deletes mesh, and returns all settings to default values.
• Delete - Available when Volumes and Groups are selected.
• Create New Assembly/Sub-assembly/Part - You must specify the absolute path to

create a new assembly, sub-assembly or part (e.g. /a1/p1). It may also be necessary to
refresh the full tree before viewing changes.

• Add Selected to Part- Add the selected volume in the graphics window to the selected
part on the geometry tree.

• Remove from Metadata - Deletes the selected part or assembly metadata information.
An assembly must be empty to remove it

• View Metadata - List metadata in the command line workspace
• Rename Metadata - Allows you to rename a part or assembly
• Clean Metadata - Removes all parts and assemblies that are not associated with any

geometric entities.
• List Volumes Without Parts - Lists all volumes that are not associated with a part in the

output window
• Show Part Name/Description -Toggles the display of the part name/description in the

tree.
• Goto Part - Finds the associated metadata part when a volume is selected.
• Measure - Available when two entities are selected or 1 curve is selected
• Refresh Full Tree - Used to return to main tree
• Collapse Tree - Available when entities are selected.
• View Descendants/Ancestors - Show this entity's individual hierarchy. Use the Refresh

Full Tree option to return to main tree view.
• View Neighbors View adjacent entities. Use the Refresh Full Tree option to return to the

main tree view.
• Create New Volume - Available when the user right-clicks over the Volumes (parent)

label. Opens the geometry-volume-create panel
• Import Geometry - Available when the user right-clicks over the Volumes (parent)

label. Opens import dialog.
• Create New Group - Available when the user right-clicks over the Groups (parent) label.
• Clean Out Group - Available when groups are selected. Removes all entities from

group.
• Remove from Group - Available when groups are selected. Removes selected entity

from the group.
• Add Selected to Block/Nodeset/Sideset - Add the selected entity in the graphics window

to the chosen block, nodeset, or sideset in the geometry tree.
• Delete Selected from Block/Nodeset/Sideset - Delete the selected entity in the graphics

window from the chosen block, nodeset, or sideset in the geometry tree.
• Create New Block/Sideset/Nodeset - Available when the user right-clicks over the

respective Boundary Conditions (parent) label.

69

Environment Control

• Create New <boundary condition> - Available when highlighting desired boundary
condition in the tree including CFD and FEA boundary conditions.

• Draw Block/Sideset/Nodeset - Draws the selected block/nodeset/sideset on top of
existing entities

• Draw Sideset/Nodeset Only - Draws the selected nodeset/sideset independent of other
entities

• Delete Selected Boundary Condition - Deletes any selected boundary conditions
• Draw Selected Boundary Condition - Draws selected boundary condition by itself
• Draw Selected Boundary Condition (Add) - Draws multiple boundary conditions
• List Selected Boundary Condition - Lists information about selected boundary

conditions in the command line window
• Remove from Block/Sideset/Nodeset - Removes selected entity from the specified

block, sideset or nodeset
• Cleanup (Tets) - Issues cleanup command for selected block. Only applicable for blocks

composed of tet elements
• Remesh (Tets) - Issues remesh command for selected block. Only applicable for blocks

composed of tet elements
• List Info - List information about selected entity in the output window.

Meshing Tools
The meshing power tool provides a tool for determining whether a geometry can be meshed
using autoscheme, or if it requires its scheme to be set explicitly. This tool is designed to help
guide users through geometry decomposition process by providing a convenient way to see
which geometries need further modification or decomposition prior to meshing.

Figure 1. Meshing Power Tools
Entity Specification- The meshing power tool works for volumes or surfaces.
Options Button - Opens the Tools>Options dialog to change the visualization colors of surface
schemes for the meshing tool
Analyze Button - The Analyze button issues the autoscheme command for all selected volumes
and surfaces.
Output Tree - The output from the meshing tool is displayed in tree format. Geometry is
divided into "Scheme Set" and "Scheme Not Set" divisions. The geometry is listed under these
nodes. If autoscheme was successful, its assigned scheme is also displayed.
Toggle Visibility Button - The meshing tool displays entities as red or green in the graphics
window. Green means that they are currently meshable using the autoscheme. Red means that
they require their scheme to be set explicitly. Turning this capability off will return the volumes
and surfaces to their original colors.
Meshing Tools Buttons - Several meshing tools are available to the user from this window.
Depending on the entity selected, these are also available from the right-click context menu, and
they are described below.

Right Click Context Menu

• Zoom To - Zoom in on this element in the graphics window
• Draw - Draw this entity by itself in the graphics window

70

Cubit 15.1 User Documentation

• Locate - Locates and labels entity in the graphics window
• Rotate About - Issues Rotate about command for selected entity
• Visibility On/Off - Toggle visibility
• Reset Graphics- Reset graphics display
• Set Size - Opens the Mesh/Entity/Interval panel on the control panel where you can

set interval sizes for the selected geometry
• Set Scheme - Opens the Mesh/Entity/Mesh panel on the control panel where you can set

a scheme for the selected entities
• Set Vertex Type - Available when surfaces are selected. Opens the Mesh/Surface/Mesh

panel to set vertex types.
• Imprint/Merge- Opens the Geometry/Entity/Merge panel on the control panel. If you

have entities selected in the tree window it will input them to the imprint/merge
command.

• Webcut - Opens the Geometry/Volume/Webcut panel on the control panel. If a volume is
selected in the meshing tool window it will input it in the webcut panel.

• Color Surfaces - Color surfaces based on their schemes. You can change the default
colors by selecting the Options button.

• Restore Colors - Restores colors on selected entity or entity type
• Mesh - Meshes the selected entities (bypassing control panel)
• Delete Mesh - Deletes the mesh on selected entities
• Unmerge - Unmerges selected entities
• View Descendants - Opens a list of child entities and their meshing schemes. Press

Analyze to return.
• View Ancestors- Opens a list of parent entities and their meshing schemes. Press

Analyze to return.
• View Neighbors- Opens a list of bordering entities and their meshing schemes. Press

Analyze to return.

Mesh Quality Tools
The mesh quality tool is located in the entity tree window under the quality tab. The Mesh
Quality Tool works on meshed entities to analyze mesh quality based on selected metrics. Output
from the mesh quality analysis can be visualized using color-coded scales. The mesh quality tool
also contains tools to improve mesh quality including smoothing, refinement, node merging,
mesh validation, deleting mesh elements, and repositioning nodes.

71

Environment Control

Figure 1. Mesh Quality Tools

Entity Type - The mesh quality tools can only be applied to mesh entities including volumes,
surfaces, hexahedra, quadrilaterals, triangles, or tetrahedra.
Help Button - Opens context specific help for this topic.
Options Button - Clicking on this button will show the Tools>Option menu dialog that allows
users to manually enter metric range settings. The settings are persistent between sessions. For a
description of quality metrics and default ranges click on one of the following links:

• Metrics for Hexahedral Elements
• Metrics for Quadrilateral Elements
• Metrics for Tetrahedral Elements
• Metrics for Triangular Elements

Visual Button - Clicking on this button will open the Mesh/Entity/Quality command panel
specific to the entity selected. To visualize elements in the graphics window based on a color-
coded quality scale, you must select the entities to visualize and check the "Display Graphical
Summary" check box. Once that box is selected, you must also make sure the "Draw Mesh
Elements" option is selected. Then press the Apply button
Analyze Button - This button starts the quality processing based on the metrics/filters selected.
Output Window/Tree - The failed elements are shown in the tree under the heading "Poor
Elements". For each metric/filter the output will be listed in a tree format with the following
nodes.

1. The top node on the tree is the name of the metric.

72

Cubit 15.1 User Documentation

2. The next node under is the owning volume or surface when volumes or surfaces are
analyzed.

3. The next node will be categories or groups of elements. Possible categories are:
o All Above Threshold - represents all mesh elements above the quality threshold

upper range
o All Below Threshold - represents all mesh elements below the quality threshold

lower range
o Top "n" - This will expand into a list, up to 50 elements long, of the worst

offending elements above the upper threshold range.
o Bottom "n" - This will expand into a list, up to 50 elements long, of the worst

offending elements below the lower threshold range.
4. At the lowest level of the tree are mesh elements.

The mesh elements can be sorted by quality or by numeric order. To change the way items are
sorted, click on the headings. The right-click or context menu will show various remedies
depending on what is selected. Performing an operation on a parent node will perform the same
operation on all of the child nodes.

Mesh Quality Tool Buttons
The buttons on the bottom of the mesh quality tool window are some of the tools you may use to
improve mesh quality and include.

• Smooth Button - Opens the Mesh>Entity>Smooth panel
• Refine Button - Opens the Mesh>Entity>Refine panel
• Move Node - Opens the Mesh>Node>Move Node panel
• Merge Node - Opens the Mesh>Node>Merge Node panel
• Delete Mesh Element - Deletes selected mesh entity
• Validate Mesh - Issues the validate mesh command
• Check Coincident Nodes - Issues the check coincident nodes command.
• Refresh Graphics

Right-Click Context Menu Items

• Draw - issues a draw command for any tree node below the metric name.
• Color Code - Issues a 'quality draw mesh' command for any tree node below the

metric name
• Locate - Issues Locate for volume/surface/hex/quad/tet/tri. The locate command will

draw and label selected entities in the graphics window.
• Fly-In - Issues Fly-in for volume/surface/hex/quad/tet/tri. The fly-in command is an

animated zoom feature.
• Zoom to - Issues Zoom command for volume/surface/hex/quad/tet/tri
• Rotate About - Issues Rotate About command for volume/surface/hex/quad/tet/tri
• Vis on/off - Issues visibility on/off for volume/surface
• Smooth - Issues generic smooth command for volume/surface/hex/tet
• Smooth Surface Parent - issues a smooth surface command for the surface parents of

selected quads and tris.

73

Environment Control

• Delete Mesh - issues delete mesh propagate command for vol/surf
• Delete Elements - issues delete element command for mesh entities in all categories

except 'all'
• Validate mesh - validates selected volume or surface
• Check Coincident Nodes - checks for coincident nodes on volume or surface
• Smooth Panel - brings up the correct smooth panel depending on what's selected
• Smooth Surface Panel - bring up the smooth surface panel with correct surface ids for

selected quads and tris
• Merge Node Panel - brings up the panel to merge nodes
• Move Node Panel - brings up the panel to move nodes
• Reset Graphics - resets the display

Geometry Power Tools
The geometry power tools are located on the Tree View window under the blue geometry tab. In
many cases, a model will fail to mesh because of problems with the geometry. Since the range of
geometry problems is so wide, and because these problems can be hard to diagnose, the
Geometry Power Tool has several built-in tools designed to analyze and repair these problems.
The Geometry Repair Tool analyzes geometry for small angles, overlap, small features, bad
geometry definition, blend surfaces, close loops, or mergeable entities that may affect meshing
capability. It also contains a powerful toolkit of geometry modification methods to fix these
problems. All of the common geometry clean-up tools are now in one place on the GUI menu. In
addition, there is a window that lists results from geometry analysis in a tree format, making it
easier to find, diagnose, and solve geometry problems. And Cubit will save your settings, so you
can run the same diagnostic tests each time you use the geometry power tools.

74

Cubit 15.1 User Documentation

Figure 1. Geometry Power Tools

Geometry Analysis Tools
The geometry power tools contain an array of tests that can be run on geometry to diagnose
potential problems for mesh generation. To display a list of tests, click on the Show Options
check box. By default all tests are selected and run on geometry. Some tests may not apply to
specific geometry, or may only need to be run once per geometry (i.e. bad geometry definition
test). Clicking on the box by each test will deselect it.
The geometry analysis inputs and tests are summarized below:
Shortest Edge Length -The shortest edge length is a value that is input by the user. It
determines the minimum allowable threshold for small features. It is used as an input to test for
small curves, small surfaces, small volumes and close loops. The default value for this is 1. This
value should be changed relative to the size of the model. In a very broad sense, it represents a
desired mesh edge length. Curves and surfaces which are smaller than this size, and which may
be troublesome to mesh with the desired granularity, will be flagged and they can be removed or
modified.
Bad Angle Upper/Lower Bounds - The bad angle upper/lower bounds are tolerances set by the
user to determine the definition of small or large angles. The default values are set at 350 degrees
for the large angle and 10 degrees for the small angle. These values are used to test for angles
between curves, surfaces, and at tangential intersections.

75

Environment Control

Bad Angle Check - The bad angle check will test for small angles between curves, surfaces, and
at tangential intersections. The test will only look for curves or surfaces that are adjacent.

Tangential Intersection - A tangential intersection is formed when two parallel
surfaces share an edge and have a 180 degree angle between them. The tangential
intersection test is looking for the condition where two surfaces that meet
tangentially share a common edge, and each of the surfaces has another edge
which resides on a third face and forms a small angle as shown in the following
example. Surface 1 and Surface 2 are tangential to each other and share a
common edge. Both Surface 1 and 2 have another edge which resides on Surface
3 and forms a small angle at the vertex common to all three surfaces.

Figure 2. Tangential Intersection

Mergeable Entities Check - As it suggests, this test is looking for entities that overlap and that
can be merged. Pressing the "Merge all" button on the Power Tools will automatically merge all
entities flagged by the merge test.
Overlap Check - The overlap tests look for geometry that are either overlapping or coincident
(exactly on top of each other). Keep in mind that some of these problems may disappear with
imprinting and merging.
Small Features Check - Small features may be necessary and desirable in a model, but many
times they are the result of poor geometry translation or import, or they may just not be
important to the analysis. The small features tests look for small curves, small surfaces, and
small volumes. These tests rely on the user-defined short edge length parameter. Small curves,
including zero-length curves such as hardpoints, are compared directly against the defined
parameter, and flagged if they less than or equal to the given parameter. Small surfaces and
volumes, on the other hand, are compared against their hydraulic radius. For surfaces the
hydraulic radius is 4*surface_area/perimeter. For volumes the hydraulic radius
is 6*volume/surface_area.

76

Cubit 15.1 User Documentation

Bad Geometry Definition Check - Cubit uses third party libraries, such as ACIS from Spatial,
Inc. for much of its geometric modeling capabilities. The bad geometry definition check calls
internal validation routines in these libraries, when available, to check for errors in geometry
definition. If the third party library does not provide validation capabilities, this check will not
return anything. Note: ACIS is a trademark of Spatial.
Blend Surface Check - A blend surface is a transition surface between two orthogonal planes,
such as a fillet. The blend surface check identifies the surfaces which meet this criterion. Many
times these surfaces are candidates for the split surface command or the remove surface
command. The split surface command allows you to split these blend surfaces into two surfaces,
making it easier to mesh the volume. The remove surface command removes the surface and
extends the adjoining surfaces until they intersect.
Close Loops Check - Close loops (pronounced KLOS, not KLOZ) are two loops on a single
surface for which the shortest distance between loops is less than a user specified tolerance. The
tolerance for close loops is the square of the shortest edge length parameter. Close loops are
common around holes and fillets, and are usually found where one loop is entirely within the
other loop. These surfaces are often candidates for removal, or tweaking.

Geometry Repair Tools
Note: Pressing most of the geometry tool buttons on the panel will only bring up applicable
command panels on the Control Panel. You must press the Apply button on the Control Panel to
execute the command.

Split Surface Button
The split surface tool is used to split a surface into two surfaces. This is useful for blend surfaces,
for example, where splitting a surface may facilitate sweeping. To select a surface for splitting,
click on the surface in the tree view. To select multiple surfaces in the window, hold the CTRL
key* while selecting surfaces (surfaces must be attached to each other). Then press the split
surface button to bring up the Control Panel window with the ids of selected surfaces in the text
input window. The split surface menu is located on the Control Panel under Geometry-Surface-
Modify. You must press the Apply button for the command to be executed. You can also bring
up the Split Surface menu by selecting surfaces in the tree view and selecting Split from the right
click menu.
*Note: For Mac computers, use the command key (or apple key) to select multiple entities

Heal Button
The healing function in Cubit is used to improve ACIS geometry that has been corrupted during
file import due to differences in tolerances, or inherent limitations in the parent system. These
errors may include: geometric errors in entities, gaps between entities, and the absence of
connectivity information (topology). To heal a volume, select the volume in the geometry repair
tree view. Then press the heal button. You may also press the heal button without a geometry
selected in the window, and enter it later. The Control Panel window will come up under the
Geometry-Volume-Modify option with the selected volume id highlighted. If no entity is
selected, or if another entity type is selected, the input window will be blank. You can also open
the healing control panel by selecting Heal from the right click menu in the geometry power
tools window.

Tweak Button

77

Environment Control

The tweak command is used to eliminate gaps between entities or simplify geometry. The
tweaking commands modify geometry by offsetting, replacing, or removing surfaces, and
extending attached surfaces to fill in the gaps. Tweaking can be applied to surfaces, and it can be
applied to curves with a valence no more than 2 at each vertex. It can also be applied to some
vertices. To tweak a surface, select the surface in the tree view. The Geometry-Surface-Modify
control panel will appear with the selected surface id in the input window.
Tweaking is available for curves. Tweaking a curve creates a blended or chamfered edge
between two orthogonal surfaces. The curve option is located on the Geometry-Curve-Modify
panel under the Blend/Chamfer pull-down option.
Tweaking is also available for some vertices. Tweaking a vertex creates a chamfered or filleted
corner between three orthogonal surfaces. The vertex option is located on the Geometry-Vertex-
Modify panel under the Tweak pull-down menu.
Note: Only curves with valence 2 or less at each vertex are candidates for tweaking. Any
other curve will cause the Geometry-Surface-Modify menu to appear.

Merge Button
The merge command is used to merge coincident surfaces, curves, and vertices into a single
entity to ensure that mesh topology is identical at intersections. Unlike other buttons on the
geometry repair panel, the merge button acts as an "Apply" button itself. All geometry that is
listed under "mergeable entities" will be merged.

Remove Button
The remove button is used to simplify geometry by removing unnecessary features. To use the
remove feature, click on the surface(s) in the Tree View. Right click and select the Remove
Option, or click the Remove icon on the toolbar. The Control Geometry-Surface-Modify control
panel will appear, with the surface ids in the input window. The Remove control panel can also
be accessed from the right-click menu in the Geometry Power Tools window. Select options and
press apply.

Regularize Entity Button
The regularize button is used to remove unnecessary topology. Regularizing an entity will
essentially undo an imprint command.

Remove Slivers
The remove slivers button is used to remove surfaces with less than a specified surface area.
When ACIS removes a surface it extends the adjoining surfaces to fill the gap. If it is not
possible to extend the surfaces or if the geometry is bad the command will fail.

Auto Clean Geometry
The auto clean button is used to perform automatic cleanup operations on selected geometry.
These automatic cleanup operations include forcing sweepable configurations, automatically
removing small curves, automatically removing small surfaces, and automatically splitting
surfaces.

Composite Button
The composite button is used to combine adjacent surfaces or curves together using virtual
geometry . Virtual geometry is a geometry module built on top of the ACIS representation.
Surfaces may be composited to simplify geometry in order to facilitate sweeping and mapping

78

Cubit 15.1 User Documentation

algorithms by removing constraints on node placement. It is important to note that solid model
operations such as webcut, imprint, or booleans, cannot be applied to models that have virtual
geometry. Both curves and surfaces may be composited.

Collapse Angle Button
The collapse angle button uses virtual geometry to collapse small angles. This is accomplished
by partitioning and compositing surfaces in a way so that the small angle gets merged into a
larger angle. Pressing the collapse button on the geometry power tools will open the collapse
menu under Geometry-Vertex-Modify control panel. This panel can also be opened by
selecting Collapse from the right click menu in the Geometry Tools window.

Collapse Surface Button
Pressing this button will open the collapse surface panel on the main control panel. The collapse
surface function uses virtual geometry to eliminate small surfaces on the model to improve mesh
quality. It is most useful for blend surfaces.

Collapse Curve Button
Pressing this button will open the collapse curve panel on the main control panel. The collapse
curve command is used to eliminate small curves using virtual geometry.

Reset Graphics Button
The reset graphics button will refresh the graphics window display.

Right Click Menu
The following right click menu is available from the geometry power tools. Specific options
depend on the type of entity selected.

• Zoom To- Zoom to selected entity in the graphics window
• Reset Zoom - Reset graphics window zoom
• Fly-in - Animated zoom
• Locate - Labels the selected entities in the graphics window. Refresh screen to hide.
• Draw - Displays only selected entities by themselves.
• Highlight - Highlights selected entities.
• Draw with Neighbors - Displays only selected entities with all attached neighbors
• Clear Highlights - Clears all highlighted entities and reset graphics
• Reset Graphics - Reset graphics window
• Tweak - Opens the tweak menu in the main control panel
• Remove - Opens the remove menu in the main control panel
• Remove Slivers - Opens the remove sliver menu in the main control panel
• Remove all - Available when the clicking on an item in the "small surfaces" list. Opens

the remove menu in the main control panel with all surfaces in the category as inputs.
The individual option will be selected on the panel by default.

• Split - Opens the split surface or split curve menu in the main control panel, depending
on the type of entity selected.

• Auto Clean - Opens the auto clean menu in the main control panel.
• Regularize - Issues the regularize command on selected entity.
• Merge Selected - Merge selected entity from mergeable entities list

79

Environment Control

• Merge All - Merge all entities listed in the mergeable entities list
• (Virtual) Composite - Opens the composite menu in the main control panel
• (Virtual) Collapse - Opens the collapse angle menu the main control panel
• Collapse Surface (Virtual) - Opens the collapse surface menu on the main control panel

The following right click options are available when category headings are selected.

• Analyze Geometry - Similar to pushing the Analyze button.
• Highlight All - Highlight all members of this category.
• Draw All - Display only members of this category.
• Locate All - Label all members of this category.

Defeature Tool
The Defeature Tool is capable of removing small irrelevant curves and surfaces. These small
curves and surfaces are one of the main sources of low quality elements and meshing
failures. Sliver surfaces and curves generally exist at fillets, chamfers, and sliver surfaces at
misalignments in imprinted assembly models.
Defeaturing small curves and surfaces involves three main steps:

1. Analyze the model to automatically detect small curves and surfaces.
2. Manually deselect, if needed, detected small curves and surfaces.
3. Execute the defeature tool to remove small curves and surfaces.

Step 1 requires specifying volume ids (e.g. all) and a tolerance (e.g. 0.6) as shown in Figure
1. Clicking “Analyze” button will automatically find small curves and surfaces in the volumes
specified. Figure 2 shows the highlighted small curves and surfaces with the label
information. Figure 3 shows a zoom view of a small surface.
In Step 2 the user is allowed to deselect entities by unchecking entities from the list “Entities to
be Defeatured”. Users can also use “Highlight”, “Draw”, and “Locate” buttons to examine the
automatically detected entities (see Figure 2).
In Step 3 actual defeaturing is performed by clicking the “Execute” button (see Figure 5). Figure
4 shows the zoom view of a defeatured volume. Defeatured volumes are created in a new user
specified group (by default in “defeature_group”) as shown in Figure 6. Only the volumes that
have small curves and surfaces will be defeatured. Also, by default old original volumes are
deleted and new defeatured volumes (child entities) will use the corresponding old ids. Please
use the option “Keep Originals” if you want to have both old original and new defeatured
volumes.
NOTE:

1. The new defeatured volumes are in MBG format. That is defeatured volumes are facet
based instead of NURBS based ACIS volumes. Therefore, it is highly recommended to
perform NURBS based operations such as webcut and imprint before calling defeature.

Command Syntax:
Set tolerant mesh mbg only

80

Cubit 15.1 User Documentation

This command forces the mesh to associate with new defeatured volume. Currently, this
command must be called before calling the defeature command below.

Defeature curve_length <value> [Curve <ids>] [Curve <ids>] surface_prox2d
<value> [Surface <ids>] [group <id>] [keep]

curve_length <value>: Curves with length less than or equal to <value> are automatically
detected as candidate for defeaturing if auto_identify is specified. Otherwise, [Curve <ids>]
must be specified.
surface_prox2d <value>: Surfaces with narrow region between opposing bounding curves are
automatically detected as candidate for defeaturing if auto_identify is specified. The 2d
proximity <value> specified in detecting surfaces containing narrow regions. If auto_identify is
not specified, then [Surface <ids>] must be specified.
group <id>: Defeatured volumes are added to the group id specified.
keep: If keep argument is specified original entities are kept along with new defeatured
volumes. If keep argument is not specified, then original entities are deleted and new defeatured
volumes and its subentities (surfaces, curves, and vertices) will use the ids of original volumes.

Preserving Critical Geometric Entities
Before defeaturing the geometry, the user may wish to specify geometry that will be preserved
during defeaturing. The below given "Fix" keyword is used to preserve any entity. The user may
specify a volume, surface, curve, or vertex to fix.
Mesh Tolerant Fix [Volume|Surface|Curve|Vertex] <range>
To reverse the effects of fixing a geometric entity, the user may "free" an entity using the
following syntax
Mesh Tolerant Free [Volume|Surface|Curve|Vertex] <range>
Example for fixing geometric entities:
reset
brick x 10
brick x .1
move vol 2 x 5
unite all
mesh tolerant fix surf all
mesh tolerant fix curve all
Defeature curve_length .2 curve 31 29 27 26 24 32 13 30 17 28 22 25
surface_prox2d .2 surface 13 14 15 16 12

Sample Journal File:
Even though the defeature tool is mainly intended to driven by the GUI, it can be used via
command line. Without the GUI, it will be harder to provide the list of small curves and surfaces
to the defeature command. Here is a sample journal file:
import simple assembly
import acis 'assembly11a.sat'
perform any ACIS based operations such as webcutting and imprinting first
imprint all
merge all
enable the developer only command
set developer on

81

Environment Control

force the mesh to associate with defeatured MBG volumes
set tolerant mesh mbg only
create a new group to store defeatured volumes
group 'defeatured_vols' add volume all
perform actual defeaturing by specifying the volume ids, tolerance, and small curve/surf ids.
defeatured volumes will be placed in the user specified group id and original entities can be
 # kept along with new defetured volume using “keep” option.
defeature volume all curve_length 0.3 curve 107 103 102 100 88 85 82 80 9 6 4 2 214 212 211
210 203 200 199 197 188 187 185 183 170 167 164 162 234 232 227 225 254 253 252 251 249
248 243 242 272 271 270 269 265 264 259 258 288 287 286 285 281 280 275 274 304 303 302
301 297 296 291 290 312 311 307 306 surface_prox2d 0.3 surface 47 48 50 51 41 43 40 42 2 4 1
3 111 112 118 120 121 122 124 126 128 129 130 132 134 135 136 138 140 141 142 144 81 82
83 84 88 89 90 91 94 95 96 97 100 101 102 103 group 2 keep
del any old original volumes if you don’t want it anymore
delete vol 1 to 11
enable visibility of only defeatured vols
vol all vis off
vol all in group 2 vis on
set scheme to tetmesh
vol all in group 2 scheme tetmesh
set mesh size
vol all in group 2 size 1
mesh defeatured vols
mesh vol all in group 2
disable developer only command
set dev off

Figures

82

Cubit 15.1 User Documentation

Figure 1: Specify Volume ID and Tolerance before clicking “Analyze”

83

Environment Control

Figure 2: Use “Highlight”, “Draw”, and “Locate” to visualize small curves and surfaces

84

Cubit 15.1 User Documentation

Figure 3: Zoom view of a small curve and surface

85

Environment Control

Figure 4: Zoom view of defeatured volume

86

Cubit 15.1 User Documentation

Figure 5: Click Execute button to Defeature automatically/manually selected entities

87

Environment Control

Figure 6: New defeature_group contains defeatured volumes in MBG format

Geometry/Mesh Comparison Tool
The Geometry/Mesh Comparison Tool tries to find geometry and mesh that do not correspond.
The typical use is to import a geometry file and then import a mesh file that is associated with
the geometry. The comparison tool will locate mesh that does not correspond to the geometry.
The tool will also show geometry that does map to any mesh.

88

Cubit 15.1 User Documentation

The user selects the volumes for the comparison, then selects the mesh entities for the
comparison. A default comparison tolerance value of 1e-6 will be used unless otherwise
specified. No additional setup is required. Select the "Compare" button to generate results.
Unassociated entities will be displayed in one of two categories:
1) Mesh elements not associated with any volume
2) Partially meshed volumes
Clicking on the labels in the tree will cause the entities to be drawn in the graphics window. If
"Draw Without Refreshing" is selected, the draws will be additive. If "Draw Without
Refreshing" is not selected, the previous draw will be removed when the current drawn entities
are shown.
The underlying Cubit command for the tool is the following:

Compare volume <id range> {block <id range> | hex <id range> | tet <id range>
[tolerance <value>]

The command will create three types of groups that contain non-corresponding mesh and/or
geometry. The group named "mesh_with_no_volume" contains hexes or tets that cannot be

89

Environment Control

associated with any volume. The groups named "No_meshed_Volume_*" contain the curves of
a volume (for display purposes) that is completely void of any hexes or tets. Lastly, the groups
named "Partially_meshed_Volume_*" contain hexes or tets, faces or tris, and curves of
volumes that could only be partially associated with mesh. The group is created with these
entities so that the user can see the partially meshed regions of the volume.
Property Editor
The Property Editor is a window that lists properties about the current entity selection. Some of
the properties, like CUBIT ID, entity type, or geometry engine, are listed for reference only.
Other attributes, like name, or mesh intervals, color, mesh scheme, or smooth scheme can be
edited from the window. The Property Editor is located on the left panel in the GUI. The
highlighted entity/entities in the graphics window are listed in the property editor window. The
Property Editor also lists information about selected mesh entities, boundary conditions, and
assemblies. Selecting an object from the Tree View will also open the object in the property
editor.

Figure 1. Property Editor Window

The row of buttons on the top of the editor are shortcuts to common commands. These
include:
>

Meshes the selected entity/entities at their current interval
and scheme settings

Smooth selected entity using the current smoothing scheme

Preview mesh intervals on selected entity

Delete mesh on specified entity (do not propagate to lower
order entities)

90

Cubit 15.1 User Documentation

Reset entity to default settings and delete mesh

Calculates volumes and surface areas

Delete current entity
Editing Entity Attributes from the Property Editor
The Property Editor provides a convenient way to change attributes on entities. . Some of the
fields cannot be changed, some can be edited from an input field, and others are edited by
selecting from a list, or by opening the corresponding window from the Control Panel.
If multiple entities are selected, the attributes that are similar to both entities will be shown.
Changing an attribute from the property editor will change that attribute on both entities. If
multiple entities are selected the total volume, surface area, and length of all entities will be
shown.
Below is a summary of properties listed for each attribute type.

General Attributes

• Entity ID - CUBIT ID for geometry or boundary condition element
• Entity Type - Geometric type such as Volume, Surface, Curve, Vertex
• Name - Name by which the entity can be referred to from within CUBIT instead of using

its ID. The entity name can be edited from this window.
• Color - Opens a dialog box with available colors. A color name can also be input directly

into the text field. See Appendix for a list of available colors.

Geometry Attributes

• Is Merged - Returns "Yes" if this entity is merged
• Is Virtual - Returns "Yes" if this entity is a virtual entity
• Location - Returns the location of specified vertex.
• Geometry Engine - ACIS or Mesh-Based Geometry
• Volume - The volume of the specified body
• Surface Area - Surface area of selected surface
• Analytic Type - Returns the analytic type of entity (such as cone, sphere, etc)
• Length - Length of selected curve

Meshing Attributes

• Is Meshed - Returns "Yes" if the entity is already meshed
• Number of Elements - Similar to "List Totals" command
• Intervals - Number of mesh intervals on element. This can be edited from this window.

The number must be an integer
• Interval Size - Interval size for element. Clicking on box will open the interval

specification panel on the control panel. The interval size can also be entered manually in
the text box.

• Meshed Volume - The meshed volume may be slightly different than the actual element
volume due to the mesh approximation on curved surfaces.

91

Environment Control

• Meshed Area - The meshed area may be slightly different than the actual surface area
due to mesh approximation on curved edges.

• Length of Meshed Edges - Combined total of mesh edge lengths on curve
• Mesh Scheme - The mesh scheme for this entity. This can be changed from the property

editor by selecting from the drop-down list.
• Smooth Scheme - The smooth scheme for this entity. This can be changed from the

property editor by selecting from the drop-down list.

Boundary Condition Attributes

• ID - Boundary condition ID. This is an arbitrary user-defined ID that is exported with the
finite element model. This value can be edited from the property editor

• Name - A user-defined name that is included in the metadata for that object. This value
can be edited from the property editor.

• Description - A user-defined description that is included in the metadata for that object.
This value can be edited from the property editor.

• Color - Opens a dialog box with available colors. A color name can also be input directly
into the text field. See Appendix for a list of available colors.

• Element Type - The finite element type for this block, nodeset, or sideset.
• Element Count - The total number of elements for this block or sideset
• Node Count - Total number of nodes (available for nodesets only)
• Attribute Count and Attributes- The attributes represent material specification data that

is associated with the element block. These values can be changed in the property editor.
You can specify up to 10 attributes per block.

Metadata Attributes

• Type - The metadata type: Assembly, Sub-Assembly or Part
• Name - The name for the assembly or part. This can be edited from the property window.
• Instance - The numeric value associated with the part or assembly
• Path - The absolute path of the part or assembly.
• Description - The description of the part or assembly. This can be edited from the

property editor
• Material Description - The name or description of the material of which this part is

composed. Applies only to parts. This can be edited from the property window.
• Material Specification - The formal specification number of the material of which this

part is composed. This can be edited from the property window.
• File Format - The name of the file system containing the original version of this entity.

This can be edited from the property editor
• Units - The unit system of this part or assembly. This can be edited from the property

editor

The part name, description and material description are available when the associated volume is
selected, and not just when the part is selected.

92

Cubit 15.1 User Documentation

Command Line Workspace

The Command Line Workspace is the interface for command interaction between the user and
the CUBIT application. The user can enter commands into this window as if they were using
the command line version of CUBIT. Journaled commands will be echoed to this screen, even if
they were not typed in manually. Thus, if the user wants to know what the command sequence
for a particular action on the GUI is, they can watch for the "Journaled Command:" line to
appear. In addition, this screen will contain important informational and error messages. The
command window has the following four tabs:

1. Command
2. Error
3. History
4. Script

The Script window is hidden by default. To turn it on open the Tools-Options dialog and check
the "Show Script Tab under Layout/Cubit Layout.
Command Window
The command line workspace emulates the environment in the command line version of Cubit.
Commands can be entered directly by typing at the CUBIT> prompt. This window also prints
out error messages, informational messages, and journaled commands.

Entering Commands
To enter commands in the command line workspace, the command window must be active.
Activate the command window by clicking anywhere inside the window. Commands are typed in
at the CUBIT> prompt. If you do not remember the specific command sequence you can
type help and the name of the command phrase. The input window will show all of the
commands that contain that word or phrase. Alternatively, if you know how a command starts,
but do not remember all of the options, you can type ? at the end of the command to show all
possible command completions. See Command Syntax for an explanation of command syntax
rules.

Repeating Commands
Use the Up and Down arrow keys on the keyboard to recall previously executed commands.
Commands can be repeated in other ways as well.

• Hitting the enter key while the cursor is on a previous command line will copy that
command to the current prompt.

• The command window supports copy and paste for repeating commands.

93

Environment Control

Focus Follows Cursor
Beginning with version 13.0, Cubit includes a 'focus follows cursor' option for the command
window. The option can be enabled and disabled from the Tools/Options/General options panel.
The setting is persistent between sessions and is disabled by default.
Please note, the focus follows cursor behavior is available only in the command window. All
other windows or widgets require the user to click the mouse in order to grab focus.
Error Window
The error window is located in the Command Line Workspace under the Error tab. If there are
errors, a warning icon will appear on the tab. The icon will disappear when you open the window
to view errors. The error window only displays the error output, which can make it easier to find
and read the error output. The command that caused the error will be printed along with the error
information. If the command was from a journal file, the file name and number will be printed
next to the command.
History Window
The history window lists the last 100 commands. The number of commands listed can be
configured in the options dialog on the History page. You can re-run the commands in the
history window using the context menu. You can also clear the history using the context menu.
Script Window
CUBIT boasts a robust Python interpreter built right into the graphical user interface. To create a
Python script using the Script tab, start typing at the "%>" prompt. At the end of each line,
hit Enter to move to the next line . To execute the script, press Enter at a blank line. Scripts may
also be written in the Journal File Editor.
The Claro Python interpreter works as though you were entering lines from the Python command
prompt. This means that a blank line is interpreted as the end of a block. If you want to add
whitespace for clarity you have to add a # mark for a comment on any white line that is in a loop
or a class.
One possible solution to this problem is to create two Python files. The first file can contain the
complex set of Python instructions(program.py) including blank lines. The second file will read
and execute the first file. An example syntax for the second file is given below.

f = file("program.py")
commandText = f.read()
exec(commandText)

You can then execute the second program within Cubit.
The interface between cubit and python is the "cubit" object. This object has a method
called cmd which takes as an argument a command string. Thus, the following command in the
script window:

cubit.cmd("create brick x 10")
will create a cube with sides 10 units long. The following script is a simple example that
illustrates using loops, strings, and integers in Python.

%>for i in range(4):
. . x=i*3
. . for j in range(4):
. . y=j*3
. . for k in range(4):

94

Cubit 15.1 User Documentation

. . z=k*3

. . mystr="create vertex x "+str(x)+" y "+str(y)+" z "+str(z)

. . cubit.cmd(mystr)
This simple script will create a grid of vertices four wide. Scripts can be more advanced, even
creating customized windows and toolbars. For a complete list of python/cubit interface
commands see the Appendix.
Docking and Undocking the Input Window
The command window can be undocked by clicking and dragging the left edge. If it is floating it
can be redocked by double-clicking the solid blue bar. By default, it will always be redocked in
the bottom of the application window. To change the size of the floating window, click and drag
the edge of the window. To change the height of the docked window, click and drag the top edge
or right edge.

Journal File Editor
The Journal File Editor is a built-in, multi-document text editor that can read, edit, play, and

translate CUBIT journal files and Python Scripts. To open the journal file editor, select the
icon on the File Tools toolbar, or from the Tools Menu.

Figure 1. The Journal File Editor

The Journal File Editor can be used to create a new Python or Cubit command script. By default,
a new journal file will be in Cubit command syntax. You can change the default in the options
dialog. On the "General" options page, under the Journal Editor heading, you can select the
default syntax. You can change the new journal file's syntax using the translation buttons as well.
When you have the correct syntax selected, enter the commands in the order you want them
executed. You can play the commands all at once using the play button on the toolbar. You can
also play a few commands at a time. Select the commands you want to play. Then, right click
and select the "Play Selected" menu item.

95

Environment Control

The Journal File Editor can also be used to edit an existing journal file. Use the File > Open
menu item to open the file you want to edit. You still have all the command play options with an
existing journal file.
You can import commands entered in the Command Line Workspace. The File > Import menu
item contains a list of available imports. Select the tab you want to import from. Only the current
commands will be imported from the command line. Some of the commands you previously
entered might not show up if you have the recommended text trimming turned on. Text trimming
improves the application's performance for speed and memory. It will trim off the oldest text in
the window when a size limit is reached. To get all the command from your current session,
make sure that command journaling is turned on.
The Journal File Editor can be used to edit Python or Cubit command scripts. It can also translate
between the two forms. Translating from Python to Cubit commands can cause commands to be
lost. The Journal File Editor will warn you when doing so.
The Journal File editor can be used to edit multiple files at the same time. Each document is
displayed in its own tab. The tab shows the journal file's syntax and name. If you close the
Journal File Editor with unsaved data, it will prompt you to save changes for each of the
modified journal files you have open.
Journal Editor Toolbar
The Journal Editor's Toolbar provides quick access to several important functions.

• New - Creates a new journal file. The new journal file is placed in a new tab.
• Open - Used to select a journal file to open.
• Save - Saves the current journal file.
• Undo - Undo the last text change.
• Redo - Redo the last text change, after Undo.
• Cut - Standard text cut operation
• Copy - Standard text copy operation
• Paste - Standard text paste operation
• Play Journal File - Plays the entire journal file
• Translate to Python - Translates the current Cubit commands in the journal file to

Python scripts.
• Translate to Cubit - Translates the current Python script in the journal file to Cubit

commands.

Other Functionality Available in the Journal Editor
The context ('right-click') menu in the journal editor includes several additional functions,
including:

• Comment Selected Lines - Highlight any text, select 'comment selected lines', and the
highlighted lines will be commented.

• Uncomment Selected Lines - Highlight any text, select 'uncomment selected lines', and
the highlighted lines will be uncommented.

• Clear - select this menu item to clear the contents of the journal file.

96

Cubit 15.1 User Documentation

• Find - Selecting 'find' from the context menu, or from the edit menu, will bring up a
dialog enabling the user to find text in the journal file. Options are available to do case-
sensitive searches, change search direction, and so forth.

Toolbars
The CUBIT toolbars provide an effective way for accessing frequently used commands.
Below is a brief description of each of the available toolbars. To view a description of the
function of each tool, hold the mouse over the tool in the CUBIT Application to display tool tips.
File
Provides CUBIT (*.cub) file operations. This toolbar also includes Journal File operations.

Figure 1. File Toolbar

Display
Controls the display mode, checkpoint undo, zoom, perspective clipping plane, and curve
valence display options in the Graphics Window.

Figure 2. Display Toolbar

97

Environment Control

Select
Controls the Entity Selection Mode for picking or selecting entities. Also controls options
for box/polygon selection.

Figure 3. Select Toolbars

Drop Down Menus
Drop Down Menus
The Cubit Drop-Down Menus, located at the top of the Cubit Application Window provide
access to capabilities such as file management, checkpoints, display manipulation, journaling,
system setup, component management, window management, and help.

Cubit (Mac Only)
This menu contains the Preferences dialog box, also called the Options dialog box on other
platforms. It also contains the About Cubit menu and the Quit Cubit option. It is only available
on Mac computers.

File
This menu provides common file operations, including importing and exporting of geometry and
meshimport and export. A list of recently saved or imported files is also provided, allowing a
quick way to import current or recent work. Non-Mac users can also exit and reset the program
from this menu (These options are found under the Cubit tab for Mac Users).

98

Cubit 15.1 User Documentation

Edit
This menu only provides a way to enable the Undo feature of the system. If Undo is enabled, one
level of Undo is available to the user.

View
The View Menu lists all available toolbars and windows in the current CUBIT session.
Selecting a toolbar or window will make it visible. Deselecting a toolbar or window will
hide it. You can also hide an undocked window or toolbar by clicking on the small "x" in
the upper right corner. For more information on docking and undocking toolbars,
see CUBIT Application Window.

Display
The Display Menu controls display options for the graphics window. These options are
explained below:

• View Point - Controls the camera view point. Choices are front, back, top, bottom, right,
left and isometric views.

• Render Mode - Controls visibility modes, including: wireframe, true hidden, hidden line,
transparent, and shaded.

• Geometry - Controls geometry visibility
• Mesh - Controls mesh visibility
• Graphics Composite - Controls the visibility of composited entities in the graphics

window.
• Refresh - Updates the graphics display
• Background - Changes the background color
• Zoom In - Enlarges the model in graphics window
• Zoom Out -Shrinks the model in graphics window
• Zoom To Fit - Enlarges or shrinks model in the graphics window so it fills the whole

screen
• Toggle Perspective - When this option is selected, the entities in the graphics display

window are drawn in perspective mode.
• Toggle Scale - Turns on or off a graphical scale that can be drawn in the graphics

window to obtain a bearing on model or part sizes.
• Toggle Clipping Plane - Turns on or off the graphics clipping plane
• Toggle Clipping Plane Manipulation - Turns on or off manipulation of the graphics

clipping plane
• Show Curve Valence - Turns on or off the curve valence highlighting

Tools
The Tools Menu contains access to GUI-specific tools and options. These options are explained
below.

• Journal Editor - Opens journal file editor. The Journal Editor is used to write, edit, play,
and save journal files. It can also be used to create and edit Python scripts. A built-in
translator will convert between the two files types.

99

Environment Control

• Play Journal File - Plays a specified journal file. You can browse through files and
folders on your computer to select the journal file to play.

• Options - Opens the Option dialog box. This dialog box controls all of the preferences
for the GUI including display colors and widths, mouse settings, journal file
options, mesh and geometry defaults, and general layout preferences. MAC users can
find this menu under the Cubit tab.

• Components - Opens the Components dialog box. This window is used to load and
unload external and internal components.

Help

• Tip of the Day - Open the tip of the day box.
• Cubit Tutorials - Opens a menu of step-by-step tutorials for Cubit.
• Cubit Manual - Menu to bring up on-line searchable documentation (this document).
• About - Menu to show the current version number and trademark information. Mac users

can find the version number under the About Cubit menu in the Cubit drop-down.

Creating Custom Toolbar Buttons
If you have a string of commands that you use frequently, it can be beneficial to make a custom
toolbar button. To create a custom toolbar button open the Tools->Options menu. You can
create up to 10 custom buttons. See Figure 1 for an example toolbar button.

Figure 1. Making a custom toolbar button to create and mesh a perforated brick

The button can have Python or Cubit commands. These commands will be executed in
consecutive order when the button is pushed. You must click the Enabled check box to activate
your custom button.

100

Cubit 15.1 User Documentation

You can assign a pixmap to your custom buttons or use the default. You can also assign a tool
tip.
The buttons are persistent from each run of cubit. To remove a button, uncheck the Enabled
button.

Options Menu
To change program preferences in the Graphical User Interface select: Tools > Options . The
options menu includes:

• Custom Tools
• Display
• General
• Geometry Defaults
• History and Cubit Journalling
• Label Defaults
• Layout
• Mesh Defaults
• Mouse Settings
• Post Processor
• Quality Defaults

Note: Mac users reach this dialog box by selecting the Cubit > Preferences menu.

Custom Tools
This menu controls the creation of Custom Toolbar buttons.

Display Preferences
This menu controls entity display features for the graphics window which include the following:

• Display Triad in Graphics Window
• Enable Pre-Selection
• Background Color
• Perspective Angle
• Line Width
• Highlight Line Width
• Text Size
• Ambient Intensity
• Ambient Color
• Light Intensity
• Light Color

General Preferences
This menu controls general program options including the following:

101

Environment Control

• Prompt for Unsaved Application Data - When this is checked and the user opens a new
.cub file or exits the application with unsaved changes, a dialog box will pop up asking if
they want to save changes first. The user can uncheck this option to prevent that dialog
box from appearing. This is checked by default.

• Prompt for Unsaved Journal Data - When this button is checked and the user closes
the journal file editor with unsaved changes the program will prompt to save the changes.
The user can uncheck this button to prevent the dialog box from appearing. It is checked
by default.

• Change to Script Directory for Playback - When this option is checked, Claro will
change the working directory to the directory the script is in when the script/journal file is
run. When the script is finished, Claro will change the directory back to the previous one.
This is useful when using relative paths in a journal file. When the option is unchecked,
Claro won't change the directory when a journal file is run in which case the user may
have to manually change the working directory when their journal file has relative paths.

• Prompt When Translating from Python - When checked, if the user translates a python
script to a cubit journal file, the journal editor will warn them that commands may be lost.
When unchecked, the journal editor will not issue the warning. There is a checkbox on
the warning dialog that sets this option as well.

• Default Syntax - Sets the default syntax to use when creating a new journal file in the
editor. The Cubit option is only available when the cubit component is loaded.

• Show Startup Splash Screen - Option to hide the startup splash screen on opening
Claro.

Geometry Defaults
This menu controls the geometry defaults.

• Vertex Size
• Use Silhouette on Geometry
• Silhouette pattern

The user can also change the default geometry engine to one of the following:

• ACIS
• Facets

The faceting tolerance can also be controlled from this menu to change the way facets are drawn
in the graphics window.

History Preferences
This menu controls the input window history and journal file options. These include:

• Maximum Number of Commands - The max number of commands kept in the current
command history.

• Comment Line Filtering - Whether to count comments in command history.
• Maximum Number of Lines - Maximum number of lines in input window.

102

Cubit 15.1 User Documentation

• Journal Command History - Whether to use a journal file to save command history.
Default is to use a journal file.

• Journal File Directory - Where the journal file will be saved. Default is the starting
directory.

• Journal File Name - The name of the journal file. A name will be given by default if
one is not specified. The default name for the GUI version of cubit is historyxx.jou with
xx as the highest used number between 01 and 999 incremented by 1.

Cubit History Preferences

• Use Cubit Journaling - When this option is checked, Cubit journaling will be used. By
default it is checked.

• Output Log - When this option is checked, you can save error log to a separate output
file.

Label Defaults
This menu controls the geometry and mesh entity labels in the graphics window.

• Text Size
• Label Geometry and Mesh Entities Toggles- Choose label visibility for each type of

geometry or mesh entity

Layout Preferences
This menu option controls input window formatting and control panel docking options.

• Font for command line workspace
• Font size for command line workspace
• Reset Window Layout Button - Used to reset GUI windows to their default positions

Also included in the layout preferences is a list of available windows with a checkbox to
show/hide each window.

Cubit Layout Settings
This menu controls the layout of Cubit specific buttons and tabs on the GUI.

• Show script tab - Shows the script tab on the command line window
• Use Labels on Buttons- Option to apply a label to each button on the control panel
• Preferred Location (currently under construction)

Mesh Defaults

• Node Size
• Element Shrink
• Mesh Line Color - The same as "Color Lines" command.
• Default Element Type - Tet/Tri or Hex/Quad

103

Environment Control

• Surface Scheme Coloring (used in Meshing Power Tool) - This option allows you to
select different colors for surface schemes when visualized using the meshing power
tools.

Mouse Settings
This menu controls mouse button controls. Pressing the Emulate Command Line Settings
button will cause all of the settings to simulate mouse controls in the command line version of
CUBIT. For a detailed description of mouse settings see the View Navigation-GUI page.

Post Processor Settings
Post Processor Executable Directory - Option to browse for post processor executable
directory.

Quality Defaults
This menu controls quality defaults for different quality metrics. For a description of the
different quality metrics see the respective pages:

• Hexahedral metrics
• Quadrilateral metrics
• Tetrahedral metrics
• Triangular metrics

Undo Button

Cubit has an undo capability. To enable the Undo feature click on the "Enable Undo" button on
the Toolbar.

 Enable Undo Button
Alternatively to turn undo on and off, the following command may be used in the command line:

 undo {on|off}
The Undo capability is implemented for geometry commands including webcutting, geometry
creation, transformations, and booleans. Multiple undos are also allowed. The commands will be
undone in reverse order of their execution.

Limitations

• The undo button is not currently enabled for most meshing commands

Graphics Window Control
Graphics Window Control
The graphics display windows present a graphical representation of the geometry and/or the
mesh. The quality and speed of rendering the graphics, the visibility, location and orientation of

104

Cubit 15.1 User Documentation

objects in the window, and the labeling of entities, among other things, can all be controlled by
the user.
Unless the -nographics option was entered on the command line, a graphics window with a
black background and an axis triad will appear when CUBIT is first launched. The geometry and
mesh will appear in this window, and can be viewed from various camera positions and drawn in
various modes (wire frame, hidden line, smooth shade, etc.). This section will discuss methods
for manipulating the graphics with the mouse and for controlling the appearance of entities
drawn in the graphics window.
Graphics in CUBIT operates on the principle of a "display list", which keeps track of various
entities known to the graphics. All geometry and mesh objects created in CUBIT are put into the
display list automatically. The visibility and various other attributes of entities in the display list
can be controlled individually. In addition, CUBIT can also optionally display entities in a
temporary mode, independent of their visibility in the display list. Drawing of items in temporary
mode can be combined with the display list to customize the appearance. The overall display is
controlled by various attributes like graphics mode, camera position, and lighting, to further
enhance the graphics functionality.
The following items discuss the various graphics capabilities available in CUBIT:

• Command Line View Navigation: Rotate Zoom and Pan
• Mouse Based View Navigation: Rotate Zoom and Pan
• Updating the Display
• Graphics Modes
• Drawing and Highlighting Entities
• Drawing Locations, Lines and Polygons
• Mesh Visualization
• Graphics Clipping Plane
• Entity Labels
• Colors
• Geometry and Mesh Entity Visibility
• Graphics Camera
• Graphics Lighting Model
• Graphics Window Size and Position
• Saving Graphics Views
• Hardcopy Output
• Miscellaneous Graphics Options

Graphics Clipping Plane
The graphics clipping plane feature allows the user to temporarily cut parts of the model away to
help visualize the interior of a geometry or mesh. The command syntax is:

Graphics Clip {On|Off} [Location <location>] [Direction <direction>]
Graphics Clip Manipulation {On|Off}

The GUI tool bar buttons to enable and manipulate the Graphics Clipping Plane are shown
below:

105

Environment Control

The first command activates the graphics clip manipulation tools in the graphics window. The
keyboard shortcut "Shift-S" while the graphics window is active will also activate the clipping
plane. The manipulation of the clipping plane is controlled as follows:

• Red Line - Clicking and dragging the left mouse on plane bounded by a red tube moves
the plane along the arrow

• Center Ball - Clicking and dragging the left mouse on the center ball moves the origin of
the rotation plane

• Arrow - Clicking and dragging the left mouse button on the arrow head or tail changes
the direction on which the plane moves

• Right Mouse Button - Clicking and dragging the right mouse button on any part of the
window resizes it

• Middle Mouse Button - Clicking and dragging the middle mouse button on the red plane
moves both the center of rotation and the cutting plane

• White Bounding Border - Clicking and dragging the left mouse on the white bounding
border moves the whole widget

Figure 1. Graphics Clipping Plane

The second command turns on/off the visibility of manipulation widget in the graphics window.
The clipping plane is still active, but the controls are hidden. The normal mouse-based view
navigation controls apply.
Examples
brick x 10
sphere rad 1
graphics clip on location -2 0 0

106

Cubit 15.1 User Documentation

rotate -45 about y
#shows the sphere inside the brick
brick x 10
cylinder rad 2 z 12
subtract 2 from 1
mesh vol 1
quality vol 1 draw mesh
graphics clip on
#shows the mesh quality on interior elements

Figure 2. Viewing mesh quality of interior elements

Colors
Specifying Colors in Commands
There are five ways to refer to a color in a command. They are

1. <Color_Name>
2. User "name"
3. ID <id>
4. Default
5. Highlight

The first option uses the name of a pre-defined color as listed in the Available Colors Appendix.
This option may not be used for user-defined colors. An example of a pre-defined color
assignment is given below:

color volume 1 lightblue
The second option is used with user-defined colors only. Include the name of the user-defined
color in quotes. Pre-defined colors will not work with this command.

107

Environment Control

color volume 1 user "mycolor"
The third option allows you to identify a pre-defined color by its ID. The color IDs are also listed
in the Available Colors appendix. This option is rarely used.

color volume 1 id 5
The default option is used to set an entity's color to its default value. The default color may also
be specified in drawing commands, but the command's behavior will be the same as if the color
option had not been included at all.

color volume 1 default
The fifth option refers to the current highlight color.

draw curve 1 tangent color highlight
User-Defined Colors
CUBIT has a palette of 85 pre-defined colors, listed in the Appendix under Available Colors.
Users may also define their own colors in addition to those defined by CUBIT. Each color is
defined by a name and by its RGB components, which range from 0 to 1.
To define an additional color, use either of the commands

Color Define "<name>" RGB <r g b>
Color Define "<name>" R <r> G <g> B .

A maximum of 15 user-defined colors may be stored at one time, so it may be necessary to clear
a color definition. This is done with the command

Color Release "<color_name>"
Color names can be listed with the command

Help Color
They are also listed in the appendix of this manual, along with their RGB definitions. To view a
chart of color names and IDs, including those for user-defined colors, use the command

Draw Colortable
Assigning Colors
Colors may be assigned to all geometric entities, and to some other objects as well. To assign a
color to an entity or other object, use one of the following commands.

Color Axis Labels {<color_name>| id <color_id>}
Color Background {<color_name>| id <color_id>} [<color_name2>|id
<color_id2>]
Color Block <block_id_range>{<color_name> | id <color_id>}
Color Body <body_id_range> [Geometry|Mesh] {<color_name>| id
<color_id> | Default}
Color Curve <curve_id_range> [Geometry|Mesh] {<color_name>| id
<color_id> | Default}
Color Group <group_id_range> [Geometry|Mesh] {<color_name>| id
<color_id> | Default}
Color Highlight {<color_name>| id <color_id>}
Color Lines <color_name>
Color NodeSet <id_range> { <color_name> | id <color_id> | Default }

108

Cubit 15.1 User Documentation

Color SideSet <id_range>{ <color_name> | id <color_id> | Default }
Color Surface <surface_id_range> [Geometry|Mesh]
{<color_name>|Default}
Color Title {<color_name>|id <color_id>}
Color Volume <volume_id_range> [Geometry|Mesh] {<color_name>| id
<color_id> | Default}

Including the Mesh keyword will change the color of the mesh belonging to the specified entity,
without changing the color of the entity geometry itself. Conversely, including the Geometry
keyword will change the geometry color without changing the mesh color. Including both
keywords is identical to including neither keyword.
Colors are inherited by child entities. If you explicitly set the color for a volume, for example, all
of its surfaces will also be drawn in that color. Once you assign a color to an entity, however, it
will remain that color and will no longer follow color changes to parent entities. To make an
entity follow the color of its parent after having explicitly set another color, use Default as the
color name in the color command.
Colors can also be assigned to nodesets, sidesets, and element blocks. These colors do not take
effect, however, unless the nodeset, sideset, or element block is drawn with a Draw command.
The background color and the color used to draw highlighted entities can be changed to any
color.
By default, the axes are labeled with a white X, Y, and Z, indicating the three primary coordinate
directions. If the background is changed to white, these labels are impossible to read; the color
used to draw axis labels can be changed to any color. Changing the axis label color will change
the text color for both the model axis and the triad (corner axis).
When several entity types are labeled, it can become difficult to determine which labels apply to
which entities. To help distinguish which entities are being referred to by the labels, you may
want to change the color of labels for specific entity types.
When a meshed surface is drawn in a shaded graphics mode, the mesh edges are not drawn in the
same color as the surface. This is to prevent confusion between mesh edges and geometric
curves, and to make the mesh edges more visible. The color used to draw mesh edges in this
situation is known as the line color, and is gray by default; this color can be changed to any
color.
Assigning Global Colors
Colors may be assigned globally also. To assign a global color, use one of the following
commands. Global color assignment is useful if one desires all entities to appear the same.

Color Global {<color_name>| id <color_id> | default}
Color Global Surface {<color_name>| id <color_id> | default} Curve
{<color_name>| id <color_id> | default} Vertex {<color_name>| id <color_id>
| default}

The first command assigns the desired color to all geometry entities. The color may be enter by
color name or color id. The default option resets colors to the default value.
The second command assigns the desired colors to surfaces, curves and vertices. All three value
must be entered. For example, users my select global colors for surface and vertex and specify
that curves have default colors.

109

Environment Control

Drawing, Locating, and Highlighting Entities
In order to effectively visualize the model, it is often necessary to draw an entity by itself, or
several entities as a group. This is easily done with the command

Draw {Entity specification} [Color <color_spec>] [Zoom] [Add]
where Entity specification is an entity list as described in Command Line Entity Specification.
This command clears the display before drawing the specified entity or entities. Specification of
a color will draw those entities in that color. This will not permanently change the color of the
entity. The zoom option will zoom in on the selected entities after drawing them in the graphics
window. If the add option is specified, the display is not cleared, and the given entity is added to
what is already drawn on the screen. The entities specified in this command are drawn regardless
of their visibility setting (see Geometry and Mesh Entity Visibility for more details about
visibility).
Entities may also be drawn by selecting them with the mouse and then typing Ctrl-D while the
mouse is in the graphics window. This will clear the screen and then draw only those entities that
are currently selected.
Entities can be highlighted using the command

Highlight {Entity specification}
This command highlights the specified entities in the current display with the current highlight
color. Highlighting can be removed using the command

Graphics Clear Highlight
To return to the normal display of the entire model, type Display.
The Locate command will label and point to the specified entity or location in the graphics
window. The command syntax is:

Locate <entity_list>
Locate <location options>

For example, suppose you have an idless reference to a curve of:
Curve (at 5 5 0 ordinal 1)

You can find the curve with the following command:
locate location 5 5 0

Additionally, the visibility of individual entities, or sets of entities, can be controlled with the
following visibility commands.

{Vertex|Curve|Surface|Volume|Body|Group} <range> [Geometry|Mesh]
Visibility {on|off}
Edge [Visibility] {on|off}
{Mesh|Geometry} [Visibility]{on|off}

Drawing Other Objects
In addition to the common geometry, mesh and genesis entities, other objects may be drawn with
variations of the Draw command. As with the other Draw commands, typing Display after
drawing these objects will restore the scene to its normal display.

Displaying Entity Orientation

110

Cubit 15.1 User Documentation

The normal to one or more surfaces, mesh faces, or mesh triangles may be drawn with the
command

Draw {Surface | Face | Tri} <id_range> Normal [Length <length>] [Face |
Tri] Color <color> [Add]

Surface normal command colors the surfaces using two different colors. The surface exposed to
the positive half space (i.e, along the direction of normal), will always be colored black. The
surace exposed to the negative half space will be colored using the specified <color>.
If the Face or Tri qualifier is included in the Draw Normal command, the normals for all faces or
tris that belong to the specified surface are drawn.
Arrow representing the normal will be displayed if "Length" is specified

The forward, or tangent, direction of a curve can be drawn with the command:

Draw Curve <id_range> Tangent [Length <length>][Color <color_spec>]
If a color is not specified, the tangent is drawn in the same color as the curve.

Volume Sources and Targets
Once the source and target surfaces have been set on a volume that will be meshed with the
sweep algorithm, the source and target may be visually identified with the command

111

Environment Control

Draw Volume <volume_id_range> [Source][Target] [Length <size>]
If the Source keyword is included, the normal of the source surface or surfaces will be drawn in
green into the specified volume. If the Target keyword is included, the normal of the target
surface or surfaces will be drawn in red into the specified volume.

Model Axis
The model axis may be drawn with the command

Draw Axis [Length <length>]
The axis is drawn as three lines beginning at the model origin, one line in each of the three
coordinate directions. The length of those lines is determined by the length parameter, which
defaults to 1.

Surface Isoparameter Lines
Isoparameter lines may be drawn on surfaces in the model using the command

Draw Surface <surface_id_range> Isoparametric [Number <number>| [u
<number>] [v <number>]]

If you specify the Number of lines, then the number of u- and v-parameter lines will be equal.
You may specify instead a number of lines for each of the u and v parameters. The u-parameter
lines will be drawn in red and the v-parameter lines will be drawn in blue.

Surface Overlap
The overlapping regions between two surfaces may be drawn with the command

Draw Surface <id> <id>Overlap [Add]
This command will draw the curves of each of the surfaces in green, and the portion of the
surfaces that overlap in red. The Add keyword will draw the overlapping surfaces on top of the
current graphics display. Without the Add keyword, the display will only show the specified
surfaces and their overlapping regions.

Volume Overlap
The overlapping region between two volumes may be drawn with the command

Draw Volume <id> <id> Overlap [Add]
This command will draw the input volumes in transparent mode and draw the volume(s) of
intersection as red, shaded solids. The Add keyword will draw the results on top of the current
graphics display. Without the Add keyword, the display will only show the specified volumes
along with the intersection volume(s).

Geometry Preview
Several options are available for previewing geometry without actually generating it. This is
typically used in conjunction with webcutting and surface creation. The following Draw
commands can be used for previewing geometry:
Draw Location On Curve
Draw Location
Draw Direction

112

Cubit 15.1 User Documentation

Draw Line
Draw Polygon
Draw Axis
Draw Plane
Draw Cylinder

Drawing Locations, Lines and Polygons
In some cases it may be useful to simply draw a location, line or polygon to the screen to help
visualize some aspect of the model. Locations, Lines and polygons are not geometry or mesh
entities and are only visible until a refresh or display command is issued.
Drawing Locations

Draw Location {options}... [color <color_name>][no_flush]
A single point or series of points may be drawn to the graphics window using this command.
Any number of locations may be specified that will be drawn to the graphics window as single
points. Options for specifying a location are described in the section Specifying a Location. The
optional color argument allows for a custom color to be used. The available color definitions are
located in the appendix. Other options for drawing locations and directions are also available
dscribed in the section Drawing a Location, Direction, or Axis.
Drawing Lines

Draw Line Location {options} Location {options} ... [color
<color_name>][no_flush]

A straight line or series of segments may be drawn to the graphics window using this command.
Any number of locations may be specified that will be connected with a line. Options for
specifying a location are described in the section Specifying a Location. The optional color
argument allows for a custom color to be used. The available color definitions are located in
the appendix.
Drawing Polygons

Draw Polygon Location {options} Location {options} Location {options} ...
[color <color_name>][no_flush]

A filled polygon may be drawn to the graphics window using this command. Any number of
locations may be specified as vertices. At least three locations must be specified. Locations for
vertices can be described using any of the standard location options described in Specifying a
Location. The optional color argument allows for a custom color to be used for the fill. The
available color definitions are located in the appendix.
Buffered Drawing
The optional no_flush argument for both the draw location, draw line and draw polygon
commands may also be used when many simultaneous draw commands are being issued. This
prevents the graphics from being drawn after each command is issued, which can be very
inefficient. Instead the draw commands are buffered and sent all at once to be drawn. The
following command:

graphics flush
can be used to force a draw following a series of commands that use the no_flush option.
Example
The following is a simple example that will draw the figure below using cubit commands

113

Environment Control

draw polygon location pos -1 -1 0 location pos 1 -1 0 location pos 1 1 0
location pos -1 1 0 color yellow no_flush
draw line location pos -1 0 0 location pos 1 0 0 color blue no_flush
draw line location pos 0 -1 0 location pos 0 1 0 color blue no_flush
draw location pos 0 0 0 color red no_flush
graphics flush

Entity Labels
Most entities may be labeled with text that is drawn at the centroid of the entity.
Mesh entities can be labeled with their ID number or their Element ID. Element ID labels
are only valid after putting the mesh entities into a block.
Geometric entities can be labeled with their ID number or with other information.
Labels for groups of entity types can be turned on or off.
The following commands will accomplish this.

Label [On|Off|Name [Only|ID]|ID|Interval|Size|Merge|Firmness]
Label All [On|Off|Name [Only|ID]|ID|Interval|Size|Merge|Firmness]
Label Body [On|Off| Name [Only|ID] |ID|Interval|Size| Merge |Firmness]
Label Curve [On|Off|Name [Only|ID] |ID| Interval| Size| Merge| Firmness]
Label {Hex|Tet|Face|Tri|Edge} [On|Off|ElementId]

114

Cubit 15.1 User Documentation

Label Element [On|Off]
Label Geometry [On|Off|Name [Only|ID] |ID| Interval| Size| Merge|
Firmness]
Label Mesh [On|Off]
Label Node [On|Off|ElementId|SphereId]
Label Surface [On|Off|Name [Only|ID] |ID| Interval| Scheme| Size| Merge|
Firmness]
Label Vertex [On|Off|Name [Only|ID] |ID|Interval| Size| Merge| Firmness]
Label Volume [On|Off|Name [Only|ID] |ID |Interval| Size |Scheme |Merge
|Firmness]

The meaning of each of each label type is listed below. Note that some label types don't
make sense for every entity type.

On - The same as IDs.
Name - Name of the entity, if the entity has been named. Default name
otherwise.
Name Only - If the entity has been named, use the name as the label.
Otherwise, don't use a label.
Name IDs - If the entity has been named, use the name as the label.
Otherwise, use the ID as the label.
Interval - The number of intervals set on the entity.
Firmness - Same as interval, but followed by a letter indicating the
firmness of the interval setting (see the Mesh Generation chapter for
description of firmness settings.)
Merge - Whether or not the entity is mergeable. Note that this is
sometimes not clear, because, for example, a curve may show that it isn't
mergeable because one of its owning surfaces may be unmergeable,
while another owning surface may be mergeable.
Size - The mesh size set on this entity.
ElementId - The Global Element Id of each element. Will only be labeled
for hexes, tets, tris, etc. which are in a block.
SphereId - The id of the sphere element associated with this node, if there
is one. A sphere element is only associated with a node if the node (or it's
geometry owner) is put into a block.

Note: Three dimensional entity types such as body will have their labels displayed in
the center of the entity. Thus, in the smooth shade and hidden line graphics modes
the labels will be hidden
The GUI includes command panels to manipulate the labels settings for any given entity type.
The command panel for the Volumes labels settings is shown below as an example:

115

Environment Control

Graphics Camera
One way to change what is visible in the graphics window is to manipulate the camera used to
generate the scene. A scene camera has attributes described below, and depicted graphically in
Figure 1. The values of these camera attributes determine how the scene appears in the graphics
window.
These view settings may be accessed in the GUI via the Display/View Point menu.
Position (From) - The location of the camera in model coordinates.
View Direction (At) - The focal point of the camera in model coordinates.
Up Direction (Up) - The point indicating the direction to which the top of the camera is
pointing. The Up point determines how the camera is rotated about its line of sight.
Projection - Determines how the three-dimensional model is mapped to the two-dimensional
graphics window.
Perspective Angle - Twice the angle between the line of sight and the edge of the visible portion
of the scene.

116

Cubit 15.1 User Documentation

Figure 1: Schematic of From, At, Up, and Perspective Angle

At any time, the camera can be moved back to its original position and view using the command
View Reset

To see the current settings of these attributes, use the command
List View

The current value of the view attributes will be printed to the terminal window, along with other
useful view information such as the current graphics mode and the width of the current scene in
model coordinates.
Camera Attributes can be changed using the Rotate, Zoom and Pan commands, or directly as
follows.
Changing Camera Attributes Directly
Camera attributes are most easily modified using interactive mouse manipulation (see Mouse-
Based View Navigation) or using the rotate, pan and zoom commands. However, the camera
attributes can also be modified directly with the following commands:

From <x y z>
At <x y z>
At
{Body|Volume|Surface|Curve|Vertex|Hex|Tet|Wedge|Tri|Face|Node}<id_list>
Up <x y z>
Graphics Perspective <On|Off>
Graphics Perspective Angle <degrees>

If graphics perspective is on, a perspective projection is used; if graphics perspective is off, an
orthographic projection is used. With a perspective projection, the scene is drawn as it would
look to a real camera. This gives a three-dimensional sense of depth, but causes most parallel
lines to be drawn non-parallel to each other. If an orthographic projection is used, no sense of
depth is given, but parallel lines are always drawn parallel to each other.
In a perspective view, changing the perspective angle changes the field of view by changing the
angle from the line of sight to the edge of the visible scene. The effect is similar to a telephoto
zoom with a camera. A smaller perspective angle results in a larger zoom. This command has no
effect when graphics perspective is off.
The GUI tool bar button for changing the graphics perspective mode is as follows:

117

Environment Control

Graphics Modes
By default, the scene is viewed as a smoothshaded model. That is, only curves and edges are
drawn, and surfaces are transparent. Surfaces can be drawn differently by changing the graphics
mode:

Graphics Mode {Wireframe | Hiddenline | Smoothshade | Transparent }
[Geometry | Mesh]

The GUI tool bar buttons for manipulating the graphics modes are as follows:

Examples and a brief description of each mode are shown below

WireFrame - Surfaces are invisible. (This
mode can also be accessed by
typing 'wireframe' at the command prompt.)

HiddenLine - Surfaces are not drawn, but they
obscure what is behind them, giving a more
realistic representation of the view. (This
mode can also be accessed by
typing 'hiddenline' at the command prompt.)

SmoothShade - Surfaces are filled and
shaded. Shaded colors are interpolated
across the entire surface using the
graphics lighting model. This produces the
most realistic results. (This mode can also be
accessed by typing 'shaded' at the command
prompt.)

Transparent - Renders surfaces as semi-
transparent shaded images, allowing objects
to shine-through from behind. Is not
supported on all platforms, and generally
requires advanced graphics hardware. (This
mode can also be accessed by
typing 'transparent' at the command prompt.)

This determines what pattern is used to draw lines behind surfaces (e.g. dotted, dashed, etc.; click
here for a list of valid line patterns).

118

Cubit 15.1 User Documentation

Displaying Using the Element Facets
There is another option that is similar to a graphics mode, set with the command

Graphics Use Facets [On|Off]
This command determines how shaded and filled surfaces are drawn when they are meshed. If
Graphics Use Facets is on, the mesh facets (element faces) are used to render the model. This is
particularly helpful for curved surfaces which may cut through some of the mesh faces. A
comparison of graphics facets on and off is shown below.

Figure 1. A meshed cylinder shown with graphics facets off (left) and graphics facets on (right);

note how geometry facets on the curved surface obscure mesh edges when facets are off.
Displaying Composite Surface Lines
Composite surfaces are surfaces that have been joined together using virtual geometry. By
default, the underlying surfaces are marked with dashed lines. To toggle this setting so that
underlying surfaces are not shown, use the following command:

Graphics Composite {On|Off}

Figure 2. A part shown with (a) composite surfaces displayed (b) composite surfaces not

displayed
The GUI tool bar button for toggling the display of graphics composites is as follows:

119

Environment Control

Graphics Window Size and Position
By default in the command line version, CUBIT will create a single graphics window when it
starts up (to run CUBIT without a graphics window, include -nographics on the command line
when launching CUBIT.) The graphics window position and size is most easily adjusted using
the mouse, like any other window on an X-windows screen. However, the size of the graphics
window can also be controlled using the following commands:

Graphics WindowSize <width_in_pixels> <height_in_pixels>
Graphics WindowSize Maximum
Graphics WindowSize Minimum

After using the Graphics WindowSize Maximum and Graphics WindowSize Minimum
commands, the previous window size can be restored by using the command

Graphics WindowSize Restore
The position of the graphics window can also be controlled using the Graphics
WindowLocation command.

Graphics WindowLocation <x> <y>
The <x> and <y> coordinates refer to the distance in pixels from the upper left hand corner of
the monitor.
In addition, on Unix workstations, the graphics window size and position can be controlled by
placing the following line in the user's .Xdefaults file:

cubit.graphics.geometry XxY+xpos+ypos
where the X and Y are window width and height in pixels, respectively, and xpos and ypos are
the offsets from the upper left hand corner.
Using Multiple Windows
You can use up to ten graphics windows simultaneously, each with its own camera and view.
Each window has an ID, from 1 to 10, shown in the title bar of the window. Commands that
control camera attributes apply to only one window at a time, the active window. Currently, the
display lists of all windows are identical.
The following commands are used to create, delete, and make active additional graphics
windows. These commands are also valid in the GUI (by typing at the command line prompt.)

Graphics Window Create [ID]
Graphics Window Delete <ID>
Graphics Window Active <ID>

Hardcopy Output
CUBIT's Graphical User Interface provides the capability to print the contents of the graphics
window directly to a printer. Use File/Export/Screen Shot to access this functionality.
In addition, a command line option is provided for dumping the contents of the graphics window
to postscript or image files.
The command for generating hardcopy output files is:

Hardcopy '<filename>' {jpg | gif | bmp | pnm | tiff | eps} [Window
<window_id>]

120

Cubit 15.1 User Documentation

Each of these options saves the view in the specified window (or the current window), to the
specified file, in the format indicated. The file can then be sent to a printer or inserted into
another document.
Screen Capture Programs
It should also be noted that many commercial applications are available for capturing screen
images. In many cases, these applications may be more convenient for interactively capturing
and saving a portion of the screen than the Hardcopy command discussed above. On UNIX
platforms, the XV utility written by John Bradley is a good choice. In some cases this utility or
its equivalent may be included with your system software. For Windows users, the Print Screen
button will send a copy of the screen to the clipboard which can then be pasted into a paint
program.

Graphics Lighting Model
For shaded graphics display modes, the lighting model controls the intensity of the highlights
and shadows for objects displayed in the graphics window. CUBIT offers two commands for
controlling the lighting model.

Graphics Ambient Intensity {<intensity> | <r g b>}
Graphics Light Intensity {<intensity> | <r g b>}

The ambient intensity is the light available in the environment. There is no particular direction
to the light source. In contrast, the light intensity is the effect of a simulated light source placed
at the viewer's line of sight. The light intensity affects the intensity of the highlights and
shadows, while the ambient intensity affects the brightness of the objects in the overall scene.
An intensity value from 0 to 1 can be used, where 0 represents no light and 1 represents
maximum. Alternatively r g b color components can be used. This changes the color of the
directional or ambient light source, affecting the resulting color of the objects in the model.
The GUI Options panel for manipulating these settings is found under Tools/Options and is
shown below:

121

http://www.trilon.com/

Environment Control

Mesh Visualization
A volume mesh can be viewed one layer at a time using a visualization tool known as mesh
slicing. This tool divides the elements of one or more volumes into axis-aligned layers, and then
allows the mesh to be displayed one layer at a time. Mesh slicing is especially useful to view the
quality of swept meshes that are axis aligned.
Notes on Mesh Slicing
Mesh slicing is only intended to be a rough visualization tool. Because the average mesh edge
length is used to determine the thickness of each layer, a layer may be more than one element
deep. Unstructured meshes, meshes with large variations in edge length, and non-axis-aligned
meshes will be more difficult to visualize with this tool.
Mesh Slicing Command
Mesh slicing can be started either by entering a keypress in the graphics window, which slices
the mesh of the entire model, or by entering the command

122

Cubit 15.1 User Documentation

Graphics Slice {Body | Volume} <id_range> Axis {X | Y | Z}
which slices only the bodies or volumes indicated, with a plane along the axis specified.
Key presses in the graphics window which control mesh slicing are summarized in the following
table.

Key Action

X,Y or Z Initiate mesh slicing using the X, Y or Z plane

K Move the slicing plane in the positive coordinate direction

J Move the slicing plane in the negative coordinate direction

S Toggles drawing single or multiple slice layers in the view

Q Exit from mesh slicing mode

See Graphics Clipping Plane for instructions on clipping the graphics using the GUI clipping
plane.
Miscellaneous Graphics Options
In addition to the commands discussed above, there are several other graphics system options in
Cubit that can be controlled by the user.
They include:

• Silhouette Lines
• Line Width
• Highlight Line Width
• Text Size
• Point Size
• Graphics Status
• Graphics Scale
• Model Axis
• Corner Axis
• Resetting the Graphics
• Shrink
• Facet Tolerance

Silhouette Lines
Some shapes, such as cylinders, are drawn with silhouette lines; these lines don't represent true
geometric curves, but help visualize the shape of a surface. Silhouette lines can be turned on or
off with the command

Graphics Silhouette [On|Off]
The pattern used to draw silhouette lines can be set using the command

123

Environment Control

Graphics Silhouette Pattern [Solid | Dashdot | Dashed | Dotted | Dash_2dot |
Dash_3dot | Long_dash | Phantom]

Line Width
This option controls the width of the lines used in
the wireframe, shaded, transparent, hiddenline and truehiddenline displays. The default is 1
pixel wide. The command to set the line width is

Graphics LineWidth <width_in_pixels>
Highlight Line Width
This option controls the width of the lines used when highlighting an entity. Setting this to a
width greater than the global line width often makes it easier to locate highlighted entities. If this
setting has not been changed, the line width set in the command above is used. After using this
command, it is necessary to refresh the graphics by either typing "display" or clicking the
Refresh Graphics button. The command to set the highlighting line width is

Highlight LineWidth <width_in_pixels>
Text Size
This option controls the size of text drawn in the graphics window. The size given in this
command is the desired size relative to the default size. After using this command, it is necessary
to refresh the graphics by either typing "display" or clicking the Refresh Graphics button. The
command to set the text size is

Graphics Text Size <size>
Point Size
This option controls the size of points drawn in the graphics window, such as vertices or heads of
vectors; alternatively, the size of points representing nodes or vertices can be set independently
of the global point size. The commands to set the point sizes are

Graphics Point Size <size>
Graphics [Node|Vertex] Point Size <size>

Graphics Status
All graphics commands can be disabled or re-enabled with the command

Graphics {On|Off}
While graphics are off, changes in the model will not appear in the graphics window, and all
graphics commands will be ignored. When graphics are again turned on, the scene will be
updated to reflect the current state of the model.
Graphics Scale
A graphical scale can be drawn in the graphics window within the viewing area to obtain a
bearing on model or part sizes. The command to turn the graphical scale on and off is:

Graphics Scale [On|Off]
Model Axis
The model axis may be drawn in the scene at the model origin. The axis is controlled with the
command

Graphics Axis [Type <AXIS | Origin>] [On|Off]

124

Cubit 15.1 User Documentation

The command is used to specify whether the model axis is visible, and to determine how the axis
is drawn. If you include Type Axis , the axis will be drawn as three orthogonal lines; if you
include Type Origin, the axis will be drawn as a circle at the model origin.
Corner Axis (Triad)
By default, an axis appears in the corner of the graphics window. This corner axis, also called the
triad, can be disabled or re-enabled with the command

Graphics Triad [On | Off]
Resetting the Graphics
Many of the graphic options can be reset back to default values with the command:

Graphics Reset
The graphic options set to defaults are:

• ambient and spot light intensity
• background color
• text size
• graphics mode
• silhouetting
• point size
• view type (Perspective)

In addition, this command also:

• centers the view on all visible entities (Zoom Reset)
• turns all labeling off
• turns vertex visibility off
• turns mesh and geometry visibility on
• moves the graphics camera back to its original position (View Reset)

Shrink
The shrink graphics attribute allows you to view the elements shrunken about their centroid. This
is useful for viewing 3D meshes, permitting viewing of interior elements. It may also be useful
for visually inspecting the mesh for missing elements. To use the shrink option use:

graphics shrink <value>
draw hex <range>
draw tet <range>
etc...

where value is a number between 0 and 1. One (1) will shrink the elements to a point, while zero
(0) will not shrink the elements. The following figures illustrate the effect of element shrink on a
hex mesh.

125

Environment Control

Figure 1. Top: shrink=0.2, Bottom: shrink=0.5

Facet Tolerance
The graphics tolerance commands change the way that facets are drawn in the graphics window.
It does not affect the underlying geometry, just the graphics display. It can be useful to change
the facet tolerance on large models if the refresh speed is slow.

Graphics Tolerance [[ANGLE|Distance] <val>|Default]
Specifying an angle will change the maximum allowable angle between neighboring facets.
The distance option will set a maximum distance between adjacent facets. Increasing either of
these numbers will result in coarser facets. The default option will return values to their default
settings.

126

Cubit 15.1 User Documentation

The GUI Options panel for manipulating these settings is found under Tools/Options and is
shown below:

Mouse Based View Navigation: Zoom, Pan and Rotate
The mouse can be used to navigate through the scene using various view transformations. These
transformations are accomplished by clicking a mouse button in the graphics window and
dragging, sometimes while holding a modifier key such as Shift or Control. When run with
graphics on, CUBIT is always in mouse mode; that is, mouse-based transformations are always
available, without needing to enter a CUBIT command.
Mouse-based view transformations are accomplished by placing the pointer in the graphics
window and then either holding down a mouse button and dragging, or by clicking on a location
in the graphics window. Some functions also require one or more modifier keys to be held down;
the modifier keys used in CUBIT are Shift and Control . Each of the available view
transformations has a default binding to a mouse button-modifier key combination. This binding

127

Environment Control

can be changed by the user if desired. Transformations and button mappings are summarized in
the following table.
Note: These settings are applicable only to the UNIX command line version of CUBIT. For a
description of the Graphical User Interface Mouse Operations see GUI View Navigation.
The bindings are based on the following mouse button definitions:

Figure 1. Default Mouse Function Mappings for the Command Line

Table 1. Mouse Function Bindings for Zoom, Pan, and Rotate

Function Description Binding

Rotate Rotates the scene about the camera axis.
Dragging the mouse near the center of the
graphics window will rotate the camera's X-
or Y-axis; dragging near the edge of the
window will rotate about the Z-axis (i.e.
about the camera's line of sight). Type a u in
the graphics window to see the dividing line
between the two types of rotation.

B1

Zoom Zooms the scene in or out by clicking the
mouse in the graphics window and dragging
up or down. If the mouse has a wheel, the
wheel will also zoom.

B2

Pan "Drags" the scene around with the mouse B3

Navigational
Zoom

Zooms the scene by moving both the
camera and its focal point forward. B2

Telephoto
Zoom

Zooms the scene by decreasing the field of
view. B2

Pan Cursor Click on new center of view B3

Changing the View Transformation Button Bindings
The default mapping of functions to mouse buttons, described in the Default Mouse Function
Mappings table above, can be modified. There are two ways to assign a function to a
button/modifier combination.
First, you can use the command

Mouse Function <function_id> Button <1|2|3> [Shift][Control]

128

Cubit 15.1 User Documentation

Type Help Mouse Function to see a list of function IDs that may be used in this command.
Second, you can assign functions interactively. To do so, first put the pointer into a graphics
window and then hit the F key. On-screen instructions will lead you through the rest of the
process.
The GUI Options panel for managing the mouse bindings can be found at
Tools/Options/Mouse, and is as follows:

Saving and Restoring Views
After performing view transformations, it may be useful to return to a previous view. A view is
restored by setting the graphics camera attributes to a given set of values. The following keys,
pressed while the pointer is in the graphics window, provide this capability:

V - Restores the view as it was the last time Display was entered.

129

Environment Control

F1 to F12 - These function keys represent 12 saved views. To save a view, hold
down the Control key while pressing the function key. To restore that view later,
press the same function key without the Control key.

Note: In the Graphical User Interface version the F1, F2 and F3 keys are used as an alternate
form of dynamic viewing, therefore the ability to save views is not currently supported in the
GUI.
You can also save a view by entering the command

View Save [Position <1-12>] [Window <window_id>]
The current view parameters will be stored in the specified position. If no position is specified,
the view can be restored by pressing V in the graphics window. If a position is specified, the
view can be restored with the command

View Restore Position <1-12> [Window <window_id>]
These commands are useful in as entries in a .cubit startup file. For example, to always have F1
refer to a front view of the model, the following commands could be entered into a .cubit file:

From 0 1
At 0
Up 0 1 0
Graphics Autocenter On
View Save Position 1

The first three commands set the orientation of the camera. The fourth command ensures that the
model will be centered each time the view is restored. The final command saves the view
parameters in position 1. The view can be restored by pressing F1 while the cursor is in a
graphics window.
Additionally, you can change the 'gain' on the mouse movements by changing the mouse gain
setting, via the command:

Mouse Gain <value>
where a value of 3 would be 3X as sensitive to mouse movements, and a value of 0.5 would be
half as sensitive.

Set ReverseZoom {on|off}
Another user preference, the direction of 'zooming' obtained by using the mouse can be 'flipped',
by toggling the reversezoom setting.

Saving Graphics Views
The current graphics view can be saved and restored using the following commands:

View Save Position <n>
View Restore Position <n>

When you save a view, you save the camera settings in effect at the time the command is issued.
When you restore the view, the camera is returned to the saved position, orientation, and field of
view.
If autocenter is on at the time you save the view, then restoring the view will automatically adjust
the camera settings to center on the entire model and fit the entire model on the screen, a lot like
"zoom reset." You turn autocenter on by typing "graphics autocenter on."

130

Cubit 15.1 User Documentation

Example of how to save a top view:
at 0
from 0 1 0
up 1 0
graphics autocenter on
view save position 3

Use this command to restore that view:
view restore position 3

The view will then be looking down the y-axis, with the x-axis to the top and the z-axis to the
right. The model will be centered in the view and zoomed so that everything just fits into the
graphics window. This is true even if the model is not centered on the origin.
If autocenter is off when the "view save" command is issued, the camera is not adjusted to fit the
scene into the graphics window. Instead, it is placed exactly where it was at the time the "save"
command was issued.
Note that many graphics commands, such as "at", "from", and "up", do not change what appears
in the graphics window until a "display" command is issued. They do, however, take immediate
effect internally, and they do affect what is saved by the "view save" command.
In the command line version of CUBIT, you can save a view by holding down the shift key and
pressing one of the function keys (F1-F12). Each function key corresponds to a different saved
view. A total of 12 views can be saved. A view can be restored at a later time by pressing the
appropriate function key WITHOUT holding down the shift key.
It may be useful to save views in your cubit file so that they are available every time you run
CUBIT. Use CUBIT to save front, top, and side views in positions 1, 2, and 3. If views are saved
in your cubit file, it is convenient to add a "view reset" command after the views have been
saved. Then the graphics will initially appear as they would if the view commands had not been
included in your cubit file.

Updating the Display
Among the most common graphics-related commands is:

Display
This command clears all highlighting and temporary drawing, and then redraws the model
according to the current graphics settings. The GUI tool bar button for executing this command
is:

Two related commands are:

Graphics Flush
Graphics Clear

Graphics Flush redraws the graphics without clearing highlighting or temporary
drawing. Graphics Flush is useful when a previously executed command modified the graphics
and didn't update the screen and the user wishes to update the display. The Graphics Clear
command clears the graphics window without redrawing the scene, leaving the window blank.

131

Environment Control

NOTE: Although most changes to the model are immediately reflected in the graphics display,
some are not (for graphics efficiency). Typing Display will update the display after such
commands. Ctrl-R will also update the display as long as the mouse is in the graphics window.
Prevent Graphics From Updating
For especially large models, it may take excessively long to update the display after an action has
been performed. To prevent the graphics from automatically updating, use the following
command:

Graphics Pause
This command prevents the graphics window from being updated until the next time the Display
command is issued.
NOTE: The Plot command is synonymous to the Display command, and either can be used with
identical results.

Geometry, Mesh, and BC Entity Visibility
The visibility of geometry, mesh, BC and Genesis entities can be turned on or off, either
individually or globally. After visibility is turned off, the associated entities will remain invisible
until visibility is turned on again.

The command to control global visibility is:

{Mesh|Geometry|BC} { [Visibility] [on|off] }
This command sets the global visibility on or off for all mesh, geometry, or BC entities,
respectively. Turning off BC visibility also affects Genesis entities such as blocks, sidesets, and
nodesets. Global visibility settings take precedence over the visibility set on individual entities.
By default, Mesh and Geometry visibility is on, and BC visibility is off.
Global visibility of geometry, mesh, and BC entities can also be controlled from these tool bar
buttons in the GUI (from left to right):

The command to control the individual visibility of geometry entities is:

{ {Body|Curve|Surface|Volume|Vertex} <range> } [Mesh][Geometry]
Visibility [On|Off]

If the Mesh keyword is included, only the visibility of the mesh belonging to the specified
geometric entity is affected. Similarly, if the Geometry keyword is included, only the visibility
of the geometry is affected. If neither keyword is included, the command is identical to including
both keywords.
Invisibility of geometry is inherited; visibility is not. For example, if a volume is invisible, its
surfaces are also invisible unless they also belong to some other visible volume. As another case,
if the volume is visible, but a surface is set to invisible, the surface will not follow its parent's
visibility setting, but will remain invisible.
If vertex visibility is turned on, the vertices of the geometry become visible. The default for
vertex visibility is off. The default for all other geometry entities is on.

The commands to control visibility of edges and nodes are:

132

Cubit 15.1 User Documentation

Edge [Visibility] [On|Off]
Node [Visibility] [On|Off]

These commands set the global visibility on or off for all edges or nodes, respectively. If edge
visibility is off, mesh edges will not be drawn when mesh faces are drawn. Edge visibility is on
by default; node visibility is off by default. Face visibility is always on when mesh visibility is
on.

The command to control the individual visibility of genesis entities is:

{Block|Nodeset|Sideset} <range> visibility [{on|off}]
Genesis entities and boundary conditions are best viewed with geometry and mesh visibility off
and BC visibility on.

Entity visibility for individual geometry and Genesis entities can also be controlled via context
(right-click) menus in the Tree and in the graphics window.
Entities that are not visible can still be drawn temporarily using the "draw" command to display
one or more specific entities.

Command Line View Navigation: Zoom, Pan and Rotate
Commands used to affect camera position or other functions are listed below. All rotation,
panning, and zooming operations can include the Animation Steps qualifier, makes the image
pass smoothly through the total transformation. Animation also allows the user to see how a
transformation command arrives at its destination by showing the intermediate positions.
Rotation

Rotate <degrees> About [Screen | Camera | World] {X | Y | Z} [Animation
Steps <number_steps>]
Rotate <degrees> About Curve <curve> [Animation Steps <number_steps>]
Rotate <degrees> About Vertex <vertex_1> Vertex <vertex_2> [Animation
Steps <number_steps>]

Rotation of the view can be specified by an angle about an axis in model coordinates, about the
camera's "At" point, or about the camera itself. Additionally rotations can be specified about any
general axis by specifying start and end points to define the general vector. The right hand rule is
used in all rotations.
Plain degree rotations are in the Screen coordinate system by default, which is centered on the
camera's At point. The Camera keyword causes the camera to rotate about itself (the camera's
From point). The World keyword causes the rotation to occur about the model's coordinate
system. Rotations can also be performed about the line joining the two end vertices of a curve in
the model, or a line connecting two vertices in the model.
Panning

Pan [{Left|Right} <factor1>] [{Up|Down} <factor2>] [Screen | World]
[Animation Steps <number_steps>]

Panning causes the camera to be moved up, down, left, or right. In terms of camera attributes, the
From point and At point are translated equal distances and directions, while the perspective
angle and up vector remain unchanged. The scene can also be panned by a factor of the graphics
window size.

133

Environment Control

Screen and World indicate which coordinate system <factor> is in. If Screen is indicated (the
default), <factor> is in screen coordinates, in which the width of the screen is one unit. If World
is indicated, <factor> is expressed in the model units.
Zooming

Zoom Screen <factor> [Animation Steps <number_steps>]
Zoom <x_min> <y_min> <x_max> <y_max> [Animation Steps
<number_steps>]
Zoom {Group | Body | Volume | Surface | Curve | Vertex | Hex | Tet | Face |
Tri | Edge | Node} <id_range> [Animation Steps <number_steps>] [Direction
{options}]
Zoom cursor [click|drag][animation steps <number>]
Zoom Reset

Zoom Screen will move the camera <factor> times closer to its focal point. The result is that
objects on the focal plane will appear <factor> times larger.
Zooming on a specific portion of the screen is accomplished by specifying the zoom area in
screen coordinates; for example, Zoom 0 .25 .25 will zoom in on the bottom left quarter of the
screen.
Zooming on a particular entity in the model is accomplished by specifying the entity type and ID
after entering Zoom. The image will be adjusted to fit bounding box of the specified entity into
the graphics window, and the specified entity will be highlighted. You can specify a final
direction to look at when zooming by using the direction option.
To center the view on all visible entities, use the Zoom Reset command.
The GUI tool bar buttons for controlling zoom in, zoom out, and zoom reset are as follows:

Entity Selection and Filtering
Entity Selection

• Command Line Entity Specification
• Extended Command Line Entity Specification
• Selecting Entities With the Mouse

CUBIT Entity specification is a means of selecting objects or groups of objects. Entities can be
selected from the command line using entity specification parameters, or directly in the graphics
window using the mouse. This chapter describes these methods of entity selection.

Command Line Entity Specification
CUBIT identifies objects in the geometry, mesh, and elsewhere using ID numbers and
sometimes names. IDs and names are used in most commands to specify which objects on which
the command is to operate.
These objects can be specified in CUBIT commands in a variety of ways, which are best
introduced with the following examples (the portion of each command which specifies a list of
entities is shown in blue):
General ranges: Surface 1 2 4 to 6 by 2 3 4 5 Scheme Pave
Combined geometry, mesh, and genesis entities: Draw Sideset 1 Curve 3 Hex 2 4 6

134

Cubit 15.1 User Documentation

Geometric topology traversal: Vertex in Volume 2 Size 0.3
Mesh topology traversal: Draw Edge in Hex 32
All keyword: ListBlock all
Expand keyword: my_curve_group expand Scheme Bias Factor 1.5
Except keyword: List Curve 1 to 50 except 2 4 6
In addition to the examples above, there is an extended parsing capability that allows entities to
be specified by a general set of criteria. See Extended Entity Specification for details. The
following is a simple example of an extended entity specification:
By Criteria: Draw Curve With Length > 3
Types of Entity Range Input
The types of entity range input available in CUBIT can be classified in 4 groups:

1. General range parsing

Entity IDs can be entered individually (volume 1), in lists (volume 1 2 3), in ranges
(volume 3 to 7), and in stepped ranges (volume 3 to 7 step 2). The word all may also be
used to specify all entities of a given type.
An ID range has the form <start_id> to <end_id>. It represents each ID between start_id
and end_id, inclusive.
A stepped ID range has the form <start_id> To <end_id> {Step|By} <step>. It
represents the set of IDs between start_id and end_id, inclusive, which can be obtained
by adding some integer multiple of step to start_id. For example, 3 to 8 step 2 is
equivalent to 3 5 7.
The various methods of specifying IDs can be used together. For example:
draw surface 1 2 4 to 6 vertex all

2. Topological traversal

Topological traversal is indicated using the "in" and "common_to" identifiers, can span
multiple levels in a hierarchy, and can go either up or down the topology tree. For
example, the following entity lists are all valid:
vertex in volume 3
volume in vertex 2 4 6
surface common_to volume 2 3
curve common_to surface 2 3
curve 1 to 3 in body 4 to 8 by 2
If ranges of entities are given on both sides of the "in" identifier, the intersection of the
two sets results. For example, in the last command above, the curves that have ids of 1, 2
or 3 and are also in bodies 4, 6 and 8 are used in the command.
Topology traversal is also valid between entity types. Therefore, the following commands
would also be valid:
draw node in surface 3
draw surface in edge 362
draw hex in face in surface 2
draw node in hex in face in surface 2
draw edge in node in surface 2

135

Environment Control

draw face common_to volume 1 2

3. Exclusion

Entity lists can be entered then filtered using the "except" identifier. This identifier and
the ids following it apply only to the immediately preceding entity list, and are taken to
be the same entity type. For example, the following entity lists are valid:
curve all except 2 4 6
curve 1 2 5 to 50 except 2 3 4
curve all except 2 3 4 in surface 2 to 10
curve in surface 3 except 2 (produces empty entity list!)
Entity names can also be used to specify the exclusion list. For example:
curve all except pivot_1
When using mulitple names to specify the exclusion list it is necessary to use the "in"
keyword with parentheses. For example:
curve all except curve in (pivot_1 top_left)
In the above example, all curves are in the entity list except the curve named "pivot_1"
and the curve named "top_left".

4. Group expansion

Groups in CUBIT can consist of any number of geometry entities, and the entities can be
of different type (vertex, curve, etc.). Operations on groups can be classified as
operations on the group itself or operations on all entities in the group. If a group
identifier in a command is followed immediately by the `expand' qualifier, the contents of
the group(s) are substituted in place of the group identifier(s); otherwise the command is
interpreted as an operation on the group as a whole. If a group preceding the `expand'
qualifier includes other groups, all groups are expanded in a recursive fashion.
For example, consider group 1, which consists of surfaces 1, 2 and curve 1. Surfaces 1
and 2 are bounded by curves 2, 3, 4 and 5. The commands in Table 1, illustrate the
behavior of the `expand' qualifier.

Table 1. Parsing of group commands; Group 1 consists of Surfaces 1-2 and Curve 1;
Surfaces 1 and 2 are bounded by Curves 2-5.
Command Entity list produced
Curve in Group 1 Curve 1
Curve in group 1 expand Curves 1, 2, 3, 4, 5
The `expand' qualifier can be used anywhere a group command is used in an entity list; of
course, commands which apply only to groups will be meaningless if the group id is followed by
the `expand' qualifier.
Precedence of "Except" and "In"
Several keywords take precedence over others, much the same as some operators have greater
precedence in coding languages. In the current implementation, the keyword "Except" takes
precedence over other keywords, and serves to separate the identifier list into two sections. Any
identifiers following the "Except" keyword apply to the list of entities excluded from the entities
preceding the "Except". Table 2 shows the entity lists resulting from selected commands.

136

Cubit 15.1 User Documentation

Table 2. Precedence of "Except" and "In" keywords; Group 1 consists of Surfaces 1-2 and
Curve 1.
Command Entity list produced
Curve all except 1 in Group 1 (All curves except curve 1)
Curve all except 2 3 4 in Surf 2 to 10 (All curves except 2, 3, 4)
In the first command, the entities to be excluded are the contents of the list "[Curve] 1 in Group
1", that is the intersection of the lists "Curve 1" and "Curve in Group 1"; since the only curve in
Group 1 is Curve 1, the excluded list consists of only Curve 1. The remaining list, after removing
the excluded list, is all curves except Curve 1.
In the second command, the excluded list consists of the intersection of the lists "Curve 2 3 4"
and "Curve in Surf 2 to 10"; this intersection turns out to be just Curves 2, 3 and 4. The
remaining list is all curves except those in the excluded list.
Placement in CUBIT Commands
In general, anywhere a range of entities is allowed, the new parsing capability can be used.
However, there can be exceptions to this general rule, because of ambiguities this syntax would
produce. Currently, the only exception to this rule is the command used to define a sideset for a
surface with respect to an owning volume.

Extended Command Line Entity Specification
In addition to basic entity specification, entities may be specified using an extended expression.
An extended expression identifies one or more entities using a set of entity criteria. These criteria
describe properties of the entities one wishes to operate upon.
Extended Parsing Syntax
The most common type of extended parsing expression is in the following format:

{Entity_Type} With {Criteria}
Entity_Type is the name of any type of entity that can be used in a command, such as Curve,
Hex, or SideSet. Criteria is a combination of entity properties (such as Length), operators (such
as >=), keywords (such as Not), and values (such as 5.3) that can be evaluated to true or false for
a given entity. Here are some examples:

curve with length <1
surface with is_meshed = false
node with x_coord > 10 And y_coord > 0

Keywords
These are the keyword defined by extended parsing
Keyword Description

All, To, Step, By,
Except, In,
Common_To,
Expand

These keywords are used the same way as in basic entity
specification. For example:
draw surface all
draw surface 1 to 5 step 2 curve 1 to 3 in body 4 to 8 by
2
draw hex in face in surface 2
draw face common_to volume 1 2
draw node in hex in face in surface 2 curve 1 2 5 to 50

137

Environment Control

except 2 3 4

Not
Not flips the logical sense of an expression - it changes true
to false and false to true. For example:
draw surface with not is_meshed

Of

The "of" operator is used to get an attribute value for a
single entity, such as "length of curve 5". Only attributes
that return a single numeric value may be used in an "of"
expression. There must be only one entity specified after
the "of" operator, but it can be identified using any valid
entity expression. An example of a complete command
which includes the "of" operator is:
list curve with length < length of curve 5 ids

And, Or
These logic operators determine how multiple criteria are
combined.
draw surface with length > 3 or with is_meshed = false

< > <= >= = <>

These relational operators compare two expressions. You
may use = or == for "equals". <> means "not equal". For
example:
draw surface with x_max <= 3
draw volume with z_max <>12.3

+ - * / These arithmetic operators work in the traditional manner.
draw surface with length * 3 + 1.2 > 10

()

Parentheses are used to group expressions and to override
precedence. When in doubt about precedence, use
parentheses.
draw surface with length > 3 and (with is_meshed =
false or x_min > 1)

Functions
The following functions are defined. Not all functions apply to all entities. If a function does not
apply to a given entity, the function returns 0 or false.
Keyword Description
ID the ID of an entity
Length The length of a curve or edge
Area The area of a surface.

Exterior_Angle

Works for curves with an exterior angle greater than (>),
less than (<), or equal to (=) a given angle in degrees. This
is used if you want to do some operation, such as
refinement, on all the reentrant curves or curves with
surfaces that form a certain angle.

Is_Meshed Whether a geometric entity has been meshed or not

Is_Spline Whether a geometric entity is defined using a NURBS
representation. Otherwise the entity has an analytic

138

Cubit 15.1 User Documentation

representation.
Is_Plane Whether a geometric surface is planar.

Is_Periodic Whether a geometric surface is periodic, such as a sphere
or torus.

Is_Sheetbody A geometric entity is a sheetbody if it is a collection of
surfaces that do not form a solid.

Element_Count
The number of elements owned by this geometric entity.
Only elements of the same dimension as the entity are
counted (number of hexes in a volume, number of faces on
a surface, etc.)

Dimension The topological dimension of an entity (3 for volumes, 2
for surfaces, etc.).

X_Coord,
Y_Coord, Z_Coord

The x, y, or z coordinate of the point at the center of the
entity's bounding box.

X_Min, Y_Min,
Z_Min

The x, y, or z coordinate of the minimum extent of the
entity's bounding box

X_Max, Y_Max,
Z_Max

The x, y, or z coordinate of the maximum extent of the
entity's bounding box

Is_Merged Whether a geometry entity has a merge flag on. All
geometric entities have one set by default.

Is_Virtual
A flag that specifies whether an entity is virtual geometry.
An entity is virtual if it has at least one virtual
(partition/composite) topology bridge.

Has_Virtual An entity "has_virtual" if it is virtual itself, or has at least
one child virtual entity

Is_Real An entity "is_real" if it has at least one real (non-virtual)
topology bridge.

Num_Parents

Used to specify geometry entities with a specified number
of parent entities. May be used to find "free curves" where
num_parents=0 or non-manifold curves where
num_parents>2.

Block_Assigned
Used to specify elements which have been assigned to a
block. This is also useful to find elements NOT assigned to
a block by using "not block_assigned".

Has_Scheme

Used to specify geometry entities which have been
assigned a specified scheme. The scheme name is specified
with the keyword string used when setting the scheme.
Wildcards can also be used when specifying the scheme
name. For example, draw surface with has_scheme
'*map' will draw surfaces with scheme map or submap.

139

Environment Control

Precedence
For complicated expressions, which entities are referred to is influenced by the order in which
portions of the expression are evaluated. This order is determined by precedence. Operators with
high precedence are evaluated before operators with low precedence. You may always include
parentheses to determine which sub-expressions are evaluated first. Here all operators and
keywords listed from high to low precedence. Items listed together have the same precedence
and are evaluated from left to right.

(,) Expand Not *, / +, - <, >, <=, >=, <>, = And, Or Except In Of With
Because of precedence, the following two expressions are identical:

curve with length + 2 * 2 > 10 and length <= 20 in my_group
expand(curve with (((length + (2*2)) > 10)and(length <= 20))) in (
my_group expand)

Selecting Entities with the Mouse
The following discussion is applicable only to the command line version of CUBIT. See GUI
Entity Selection for a description of interactive entity selection with the Graphical User Interface.
Many of the commands in CUBIT require the specification of an entity on which the command
operates. These entities are usually specified using an object type and ID (see Entity
Specification) or a name. The ID of a particular entity can be found by turning labels on in the
graphics and redisplaying; however, this can be cumbersome for complicated models. CUBIT
provides the capability to select with the mouse individual geometry or mesh entities. After
being selected, the ID of the entity is reported and the entity is highlighted in the scene. After
selecting the entities, other actions can be performed on the selection. The various options for
selecting entities in CUBIT are described below, and are summarized in Table 1:
Table 1. Picking and key press operations on the picked entities

Key Action

ctrl +
B1 Pick entity of the current picking type.

shift +
ctrl +

B1
Add picked entity of the current picking type to current picked
entity list.

tab Query-pick; pick entity of current picking type that is below
the last-picked entity.

n Lists what entities are currently selected.

l Lists basic information about each selected entity. This is
similar to entering a List command for each selected entity.

g
Lists geometric information about the selection. As if the List
Geometry command were issued for each entity. If there are
multiple entities selected, a geometric summary of all

140

Cubit 15.1 User Documentation

selected entities is printed at the end, including information
such as the total bounding box of the selection.

i
Makes the current selection invisible. This only affects entities
that can be made invisible from the command line (i.e.
geometric and genesis entities.)

s
Draws a graphical scale showing model size in the three
coordinate axes. This is a toggle action, so pressing the 's'
key again in the graphics window will turn the scale off.

ctrl +
z Zoom in on the current selection.

e Echo the ID of the selection to the command line.

a
Add the current selection to the picked group. Only geometry
will be added to the group (not mesh entities). If a selected
entity is already in the picked group, it will not be added a
second time.

r
Remove the current selection from the picked group. If a
selected entity was not found in the picked group, this
command will have no effect.

ctrl +
r Redisplays the model.

c Clear the picked group. The picked group will be empty after
this command.

m Lists what entities are currently in the picked group.

d Display and select the entities in the picked group.

ctrl +
d Draws the entity that is selected.

Details of selecting entities with a mouse are outlined in the following items:

• Entity Selection
• Query Selection
• Multiple Selected Entities
• Information about the Selection
• Picked Group
• Substituting the Selection into Commands

Entity Selection
Selecting entities typically involves two steps:
1. Specifying the type of entity to select

141

Environment Control

Clicking on the scene can be interpreted in more than one way. For example, clicking
on a curve could be intended to select the curve or a mesh edge owned by that curve.
The type of entity the user intends to select is called the picking type. In order for CUBIT
to correctly interpret mouse clicks, the picking type must be indicated. This can be done
in one of two ways. The easiest way to change the picking type is to place the pointer in
the graphics window and enter the dimension of the desired picking type and an
optional modifier key. The dimension usually corresponds to the dimension of the
objects being picked:
Table 2. Picking Modes in Graphics Window
Number Default pick Number +shift pick
0 vertices nodes
1 curves edges
2 surfaces all 2D elements
3 volumes all 3D elements
4 bodies
If a Shift modifier key is held while typing the dimension, the picking type is set to the
mesh entity of corresponding dimension, otherwise the geometry entity of that
dimension is set as the picking type. For example, typing 2 while the pointer is in the
graphics window sets the picking type so that geometric surfaces are picked; typing
Shift-1 sets the picking type so that mesh edges are picked. To differentiate between
picking "tris" or "quads" use "pick face" or "pick tri"
The picking type can also be set using the command

Pick <entity_type>
where entity_type is one of the following: Body , Volume , Surface , Curve , Vertex , Hex
, Tet , Face , Tri , Edge , Node , or DicerSheet .
2. Selecting the entities
To select an object, hold down the control key and click on the entity (this command can
be mapped to a different button and modifiers, as described in the section on Mouse-
Based View Navigation). Clicking on an entity in this manner will first de-select any
previously selected entities, and will then select the entity of the correct type closest to
the point clicked. The new selection will be highlighted and its name will be printed in
the command window.
Query Selection
If the highlighted entity is not the object you intended to selected, press the Tab key to move to
the next closest entity. You can continue to press tab to loop through all possible selections that
are reasonably close to the point where you clicked. Shift-Tab will loop backwards through the
same entities.
Multiple Selected Entities
To select an additional entity, without first clearing the current selection, hold down the shift and
control keys while clicking on an object. You can select as many objects as you would like. By
changing the picking type between selections, more than one type of entity may be selected at a
time. When picking multiple entities, each pick action acts as a toggle; if the entity is already
picked, it is "unpicked", or taken out of the picked entities list.

142

Cubit 15.1 User Documentation

Information About the Selection
When an entity is selected, its name, entity type, and ID are printed in the command window.
There are several other actions which can then be performed on the picked entity list. These
actions are initiated by pressing a key while the pointer is in the graphics window. Table 1
summarizes the actions which operate on the selected entities.
Picked Group
There is a special group whose contents can be altered using picking. This group is named
picked , and is automatically created by CUBIT. Other than its relationship to interactive
picking, it is identical to other groups and can be operated on from the command line. Like other
groups, both geometric and mesh entities can be held in the picked group. Table 1 lists the
graphics window key presses used with the picked group.
Note: It is important to distinguish between the current selection and the picked group
contents. Clicking on a new entity will select that entity, but will not add it to the picked
group. De-selecting an entity will not remove an entity from the picked group.
Substituting Selection into Other Commands
There are three ways to use mouse-based selection to specify entities in commands.
1. The Selection Keyword
You may refer to all currently selected entities by using the word selection in a command; the
picked type and ID numbers of all selected entities will be substituted directly for selection . For
example, if Volume 1 and Curve 5 are currently selected, typing

Color selection Blue
is identical to typing

Color Volume 1 Curve 5 Blue
Note that the selection keyword is case sensitive, and must be entered as all lowercase letters.
2. Echoing the ID of the Selection
Typing an e into a graphics window will cause the ID of each selected entity to be added to the
command line at the current insertion point. This is a convenient way to use entities of which you
don't already know the name or ID.
As an added convenience, the picking type can be set based on the last word on the command
line using the ` key. Note that this is not the apostrophe key, but rather the left tick mark, usually
found at the upper-left corner of the keyboard on the same key as the tilde (~). For example, a
convenient way to set the meshing scheme of a cylinder to sweep would be as follows:

Volume (hit `, select cylinder, hit e) Scheme Sweep Source Surface (hit `,
select endcap, hit e) Target (select other endcap, hit e)

The result will be something similar to
Volume 1 Scheme Sweep Source Surface 1 Target 2

Notice that you must use the word Surface in the command, or ` will not select the correct
picking type.
3. Using the Picked Group in Commands
Like other groups, the picked group may be used in commands by referring to it by name. The
name of the picked group is picked. For example, if the contents of the picked group are Volume
1 and Volume 2, the command

Draw picked

143

Environment Control

is identical to
Draw Volume 1 Volume 2

Note that picked is case sensitive, and must be entered as all lowercase letters.

144

GEOMETRY
Geometry

• CUBIT Geometry Formats
• Geometry Creation
• Geometry Transforms
• Geometry Booleans
• Geometry Decomposition
• Geometry Cleanup and Defeaturing
• Geometry Imprinting and Merging
• Virtual Geometry
• Geometry Orientation
• Geometry Groups
• Geometry Attributes
• Entity Measurement
• Parts, Assemblies, and Metadata
• Geometry Deletion

CUBIT usually relies on the ACIS solid modeling kernel for geometry representation; there is
also mesh-based geometry. Other solid model kernels are planned. Geometry is imported
or created within CUBIT. Geometry is created bottom-up or through primitives. CUBIT imports
ACIS SAT files. CUBIT can also read STEP, IGES, and FASTQ files and convert them to the
ACIS kernel. SolidWorks, AutoCAD, and some other commercial CAD systems can write SAT
files directly.
Once in CUBIT, an ACIS model is modified through booleans. Without changing the geometric
definition of the model, the topology of the model may be changed using virtual geometry. For
example, virtual geometry can be used to composite two surfaces together, erasing the curve
dividing them.
Sometimes, an ACIS model is poorly defined. This often happens with translated models. The
model can be healed inside CUBIT.

Model Definitions
ACIS Geometry Kernel
ACIS is a proprietary format developed by Spatial Technologies. CUBIT incorporates the ACIS
third party libraries directly within the program. The ACIS third party libraries are used
extensively within CUBIT to import, export and maintain the underlying geometric
representations of the solid model for geometry decomposition and meshing. There are many
ways to get geometry into the ACIS format. ACIS files can be exported directly from several
commercial CAD packages, including SolidWorks, AutoCAD, and HP PE/SolidDesigner. Third
party ACIS translators are also available for converting from native formats such as Pro
Engineer. CUBIT also uses the ACIS libraries for importing IGES and STEP format files.
Importing and creating geometry using the ACIS geometric modeling kernel currently provides
the widest set of capabilities within CUBIT. All geometry creation and modification tools have
been designed to work directly on the ACIS representation of the model.

145

http://www.spatial.com/

Geometry

Mesh-Based Geometry
In contrast to the ACIS format, Mesh-Based Geometry (MBG) is not a third party library and has
been developed specifically for use with CUBIT. Most of CUBIT's mesh generation tools require
an underlying geometric representation. In many cases, only the finite element model is
available. If this is the case, CUBIT provides the capability to import the finite element mesh and
build a complete boundary representation solid model from the mesh. The solid model can then
be used to make further enhancement to the mesh. While the underlying ACIS geometry
representation is typically non-uniform rational b-splines (NURBS), Mesh-Based Geometry uses
a facetted representation. Mesh-Based Geometry can be generated by importing either an Exodus
II format file or a facet file.

• Creating Mesh-Based Geometry Models
• Improving Mesh-Based Geometry Models for Meshing
• Meshing Mesh-Based Models
• Exporting Mesh-Based Geometry

Many of the same operations that can be done with traditional CAD geometry can also be done
with mesh-based geometry. While all mesh generation operations are available, only some of the
geometry operations can be used. For example, the following can be done with geometric entities
that are mesh-based:

• Geometry Transformations
• Merging
• Virtual Geometry Operations

Some operations that are not yet available with mesh-based geometry include:

• Booleans
• Geometry Decomposition
• Geometry Clean-Up

Creating Mesh-Based Geometry Models
Mesh based geometry models can be created in one of two ways

• Importing Exodus II files
• Importing facet files

While both of these methods create geometry suitable for meshing, there are some significant
differences:
Exodus II files
Exodus II contains a mesh representation that may include 3D elements, 2D elements, 1D
elements and even 0D elements. It may also contain deformation information as well as
boundary condition information. The import mesh geometry command is designed to decipher
this information and create a complete solid model, using the mesh faces as the basis for the
surface representations. Exodus II is most often used when a solid model that has previously
been meshed requires modification or remeshing. Importing an Exodus II file will generate both

146

Cubit 15.1 User Documentation

geometry and mesh entities, assigning appropriate ownership of the mesh entities to their
geometry owners. Deleting the mesh and remeshing, refining or smoothing are common
operations performed with an Exodus II model.
Facet files
The facet file formats supported by CUBIT are most often generated from processes such as
medical imaging, geotechnical data, graphics facets, or any process that might generate discrete
data. Importing a facet file will generate a surface representation only defined by triangles. If the
triangles in the facet file form a complete closed volume, then a volume suitable for meshing
may be generated. In cases where the volume may not completely close or may not be of
sufficient quality, a limited set of tools has been provided. In addition to the standard meshing
tools provided in CUBIT, it is also possible to use the triangle facets themselves as the basis for
an FEA mesh.
Improving Mesh-Based Geometry Models for Meshing
In many cases, the triangulated representations that are provided from typical imaging processes
are not of sufficient quality to use as geometry representations for mesh generation. As a result,
CUBIT provides a limited number of tools to assist in cleaning up or repairing triangulated
representations.
1. Using tolerance on STL files
Stereolithography (STL) files, in particular, can be problematic. The import mechanism for STL
provides a tolerance option to merge near-coincident vertices.
2. Using the stitch option on AVS and facet files
The stitch option on the import facets|avs command provides a way to join triangles that
otherwise share near-coincident vertices and edges. This is useful for combining facet-based
surfaces to generate a water-tight model.
3. Using the improve option on facet files.
The improve option on the import facets command will collapse short edges on the boundary of
the triangulation. This option improves the quality of the boundary triangles.
4. Smoothing faceted surfaces.
Individual triangles in a faceted surface representation may be poorly shaped. Just like mesh
elements may be smoothed, facets may also be smoothed in CUBIT using the following
command

Smooth <surface_list> Facets [Iterations <value>] [Free] [Swap]
To use this command, the surface cannot be meshed. Facet smoothing consists of a
simple Laplacian smoothing algorithm which has additional logic to make sure it does not turn
any of the triangles in-side out. It also determines a local surface tangent plane and projects the
triangle vertices to this plane to ensure the volume will not "shrink". The iterations option can
be used to specify the number of Laplacian smoothing operations to perform on each facet vertex
(The default is 1).
The free option can be used to ignore the tangent plane projection. Used too much, the free
option can collapse the model to a point. One of two iterations of this option may be enough to
clean up the triangles enough to be used for a finite element mesh.
The swap option can be used to perform local edge swap operations on the triangulation. The
quality of each triangle is assessed and edges are swapped if the minimum quality of the triangles
will improve.
5. Creating a thin offset volume

147

Geometry

Offset surfaces may be generated from an existing facet-based surface. This would be used in
cases where a thin membrane-like volume might be required where only a single surface of
triangles is provided. This command may be accomplished by using the standard create body
offset command
The result of this command is a single body with an inside and outside surface separated by a
small distance which is generally suitable for tet meshing. This command is currently only useful
for small offsets where self-intersections of the resulting surface would be minimal. It is most
useful for bodies that may be initially composed of a single water-tight surface.
6. Creating volumes from surfaces
A mesh-based geometry volume can be created from a set of closed surfaces. This can be
accomplished in the same manner as the standard create body surface command

Create Body Surface <surface_id_range>
This command is limited to surfaces that match triangles edges and vertices at their boundary.
The command will internally merge the triangles to create a water-tight model that would
generally be suitable for tet meshing.
Meshing Mesh-Based Models
Mesh-Based models may be meshed just like any other geometry in CUBIT by first setting a
scheme, defining a size and using the mesh command. This standard method of mesh generation
can be somewhat time consuming and error prone for complex facet models with thousands of
triangles. CUBIT also provides the option of using the facets themselves as a surface triangle
mesh, or as the input to a tetrahedral mesher. This may be accomplished with one of two options:

Mesh <entity_list> From Facets
This command will generate triangular finite elements for each facet on the surface. If
the entity_list is composed of one or more volumes, then the tetrahedral mesh will automatically
fill the interior. This method is useful when further cleanup and smoothing operations are needed
on the triangles after import.

Import Facets <filename> Make_elements
The make_elements on the import facets command will generate the triangular finite elements on
the surface at the time the facets are read and created. This option is useful if no further
modifications to the facets are necessary.
Creating triangular finite elements in this manner can greatly speed up the mesh generation
process, however it is limited to non-manifold topology. If the triangular elements are to be used
for tetrahedral meshing (i.e. all edges of the triangulation should be connected to no more than
two triangles)
Exporting Mesh-Based Geometry
Mesh-Based geometry models and their mesh may be exported by one of the following methods:

• Exporting to an Exodus II File
• Exporting to a facet file

Exodus II
Exporting to an Exodus II file saves the finite element mesh along with any boundary conditions
placed on the model. It will not save the individual facets that comprise the mesh-based

148

Cubit 15.1 User Documentation

geometry surface representation. Importing an Exodus II file saved in this manner will regenerate
the surfaces only to the resolution of the saved mesh.
Facet files
CUBIT also provides the option to save just the surface representation to a facet or STL file. The
following commands can be used for saving facet or STL files:

Export Facets 'filename' <entity_list> [Overwrite]
Export STL [ASCII|Binary] 'filename' <entity_list> [Overwrite]

These commands provide the option of saving specific surfaces or volumes to the facet file. If no
entities are provided in the command, then all surfaces in the model will be exported to the file.
The overwrite option forces a file to overwrite any file of the same name in the current working
directory.

CUBIT Geometry Formats

• ACIS
• Mesh-Based Geometry

Setting the Geometry Kernel
The geometry kernel can be switched between ACIS and Mesh-Based Geometry from the
command line using the following command:

Set Geometry Engine {Acis|Facet}
The geometry engine will automatically be set when importing a model.
Terms
Before describing the functionality in CUBIT for viewing and modifying solid geometry, it is
useful to give a precise definition of terms used to describe geometry in CUBIT. In this manual,
the terms topology and geometry are both used to describe parts of the geometric model. The
definitions of these terms are:
Topology: the manner in which geometric entities are connected within a solid model;
topological entities in CUBIT include vertices, curves, surfaces, volumes and bodies.
Geometry: the definition of where a topological entity lies in space. For example, a curve may
be represented by a straight line, a quadratic curve, or a b-spline. Thus, an element of topology
(vertex, curve, etc.) can have one of several different geometric representations.
Topology
Within CUBIT, the topological entities consist of vertices, curves, surfaces, volumes, and bodies.
Each topological entity has a corresponding dimension, representing the number of free
parameters required to define that piece of topology. Each topological entity is bounded by one
or more topological entities of lower dimension. For example, a surface is bounded by one or
more curves, each of which is bounded by one or two vertices.

Bodies and Volumes
A CUBIT Body is defined as a collection of other pieces of topology, including curves, surfaces
and volumes. The use of Body is not required, and is in fact deprecated in favor of using
Volume. Bodies may still be used for grouping volumes, but it is suggested to use Groups
instead.

149

Geometry

Although a Body may contain groups of Surfaces or Volumes, for most practical purposes within
the CUBIT environment, a single Volume or Surface will belong to a single Body. For typical
three-dimensional models, this means that there should be one Body for every Volume in the
model, where the default Body ID is the same as the Volume ID. For this reason, in many
instances the term Volume and Body are used interchangeably, although it is more consistent to
always refer to Volumes and Volume IDs, and only use Bodies when absolutely necessary.

Non-Manifold Topology
In many applications, the geometry consists of an assembly of individual parts, which together
represent a functioning component. These parts often have mating surfaces, and for typical
analyses these surfaces should be joined into a single surface. This results in a mesh on that
surface which is shared by the volume meshes on either side of the shared surface. This
configuration of geometry is loosely referred to as non-manifold topology.
Bounding Box Calculations
Bounding box calculations are used for many routines and subroutines in Cubit. These
calculations are done using a faceted representation by default. To use the default modeling
engine for more accurate (and longer) calculations change the Facet Bbox setting.

Set Facet BBox [ON|Off]
There are also various settings to control the accuracy of bounding box calculations based on
point lists.

Set Tight [[Bounding] [Box] [{Surface|Curve|Vertex} {on|off}]]
If surfaces are used, surface facet points will be included in the point list used to calculate the
tight bounding box. This will include vertices and points on the curves. This is the default
implementation.
If curves are used, curve tesselation points will be included in the point list used to calculate the
tight bounding box. This includes the vertices on the ends of the curves. One use for this is to
find a more accurate tight bounding box, since curve tessellations are typically more fine than
surface tessellations. However, in practice, it is recommended to just use surface tessellations.
One special case is if the user sends in a list of curves as the criteria for the tight bounding box,
the curve tessellations are always used, even if this parameter is false.
If vertices are used, vertex points will be included in the point list used to calculate the tight
bounding box. In extremely large models, it could be advantageous to just use vertices. So the
user would turn off both the surface and curve flags. One special case is if the user sends in a list
of curves as the criteria for the tight bounding box, the curve tessellations are always used, even
if the curve parameter is false and this parameter is true.

Geometry Creation
Geometry Creation
There are three primary ways of creating geometry for meshing in CUBIT. First, CUBIT
provides many geometry primitives for creating common shapes (spheres, bricks, etc.) which can
then be modified and combined to build complex models. Secondly, geometry can be imported
into CUBIT. Finally, geometry can be defined by building it from the "bottom up", creating
vertices, then curves from those vertices, etc. Two of these three methods for creating geometry
in CUBIT will be described in detail in this section.

150

Cubit 15.1 User Documentation

All of these geometry creation commands have been expressed in the GUI's command panels. To
navigate to the volume creation command panels, for example, select "Mode-Geometry", then
"Entity-Volume", then "Action-Create", as shown below. Other geometry creation command
panels are available for each geometry type.

• Bottom-Up Geometry Creation
• Geometric Primitives

Primitive Geometry
Geometric Primitives
The geometric primitives supported within CUBIT are pre-defined templates of three-
dimensional geometric shapes. Users can create specific instances of these shapes by providing
values to the parameters associated with the chosen primitive. Primitives available in CUBIT
include the brick, cylinder, torus, prism, frustum, pyramid, and sphere. Each primitive, along
with the command used to generate it and the parameters associated with it, are described next.
For some primitives, several options can be used to generate them, and are described as well.
The following Primitives can be generated with CUBIT:

 Brick

151

Geometry

Cylinder

Prism

Frustum

Pyramid

Sphere

152

Cubit 15.1 User Documentation

Torus

General Notes

• Primitives are created and given an ID equal to one plus the current highest body ID in
the model.

• Primitive solids are created with their centroid at the origin or the world coordinate
system.

• For primitives with a Height or Z parameter, the axis going through these primitives will
be aligned with the Z axis.

• For primitives with a Major Radius and a Minor Radius, the Major Radius will be along
the X axis, the Minor Radius along the Y axis.

• For primitives with a Top Radius, this radius will be that along the X axis; the Y axis
radius will be computed using the Major, Minor and Top Radii given.

Creating Bricks
The brick is a rectangular parallelepiped.
Command

[Create] Brick {Width|X} <width> [{Depth|Y} <depth>] [{Height|Z}
<height>] [Bounding Box {entity_type} <id_range>] [Tight] [[Extended]
{Percentage| Absolute} <val>]]

Notes

• A cubical brick is created by specifying only the width or x dimension.
• A brick can be specified to occupy the bounding box of one or more entities, specified on

the command line.
• If the Tight option is specified with Bounding Box, the result is the smallest brick that

can contain the entities specified, which is the default behavior of the Bounding Box
option.

• If the Extended option is specified with Bounding Box, the result is a brick that is
extended from a "tight" brick by the input percentage or absolute value.

• If a bounding box specification is used in conjunction with any of the other parameters
(X, Y or Z), the parameters specified override the bounding box results for that or those
dimensions.

Creating Frustums
A frustum is a general elliptical right frustum, which can also be thought of as a portion of a right
elliptical cone.

153

Command
[Create] Frustum [Height|Z] <z-height> Radius <x-radius> [Top
<top_radius>]
[Create] Frustum [Height|Z] <z-height> Major Radius <radius> Minor
Radius <radius> [Top <top_radius>]

Notes

• If used, Major Radius defines the x-radius and Minor Radius the y-radius.
• If used, Top Radius defines the x-radius at the top of the frustum; the top y radius is

calculated based on the ratio of the major and minor radii.

Creating Pyramids
A pyramid is a general n-sided prism.
Command

[Create] Pyramid [Height|Z] <z-height> Sides <nsides> Radius <radius>
[Top <top-x-radius>]
[Create] Pyramid [Height|Z] <z-height> Sides <nsides> [Major [Radius] <x-
radius> Minor [Radius] <y-radius>] [Top <top-x-radius>]

Creating Toruses

The torus command generates a simple torus
Command

[Create] Torus Major [Radius] <major-radius> Minor [Radius] <minor-
radius>

Notes

• Minor Radius is the radius of the cross-section of the torus; Major Radius is the radius
of the spine of the torus.

• The minor radius must be less than the major radius.

Creating Cylinders

The cylinder is a constant radius tube with right circular ends.
Command

[Create] Cylinder [Height|Z] <val> Radius <val>
[Create] Cylinder [Height|Z] <val> Major Radius <val> Minor Radius <val>

Notes

• A cylinder may also be created using the frustum command with all radii set to the same
value.

154

Cubit 15.1 User Documentation

• Specifying major and minor radii can produce a cylinder with an oval cross section.

Creating Prisms
The prism is an n-sided, constant radius tube with n-sided planar faces on the ends of the tube.
Command

[Create] Prism [Height|Z] <z-val> Sides <nsides> Radius <radius>
Notes

• The radius defines the circumradius of the n-sided polygon on the end caps.
• If a major and minor radius are used, the end caps are bounded by a circum-ellipse

instead of a circumcircle.
• The number of sides of a prism must be greater than or equal to three. A prism may also

be created using the pyramid command with all radii set to the same value.
• If the Extended option is specified with Bounding Box, the result is a brick that is

extended from a "tight" brick by the input percentage or absolute value.
• If a bounding box specification is used in conjunction with any of the other parameters

(X, Y or Z), the parameters specified override the bounding box results for that or those
dimensions.

Creating Spheres
The sphere command generates a simple sphere, or, optionally, a portion of a sphere or an
annular sphere.
Command

[Create] Sphere Radius <radius> [Xpositive]|[Xnegative]
[Ypositive]|[Ynegative] [Zpositive]|[Znegative] [Delete] [Inner [Radius]
<radius>]

Notes

• If Xpositive/Xnegative, Ypositive/Ynegative, and/or Zpositive/Znegative are used, a
sphere which occupies that side of the coordinate plane only is generated, or, if the delete
keyword is used, the sphere will occupy the other side of the coordinate plane(s)
specified. These options are used to generate hemisphere, quarter sphere or a sphere
octant (eighth sphere).

• If the inner radius is specified, a hollow sphere will be created with a void whose radius
is the specified inner radius.

Bottom Up Creation
Bottom-Up Geometry Creation
CUBIT supports the ability to create geometry from a collection of lower order entities. This is
accomplished by first creating vertices, connecting vertices with curves and connecting curves
into surfaces. Currently only ACIS bodies or volumes may not be constructed by stitching a set
of surfaces together, and only in a certain number of cases; however surfaces may also be swept

155

or rotated to create bodies or volumes. Existing geometry may be combined with new geometry
to create higher order entities. For example, a new surface can be created using a combination of
new curves and curves already extant in the model. Commands and details for creating each type
of geometry entity are given below.
The following describes each of the basic entities that can be generated with CUBIT using the
bottom-up approach

• Creating Vertices
• Creating Curves
• Creating Surfaces
• Creating Bodies

Creating Volumes
Currently, CUBIT can create volumes:

1. from surfaces by sweeping a single surface into a 3D solid,
2. by offsetting an existing volume,
3. by extending one or more surfaces or sheet bodies
4. by sweeping a curve around an axis,
5. by stitching together surfaces that can form a closed volume,
6. by lofting from one surface to another surface, or
7. by thickening a surface body.

Sweeping of planar surfaces, belonging either to two- or three-dimensional bodies, is allowed,
and some non-planar faces can be swept successfully, although not all are supported at this time.
The following methods for generating volumes are described:

• Sweep Surface Along Vector
• Sweep Surface About Axis
• Sweep Surface Along Curve
• Sweep Surface Perpendicular
• Sweep Surface to a Volume
• Offset
• Sheet extended from surface
• Sweep Curve About Axis
• Stitch Surfaces Together
• Loft Surfaces Together
• Thicken Surfaces
• Sweep Surface
• Sweep Surface along Direction
• Sweep Surface along Helix

There are five forms of the sweep command; the syntax and details for each are given below.
Common options for first four forms are:

156

Cubit 15.1 User Documentation

draft_angle: This parameter specifies the angle at which the lateral faces of the
swept solid will be inclined to the sweep direction. It can also be described as the
angle at which the profile expands or contracts as it is swept. The default value is
0.0.
draft_type: This parameter is an ACIS-related parameter and specifies what
should be done to the corners of the swept solid when a non-zero draft angle is
specified. A value of 0 is the default value and implies an extended treatment of
the corners. A value of 1 is also valid and implies a rounded (blended) treatment
of the corners.
anchor_entity: The default behavior for the sweep command is to move the
source surface along a path to create a new 3D solid. The anchor_entity option
instructs the sweep to leave the source surface in its original location.
include_mesh: This option will sweep the source surface and existing mesh into a
meshed 3D solid. The mesh size is automatically computed using the Default auto
interval specification.

The sweep operations have been designed to produce valid solids of positive volume, even
though the underlying solid modeling kernel library that actually executes the operation, ACIS,
allows the generation of solids of negative volume (i.e., voids) using a sweep.
1. Sweep Surface Along Vector: Sweeps a surface a specified distance along a specified vector.
Specifying the distance of the sweep is optional; if this parameter is not provided, the face is
swept a distance equal to the length of the specified vector. The include_mesh option will create
a volumetric mesh if the surface is already meshed as shown below. The keep option will keep
the original surface while creating the volume.

Sweep Surface {<surface_id_range>} Vector <x_vector y_vector z_vector> [Distance
<distance_value>] [switchside] [Draft_angle <degrees>] [Draft_type
<0|1>][rigid][anchor_entity][include_mesh] [keep] [merge]

Surface mesh swept along a vector

2. Sweep Surface About Axis: Sweeps a surface about a specified vector or axis through a
specified angle. The axis of revolution is specified using either a starting point and a vector, or
by a coordinate axis. This axis must lie in the plane of the surfaces being swept. The steps
parameter defaults to a value of 0 which creates a circular sweep path. If a positive, non-zero
value (say, n) is specified, then the sweep path consists of a series of n linear segments, each
subtending an angle of [(sweep_angle) / (steps-1)] at the axis of revolution. The include_mesh
option will create a volumetric mesh if the surface is already meshed as shown below. The keep
option will keep the original surface while creating the volume.

Sweep Surface {<surface_id_range>} Axis {<xpoint ypoint zpoint xvector
yvector zvector>|Xaxis|Yaxis|Zaxis} Angle <degrees> [switchside] [Steps

157

<number_of_sweep_steps>] [Draft_angle <degrees>] [Draft_type
<0|1>][rigid][anchor_entity][include_mesh] [keep] [merge]

Surface swept around an axis of 50 degree angle

Specifying multiple surfaces that belong to the same body will not work as expected, as
ACIS performs the sweep operation in place. Hence, if a range of surfaces is provided, they
ought to each belong to different bodies.
3. Sweep Surface Along Curve: This command allows the user to sweep a planar surface along
a curve:

Sweep Surface <surface_id_range> Along Curve <curve_id> [Draft_angle
<degrees>] [Draft_type <0 | 1 | 2>][rigid][anchor_entity][include_mesh]
[keep] [individual] [merge]

One of the ends of the curve must fall in the plane of the surface and the curve cannot be
tangential to the surface. Sweep along curve also supports an additional draft type "2" which
implies a "natural" extension of the corners from their curves.
The include_mesh option will create a volumetric mesh if the surface is already meshed as
shown below. The keep option will keep the original surface while creating the volume.

Volume generated by sweeping a surface along a reference curve

4. Sweep Surface Perpendicular: This command allows the user to sweep a planar surface
perpendicular to the surface:

158

Cubit 15.1 User Documentation

Sweep Surface <surface_id_range> Perpendicular Distance <distance>
[Switchside] [Draft_angle <degrees>] [Draft_type
<integer>][anchor_entity][include_mesh] [keep] [merge]

The sweeping plane must be planar in order to determine the sweep direction. The switchside
option will reverse the direction of the sweep.

The original surface is retained with the 'keep' option. A new volume is created by

sweeping the surface along the surface normal.
The include_mesh option will create a volumetric mesh if the surface is already meshed as
shown below. The keep option will keep the original surface while creating the volume.
5. Sweep Surface to a Volume: This command allows users to sweep a surface to a volume.

Sweep Surface <surface_id_range> Target {Volume|Body} <id> [Direction
{options}] [Plane {options}]

The direction keyword can be used to control the direction of sweep. Without it, Cubit will
determine the sweep direction (usually normal to the sweeping surface). The plane option can be
used to define a stopping plane.
6. Offset: The following command creates a body offset from another body or set of surfaces at
the specified distance. The new surfaces are extended or trimmed appropriately. A positive
distance results in a larger body; a negative distance in a smaller body.

Create Body Offset [From] Body <id_range> Distance <value>
Create Sheet Offset From Surface <id_list> Offset <val> [Surface <id_list>
Offset <val>] [Surface <id_list> Offset <val> ...] [Preview]

Using the second form of the command, the sheet body can be created from a list of surfaces, and
the surfaces may offset by different distances. This command currently requires the original
surfaces to be on solid bodies.
This option is also available for limited cases for facet-based surfaces.
7. Sheet Extended from Surface: The following command creates a body offset from another
body or set of surfaces at the specified distance. The new surfaces are extended or trimmed
appropriately. A positive distance results in a larger body; a negative distance in a smaller body.

Create Sheet Extended From Surface <id_list> [Intersecting <entity_list>]
[Extended {Percentage|Absolute} <val>] [Preview]

This command allows multiple surfaces to be extended at the same time. Optionally, you can
give a list of bodies to intersect for this calculation. You can also extend the size of the surface

159

by either a percentage distance or an absolute distance of the minimum area size. The plane can
be previewed with the preview option. Figure 1 shows a set of surfaces being created using the
extended absolute option.

Figure 1. Sheet created from extending multiple surfaces

8. Sweep Curve About Axis: Sweeps a curve or set of curves about a given axis through a
specified angle. The axis is specified the same as in the Sweep Surface About Axis command.
The steps, draft_angle, and draft_type options are the same as are described above. To create the
solid, the make_solid option must be specified, otherwise a surface will be created, rather than a
solid. If the rigid option is specified, then the curve or set of curves will remain oriented as
originally oriented, rather than rotating about the axis.

Sweep Curve <curve_id_range> {Axis <xpoint ypoint zpoint xvector yvector
zvector>|Xaxis|Yaxis|Zaxis} Angle <degrees> [Steps
<Number_of_sweep_steps>] [Draft_angle <degrees>] [Draft_type <integer>]
[Make_solid] [Rigid]

9. Stitch Surfaces Together: A body can be created from various surfaces that form a closed
volume with command below. The geometry must be ACIS-type geometry (i.e. imported from
IGES, STEP or fastq files) This option is also available for limited cases for facet-based surfaces.

Create {Body|Volume} Surface <surface_id_range> [HEAL|Noheal] [Keep]
[Sheet]

The heal option will attempt to close small gaps in the surface; the noheal option disables this
behavior. The keep option preserves the original surfaces.
All of the surfaces must form a closed water-tight volume for this command to succeed unless
the sheet option is specified.

160

Cubit 15.1 User Documentation

The sheet option allows for the creation of an open body. If the set of surfaces form a closed
volume a sheet body is created instead of a volume.
In situations where the boundaries are not exactly within tolerance, the following command may
be more effective:

Stitch {Body|Volume} <id_range>

 [tolerance <value>] [no_tighten_gaps]

10. Loft Surfaces Together: A body can be "lofted" between two surfaces to form a
new body. Surfaces from solid bodies and sheet bodies may be used to create a loft
body. In order to create the loft body, two surfaces coincident to the input surfaces are
created. The loft body is extruded along the shortest path between the corresponding
vertices that define the shapes of the two copied surfaces. This new body is solid. The
surfaces used to create the loft body are unchanged.

Create {Body|Volume} Loft Surface <ids> [guide curve <id_list>
[global_guides]] [Takeoff_factors <one value per surface in order>=.001]
[Takeoff_vector Surface <id> {direction options}] [match vertex <ids>]
[closed] [preview] [show_matching_curves]

Note:Source surface ids must be specified in lofting order.
Go to Location, Direction, and Axis Specification to see the direction command
description.
The following options are available for lofting:

• Guide curve: Multiple curves may be specified to guide the loft. The curves must touch
each source surface. If the global_guides option is specified the guides curves are applied
in a global nature.

• Takeoff_factors: Takeoff factors control how strongly the loft follows the takeoff
vectors. When specifying takeoff factors one value must be specified for each source
surface.

• Takeoff_vector: The takeoff vector controls the direction of the loft for each surface.
The default takeoff vector for each surface is the normal at the surface centroid. One
takeoff vector may be specified for each surface.

• Match vertex: This option guides the loft in how to match the vertices of the source
surfaces. Multiple match vertex sets may be specified. When specifying match vertices,
one vertex id from each source surface must be specified. The match vertices must be
specified in loft order.

• Closed: This option atempts to create a toroidal solid. The last source surface is lofted to
the first source surface.

• Preview: This option will preview the linking curves of the final solid.
• Show_matching_curves: This option will preview how the vertices of the source

surfaces will be matched.

161

Lofting can be used to split a body in order to create a more structured mesh. Figure 2 below
shows a single volume swept from a large paved surface. Figure 3 shows this same volume after
surfaces defined on the source and target surfaces have been used to create a loft body. This
original body was chopped with the loft body. The resulting two bodies were merged. The
yellow volume was swept as the volume in Figure 2 was but the purple volume was submapped,
producing a much more structured mesh overall.

Figure 2. Mesh before loft. Single swept volume with a large paved face.

Figure 3. Mesh after loft. The yellow volume is paved and the purple volume is submapped.
11. Thicken Surfaces: A surface body can be thickened to create a volume body. The surface
can be thickened in both directions using the "both" keyword, thickened in the direction of
surface normal using a positive depth, or thickened in the opposite direction using a negative
depth. To thicken multiple surfaces, all surface normals must be consistent.

Thicken [Volume|BODY] <id> Depth <depth> [Both]
12. Sweeping a Surface to a Plane: Sweeps a surface normal to a plane and towards the plane
until the swept surface reaches the plane. See plane options for ways to describe a plane.

Sweep surface <id> target plane <options>
13. Sweep Surface along a Direction: Sweep a surface along a direction to create a volume.
See direction options for ways to specify a direction.

Sweep Surface <surface_id_range> Direction (options) [switchside] [draft_angle
<degrees>] [draft_type <integer>] [rigid] [anchor_entity] [include_mesh] [keep]
[merge]

162

Cubit 15.1 User Documentation

Surface extruded along -X direction without 'include_mesh' option

14. Sweep Surface along Helix: Sweep a surface along a helix, where the helix is defined by an
axis, thread_distance (distance between turns in axis direction), axis, and handedness
(right_handed or left_handed.

Sweep {Surface|Curve} <id_range> Helix {axis <xpoint ypoint zpoint xvector
yvector zvector> | xaxis | yaxis | zaxis} thread_distance <val> angle
<val> [RIGHT_HANDED|left_handed] [anchor_entity] [include_mesh] [keep]
[merge]

*** Specifying multiple Surfaces that belong to the same Body can cause the creation of
invalid Bodies and is discouraged. ***
axis = axis about which to create the sweep
thread_distance = distance between each 360 degree segment of the helix
angle = number of degrees in rotation of the helix
handedness = right-handed or left- handed threads

Helical Sweep

Creating Curves
Curves are created by specifying the bounding lower-order topology (i.e. the vertices) and the
geometry (shape) of the curve (along with any parameters necessary for that geometry). There
are several forms of this command:

• Straight
• Parabolic, Circular, Ellipse

163

• Spline
• Copy
• Arc Three
• Arc End Vertices and Radius
• Arc Center Vertex
• Arc Center Angle
• From Vertex Onto Curve
• Offset
• From Mesh Edges
• Close_To
• Surface Intersection
• Projecting onto Surface
• Helix

1. Straight: The first form of the command creates a straight line or a line lying on the specified
surface. If a surface is used, the curve will lie on that surface but will not be associated with the
surface's topology.

Create Curve [Vertex] <vertex_id> [Vertex] <vertex_id> [On Surface
<surface_id>]

Straight curves can be created using an axis. The syntax is as follows:
Create Curve Axis {options}

The length of the axis must be specified. Go to Location, Direction, and Axis Specification to see
the axis command description.
Additionally, several connected straight curves can be created with a single command. The
syntax for the polyline command is as follows:

Create Curve Polyline Location {options} Location {options} ...
Notice that two or more locations are used to define a polyline. See Location, Direction, and
Axis Specification for the location command description.
2. Parabolic, Circular, Ellipse: The parabolic option creates a parabolic arc which goes through
the three vertices. The circular and ellipse options create circular and elliptical curves
respectively that go through the first and last vertices.

Create Curve [Vertex <vertex_id> [Vertex] <vertex_id> [[Vertex] <vertex_id>
[Parabolic|Circular|ELLIPSE [first angle <val=0> last angle <val=90>]]]

If 'ellipse' is specified, Cubit will create an ellipse assuming the vectors between vertices (1 and
3) and (2 and 3) are orthogonal. v1-v3 and v2-v3 define the major and minor axes of the ellipse
and v3 defines the center point. These vectors should be at 90 degrees. If not, Cubit will issue a
warning indicating the vertices are not sufficient to create an ellipse and will then default to
creating a spiral.
The angle options will specify what portion of the ellipse to create. If none are specified, first
angle will default to 0 and last angle to 90 and the ellipse will go from vertex 1 to vertex 2; if
the vertices are free vertices they will be consumed in the ellipse creation. First angle tells Cubit
where to start the ellipse -- the angle from the first axis (v1 - v3) specified. Last angle tells
Cubit where to end the ellipse -- the angle from the first axis. The angle follows the right-hand
rule about the normal defined by (v1 - v3) X (v2 - v3).

164

Cubit 15.1 User Documentation

3. Spline: The spline form of the command creates a spline curve that goes through all the input
vertices or locations. To create a curve from a list of vertices use the syntax shown below. The
delete option will remove all of the intermediate vertices used to create the spline leaving only
the end vertices.

Create Curve [Vertex] <vertex_id_list> [Spline] [Delete]
Additionally, spline curves can be created by inputting a list of locations. Where the spline will
pass through all of the specified locations. The syntax is shown below:

Create Curve Spline {List of locations}
See Location, Direction, and Axis Specification to view the location specification syntax.
4. Copy: This command actually copies the geometric definition in the specified curve to the
newly created curve. The new curve is free floating.

Create Curve From Curve <curve_id>
5. Combine Existing Curves: This command creates a new curve from a connected chain of
existing ACIS curves.

Create Curve combine curve <id_list> [delete]
6. Arc Three: The following command creates an arc either through 3 vertices or tangent to 3
curves. The Full qualifier will cause a complete circle to be created.

Create Curve Arc Three {Vertex|Curve} <id_list> [Full]
7. Arc End Vertices and Radius: The following command creates an arc using two vertices, the
radius and a normal direction. The Full qualifier will cause a complete circle to be created.

Create Curve Arc Vertex <id_list>
Radius <value> Normal {<x> <y> <z> | {direction options} [Full]

Go to Location, Direction, and Axis Specification to see the direction command description.
8. Arc Center Vertex: The next form of the command creates an arc using the center of the arc
and 2 points on the arc. The arc will always have a radius at a distance from the center to the first
point, unless the Radius value is given. Again, the Full qualifier will cause a complete circle to
be created.

Create Curve Arc Center Vertex <center_id> <end1_id> <end2_id>
[Radius <value>] [Full]
[Normal {<x> <y> <z> | {direction options}]

Go to Location, Direction, and Axis Specification to see the direction command description.
Note: Requires 3 Vertices - first is the center, the other two are the end points of the arc. A
normal direction is required when the three points are colinear. Otherwise a normal direction is
optional.
9. Arc Center Angle: This form of the command creates an arc using the center position of the
arc, the radius, the normal direction and the sweep angle.

Create Curve Arc Center {<x=0> <y=0> <z=0> | {location options}
Radius <value>

165

Normal {<x> <y> <z> | {direction options}
Start Angle <value=0> Stop Angle <value=360>

Go to Location, Direction, and Axis Specification to see the location and direction command
descriptions.
10. From Vertex Onto Curve: The following command will create a curve from a vertex onto a
specified position along a curve. If none of the optional parameters are given, the location on the
curve is calculated as using the shortest distance from the start vertex to the curve (i.e., the new
curve will be normal to the existing curve).

Create Curve From Vertex <vertex_id> Onto Curve <curve_id> [Fraction
<f> | Distance <d> | Position <xval><yval><zval> | Close_To Vertex
<vertex_id> [[From] Vertex <vertex_id> (optional for 'Fraction' &
'Distance')]] [On Surface <surface_id>]

Note: Default = Normal to the Curve

11. Offset: The next command creates curves offset at a specified distance from a planar chain
of curves. The direction vector is only needed if a single straight curve is given. The offset
curves are trimmed or extended so that no overlaps or gaps exist between them. If the curves
need to be extended the extension type can be Rounded like arcs, Extended tangentially (the
default -straight lines are extended as straight lines and arcs are extended as arcs), or extended
naturally.

Create Curve Offset Curve <id_list> Distance <val> [Direction <x> <y> <z>]
[Rounded|EXTENDED|Natural]

Note: Direction is optional for offsets of individual straight curves only
In all cases, the specified vertices are not used directly but rather their positions are used to
create new vertices.
12. From Mesh Edges: This commands creates a curve from an existing mesh given a starting
node and an adjacent edge.

Create Curve From Mesh Node <id> Edge <id> [Length <val>]
The adjacent edge indicates which direction to propagate the curve.
The curve will be composed of mesh edges up to the specified length.
If no length is specified the curve will propagate as far as the boundary of the mesh. Figure 1
shows a example of a curve generated from the mesh.

166

Cubit 15.1 User Documentation

Figure 1. Example of curve created from mesh

The underlying geometry kernel used for this command is Mesh-Based geometry. The new curve
will also be meshed with the edges it was propagated through. A related command for assigning
mesh edges directly to a mesh block is the Rebar command. See Element Block Specification for
more details.
Note: Full hexes or full tets must be used to propagate the curves through the interior of volume.
13. Close_To This option takes two geometric entities and creates the shortest possible curve
between the two entities at the location where the two entities are the closest. The two entities
may NOT intersect. If two vertices are given, the command will create a straight line between the
two vertices.

Create Curve Close_To {Vertex|Curve|Surface|Volume|Body} <id_1>
{Vertex|Curve|Surface|Volume|Body} <id_2>

14. Surface Intersection The following command creates curves at surface
intersections. Multiple curves can be created from a single command.

Create Curve Intersecting Surface <id_list>
15. Projecting onto a Surface The project command allows you to make an imprint of a surface
or set of curves onto another surface. The command syntax is as follows:

Project Curve <id_list> Onto Surface <surface_id> [Imprint [Keepcurve]
[Keepbody]] [Trim]
Project Surface <id_list> Onto Surface <surface_id> [Imprint [Keepcurve]
[Keepbody]]

The command takes a list of curves or surfaces, and a projection surface. If a list of curves is
given, the result will be the creation of a set of free curves on top of the projection surface. If a
list of surfaces is given, the result will be the same as selecting the curves that bound the surface
(i.e. a group of free curves on the projecting surface).
The imprint option will imprint the resulting projected curves onto the projection surface. If this
option is NOT given, the new curves will lie coincident to the surface, but will not be part of the
surface. Imprinting changes the topology of the projection surface. Keepcurve option retains the
new curves as both free curves, and curves in the projection surface. The keepbody option retains
the original body under the new imprinted body. When projecting curves, the trim option will
cause the curve to be trimmed to the target surface.

167

16. Creating a Helix: This command will create a helical curve. The command syntax is as
follows:

Create Curve Helix { axis <xpoint ypoint zpoint xvector yvector zvector> | xaxis |
yaxis | zaxis } location (options) thread_distance <value> angle <value>
[RIGHT_HANDED | left_handed]

axis = axis about which to create the helix
location (options) = starting point of the helix
thread_distance = distance between each 360 degree segment of the helix
angle = number of degrees in rotation of the helix
handedness = right-handed or left- handed threads

Creating Surfaces
There are two major ways to create surfaces in CUBIT. First, surfaces can be created in CUBIT
by fitting an analytic or spline surface over a set of bounding curves. In this case, the curves must
form a closed loop, and only one loop of curves may be supplied. The second method, is by
sweeping a curve about an axis, along a vector, or along another curve. The result of these
surface creation commands is a "sheet body" or a body that has zero measurable volume (it does
however have a volume entity). This body may be decomposed with booleans and special
webcutting commands or it may be used as a tool to decompose other bodies. Booleans can be
used to cut holes out of these surfaces.
The following options may be used for creating a surface in CUBIT.

• Bounding Curves
• Bounding Vertices or Nodes
• Copy
• Extended Surface
• Planar Surface
• Net Surface
• Offset
• Skinning
• Sweeping of Curves
• Midsurface
• Weld Profile
• Meshed Entities
• Circular Surface
• Parallelogram
• Ellipse
• Rectangle

1. Bounding Curves: The first form of this command produces an analytic or spline surface fit
to cover the bounding curves.

Create Surface Curve <curve_id_1> <curve_id_2> <curve_id_3>...
Another version of this command creates a surface from a set of bounding curves that all lie on
one surface. If the curves are selected they must lie on the surface, and they must create a closed
loop. The On Surface option forces the surface to match the geometry of the underlying surface
exactly.

168

Cubit 15.1 User Documentation

Create Surface Curve <id_list> On Surface <surface_id>
2. Bounding Vertices or Nodes: The second form of this command uses vertices to fit an
analytic spline surface. The On Surface option creates the surface from a set of nodes and
vertices that all lie on one surface and restrains the surface to match the geometry of the
underlying surface. The project option will project the nodes or vertices to the specified surface.

Create Surface [Node|Vertex| <id_list> [On Surface <surface_id> {Project}]
3. Copy: The next form creates a surface using the same geometric description of the specified
surface. The new surface will be a stand-alone sheet body that is geometrically identical to the
user supplied surface.

Create Surface From Surface <surface_id>

4. Extended Surface: The fourth form of the command creates a surface that is extended from a
given surface or list of surfaces. The specified surface's geometry is examined and extended out
"infinitely" relative to the current model in CUBIT (i.e. extended to just beyond the bounding
box of the entire model). The given surfaces are extended as shown in the table.

Create Surface Extended From Surface <surface_id>
Table 1. Surface Extension Results
Surface Type Resulting Extended Surface

Spherical Shell of Full Sphere

Planar Plane of infinite size relative to model

Toroidal Shell of Full Torus

Conical, cone,
cylinder...

Shell of outside conic axially aligned with given
conic of infinite height relative to model

Spline Surface is extended to extents of the spline
definition. This may not be any further than the
surface itself, so caution should be used here.

Multiple surfaces can be offset at the same time to form a sheet body, by using the Create Sheet
Extended from Surface command.
5. Planar Surface: The following commands create planar surfaces. The first passes a plane
through 3 vertices, the second uses an existing plane, the third creates a plane normal to one of
the global axes, and the fourth creates a plane normal to the tangent of a curve at a location along
the curve. By default, the commands create the surface just large enough to intersect the
bounding box of the entire model with minimum surface area. Optionally, you can give a list of
bodies to intersect for this calculation. You can also extend the size of the surface by either a
percentage distance or an absolute distance of the minimum area size. The plane can be
previewed with the command Draw Plane [with]... (where the rest of the command is the same as
that to create the surface).

169

Create Planar Surface [With] Plane Vertex <v1_id> [Vertex] <v2_id>
[Vertex] <v3_id> [Intersecting] Body <id_range>] [Extended
Percentage|Absolute <val>]
Create Planar Surface [With] Plane Surface <surface_id> [Intersecting]
Body <id_range>] [Extended Percentage|Absolute <val>]
Create Planar Surface [With] Plane {Xplane|Yplane|Zplane} [Offset <val>]
[Intersecting] Body <id_range>] [Extended Percentage|Absolute <val>]
Create Planar Surface [With] Plane Normal To Curve <curve_id>{Fraction
<f>| Distance <d> | Position <xval><yval><zval> | Close_to vertex
<vertex_id>} [[From] Vertex <vertex_id> (optional for 'fraction' &
'distance')] [Intersecting] Body <id_range>] [Extended Percentage|Absolute
<val>]

6. Net Surface: Net surfaces can be created with two different commands. A net surface passes
through a set of curves in the u-direction and a set of curves in the v-direction (these u and v
curves would looked like a mapped mesh). The first form of the command uses curves to create
the net surface. The curves must pass within tolerance of each other to work. The second form
uses a mapped mesh to create the surface. The mapped mesh can be of a single surface or a
collection of mapped or submapped surfaces that form a logical rectangle. By default net
surfaces are healed to take advantage of any possible internal simplification.

Create Surface Net U Curve <id_list> V Curve <id_list> [Tolerance <value>]
[HEAL|Noheal]
Create Surface Net [From] [Mapped] Surface <id_list> [Tolerance <value>]
[HEAL|Noheal]

A suggested geometry cleanup method is to use a virtual composite surface to map mesh a set of
complicated surfaces then create a net surface from this mesh. Then the original surfaces can be
removed with the noextend option and the new net surface combined back onto the body.
7. Offset: The following command creates surfaces offset from existing surfaces at the specified
distances.

Create Surface Offset [From] Surface <id_list> Distance <val>
The surface offset command will only translate the existing surfaces, without extending or
trimming them. An alternate form of the command for sheet bodies will maintain connections
between surface by extending or trimming as they are offset, shown in Figure 1. On the left, the
surfaces are offset using the surface offset command. On the left, the surface is created by using
the "sheet" version of the command.

170

Cubit 15.1 User Documentation

Figure 1. Offsetting surfaces to form individual surfaces or sheet bodies

8. Skinning: The following command creates a skin surface from a list of curves. An example of
a skin surface is to create a surface through a set of parallel lines.

Create Surface Skin Curve <id_list>
9. Sweeping of Curves: A curve or a set of curves can be swept along a path to create new
surfaces. The path may be specified as an axis and angle, a vector and distance, by indicating
another curve or set of contiguous curves, or by specifying a target plane. The following
commands show the options available:

Sweep Curve <curve_id_range> { Axis <xpoint ypoint zpoint xvector yvector
zvector> | Xaxis | Yaxis | Zaxis } Angle <degrees> [Steps
<Number_of_sweep_steps>] [Draft_angle <degrees>] [Draft_type <integer>]
[Make_solid] [Include_mesh] [Keep][Rigid]
Sweep Curve <curve_id_range> Vector <xvector yvector zvector> [Distance
<distance>] [Draft_angle <degrees>] [Draft_type <integer>] [Include_mesh]
[Keep] [Rigid]
Sweep Curve <curve_id_range> Along Curve <refcurve_id_range>
[Draft_angle <degrees>] [Draft_type <integer>] [Include_mesh] [Keep]
[Rigid]
Sweep Curve <curve_id_range> Target Plane <options>
Sweep Curve <curve_id_range> Target {Volume|Body} <id> Direction
{options} [Plane <options>] [Unite]

In the first command, the steps options provides a way of faceting the sweep, so instead of a
smooth round sweep, there are facets to the surface. The make_solid option closes the newly-
created surface to the axis, so that a solid is created instead of a surface.
In the above commands, the include_mesh option will create a surface mesh if the curve is
already meshed (see figure below). The keep option will keep the original curve while creating
the surface.

171

The sweep curve target plane command sweeps a curve until it hits a target plane. The options
for the target plane are described under Specifying a Plane.
The last command sweeps a curve to a target volume or body and can only be used on sheet
bodies. Use the direction keyword to specify the sweep direction and the plane keyword to
specify a stopping plane. The unite keyword will unite the sheet bodies after sweeping
The other options are as follows:
draft_angle: determines how much drafting in of the surface is desired
draft_type:

0 => extended (draws two straight tangent lines from the ends of each segment until they
intersect)

1 => rounded (create rounded corner between segments)

2 => natural (extends the shapes along their natural curve) ***
rigid: normally the curve will rotate to maintain its original orientation to the sweep path. The
rigid option disallows this rotation.
10. Midsurface: Multisurfaces may be created midway between pairs of surfaces using the
following command:

Create Midsurface {Body|Volume} <id> Surface <id11> <id12> ... <idN1>
<idN2>

where N denotes the number of pairs of surfaces. An even number of surfaces must be specified,
and the command will group them by pairs in the order in which they are provided. The resulting
surface will be trimmed by the specified body or volume <id>. This replaces the Create
Midplane command in previous versions of CUBIT.

172

Cubit 15.1 User Documentation

Figure 2. Multisurface created with the Create Midsurface command

173

Figure 3. Midsurface created from 2 pairs of cylindrical surfaces

Midsufaces can also be extracted without surface pair specification if the resulting surface is a
single sheet of surfaces (no T intersections). The following is the command syntax for automatic
midsurface extraction:

Create Midsurface {Body|Volume} <id_range> Auto [Delete] [Transparent]
[Thickness] [Limit <lower_bound> <upper_bound>] [Preview]

Figure 4 shows a simple auto midsurface example. The command for the example is:
create midsurface volume 1 auto delete

174

Cubit 15.1 User Documentation

Figure 4. Midsurface created from a volume

The command option descriptions are listed below.
Auto enables the automatic mid-surface algorithm. Turning Auto off requires the user to specify
a single surface pair to create a mid-surface.
Transparent shows the successfully midsurfaced volumes as transparent in the graphics display
Thickness applies a 2D property to the created mid-surface geometry.
Limit search range gives the algorithm a range to find surface pairs within.
11. Weld Profile: Surfaces may be created by specifying a weld profile using the following
command:

Create Surface Weld [Root] Location {options} Weld Surface <id_list>
Length <val> [<val2>]

Weld surfaces can be used to create a simulated welded joint by sweeping the surface along the
root curve and uniting the new body to the model. An example of the command is illustrated
below. For a detailed description of the location specifier see Location Direction, and Axis
Specification.

create surface weld root location vertex 25 weld surface 13 14 length 2

175

Figure 5. Weld Profile surface with length and root specifications

12. Creating A Surface From Mesh Entities: Surfaces may be created from the boundaries of
meshed volumes, surfaces, and/or from individual quadrilateral mesh elements. The individual
option makes it so you can enter multiple surfaces at once, and not have them merged together
into a larger surface, but instead retain their own original boundaries. The optional tolerance
value allows the user to specify a tolerance to which the resulting surface should be fit. The
default value is 0.001. If surface creation fails, increasing the tolerance value can help.

Create Acis [From] {Surface <id_range> | Volume <id_range> | Face <
id_range> [Individual]} [Tolerance <value>]

Figure 6. Acis Surface created from a Set of Quadrilaterals

13. Creating a Circular Surface: This command creates a 2D circular surface. The surface will
be centered at the origin and on the z-plane if a plane option is not specified.

create surface circle radius <value> {xplane|yplane|ZPLANE}

176

Cubit 15.1 User Documentation

This command creates a 2D circular surface by specifying three vertices; the first vertex will be
the center of the surface, the second vertex will be used to define the radius of the surface, and
the third vertex will assist in defining the plane that the surface will lie in.

create surface circle center vertex <v1_id> <v2_id> <v3_id>
This command creates a 2D circular surface by forming a circular curve through three points.

create surface circle vertex <v1_id> <v2_id> <v3_id>
14. Creating a Parallelogram: This command creates a 2D parallelogram surface, centered at
the origin, by specifying three corner vertices. These vertices will form three consecutive
corners of the parallelogram surface.

create surface parallelogram vertex <v1_id> v2_<id> <v3_id>
15. Creating an Ellipse: This command creates a 2D elliptical surface, centered at the origin, by
specifying at least a major radius. On an x-y plane this radius will be the radius along the x-
direction. The minor radius will be the radius along the y-direction. By default, the surface will
lie in the z-plane.

Create Surface Ellipse major radius <value> [minor radius <value>]
[xplane|yplane|ZPLANE]

This command creates a 2D elliptical surface using three vertices. The first two vertices define
the major and minor radii of the ellipse surface. The third point defines the center of the
ellipse. It is important to note that a line from v1_id to v3_id must be orthogonal to a line from
v2_id to v3_id, otherwise the command will fail.

Create Surface Ellipse vertex <v1_id> <v2_id> <v3_id>
16. Creating a Rectangle: This command creates a rectangular surface centered at the origin. If
only a width value is specified, the surface will be a square. On an x-y plane, the width value is
the x-direction and the height is the y-direction. By default, the surface will lie in the z-plane.

Create Surface rectangle width <value> [height <value>] [xplane|yplane|ZPLANE]

Creating Vertices
The basic commands available for creating new vertices directly in CUBIT are:

• XYZ location
• On Curve - Fraction
• On Curve - General
• From Vertex
• At Arc
• At Intersection

1. XYZ location: The simplest form of this command is to specify the XYZ location of the
vertex. It can also be created lying on a curve or surface in the geometric model by specifying
the curve or surface id; the position of the vertex will be the point on the specified entity which is
closest to the position specified on the command. With all of these commands, the user is able to
specify the color of the vertex.

Create Vertex <x><y><z> [On [Curve | Surface] <id>] [Color <color_name>]

177

2. On Curve - Fraction: A vertex can be positioned a certain fraction of the arc length along a
curve using the second form of the command.

Create Vertex On Curve <id> Fraction <0.0 to 1.0> [Color <color_name>]
Vertex 3 in the following example was created with this command:

create vertex on curve 1 fraction 0.25 from vertex 1

Figure 1. Create Vertex a Fraction of the length of a Curve

3. On Curve - General: A more general purpose form of the command is also available for
creating vertices on curves:

Create Vertex On Curve <id_list> { MIDPOINT | Start | End | Fraction <val
0.0 to 1.0> [From Vertex <id> | Start|End] | Distance <val> [From
{Vertex|Curve|Surface} <id> | Start|End] | {{Close_To|At} Location {options}
| Position <xval><yval><zval>|{Node|Vertex} <id>} | Extrema [Direction]
{options} [Direction {options}] [Direction {options}] | Segment <num_segs> |
Crossing {Curve|Surface} <id_list> [Bounded|Near] } [Color <color_name>]

It allows the vertex to be created at a fractional distance along the curve, at an actual distance
from one of the curves ends, at the closest location to an xyz position or another vertex, or at a
specified distance from a vertex, curve or surface. You can also preview the location first with
the command Draw Location On Curve (where the rest of the command is identical to the Create
Vertex form).
4. From Vertex: Create a vertex from an existing vertex.

Create Vertex from Vertex <id_list> [On {Curve|Surface} <id>] [Color
<color_name>]

If 'on curve|surface' option is used, the vertex is positioned on that curve or surface. When the 'on
curve|surface' is not used, the new vertex is positioned on the existing vertex.
5. At Arc: Another form simply creates vertices at arc or circle centers.

Create Vertex Center Curve <id_list> [Color <color_name>]
6: At Intersection: The last form creates vertices at the intersection of two curves. If the
bounded qualifier is used, the vertices are limited to lie on the curves, otherwise the extensions of
the curves are also used to calculate the intersections. The near option is only valid for straight
lines, where the closest point on each curve is created if they do not actually intersect (resulting
in two new vertices).

Create Vertex AtIntersection Curve <id1> <id2> [Bounded] [Near] [Color
<color_name>]

178

Cubit 15.1 User Documentation

Transforms
Geometry Transforms

• Align
• Copy
• Move
• Scale
• Rotate
• Reflect

Bodies can be modified in CUBIT using transform operations, which include align, copy, move,
reflect, restore, rotate, and scale. With the exception of the copy operation, transform operations
in CUBIT do not create new topology, rather they modify the geometry of the specified
bodies. ACIS, Mesh Based Geometry and Virtual Geometry representations may be transformed.
If the geometric entity has been meshed, the nodes of the mesh will be transformed along with
the geometry. To transform the nodes of a mesh as they are written to the Exodus II mesh file
without modifying their location within CUBIT, see Transforming Mesh Coordinates.

Align Command
The align command is a combination of the rotate and move commands.
The first align command below will transform the specified volumes by computing a
transformation that would align the first surface with the second surface such that the surface
centroids are coincident and the normals are pointing either in the same or opposite direction
(depending on their initial alignment). The first surface need not be in the specified volumes.
The second form of the align command either aligns a face of a volume or two vertices (forming
a direction) with the xy, yz, and xz planes or the x, y, and z axes. If the [reverse] option is
specified, the resulting alignment is flipped 180 degrees.
The third form of the command is a rotational alignment, where the specified entities are rotated
about the specified axis, where the angle of rotation is the angle between the first and second
locations with respect to the axis.
The syntax of the align commands are:

Align Volume <id_range> Surface <surface_id> with Surface <surface_id>
[reverse] [include_merged] [preview]
Align Volume <id_range> {Surface <surface_id>| Vertex <vertex_id>}
{{X|Y|Z Axis}|{XY|XZ|YZ plane}} [reverse] [include_merged] [preview]
Align Volume <id_range> Location {options} with Location {options} about
Axis {options} [include_merged] [preview]

This transformation is useful for aligning surfaces in preparation for geometry decomposition
and aligning models for axis-symmetric analysis. If the [include_merged] option is used, all
entities that are merged with the specified volume will be included in the align transformation
also.
Copy Command
The copy command copies an existing entity to a new entity without modifying the existing
entity. A copy can be made of several entities at once, and the resulting new entities can be
translated or rotated at the same time. The commands for copying entities are:

179

Vertex <range> Copy [Move [X <dx>] [Y <dy>] [Z <dz>]] [Preview]
Vertex <range> Copy [Move <direction_options> [Distance <val>]] [Preview]
{Body|Volume|Surface|Curve|Vertex|Group} <range> Copy Move [X <dx>]
[Y <dy>] [Z <dz>] [Nomesh] [Repeat <value>] [Preview]
{Body|Volume|Surface|Curve|Vertex|Group} <range> Copy Move
<direction_options> [Distance <val>] [Nomesh] [Repeat <value>] [Preview]
{Body|Volume|Surface|Curve|Vertex|Group} <range> Copy Reflect {X|Y|Z}
[Nomesh] [Preview]
{Body|Volume|Surface|Curve|Vertex|Group} <range> Copy Reflect [Vertex
<v1_id> [Vertex] <v2_id] [Nomesh] [Preview]
{Body|Volume|Surface|Curve} <range> Copy Reflect <x> <y> <z> [Nomesh]
[Preview]
{Body|Volume|Surface|Curve} <range> Copy Rotate <angle> About {X|Y|Z}
[Repeat <value>] [Nomesh] [Preview]
{Body|Volume|Surface|Curve} <range> Copy Rotate <angle> About <x> <y>
<z> [Nomesh] [Repeat <value>] [Repeat <value>] [Preview]
{Body|Volume|Surface|Curve} <range> Copy Scale <scale> | X <val> Y <val>
Z <val> [About Vertex <id>] [Nomesh] [Repeat <value>] [Preview]

If the copy command is used to generate new entities, a copy of the original mesh generated in
the original entity will also be copied directly onto the new entity unless the nomesh option is
used.
Several of the commands include the Repeat token. If that token is used the command will
repeat itself value times.
This is currently limited to copies that do not interact with adjacent geometry through non-
manifold topology. For details on mesh copies, see the Mesh Duplication documentation.

Move Command
The move command moves a body, volume, free surface, free curve or free vertex by a specified
offset. The command syntax is:

Vertex <id_range> [Move [X <dx>] [Y <dy>] [Z <dz>]] [Copy] [Preview]
Vertex <id_range> Move <direction_options< [Distance <val>] [Copy]
[Preview]
{Body|Volume|Surface|Curve|Vertex|Group} <id_range> [Move [X <dx>] [Y
<dy>] [Z <dz>]] [Copy [Nomesh]] [Preview]
{Body|Volume|Surface|Curve|Vertex|Group} <id_range> Move
<direction_options> [Distance <val>] [Copy [Nomesh]] [Preview]

where <dx> <dy> <dz> and <distance> represent relative offsets in the major axis directions. If
the copy option is specified, a copy is made and the copy is moved by the specified offset. The
nomesh option will copy and move only the geometry.
These forms of the Move command will only work on free surfaces and free curves. To move a
curve or surface that is part of a higher-order entity, the Move {entity} ... command is used.
Moving Other Geometric Entities
It is also possible to move bodies by specifying one of its child entities. For example, a body can
by moved by specifying one of its curves. However, if a lower-order entity is moved, the parent
body and all related entities will also be moved. The commands for moving bodies using a child

180

Cubit 15.1 User Documentation

entity are given below. Alternatively, the tweak command can be used to move curves and
surfaces without moving the parent body.

Move {Vertex|Curve|Surface|Volume|Body|Group} <id_range> [Midpoint]
Location <x> [<y> [<z>]] [Include_Merged] [Preview]
Move {Vertex|Curve|Surface|Volume|Body|Group} <id_range> Location
[Midpoint] [X <val>] [Y <val>] [Z <val>] [Except [X] [Y] [Z]]
[Include_Merged] [Preview]
Move {Vertex|Curve|Surface|Volume|Body|Group} <id_range> Normal to
Surface <id> Distance <val> [Include_Merged] [Preview]
Move {Vertex|Curve|Surface|Volume|Body|Group} <id_range> [Midpoint]
General Location <location_options> [Except [X] [Y] [Z]] [Include_Merged]
[Preview]

The first form of the command will move the entity to an absolute location. If moving a group,
the centroid of the group is moved to that location. The second form will move the entity by a
relative distance in any of the xyz axis directions. "Except" is used to preserve the x, y, or z plane
in which the center of the entity lies. The third form of the command will move the body along
an axis defined by the outward-facing surface normal of another surface. The fourth form of the
command uses general location parsing to move the entity.
Moving Bodies Relative to Other Geometric Entities
It is also possible to move bodies relative to other geometric entities in the model. The following
command takes as arguments two geometric entities. The first entity is the one to move. The
second entity is where it will be moved. In both cases, the midpoints of the specified entity are
used to determine the distance and direction of the move. In the case of groups, centroids are
used. "Except" is used to preserve the x, y, or z plane in which the center of the entity lies.

Move {Vertex|Curve|Surface|Volume|Body|Group} <id_range> [Midpoint]
Location {Vertex|Curve|Surface|Volume|Body|Group} <id> [Midpoint]
[Except [X] [Y] [Z]] [Include_Merged] [Preview]

Moving Merged Entities
The easiest way to move merged entities is by adding the include_merged keyword to the
command. All entities that are merged with the specified entities will move together.
The only other way that merged entities can be moved is by including each of the merged entities
in the entity list.
Move Undo
The Undo option allows a user to reverse the most recent move. This command will only work
for the Move {entity} commands, and not the {Entity} Move commands. The syntax is:

Move Undo

Reflect Command
The reflect command mirrors the body about a plane normal to the vector supplied. The reflect
command will destroy the existing body and replace it with the new reflected body, unless the
copy option is used.

{Body|Volume|Surface|Curve|Vertex|Group} <range> [Copy] Reflect <x-
comp> <y-comp> <z-comp>

181

{Body|Volume|Surface|Curve|Vertex|Group} <range> [Copy] Reflect
{X|Y|Z}

Rotate Command
The rotate command rotates a body about a given axis without adding any new geometry. If the
Angle or any Components are not specified they are defaulted to be zero. The commands to
rotate a body or bodies are:

Body <range> [Copy] Rotate <angle> About {X|Y|Z} [Preview]
Body <range> [Copy] Rotate <angle> About <x-comp> <y-comp> <z-comp>
[Preview]
Rotate {Body|Volume|Surface|Curve|Vertex|Group} <id_range> about
{X|Y|Z|<xval> <yval> <zval>} Angle <val> [Include_Merged] [Preview]
Rotate {Body|Volume|Surface|Curve|Vertex|Group} <id_range> About
Vertex <id> Vertex <id> Angle <val> [Include_Merged] [Preview]
Rotate {Body|Volume|Surface|Curve|Vertex|Group} <id_range> About
Normal of Surface <id> Angle <val> [Include_Merged] [Preview]
Rotate {Body|Volume|Surface|Curve|Vertex|Group} <id_range> About
Origin <xval> <yval> <zval> Direction <xval> <yval> <zval> Angle <val>
[Include_Merged] [Preview]

If the copy option is specified, a copy is made and rotated the specified amount.
Rotating Merged Entities
The easiest way to rotate merged entities is by adding the include_merged keyword to the
command. All entities that are merged with the specified entities will rotate together.
The only other way that merged entities can be rotated is by including each of the merged
entities in the entity list.

Scale Command
The scale command resizes an entity (body, volume, surface, or curve) by a scaling factor. The
scaling factor may be a constant, or may differ in the x, y, and z directions. The entity chosen
will be scaled about the point or vertex indicated. If no point or vertex is entered, it will be scaled
about the origin. Any mesh on the object will be scaled too, unless the nomesh keyword is used.
The command to scale entities is:

{Body|Volume|Surface|Curve} <id_range> Scale {<scale> | x <val> y <val> z
<val>} [About {<x> <y> <z> | Vertex <id>}] [Nomesh] [Copy [Repeat
<value>] [Group_Results]] [Preview]

If the copy option is specified, a copy of the entity is made and scaled the specified amount. Use
the repeat option to create multiple copies.

Booleans
Geometry Booleans

• Intersect
• Subtract

182

Cubit 15.1 User Documentation

• Unite

CUBIT supports boolean operations of intersect, subtract, and unite for bodies.
An automatic function associated with webcutting operations is regularizing geometry which can
be turned off or back on with the following command:

Set Boolean Regularize [ON | off]
Intersect
The intersect command generates a new body composed of the space that is shared by the two
bodies being intersected. Both of the original bodies will be deleted and the new body will be
given the next highest body ID available. The command is:

Intersect {Volume|[Body]} <range> [With {Volume|[Body]} <range>] [Keep]
[Preview]

The keep option results in the original bodies used in the intersect being kept.
If the Preview option is included in the command, the input bodies will not be modified. The
computed intersection volume will be drawn as a red, shaded solid. For best results change the
graphics mode to transparent or hidden line so the intersection is visible. Otherwise the
intersection volume will be hidden by the volumes being intersected.
Subtract
The subtract operation subtracts one body or set of bodies from another body or set of bodies.
The order of subtraction is significant - the body or bodies specified before the From keyword
is/are subtracted from bodies specified after From. The new body retains the original body's id.
If any additional bodies are created, they will be given the next highest available ids. The keep
option simply retains all of the original bodies. The command is:

Subtract [Volume|BODY] <range> From [Volume|BODY] <range>
[Imprint] [Keep]

The imprint option imprints the subtracted bodies onto the resultant body.

Unite
The unite operation combines two or more bodies into a single body. The original bodies are
deleted and the new body is given the next highest body ID available, unless the keep option is
used. The commands are:

Unite [Volume|BODY] <range> [With [Volume|BODY] <range>] [Keep]
Unite Body {<range> | All} [Keep]
Unite Body {<range> | All} [Include_mesh]

The second form of the command unites multiple bodies in a single operation. If the all option is
used, all bodies in the model are united into a single body. If the bodies that are united do not
overlap or touch, the two bodies are combined into a single body with multiple volumes.
The unite command allows sheet bodies to be united with solid bodies. To disable this capability
you can turn the following setting off:

Set Unite Mixed {ON|Off}

183

Decomposition
Geometry Decomposition
Geometry decomposition is often required to generate an all-hexahedral mesh for three-
dimensional solids, as fully automatic all-hex mesh generation of arbitrary solids is not yet
possible in CUBIT. While geometry booleans can be used for decomposition (and are the basis
of the underlying implementation of advanced decomposition tools described here), CUBIT has
a webcut capability specially tuned for decomposition. It is also useful to split periodic surfaces
to facilitate quad and hex meshing.

• Web Cutting
• Splitting Geometry
• Section Command
• Separating Multi-Volume Bodies
• Separating Surfaces From Bodies

Web Cutting
Web Cutting
The term "web cutting" refers to the act of cutting an existing body or bodies, referred to as the
"blank", into two or more pieces through the use of some form of cutting tool, or "tool". The two
primary types of cutting tools available in CUBIT are surfaces (either pre-existing surfaces in the
model or infinite or semi-infinite surfaces defined for web cutting), or pre-existing bodies.
The various forms of the web cut command can be classified by the type of tool used for cutting.
These forms are described below, starting with the simplest type of tool and progressing to more
complex types.

• Web Cutting Using the Chop Command
• Web Cutting Using Planar or Cylindrical Surface
• Web Cutting with Arbitrary Surface
• Web Cutting Using Tool or Sheet Body
• Web Cutting by Sweeping Curves or Surfaces
• Web Cutting Options

General Notes
The primary purpose of web cutting is to make an existing model meshable with the hex meshing
algorithms available in CUBIT. While web cutting can also be used to build the initial geometric
model, the implementation and command interface to web cutting have been designed to serve
its primary purpose. Several important things to remember about web cutting are as follows:

• The geometric model should be checked for integrity (using imprinting and merging)
before starting the decomposition process. This makes the checking process easier, since
there are fewer bodies and surfaces to check. Once the model passes that initial integrity
check, it is rare that decompositions using web cut will result in a model that does not
also pass the same checks.

• The use of the Imprint option can in cases save execution time, since it limits the scope of
the imprint operations and thereby works faster. The alternative is performing and

184

Cubit 15.1 User Documentation

Imprint All on the pieces of the model after all decompositions have been completed; this
operation has been made much faster in more current releases of CUBIT, but will still
take a noticeable amount of time for complicated models.

• While the web cut commands make it very simple to cut your model into very many
pieces, we recommend that the user restrict the decomposition they perform to only that
necessary for meshability or for obtaining an acceptable mesh. Having more volumes in
the model may simplify individual volumes, but may not always result in a higher quality
mesh; it will always increase the run time and complexity of the meshing task.

• When the web cut command is executed the associated geometry will be regularized.
This behavior can be changed, see geometry booleans.

• Web cutting volumes will automatically separate parent bodies as well. This behavior can
also be changed, see Separating Multi-Volume Bodies.

• If a geometric entity got split after the webcut operation, then the notesets/sidesets/blocks
applied on that initial geometric entity will be carried over to the split entities.

The Decomposition Tutorials and the Power Tools Tutorial contain some examples that
demonstrate the use of web cutting operations.

Web Cutting with an Arbitrary Surface
An arbitrary "sheet" surface can also be used to web cut a body. This sheet need not be planar,
and can be bounded or infinite. The following commands are used:

Webcut {blank} with sheet {body|surface} <id> [webcut_options]
Webcut {blank} with sheet extended [from] surface <id> [webcut_options]

In its first form, the command uses a sheet body, either one that is pre-existing or one formed
from a specified surface. Note that in this latter case the (bounded) surface should completely cut
the body into two pieces. Sheet bodies can be formed from a single surface, but can also be the
combination of many surfaces; this form of web cut can be used with quite complicated cutting
surfaces.
Extended sheet surfaces can also be used; in this case, the specified surface will be extended in
all directions possible. Note that some spline surfaces are limited in extent, and so these surfaces
may or may not completely cut the blank.

Chop Command
The chop command works similarly to a web cut command, but is faster. Given two bodies, the
command will find the intersection of the two bodies, and divide the main body into a body that
lies outside the intersection, and a body that lies inside the intersection. The tool body will be
deleted, unless the keep option is specified. The syntax of the command is:

Chop [Volume|BODY] <id> with [Volume|BODY] <id> [keep] [nonreg]
The nonreg option results in the bodies being non-regularized.

Web Cutting with a Planar or Cylindrical Surface
The commands used to web cut with a planar or cylindrical surface in CUBIT are:

• Coordinate Plane
• Planar Surface

185

• Plane from 3 Points
• Plane Normal to Curve
• General Plane Specification
• Cylindrical Surface
• Cone Surface

Coordinate Plane
In the command's simplest form, a coordinate plane can be used to cut the model, and can
optionally be offset a positive or negative distance from its position at the origin.

Webcut {Volume|Body|Group} <id_range> [With] Plane
{xplane|yplane|zplane} [Offset <val>] [rotate <theta> about x|y|z <xval>
<yval> <zval> [center <xval> <yval> <zval>]] webcut_options

The cutting plane can be rotated about a user-specified axis using the rotate option. The center
of rotation can be moved by using the center option.

Planar Surface
An existing planar surface can also be used to cut the model; in this case, the surface is identified
by its ID as the cutting tool.

Webcut {Volume|Body|Group} <id_range> [With] Plane Surface
<surface_id> webcut_options

Plane from 3 Points
Any arbitrary planar surface can be used by specifying three vertices that define the plane, and
can optionally be offset a positive or negative distance from this plane.

Webcut {Volume|Body|Group} <id_range> [With] Plane Vertex <vertex_1>
[Vertex] <vertex_2> [Vertex] <vertex_3> [Offset <value>] webcut_options

The plane to be used for the web cut can be previewed with the preview option in the general
webcut options.

Plane Normal to Curve
The next command allows a user to specify an infinite cutting plane by specifying a location on a
curve. The cutting plane is created such that it is normal to the curve tangent at the specified
location.

Webcut {Volume|Body|Group} <id_range> [With] Plane Normal To Curve
<curve_id>
{Position <xval><yval><zval> | Close_To Vertex
<vertex_id>} webcut_options
Webcut {Volume|Body|Group} <id_range> [With] Plane Normal To Curve
<curve_id>
{Fraction <f> | Distance <d>} [[From] Vertex <vertex_id>] webcut_options

The position on the curve can be specified as:

186

Cubit 15.1 User Documentation

1. A fraction along the curve from the start of the curve, or optionally, from a specified
vertex on the curve.

2. A distance along the curve from the start of the curve, or optionally, from a specified
vertex on the curve.

3. An xyz position that is moved to the closest point on the given curve.
4. The position of a vertex that is moved to the closest point on the given curve.

The point on the curve can be previewed with the Draw Location On Curve command and the
plane to be used for the web cut can be previewed with the preview option in the general webcut
options.

General Plane Specification
A webcut plane can be defined using the general plane specification options in the Specifying a
Plane section of the documentation.

Webcut {Volume|Body|Group} <id_range> [With] General Plane
{options} webcut_options

Cylindrical Surface
Finally, a semi-infinite cylindrical surface can be used by specifying the cylinder radius, and the
cylinder axis. The axis is specified as a line corresponding to a coordinate axis, the normal to a
specified surface, two arbitrary points, or an arbitrary point and the origin. The "center" point
through which the cylinder axis passes can also be specified.

Webcut {Volume|Body|Group} <range> [With] Cylinder Radius <val> Axis
{x|y|z|normal of surface <id>| vertex <id_1> vertex <id_2>| <x_val> <y_val>
<z_val>>} [center <x_val> <y_val> <z_val>] webcut_options

Cone Surface
A semi-infinite cone surface can be used by specifying the cone outer radius, and the cone inner
radius. The axis is specified as a location first of where the outer radius is applied and the second
location of where the inner radius is applied.

Webcut {Volume|Body|Group} <ids> [With] cone radius <val> <val> location
{options} location {options} [Imprint] [Merge] [group_results] [preview]

Web Cutting by Sweeping Curves or Surfaces
Webcutting with sweeping creates a swept tool body in the same step as the web cut operation.
There are 4 general ways to web cut with sweeping:

• Web Cutting by Sweeping a Surface Along a Trajectory
• Web Cutting by Sweeping a Surface About an Axis
• Web Cutting by Sweeping a Curve(s) Along a Trajectory
• Web Cutting by Sweeping a Curve(s) About an Axis

Web Cutting by Sweeping a Surface Along a Trajectory

187

This command allows one or more surfaces to be swept, creating a volume that is used for the
web cut. If more than one surface is specified, the surfaces must contain coincident curves. The
surfaces are swept along a direction and some distance or perpendicular and some distance or
along a curve. For best results the curve to sweep the surface along should intersect one of the
surfaces. The through_all option will sweep the surfaces along the trajectory far enough so as to
intersect all input bodies. The stop surface <id> option is used to identify a surface at which the
sweep will stop. If using this option when sweeping along a curve, the sweep will stop at the first
place possible. The up_to_next option indicates that the user wants to web cut with only the first
water tight volume that forms as a result of the intersection between sweep and union of all blank
bodies. The [Outward|Inward] options specify a sweeping direction that is either INTO the
volume or OUT from the volume.

Webcut {Volume|Body|Group} <range> Sweep Surface <id_range> {Vector
<x> <y> <z> [Distance <distance>] | Along Curve <id>} [Through_all | Stop
Surface <id> | Up_to_next] [webcut_options]
Webcut {Volume|Body|Group} <id> Sweep Surface <id_range>
Perpendicular {Distance <distance> | Through_all | Stop Surface <id>}
[OUTWARD|Inward] [webcut_options]

sweeping a surface in a direction

resultant web cut

along a curve to a stop surface

resultant web cut

Figure 1. Examples of web cutting with swept surfaces

Web Cutting by Sweeping a Surface About an Axis

188

Cubit 15.1 User Documentation

This command allows a one or more surfaces to be swept, creating a volume that is used for the
web cut. If more than one surface is specified, the surfaces must contain coincident curves. The
surface is swept about a user-defined axis or about one of the x y z coordinate axes and a
specified angle. The stop surface <id> option is used to identify a surface at which the sweep
will stop. The up_to_next option indicates that the user wants to web cut with only the first
water tight volume that forms as a result of the intersection between sweep and union of all blank
bodies. For these 2 options to work correctly the user must specify an angle large enough for the
rotation to traverse the stop surface or the up_to_next surface.

Webcut {Volume|Body|Group} <id> Sweep Surface <id_range> {Axis
<xpoint ypoint zpoint xvector yvector zvector> | Xaxis | Yaxis | Zaxis } Angle
<degrees> [Stop Surface <id> | Up_to_next] [webcut_options]

Web Cutting by Sweeping a Curve(s) Along a Trajectory
This command allows a curve(s) to be swept, creating a surface that is used for the web cut. If
multiple curves are specified, they must share vertices and form a continuous path. The curve(s)
is swept along a direction and some distance or along another curve. If sweeping a curve(s) along
another curve, for best results the curve(s)-to-swept and the curve to sweep along should
intersect at some point. The stop surface <id> option is used to identify a surface at which the
sweep will stop. If using this option when sweeping along a curve, the sweep will stop at the first
place possible. The through_all option will sweep the curve(s) along the trajectory far enough
so as to intersect all input bodies. For the web cut to be successful, the swept curve(s) must
completely traverse a portion of a blank body(s), cutting off a complete piece of the blank
body(s). Option through_all should not be used when defining the web cut with a vector and a
distance or along a curve.

Webcut {Volume|Body|Group} <id> Sweep Curve <id_range> {Vector <x>
<y> <z> [Distance <distance>| Along curve <id>] } [Through_all | Stop
Surface <id>] [webcut_options]

Web Cutting by Sweeping a Curve(s) About an Axis
This command allows a curve to be swept, creating a surface that is used for the web cut. If
multiple curves are specified, they must share vertices and form a continuous path. The curve(s)
is swept about a user-defined axis or about one of the x y z coordinate axes and a specified angle.
For the web cut to be successful, the swept curve(s) must completely traverse a portion of a
blank body(s), cutting off a complete piece of the blank body(s). The stop surface <id> option is
used to identify a surface at which the sweep will stop. For this option to work correctly the user
must specify an angle large enough for the rotation to traverse the stop surface.

Webcut {Volume|Body|Group} <id> Sweep Curve <id_range> {Axis <xpoint
ypoint zpoint xvector yvector zvector> | Xaxis | Yaxis | Zaxis } Angle
<degrees> [Stop Surface <id>] [webcut_options]

Web Cutting using a Tool or Sheet Body
Any existing body in the geometric model can be used to cut other bodies; the command to do
this is:

Webcut {blank} tool [body] <id> [webcut_options]

189

This simply uses the specified tool body in a set of boolean operations to split the blank into two
or more pieces.
Another form of the command cuts the body list with a temporary sheet body formed from the
curve loop. This is the same sheet as would be created from the command Create Surface Curve
<id_list>.

Webcut {Body|Group} <id_range> [With] Loop [Curve] <id_range>
NOIMPRINT|Imprint] [NOMERGE|Merge] [group_results]
Webcut {Volume|Body|Group} <id_range> [With] Bounding Box
{Body|Volume|Surface|Curve|Vertex <id_range>} [Tight] [[Extended]
{Percentage|Absolute} <val>] [{X|Width} <val>] [{Y|Height} <val>]
[{Z|Depth} <val>]] NOIMPRINT|Imprint] [NOMERGE|Merge]
[group_results]

The final form of this command cuts a body with the bounding box of another entity. This
bounding box may be tight or extended.

Figure 1. Cylinder cut with bounding box of prism.

Web Cutting Options
The following options can be used with all web cut commands:
[NOIMPRINT|Imprint [include_neighbors]]: In its default implementation, web cutting
results in the pieces not being imprinted on one another; this option forces the code to imprint the
pieces after web cutting. The include_neighbors option will also imprint adjacent bodies.
[NOMERGE|Merge]: By default, the pieces resulting from an imprint are manifold; specifying
this option results in a merge check for all surfaces in the pieces resulting from the web cut.
[Group_results]: The various pieces resulting from the previous command are placed into a
group named `webcut_group'.
[Preview]: This option will preview the web cutting plane without executing the command.

Splitting Geometry
Splitting Geometry
The Split command divides curves or surfaces into multiple entities. The command results are
similar to imprinting. However, vertex and/or curve creation is not necessary for the split
command.

190

Cubit 15.1 User Documentation

• Split Curve
• Split Surface
• Split Periodic Surfaces

Split Curve
The Split Curve command will split a curve without the need for geometry creation
(unlike imprinting). The syntax is shown below.

Split Curve <id> [location on curve options] [Merge] [Preview]
To split a curve, simply specify a location or a location on curve (see location specification).
Using the Preview keyword will draw the splitting location on the curve. The Merge keyword
will merge any topology that contains the newly created vertex.
Split Periodic Surfaces
Solids which contain periodic surfaces include cylinders, torii and spheres. Splitting periodic
surfaces can in some cases simplify meshing, and will result in curves and surfaces being added
to the volume. The command used to split periodic surfaces is:

Split Periodic Body <id_range|all>
This command splits all periodic surfaces in a body or bodies.

Split Surface
The Split Surface command divides one or more surfaces into multiple surfaces. The command
results are similar to imprint with curve. However, curve creation is not necessary for splitting
surfaces. Three primary forms of the command are available.

• Split Across
• Split Extend
• Split (Automatically)
• Split Skew

The first form splits a single surface using locations while the second splits by extending a
surface hard-line until it hits a surface boundary. The split automatic splits either a single surface
or a chain of surfaces in an automatic fashion.

Split Across
Two forms of Split Across are available:

Split Surface <id> Across [Pair] Location <options multiple locs> [Preview
[Create]]
Split Surface <id> Across Location <multiple locs> Onto Curve <id>
[Preview] Create]]

This command splits a surface with a spline projection through multiple locations on the surface.
See Location, Direction, and Axis Specification for a detailed description of the location
specifier. Figure 1 shows a simple example of splitting a single surface into two surfaces. A
temporary spline was created through the three specified locations (Vertex 5 6 7), and this curve
was used to split the surface.

191

split surface 1 across location vertex 5 6 7

Figure 1 - Splitting Across with Multiple Locations

The Pair keyword will pair locations to create multiple surface splitting curves (each defined
with two locations). An even number of input locations is required. Figure 2 shows an example:

split surface 1 across pair vertex 5 7 6 8

Figure 2 - Splitting Across with Pair Option

The Preview keyword will show a graphics preview of the splitting curve. If the Create
keyword is also specified, a free curve (or curves) will be created - these are the internal curves
that are used to imprint the surfaces.
The Onto Curve format of the command takes one or more locations on one side of the surface
and projects them onto a single curve on the other side of the surface. Figure 3 shows an
example:

split surface 1 across vertex 5 6 onto curve 4

Figure 3 - Splitting Across with Onto Curve

Split Extend

192

Cubit 15.1 User Documentation

The Split Extend function can be called with the following command:
Split Surface <id_list> Extend [Vertex <id_list> | AUTO] [Preview [Create]]

With the following settings:
Set Split Surface Extend Normal {on|OFF}
Set Split Surface Extend Gap Threshold <val>
Set Split Surface Extend Tolerance<val>

This command splits a surface by extending a surface hard-line until it hits a surface boundary.
Figure 4 shows a simple example of extending a curve. The hard-line curve was extended from
the specified vertex until it hit the surface boundary.

split surface 1 extend vertex 2

Figure 4 - Splitting by Extending Hard-line

The auto keyword will search for all hard-lines and extend them according to the Split Surface
Extend settings. Figure 5 shows an example:
split surface 1 extend auto

Figure 5 - Splitting by Extending with Auto Option

The preview keyword will show a graphics preview of the splitting curve. If the create keyword
is also specified, a free curve (or curves) will be created - these are the internal curves that are
used to imprint the surfaces.
The normal setting can be turned on or off. When it is on, Cubit will attempt to extend the hard-
line so that it is normal to the curve it will intersect. An example of this is in Figure 6:
set split surface normal on
split surface 1 extend vertex 2

193

Figure 6 - Splitting by Extending a Hard Line with Normal Setting ON

Cubit uses the gap threshold to decide whether or not to extend a hard-line when the user
specifies auto. If the distance between a vertex on a hard-line and the curve it will hit is greater
than the gap threshold, then Cubit will not extend that hard-line. The default value is INFINITY,
and can be set to any value. To reset the value back to INFINITY, set the gap threshold to -
1.0. Note: This setting only applies when using the keyword auto. An example of using the
gap threshold is shown in Figure 7:

set split surface gap threshold 2.0
split surface 1 extend auto

Figure 7 - Extending Hard-lines with Gap Threshold = 2.0.

(Notice Vertex 1 was not extended because it exceeded the gap threshold)
The tolerance setting can be used to avoid creating short curves on the surface boundary. If
Cubit tries to extend a hard-line that comes within tolerance of a vertex, it will instead snap the
extension to the existing vertex. An example of this is shown in Figure 8:

set split surface tolerance 1.0
split surface 1 extend vertex 2

194

Cubit 15.1 User Documentation

Figure 8 - Extending Hard-lines with Tolerance

(Notice the extension snapped to Vertex 3)

Split (Automatically)
This form of the command splits a single surface or a chain of surfaces in an automatic
fashion. It is most convenient for splitting a fillet or set of fillets down the middle - oftentimes
necessary to prepare for mesh sweeping. These surfaces cannot have multiple curve loops.

Split Surface <id_list> [Corner Vertex <id_list>] [Direction Curve <id>]
[Segment|Fraction|Distance <val> [From Curve <id>]] [Through Vertex
<id_list>] [Parametric <on|OFF>] [Tolerance <val>] [Preview [Create]]

• Logical Rectangle
• Split Orientation
• Corner Vertex <id_list>
• Direction Curve <id>
• Segment|Fraction|Distance <val> [From Curve <id>]
• Through Vertex <id_list>
• Parametric <on|OFF>
• Tolerance <val>
• Preview [Create]
• Settings (Tolerance, Parametric, Triangle)

The volume shown in Figure 9 was quickly prepared for sweeping by splitting the fillets and
specifying sweep sources as shown (with the sweep target underneath the volume). The surface
splits are shown in blue.

195

Figure 9 - Splitting Fillets to Facilitate Sweeping

Each surface is always split with a single curve along the length of the surface (or multiple single
curves if the Segment option is used). The splitting curve will either be a spline, arc or straight
line.
Logical Rectangle
The Split Surface command analyzes the selected surface or surface chain to find a logical
rectangle, containing four logical sides and four logical corners; each side can be composed of
zero, one or multiple curves. If a single surface is selected (with no options), the logical corners
will be those closest to 90 and oriented such that the surface will be split parallel to the longest
aspect ratio of the surface. If a chain of surfaces is selected, the logical corners will include the
two corners closest to 90 on the starting surface of the chain and the two corners closest to 90 on
the ending surface of the chain (the split will always occur along the chain).
In Figure 10, the logical corners selected by the algorithm are Vertices 1-2-5-6. Between these
corner vertices the logical sides are defined; these sides are described in Table 1. The default
split occurs from the center of Side 1 to the center of Side 3 (parallel to the longest aspect ratio of
the surface), and is shown in blue.

Figure 10 - Split Surface Logical Properties

196

Cubit 15.1 User Documentation

Table 1. Listing of Logical Sides for Figure 10

Logical Side Corner Vertices Curve Groups

1 1-2 1

2 2-5 2,3,4

3 5-6 5

4 6-1 6

Figure 11 shows a surface along with 2 possibilities for its logical rectangle and the resultant
splits.

Figure 11 - Different Possible Logical Rectangles for Same Surface

Table 2 shows various surfaces and the resultant split based on the automatically detected or
selected logical rectangle. Note that surfaces are always traversed in a counterclockwise
direction.
Table 2 - Sample Surfaces and Logical Rectangles

Surface(s) (Resultant Split in
Blue)

Ordered Corners (to form
the Logical Rectangle)

197

1-2-3-4

(using aspect ratio)

4-1-2-3

(user selected)

1-2-5-6

2-5-6-1

1-2-3-4
(split is always along the chain)

1-2-3-4
(notice triangular surfaces along the

chain)

198

Cubit 15.1 User Documentation

1-1-2-3
(note side 1 of the logical rectangle is
collapsed; side 3 is from vertex 2 to 3)

1-2-2-3
(note side 2 of the logical rectangle is

collapsed)

1-2-3-4

1-2-4-4

1-1-2-2

1-1-2-2
(selected automatically)

Split Orientation
If a chain of surfaces are split, the surfaces will always be split along the chain. The command
will not allow disconnected surfaces.
For a single surface, the split direction logic is a bit more complicated. If no options are
specified, the surface aspect ratio determines the split direction - the surface will be split parallel
to the longest aspect ratio side through the midpoint of each curve. This behavior can be
overridden by the order the Corner vertices are selected (the split always starts on the side

199

between the first two corners selected), the Direction option, the From Curve option, or
the Through Vertex list.
Table 3 shows examples of the various split orientation methods. These options are explained in
more detail in the sections below.
Table 3 - Split Orientation Methods

Surface Example Split Orientation Method

Multiple surfaces are always split
along the chain

Parallel to longest surface aspect ratio
(default)

Corner Vertex 4 1 2 3
(split always starts on side 1 of the logical

rectangle)

Direction Curve 1

From Curve 1 Fraction .75
or

From Curve 1 Distance 7.5

200

Cubit 15.1 User Documentation

Through Vertex 5 6

Corner Specification
The Corner option allows you to specify corners that form logical rectangle the algorithm uses
to orient the split on the surface. When analyzing a surface to be split, the software automatically
selects the corners that are closest to 90. The Preview option displays the automatically selected
corners in red. Sometimes incorrect corners are chosen, so you must specify the desired corners
yourself. The split always starts on the side between the first two corners selected and finishes on
the side between the last two corners selected. Figure 12 shows a situation where the user had to
select corners to get the desired split.

Figure 12 - Selecting the Desired Corners

The split can be directed to the tip of a triangular shaped surface by selecting that corner vertex
twice (at the start or end of the corner list) when specifying corners, creating a zero-length side
on the logical rectangle. A shortcut exists whereas if you specify only 3 corner vertices, the zero-
length side will be directed to the first corner selected. If you specify only 2 corner vertices, a
zero-length side will be directed to both the first and second corner you select. Table 4 shows
these examples. Note the software will automatically detect triangle corners based on angle
criteria - the corner selection methods for zero-length sides explained in this section need only be
applied if the angles are outside of the thresholds specified in the Set Split Surface Auto Detect
Triangle settings.
Table 4 - Selecting Corners to Split to Triangle Tips

Surface Corner Specification

1-2-4-4- or 4-4-1-2
or

4-1-2 (shortcut method)

201

1-1-2-2 or 2-2-1-1
or

1-2 or 2-1 (shortcut method)

Direction
The Direction option allows you to conveniently override the default split direction on a single
surface. Simply specify a curve from the logical rectangle that is parallel to the desired split
direction. If Corners are also specified, the Direction option will override the split orientation
that would result from the specified corner order. The Direction option is not valid on a chain of
surfaces. Figure 13 shows an example.

Figure 13 - Direction Specification Overrides Corner Order

Segment|Fraction|Distance
The Segment option allows you to split a surface into 2 or more segments that are equally
spaced across the surface. The Fraction option allows you to override the default 0.5 fractional
split location. The Distance option allows you to specify the split location as an absolute
distance rather than a fraction. By specifying a From Curve, you can indicate which side of
the logical rectangle to base the segment, fraction or distance from (versus a random result).
Table 5 gives examples of these options.
Table 5 - Segment, Fraction, Distance Examples

Surface Command Options

Segment 6 From Curve 1

202

Cubit 15.1 User Documentation

Fraction .3 From Curve 1

Distance 3 From Curve 1

Through Vertex
The Through Vertex option forces the split through vertices on surface boundaries
perpendicular to the split direction. Use this option if the desired fraction is not constant from
one end of the surface to another or if a split would otherwise pass very close to an existing
curve end resulting in a short curve. Through vertices can be used in conjunction with
the Fraction option - the split will linearly adjust to pass exactly through the specified vertices. It
is not valid with the Segment option. The maximum number of Through Vertices that can be
specified is equal to the number of surfaces being split plus one. The selected vertices can be
free, but must lie on the perpendicular curves. Table 6 gives several examples.
Table 6 - Through Vertex Examples

Surface(s) Command Options

Fraction .3 From Curve 1 Through
Vertex 9

Through Vertex 5 6 7 8

Parametric

203

By default, split locations are calculated in 3D space and projected to the surface. As an
alternative, split locations can be calculated directly in the surface parametric space. In rare
instances, this can result in a smoother or more desirable split. The command option Parametric
{on|Off} can be used to split the given surfaces in parametric space. Alternatively, the default
can be overridden with the Set Split Surface Parametric {on|OFF} command.
Tolerance
A single absolute tolerance value is used to determine the accuracy of the split curves. A smaller
tolerance will force more points to be interpolated. The tolerance is also used when detecting an
analytical curve (e.g., an arc or straight line) versus a spline. A looser tolerance will result in
more analytical curves. The default tolerance is 1.0. The command option Tolerance <val> can
be used to split the given surfaces using the given tolerance. Alternatively, the default tolerance
can be overridden with the Set Split Surface Tolerance <val> command.
It is recommended to use the largest tolerance possible to increase the number of analytical
curves and reduce the number of points on splines, resulting in better performance and smaller
file sizes. The Preview option displays the interpolated curve points. Table 7 shows the effect of
the tolerance for a simple example.
Table 7 - Effect of Tolerance on Split Curve

Surface Tolerance

2.0

1.0

0.5

204

Cubit 15.1 User Documentation

0.01

Preview
The Preview keyword will show a graphics preview (in blue) of the splitting curve (or curves)
and the corner vertices (in red) selected for the logical rectangle. The curve preview includes the
interpolated point locations that define spline curves. Note that if no points are shown on the
interior of the curve, it means that the curve is an analytical curve (line or arc). If the Create
keyword is also specified, a free curve (or curves) will be created - these are the internal curves
that are used to imprint the surfaces. Table 8 shows some examples.
Table 8 - Graphics Preview

Surface Curve Type

Spline

Arc (no preview points shown on
interior of curve)

Settings
This section describes the settings that are available for the automatic split surface command. To
see the current values, you can enter the command Set Split Surface, optionally followed by the
setting of interest (without specifying a value).

Set Split Surface Tolerance <val>
This sets the default tolerance for the accuracy of the split curves. See the Tolerance section for
more information.

Set Split Surface Parametric {on|OFF}
This sets the default for whether surfaces are split in 3D (default) or in parametric space. See
the Parametric section for more information.

Set Split Surface Auto Detect Triangle {ON|off}
Set Split Surface Point Angle Threshold <val>
Set Split Surface Side Angle Threshold <val>

205

The split surface command automatically detects triangular shaped surfaces as explained in the
section on Corners. This behavior can be turned off with the setting above. Two thresholds are
used when detecting triangles - the Point Angle threshold and the Side Angle threshold,
specified in degrees. Corners with an angle below the Point Angle threshold are considered for
the tip of a triangle (or the collapsed side of the logical rectangle). Corners within the Side Angle
threshold of 180 are considered for removal from the logical rectangle. In order for a triangle to
actually be detected, corners for both the point and side criteria must be met. The default Point
Angle threshold is 45, and the default Side Angle threshold is 27. Figure 14 provides an
illustration.

Figure 14 - Triangle Detection Settings

Split Skew
The Split Skew function can be called with the following command:

Split Surface <id_list> Skew [Preview] [Create]
This command will split a surface or list of surfaces in a logical way to reduce the amount of
skew in a quadrilateral mesh. This function uses the control skew algorithm to determine where
to make these logical splits. Users should note that Split Skew can only be utilized effectively on
surfaces that lend themselves to a structured meshing scheme. These surfaces cannot have
multiple curve loops. Figure 15 shows a simple example of a surface being split.

split surface 1 skew

206

Cubit 15.1 User Documentation

Figure 15. Split Skew applied to an L-shaped surface

The Preview keyword will show a graphics preview of the splitting curves. If the Create
keyword is also specified, free curves will be created.

Section Command
This command will cut a body or group of bodies with a plane, keeping geometry on one side of
the plane and discarding the rest. The syntax for this command is:

Section {Body|Group} <id_range> [With] {Xplane|Yplane|Zplane} [Offset
<value>] [NORMAL|Reverse] [Keep]
Section {Body|Group} <id_range> With Surface <id> [NORMAL|Reverse]
[Keep]

In the first form, the specified coordinate plane is used to cut the specified bodies. The offset
option is used to specify an offset from the coordinate plane. In the second form, an existing
(planar) surface is used to section the model. In either case, the reverse keyword results in
discarding the positive side of the specified plane or surface instead of the other side. The keep
option results in keeping both sides; the section command used with this option is equivalent to
webcutting with a plane.

Separating Surfaces from Bodies
The separate surface command is used to separate a surface from a sheet body or a solid body.
The command is:

Separate Surface <range>
Separating a surface from a solid body will create a "hole" in the solid body. Thus the solid body
will become a sheet body. The newly separated surface will be also sheet body, but it will have a
different id. Multiple surfaces can be separated from a body at the same time, but each separated
surface will result in a distinct sheet body, as if the command had been performed on each
surface individually.

Separating Multi-Volume Bodies
The separate and split commands are used to separate a body with multiple volumes into a
multiple bodies with single volumes. The commands are:

207

Separate {Body|Volume} <id_range|all>
and

Split {Body|Volume} <id_range|all>
Only very rarely will either of these commands be needed. They are provided for the occasional
instance that a multi-volume body is found. These commands are interchangeable.
Another related command allows the user to control the separation of bodies after webcutting. In
most instances the user will want to separate bodies after webcutting. One reason to possibly
have this option turned off is to be able to keep track of all the volumes during a webcut. Setting
this option to "off" keeps all volumes in the same body. But the more common approach is to
name the original body and allow naming to keep track of volumes. This setting is on by default.
The syntax is:

Set Separate After Webcut [ON|Off]

Cleanup and Defeaturing
Geometry Cleanup and Defeaturing
Frequently, models imported from various CAD platforms either provide too much detail for
mesh generation and analysis, or the geometric representation is deficient. These deficiencies can
often be overcome with small changes to the model. Several tools are provided in CUBIT for
this purpose.
The following describes the features available in CUBIT for clean up and defeaturing

• Healing
• Tweaking Geometry
• Removing Geometric Features
• Automatic Geometry Clean-up
• Regularizing Geometry
• Finding Surface Overlap
• Validating Geometry
• Debugging Geometry
• Geometry Accuracy
• Trimming and Extending Curves
• Stitching Sheet Bodies
• Defeaturing Tool

Tweaking Geometry
Tweaking Geometry

• Tweaking Vertices
• Tweaking Curves
• Tweaking Surfaces
• Tweak Remove Topology
• Tweak Volume Bend

208

Cubit 15.1 User Documentation

The tweaking commands modify models by moving, offsetting or replacing surfaces, curves, or
volumes while extending the adjoining surfaces to fill the resulting gaps. This is useful for
eliminating gaps between components, simplifying geometry or changing the dimensions of an
object.

Tweaking Curves
The following options of the Tweak Curve command are available. Command syntax and
description follow below.

• Create a Chamfer or Fillet
• Tweaking a Curve Using an Offset Distance
• Removing a Curve
• Tweaking a Curve Using a Target Surface, Curve, or Plane
• Tweaking a Pair of Curves to a Corner

Create a Chamfer or Fillet
The Tweak Curve Chamfer or Fillet command is used to fillet or chamfer a curve. The radius
value is the radius of the fillet arc or chamfer cut distance. The command syntax is:

Tweak Curve <id_range> {Fillet|Chamfer} Radius <value> [Keep] [Preview]
In addition to creating chamfers of a single cut distance, the chamfer can be specified be two
values. The syntax is:

Tweak Curve <id_list> Chamfer Radius <val1> [<val2>] [Keep] [Preview]
Figure 1 shows a brick ('br x 10') chamfered with two different cut distances ('Tweak Curve 1 2
Chamfer Radius 2 4').

Figure 1 Chamfer with two different distances
Individual curves can also be filleted with different start and finish radius values. The syntax is:

Tweak Curve <id> Fillet Radius <val1> [<val2>] [Keep] [Preview]
Figure 2 shows a brick ('br x 10') filleted with different start and end radius values (‘Tweak
Curve 1 2 Chamfer Radius 2 4’).

209

Figure 2. Fillet with two different radii
For all Tweak Fillet and Tweak Chamfer variations, the keep option prevents the destruction of
the original geometry after the operation and the preview option temporarily displays the new
geometry configuration without actually changing the geometry.

Tweaking a Curve Using an Offset Distance
Tweak Curve <id_list> Offset <val> [Curve <id_list> Offset <val>] [Curve
<id_list> Offset <val> ...] [Keep] [Preview]

Tweaking curves a specified distance offsets the existing curves and extends the attached
surfaces to meet them. A positive offset value will enlarge the surface while a negative value will
decrease the area of the attached surface. Different offset values can be specified for each curve.
The keep option prevents the destruction of the original geometry after the operation. The
preview option temporarily displays the new geometry configuration without actually changing
the geometry. Figure 3 shows an example of offsetting a curve a specified distance.

Figure 3 Offsetting a set of curves a specified distance

210

Cubit 15.1 User Documentation

Removing a Curve
Tweak Curve <id_list> Remove [Keep] [Preview]

Similar to the Tweak Curve Remove command, the tweak curve remove function removes a
specified curve from a sheet body. Figure 4 shows a simple example of removing a curve from a
sheet body.

Figure 4. Removing a curve from a sheet body

The keep option prevents the destruction of the original geometry after the operation. The
preview option temporarily displays the new geometry configuration without actually changing
the geometry.

Tweaking a Curve Using Target Surfaces, Curves, or Plane
Use Tweak Curve Target to offset a curve to a specified surface, plane or curve. Figure 5 shows
an example of tweaking a curve to several surfaces.

Figure 5 Tweaking a curve to multiple target surfaces

Similarly, a target plane can be specified using the Plane specification syntax. The Tweak Curve
syntax is:

Tweak Curve <id_list> Target {Surface >id_list> [Limit Plane (options)]
[EXTEND|Noextend] | Plane (options)} [Max_area_increase <val>] [Keep]
[Preview]
Tweak Curve <id_list> Target Curve <id_list > [EXTEND|Noextend]
[Max_area_increase <val>] [Keep] [Preview]

211

If a target surface is supplied, the user can also use a limit plane if he wishes. A limit plane is a
plane that the tweak will stop at if the tweaked curve does not completely intersect the target
surface. The limit plane must be used with the extend option. See the help for Specifying a Plane
for the options available to define a plane.
It should be noted that if the source and target surfaces are from the same body the resulting
geometry will be automatically stitched. Single target surfaces are automatically extended so that
the tweaked body will fully intersect the target. Unfortunately, extending multiple target surfaces
can sometimes result in an invalid target, so the option is given to tweak to non-extended targets
with the noextend option. In this case, the tweaked body must fully intersect the existing targets
for success. If you experience a failure when tweaking to multiple targets or the results are
unexpected, it is recommended to try the noextend option (NOTE: Tweaking to multiple targets
is only implemented in the ACIS geometry engine). If a value for
the max_area_increasekeyword is given, Cubit will not perform the tweak if the resulting
surface area increases by more than the specified amount. The keyword expects a percentage to
be entered (i.e. '50' for 50%). It is recommended to always preview before using the tweak target
commands.
For all tweak target variations, the keep option prevents the destruction of the original geometry
after the operation and the preview option temporarily displays the new geometry configuration
without actually changing the geometry.
Although it may not be intuitive curves can also serve as the target geometry. Figure 6 shows an
example of extending a curve to another curve.

Figure 6 Tweaking a curve to a target curve

Notice that the source curve actually extends to the target curve as if the target were a surface.

Tweaking a Pair of Curves to a Corner

212

Cubit 15.1 User Documentation

When creating mid-surface geometry it is often useful to extend surfaces to form a corner. To
handle this specific but common case use the tweak corner command.

Tweak Curve <id> <id> Corner [Preview]
Figure 7 shows a typical tweak corner example. Notice that surfaces are extended/trimmed to
intersect at a corner.

Figure 7. Tweaking two curves to a corner

The preview option temporarily displays the new geometry configuration without actually
changing the geometry.

Tweak Remove Topology
The Tweak Remove Topology command removes curves and surface from a model and
replaces them with new topology. The reconstruction of the new topology and the stitching of it
into the model is done using real solid modeling kernel operations. This command is intended to
be used on small curves and surfaces in the model. The command tries to find small
curves/surfaces neighboring the specified topology and includes these neighbors in the removal
process. Thus, the command can often be used to remove networks of small features just by
specifying a single curve or surface.

Tweak Remove_Topology {Surface <id_range> | Curve <id_range> | Surface
<id_range> Curve <id_range>} Small_curve_size <val> Backoff_distance
<val>

The small_curve_size is input by the user, and is used to calculate the small curves and surfaces.
The backoff_distance value specifies how far away from the original topology cuts are made to
cut out the old topology and stitch in the new topology. The removed topology is replaced by
simplified topology where possible often resulting in a dimension reduction of the original
topology. Extraneous curves that are introduced during the cutting and stitching process are
regularized out if possible using the solid modeling kernel regularize functionality or are
composited out using virtual geometry if the regularization is not possible.
Note: This command is currently only implemented for ACIS and Catia models.

Example

213

reset
set attribute on
import acis "test10.sat"
separate body all
set attribute off
Auto_clean Volume 1 Split_narrow_regions Narrow_size 2.2
tweak remove_topology curve 19 small_curve_size .21 backoff 1.5

214

Cubit 15.1 User Documentation

215

Figure 1. Tweak Remove Topology command

Tweaking Surfaces
The following options of the Tweak Surface command are available. Command syntax and
examples follow below.

• Tweaking a Surface Using an Offset
• Tweaking a Surface by Moving
• Tweaking Surfaces to Target Surfaces
• Removing a Surface
• Tweaking a Conical Surface
• Tweaking Doublers to Target Surface
• Removing Holes and Slots from Sheet Bodies
• Removing Fillets from Sheet Bodies

Tweaking a Surface Using an Offset
Tweak Surface <id_list> Offset <val> [Surface <id_list> Offset <val>]
[Surface <id_list> Offset <val> ...] [Keep] [Preview]

The Tweak Offset form of the command offsets an existing set of surfaces and extends the
attached surfaces to meet them. A positive offset value will offset the surface in the positive
surface normal direction while a negative value will go the other way. Different offsets may be
specified for each surface. Figure 1 shows a simple example of offsetting. Note that you can also

216

Cubit 15.1 User Documentation

offset whole groups of surfaces at once. The keep option will retain the original surfaces and
curves.

Figure 1. Tweak Offset

Tweaking a Surface by Moving
The Tweak move form of the command simply moves the given surfaces along a vector
direction. The direction can be specified either absolutely or relative to other geometry entities in
the model (from entity centroid to location). Note that when moving a surface for tweak, the
surface is moved and the surface and the adjoining surfaces are extended or trimmed to match up
again. So, for example, moving a vertically oriented planar surface in the vertical direction will
have no effect. In this example, if you move the surface 10 in the x and 5 in the y the effect will
be to move it simply 10 in the x. You can also use this form of the command to move a
protrusion around - just be sure to specify all of the surfaces on the protrusion for moving. The
last form of the command can be used to move a surface along another surface's normal.

Tweak Surface <id_range> Move {Vertex|Curve|Surface|Volume|Body} <id>
Location {Vertex|Curve|Surface|Volume|Body} <id> [Except [X][Y][Z]]
[Keep] [Preview]
Tweak Surface <id_range> Move {Vertex|Curve|Surface|Volume|Body} <id>
Location <x_val> <y_val> <z_val> [Except [X][Y][Z]] [Keep][Preview]
Tweak Surface <id_range> Move <dx_val> <dy_val> <dz_val> [Keep]
[Preview]
Tweak Surface <id_range> Move Direction <options> Distance <val> [Keep]
[Preview]
Tweak Surface <id_range> Move Normal To Surface <id> Distance <val>
[Except [X][Y][Z]] [Keep][Preview]

Tweaking Surfaces to Target Surfaces
The Tweak target form of the command actually replaces the given surfaces with a copy of the
new surfaces, then extends and trims surfaces to match up. This can be useful for closing gaps
between components or performing more complicated modifications to models. The command
syntax is:

217

Tweak {Curve|Surface} <id_list> Target {Surface <id_list> [Limit Plane
(options)] [EXTEND|noextend] | Plane (options)} [keep] [preview]
Tweak Surface <id_list> Replace [With] Surface <id_list> [Keep] [Preview]

The plane option allows a plane to be specified instead of target surface(s). If a target surface is
supplied, the user can also use a limit plane if he wishes. A limit plane is a plane that the tweak
will stop at if the tweaked surface does not completely intersect the target surface. The limit
plane must be used with the extend option. See the help for Specifying a Plane for the options
available to define a plane.
Single target surfaces are automatically extended so that the tweaked body will fully intersect the
target. Unfortunately, extending multiple target surfaces can sometimes result in an invalid
target, so the option is given to tweak to unextended targets with the noextend option. In this
case, the tweaked body must fully intersect the existing targets for success. If you experience a
failure when tweaking to multiple targets or the results are unexpected, it is recommended to try
the noextend option (NOTE: Tweaking to multiple targets is only implemented in the ACIS
geometry engine). It is recommended to always preview before using the tweak target
commands.
Figure 2 shows a simple example.

Figure 2. Tweak Surface Target (Viewed directly from the side)

Removing a Surface
The Tweak remove command allows you to remove surfaces from a model by extending the
adjacent surfaces to fill in the resulting gaps. It is identical to the Remove Surface command.
See Removing Surfaces for a description of the command options.

Tweak Surface <id_list> Remove [EXTEND|Noextend] [Keepsurface]
[Keep][Preview]

Tweaking a Conical Surface
The Tweak cone form of the command is used to replace a conical projection with a flat circular
surface. This command is useful for simplifying bolt holes. The command syntax is.

Tweak Surface <id_range> Cone [Preview]
The following is a simple example illustrating the use of the tweak surface cone command.

218

Cubit 15.1 User Documentation

Figure 3. Conical bolt hole before and after tweaking

Tweaking Doublers to Target Surfaces
The Tweak Doubler form of the command takes a specified surface and creates drop-down
surfaces either normal to the doubler surface or by a user specified vector to a target surface.
This can be helpful in creating surfaces for weld elements between midsurfaced geometry. The
resulting surfaces do not create a bounding volume, and do not imprint themselves onto the
target surface. The command syntax is:

Tweak Surface <id_list> Doubler Surface <id_list> {[Limit Plane (options)]
[EXTEND|noextend]} [Internal] [Direction (options)] [Thickness] [Preview]

219

The plane option allows a plane to be specified instead of target surface(s). If a target surface is
supplied, the user can also use a limit plane if he wishes. A limit plane is a plane that the tweak
will stop at if the tweaked surface does not completely intersect the target surface. The limit
plane must be used with the extend option. See the help for Specifying a Plane for the options
available to define a plane.
Single target surfaces are automatically extended so that the tweaked body will fully intersect the
target. Unfortunately, extending multiple target surfaces can sometimes result in an invalid
target, so the option is given to tweak to unextended targets with the noextend option. In this
case, the tweaked body must fully intersect the existing targets for success. If you experience a
failure when tweaking to multiple targets or the results are unexpected, trying the noextend
option is recommended.
If the doubler surface has a thickness property value, you can propagate that thickness value to
the newly created drop-down surfaces by using the thickness flag.
It is recommended to always preview before using the tweak doubler commands.
NOTE: This function only works for ACIS geometry.

Geometry Output
Figure 3. Extending a doubler surface to target

The internal option will also include internal curves when the surface is extended (see Figure
4c). The direction option will create a skewed surface along the given direction (see Figure 4d).

220

Cubit 15.1 User Documentation

Figure 4. Explanation of tweak doubler options (a) Original surfaces (b) No option flags
used (c) Internal option used - notice internal curves dropped down (d) Direction flag -

notice skew

Removing Holes and Slots from Sheet Bodies
The Tweak Hole/Slot Idealize command takes a specified sheet body(s) and searches for either
holes or slots (or both) which meet the user's input parameters. This can be helpful in removing
small holes or slots quickly and efficiently from midsurfaced bodies where such level of detail
isn't required. The command syntax is:

Tweak Surface <id_list> Idealize {[Hole Radius <val>] [Slot Radius <val>
Length <val>]} [Exclude Curve <id_list>] [Preview]

Below is a diagram showing the different parameters available for input by the user.

Figure 5. Input parameters for tweak surface idealize command

#Hole Removal Example
tweak surface 13 idealize hole radius 6

221

Figure 6. Example of hole removal using tweak surface idealize command

The exclude option allows the user to specify individual curves that should not be deleted, even
if they meet the search criteria for removal. Figure 7 shows another hole removal example where
several curves were excluded.

Figure 7. Example of hole removal using exclude option

Note: This feature is for ACIS geometry
It is recommended to always preview before using the tweak command. Preview will highlight
all curves slated to be removed if the command is executed.

Removing Fillets from Sheet Bodies
The Tweak Fillet Idealize command takes a specified sheet body(s) and searches for either
internal or external fillets (or both) which meet the users' radius parameter. This can be helpful in
removing fillets quickly and efficiently from midsurfaced bodies where such level of detail isn't
required. The command syntax is:

Tweak Surface <id_list> Idealize Fillet Radius <val> {[Internal] [External]}
[Exclude Curve <id_list>] [Preview]

#Fillet Removal Example
tweak surface 13 idealize fillet radius 6 internal

222

Cubit 15.1 User Documentation

Figure 8. Example of fillet removal using tweak surface idealize command

Note: This feature is for ACIS geometry
It is recommended to always preview before using the tweak command. Preview will show the
result if the command is executed.

Figure 9. Preview of the tweak surface idealize command

Tweaking Vertices

The Tweak Vertex command can be used to do the following:

• Tweaking a Vertex With a Chamfer
• Tweaking a Vertex With a Non-Equal Chamfer
• Tweaking a Vertex With a Fillet Radius

Tweaking a Vertex With a Chamfer
Tweak Vertex <id_range> Chamfer Radius <value>[Keep] [Preview]

This form of the command creates a chamfered corner at the specified vertex. Can be use on
volumes or free surfaces. The 'keep' option creates another volume on which the tweak is
applied; the original volume remains unmodified.

223

Figure 1. Tweak Vertex Chamfer

Tweaking a Vertex With a Non-Equal Chamfer
Tweak Vertex <id_range> Chamfer Radius <value> [Curve <id> Radius
<value> Curve <id> Radius <value> Curve <id>] [Keep] [Preview]

This next form of the command creates a non-equal chamfered corner at the specified vertex.
Can only be used on vertices of volumes. The 'keep' option creates another volume on which the
tweak is applied; the original volume remains unmodified.

Tweaking a Vertex With a Fillet Radius
Tweak Vertex <id_range> Fillet Radius <value> [Keep] [Preview]

This command replaces a vertex with a filleted radius. The command can only be used on free
surfaces. The 'keep' option creates another volume on which the tweak is applied; the original
free surface remains unmodified.

224

Cubit 15.1 User Documentation

Figure 2. Tweak Vertex Fillet

Tweak Volume Bend
Entity bending bends a solid model around a given axis. In any bending operation, some material
is stretched while other material is compressed, but the topology of the model is maintained. The
command syntax is:

Tweak {Volume|Body} <id_list> Bend Root <location_options> Axis
<direction_vector> Direction <direction_vector> Radius <val> angle <val>
[Preview] [Keep] [Center_bend] [Location <options>]

Root and axis determine location for the bend. Direction determines direction of the
bend. Radius and angle determine how much to bend. Center_bend will bend both sides of the
volume around the bend location instead of one side. Location can be used to select only
specific parts of a volume to bend.

225

Figure 1. Bending a volume

#Ex: Bend parts of a body specified by the location option
create brick width 11 height 1
create brick width 1 depth 10 height 10
create brick width 1 depth 10 height 10
create brick width 1 depth 10 height 10
move body 2 general location position -3 5 0
move body 3 general location position 0 5 0
move body 4 general location position 3 5 0
subtract body 2 from body 1
subtract body 3 from body 1
subtract body 4 from body 1
tweak volume 1 bend root 0 0 0 axis 1 0 0 direction 0 0 -1 radius 1 angle 3.14 location vertex
39 47

Removing Geometric Features
Removing Geometric Features

• Vertex Removal
• Surface Removal

The Remove will remove surfaces or vertices from bodies. Adjacent surfaces or curves will be
extended, where possible, to fill in remaining gaps. The remove command is useful for replacing
filleted edges with sharp corners.

Removing Surfaces

• Remove Sliver Surfaces

The remove surface command removes surfaces from bodies. By default, it attempts to extend
the adjoining surfaces to fill the resultant gap. This is a useful way to remove fillets and rounds

226

Cubit 15.1 User Documentation

and other features such as bosses not needed for analysis. See Figure 1 for an example of this
process. The syntax for this command is:

Remove Surface <id_range> [EXTEND|Noextend] [Keepsurface] [Keep]
[Individual]

The noextend qualifier prevents the adjoining surfaces from being extended, leaving a gap in the
body. This is sometimes useful for repairing bad geometry - the surface can be rebuilt with
surface from curves or a net surface, etc.., then combined back onto the body.
The keep option will retain the original body and put the results of the remove surface in a new
body. The keepsurface option will retain the surface which was removed.
The individual option will remove surfaces one-by-one instead of as a group. If one removal
fails, the rest are still attempted. Without the individual option, no surface is removed unless
they are all able to be removed.
This command is identical to the Tweak Surface Remove command.

Figure 1. Remove Surface Example

Remove Sliver Surface
This command uses the ACIS remove surface capability on surfaces that have area less than a
specified area limit. When ACIS removes a surface it extends the adjoining surfaces and
intersects them to fill the gap. If it is not possible to extend the surfaces or if the geometry is bad
the command will fail. The syntax for this command is:

Remove Slivers Body <id_range> [EXTEND|Noextend] [Keepsurface] [Keep]
[Arealimit [<double>]]
Default Arealimit = 0.1

The noextend, keepsurface and keep options operate as for the remove surface command. The
arealimit option allows the user to set the area below which surfaces will be removed.

Removing Vertices
At times you may find that you have an extraneous vertex in your model. This would be a vertex
connected to two and only two edges. This stray vertex can cause unwanted mesh artifacts, due
to the fact that a mesh node MUST lie on this vertex, thereby disallowing the possibility of
movement for better quality. Fortunately there is a relatively easy way of getting rid of this stray
vertex using the tweak surface command.

Tweak Surface <id> Replace With Surface <same_id>

227

Note that you are replacing a surface with itself. In doing so, the geometry engine will do an
intersection check on that surface, and should realize that the vertex doesn't need to be there.

Healing
Healing
Healing is an optional module that detects and fixes ACIS models.
It is possible to create ACIS models that are not accurate enough for ACIS to process. This most
often happens when geometry is created in some other modeling system and translated into an
ACIS model. Such models may be imprecise due to the inherent numerical limitations of their
parent systems, or due to limitations of data transfer through neutral file formats. This
imprecision can also result when an ACIS model is created at a different tolerance from the
current tolerance settings. This imprecision leads to problems such as geometric errors in
entities, gaps between entities, and the absence of connectivity information (topology). Since
ACIS is a high precision modeler, it expects all entities to satisfy stringent data integrity checks
for the proper functioning of its algorithms. Therefore, if such imprecise models must be
processed by an ACIS based system, "healing" of such models is necessary to establish the
desired precision and accuracy.
The following sections describe how to use the Healing capability in ACIS and CUBIT to
analyze and heal defective ACIS geometry.

• Analyzing Geometry
• Healing Attributes
• Auto Healing
• Spline Removal
• What if Healing is Unsuccessful?

Analyzing Geometry
The following command analyzes the ACIS geometry and will indicate problems detected:

Healer Analyze Body <id_range> [Logfile ['filename'] [Display]]
The logfile option writes the analysis results to the filename specified, or to 'healanalysis.log' by
default. In the GUI version of CUBIT, the display option will write the results in a dialog
window.
The outputs include an estimate of the percentage of good geometry in each body. The optional
logfile will include detailed information about the geometry analysis. By default CUBIT will
also highlight the bad geometry in the graphics and give a printed summary indicating which
entities are "bad". Sample output from this command is shown below:
Percentage good geometry in Body 9: 98%
HEALER ANALYSIS SUMMARY:

Analyzed 1 Body: 9
Found 2 bad Vertices: 51, 52
Found 3 bad Curves: 76, 77, 80
Found 2 bad CoEdges. The Curves are: 76
Found 1 Bodies with problems: 9
Journaled Command: healer analyze body 9

228

Cubit 15.1 User Documentation

Note that it is not necessary to analyze the geometry before healing; however, it can be useful to
analyze first rather than healing unnecessarily. Also note that healer analysis can take a bit of
time, depending on the complexity of the geometry and how bad the geometry is.
The validate geometry commands work independently of the healer and give more detailed
information.

Healer Settings
You can control the outputs from the healer with the following commands:

Healer Set OnShow {Highlight|Draw|None}
Healer Set OnShow {Badvertices|Badcurves|Badcoedges|Badbodies|All}
{On|Off}
Healer Set OnShow Summary {On|Off}

These settings allow you to highlight, draw or ignore the bad entities in the graphics. You can
control which entity types to display, as well as whether or not to show the printed summary at
the end of analysis.
After you have analyzed the geometry (which can take some time), you can show the bad
geometry again with the "show" command. This command simply uses cached data (healing
attributes - see the next section) from the previous analysis.

Healer Show Body <id_list>

Auto Healing
Healing is an extremely complex process. The general steps to healing are:

• Preprocess - trim overhanging surfaces and clean topology (remove small curves and
surfaces).

• Simplify - converts splines to analytic representations, if possible.
• Stitch - geometry cleanup and stitching loose surfaces together to form bodies.
• Geometry Build - repairing and building geometry to correct gaps in the model.
• Post-Process - calculating pcurves and further repairing bad geometry.
• Make Tolerant Curves & Vertices - a last optional step that allows special handling of

unhealed entities for booleans - allowing inaccurate geometry to be tolerated.

Autohealing makes these steps automatic with the following command:
Healer Autoheal Body <id_range> [Rebuild] [Keep] [Maketolerant] [Logfile
['logfilename'] [Display]]

The rebuild option unhooks each surface, heals it individually, then stitches all the surfaces
back together and heals again. In some cases this can more effectively fix up the body, although
it is much more computationally intensive and is not recommended unless normal healing is
unsuccessful.
The keep option will retain the original body, putting the resulting healed body in a new body.
The maketolerant option will make the edges tolerant if ACIS is unable to heal them. This can
result in successful booleans even if the body cannot be fully healed - ACIS can then sometimes
"tolerate" the bad geometry. Note that the healer analyze command will still show these curves

229

as "bad", even though they are tolerant. The validate geometry commands however take this into
consideration.
The output from the autoheal command can be written to a file using the logfile option; the
default file name is autoheal.log. The display option works as before, displaying the results in a
window in the GUI version of CUBIT.

Healing Attributes
Once the geometry is analyzed, the results are stored as attributes on the solid model - this allows
you to use the "show" command to quickly display the bad geometry again. The results attributes
are automatically removed when the geometry is exported or any boolean operations are
performed. They can also be explicitly removed with the command

Healer CleanAtt Body <id_range>
You can force the results to be removed immediately after each analyze operation with the
"CleanAtt" setting (this can save a little memory):

Healer Set CleanAtt {On|Off}

Spline Removal
If healing fails to convert spline surfaces to analytic ones fails, the simplification tolerance can
be modified and healing re-run:

healer default simplifytol .1
healer autoheal body 1

Spline surfaces can also be forced into an analytic form (use this command with caution):
Healer Force {Plane|Cylinder|Cone|Sphere|Torus} Surface <id_list> [Keep]

The Keep option will retain the original body and generate a new body containing analytic
surfaces. Note: Spline curves can be found using entity filters:

Execute Filter Curve Geometry_type Spline

What if Healing is Unsuccessful?
The ACIS healing module is under continued development and is improving with every release.
However, there will often be situations where healing is unable to fully correct the geometry.
This might be okay, as meshing is rarely affected by the small inaccuracies healing addresses.
However, boolean operations on the geometry can fail if the bad geometry must be processed by
the operation (i.e., a webcut must cut through a bad curve or vertex).
Here are some possible methods to fix this bad geometry:

• Return to the source of the geometry (i.e., Pro/ENGINEER) and increase the accuracy.
Re-export the geometry.

• Heal again using the rebuild option.
• Heal again using the make tolerant option.
• Remove the offending surface from the body (using the remove surface command), then

construct new surfaces from existing curves and combine the body back together.
• Composite the surfaces over the bad area, mesh and create a net surface from the

composite, remove the bad surfaces and combine.

230

Cubit 15.1 User Documentation

• Export the geometry as IGES, import the IGES file into a new model and look for double
surfaces or surfaces that show up at odd angles using the find overlap commands. Delete
and recreate surfaces as needed and combine the surfaces back together into a body.

Contact the development team (cubit-dev@sandia.gov) if you need further help with fixing bad
geometry.

Auto Clean
Automatic Geometry Clean-up
The automated geometry clean-up commands are used to automatically clean up geometry in
preparation for meshing. These commands are built in to the ITEM interface, but they can also
be used on their own. They include:

• Automatic Forced Sweepability
• Automatic Small Curve Removal
• Automatic Small Surface Removal
• Automatic Surface Split

Automatic Forced Sweepability
In some cases, a volume can be "forced" into a sweepable configuration by compositing surfaces
on the linking surfaces. The automatic forced sweep command will attempt to automatically
composite linking surfaces together to create a sweepable topology. This command can be useful
in cases where there are many linking surfaces that prohibit sweepability and are not needed to
define the mesh. It is assumed that the user has assigned the source and target surfaces for the
sweep prior to calling this function. CUBIT will try to composite linking surfaces together to get
rid of problems such as 1) non-submappable linking surfaces, 2) interior angles between curves
of a surface that deviate far from multiples of 90 degrees, and 3) surfaces with curves smaller
than the small curve size, if a small curve size is specified. This command is incorporated into
the ITEM GUI, but is also available from the command line using the following command
syntax.

Auto_clean Volume <id_range> Force_sweepability [Small_curve_size
<val>]

The small_curve_size qualifier is an optional argument. If a curve size is specified, the
command will try to remove surfaces with curves smaller than this size by compositing the
surface with adjacent surfaces.
Example
The following cylinder has been webcut and had surface splits so that it is not sweepable. The
split surface command has also introduced 3 small curves on the surfaces. After the source and
target surfaces are set, the force sweepability command is issued to automatically composite
neighboring surfaces to make the volume sweepable and remove the small curves. The results
are shown in the image below.

auto_clean volume 1 force_sweepability small_curve_size .7

231

Figure 1. Linking surfaces are composited to force a sweepable volume topology

Automatic Surface Split
This auto clean command will attempt to automatically split narrow regions of surfaces. In this
context, any surface that contains a portion that narrows down to a small angle is considered a
narrow region. The command will use the split command from the underlying solid modeling
kernel. The user specifies a size that defines what it narrow. This command also propagates the
splits to neighboring narrow surfaces. This command is usually used as a preprocessor to the
"tweak remove_topology" command but can also be used on its own.

Auto_clean Volume <id_range> Split_narrow_regions Narrow_size <val>
Example
The model has a surface that necks down to a narrow region. This surface also has some
neighboring narrow surfaces to which the splits are propagated.

Figure 1. Automatic small and narrow surface removal on a cylinder

Automatic Small Curve Removal
The automatic small curve removal command uses composites and collapse curves commands to
automatically remove small curves from a volume. This is useful for removing small or

232

Cubit 15.1 User Documentation

unnecessary details from a model to facilitate meshing algorithms. The user enters a small curve
size. Any curve smaller than this specified size will be removed. This command is issued from
the ITEM toolbar. More information can be found by reading the section entitled Small Details
in the Model in the ITEM documentation. This command can also be called from the command
line. The syntax of this command is:

Auto_clean Volume <id_range> Small_curves Small_curve_size <val>
Note: The automatic curve removal should be used with caution, as the user has little control
over how curves are removed.
Example:
The cylindrical model has 3 small curves just less than 0.7. The remove small curves command
will remove two of the small curves by compositing two neighboring surfaces and the third using
the collapse curve functionality.

auto_clean volume 1 small_curves small_curve_size .7

Figure 1. Automatic small curve removal on a cylinder

Automatic Small Surface Removal
This auto clean command will attempt to remove small and narrow surfaces from the model by
compositing them with neighboring surfaces. The user specifies a small curve size value. This
value is used in two different ways. First, a small area is calculated as the small curve size
squared. This value is used to compare against when looking for small surfaces. The small curve
size is also used to identify surfaces that are narrower than the small curve size.

Auto_clean Volume <id_range> Small_surfaces Small_curve_size <val>
Example
The cylindrical model has 2 small surfaces and a few narrow surfaces. The surfaces are
composited to remove these.

233

Figure 1. Automatic small and narrow surface removal on a cylinder

Debugging Geometry
The following command checks for inconsistencies in the CUBIT topological model, by
checking the specified entities and all child topology and/or comparing to solid model topology:

Geomdebug Validate [compare] <entity_list>
This command checks for:

• Consistent CoFace senses
• Loops are closed/complete
• Consistent CoEdge senses
• Correct vertex order on curves w.r.t. parameterization
• Correct tangent direction of curves w.r.t. parameterization

Related Commands:
Geomdebug Vertex <vertex_id>
Geomdebug Curve <curve_id>
Geomdebug Surface <surface_id>
Geomdebug body <body_id>
Geomdebug Containment {Curve | Surface} <id> {Location (options) | Node
<id_list>}

The following command prints info about GeometryEntities owned by specified entity:
Geomdebug Geometry <entity_list> [interval <n>] [index <n>] [TEXT]
[GRAPHIC] [attributes]

The following command lists (TopologyBridge) topology for specified entity:
Geomdebug solidmodel <entity_list> [index <n>]
[depth<n>|up<n>|down<n>]

The following command lists GroupingEntities.
Geomdebug GPE <entity_list>

234

Cubit 15.1 User Documentation

Finding Surface Overlap
The surface overlap capability finds surfaces that overlap each other, with the capability to
specify a distance and angle range between them. This is useful for debugging geometry
imprinting and merging problems, as well as for finding gaps in large assembly models. Finding
overlapping geometry is done using the command:

Find [Surface] Overlap [{Body|Surface|Volume} <id_list> [Filter_Sliver]
If a list of entities is not specified, all bodies in the model are checked. By default the command
does not check the surfaces within a given body against each other; rather, it only checks
surfaces between bodies. This can be overridden by inputting a surface list (i.e. find overlap
surface all), or with a setting (see below).
The filter_sliver option will remove false positives from the list by weeding out sliver surfaces
that have a merged curve between them. The following pictures is an example of a sliver surface.

Figure 1. Example of a sliver surface

If curves 27 and 29 are merged before you run the find overlapping surface checkthe user will
get the two surfaces in the picture as an overlapping surface pair. However, if the filter_sliver
keyword is used, Cubit will not find the two surfaces to be overlapping.
Facetted Representation
This command works entirely off of the facetted surface representation of the model (the facetted
representation is what you see in a shaded view in the graphics). There are inherent advantages
and disadvantages with this method. The biggest advantage is avoidance of closest-point
calculations with NURBS based geometry, which tends to be slow. This method also eliminates
possible problems with unhealed ACIS geometry. The disadvantage is working with a less
accurate (i.e., facetted) representation of the geometry. To circumvent problems with this
facetted geometry, various settings can be used to control the algorithm. For example, you might
consider using a more accurate facetted representation of the model - see below.

235

Find Overlap Settings
Various settings are used to control the precision and handling of overlaps during the find
overlap process. A listing of the settings that find overlap uses is printed using the command:

Find [Surface] Overlap Settings
These settings, and the commands used to control them, are described below.
Facet - Absolute/Angle - The angular tolerance indicates the maximum angle between normals
of adjacent surface facets. The default angular tolerance is 15 - consider using a value of 5 . This
will generate a more accurate facetted representation of the geometry for overlap detection. This
can be particularly useful if the overlap command is not finding surface pairs as you would
expect, particularly in "curvy" regions. Note however that the algorithm will run slower with
more facets. The distance tolerance means the maximum actual distance between the generated
facets and the surface. This value is by default ignored by the facetter - consider specifying a
reasonable value here for more accurate results.

Set Overlap [Facet] {Angle|Absolute} <value>
Gap - Minimum/Maximum - the algorithm will search for surfaces that are within a distance
from the minimum to maximum specified. The default range is 0 to 0.01. Testing has shown this
to be about right when searching for coincident surfaces. Gaps can be found by using a range
such as 3.95 to 5.05.

Set Overlap {Minimum|Maximum} Gap <value>
Angle - Minimum/Maximum - the algorithm will search for surfaces that are within this angle
range of each other. The default range is 0.0 to 5.0 degrees. Testing has shown that this range
works well for most models. It is usually necessary to have a range up to 5.0 degrees even if you
are looking for coincident surfaces because of the different types of faceting that can occur on
curvy type surfaces. For example, for the case of a shaft in a hole, the facets of the shaft usually
won't be coincident with the facets of the hole, but may be offset by a certain distance
circumferentially with each other. The 5 degree max angle range will account for this. If you find
that the algorithm is not finding coincident surfaces when it should, you can increase the upper
range of this value. Note that this parameter is useful also for finding plates coming together at
an angle.

Set Overlap {Minimum|Maximum} Angle <value>
Normal - this setting determines whether to search for surfaces whose normals point in the same
direction as each other (same), away from each other (opposite) or either (any). The default is
ANY, but it may be useful to limit this search to opposite, as this would be the usual case for
most finds.

Set Overlap Normal {ANY|opposite|same}
Tolerance - two individual facets must overlap by more than this area for a match to be found.
Consider the two cylindrical curves at the interface of the shaft and the block in Figure 2. Note
that some of the facets actually overlap, even though the curves will analytically be coincident.
You can filter out false matches by increasing the overlap tolerance area. The default value for
this setting is 0.001.

Set Overlap Tolerance <value>

236

Cubit 15.1 User Documentation

Figure 2. Possible false find due to overlap (tolerance will prevent finding match)

Group - the surface pairs found can optionally be placed into a group. The name of the group
defaults to "overlap_surfaces".

Set Overlap Group {on|OFF}
List - by default the command lists out each overlapping pair - this can be turned off using the
command:

Set Overlap List {ON|off}
Display - by default the command clears the graphics and displays each overlapping pair - this
can be turned off using the command:
Set Overlap Display {ON|off}
Body - by default the command will not search for overlapping pairs within bodies - only
between different bodies. Turn this setting on to search for pairs within bodies. Note however
that this will slow the algorithm down.

Set Overlap [Within] {Body|Volume} {on|OFF}
Imprint - If on, Cubit will imprint the overlapping surfaces that it finds together. This will often
force imprints that just imprinting bodies together will miss. For each pair of overlapping
surfaces, the containing body of one surface is imprinted with the individual curves of the other
surface, until the resulting surfaces no longer overlap.

Set Imprint {on|OFF}

Geometry Accuracy
The accuracy setting of the ACIS solid model geometry can be controlled using the following
command:

[set] Geometry Accuracy <value = 1e-6>
Some operations like imprinting can be more successful with a lower accuracy setting (i.e., 0.1 to
1e-5). However, it is not recommended to change this value. Be sure to set it back to 1e-6 before
exporting the model or doing other operations as a higher setting can corrupt your geometry.

Regularizing Geometry
The regularize command removes unnecessary topology, which in effect reverses the imprint
operation. This can help clean up the model from extra features that are unnecessary for the
geometric definition of the model. The following command regularizes the model:

Regularize Body|Group|Volume|Surface|Curve|Vertex <range>

237

If you are frequently using web-cutting or other boolean operations to decompose your
geometry, it may be convenient to always generate regularized geometry. To set creation of
regularized geometry during boolean operations use the following command:

Set Boolean Regularize [ON | off]

Stitching Sheet Bodies
The stitch command stitches together the specified sheet bodies into either a larger sheet body or
a solid volume(s). The tolerance value can be used when these sheet bodies don't line up exactly
along the edges. This is common for IGES and STEP models. Only manifold stitching is
performed, i.e., edges will be shared with no more than two surfaces.

Stitch {Body|Volume} <id_range> [Tolerance <value>] [No_tighten_gaps]
This command has three stages to it:

1. Stitch the surfaces together along overlapping edges Normally IGES and some STEP
files do not contain topological information that links surfaces together to share bounding
curves. Stitching is an operation that builds up this topological information.

2. Simplify geometry The command replaces splines with analytics where possible.
3. Tighten up gaps (inaccuracies) between the sheet bodies The command will build the

geometry necessary to tighten the gaps in the model.

When the stitch operation completes, a print statement lets the user know if the resulting body is
not a closed, solid body.
If the no_tighten_gaps option is included, the third step of the stitching process is excluded.
This may be necessary in very large or complex models, where the regular approach fails.

Trimming and Extending Curves
Curves can be trimmed or extended with the following command:

Trim Curve <id> AtIntersection {Curve|Vertex <id>} Keepside Vertex <id>
[near]

Curves can be trimmed or extended where they intersect with another curve or at a vertex
location. When trimming to another curve, the curves must physically intersect unless they both
are straight lines in which case the near option is available. With the near option the closest
intersection point is used to the other line - so it is possible to trim to a curve that lies in a
different plane. When trimming to a vertex, if the vertex does not lie on the curve, it is projected
to the closest location on the curve or an extension of the curve if possible.
The Keepside vertex is needed to determine which side of the curve to keep and which side to
throw away. This vertex need not be one of the curve's vertices, nor does it need to lie on the
curve. However, if it is not on the curve it will be projected to the curve and that location will
determine which side of the curve to keep.
If the curve is part of a body or surface, it is simply copied first before trimming/extending. If it
is a free curve a new curve is created and the old curve is removed. The figures below show
several examples of trimming/extending curves.

238

Cubit 15.1 User Documentation

Trimming a Curve

Figure 1. Trimming a Curve to an Intersecting Curve

Figure 2. Trimming a Curve to a Non-Intersecting Curve Using the Near Option

Figure 3. Trimming a Curve to a Vertex

239

Extending a Curve

Figure 4. Extending a Curve to An Intersecting Curve

Figure 5. Extending a Curve to a Non-Intersecting Vertex Using the Near Option

Validating Geometry
Detailed checks of geometry and topology can be performed using the validate command:

Validate {Body|Volume|Surface|Curve|Vertex|Group} <id_range>
Validate {Volume|Surface|Curve|Vertex} <range> Mesh

The Validate {...} mesh command performs a connectivity check of the mesh elements to
determine the validity of the mesh.
More rigorous checking can be accomplished with the validate geometry commands by
specifying a higher check level. Use the following command to accomplish this:

set AcisOption Integer 'check_level' <integer>
where integer is one of the following:

10 = Fast error checks
20 = Level 10 checks plus slower error checks (default)
30 = Level 20 checks plus D-Cubed curve and surface checks
40 = Level 30 checks plus fast warning checks
50 = Level 40 checks plus slower warning checks
60 = Level 50 checks plus slow edge convexity change point checks
70 = Level 60 checks plus face/face intersection checks

You can also get more detailed output from the validate command with (the default is off):
set AcisOption Integer 'check_output' on

240

Cubit 15.1 User Documentation

Note that some of the ids listed in the output of the validate command are currently meaningless,
e.g. those for coedges.
The validate command can also check for consistent surface normals and return a list of
offending surfaces. The syntax for the command is as follows:

Validate [Body] <body_id> Normal [Reference [Surface] <surface_id>]
[Reverse]

Using the "reference" keyword, a reference surface is compared to the normal consistency of all
other specified surfaces. Inconsistent surfaces can be reversed using the "reverse" keyword.

Imprint Merge
Geometry Imprinting and Merging

• Imprinting Geometry
• Merging Geometry
• Examining Merged Entities
• Merge Tolerance
• Unmerging
• Using Geometry Merging to Verify Geometry

Geometry is created and imported in a manifold state. The process of converting manifold
to non-manifold geometry is referred to as "geometry merging", since it involves merging
multiple geometric entities into single ones. When importing mesh-based geometry, the merging
step can be automatic. Imprinting is a necessary step in the merging process, which ensures that
entities to be merged have identical topology.

Examining Merged Entities
There are several mechanisms for examining which entities have been merged. The most useful
mechanism is assigning all merged or unmerged entities of a specified type to a group, and
examining that group graphically. This process can be used to examine the outer shell of an
assembly of volumes, for example to verify if all interior surfaces have been merged. To put all
the merged entities of a given type into a specified group, use the command:

Group {<`name'>|<id>} add [Surface | Curve | Vertex] with Is_merged
To put all the unmerged entities of a given type into a specified group, use the command:

Group {<`name'>|<id>} add [Surface | Curve | Vertex] with Is_merged=0
Entities can also be labeled in the graphics according to the state of their merge flag. See
the Preventing geometry from merging section for information on controlling the merge flag. To
turn merge labeling on for a specified entity type, use the command

Label {Vertex | Curve | Surface} Merge

Imprinting Geometry
To produce a non-manifold geometry model from a manifold geometry, coincident surfaces must
be merged together (See Geometry Merging); this merge can only take place if the surfaces to be
merged have like topology and geometry. While various parts of an assembly will typically have

241

surfaces, which coincide geometrically, an imprint is necessary to make the surfaces have like
topology. There are three types of imprinting:

• Regular Imprinting
• Tolerant Imprinting
• Mesh-Based Imprinting

To preview which surfaces can or should be imprinted, or to force imprints that the regular
imprint command misses, the Find Overlap command can be used.
Regular Imprinting
The commands used to imprint bodies together are:

Imprint [Volume|BODY] <range> [with [Volume|BODY] <range>] [Keep]
A body can also be imprinted with curves, vertices or positions, and surfaces can be imprinted
with curves. It is useful to imprint bodies or surfaces with curves to eliminate mesh skew,
generate more favorable surfaces for meshing, or create hard lines for paving. Imprinting with a
vertex or position can be useful to split curves for better control of the mesh or to create hard
points for paving.

Imprint Body <body_id_range> [with] Curve <curve_id_range> [Keep]
Imprint Body <body_id_range> [with] Vertex <vertex_id_range> [Keep]
Imprint {Volume|Body} [with] Position <coords> [position <coords> ...]
Imprint Surface <surface_id_range> [with] Curve <curve_id_range> [Keep]

An Imprint All will imprint all bodies in the model pairwise; bounding boxes are used to filter
out imprint calls for bodies which clearly don't intersect.

Imprint [Body] All
Tolerant Imprinting
Normal imprinting may be ineffective for some assembly models that have tolerance problems,
generating unwanted sliver entities or missing imprints altogether. Tolerant imprinting is useful
for dealing with these tolerance challenged assemblies. To determine coincident and overlap
entities, tolerant imprinting uses the merge tolerance. The commands also include an optional
tolerance value that will be used for the purposes of the single command. Specifying an optional
tolerance value will not change the default, system tolerance value.
A limitation of tolerant imprinting is that it cannot imprint intersecting surfaces onto one another,
as normal imprinting can. Tolerant imprinting imprints only overlapping entities onto one other.

Imprint Tolerant {Body|Volume} <range> [tolerance <value>]
Tolerant imprinting can also be used to imprint curves onto surfaces, provided that the tolerance
between surface and curve(s) falls within the merge tolerance. The 'merge' option will merge the
owning volume of the specified surface with all other volumes that share any curves with this
surface.

Imprint Tolerant Surface <id> with Curve <id_range> [merge] [tolerance
<value>]
Imprint Tolerant Surface <id> <id> with Curve <id_range>
[merge] [tolerance <value>]
Imprint Tolerant Surface <id> <id> [tolerance <value>]

242

Cubit 15.1 User Documentation

The second form of the command imprints the specified bounding curves of one surface onto
another surface and vice versa. Any specified curves that are not bounding either of the two
specified surfaces will not be imprinted. The 'merge' option will merge all the volumes sharing
any curve of these two surfaces, after the imprint.
It is recommended that normal imprinting be used when possible and tolerant imprinting be used
only when normal imprinting fails.
Mesh-Based Imprinting
Another form of the imprint command,

Imprint Mesh {Body | Volume} <id_list>
uses coincident mesh entities and virtual geometry to create imprints. See the Partitioned
Geometry section for more information on this command.
Imprint Settings
After imprint operations, an effort is made to remove sliver entities: sliver curves and surfaces.
Previously, all curves in participating bodies less than 0.001 were removed. Newer versions of
Cubit changed this because there might be times when the user wants sliver curves/surfaces to be
generated during an imprint operation. In order to give the user more control over the cleanup of
these sliver entities after imprint operations, a command was implemented so that the user can
set an 'imprint sliver cleanup tolerance'. The default tolerance for curves is the merge tolerance
0.0005. The default tolerance for surfaces is a suitable tolerance chosen internally based on the
bounding box of the entity. Sliver surfaces are removed whose maximum gap distance among
the long edges is smaller than the tolerance and who have at most three long edges. A long edge
is an edge whose length is greater than the specified tolerance.

Set {Curve|Surface} Imprint Cleanup Tolerance <value>
Merge Tolerance
Geometric correspondence between entities is judged according to a specified absolute numerical
tolerance. The particular kind of spatial check depends on the type of entity. Vertices are
compared by comparing their spatial position; curves are tested geometrically by testing points
1/3 and 2/3 down the curve in terms of parameter value; surfaces are tested at several pre-
determined points on the surface. In all cases, spatial checks are done comparing a given position
on one entity with the closest point on the other entity. This allows merging of entities which
correspond spatially but which have different parameterizations.
The default absolute merge tolerance used in CUBIT is 5.0e-4. This means that points which are
at least this close will pass the geometric correspondence test used for merging. The user may
change this value using the following command:

Merge Tolerance <val>
If the user does not enter a value, the current merge tolerance value will be printed to the screen.
There is no upper bound to the merge tolerance, although in experience there are few cases
where the merge tolerance has needed to be adjusted upward. The lower bound on the tolerance,
which is tied to the accuracy of the solid modeling engine in CUBIT, is 1e-6.
Finding Nearly Coincident Entities
These commands find vertex-vertex, vertex-curve and vertex-surface pairs whose separation is
within the specified tolerance range. If a tolerance range isn't specified the default will be from
merge tolerance to 10*merge tolerance. It is useful for determining if you need to expand merge
tolerance to accomodate sloppy geometry.

243

Find Near Coincident Vertex Vertex {Body|Volume} <id_range> [low_tol
<value>] [high_tol <value>]
Find Near Coincident Vertex Curve {Body|Volume} <id_range> [low_tol
<value>] [high_tol <value>]
Find Near Coincident Vertex Surface {Body|Volume} <id_range> [low_tol
<value>] [high_tol <value>]

Merging Geometry
The steps of the geometry merging algorithm used in CUBIT are outlined below:

1. Check lower order geometry, merge if possible
2. Check topology of current entities
3. Check geometry of current entities
4. If both entities are meshed, check topology of meshes.
5. If geometric topology, geometry, and mesh topology are alike, merge.

Thus, in order for two entities to merge, the entities must correspond geometrically and
topologically, and if both are meshed must have topologically equivalent meshes. The geometric
correspondence usually comes from constructing the model that way. The topological
correspondence can come from that process as well, but also can be accomplished in CUBIT
using Imprinting.
If both entities are meshed, they can only be merged if the meshes are topologically identical.
This means that the entities must have the same number of each kind of mesh entity, and those
mesh entities must be connected in the same way. The mesh on each entity need not have nodes
in identical positions. If the node positions are not identical, the position of the nodes on the
entity with the lowest ID will be used in the resulting merged mesh.
There are several options for merging geometry in CUBIT.
Merge geometry automatically

Merge All [Group|Body|Surface|Curve|Vertex] [group_results][tolerance
<value>]

All topological entities in the model or in the specified bodies are examined for geometric and
topological correspondence, and are merged if they pass the test.
If a specific entity type is specified with the Merge all, only complete entities of that type are
merged. For example, if Merge all surface is entered, only vertices which are part of
corresponding surfaces being merged; vertices which correspond but which are not part of
corresponding surfaces will not be merged. This command can be used to speed up the merging
process for large models, but should be used with caution as it can hide problems with the
geometry.
Test for merging in a specified group of geometry

Merge {Group|Body|Surface|Curve|Vertex} <id_range>[With
{Group|Body|Surface|Curve|Vertex} <id_range>] [group_results] [force]
[tolerance<value>]

All topological entities in the specified entity list, as well as lower order topology belonging to
those entities, are examined for merging. This command can be used to prevent merging of
entities which correspond and would otherwise be merged, e.g. slide surfaces.

244

Cubit 15.1 User Documentation

Force merge specified geometry entities
Merge Vertex <id> with Vertex <id> Force
Merge Curve <id> with Curve <id> Force
Merge Surface <id> with Surface <id> Force

This command results in the specified entities being merged, whether they pass the geometric
correspondence test or not. This command should only be used with caution and when merging
otherwise fails; instances where this is required should be reported to the CUBIT development
team.
Preventing geometry from merging

Body <id_range> Merge [On | Off]
Volume <id_range> Merge [On | Off]
Surface <id_range> Merge [On | Off]
Curve <id_range> Merge [On | Off]
Vertex <id_range> Merge [On | Off]

These commands provide a method for preventing entities from merging. If merging is set to off
for an entity, merging commands (e.g. "merge all") will not merge that entity with any other.
Other Merge Commands

Set Merge Test BBox {on|OFF}
This is an additional test for merging to see if a pair of surfaces should merge. First, it creates a
bounding box for each surface by summing individual bounding boxes of each of the surface's
curves. A comparison is then made to see if these two bounding boxes are within tolerance. This
can help to weed out any potential incorrect merges that can result from non-tight bounding
boxes.
Set Merge Test InternalSurf {on|OFF|spline}
This is an extra check when merging surfaces. A point on one surface, closest to its centroid is
found. Another point, closest to this point is found on the other surface. If these two points are
not within merge tolerance, the two surfaces will not be merged. If set to on, all surface types
will be included in this check. If set with the spline option, then splines are only checked this
way; analytic surfaces are excluded. This is another check to prevent incorrect merges from
occurring.

Using Geometry Merging to Verify Geometry
Geometry merging is often used to verify the correctness of an assembly of volumes. For
example, groups of unmerged surfaces can be used to verify the outer shell of the assembly
(see Examining Merged Entities.) There is other information that comes from the Merge all
command that is useful for verifying geometry.
In typical geometric models, vertices and curves which get merged will usually be part of
surfaces containing them which get merged. So, if a Merge all command is used and the
command reports that vertices and curves have been merged, this is usually an indication of a
problem with geometry. In particular, it is often a sign that there are overlapping bodies in the
model. The second most common problem indicated by merging curves and vertices is that the
merge tolerance is set too high for a given model. In any event, merged vertices and curves
should be examined closely.

245

Unmerging
The unmerge command is used to reverse the merging operation. This is often in cases where
further geometry decomposition must be done.

Unmerge {all|<entity_list> [only]}
Un-merging an entity means that the specified geometric entity and all lower-order (or child)
entities will no longer share non-manifold topology with any other entities. For example, if a
body is unmerged, that body will no longer share any surfaces, curves, or vertices with any other
body.

[Set] Unmerge Duplicate_mesh {On|OFF}
If any meshed geometry is unmerged, the mesh is kept as necessary to keep the mesh of higher-
order entities valid. For example, if a surface shared by two volumes is to be unmerged and only
one of the volumes is meshed, the surface mesh will remain with whichever surface is part of the
meshed volume.
When unmerging meshed entities, the default behavior of the code is that the placement if the
mesh is determined by the following rules:

• If neither entity has meshed parent entities, the mesh is kept on one of the two entities.
• If one entity has a meshed parent entity, the mesh is kept on

that entity.
• If both entities have meshed parents, the mesh is kept on one

and copied on the other.

If unmerge duplicate_mesh is turned on, the rules described above are overwritten and
whenever a meshed entity is unmerged the mesh is always copied such that both entities remain
meshed.
To get back to the default behavior, turn unmerge duplicate_mesh off.
Virtual Geometry
Virtual Geometry

• Composite Geometry
• Partitioned Geometry
• Collapsing Geometry
• Simplify Geometry
• Deleting Virtual Geometry

The Virtual Geometry module in CUBIT provides a way to modify the topology of the model
without affecting the underlying ACIS geometry representation and without making changes to
the actual solid model. Virtual Geometry includes the capability to composite or partition
geometry as well as creates new virtual geometric entities. Virtual Geometry operations are most
often used as a tool for adjusting the geometry to allow mapping, sub-mapping or sweeping mesh
generation schemes to be applied.
The advantage to using Virtual Geometry is that all operations are reversible. With standard
geometry modification commands, changes are made to the underlying geometry representation
and cannot be changed once effected. With virtual geometry, the original solid model topology
can be easily restored. This is useful when geometry modifications are made in order to apply a

246

Cubit 15.1 User Documentation

particular meshing scheme. Virtual geometry can be applied and later removed once the part has
been meshed.

Collapse Geometry
Collapse Geometry
The collapse geometry commands use virtual geometry to tweak small angles and curves to
improve meshability of geometry models. The following options for collapsing geometry are
available:

• Collapse Angle
• Collapse Curve
• Collapse Surface

Collapse Angle
The collapse command allows the user to collapse small angles using virtual geometry. The
command syntax is:

Collapse Angle at Vertex <id> Curve <id1> [Arc_length <length>] Curve
<id2> [Arc_length <length> | Same_size | Perpendicular | Tangent]
[Composite_vertex <angle>] [Preview]

The collapse angle command is used to eliminate small angles at vertices, where curves meet at a
tangential point. The command will split each curve at a specified distance (δ1 and δ2) as shown
in Figure 1, and create two new vertices along those curves. The remaining small angle will be
composited into its neighboring surface using virtual geometry. The options of the command
allow you to specify where to split each curve. You must input a distance for the first curve (δ1),
but the second location can be determined based on the length and direction of the first curve.

Figure 1. Collapse angle syntax

The arclength option will split each curve at a specified distance δ1 and δ2, (See Figure 1)
measured from the vertex. You must input at least one arclength for each of the options listed
below.
The same_size option will split curve 2 so that the two resulting curves, δ1 and δ2, are the same
length as shown in Figure 2.

247

Figure 2. Collapse angle using the same_size option

The perpendicular option will split curve 2 so it is perpendicular to the split location on curve 1,
as shown in Figure 3.

Figure 3. Collapse angle using the perpendicular option

The tangent option will split curve 2 where a line tangent to curve 1 at the split location
intersects curve 2, as shown in Figure 4.

Figure 4. Collapse angle using the tangent option

The composite_vertex option automatically composites resulting surfaces if there are only two
curves left at the vertex, and the angle is less than a specified tolerance.
The preview option will preview composited surface before applying changes.

248

Cubit 15.1 User Documentation

Figure 5. An example of a meshed surface that is generated after using the collapse angle

command.

Collapse Curve
The collapse curve command allows the user to collapse small curves using virtual geometry. It
is intended to be used in cases where removing a small curve to simplify topology will facilitate
meshing. The operation can be thought of as reconnecting curves from one vertex on the small
curve to the other vertex. If the user doesn’t specify which vertex to keep during the operation
CUBIT will choose one of the vertices. The operation is performed using virtual partitions and
composites on the curves and surfaces surrounding the small curve. The command syntax is:

Collapse Curve <id> [Vertex <id>] [Ignore] [Real_split]
The vertex keyword allows the user to specify which vertex on the small curve to keep during
the operation or in other words which vertex to "collapse to". Depending on the surrounding
topological configuration some vertices cannot currently be chosen so if the user specifies a
vertex to collapse to that results in a complex topological configuration that CUBIT can’t
currently handle the user will be notified and encouraged to pick a different vertex. If the user
doesn’t specify a vertex CUBIT will attempt to choose the “best” vertex to keep based on
surrounding topology and geometry. Currently, the collapse curve command only handles curves
where the vertex that is NOT retained has a valence of 3 or 4.
The ignore keyword allows the user to specify whether or not small portions of surfaces that are
partitioned off of one surface and composited with a neighboring surface during the collapse
curve operation are considered when evaluating the new composite surface. By specifying
the ignore option the user tells CUBIT that these small surfaces will be ignored in future
evaluations of the composite surface. This can be beneficial in cases where the small surface
makes a sharp angle with the neighboring surface it is being composited with. These first
derivative discontinuities of composite surfaces can make it difficult for the meshing algorithms
to proceed and ignoring the small surfaces during evaluation can help remedy this problem. By
default the small surfaces will not be ignored.
The real_split option tells CUBIT to use the solid modeling kernel's (ACIS) split surface
functionality to do the splitting rather than using virtual partitioning. The result is that you only
have virtual composites at the end and no virtual partitions. The main advantage of using this
option is that the solid modeling kernel's split operation is often more reliable than the virtual
partition.

249

Figure 1 shows a typical example where the collapse curve command should be used to simplify
the topology for meshing.

Figure 1. Example where the collapse curve operation is needed.

Figure 2 shows the above example after collapsing the small curve

Figure 2. Above example after collapsing the small curve.

Collapse Surface
The collapse surface command allows the user to remove surface boundaries from the model.
This is accomplished by splitting the surface at two given locations and combining it into two
adjacent surfaces using virtual geometry operations. The command syntax is:

Collapse Surface <id> Across Location1 Location 2 With Surface <id_list>
[Preview]

The locations option can use any of the general Cubit location commands. However, the vertex
and curve options are among the most useful location options. For example, the command

250

Cubit 15.1 User Documentation

collapse surface 15 across vertex 128 curve 40 with surface 26 117
would split surface 15 by the line that is formed between vertex 128 and the midpoint of curve
40. It would then composite the two parts of surface 15 that are adjacent to surfaces 26 and 117.
The result is that three surfaces have been reduced to two.
The collapse surface command is most useful in removing blended surfaces (i.e. fillets and
chamfers) from a model. For example, Figure 1 below shows a set of highlighted surfaces on a
bracket. By collapsing all these surfaces the model shown in Figure 2 is created. Collapsing the
surfaces for this model simplifies the model and allows for the creation of a higher quality mesh.

Figure 1. Bracket with chamfered edges.

Figure 2. Bracket after highlighted edges have been collapsed

Composite Geometry
Composite Geometry

• Composite Curves
• Composite Surfaces

251

The virtual geometry module has the capability to combine a set of connected curves into a
single composite curve, or a set of connected surfaces into a single surface. The general purpose
is to suppress or remove the child geometry common to those entities being composited. For
example, compositing a set of curves suppresses the vertices common to those curves, thus
removing the constraint that a node must be placed at that vertex location.
The basic form of the command to create composites is:

Composite Create {Surface|Curve} <id_list>
This command will composite as many surfaces (or curves) as possible, in many cases creating
multiple composites.
The entities combined to create the composite must either all be unmeshed or all be meshed. A
meshed composite surface can not be removed unless the mesh is first deleted.
Care should be taken when compositing over large C1 discontinuities as it may cause problems
for the meshing algorithms and may result in poor quality elements. C1 discontinuities are
corners or abrupt changes in the surface normal.
The command to remove a composite is:

Composite Delete {Surface|Curve} <id>

Composite Curves
The full command for the creation of composite curves is:

Composite Create Curve <id_range> [Keep Vertex <id_list>] [Angle
<degrees>]

The additional arguments provide two methods to prevent vertices from being removed from the
model or composited over. The first method, keep vertex explicitly specifies vertices which are
not to be removed. This option can also be used to control which vertex is kept when
compositing a set of curves results in a closed curve.
The angle option specifies vertices to keep by the angle between the tangents of the curves at
that vertex. A value less than zero will result in no composite curves being created. A value of
180 or greater will result in all possible composites being created. The default behavior is an
empty list of vertices to keep, and an angle of 180 degrees.

Composite Surfaces
The general command for composite surface creation is:

Composite Create Surface <id_range> [Angle <degrees>] [Nocurves] [Keep
[Angle <degrees>] [Vertex <id_list>]]

Related Commands
Graphics Composite {on|off}

The angle argument prevents curves from being removed from the model or composited over.
Composites will not be generated where the angle between surface normals adjacent to the curve
is greater than the specified angle.
When a composite surface is created, the default behavior is to also to composite curves on the
boundary of the new composite surface.

252

Cubit 15.1 User Documentation

Curves are automatically composited if the angle between tangents at the common vertex is less
than 15 degrees. The nocurves option can be used to prevent any composite curves from being
created.
The keep keyword can be used to change the default choice of which curves to composite. The
arguments following the keep keyword behave the same as for explicit composite curve creation.
The nocurves and keep arguments are mutually exclusive.

Controlling the Surface Evaluation Method for Composite Surfaces
It typically takes longer to mesh a single composite surface than to mesh the surfaces used in the
creation of the composite. To improve speed, composite surfaces use an approximation method
to evaluate the closest point to a trimmed surface. However, this evaluation method may give
poor results for composites of highly convoluted surfaces.
The virtual geometry module provides a way to change the way surfaces are evaluated using the
following command:

Composite Closest_pt Surface <id> {Gme|Emulate}
The default behavior is to use the emulate method, as it is typically considerably faster.
Specifying the gme option will force the specified composite surface to use the exact calculation
of the closest point to a trimmed surface, as provided by the solid modeler. The gme option,
however, can be considerably slower.

Composite Determination
The composite create surface command is non-deterministic in some circumstances. When
three or more adjacent surfaces are to be composited, all the surfaces may not be able to be
composited into a single surface as illustrated in Figure 1. In this case different subsets of the
surfaces may be composited and the command will choose arbitrary subsets to composite. As an
example, there are three surfaces A, B, and C, all adjacent to each other. The common curve
between A and B is AB, the common curve between B and C is BC, and the common curve
between A and C is CA. If the curve BC cannot be removed, either due to the angle specified in
the composite command, or because there is a fourth surface, D, also using that curve, the
command will arbitrarily choose to either composite A and B or A and C.

253

Figure 1. In some cases, the program will make a determination of which surfaces to

composite.

Partitioned Geometry
Partitioned Geometry
Partitioning provides a method to introduce additional topology into the model, to better
constrain meshing algorithms. This is accomplished by splitting, or partitioning, existing curves
or surfaces.

• Partitioned Curves
• Partitioned Surfaces
• Partitioned Volumes
• Using Mesh Intersections to Partition Surfaces
• Removing Partitions

Removing Partitions
There are two commands used to remove partitions:

Partition Merge {Curve|Surface|Volume} <id_list>
The command combines existing partitions where possible. This command is similar to
the composite create command. The difference is that this command is special-cased for
partitions, and will result in more efficient geometric evaluations. If all the partitions of a real
solid model entity are merged, such that there is only one partition remaining, the virtual
geometry will be removed, and the original solid model geometry will be restored to the model.

254

Cubit 15.1 User Documentation

The CUBIT delete command can also be used for removing partitions. See Deleting Virtual
Geometry for a description of its use.

Using Mesh Intersections to Partition Surfaces
To assist in various mesh editing tasks such as joining, a mesh-based imprinting capability is
provided. The command

Imprint Mesh {Body | Volume} <id_list>
determines imprint locations using the mesh on the surfaces of the specified bodies or volumes.
Regions of coincidence between the surfaces is determined by searching for coincident nodes in
the mesh of the surfaces. Virtual geometry is then used to partition the surfaces and curves at the
boundary of these regions of coincident mesh.
The imprint mesh functionality differs from a normal geometric imprint in the following ways:

• The location of the imprint is determined from coincidence of mesh nodes.
• The mesh remains intact through the imprint operation.
• Virtual geometry is used to create the imprint.
• The imprinting can be done on all types of geometry (including mesh-based geometry,

merged geometry, and virtual geometry.)

The following is a trivial example of this capability. The following commands create two
meshed blocks:

brick width 10
brick width 6
body 2 move x 8
volume 1 2 size 1
mesh volume 1 2

Figure 1 shows the results of these commands.

Figure 1. Two adjacent meshed volumes. The coincident meshes will form the basis of the

imprint operation.
The mesh of the blocks can be joined by first doing a mesh-based imprint and then merging:

255

imprint mesh body 1 2
merge body 1 2

Figure 2. shows the results of the imprint operation. A meshed surface is created at the interface
between the two meshed volumes. The nodes on the new surface are shared by the neighboring
hexahedra of both volumes.

Figure 2. The imprinted surface. Adjacent volume meshes joined at the interface surface.

Partitioned Curves
There are four methods for specifying locations at which to partition curves:

Partition Create Curve <curve_id> {Fraction <fraction_list> | Position
<xpos> <ypos> <zpos> | [with] <vertex_list> | <node_list> }

The first two forms of the command create additional vertices and use those vertices to split a
curve. The third form of the command uses existing vertices to split the curve. The fourth form
of the command uses existing nodes to split the curve.
Using the fraction option, vertices are created at the specified fractions along the curve (in the
range [0,1].) Subsequently, the curve is split at each vertex, resulting in n+1 new curves, where n
is the number of fraction values specified.
Using the position option, vertices are created at the closest location along the curve to each of
the specified position. Subsequently, the curve is split at each vertex, resulting in n+1 new
curves, where n is the number of positions specified.
If the node option is used, meshed curves may be partitioned. The specified nodes must lie on
the curve to be partitioned. The curve is split at each node specified, and any other mesh entities
are divided appropriately amongst the curve partitions.

Partitioned Surfaces
There are several forms of the command to partition a surface. A surface may be partitioned
using hard points, curves, polylines, mesh edges, mesh faces or mesh triangles.

• Partitioning with Vertices or Nodes
• Partitioning with Curves
• Partitioning with Mesh Edges

256

Cubit 15.1 User Documentation

• Partitioning with Mesh Faces or Triangles

Partitioning with Vertices and Nodes

Partitioning with Hard Points
There are two methods of partitioning a surface using vertices and nodes. The first method is to
create a set of hard points using nodes, vertices, or coordinates that constrain the mesh to
particular points on the surface. The syntax is:

Partition Create Surface <id> Vertex <id_list> [Individual]
Partition Create Surface <id> Node <id_list> [Individual]

Partitioning with Polylines
The second method is to define a polyline using a set of vertices or coordinates. This method
splits the surface using a polyline defined by the a list of positions specified as either coordinate
triples, or existing vertices. The polyline is projected to the surface to define the curve for
splitting the surface. If only one position is specified a zero-length curve with a single vertex will
be created The syntax is identical to above WITHOUT the individual option.

Partition Create Surface <id> Vertex <id_list>
Partition Create Surface <id> Position <x> <y> <z> [[Position] <x> <y> <z>
...]

In the following simple example, the surface is partitioned using both methods. On the left half
of the object, the surface is partitioned using the individual option (vertices 11 12 15 13). On the
right half, a polyline is used (vertices 9 10 16 14). All of the free vertices can then be deleted,
leaving the virtual curves shown in the second picture. Vertices 19 20 21 and 22 are all zero-
length curves. The small 'v' in parentheses is to indicate that it is virtual geometry. The resulting
mesh is shown in the third picture. Notice that the polyline constrains the entire curve to the
mesh, while the hardpoints constrain only that individual point.

257

Figure 1. Partitioning a Surface Using Vertices

Partitioning with Curves
This form of the command splits the existing surface into several surfaces by creating curves that
approximate the projection of the specified existing curves onto the surface. The syntax is:

Partition Create Surface <id> Curve <id_list>

Partitioning with Mesh Edges
Meshed surfaces may be partitioned with mesh edges. The specified mesh edges must be owned
by the surface to be partitioned. The shape of the curve(s) used to split the surface is specified by
a set of mesh edges.
If the split location is specified by a series of mesh edges, and the specified mesh edges form a
closed loop, the node option may be used to control which node the vertex is created at.

Partition Create Surface <id> Edge <id_list> [Node <node_id>]

Partitioning with Faces or Triangles
Surfaces may also be partitioned by specifying a list of triangles or faces (quads). The boundary
of the list will automatically be detected and new curves and vertices created at the appropriate
locations. Curves are created from the mesh edges and used to split the surface. The surface
mesh is split and assigned to the appropriate surface partitions.

Partition Create Surface <id> Face|Tri <id_list>

Partitioned Volumes
To partition a volume by giving a center and radius:

Partition Create Volume <id> Center [Location] {options} Radius <val>
This command splits the existing volume into two volumes. All volume elements that lie within
the specified radius of the specified center location are identified, and the exterior faces of these
elements are used to create a surface and partition the volume. The center can be specified with
any of the location options.

258

Cubit 15.1 User Documentation

Figure 1 shows an example of a partitioned volume. A cube that has been map meshed is
partitioned using a center at one of its vertices. The result is two distinct volumes with a surface
separating the two. The interface surface is composed of the faces of the interior hex elements.

Figure 1. A partitioned volume

This command may be useful for separating small regions of a meshed volume so that remeshing
or mesh improvement may be performed locally.

Deleting Virtual Geometry
Removing Virtual Geometry
The following command removes all lower-order virtual geometry from the specified entities.

Virtual Remove <entity_list>
Examples:

virtual remove surface 5
Removes all composite and partition curves from surface 5.

virtual remove body all
Remove all virtual geometry from all bodies.
For removing individual virtual entities, see the sections of the documentation for each type of
virtual entity:

• Composite curves
• Composite surfaces
• Partition curves
• Partition surfaces

259

Using The Delete Command With Composites
If the general delete command is invoked for a composite surface, the composite surface will be
removed, and the original surfaces used to define the composite will be restored to the model.
The defining surfaces are NOT also deleted. As with any other non-virtual surfaces, the delete
command will fail if the composite has a parent volume.
To delete composite surfaces with a parent volume, the composite delete command can be used.
The behavior is analogous for composite curves.
If the delete command is used on a volume containing a composite surface or curve, or on a
surface containing a composite curve, the entire volume or surface will be deleted, including the
original entities used to define the composite, as those entities are also children of the entity
being deleted.
Using the Delete Command With Partitions
It is recommended that the delete command not be used with partitions, as it may break
subsequent usage of the merge and delete forms of the partition command for other partitions of
the same real geometry entity. However, if the delete command is used for partitions, the
behavior is to delete the specified partition, and when the last partition of the real geometry is
deleted, to restore the original geometry.
The delete command can also be used on parents of partitions. For example, a volume containing
partitioned surfaces, or a surface containing partitioned curves can be deleted. In this case, the
specified entity will be deleted along with all of its children, including the partition entities, and
the original entities that were partitioned.

Simplify Geometry
Simplifying topology by compositing individually selected surfaces is often a tedious and time-
consuming task. The simplify command addresses the tedium by automatically compositing
surfaces and curves based on selected criteria between neighboring entities. Figure 1 shows a
typical example of simplify command usage (‘simplify volume 1 angle 15’).

260

Cubit 15.1 User Documentation

Figure 1. Typical Simplify command usage

The command syntax and discussion items are shown below.
Simplify {Volume|Surface|Curve} <range> [Angle< value >] [Respect
{Surface <id_range> | Curve <id_range> | Vertex <id_range>| Imprint |
Fillet}] [Local_Normals] [Preview]

Feature Angle
Feature angle is defined as the angle between the average facet normals of two neighboring
surfaces. If the angle is less than the specified angle then the two surfaces are composited
together (assuming any other specified criteria are met). Feature angle is always used as criteria
and if an angle is not specified the value is set to 15 degrees.

261

Automatically Compositing Curves
The simplify command can also be used to automatically composite curves using an angle
tolerance. Curves will be composited together only if they are explicitly specified in this
command, and not as the result of two surfaces being composited.
Respecting Vertices, Curves and Surfaces
Surfaces, curves, and vertices can be specified to prevent geometry features from automatically
being composited. Figure 2 show an example of respecting a surface (‘simplify vol 1 angle 15
respect surf 289’).

Figure 2 Respecting a surface

For complex geometries, it is often useful to preview the simplify command and then add any
respected geometry to the command respect lists.
Respecting Imprints
Curves created by imprints can automatically be respected by the simplify command. Figure 3
shows an example of geometry with split fillets.

Figure 3 Respecting imprint geometry

Notice that in the split curves are respected by the Simplify command (‘simplify vol 1 angle 40
respect imprint’).
Using Local Normals
By default the command will compare the average normal of two adjacent surfaces to determine
whether they should be composited. By issuing the local_normal option, the test will be modifed
slightly. The modified test will compare the maximum difference between normals along the
shared curve(s) for the two surfaces.

262

Cubit 15.1 User Documentation

Figure 4. Comparison of surface normals using the average surface normal method (on the

left) and local normal method (on the right).
Other Options
The preview option shows what curves are respected without compositing any surfaces. It should
also be pointed out that multiple respect specifications can be chained together. For example:

Simplify volume 1 angle 15 respect curve 1 respect imprint respect fillet
preview

Geometry Orientation
The orientation of surface and curve geometry is the direction of the normal and tangent vectors
respectively.
Each surface has a forward (or top) side. The evaluation of the surface normal at any point on the
surface will return a vector at that point, orthogonal to the surface and directed towards the
forward side of the surface. The mesh faces generated on each surface will have the same normal
direction as their owning surface.
Each curve has a forward direction and a corresponding start and end vertex. The direction of the
curve is from start to end vertex. The evaluation of the tangent vector of the curve at any point
along the curve will result in a vector that is both tangent to the curve and pointing in the forward
direction of the curve (towards the end vertex along the path of the curve.) The mesh edges
created on each curve will be oriented in the same direction as their owning curve. The exported
nodes and edges of a curve mesh will be written in the order they occur along the path of the
curve.
Higher-dimension geometry has uses lower-dimension geometry with an associated sense
(forward or reversed) for each lower-dimension entity. For example, a volume as a sense for
each surface used to bound the volume. If the surface normal points outside the volume, then the
volume uses the surface with a forward sense. If the surface normal points into the interior of the
volume, the volume uses the surface with a reversed sense. Similarly a surface is bounded by a
set of curves forming a loop such that the direction of the loop and the sense of each curve
results in a cycle that is counter-clockwise around the surface normal.
Adjusting Orientation
By default, a surface is oriented so that its normal points OUT of the volume of which it is a part.
For a merged surface (a surface which belongs to more than one volume) or a free surface (a
surface that belongs to no volume, also known as a sheet body), the orientation of the surface is
arbitrary. The orientation of a surface influences the orientation of any elements created on that

263

surface. All surface elements have the same orientation as the surface on which they are created.
The following commands are available to adjust the normal-direction for a surface:

Surface <id_range> Normal Opposite
Surface <id_range> Normal Volume <id>

The orientation of a surface can be flipped from its current orientation by using the "Opposite"
keyword. The orientation of a merged surface can be set to point OUT of a specific volume by
specifying that volume in the "Volume" keyword.
Occasionally, volumes will be created "inside-out". The command:

Reverse {Body|Volume|Surface} <id_range>
will turn a given volume, surface, or body inside out. This should be equivalent to reversing the
normals on all the surfaces. This shouldn't be encountered very often, as it is a very rare
condition.
The following commands are available to adjust the tangent direction of a curve:

Curve <id_range> Tangent Opposite
Curve <id_range> Tangent {Forward|Reverse} Surface <id>
Curve <id_range> Tangent {Start|End} Vertex <id>

The first command reverses the tangent direction of the curve. The second command sets the
tangent direction such that it is used by a specific surface with a specified sense. The third
command sets the tangent direction of the curve such that the curve starts or ends with the
specified vertex. For the latter two forms of the command, the curve must be adjacent to the
specified surface or vertex.
The below command can be used to change the orientation of multiple curves at once. With the
direction option, the curve will be oriented along the specified direction. With the location
option, the vertex closest to the give location becomes the start vert in the oriented curve. The
curve orientation can be reversed using the opposite argument. Also, a vertex id can be specified
to make it the start vertex in the oriented curve.

Curve <id_range> Orient Sense {direction (options)|location (options)|vertex
<id_range>} [Opposite]

The above command is useful in changing the orientation of multiple curves at once using
various options described. This becomes helpful, e.g., when bias is applied on multiple curves.
By default, bias depends on the orientation of the curve, i.e., bias begins at start vertex.

Groups
Geometry Groups
Groups provide a powerful capability for performing operations on multiple geometric entities
with minimal input. They can also serve as a means for sorting geometric entities according to
various criteria. The following describes the Group operations available in CUBIT:
When a group is meshed, CUBIT will automatically perform an interval matching on all surfaces
in the group (including surfaces that are a part of volumes or bodies in the group).

• Basic Group Operations
• Groups in Graphics
• Propagated Hex Groups

264

Cubit 15.1 User Documentation

• Quality Groups

There are several utilities in CUBIT which use groups as a means of visualizing output. These
utilities are described elsewhere, but listed here for reference:

• Webcut results
• Merged and unmerged entities
• Sweep groups
• Interval matching
• Disassociated Meshes
• Importing ACIS, IGES, STEP, Free Meshes

Propagated Groups
Propagated Groups
Creating propagated groups is a mechanism for joining groups of elements that meet specific
criteria. For hex groups it might be grouping hexes from a hex mesh using sweep-type criteria.
For surface elements, it might be grouping faces or tris into sidesets based on angle criteria.

• Propagated Hex Groups
• Propagated Surface Groups using the Seed Method

Naming Convention for Propagated Hex Groups
A special naming convention can be used for the propagated groups, best described by an
example.
The following command will create a hierarchy of logically named groups, as follows.

group 'W1P1T1' add propagate surf 1 end surf 2 multiple 1
The hierarchy looks like this:

W1
W1P1

W1P1T1
W1P1T2
W1P1T3
...
W1P1T10

Where W1P1 is contained within W1, and W1P1T1, W1P1T2, etc.. are contained within W1P1.
The software simply looks for numerical numbers in the group name and parses out the correct
grandparent, parent and child names from the substrings. There must be exactly 3 substrings in
the group name, each ending with an integer for the command to work properly.
A subsequent command:

group 'W1P2T1' add propagate surf 3 end surf 5 multiple 1
will add a parent group to W1, called W1P2, and the subsequent child groups:

265

W1
W1P1

W1P1T1
W1P1T2
W1P1T3
...
W1P1T10

W1P2
W1P2T1
W1P2T2
W1P2T3
...
W1P2T10

Propagated Hex Groups

• Starting on a Surface
• Starting on a Face

Propagated hex groups are a way of grouping hexes from a hex mesh using sweep-type criteria.
For example, creating a group containing all hexes between two specified mesh faces.
Note: the first examples below are based on first executing these commands:

brick width 10
volume 1 size 1
mesh volume 1

Propagated Hex Group Starting on a Surface
Starting on a surface can end at a surface or can end after the number of times the user specifies.

• Ending at a Surface
• Number of Times
• Ending at a Surface with Multiple
• Number of Times with Multiple
• Ending at a Surface with Direction
• Number of Times with Direction

Ending at a Surface

Group ['name' | <id>] Add Hex Propagate Surface <id> Target Surface <id>
Example

group 2 add hex propagate surface 1 target surface
Result: Group 2 will be created containing 1000 hexes

Number of Times

266

Cubit 15.1 User Documentation

Group ['name' | <id>] Add Hex Propagate Surface <id> Times <number>
Example

group 2 add hex propagate surface 1 times 4
Result: Group 2 will be created containing 400 hexes
Both methods, ending at surface or number of times, can be used with the "multiple" option
which will create several groups depending upon the multiple number specified.

Ending at a Surface with Multiple

Group ['name' | <id>] Add Hex Propagate Surface <id> Target Surface <id>
Multiple <number>

Example
group 2 add hex propagate surface 1 target surface 2 multiple 2

Result: Five groups will be created and stored with their respective ids of multiple 2, these
groups will be stored in the parent group, Group 3, and Group 3 will be stored in the grand
parent group, Group 2.

Number of Times with Multiple

Group ['name' | <id>] Add Hex Propagate Surface <id> Times <number>
Multiple <number>

Example
group 2 add hex propagate surface 1 times 10 multiple 5

Result: Two groups will be created and stored with their respective ids of multiple 5, these two
groups will be stored in the parent group, Group 3, and Group 3 will be stored in the grand
parent group, Group 2.

If number of times is specified and the direction is ambiguous, the surface direction or the node
direction can be specified to direct the propagation. If the end surface is specified, only a node
direction can be specified to direct the propagation. When specifying the node direction, the node
has to be picked such that when the hexes are propagated, the picked node lies in these
propagated hexes. If that node is never reached while propagating, the direction is not found and
zero hexes will be included in the specified group.
Note: for the examples below, the result can be seen by executing these commands:

brick x 10
vol 1 size 1
brick width 10
body 2 move 10
volume all size 1
merge all
mesh volume all

Ending at Surface with Direction

267

Group ['name' | <id>] Add Hex Propagate Surface <id> Times <number>
Direction Node <id>

Example
group 2 add hex propagate surface 6 target surface 12 direction node 1530

Result: Group 2 will be created containing 400 hexes
Note: The direction command and the multiple command can be combined (i.e. group 2 add
propagate surface 6 times 4 multiple 2 direction node 1530)

Number of Times with Direction

Group ['name' | <id>] Add Hex Propagate Surface <id> Times <number>
Direction [surface <id> | node <id>]

Example
group 2 add hex propagate surface 6 times 4 direction surface 4
group 2 add hex propagate surface 6 times 4 direction node 1530

Result: group 2 will be created containing 400 hexes

Propagated Hex Group Starting on a Face
When starting on a face, the propagation method can end at a surface, end at a face or can end
after the number of times the user specifies:

• Ending at a Surface
• Ending at a Face
• Number of Times
• Ending at a Surface with Multiple
• Ending at a Face with Multiple
• Number of Times with Multiple
• Ending at a Face with Direction
• Ending at a Surface with Direction
• Number of Times with Direction

Ending at a Surface

Group ['name' | <id>] Add Hex Propagate [Source] Face <id range> Target
Surface <id>

Example
group 2 add hex propagate face 1 11 21 target surface 2

Result: Group 2 will be created containing 30 propagated hexes (10 layers of 3 hexes)

Ending at a Face

Group ['name' | <id>] Add Hex Propagate [Source] Face <id> Target Face
<id>

Example

268

Cubit 15.1 User Documentation

group 2 add hex propagate face 1 target face 1721
Result: Group 2 will be created containing 5 propagated hexes (5 layers of 1 hex)
Note: Ending at a face requires starting at one face at one time, but ending at surface allows
multiple start faces

Number of Times

Group ['name' | <id>] Add Hex Propagate [Source] Face <id range> Times
<number>

Example
group 2 add hex propagate face 2 times 4

Result: Group 2 will be created containing 4 propagated hexes (4 layers of 1 hex)

All of these methods, ending at surface, end at a face or number of times, can be used with the
"multiple" option which will create a grandparent (top-level), parent (mid-level, contained within
the grandparent) and child (bottom level, contained within the parent) groups. The child groups
will contain each hex layer (specified number of layers per child group), all organized into a
single parent group, which is organized underneath the group ID given to the command.
Subsequent propagation commands could then be executed adding to the grandparent group, but
creating a new parent and child groups. This way multiple propagation "sets" can be stored in
one grandparent group, if desired.

Ending at a Surface with Multiple

Group ['name' | <id>] Add Hex Propagate [Source] Face <id> Target
Surface <id> Multiple <number>

Example
group 2 add hex propagate face 1 target surface 2 multiple 1

Result: Ten groups will be created and stored with their respective ids, one for each layer of
hexes. These groups will be stored in the parent group, Group 3, and Group 3 will be stored in
the grand parent group, Group 2. A subsequent propagation command could be executed adding
to group 2 (the grandparent), which would create a single group contained in group 2 (the
parent), containing the hex layer groups (the children).

Ending at a Face with Multiple

Group ['name' | <id>] Add Hex Propagate [Source] Face <id> Target
Surface <id> Multiple <number>

Example
group 2 add hex propagate face 1 target face 1721 multiple 1

Result: 5 groups will be created and stored with their respective ids, one for each layer of hexes.
These groups will be stored in the parent group, Group 3, and Group 3 will be stored in the grand
parent group, Group 2. A subsequent propagation command could be executed adding to group 2
(the grandparent), which would create a single group contained in group 2 (the parent),
containing the hex layer groups (the children).

269

Number of Times with Multiple

Group ['name' | <id>] Add Hex Propagate [Source] Face <id> Times
<number> Multiple <number>

Example
group 2 add hex propagate face 1 times 10 multiple

Result: Two groups will be created and stored with their respective ids, these two groups will be
stored in the parent group, Group 3, and Group 3 will be stored in the grand parent group, Group
2.

If the end surface or end face is ambiguous, a node direction can be specified to direct the
propagation. When specify the node direction, the node has to be picked such that when the
hexes are propagated, the picked node lies in these propagated hexes. If that node is never
reached while propagating, the direction is not found and zero hexes will be included in the
specified group.

Ending at Face with Direction

Group ['name' | <id>] Add Hex Propagate [source] Face <id> Target Face
<id> Direction Node <id>

Example
group 2 add hex propagate face 1721 target face 1 direction node334

Result: group 2 will be created containing 6 hexes

Ending at Surface with Direction

Group ['name' | <id>] Add Hex Propagate [Source] Face <id range> Target
Surface <id> Direction Node <id>

Example
group 2 add hex propagate face 1 target surface 2 direction node 334

Result: group 2 will be created containing 10 hexes
Note: The direction command and the multiple command can be used together (i.e. group 2 add
propagate face 1721 end face 1 multiple 2 direction node 334)

If number of times is specified and the direction is ambiguous, a surface direction or a node
direction can be specified to direct the propagation. The node direction has the same condition as
when ending at a surface or face and that is it must lie in the propagated hexes.

Number of Times with Direction

Group ['name' | <id>] Add Hex Propagate [Source] Face <id> Times
<number>Direction [surface <id> | node <id>]

Example
group 2 add hex propagate face 110 times 4 direction surface 2
group 2 add hex propagate face 1 times 4 direction node 269

270

Cubit 15.1 User Documentation

Result: group 2 will be created contained 4 hexes
Note: The direction command and the multiple command can be used together. (i.e. group 2 add
propagate face 1721 times 4 multiple 2 direction surface 1)

Naming Convention for Propagated Hex Groups
A special naming convention can be used for the propagated hex groups, best described by an
example.
The following command will create a hierarchy of logically named groups, as follows.

group 'W1P1T1' add propagate surf 1 end surf 2 multiple 1
The hierarchy looks like this:

W1
W1P1

W1P1T1
W1P1T2
W1P1T3
...
W1P1T10

Where W1P1 is contained within W1, and W1P1T1, W1P1T2, etc.. are contained within W1P1.
The software simply looks for numerical numbers in the group name and parses out the correct
grandparent, parent and child names from the substrings. There must be exactly 3 substrings in
the group name, each ending with an integer for the command to work properly.
A subsequent command:

group 'W1P2T1' add propagate surf 3 end surf 5 multiple 1
will add a parent group to W1, called W1P2, and the subsequent child groups:

W1
W1P1

W1P1T1
W1P1T2
W1P1T3
...
W1P1T10

W1P2
W1P2T1
W1P2T2
W1P2T3
...
W1P2T10

271

Seeded Mesh Groups
It is also possible to automatically group surface mesh elements based on feature angles. Given a
seed element, the algorithm will loop over all adjacent elements and create groups of elements
whose surface normals are similar, or which fall within a certain radius. The command syntax is:

Group {<'name'>|<id>} {Add|Equals|Remove|Xor} Seed <mesh_entities>
{Feature_angle <angle> [Divergence]|Depth <number>}

The seed element may be a quad, tri, or node element. There are two methods of angle
comparison for this command. The feature angle option will compare angles of the each element
to its adjacent elements by comparing surface normals. In the case of nodes, the seed node
surface normal will be the average of the adjacent faces or tris. Nodes will be added if their
attached faces meet the angle requirements. The divergence option will compare angles to the
original seed element's surface normal. The depth option will add elements within a certain
radius.
The following figures illustrate the use of the seed method to create mesh groups using the
feature angle and divergence methods.

CUBIT> group 'mygroup1' add seed face 269 feature_angle 45

272

Cubit 15.1 User Documentation

CUBIT> group 'mygroup2' add seed face 269 feature_angle 45 divergence

The seed method of creating groups is particularly useful for creating groups on free meshes for
the purpose of assigning nodesets and sidesets.
The GUI command panel for this command is found by selecting
"Mode-Meshing", "Entity-Group", "Action-Manage Groups", then "Create with Seed." The
command panel is shown below:

273

Basic Group Operations
Geometry Groups
The command syntax to create or modify a group is:

Group ["name" | <id>] Add <list of topology entities>
For example, the command,

group "exterior" add surface 1 to 2, curve 3 to 5
will create the group named Exterior consisting of the listed topological entities. Any of the
commands that can be applied to the "regular" topological entities can also be applied to groups.
For example, mesh Exterior , list Exterior , or draw Exterior .

274

Cubit 15.1 User Documentation

Elements may specified by name as well. For example, the command
group 'interior' add surface with name 'bill' 'john' 'fred'

will add the surfaces named 'bill' 'john' and 'fred' to the group 'interior'.
Wildcards (*) can also be used with names. To add all surfaces with the substring 'bob' in their
name, use the command:

group 'interior' add surface with name '*bill*'
A topological entity can be removed from a group using the command:

Group ["name" | <id>] Remove <entity list>
The Xor operation can also be performed on entities in group. Xor means if an entity is already
in the group, the command will delete this entity from the group. If it is not in the group, the
entity is then added to the group.

Group ["name" | <id>] Xor <entity list>
The Equals operation assigns the group to be exactly the same as the list given. All other existing
members of the group will be removed.

Group ["name" | <id>] Equals <entity list>
Group Booleans
Groups may also be created from existing groups by using boolean operations. Each of these
commands will create a new group that contains entities from two existing groups. The intersect
command will create a new group that contains elements common to both existing groups.
The unite command will contain entities that exist in either group. The subtract command will
remove entities that are common to both groups and create a new group from entities that exist in
exactly one of the groups.

Group {<'name'>|<id>} Intersect Group <id> with Group <id>
Group {<'name'>|<id>} Unite Group <id> with Group <id>
Group {<'name'>|<id>} Subtract Group <id> from Group <id>

Mesh Groups
Groups may also contain mesh entities. The commands for adding and removing mesh entities
are analogous to those for geometric entities.

Group ["name" | <id>] Add {Hex|Face|Edge|Node <id_list>}
Group ["name" | <id>] Remove {Hex|Face|Edge|Node <id_list>}
Group ["name" | <id>] Xor {Hex|Face|Edge|Node <id_list>}

Group Copy
Groups may be copied as groups using the group transform commands. Child entities cannot be
moved using this command. If a child entity is in the group, its parent entity must be specified as
well. In addition, all merge partners must be specified. Only groups containing geometric entities
can be copied with these commands. If a geometry entity is meshed, the mesh will be copied as
well, unless the [nomesh] option is given. Copied entities can be moved, rotated, reflected, or
scaled as well.
Group {<'name'>|<id>} Copy [Move <x> <y> <z>] [nomesh]
Group {<'name'>|<id>} Copy [Move {x|y|z} <distance>...] [nomesh]
Group {<'name'>|<id>} Copy [Move <direction> [distance]] [nomesh]

275

Group {<'name'>|<id>} Copy [Reflect {x|y|z}] [nomesh]
Group {<'name'>|<id>} Copy [Reflect <x> <y> <z>] [nomesh]
Group {<'name'>|<id>} Copy [Rotate <angle> About {x|y|z}] [nomesh]
Group {<'name'>|<id>} Copy [Rotate <angle> About <x> <y> <z>] [nomesh]
Group {<'name'>|<id>} Copy [Scale <scale> | x <val> y <val> z <val>] [nomesh]
Group Transformations
Groups may be transformed as groups using the group transform commands. This is especially
helpful for transforming groups of free mesh elements, where no geometry exists. The command
syntax is shown below.
Group {<'name'>|<id>} [Copy [nomesh]] Move <dx> <dy> <dz>
Group {<'name'>|<id>} [Copy [nomesh]] Move {x|y|z} <distance>...
Group {<'name'>|<id>} [Copy [nomesh]] Reflect {x|y|z}
Group {<'name'>|<id>} [Copy [nomesh]] Reflect <x> <y> <z>
Group {<'name'>|<id>} [Copy [nomesh]] Reflect {x|y|z}
Group {<'name'>|<id>} [Copy [nomesh]] Reflect <x> <y> <z>
Group {<'name'>|<id>} [Copy [nomesh]] Rotate <angle> About {x|y|z}
Group {<'name'>|<id>} [Copy [nomesh]] Rotate <angle> About <x> <y> <z>
Group {<'name'>|<id>} [Copy [nomesh]] Rotate <angle> About Vertex <Vertex-1>
[Vertex] <Vertex-2>
Group {<'name'>|<id>} [Copy [nomesh]] Scale <scale> | x <val> y <val> z <val>
The nomesh option applies to the copy part of the command. If the no_mesh option is specify,
the mesh will not be copied.
Deleting Groups
Groups can be deleted with the following command:

Delete Group <id range> [Propagate]
The option propagate will delete the group specified and all of its contained groups recursively.
Cleaning Out Groups
You can remove all of the entities in a group via the cleanout command:

Group <group_id_range> Cleanout [Geometry|Mesh] [Propagate]
By default all entities will be removed - optionally you can cleanout just geometry or mesh
entities. As in delete, the propagate option will cleanout the group specified and all of its
contained groups recursively.
Groups in Graphics
In the GUI version of CUBIT, groups may be picked with the mouse.
When displaying a group containing hexes, only the outside skin of the hexes will be displayed.

Quality Groups
Groups can also be formed from the hexes or faces obtained from the quality command. Each
group formed using quality can be drawn with its associated quality characteristics {i.e. jacobian
low .2 high .3} automatically.

Group {<'name'>|id} {Add|Equals|Remove|Xor} Quality { Hex | Tet | Face |
Tri | Volume | Surface | Group } <id_range> { quality metric name (default is
SHAPE) } [High <value>] [Low <value>] [Top <number>] [Bottom
<number>]

276

Cubit 15.1 User Documentation

The following example illustrates the use of quality groups:
group 2 add quality volume 1 jacobian

In this case, if the meshed brick from the section Propagated Hex Groups is used, Group 2 will
be created and it will contain 1000 hexes with quality characteristics.
The quality metric names can be found in the Quality Assessment section of the documentation.

Attributes
Geometry Attributes
Each geometric topological entity has specific information attached to it. These
attributes specify aspects of the entity such as the color that entity is drawn in and the
meshing scheme to be used when meshing that entity. This section describes those
geometry attributes that are not described elsewhere in this manual.

• Entity Names
• Entity IDs
• Persistent Attributes

Persistent Attributes
Persistent Attributes
Typical data assigned to topological entities during a meshing session might include intervals,
mesh schemes, group assignments, etc. By default, most of this data is lost between CUBIT
sessions, and must be restored using the original CUBIT commands. Using CUBIT's persistent
attributes capability, some of this data can be saved with the solid model and restored
automatically when the model is imported into CUBIT.

• Attribute Behavior
• Attribute Types
• Attribute Commands
• Using CUBIT Attributes

Attribute Behavior
In this context, attributes are defined as data associated directly with a particular geometry entity.
In CUBIT's implementation of attributes, these data can occupy one of three "states" at any given
time: they can be stored in data fields on CUBIT's geometry entities; they can be stored in an
intermediate representation, using CUBIT's attribute objects; or they can exist only on the ACIS
objects. When they are stored on ACIS objects, those attributes are written to and read from disk
files with the geometry. This mechanism allows CUBIT-specific information to be stored and
retrieved with the geometry data. By default, attribute data is not stored with geometry. To
enable the use of attributes, use the commands described in the following sections.

Attribute Commands
Most non-CUBIT-developer uses of attributes will be to use all or none of the
attributes. Therefore, the most common command to enable and disable the use of attributes is:

277

Set Attribute {On|Off}
When this option is on, all defined attributes will be saved with the geometry when the user
enters the Export Acis command.
When a geometry is imported into CUBIT, any attributes defined on that geometry and
recognized as CUBIT attributes are imported and put into an intermediate representation (that is,
this information is not assigned directly to the geometry entities). To find out which attributes
are defined on a given set of entities, use the following command:

List [<entity_list>] Attributes [Type <attribute type>] [All] [Print]
If no entities are entered, attribute information for all the geometric entities defined in CUBIT is
printed.
The Type option can be used to list information about a specific attribute type; values for are the
same as those in the previous table.
If the All option is entered, information about all attribute types will be printed, even if there are
none of those attributes defined for the specified entities.
If the Print option is entered, the information stored in each attribute will be printed; this
command is usually used only by CUBIT developers.

Control By Attribute Type or Geometric Entity
Attributes can be enabled or disabled by attribute type, to allow the use of only user-specified
attribute types. To turn on or off specific attributes, use the command:

Set Attribute <attribute type> {On|Off}
where <attribute type> is one of the types shown in the previous table.
Attributes can also be controlled to automatically write (update) and read (actuate) to/from solid
model files automatically, using the command:

Set Attribute <attribute_type> Auto {Actuate|Update} {On|Off}
Finally, attributes can be manually written to and read from the geometric entities, and removed
from cubit entities, using the command

{geom_list} Attribute {All|Attribute_type}
{Actuate|Remove|Update|Read|Write}

where geom_list is a list of geometry entities. This command is recommended only for
developers' use.

Attribute Types
The attribute types currently implemented in CUBIT are shown below.
Attribute
Types Description

Color Entity Color
Composite vg Used to restore composite virtual topology

Genesis entity Membership in boundary conditions (block, sideset,
nodeset)

Id Entity Id

278

Cubit 15.1 User Documentation

Mesh
container Handle to mesh defined for the owner

Mesh scheme Meshing scheme (e.g. paving, sweeping, etc.)
Name Entity name
Partition vg Used to restore partition virtual topology
Smooth
scheme

Smoothing scheme (e.g. Laplacian, Condition
Number)

Unique Id Unique entity id, used to cross-reference other
entities

Vertex type Used to define mesh topology at vertex for
mapping/submapping

Virtual vg Used to store virtual geometry entity(ies) defined on
an entity

Using CUBIT Attributes
A typical scenario for using CUBIT attributes would be as follows.

Construct geometry, merge, assign intervals, groups, etc. (i.e. normal CUBIT
session)
Enable automatic use of attributes using the command:

Set Attribute On
Export acis file (see Export Acis command).
Subsequent runs:
Enable automatic reading and actuating of attributes:

set attribute on
Import ACIS file (see Import Acis command)

Used in this manner, geometry attributes allow the user to store some data directly with the
geometry, and have that data be assigned to the corresponding CUBIT objects without entering
any additional commands.
Entity IDs
Topological entities (including groups) are assigned integer identification numbers or ids in
CUBIT in ascending order, starting with 1 (one). Each new entity created within CUBIT receives
a unique id within the topological entity type. This id can be used for specifying the entity in
CUBIT commands, for example "draw volume 3".
There is a separate id space for each type of topological entity. For example, all mesh nodes are
given ids from 1 to n, where n is an integer greater than or equal to the number of nodes in the
model. Likewise, all hexahedra are given ids from 1 to m, where m is an integer greater than or
equal to the number of hexahedra in the model.
Element Ids
Each mesh entity (hex, tet, face, tri, edge, node, etc.) may also have a Global Element ID from an
id space which is used for all mesh entities. A mesh entity is only assigned a Global Element ID
if it is in a block, and is the global id that will be assigned to the element during Exodus export.
The Global Element ID provides a single id space across all the different element types.

279

Gaps in ID space
After working with a model for some time, various operations will cause gaps to be left in the
numbering of the geometric & mesh entities. The compress ids commands can be used to
eliminate these gaps:

Compress [ids] [all] [Retainmax] [Sort]
Compress [Ids] [All]
{Group|Body|Volume|Surface|Curve|Vertex|Element|Hex|Tet|Face|Edge|Nod
e} [Retainmax]

Typing compress with no options or compress all will compress the ids of all entities;
otherwise, the entity type for which ids should be compressed can be specified. The retainmax
argument will retain the maximum id for each entity type, so that entities created subsequent to
this command will receive ids greater than that value. If the sort qualifier is included, the new id
of each entity will be determined by its size and location. Small entities are given a lower id than
large entities. Entities that are the same size are sorted by their location, with lower x coordinate,
then y, then z leading to a lower id. For example, two vertices are always the same size, so they
are sorted based on the lowest x coordinate. If they are equal, then lowest y coordinate, etc. If
two entities are found to have the same size and location, they are sorted according to their
previous ids. This option can be used to restore ids in translated models in a manner which leads
to more persistence than purely random id assignment.
Renumbering IDs
The renumber command can be used to change the id numbers assigned to meshed entities.

Renumber {Node|Edge|Tri|Face|Hex|Tet|Wedge|Element} <id_range>
Start_id <id> [Uniqueids]

Any valid range specification can be used to specify the source ids. There is no requirement that
the ids being renumbered are consecutively numbered. The new id numbers will be consecutive
beginning at the specified start id. For the command to be successful there can be no existing ids
within the effective range of the start id. If the resultant destination range is not free of id
numbers, the command will fail with an appropriate error.
Using the uniqueids keyword will result in the elements to be renumbered such that no element
shares the same ID.
For convenience, all elements and nodes in a block can be renumbered with a single command:

Renumber block <id_range> [node_start_id <id>] [elem_start_id <id>]
[localids]

By default, the Global Element ID is renumbered with the renumber block command.
If localids is specified, the hex, tet, face, tri, or edge id is renumbered instead.
Volume ID
The volume id command is used to renumber a single volume.

Volume <old_id> Id <new_id>
This command replaces the volume's old_id with the new_id if no other is using the new_id
number. Entity renaming only works for volumes; it does not work for nodes, curves or surfaces.

Entity Names
By default, geometric entities in CUBIT are referenced using an entity type (e.g. Surface,
Volume) and an id, for example "draw surface 1". However, geometric entities can also be

280

Cubit 15.1 User Documentation

assigned names, to simplify working with specific entities. Once a name is assigned to an entity,
that name can be used in any CUBIT command in place of the entity type and number. For
example, if surface 1 were named 'mysurf1', the command above would be equivalent to "draw
mysurf1". Also, since entity names are saved with the geometry, this also provides a means for
persistent identifiers for geometric entities. Names can be added or removed using the
following commands.

{Group|Body|Volume|Surface|Curve|Vertex} {Name | Rename}
{`<entity_name>'| Default}
{Group|Body|Volume|Surface|Curve|Vertex} Remove Name
{`<entity_name>'| All | Default}

The name of each topological entity appears in the output of the List command. In addition,
topological entities can be labeled with their names (see label command). A list of all names
currently assigned and their corresponding entity type and id (optionally filtered by entity type)
can be obtained with the command

List Names [{Group|Body|Volume|Surface|Curve|Vertex|All}]
Notes:

• In a merge operation, the surviving entity is given the name(s) of the deleted entity.
• A geometric entity may have multiple names, but a particular name may only refer to a

single entity.

Valid and Invalid Names
Although any string may be used as an entity name, only valid names may be used directly in
commands. A name is valid if it begins with a letter or underscore ("_"), followed by any
combination of zero or more letters, digits, or the characters ".", "_", or "@". If an attempt is
made to assign an invalid name to an entity, CUBIT will generate a valid version of the invalid
name by replacing invalid characters with an underscore. Then both the valid and invalid
versions of the name are assigned to the entity. For example, assigning the name "123#" to a
volume will result in the volume having two names, "123#" and "_23_". The valid name can be
used directly in commands (mesh _23_), while the invalid name can only be referenced using a
longer, less direct syntax (mesh volume with name "123#").
Reconciling Duplicate Names
When an attempt is made to assign the same name to two different entities, a suffix is added to
the name of the second entity to make it unique. The suffix consists of the "@" character
followed by one or more letters or numbers. For example, the following commands will result in
volumes 1 to 3 having the names "hinge", "hinge@A", and "hinge@B", respectively:

volume 1 name "hinge"
volume 2 name "hinge"
volume 3 name "hinge"

To prevent this automatic "fixing" of names, the Fix Duplicate Names flag may be switched to
off. If the user attempts to assign a duplicate name while the flag is set to off, the name will
remain unchanged.

Set Fix Duplicate Names [ON|Off]

281

Automatic Name Creation
CUBIT provides an option for automatically assigning names to entities upon entity
creation. This option is controlled with the command:

Set Default Names {On|OFF}
When this option is on, entities are assigned default names consisting of a geometry type
concatenated with the entity id, for example 'cur1', 'surf26', or 'vol62'.
Automatic Name Propagation
CUBIT automatically propagates names through webcuts. If an entity that has been assigned the
name "Gear" is split through webcuts, the resulting bodies are named "Gear" and "Gear@A". Try
the following example.

br x 10
volume 1 name "Cube"
webcut volume 1 xplane
webcut volume 1 2 yplane
webcut volume 1 2 3 4 zplane
label volume name

Figure 1. Name Propagation through Webcuts

You can operate on these propagated names using wildcards such as:
mesh volume with name 'Cube*'
block 1 volume with name 'Cube*'

282

Cubit 15.1 User Documentation

Naming Merged Entities
When entities that have the same base name, such as "platform" and "platform@A", are merged,
the resulting entities is assigned both names. The set merge base names on command tells Cubit
that in this situation, it should merge the names too. The command syntax is:

Set Merge Base Names [On|OFF]
For example:

brick x 10
vol 1 copy move 10
surf 6 name 'platform'
surf 10 name 'platform'

Surface 10 actually is named platform@A, since we don't want duplicate names
merge all
list surf 6

You see that surface 6 has both 'platform' and 'platform@A' as names. Now, for the contrasting
example

brick x 10
vol 1 copy move 10
surf 6 name 'platform'
surf 10 name 'platform'
set merge base names on
merge all
list surf 6

You see that surface 6 has only 'platform' as its name.

Entity Measurement
To output various properties of entities, the following Measure command options are available.

• Measure Between
• Measure Small
• Measure Angle
• Measure Void

Measure Between
Measure Between { { Vertex|Curve|Surface |Volume|Node} <id1> | Location
<options> | Plane <options> | Axis <options> } With {
{Vertex|Curve|Surface|Volume|Node} <id2> | Location <options> | Plane
<options> | Axis <options> }
Measure Between {Surface|Curve} <id1 > [Surface|Curve] <id2> [Node]
Measure Between
{Vertex|Curve|Surface|Volume|Node|Edge|Face|Tri|Hex|Tet} <id1> With
{Vertex|Curve|Surface|Volume|Node|Edge|Face|Tri|Hex|Tet} <id2>

The Measure Between command outputs the distance from one entity, location, plane, or axis to
the next. The two entities in the command should be separated by the word "with". The result

283

will always be the minimum distance between entities. For example, measuring between two
spheres will output the minimum distance between them, not the distance between centroids. The
example shown below will output the minimum distance between vertex 1 and surface 2.

measure between vertex 1 surface 2
The second form of the command is just for surfaces or curves and contains the Node argument.
This argument attempts to measure between corresponding nodes on a pair of surfaces or curves.
The command tries to determine a one-to-one mapping of nodes between the pair. It returns the
greatest distance between any two nodal pairs, least distance between any two nodal pairs, and
average distance between all of the nodal pairs. The mapping algorithm works best on surfaces if
they are parallel.
The last form of the command measures between any geometry or mesh entities. The
measurement to the mesh entities is to their center (i.e. the averaged vector location of all of the
nodes belonging to the mesh entity).
Measure Small

Measure Small {Length|Area|Volume|All} {Body|Surface} <id_list>
The Measure Small command locates all of the lengths, areas, or volumes smaller than the
Measure Small Tolerance setting. Entities meeting the small tolerance criteria are listed in the
output window and typically highlighted in the view port. The following two commands set the
small tolerance to 0.1 and output all of the curves within body 1 with lengths at or below the
small tolerance.

set measure small tolerance 0.1
measure small length body 1

Measure Angle
Measure Angle { Direction <options> | Plane <options> | Axis <options> }
With { Direction <options> | Plane <options> | Axis <options> }

The Measure Angle command displays the interior angle between the two entered entities.
When a plane and a direction are specified, the angle between the direction vector and its
projection into the plane is displayed. The measured angle represents the distance between the
orientations of entities, and does not require the entities to intersect. Angles of model features
can be measured by using the various options associated with the Direction, Planes, and Axis
commands.

measure angle direction tangent curve 1 with plane surf 1
Measure Void

Measure Void [Face | Tri] <range>[No_Checks]
The Measure Void command takes a closed list of quadrilaterals or triangles and calculates the
volume of the internal region defined by the given list of elements. This command assumes that
the normals on the given elements are consistently ordered. If the normals are pointing away
from the interior of the void, the reported volume may be negative. This command will check to
ensure that the given elements do form a closed, manifold shell, otherwise an error is reported.
Common uses will be to calculate the volume of an internal void for use in determining bulk
element properties for a thermal analysis.

284

Cubit 15.1 User Documentation

Rather than issuing an error, the no_check option does not check for closure of the faces and will
compute a void volume regardless of their watertightness. This is useful if faces are all touching,
but may not have complete topological closure.

Metadata
Parts, Assemblies, and Metadata
Overview of Parts, Assemblies and Metadata
A geometric model may be organized into a hierarchy of assemblies, sub-assemblies, and parts.
These parts and assemblies can be assigned certain attribute values. The parts, assemblies, and
associated attributes are referred to as DART Metadata, or simply metadata. Metadata can be
imported from files, or can be created within CUBIT. Metadata can be exported to both mesh
and geometry files.
Although useful in its own right, the primary purpose of CUBIT’s metadata capabilities is to
enable interoperability with the set of applications participating in the DART project (see the
DART project's Analyst Home Page at http://www-irn.sandia.gov/analyst). DART
interoperability enables CUBIT to preserve assembly relationships and material data through the
analysis process.
This section describes the procedures for importing, manipulating and exporting metadata within
CUBIT.

• Working with Parts and Assemblies
• Metadata Attributes
• Importing and Exporting Metadata

Importing and Exporting Metadata
Metadata can be imported from and exported to a file. In most cases metadata will be imported
and exported with a data file such as a SAT file or a genesis file. CUBIT is also compatible with
DART artifacts, including artifact dependency tracking.

• Importing Metadata
• Exporting Metadata
• Importing and Exporting DART Artifacts

Importing Metadata
Parts and assemblies can be created and associated with geometry by importing a DART
Metadata file along with a geometry file, using the XML option of the import command. At this
time the only two geometry formats which support metadata import are STEP and ACIS:

Import {Step|Acis} "<filename>". . . [XML "<xml_filename>"]
To successfully associate the contents of the geometry file with the parts described in the
metadata, the XML file must follow the DART Metadata 3.0 XML schema found at http://www-
irn.sandia.gov/schema/dart/3.0/DARTMetadata.xsd, and the geometry file must contain extra
DART data. A suitable STEP file and a corresponding metadata file can be exported from Pro/E
using an add-in called eMatrix (a tool under the umbrella of the DART project, see the Analyst
Home Page for details). A SAT file and corresponding metadata file can be obtained by
exporting them from CUBIT using the XML option of the export command.

285

http://www-irn.sandia.gov/analyst
http://www-irn.sandia.gov/schema/dart/3.0/DARTMetadata.xsd
http://www-irn.sandia.gov/schema/dart/3.0/DARTMetadata.xsd
http://www-irn.sandia.gov/analyst
http://www-irn.sandia.gov/analyst

Exporting Metadata
Some export commands include an XML option. Including this option in the export command
instructs CUBIT to write out a DART metadata file, in addition to the traditional data file. The
metadata file includes the data required to enable interoperability with other DART-compliant
applications.
The only geometry export command which supports the XML option is ACIS export:

Export Acis “<acis_filename>” [XML “<xml_filename>”]
When an ACIS file exported with metadata, the specified XML file includes a description of the
assembly hierarchy as it appears in CUBIT.
Metadata can also be written to an XML file when exporting mesh. The only mesh export
command which supports the XML option is genesis export:

Export {Genesis|Mesh} “<mesh_filename>” [XML '<xml_filename>']
The XML file generated during mesh export includes the same information in a geometry
metadata file, but also includes mesh-related data such as mappings between parts and element
blocks, and includes any block, nodeset, or sideset names or descriptions which have been
defined.
Importing and Exporting DART Artifacts
The DART project has defined a specific way to package data files with corresponding metadata
files. A correctly packaged set of data files with a corresponding metadata file is called
an artifact. An artifact’s metadata file is always located in the same directory as the primary data
file, and is always named artifact.dta.
Within the DART environment, dependencies between artifacts may be tracked by placing
tracking information into metadata files. CUBIT supports automated artifact dependency
tracking. Tracking information in an input metadata file is automatically reflected in any output
metadata file written by CUBIT.
If input is correctly packaged as an artifact, CUBIT can automatically locate and read the
metadata file corresponding to a particular input data file. To have CUBIT do this, select the
“Import as Artifact” checkbox in the Open File dialog.
CUBIT can also package output as an artifact. To do so, select the “Export as Artifact” checkbox
in the export dialog box.
When importing or exporting artifacts using the command line, include the XML option in the
import or export command, specifying the xml file called artifact.dta in the same directory as the
main data file.
For dependency tracking purposes, it may be necessary to import an artifact’s metadata file by
itself. For example, it may be necessary to import an artifact consisting of an IGES file. Since
the Import IGES command does not support the XML option, the metadata file must be imported
separately. To do so, use the command:

Import XML “<xml_filename>”
When working with correctly packaged artifacts, the XML filename will always be artifact.dta.

Metadata Attributes
Each part and assembly has several attributes, including its name and description. In addition,
there are several attributes which do not describe any particular part or assembly. The “global”
attributes describe the assembly tree as a whole, or the metadata as a whole.

286

Cubit 15.1 User Documentation

These sections describe how to view and edit metadata attributes.

• Part and Assembly Metadata Attributes
• Viewing Part and Assembly Metadata Attributes
• Modifying Part and Assembly Metadata Attributes
• Viewing and Modifying Global Metadata Attributes

Part and Assembly Metadata Attributes
Each part and assembly has several attributes. Some attributes apply to both parts and
assemblies, while other attributes apply to only parts. The attributes are listed in the following
table:
Attribute Name Attribute Description Applies To:

Part Assembly
Name Name of Part or Assembly x x
Description Description of Part or

Assembly
x x

Instance Instance Number x x
File The name of the file

containing the original
version of this entity. Often a
reference to a PDM system.

x x

Units The unit system of this part or
assembly.

x x

Material_Description The name or description of
the material of which this part
is composed.

x

Material_Specification The formal specification
number of the material of
which this part is composed.

x

Density The density of the material of
which this part is composed.
Setting it to a non-positive
value will clear the attribute,
as if there were no value
assigned.

x

Material_Volume The volume of the region
enclosed by this part. The
material_volume is not
calculated from the volumes
associated with the part. It
will often differ from the
actual volume enclosed by
this part's associated
geometric volumes, and can
also be manually set to any

x

287

non-negative value. Setting it
to a non-positive value will
clear the attribute, as if there
were no value assigned.

Elemental_Composition A string value describing the
composition of the material,
typically expressed as
percentages of given
elements.

x

Viewing Part and Assembly Metadata Attribute Values
The easiest way to view a part or assembly’s metadata attribute values is to select the item in the
entity tree. The item’s metadata attributes are listed in the property page.
A part or assembly’s metadata attribute values can also be viewed using the Metadata List
command:

Metadata List [<attribute_name>] {Part|Assembly} “<path>”
The attribute_name should be one of the attribute names in the table above. If no attribute name
is included in the command, all metadata attributes are listed.
Metadata attributes can also be listed based on a volume.

Metadata List [<attribute_name>] Volume <id>
This volume-based command works just like the part-based command, but lists the metadata for
the part with which the volume is associated.
Modifying Metadata Attributes
A part or assembly’s metadata attributes can be modified in the property page. Simply select the
part or assembly in the entity tree, then click in the appropriate text field in the property page.
A part or assembly’s metadata attributes can also be modified using the Metadata Modify
command:

Metadata Modify <attribute> “new value” {Part|Assembly} “<path>”
where attribute is one of the attributes listed in the table above. The specified attribute value
will be changed to new_value.
There is also a volume-based version of the Metadata Modify command:

Metadata Modify <attribute> “new_value” Volume <id>
The volume-based command works just like the part-based command, operating on the part with
which the volume is associated. Note that if the specified volume is not associated with a part, a
new part will be created and associated with the volume.
Viewing and Modifying Global Metadata
There are several attributes which do not describe any particular part or assembly. These
“global” attributes describe the metadata as a whole:
Attribute Name Description

 Classification_Level The level of sensitivity of the metadata. Usually
one of the following:

• Secret
• Confidential

288

Cubit 15.1 User Documentation

• Unclassified

Classification_Category The classification category. Usually one of the
following:

• Not Restricted
• Restricted Data (RD)
• Formerly Restricted Data (FRD)
• National Security Information (NSI)

Weapon_Category Sigma 1 through Sigma 15
Global metadata values can be viewed using the Metadata List command:

Metadata List <attribute_name>
Global metadata values can be modified using the Metadata Modify command:

Metadata Modify <attribute_name> “new_value”
For both commands, attribute_name should be one of the attribute names in the table above.

Working With Parts and Assemblies
Volumes can be organized into a hierarchical tree of parts, assemblies, and sub-assemblies.
Assemblies may contain parts and other assemblies. Parts, on the other hand, may not contain
sub-entities.
Each part and assembly has a name and an optional description. Other attributes may also be
assigned, such as a material specification or a link to an entry in a PDM system. See Metadata
Attributes.
The relationship between the geometric model and the assembly is determined by associating
parts with volumes. A single part can be associated with any number of volumes, including zero
volumes. A volume, however, can be associated with only one part.
As volumes are modified, CUBIT automatically maintains the appropriate relationships with
parts. If a volume is associated with a part, and that one volume is split into multiple volumes
through a webcut or some other operation, each of the resulting volumes is automatically
associated with the original volume’s part. Copying a volume will also result in the new volume
being associated with the same part as the original volume.

• Identifying Parts and Assemblies
• Creating Parts and Assemblies
• Deleting Parts and Assemblies
• Associating Parts with Volumes
• Viewing All Assembly Information at Once

Identifying Parts and Assemblies
A part or assembly is identified by its assembly path. An assembly path is much like a directory
path in a file system. It consists of the name of each ancestor in the assembly tree, separated by a
forward slash. For example, a part named “p1” contained within the top-level assembly “a1”

289

would be identified by the path “/a1/p1”. If the part “p2” is part of the assembly “a2”, and “a2” is
a sub-assembly of “a1”, then “p2” has the path “/a1/a2/p2”.
More than one part or assembly may have the same name. To differentiate between parts or
assemblies with the same name and path, each part also has an instance number. If two entities
have the same name, they will not have the same instance number. For example, two parts
named “p1” may be “p1 instance 1” and “p1 instance 2”.
Instance numbers may be incorporated into assembly paths by placing the instance number in
angled braces after a part or assembly name. For example, “p1 instance 3” is identified in a path
as “p1<3>”. Other examples of instance numbers in assembly paths include
“/a1<1>/a2<1>/p1<3>” and “/a1/a2<1>/p1”. Assembly paths are always allowed to incorporate
instance numbers, but are only required to include as many instance numbers as it takes to avoid
ambiguity. Note that some commands do accept ambiguous paths, selecting a random entity
which matches the path.
Most commands which accept assembly paths also allow the path to be followed by an
“instance” command option (for example, metadata list part “/a1/p1” instance 3). The instance
option always refers to the instance number of the last item in the path (p1 in the example).
Creating Parts and Assemblies
Parts and assemblies can be created using the following commands:

Metadata Create {Assembly|Part} “<absolute_path>” [Instance <instance>]
If the instance option is not included, CUBIT will assign an appropriate instance number to the
new entity. If the instance option IS included, an entity with the specified name and instance
number must not already exist or the command will fail.
Note that the path must be absolute, identifying each ancestor of the new entity. Any ancestors of
the new entity which do not already exist are automatically created.
Deleting Parts and Assemblies
To delete a part or an assembly, use the Metadata Remove command:

Metadata Remove {Part “<path>” | Assembly “<path>" [propagate]}
This will remove the specified part or assembly. If the propagate option is specified when
removing an assembly, all contained parts and subassemblies will be removed automatically
before the assembly itself is removed. Otherwise, assemblies will only be removed if they have
no contents.
It is also possible to remove all parts and assemblies that have no association with geometric
volumes in the model:

Metadata Clean
This can be extremely useful when importing geometry which has been simplified with metadata
which has not been simplified. For example, eMatrix currently writes out the full assembly
hierarchy even when exporting a simplified representation of the geometry.
Associating Parts with Volumes
The relationship between the geometric model and the assembly is determined by associations
between parts and volumes. As stated previously, a part may be associated with any number of
volumes, while a volume may be associated with only one part. The easiest way to associate a
volume with a part is to use the entity tree in the user interface. Drag a volume in the tree onto a
part in the tree, and the volume and part are now associated. Since a volume can only be

290

Cubit 15.1 User Documentation

associated with one part at a time, any previous association between that volume and a part is
removed.
Part-to-volume associations can be created on the command line using the Metadata Modify
Path command:

Metadata Modify Path “<part_path>” Volume <ids>
The specified volume or volumes will be associated with the part specified by part_path. Any
volumes already associated with the specified part will retain their association with the part.
Associations can be removed using the Metadata Remove command:

Metadata Remove Volume <ids>
After the Metadata Remove command has been issued, the specified volumes are no longer
associated with any part.
The set of volumes associated with a given part can be modified using the Metadata Replace
command:

Metadata Replace Part “<part_path>” Volume <ids>
When the Metadata Replace command is issued, all associations the part may have had with any
volumes are removed. New associations are then created with the specified volume or volumes.
Viewing All Assembly Information at Once
Once an assembly tree is created, all assemblies, parts, and part-to-volume associations can be
viewed using the command:

Metadata List Tree
This will print the names of all parts and assemblies in the output window, along with the IDs of
the volumes associated with each part.
It is also possible to view all parts, their properties, and their volume associations using a
spreadsheet application such as Microsoft Excel. This is done by generating a file using the
command:

Export Part_List "<filename>" [OverWrite]
This command writes an XML file in a format that Excel can convert to a spreadsheet. To do
this, simply import the XML file into Excel as an XML List. The data can then be sorted and
filtered by any of the parts' properties.
The Export Part_List command is particularly useful for identifying parts which are not
correctly associated with parts. Among the fields that can be filtered is the is-part field. This
field is FALSE for each volume that is not associated with a part. Filtering on this value will
show a list of all volumes that are not associated with any part. The volume-ids field will show
the ID of each unassociated volume, and the volume-name field will show each unassociated
volume's name, if any.
It is equally easy to identify parts that are not associated with volumes. Display only those rows
with a blank value in the volume-ids field to see a list of parts that have no associated volume.
Similar methods can be used to identify missing materials information. Fields can also be sorted
to group the parts by material.
Metadata in the GUI
Metadata may be displayed and manipulated in the GUI. The tree view includes a category for
metadata. The category is labelled "Assemblies" in the tree view. Users are able to drag volumes

291

into parts on the tree. Also, selecting an Assembly or Part on the tree will cause the attributes for
the entity to be displayed in the property page where further data manipulation is enabled.

Geometry Deletion
Geometry can be deleted from the model using the following command:

Delete [Body | Surface | Curve | Vertex] <id_range>
Any type of Body can be deleted, whether it is based on solid model geometry or another
representation. Other entities (Surface, Curve, Vertex) can be deleted when they are "free", i.e.

292

Cubit 15.1 User Documentation

when they are not contained in an entity of higher topological order (Body, Surface or Curve,
respectively); this type of geometry is often created from the lowest order topology up.

Import
Importing Geometry

• Importing ACIS Models
• Importing FASTQ Models
• Importing STEP Files
• Importing IGES Files
• Importing Facet Files
• Other Formats

Other Formats
Internally, CUBIT represents geometry as either ACIS solid model geometry or mesh-based
geometry. CUBIT can import ACIS geometry in the native "sat" file format. CUBIT can also
import STEP and IGES files and internally converts them into ACIS solid model geometry. For
compatibility with Sandia legacy applications, CUBIT can import FASTQ input decks to create
ACIS geometry, as well. If you have geometry that has been created in another format, such as in
SolidWorks, you will need to translate that geometry into something that Cubit can read. Many
solid modeling packages have an Export ACIS .sat command, which is probably the easiest way
of translating your model. If you do not have that option, there are some other possibilities.

• Try a different file format, such as STEP or IGES.
• As a last resort, contact the Cubit team. They might have other options for importing your

file.

See Also
Importing a Mesh

Importing ACIS Files
The command used to read an ACIS file is:

Import Acis '<acis_filename>' [No_bodies][No_surfaces]
[No_curves][No_vertices][Group {'<name>'|<id>}] [Binary|Ascii]
[Show_Each] [Sort] [XML '<xml_filename>'] [Attributes_On]
[Separate_Bodies] [merge_gloabally] [Heal]

The import ACIS command is the primary mechanism for generating geometry within CUBIT.
ACIS parts can be generated and saved with CUBIT, but in most cases are developed within a
3rd party CAD package and exported for use in CUBIT. CUBIT provides the capability to
import ACIS solid models and make modifications to them so they can be meshed. CUBIT
incorporates the commercial ACIS libraries developed and maintained by Spatial Inc. for reading
and writing ACIS format files. IGES and STEP format files can also be imported and exported
to/from CUBIT using the Spatial's libraries.

293

http://www.spatial.com/

Import Options
It is possible to include free entities (vertices, curves and surfaces) in the file. The default
operation is to read all entities in the file whether they are included as part of a body or are free.
By using any of the options no_bodies, no_surfaces, no_curves, or no_vertices, the user may
exclude certain types of free entities.
The group option of the import command will allow the user to create a group for each set of
imported geometry. The newly created group can later be accessed using the name or id specified
with the group option.
The import capability of ACIS files supports both the ASCII format (.sat) and binary format
(.sab). When importing, the filename extension will determine the default file type, be it ASCII
or binary. A (.sat) extension will default to ASCII, while a (.sab) extension will default to binary.
If you use a different file extension you can specify the type with the [binary|ascii] option.
Binary files can be significantly faster but are not guaranteed to be upward compatible, nor
cross-platform compatible. Therefore, it is recommended that models be archived in ASCII
format.
Normally the numerical IDs of the geometric entities contained in the ACIS model are used
directly within CUBIT. The sort option provides the capability to compress the IDs read from the
ACIS file. The sort option does the same thing as the compress ids sort command, but combines
it with the import command to remove a step in the process.
The show_each option is a graphics option that applies to how the volumes are shown as they
are imported. If there are multiple volumes in the file, the graphics display will be updated
between each volume during import.
The xml option will read assembly information and other metadata from an XML file in the
DART metadata XML format. See the metadata documentation and the Analyst's Home Page for
details.
The attributes_on option will enable attribute support for the file. Attributes include properties
like entity color, entity id, and meshing scheme. Including the attributes option will only affect
the current import. The settings will be restored to their previous settings after importing.
The separate_each option creates a separate body for each volume that is imported,
preventing multi-volume bodies from being imported.
When importing, the use may specify the scope of the merge using merge_globally. The default
behavior is to merge within the scope of the file being imported. With the merge_globally
option, imported entities will merge with anything, including entities already in the Cubit session
that have merge attributes on them.
Use the heal option to heal the entities when importing.
Importing ACIS files at startup
ACIS files can also be imported using the "-solid" option when starting CUBIT from the UNIX
command prompt. (See Execution Command Syntax for details.) Note that the filename must be
enclosed in single or double quotes. This command will create as many bodies within CUBIT as
there are bodies in the input file.
See also Exporting ACIS Files.

Importing Facet Files
CUBIT provides the capability to import a model composed of facets to create geometry. The
command to import facets from a file is:

294

http://www-irn.sandia.gov/analyst

Cubit 15.1 User Documentation

Import [Facets|AVS|STL] ''<filename>" [Feature_Angle] [LINEAR||Spline]
[MERGE|No_merge] [Make_elements] [Stitch] [Improve]
Facets are simply triangles that have been stitched together to form surfaces. Faceted geometry
representations are commonly used for graphics, bio-medical, geotechnical and many other
applications that output a discrete surface representation. Upon import, the resulting geometry
representation is Mesh-Based Geometry. Figure 1. shows an example of a faceted model and the
resulting geometry created in CUBIT.

Figure 1. Example of faceted model and the resulting solid model created in CUBIT from

the facets.
For convenience, the import facet command currently supports three different formats, facet,
AVS and STL

• Facet format: The facet file format is a simple ASCII file that contains vertex
coordinates and connectivities. The facet file format is described below.

• AVS format: The AVS format is a general geometry format that can support a variety of
polygonal shapes. In CUBIT's implementation of the AVS import, it will support only
triangles.

• STL format: Perhaps the most common format in the industry is Stereolithography
(STL). CUBIT supports both ASCII and binary forms of the STL format. While the STL
format is adequate for graphics and visualization, it can be problematic for geometry
applications such as CUBIT. Each triangle in the STL format is represented
independently. This means that multiple definitions of a single vertex are included in the
file. CUBIT will attempt to merge duplicate vertices to form a water-tight surface. In
cases where the vertex locations may not correspond exactly, an optional tolerance

295

argument may be used on the import command. The tolerance option is used only for
STL format files.

Facet File Format
The format for the ASCII facet file is as follows

n m
id1 x1 y1 z1
id2 x2 y2 z2
id3 x3 y3 z3
.
.
.
idn xn yn zn
fid1 id<1> id<2> id<3> [id<4>]
fid2 id<1> id<2> id<3> [id<4>]
fid3 id<1> id<2> id<3> [id<4>]
.
.
.
fidm id<1> id<2> id<3> [id<4>]

Where:
n = number of vertices
m = number of facet
id<i> = vertex ID of vertex i
x<i> y<i> z<i> = location of vertex i
fid<j> = facet ID of facet j
id<1> id<2> id<3> = IDs of facet vertices
[id<4>] = optional fourth vertex for quads

As noted above, the facets can be either quadrilaterals or triangles. Upon import, the facets serve
as the underlying representation for the geometry. By default, the facets are not visible once the
geometry has been imported. To view the facets, use the following command:

draw surf <id range> facets
Feature Angle
The feature angle option is used to specify the angle at which surfaces will be split by a curve or
where curves will be split by a vertex. 180 degrees will generate a surface for every facet, while
0 degrees will define a single, unbroken surface from the shell of the mesh. The default angle is
135 degrees. This feature is identical to the feature angle option available when
importing Exodus II files.
Smooth Curves and Surfaces
This option permits the use of a higher order approximation of the surface when
remeshing/refining the resulting geometry. Default is to use the original facets themselves as the
curve and surface geometry representation. If the facet model to be imported is to represent
geometry with curved surfaces, it may be useful to apply this option. If the Spline option is
selected, it will use a 4th order B-Spline approximation to the surface [Walton,96]. More

296

Cubit 15.1 User Documentation

information on using smooth approximation of the facets is available in Importing an Exodus II
File.
Merge
This option allows the user to either merge or not merge the resulting surfaces. The default
option is to merge adjacent surfaces. This results in non-manifold topology, where neighboring
surfaces share common curves. The no_merge option, adjacent surfaces will generate
distinct/separate curves.
Make elements
This option creates mesh elements from each of the facets on the facet surface.
Stitch
The stitch option is used with the facet or avs format files to try to merge vertices and triangles
that are close. Figure 2 shows an example of where this might be employed. The model on the
left contains facets that are not connected between the red and blue groups. In this case, the
surfaces will not be water-tight, even though the vertices on the boundary between the two
groups may be coincident. The stitch option attempts to eliminate the extra edge and vertex
between the groups to form the model on the right. This option can be useful when importing
facet files for 3D meshing. CUBIT's 3D meshing algorithms require a water-tight (closed) set of
surfaces.

Figure 2. Example use of the stitch option on import.

Improve
The improve option will collapse short edges on the boundary of the triangulation that are less
than 30% the length of the average edge length in the model. In some cases, short edges are the
result of discrete boolean operations on the triangulation which may result in edges that are of
negligible length. This option is particularly useful for boundaries where multiple surfaces come
together at an edge. Figure 3. shows an example of where the improve option improved the
quality of the triangles at the boundary. This option is especially useful if the facets themselves
will be used for the FEA mesh.

297

Triangles near a boundary that have

not been used the improve option

The same set of triangles where

improve option has collapsed edges
Figure 3. Example use of the improve option

Importing FASTQ Files
CUBIT can read a FASTQ file and convert it into an ACIS model:

Import Fastq '<fastq_filename>'
Note that the filename must be enclosed in single or double quotes.
FASTQ is an older, 2d meshing tool; (Blacker 88.) FASTQ files are a series of commands much
like a CUBIT journal file. All FASTQ commands are fully supported except for the "Body"
command (it is unnecessary and ignored), the "corn" (corner) line type, and some of the
specialized mapping primitive "Scheme" commands. Standard mapping, paving, and triangle
primitive scheme commands are handled. The pentagon, semicircle, and transition primitives are
not handled directly, but are meshed using the paving scheme. The FASTQ input file may have
to be modified if the Scheme commands use any non-alphabetic characters such as `+', `(`, or `)'.
Circular lines with non-constant radius are generated as a logarithmic decrement spiral in
FASTQ; in CUBIT they will be generated as an elliptical curve.
Since a FASTQ file by definition will be defined in a plane, it must be projected or swept to
generate three dimensional geometry. CUBIT supports sweeping options to convert imported
FASTQ geometries into volumetric regions.

Importing Granite Files
As of version 13.0, native Granite models are no longer supported.

Importing IGES Files
The ACIS IGES translator provides bi-directional functionality for data translation between
ACIS and the IGES (Initial Graphics Exchange Specification) format.
The commands to import IGES files are:

Import Iges '<iges_filename>' [No_bodies] [No_surfaces] [No_curves]
[No_vertices] [Group {'<name>'|<id>}] [Nofreesurfaces] [HEAL|noheal]
[Logfile ['filename'] [Display]] [Show_Each] [Sort]

Import Options
It is possible to include free entities (vertices, curves and surfaces) in the file. Default operation
is to read all entities in the file whether they are included as part of a body or are free. By using

298

Cubit 15.1 User Documentation

any of the options no_bodies, no_surfaces, no_curves, or no_vertices, the user may exclude
certain types of free entities.
The group option of the import command will allow the user to create a group for each set of
imported geometry. The newly created group can later be accessed using the name or id specified
with the group option.
The nofreesurfaces option will automatically convert free surfaces to bodies. By default this
option is off.
By default, bodies are automatically healed when imported - if this causes problems, you can
disable this option by using the noheal argument.
The logfile option specifies a file where informational messages generated during import of the
STEP file will be written. The display option will display the file.
The show_each option is a graphics option that applies to how the volumes are shown as they
are imported. If there are multiple volumes in the file, the graphics display will be updated
between each volume during import.
Normally the numerical IDs of the geometric entities contained in the ACIS model are used
directly within CUBIT. The sort option provides the capability to compress the IDs read from
the ACIS file. The sort option does the same thing as the compress ids sort command, but
combines it with the import command to remove a step in the process.
Note that the IGES import and export functionality might not be available on all 64-bit
platforms.
See also Exporting IGES Files.

Importing STEP Files
The ACIS STEP translator provides bi-directional functionality for data translation between
ACIS and the file format standard STEP AP203.
STEP AP203 is an international standard which defines a neutral file format for representation of
configuration control design data for a product.
The command used to import a STEP file are:

Import Step '<step_filename>' [No_bodies][No_surfaces] [No_curves]
[No_vertices] [HEAL|Noheal] [Logfile ['filename'] [Display]] [Show_Each]
[Group {'<name>'|<id>}] [Sort] [XML '<xml_filename>']

Import Options
It is possible to include free entities (vertices, curves and surfaces) in the file. The default
operation is to read all entities in the file whether they are included as part of a body or are free.
By using any of the options no_bodies, no_surfaces, no_curves, or no_vertices, the user may
exclude certain types of free entities.
By default, bodies are automatically healed when imported - if this causes problems, you can
disable this option by using the noheal argument.
The logfile option specifies a file where informational messages generated during import of the
STEP file will be written. The display option will display the file.
The show_each option is a graphics option that applies to how the volumes are shown as they
are imported. If there are multiple volumes in the file, the graphics display will be updated
between each volume during import.
The group option of the import command will allow the user to create a group for each set of
imported geometry. The newly created group can later be accessed using the name or id specified
with the group option.

299

Normally the numerical IDs of the geometric entities contained in the STEP model are used
directly within CUBIT. The sort option provides the capability to compress the IDs read from
the STEP file. The sort option does the same thing as the compress ids sort command, but
combines it with the import command to remove a step in the process.
The xml option will read assembly information and other metadata from an XML file in the
DART metadata XML format. See the metadata documentation and the Analyst's Home Page for
details.
Beginning with version 13.0, Cubit will read assembly information embedded in the imported
STEP file. No additional arguments are required. The resultant assembly/part structure will be
displayed in the GUI's main entity tree.
Exporting a STEP file from Pro/Engineer
To export a STEP file from Pro/ENGINEER, from the Export STEP Dialog, Press Options.
In the file step_config.pro add the following:

STEP_EXPORT_FORMAT AP203_CD.
Also be sure your export option is set to Solids. If the geometry has problems in CUBIT, you
may need to increase the geometry accuracy in Pro/ENGINEER.
See also Exporting STEP Files.
Export
Exporting Geometry
Geometry can be exported from CUBIT in a variety of formats, including the ACIS ".sat" and
".sab" formats as well as in more portable exchange formats like STEP and IGES.

• Exporting ACIS Files
• Exporting STEP Files
• Exporting IGES Files
• Exporting Facet Files

Exporting ACIS Files
Geometry can be exported from within CUBIT to the ACIS "sat" (ASCII) and "sab" (binary)
formats. These formats can be used to exchange geometry between ACIS-compliant
applications. The command used to export geometry is:

Export Acis [Debug] 'filename' [<geometry_entity_list>] [Binary|Ascii]
[Current] [Overwrite]

The filename should be enclosed in single or double quotes. By convention, binary and ASCII
ACIS files use the .sab and .sat filename extensions, respectively. If a geometry entity list is not
specified, the entire ACIS model is exported. A geometry entity list is specified in the same
format used for other CUBIT commands (See Entity Specification). Note that the model is saved
as manifold geometry, and will have that representation when imported back into CUBIT
(See Non-Manifold Topology and Geometry Merging.)
When exporting, the filename extension will determine the default file type, either ASCII or
binary. A .sat extension will default to ASCII; a .sab extension will default to binary. If you use a
different file extension you can specify the type with the [binary|ascii] option (with an
unsupported extension exporting will default to ASCII but importing requires the type to be
specified). Binary files can be significantly faster but are not guaranteed to be upward

300

Cubit 15.1 User Documentation

compatible nor cross-platform compatible (although testing has determined compatibility
between NT and HP/UX).
In the GUI version, the current option will set the default filename for autosave (cntrl-S or File-
>Save (auto inc)) to the imported filename. Also, the filename is then set in the window titlebar.
When exporting with the "file overwrite" option on, the software will check to see if the file
exists already, and if it does, exporting will fail in the command line version or ask to confirm
the overwrite in the GUI version of CUBIT. The overwrite option will override this option and
overwrite the file. The "file overwrite" option defaults to ON in the GUI version, OFF in the
command line version.
When exporting, you can set the version of the Acis geometry. This allows backwards
compatibility to previous versions of Cubit or other Acis-based applications. The command to
change the Acis geometry engine version is:

Set Geometry Version [version_number]
where version_number can be one of the following:106, 107, 201, 300, 301, 401, 402, 403, 500,
501, 502, 503, 600, 601, 602, 603, 700, 701, 702, 703, 704, 705, 800, 1007, 1100, 1200, 1300,
1400, 1500, 1600, 1700, 1800, 1900, 2100, 2200, 2401, 2502. Note that you cannot set a version
number that is higher than that of your current engine. For example, Cubit 6.0 was based on Acis
6.2, so you cannot set a geometry version of 700.
See also Importing ACIS Models.

Exporting Facet Files
Facet files may be exported directly, or by converting from an ACIS representation. The syntax
for exporting facet files is:
Export Facets 'filename' <entity_list> [Overwrite]
The overwrite function allows you to overwrite an existing facet file.
STL facet files may be generated from geometry or from a triangle mesh. The syntax for
exporting to the STL format is:

Export STL [ASCII|binary] 'filename' [<entity_list>] [tri <id_range>]
[angle=15] [mesh|water tight] [Overwrite]

The [entity_list] option is a list of geometric entities (bodies, volumes, or surfaces). By default,
the graphics facets for the geometric entities will be written to the STL file. The [angle] keyword
specifies the dihedral angle used during facet generation. The [water tight] option will enforce a
"water-tight" set of graphics facets to be exported for solid volumes. To export the triangle mesh
on the geometric entities, instead of the graphics facets, specify the [mesh] keyword. Note that
STL export of quad meshes is not supported.
Alternatively, a list of mesh triangles can be specified for export. If neither geometry entities nor
mesh are specified, all volumes and sheet bodies are written out.

Exporting IGES Files
The ACIS IGES translator provides bi-directional functionality for data translation between
ACIS and the IGES (Initial Graphic Exchange Standard) format. The command to export IGES
files is:
Export Iges 'filename' [<geometry_entity_list>] [Solid] [Logfile ['filename'] [Display]]
[Overwrite]

301

As with ACIS file export, you can specify which individual entities to export. If unspecified, all
ACIS entities are exported.
The logfile option is used to save information regarding the conversion to IGES format. This
information saved to a file with the name specified by the user, or named 'iges_export.log' by
default. When running the GUI version of CUBIT, the logfile can be displayed in a dialog
window by using the display option.
The solid option allows solid volumes to be exported as Manifold Solid B-Rep Objects (MSBO).
Without this option, the iges file is simply a collection of stand-alone surfaces.
The overwrite option works the same as with ACIS file export.
See Importing IGES Files for information on setting up the IGES import and export
functionality.
Note that the IGES import and export functionality might not be available on all 64-bit
platforms.

Exporting STEP Files
CUBIT can export geometry to the STEP format, an emerging standard for storing geometry and
other information. The STEP AP203 and STEP AP214 standards are supported. It is
recommended to use AP214 for exchange of geometry information with CUBIT. The command
used to export a STEP file is:

Export Step 'filename' [<geometry_entity_list>] [Logfile ['filename']
[Display]] [Overwrite]

As with ACIS file export, you can specify which individual entities to export. If unspecified, all
ACIS entities are exported.
The logfile option is used to save information regarding the conversion to STEP format. This
information saved to a file with the name specified by the user, or named 'step_export.log' by
default. When running the GUI version of CUBIT, the logfile can be displayed in a dialog
window by using the display option.
The overwrite option works the same as with ACIS file export.
See Importing STEP Files for information on setting up the STEP import and export
functionality.
Note that the STEP import and export functionality might not be available on all 64-bit
platforms.

302

MESH GENERATION
Mesh Generation

• Meshing the Geometry
• Interval Assignment
• Meshing Schemes
• Mesh Quality Assessment
• Mesh Modification
• Mesh Validity
• Mesh Adaptivity and Sizing Functions
• Mesh Deletion
• Free Meshes
• Skinning a Mesh

The methods used to generate a mesh on existing geometry are discussed in this chapter. The
definitions used to describe the process are first presented, followed by descriptions of interval
specification, mesh scheme selection, and available curve, surface, and volume meshing
techniques. The chapter concludes with a description of the mesh editing capabilities, and the
quality metrics available for viewing mesh quality.
Element Types
For each entity topology-type in the model geometry, CUBIT can discretize the entity using one,
or several, types of basic elements, for each order entity in the geometry (vertex, curve, etc.).
CUBIT uses a basic element designator to describe the corresponding entity, or entities, in the
mesh, and a given geometric topology entity can be discretized with one, or several, of basic
elements types in CUBIT. For example, a geometric surface in CUBIT is discretized into a
number of faces, where faces is the basic element designator for surfaces. These faces can
consist of two types of basic elements, quadrilaterals or triangles. The basic element designators
corresponding to each type of geometric entity, along with the types of basic elements supported
in CUBIT, are summarized in the table below.
For each basic element, CUBIT also supports several element type definitions, whose use
depends on the level of accuracy desired in the finite element analysis. For example, CUBIT can
write both linear (4-noded) and quadratic (8- or 9-noded) quadrilaterals. The element type
definition is specified after meshing occurs, as part of the boundary condition specification.
See Finite Element Model Definition for a description of that process and the various element
types available in CUBIT.
Each mesh entity is associated with a geometric entity which "owns" it. This associativity allows
the user to mesh, display, color, and attach attributes to the mesh through the geometry. For
example, setting a mesh attribute on a surface affects all faces owned by that surface.
Mesh Generation Process
Starting with a geometric model, the mesh generation process in CUBIT consists of four primary
steps:
Set interval size and count for individual entities or groups
The size or interval is always applied to a specific geometric entity. For example:
volume 1 size 2.0
Set mesh schemes
CUBIT supports numerous meshing schemes for meshing solid model entities. For example:

303

Mesh Generation

volume 1 scheme sweep
Generate the mesh for the model
Use the mesh command to generate the mesh on a specified geometric entity. For
example:
mesh volume 1
Inspect mesh for quality and suitability for targeted analysis
CUBIT provides various quality metrics for the user to verify the suitability of the mesh for
analysis. The quality command can be used to check the elements generated on a specific
geometric entity. For example:
quality volume 1
There are also mechanisms for improving mesh quality locally using smoothing and local mesh
topology changes and refinement. For complex models, this process can be iterative, repeating
all of the steps above.
The mesh for any given geometry is usually generated hierarchically. For example, if the mesh
command is issued on a volume, first its vertices are meshed with nodes, then curves are meshed
with edges, then surfaces are meshed with faces, and finally the volume is meshed with hexes.
Vertex meshing is of course trivial and thus the user is given little control over this process.
However, curve, surface, and volume meshing can be directly controlled by the user. Each of the
steps listed are described in detail in the following sections.

Geometry Entity
Type

Basic Element
Designator

Basic Element(s) In
CUBIT

Vertex Node Node
Curve Edge Edge
Surface Face Quadrilateral, Triangle

Volume (or Body) Element Hexahedron, Tetrahedron,
Pyramid

Meshing the Geometry
After assigning interval or sizing attributes to a geometric entity and a meshing scheme is
applied, the geometry is ready to be meshed. To mesh a geometric entity, use the command:

Mesh <entity> <id_range> [GLOBAL|Individual]
The <entity> to be meshed may be any one of the following:

Body
Volume
Surface
Curve
Vertex

The Global and Individual options affect how the constraints are gathered for interval matching.
With the Global option, the interval constraint equations are calculated from all entities in the

304

Cubit 15.1 User Documentation

entity list. The Individual option calculates the interval constraint equations from each entity
individually. The Global option is the default.
Default Scheme and Interval Selection
If either interval settings or schemes have not already been set on the entities being meshed,
CUBIT will do its best to automatically set one or both of these attributes. See Auto Scheme
Selection and Auto Specification of Intervals for a description of how CUBIT chooses these
attributes. In cases where the automatic scheme selection algorithm fails to select a scheme for
the geometry, the meshing operation will fail. In this case explicit specification of the meshing
scheme and/or further geometry decomposition may be necessary.
Continuing Meshing After a Mesh Failure
Frequently when meshing large assemblies containing a number of volumes, the mesh command
can be applied to a group of volumes with the same mesh command. Typically, if a mesh failure
is detected, the meshing operation will continue to mesh the remaining volumes specified at the
command line. The following command permits the user to override this feature to discontinue
meshing additional volumes and return to the command line immediately after a mesh failure is
detected:

Set Continue Meshing [ON|Off]
The default for this command is ON.
Turning this setting OFF is useful when meshing assemblies where a meshing failure of one
volume would adversely affect the meshing of adjoining volume(s). This occurs frequently when
meshing a sweep group using the sweep scheme.

Interval Assignment
Interval Assignment

• Interval Firmness
• Explicit Specification of Intervals
• Explicit Specification of Intervals Using Interval Size
• Automatic Specification of Intervals
• Additional Interval Constraints
• Vertex Sizing and Automatic Curve Biasing
• Interval Matching
• Periodic Intervals
• Relative Intervals
• Mesh Preview

Mesh density is usually controlled by the intervals, i.e. the number of mesh edges, specified on
curves. Intervals are set on a curve by either specifying the interval count directly or by
specifying a desired size for each interval. Intervals and interval size can be specified for curves
individually, or indirectly by specifying intervals for higher order geometry containing those
curves. Because of interval constraints imposed by various meshing algorithms in CUBIT, the
assignment of intervals to curves is not completely arbitrary. For this reason, a global interval
match must be performed prior to meshing one or more surfaces or volumes.

305

Mesh Generation

Automatic Specification of Interval Size
In addition to specifying intervals explicitly based on a known count or size, CUBIT is able to
compute interval sizes automatically based on characteristics of the model geometry. The
following automatic interval size setting command can be used:

{geom_list} Size Auto [Factor <factor>] [Individual] [Propagate]
Vertices are not valid in the geom_list for this command. Automatic interval size assignment
works by examining the geometric characteristics of the entities in the geom_list and assigning a
heuristic size to the entities and their child entities. The factor may be a floating point number
between 1.0 and 10.0, where 1.0 represents a fine interval size and 10.0 represents a coarse size.
Figure 1 shows an example of different auto size specification on a CAD model.

(a) auto size factor = 7.0

(b) auto size factor = 5.0

306

Cubit 15.1 User Documentation

(c) auto size factor = 1.0

The user may assign the interval size to be the arc length of the smallest curve contained in the
specified entity or entities using the following command:

{geom_list} Size Smallest Curve
Vertices are not allowed in the geom_list for this command. This command assigns a soft
interval firmness.
Automatic Interval Size Specification
An automatic interval size with an auto size factor of 5 will automatically be computed and
applied to any curve for which the following is true:

1) Intervals have not been explicitly defined by the user for a curve or its owning entities.
2) An Interval size has not been explicitly defined by the user for a curve and it is not
possible to determine an interval size from its owning entities.

This automatic interval size is based upon all the geometry in the model. The automatic interval
size specifications can be overridden easily by specifying another auto size factor or an explicit
interval size.
If an auto size factor of 5 is undesirable for most meshing operations, the default factor may be
changed by using the following command:

Set Auto Size Default <value>
where value is a number from 1 to 10. This will be the default auto size factor used when either a
factor has not been specified on the size auto command or when an automatic interval size
specification is used.
In previous versions of CUBIT a default interval of 1 was assigned to all entities. If this behavior
is still desired, the following command may be used to enforce this condition:

Set Default Autosize [ON|off]
Maximum Spanning Angle on Arcs
On many CAD models, arcs or small holes require that a finer mesh be specified around these
entities in order to maintain reasonable mesh quality. To facilitate this, the user may specify the
maximum angle an element edge may span on an arc. To change or list the maximum arc span,
use the following commands

Set Maximum Arc_Span <angle>
List Maximum Arc_Span

The angle parameter must be a positive value less than 360. The maximum arc span setting will
only be used if there is not already a user defined interval set on the arc, and if the interval

307

Mesh Generation

setting produces mesh edges which exceed the maximum spanning angle. Figure 2 shows the
effect of three different maximum arc_span settings on a small hole using the pave scheme.

Figure 2. Maximum arc_span settings of 90, 45 and 15 degrees respectively.

Default arc span setting: In addition to setting an automatic size factor, if there are otherwise no
user-defined interval sizes defined on an arc and no maximum arc_span has been set by the
user when a tetrahedral mesh or triangle mesh is defined, a maximum spanning angle of 60
degrees will be used. Removing the use of the arc_span setting can be accomplished with the
following:

Set Maximum Arc_Span Default
Note that once interval sizes have been defined when the entity has been meshed, it may be
necessary to reset the interval settings (reset {geom_list}) to use a new maximum arc span
setting when remeshing.

Explicit Specification of Intervals
The density of mesh edges along curves is specified by setting the actual number of intervals or
by specifying a desired interval size. The number of intervals can be explicitly set curve by
curve, or implicitly set by specifying the intervals on a surface or volume containing that
edge. For example, setting the intervals for a volume sets the intervals on all curves in that
volume.
The command to specify the number of intervals at the command line is:

{Curve|Surface|Volume|Body|Group} <range> Interval <intervals>
When setting interval counts for surfaces, volumes, bodies and groups, an interval's firmness of
soft is assigned to the owned curves. When setting the interval count for a curve, a firmness of
hard is assigned.
The user can scale the current intervals with the following commands. Scaling is done on an
entity by entity basis.

{Curve|Surface|Volume|Body|Group} <range> Interval Factor <factor>

Explicit Specification of Intervals Using Interval Size
The number of intervals along curves can be specifying by setting a desired interval size. The
interval size can be explicitly set curve by curve, or indirectly set by specifying the interval size
on a surface or volume containing that curve. The size for an entity is determined with the
following method. If the entity has a size explicitly set then that size is used. Otherwise the entity
averages the size determined for its parents. If an entity doesn't have any parents then a size is
automatically calculated from all of the geometry in the model. If the auto size functionality is
turned off then a default size of 1.0 is used. Some meshing algorithms may calculate a different
default size.

308

Cubit 15.1 User Documentation

For example, Suppose you have two volumes that share a face and corresponding curves. If the
size on volume one is set to 1.0 and the size on volume two is set to 3.0 then the size for the
common face will be set to 2.0. The size for the remaining faces on volume one and two will be
1.0 and 3.0 respectively. The size for the common curves will be set to 2.0.
The command to specify the interval size at the command line is:

{Curve|Surface|Volume|Body|Group} <range> [Interval] Size <interval_size>
Interval sizes set directly on an entity are given the type “user_set”. Interval sizes determined
from parents or automatically calculated are give the type “calculated”.
When interval matching or meshing the interval count for each curve is computed by dividing
the curve's arc length by the specified interval size. Interval counts calculated in this manner are
considered to have a default firmness of soft. This firmness can be changed with the following
command:
 {geom_list} Interval {Default | Soft | Hard}
If an entity has a valid size, having one set explicitly or derived from its parents or calculated
automatically, then this command will set the firmness of the calculated intervals. The setting is
reset to default when a new size is set on this entity.
The user can scale the current intervals or size with the following commands. Scaling is done on
an entity by entity basis.

{Curve|Surface|Volume|Body|Group} <range> [Interval] Size Factor <factor>
Additional Interval Constraints
Interval equal_to is a one way constraint that is set in the interval matcher and resolved when the
interval matcher is run. If a user sets curve 33 interval equal_to curve 35 than the interval
matcher will constrain curve 35 to have the same interval as curve 33. If the user hard sets an
interval on curve 33 then curve 35 will have the same interval when the interval matcher runs. If
the user hard sets an interval on curve 35 then problems could arise when the interval matcher
tries to constrain it to the interval on curve 33.
Interval same is a two way constraint that is resolved immediately. If the user changes the
interval on curve 33 then the interval on curve 35 is changed immediately. And if the user
changes the interval on curve 35, curve 33 is changed immediately. One problem with this
constraint is that if the user hard sets an interval on either curve and then sets a size on one of
them, the hard set interval on the other curve is not changed.
Vertex Sizing and Automatic Curve Biasing
Sizes can now be specified on vertices to control biasing along curves. If a curve has a bias
scheme the vertex sizes will be honored, even if it is inherited from parent geometry.
Set a size on a vertex with the following command:

vertex <id> size <size>
Bias can be turned on with:

curve <id> scheme bias
For tri/tet meshing, curve biasing is on by default to generate higher quality tri/tet meshes. Not
only is the difference noticeable when setting sizes on vertices, but it is also noticeable when
setting various sizes on connected curves, surfaces, or volumes. To turn curve biasing off issue
the following command:

curve<id> scheme equal
In the following examples, the surfaces have been given sizes. In the first graphic auto bias is not
enabled. In the second graphic auto bias is enabled.

309

Mesh Generation

When auto bias is enabled sizes on vertices are respected. If a size hasn't been directly set on a
vertex the size is inherited from the parent(s). If there are multiple parents the inherited size is
averaged. In the examples shown above the sizes of the vertices attached to both surfaces was an
average of the two surface sizes. That affected the biasing while curve meshing.
Interval Firmness
Before describing the methods used to set and change intervals, it is important that the user
understand the concept of interval firmness. An interval firmness value is assigned to a geometry
curve along with an interval count or size; this firmness is one of the following values:

hard: interval count is fixed and is not adjusted by interval size command or by
interval matching
soft: current interval count is a goal and may be adjusted up or down slightly by
interval matching or changed by other interval size commands.
default: default firmness setting, used for detecting whether intervals have been
set explicitly by the user or by other tools

Interval firmness is used in several ways in CUBIT. Each curve is assigned an interval firmness
along with an interval count or size. Commands and tools which change intervals also affect the
interval firmness of the curves. Those same commands and tools which change intervals can
only do so if the curves being changed have a lower-precedence interval firmness. The firmness
settings are listed above in order of decreasing precedence. For example, some commands are
only able to change curves whose interval firmness is soft or default ; curves with hard firmness
are not changed by these commands.
More examples of interval setting commands and how they are affected by firmness are given in
the following sections.
A curve's interval firmness can be set explicitly by the user, either for an individual curve or for
all the curves contained in a higher order entity, using the command:

{geom_list} Interval {Default | Soft | Hard}
All curves are initialized with an interval firmness of default , and any command that changes
intervals (including interval assignment) upgrades the firmness to at least soft .
Precedence
If a size is specified multiple times for a single entity, the following precedence is used:

• The highest firmness command takes precedence.
Hard commands include "curve <id> interval <val>", and "{geometry_list} interval hard"
will fix the size at the current size.

• Within a given firmness, the last-issued command takes precedence.
For example, if the user commands "surface 1 size 1" then "volume 1 size 2", and surface
1 is part of volume 1, then surface 1 will have a size of 2.

310

Cubit 15.1 User Documentation

Interval Matching
Each meshing scheme in CUBIT imposes a set of constraints on the intervals assigned to the
curves bounding the entity being meshed. For example, meshing any surface with quadrilaterals
requires that the surface be bounded by an even number of mesh edges. This constrains the
intervals on the bounding curves to sum to an even number. For a collection of connected
surfaces and volumes, these interval constraints must be resolved globally to ensure that each
surface will be meshable with the assigned scheme. The global solution technique implemented
in CUBIT is referred to as interval matching.
When meshing a surface or volume, matching intervals is performed automatically. In some
cases, interval matching needs to be invoked manually, for example when meshing a collection
of volumes, or a collection of surfaces not in a common volume. Interval matching can also be
called to check whether the assigned intervals and schemes are compatible.
The command syntax for manually matching intervals is the following:

Match Intervals {Surface|Volume|Body|Group} <range>
Here the entity list can be any mixed collection of groups, bodies, volumes, surfaces and curves.
The interval matcher assigns intervals as close as possible to the user-specified intervals, while
satisfying global interval constraints. The goal is to minimize the relative change in pre-assigned
intervals on all entities. Interval matching only changes curves with interval firmness of soft or
default .
Extra constraints can be added by the user to improve mesh quality locally; in particular, curves
can be constrained to have the same intervals using the command

Curve <range> Interval {Same|Different}
Specifying that curves have the "same" intervals stores them in a set. More curves may be added
to an existing set, and sets merged, by future commands. The current contents of the affected sets
are printed after each command. A curve may be removed from a set by specifying that its
intervals are "different."
The interval assignment algorithm tries to find one good interval solution from among the
possibly infinite set of solutions. However, if many curves are hard-set or already meshed, there
may be no solution. To improve the chances of finding a solution, it is suggested that curves are
soft-set whenever possible. Also, a solution might not exist due to the way the local selections of
corners and sides of mapped surfaces interact globally. If there is no solution, the following
command may help in determining the cause:

Match Intervals {Surface|Volume|Body|Group} <range> [Seed Curve
<range>] [Assign Groups [Only|Infeasible]] [Map|Pave]

Specifying Assign Groups will create groups that contain independent subproblems of the
global problem. Specifying Assign Groups Only will group independent subproblems, but the
algorithm will not attempt to solve these subproblems. Assign Groups Infeasible will put each
independent subproblem with no solution into specially named groups. Often poor corner
choices and surface meshing schemes will be illuminated this way. If Map or Pave is specified,
then only subproblems involving mapping or paving constraints will be considered. If a Seed
Curve is specified, then only those subproblems containing that curve will be considered.
Advanced users may also wish to experiment with setting the following, which may change the
interval solution slightly:

311

Mesh Generation

Set Match Intervals Rounding {on|off}
Set Match Intervals Fast {on|off}
Set Match Intervals Delta <interval_difference = 0.>

If set match intervals rounding is set to on, the intervals will be rounded to the nearest integer.
If the setting is off, the intervals will be rounded toward the user specified intervals.
If set match intervals fast is set to off a single curve will be fixed per iteration. Note in rare
cases this may produce better meshes. If set match intervals fast is set to on multiple curves will
be fixed per iteration.
Set match intervals delta allows the number of intervals assigned to a curve to be delta intervals
away from optimal unexpectedly. A larger value makes matching intervals faster, but the quality
of the solution may be worse; Hint: try delta = 1.0. Default is 0.0.
The user can also constrain the parity of intervals on curves:

{Curve|Surface|Volume} <range> Interval {Even | Odd}
If Even is specified, then during subsequent interval setting commands and during interval
assignment, curves are forced to have an even number of intervals. If the current number of
intervals is odd, then it is increased by one to be even. If Odd is specified then intervals may be
either even or odd. Setting intervals to even is useful in problems where adjoining faces are
paved one by one without global interval assignment.
Rather than specifying a specific size or interval for a curve or surface, which may overconstrain
the interval matcher, you can specify an upper and lower bound that is acceptable. This would
typically be used in a complex assembly where there may be multiple intervals that may interact
in order to get a compatible mapped/swept mesh through the assembly.

Surface <surface_id_range> {Interval|Size|Periodic Interval} {Lower|Upper}
Bound {On|Off|<bound>}

Mesh Interval Preview
It is sometimes useful to view the nodal locations/intervals on curves graphically before meshing
(which can take considerably more time). The command to do this is:

Preview Mesh {Body|Volume|Surface|Curve|Vertex} <id_range> [Hard]
To clear the display of the temporary nodes, simply issue a "display" command. The purpose of
the hard option is that only curves that have an interval firmness of hard will be previewed.

Periodic Intervals
The number of intervals on a periodic surface, such as a cylinder, in the dimension that is not
represented by a curve is usually set implicitly by the surface size.
However, periodic intervals and firmness can be specified explicitly by the following commands:

Surface <range> Periodic Interval <intervals>
Surface <range> Periodic Interval {Default|Soft|Hard}

Relative Intervals
If the user needs fine control over mesh density, then for curvy or slanted sides of swept
geometries, it is often useful to treat curves as if they had a different length when setting interval
sizes. For example, the user may wish to specify that a slanting side curve and a straight side

312

Cubit 15.1 User Documentation

curve have the same "relative" length, despite their true length as shown in the following figure.
These are not interval matching constraints; interval matching may change intervals so that the
user-specified ratio does not hold exactly.

The relative lengths of curves are set with the following command:

{geom_list} Relative Length <size>
The following command is used to assign intervals proportional to these lengths:

{geom_list} Relative Interval <base_interval>
For a curve with relative length x, setting a relative interval of y produces xy intervals, rounded
to the nearest integer.

Meshing Schemes
Automatic Scheme Selection

• Default Scheme Selection
• Automatic Scheme Selection General Notes
• Surface Auto Scheme Selection
• Volume Auto Scheme Selection

For volume and surface geometries the user may allow CUBIT to automatically select the
meshing scheme. Automatic scheme selection is based on several constraints, some of which are
controllable by the user. The algorithms to select meshing schemes will use topological and
geometric data to select the best quad or hex meshing tool. Auto scheme selection will not select
tet or tri meshing algorithms. The command to invoke automatic scheme selection is:

{geom_list} Scheme Auto
Specifically for surface meshing, interval specifications will affect the scheme designation. For
this reason it is recommended that the user specify intervals before calling automatic scheme
selection. If the user later chooses to change the interval assignment, it may be necessary to call
scheme selection again. For example, if the user assigns a square surface to have 4 intervals
along each curve, scheme selection will choose the surface mapping algorithm. However if the
user designates opposite curves to have different intervals, scheme selection will choose paving,
since this surface and its assigned intervals will not satisfy the mapping algorithm's interval
constraints. In cases where a general interval size for a surface or volume is specified and then
changed, scheme selection will not change. For example, if the user specified an interval size of
1.0 a square 10X10 surface, scheme selection will choose mapping. If the user changes the
interval size to 2.0, mapping will still be chosen as the meshing scheme from scheme selection.
If a mesh density is not specified for a surface, a size based on the smallest curve on the surface
will be selected automatically.

313

Mesh Generation

Default Scheme Selection
If the user does not set a scheme for a particular entity and chooses to mesh the entity, CUBIT
will automatically run the auto scheme selection algorithm and attempt to set a scheme. In cases
where the auto scheme selection fails to choose a scheme, the meshing operation will fail. In this
case explicit specification of the meshing scheme and/or further geometry decomposition may be
necessary.
The default scheme selection in CUBIT, unless otherwise set, will attempt to set a quadrilateral
or hexahedral meshing scheme on the entity. If tet or tri meshing will always be the desired
element shape, the following command can be used:

Set Default Element [Tet|Tri|HEX|QUAD|None]
Setting the default element to tet or tri will bypass the auto scheme selection and always use
either the triadvance or tetmesh schemes if the scheme has not otherwise been set by the user.
The default settings of quad or hex will use the automatic scheme selection.
Previous functionality of CUBIT used a default scheme of map and interval of 1 for all surface
and volume entities. For backwards compatibility and if this behavior is still desired, the none
option may be used on the set default element command.
Auto Scheme Selection General Notes
In general, automatic scheme selection reduces the amount of user input. If the user knows the
model consists of 2.5D meshable volumes, three commands to generate a mesh after importing
or creating the model are needed. They are:

volume all size <value>
volume all scheme auto
mesh volume all

The model shown in the following figure was meshed using these three commands (part of the
model is not shown to reveal the internal structure of the model).

314

Cubit 15.1 User Documentation

Figure 1. Non-trivial model meshed using automatic scheme selection

Scheme Firmness
Meshing schemes may be selected through three different approaches. They are: default settings,
automatic scheme selection, and user specification. These methods also affect the scheme
firmness settings for surfaces and volumes. Scheme firmness is completely analogous to interval
firmness.
Scheme firmness can be set explicitly by the user using the command

{geom_list} Scheme {Default | Soft | Hard}
Scheme firmness settings can only be applied to surfaces and volumes.
This may be useful if the user is working on several different areas in the model. Once she/he is
satisfied with an area's scheme selection and doesn't want it to change, the firmness command
can be given to hard set the schemes in that area. Or, if some surfaces were hard set by the user,
and the user now wants to set them through automatic scheme selection then she/he may change
the surface's scheme firmness to soft or default.
Surface Auto Scheme Selection
Surface auto scheme selection (White, 99) will choose between Pave, Submap, Triprimitive, and
Map meshing schemes, and will always result in selecting a meshing scheme due to the existence
of the paving algorithm, a general surface meshing tool (assuming the surface passes the even
interval constraint).

315

Mesh Generation

Surface auto scheme selection uses an angle metric to determine the vertex type to assign to each
vertex on a surface; these vertex types are then analyzed to determine whether the surface can
be mapped or submapped. Often, a surface's meshing scheme will be selected as Pave
or Triprimitive when the user would prefer the surface to be mapped or submapped. The user can
overcome this by several methods. First, the user can manually set the surface scheme for the
"fuzzy" surface. Second, the user can manually set the "vertex types" for the surface. Third, the
user can increase the angle tolerance for determining "fuzziness." The command to change
scheme selection's angle tolerances is:

[Set] Scheme Auto Fuzzy [Tolerance] {value} (value in degrees)
The acceptable range of values is between 0 and 360 degrees. If the user enters 360 degrees as
the fuzzy tolerance, no fuzzy tolerance checks will be calculated, and in general mapping
and submapping will be chosen more often. If the user enters 0 degrees, only surfaces that are
"blocky" will be selected to be mapped or submapped, and in general paving will be chosen more
often.
Volume Auto Scheme Selection
When automatic scheme selection is called for a volume, surface scheme selection is invoked on
the surfaces of the given volume. Mesh density selections should also be specified before
automatic volume scheme selection is invoked due to the relationship of surface and volume
scheme assignment.
Volume scheme selection chooses between Map, Submap and Sweep meshing schemes. Other
schemes can be assigned manually, either before or after the automatic scheme selection.
Volume scheme selection is limited to selecting schemes for 2.5D geometries, with additional
tool limitations (e.g. Sweep can currently only sweep from several sources to a single target, not
multiple targets); this is due to the lack of a completely automatic 3D hexahedral meshing
algorithm. If volume scheme selection is unable to select a meshing scheme, the mesh scheme
will remain as the default and a warning will be reported to the user.
Volume scheme selection can fail to select a meshing scheme for several reasons. First, the
volume may not be mappable and not 2.5D; in this case, further decomposition of the model may
be necessary. Second, volume scheme selection may fail due to improper surface scheme
selection. Volume schemes such as Map, Submap, and Sweep require certain surface meshing
schemes, as mentioned previously.

Meshing Schemes
Meshing schemes in CUBIT can be divided into four broad categories.

• Traditional Meshing Schemes
• Free Meshing Schemes
• Conversional Meshing Schemes
• Duplication Meshing Schemes

In addition, Cubit supports two parallel meshing applications, pCamal and Sculpt

• Parallel Meshing

If no scheme is selected, Cubit will attempt to assign a scheme using the automatic scheme
selection methods.

316

Cubit 15.1 User Documentation

• Automatic Scheme Selection

Traditional Meshing Schemes
Traditional meshing schemes are used to apply a mesh to an existing geometry using the
methods described in Meshing the Geometry (i.e. setting a scheme, applying interval sizes, and
meshing). Traditional meshing schemes are available for all geometry types.

• Bias, Dualbias
• Circle
• Curvature
• Equal
• Hole
• Mapping
• Pave
• Pentagon
• Pinpoint
• Polyhedron
• Sphere

• STransition
• Stretch
• Submap
• Sweep
• Tetmesh
• Tetprimitive
• Tridelaunay
• TriAdvance
• Trimap
• Trimesh
• Tripave
• Triprimitive

Free Meshing Schemes
Free meshing schemes will create a free-standing mesh without any prior existing geometry. The
final mesh will have mesh-based geometry.

• Radialmesh

Conversional Meshing Schemes
Conversional meshing schemes are used to convert an existing mesh into a mesh of different
element type or size. For example, the THex scheme will convert a tetrahedral mesh into a
hexahedral mesh.

• HTet
• QTri
• THex
• TQuad

Duplication Meshing Schemes
Duplication meshing schemes are used to copy an existing mesh from one geometry onto another
similar geometry.

• Copy
• Mirror

General Meshing Information
Information on specific mesh schemes available in CUBIT is given in this section. The
following sections have important meshing-related information as well, and should be
read before applying any of the mesh schemes described below.

317

Mesh Generation

In most cases, meshing a geometric entity in CUBIT consists of three steps:

• Set the interval number or size for the entity (See Interval Assignment.)
• Set the scheme for the object, along with any scheme-specific information, using the

scheme setting commands described below.
• Mesh the object, using the command:

Mesh {geom_list}
This command will match intervals on the given entity, then mesh any unmeshed lower order
entities, then mesh the given entity.
After meshing is completed, the mesh quality is automatically checked (see Mesh Quality
Assessment), then the mesh is drawn in the graphics window.
The following table classifies the meshing schemes with respect to their applicable
geometry.
Curves Surfaces Volumes
Bias/Dualbias Circle Copy

Copy Copy HTet

Curvature Mapping

 Hole Polyhedron

Equal Mapping Sphere

Pinpoint Mirror Submap

Stretch Pave Sweep

 Pentagon TetMesh, TetINTRIA

 Polyhedron Tetprimitive

 QTri THex

 Submap
 TriDelaunay
 Triprimitive
 TriMap
 TriMesh
 TriAdvance
 TriPave
 STransition

Duplication
Copying a Mesh
Applies to: Curves, Surfaces, Volumes
Summary: Copies the mesh from one entity to another
Syntax:

318

Cubit 15.1 User Documentation

Curve <range> Scheme Copy source Curve <range> [Source Percent
[<percentage> | auto]] [Source [combine|SEPARATE]] [Target
[combine|SEPARATE]] [Source Vertex <id_range>] [Target Vertex
<id_range>]]
Surface <range> Scheme Copy [Source Surface] <id> [[Source Curve <id>
Target Curve <id>] [Source Vertex <id> Target Vertex <id>] [Nosmoothing]
Volume <range> Scheme Copy [Source Volume] <id> [[Source Surface <id>
Target Surface <id>] [Source Curve <id> Target Curve <id>] [Source Vertex
<id> Target Vertex <id>]][Nosmoothing]
Copy Mesh Curve <curve_id_range> Onto Curve <curve_id_range> [Source
Node <starting node id> <ending node id>] [Source Percent
[<percentage>|auto]] [Source [combine|SEPARATE]] [Target
[combine|SEPARATE]] [Source Vertex <id_range>] [Target Vertex
<id_range>]
Copy Mesh Surface <surface_id> Onto Surface <surface_id> [Source Face
<id_range>] [Source Node <id> Target Node <id>] [Source Edge <id> Target
Edge <id>] [Source Vertex <id> Target Vertex <id>] [Source Curve <id>
Target Curve <id>] [Nosmoothing]
Copy Mesh Volume <volume_id> Onto Volume <volume_id> [Source Vertex
<vertex_id> Target Vertex <vertex_id> [Source Curve <curve_id> Target
Curve <curve_id>] [Nosmoothing]

Related Commands:
Set Morph Smooth {on | off}

Discussion:
If the user desires to copy the mesh from a surface, volume, curve, or set of curves that has
already been meshed, the copy mesh scheme can be used. Note that this scheme can be set before
the source entity has been meshed; the source entity will be meshed automatically, if necessary,
before the mesh is copied to the target entity. The user has the option of providing orientation
data to specify how to orient the source mesh on the target entity. For example, when copying a
curve mesh, the user can specify which vertex on the source (the source vertex) gets copied to
which vertex on the target (the target vertex). If you need to reference mesh entities for the copy,
use the Copy Mesh commands. If no orientation data is specified, or if the data is insufficient to
completely determine the orientation on the target entity, the copy algorithm will attempt to
determine the remaining orientation data automatically. If conflicting, or inappropriate,
orientation data is given, the algorithm attempts to discard enough information to arrive at a
proper mesh orientation.
Curve mesh copying has certain options that allow the copying of just a section of the source
curves' mesh. These options are accessed through the extra keyword options. The percent option
allows the user to specify that a certain percentage of the source mesh be copied--in this context
the auto keyword means that the percentage will be calculated based on the ratio of lengths of the
source and target curves. The combine and separate keywords relate to how the command line
options are interpreted. If the user wishes to specify a group of target curves that will each
receive an identical copy of a source mesh, then the target separate option should be used (this
is the default). If, however, the user wishes the source mesh to be spread out along the range of

319

Mesh Generation

target curves, then the target combine option should be used. The source curves are treated in a
similar fashion.
Volume mesh copying depends on the surface copying scheme. Because of this, the target
volume must not have any of its surfaces meshed already.
Because of how the copying algorithm works, the target mesh might not be an exact copy of the
source mesh. This happens because of the effects of smoothing. If an exact copy is required,
there are two possible solutions. The first option is useful when the source and target surfaces or
volumes are exact matches. If this criterion is met, the user may specify the Nosmoothing
option. That will disable any smoothing of the mesh on the target surface and thereby providing
an exact copy of the mesh. The second option is useful if the source and target surfaces are not
identical. In this case the user may set the morph smoothing flag on, which will activate a special
smoother that will match up the meshes as closely as possible.

Mirroring a Mesh
Applies to: Surfaces
Summary: Mirrors the mesh from one surface to another
Syntax:

Surface <range> Scheme Mirror [Source Surface <id> [Source Vertex <id>
Target Vertex <id>]] [Nosmoothing]
Mirror Mesh Surface <surface_id> Onto Surface <surface_id> [Source
Vertex <id> Target Vertex <id> Source Curve <id> Target Curve <id>
Source Node <id> Target Node <id>] [Nosmoothing]

Discussion:
The mirror scheme is very similar to the copy scheme. In order to understand what is changed, a
discussion of the copy command is in order. Depending on what the user enters for the copy
scheme, the resulting mesh might be oriented one of two ways. For example, if the user entered:
Surface 1 scheme copy source surface 2 source vertex 5 target vertex 1
then the algorithm would match vertex 1 with vertex 5, but then would have to make a guess
about how to match the curves. Lacking other pertinent data, the match will be a direct match, as
is shown in the following figure:

Figure 1. Surface 1 copied onto surface 2

320

Cubit 15.1 User Documentation

Figure 2. Surface 1 mirrored onto surface 2

This default matching can be changed by specifying more information for matching, or the user
can specify scheme mirror. The mirror scheme sets up the copying information in such a way as
to reverse the default orientation of the target mesh, as is shown in the above figure (right).
There are times when the resulting mesh may not match the original mesh exactly due to
smoothing. Using the nosmoothing option will ensure that the resulting mesh matches the
original mesh exactly.
The alternate form of the command copies the mesh immediately instead of setting a scheme
first. This form of the command can also use curves and mesh entities as references.

Conversion
HTet
Applies to: Volumes
Summary: Converts an existing hex mesh into a conforming tetrahedral mesh.
Syntax:

HTet Volume <range> {UNSTRUCTURED | structured}
Discussion:
Unlike other meshing schemes in this section, The HTet command requires an existing
hexahedral mesh on which to operate. Rather than setting a meshing scheme for use with the
mesh command, the HTet command works after an initial hex mesh has been generated.
Two methods for decomposing a hex mesh into tetrahedra are available. Set the method to be
used with the optional arguments unstructured and structured. The unstructured method is the
default. Figure 1 shows the difference between the two methods:

321

Mesh Generation

Figure 1. Left: Unstructured method creates 6 tets per hex. Right: Structured method

creates 28 tets per hex

Unstructured
This method creates 6 tetrahedra for every hexahedra. No new nodes will be generated. The
orientation of the 6 hexahedra will be based upon the element node numbering, as a result
orientations may change if node numbering changes. This method is referred to as unstructured
because the number of tetrahedra adjacent each node will be relatively arbitrary in the final
mesh. Tetrahedral element quality is generally sufficient for most applications, however the user
may want to verify quality before performing analysis.

Structured
With this approach, 28 tetrahedra are generated for every hexahedra in the mesh. This method
adds a node to each face of the hex and one to the interior. Although this method generates
significantly more elements, the orientation and quality of the resulting tetrahedra are more
consistent. Each previously existing interior node in the mesh will have the same number of
adjacent tetrahedra.

QTri
Applies to: Surfaces
Summary: Meshes surfaces using a quadrilateral scheme, then converts the
quadrilateral elements into triangles.
Syntax:

Surface <range> Scheme Qtri [Base Scheme quad_scheme>]
QTri Surface <range>
Set QTri Split [2|4]
Set QTri Test {Angle|Diagonal}

322

Cubit 15.1 User Documentation

Discussion:
QTri is used to mesh surfaces with triangular elements. The surface is, first, meshed with the
quadrilateral scheme, and, then, the generated quads are split along a diagonal to produce
triangles. The first command listed above sets the meshing scheme on a surface to QTri. The
second form sets the scheme and generates the mesh in a single step.
In the first command, the user has the option of specifying the underlying quadrilateral meshing
scheme using the base scheme <quad_scheme> option. If no base scheme is specified, CUBIT
will automatically select a scheme. For non-periodic surfaces, the base scheme will be set to
scheme pave. For periodic surfaces, the base scheme will be set to scheme map.
Generally, the second command, Qtri Surface <range>, is used on surfaces that have already
been meshed with quadrilaterals. If, however, this command is used on a surface that has not
been meshed, a base scheme will automatically be selected using CUBIT’s auto-scheme
capabilities. The user can over-ride this selection by specifying a quadrilateral meshing scheme
prior to using the qtri command (using the Surface <range> Scheme <quad_scheme> command).
In addition to the default 2 tris per quad, the set qtri split command may alter the QTri scheme so
that it will split the quad into 4 triangles per quad. Where the 4 option is used, an additional mesh
node is placed at the centroid of each quad.
There are two methods that may be used to calculate the best diagonal to use for splitting the
quadrilateral elements: angle or diagonal. The angle measurement uses the largest angle, while
the diagonal option uses the shortest diagonal. The largest angle measurement will be more
accurate but takes more time.
Also, the QTri scheme is used in the TriMesh command as a backup to the TriAdvance triangle
meshing scheme.

Figure 1. Surface meshed with scheme QTri

THex
Applies to: Volumes
Summary: Converts a tetrahedral mesh into a hexahedral mesh.
Syntax:

THex Volume <range>
Discussion:

323

Mesh Generation

The THex command splits each tetrahedral element in a volume into four hexahedral elements,
as shown in Figure 1. This is done by splitting each edge and face at its midpoint, and then
forming connections to the center of the tet.
When THexing merged volumes, all of the volumes must be THexed at the same time, in a
single command. Otherwise, meshes on shared surfaces will be invalid. An example of the THex
algorithm is shown in Figure 2.

Figure 1. Conversion of a tetrahedron to four hexahedra, as performed by the THex

algorithm.
.

324

Cubit 15.1 User Documentation

Figure 2. A cylinder before and after the THex algorithm is applied.

TQuad
Applies to: Surfaces
Summary: Converts a triangular surface mesh into a quadrilateral mesh.
Syntax:

TQuad Surface <range>
Discussion:
The TQuad command splits each triangular surface element in four quadrilateral elements, as
shown in Figure 1. This is done by splitting each edge at its midpoint, and then forming
connections to the center of the triangle. The result is the same as using the THex algorithm, but
only applies to surfaces. In general it is better to use a mapped or paved mesh to generate
quadrilateral surface meshes. However, the TQuad scheme may be useful for converting facet-
based triangular meshes to quadrilateral meshes when remeshing is not possible.

325

Mesh Generation

Figure 1. A triangle split into 3 quads using the TQuad scheme

Traditional
Bias, Dualbias
Applies to: Curves
Summary: Meshes a curve with node spacing biased toward one or both curve ends.
Syntax:

Curve <range> Scheme Bias
Curve <range> Scheme Bias {Factor|First_Delta|Fraction} <double> [Start
Vertex <range>] [preview]
Curve <range> Scheme Dualbias {Factor|First_Delta|Fraction} <double>
[preview]
Curve <range> Scheme Bias Fine Size <double>
{Coarse Size <double> | Factor <double>} [Start Vertex <range>] [preview]
Curve <range> Scheme Dualbias Fine Size <double>
{Coarse Size <double> | Factor <double>} [preview]

Related Commands:
Curve <range> Reverse Bias
Set Maximum Interval <int>
See also Surface Sizing Function Type Bias
See also Curve Scheme Stretch

The main differences between scheme bias and stretch are the following: scheme stretch does not
use strict geometric series for node placement. If you specify scheme bias or dualbias using the
"fine size" form, the interval count will be hard-set to a value that fills in the curve.
Auto Bias
When using the command 'curve <range> scheme bias' with no additional parameters, an auto
setting will be enabled by default for tet and tri meshing. This scheme honors sizes at a curve's

326

Cubit 15.1 User Documentation

vertices and that vertex size will be used to create a biased edge mesh. For example, two
volumes with different sizes set on the volumes are merged. The size at the vertices (averaged
from sizes on the parent entities) will be used to create the biased edge mesh.
A user can set a size on a vertex with the following command:

Vertex <id> Size <size>
More Discussion:
The Bias and DualBias schemes space the curve mesh unequally, placing more nodes towards
(or away from) the ends of the curve according to a geometric progression. The ratio of
successive edges is the "factor," which may be greater than or less than one. For bias, the series
starts at the first vertex of the curve, or the "start vertex" if specified. For dualbias, the series
starts at both ends of the curve and meets in the middle.
The command behaves differently depending on which set of parameters are specified. There are
three basic variables: the interval count, the bias factor, or the first edge size. The curve length is
a given, fixed quantity. The user can specify any two of these variables, and the third will be
automatically determined.
If the "{Factor|First_Delta|Fraction}" form is specified, then the interval count is taken as a
given. The interval count is whatever was specified previously by an interval count or size
command (see Interval Assignment). If "Factor" is specified, then the first edge size will be
automatically chosen so that the geometric progression of edges "fit" onto the curve. If
"first_delta" is specified, then the first edge length is exactly that absolute value, and the "factor"
is automatically chosen. If "fraction" is specified, then the first edge length is the curve length
times that fraction, and again the "factor" is automatically chosen.
If the "fine size" is specified, then the first edge length is exactly that absolute value. If the
"factor" is specified, then the interval count is automatically chosen. If an approximate coarse
size is specified, then this also determines the factor, and again the interval count is
automatically chosen. If a surface sizing function type bias is used, then the curves of the surface
are sized using similar formulas.
If no start or end vertex is specified, the curve's start vertex is used as the starting point of the
bias. (A curve's start vertex can be identified by listing the curve from the "CUBIT>" prompt.)
If a curve needs to have its nodes distributed towards the opposite end, it can be easily edited
using the reverse bias command. Reversing the curve bias using this command is equivalent to
setting a bias factor equal to the inverse of the original bias factor. Reversing the bias can be
performed on both meshed and unmeshed curves.
The maximum interval setting allows the user to set a maximum number of intervals on any bias
curve. This value is doubled for a curve with a dualbias scheme. It can be easy to accidentally
specify a very large number of intervals and this setting allows the user to place an upper limit
the number of intervals.
The preview option will allow the user to preview mesh size and distribution on the curve before
meshing.
The following figure shows the result of meshing edges with equal, bias and dualbias schemes.

Circle
Applies to: Surfaces
Summary: Produces a circle-primitive mesh for a surface
Syntax:

327

Mesh Generation

Surface <range> Scheme [Sector] Circle [Interval <int>] [fraction <double>]
Discussion:
The Circle scheme is used in regions that should be meshed as a circle. A "circle" consists of a
single loop of bounding curves containing an even number of intervals. Thus, the circle scheme
can be applied to circles, ellipses, ovals, and regions with "corners" (e.g. polygons). The
bounding curves should enclose a convex region. Non-planar bounding loops can also be meshed
using the circle primitive provided the surface curvature is not too great. The mesh resembles
that obtained via polar coordinates except that the cells at the "center" are quadrilaterals, not
triangles. See Figure 1 for an example of a circle mesh. Radial grading of the mesh may be
achieved via the optional [intervals] input parameter. The Fraction option has the range 0 <
fraction < 1 and defaults to 0.5. Fraction determines the size of the inner portion of the circle
mesh relative to the total radius of the circle. The sector option was added to revert to legacy
behavior which is not recommended.

Figure 1. Circle Primitive Mesh

Curvature
Applies to: Curves
Summary: Meshes curves by adapting the interval size to the local curvature.
Syntax:

Curve <range> Scheme Curvature <double>
Discussion:
The value of <double> controls the degree of adaptation. If zero, the resulting mesh will have
nearly equal intervals. If greater than zero, the smallest intervals will correspond to the locations
of largest curvature. If less than zero, the largest intervals will correspond to the locations of
largest curvature. The default value of <double> is zero. Straight lines and circular arcs will
produce meshes with near-equal intervals. The method for generating this mesh is iterative and
may sometimes not converge. If the method does not converge, either the <double> is too large
(over-adaptation) or the number of intervals is too small. Currently, the scheme does not work on
periodic curves.

328

Cubit 15.1 User Documentation

Equal
Applies to: Curves
Summary: Meshes a curve with equally-spaced nodes
Syntax:

Curve <range> Scheme Equal
Discussion:
See Interval Assignment for a description of how to set the number of nodes or the node spacing
on a curve.

Hole
Applies to: Annular Surfaces
Summary: Useful on annular surfaces to produce a "polar coordinate" type mesh (with the
singularity removed).
Syntax:

Surface <surface_id_range> Scheme Hole [Rad_intervals <int>] [Bias
<double>] [Pair Node <id> With Node <id>]

Discussion:
A polar coordinate-like mesh with the singularity removed is produced with this scheme. The
azimuthal coordinate lines will be of constant radius (unlike scheme map) The number of
intervals in the azimuthal direction is controlled by setting the number of intervals on the inner
and outer bounding loops of the surface (the number of intervals must be the same on each loop).
The number of intervals in the radial direction is controlled by the user input, rad_intervals
(default is one).
A bias may be put on the mesh in the radial direction via the input parameter bias. The default
bias of 0 gives a uniform grading, a bias less than zero gives smaller radial intervals near the
inner loop, and a bias greater than zero gives smaller radial intervals near the outer loop.
The correspondence between mesh nodes on the inner and outer boundaries is controlled with the
pair node "<loop node-id> with node <loop node-id>" construct. One id on the inner loop and
one id on the outer loop should be given to connect the two nodes by a radial mesh line. Not
choosing this option may result in sub-optimal node pairings with possible negative Jacobians.
To use this option, mesh the inner and outer curve loops and then determine the mesh node ids.

329

Mesh Generation

Figure 1. Example of Hole Scheme

Mapping
Applies to: Surfaces, Volumes
Summary: Meshes a surface/volume with a structured mesh of quadrilaterals/hexahedra.
Syntax:

{Volume|Surface} <range> Scheme Map
Discussion:
A structured mesh is defined as one where each interior node on a surface/volume is connected
to 4/6 other nodes. Mappable surfaces contain four logical sides and four logical corners of the
map; each side can be composed of one or several geometric curves. Similarly, mappable
volumes have six logical sides and eight logical corners; each side can consist of one or several
geometric surfaces. For example, in Figure 1 below, the logical corners selected by the algorithm
are indicated by arrows. Between these vertices the logical sides are defined; these sides are
described in Table 1.

Figure 1. Scheme Map Logical Properties

Table 1. Listing of Logical Sides

330

Cubit 15.1 User Documentation

Logical Side Curve Groups

Side 1 Curve 1

Side 2 Curve 2

Side 3 Curve 3, Curve 4, Curve 5

Side 4 Curve 6

Interval divisions on opposite sides of the logical rectangle are matched to produce the mesh
shown in the right portion of Figure 1. (i.e. The number of intervals on logical side 1 is equated
to the number of intervals on logical side 3). The process is similar for volume mapping except
that a logical hexahedron is formed from eight vertices. Note that the corners for both surface
and volume mapping can be placed on curves rather than vertices; this allows mapping surfaces
and volumes with less than four and eight vertices, respectively. For example, the mapped
quarter cylinder shown in Figure 2 has only five surfaces.

Figure 2. Volume Mapping of a 5-surfaced volume

The mapper works on a bicubic interpolation of the points on the boundary to represent the
surface. There may be times that those points may not be on the surface exactly if the surface is
not suitable for bicubic interpolation. The Mapping Constraint flag tells the mapper to relax the
nodes to the geometry or not.

Set Mapping Constraint {ON|off}

Pave
Applies to: Surfaces
Summary: Automatically meshes a surface with an unstructured quadrilateral mesh.
Syntax:

Surface <range> Scheme Pave Related Commands:
[Set] Paver Diagonal Scale <factor (Default = 0.9)> [set] Paver Grid Cell
<factor (Default = 2.5)>[set] Paver LinearSizing {Off | ON} Surface <range>
Sizing Function Type ...
[Set] Paver Smooth Method {DEFAULT | Smooth Scheme | Old}
[Set] Paver Cleanup {ON|Off|Extend}

Discussion:

331

Mesh Generation

Paving (Blacker, 91; White, 97) allows the meshing of an arbitrary three-dimensional surface
with quadrilateral elements. The paver supports interior holes, arbitrary boundaries, hard lines,
and zero-width cracks. It also allows for easy transitions between dissimilar sizes of elements
and element size variations based on sizing functions. Figure 1 shows the same surface meshed
with mapping (left) and paving (right) schemes using the same discretization of the boundary
curves.

Figure 1. Map (left) and Paved (right) Surface Meshes

Element Shape Improvement
When meshing a surface geometry with paving, clean-up and smoothing techniques are
automatically applied to the paved mesh. These methods improve the regularity and quality of
the surface mesh. By default the paver uses its own smoothing methods that are not directly-
callable from CUBIT. Using one of CUBIT's callable smoothing methods in place of the default
method will sometimes improve mesh quality, depending on the surface geometry and specific
mesh characteristics. If the paver produces poor element quality, switching the smoothing
scheme may help. This is done by the command:

[set] Paver Smooth Method {DEFAULT | Smooth Scheme | Old}
When the "Smooth Scheme" is selected, the smoothing scheme specified for the surface will be
used in place of the paver's smoother. See "Mesh Smoothing" for more information about the
available smoothing schemes in CUBIT.

Controlling Flattening of Elements
The smoothers flatten elements, such as inserted wedges, that have two edges on the active mesh
front. In meshes where this "corner" is a real corner, flattening the element may give an
unacceptable mesh. The following command controls how much the diagonal of such an element
is able to shrink.

[set] Paver Diagonal Scale <factor (Default = 0.9)>
The range of for the scale factor is 0.5 to 1.0. A scale factor of 1.0 will force the element to be a
parallelogram as long as it is on the mesh front. A value of 0.5 will allow the diagonal to be half
its calculated length. The element may became triangular in shape with the two sides on the
mesh front being collinear.

Controlling the Grid Search for Intersection Checking
The paver divides the bounding box of a surface into a number of cells based on the average
length of an element. It uses these cells to speed intersection checking of new element edges with
the existing mesh. If both very long and very short edges fall in the same area, it is possible that a

332

Cubit 15.1 User Documentation

long edge which spans the search region is excluded from the intersection check when it does
intersect the new element. The following command allows the user to adjust the size of the grid
cells.

[set] Paver Grid Cell <factor (Default = 2.5)>
The grid cell factor is a multiplier applied to the average element size, which then becomes the
grid cell size. The surface's bounding box is divided by this cell size to determine the number of
cells in each direction. A larger cell size means each cell contains more nodes and edges. A
smaller cell size means each cell has fewer nodes and edges. A larger cell size forces the
intersection algorithm to check more potential intersections, which results in long paver times. A
smaller cell size gives the intersection algorithm few edges to check (faster execution) but may
result in missed intersections where the ratio of long to short element edges is great. Increase this
value if the paver is missing intersections of elements.

Controlling the Paver Sizing Function
The paving algorithm will automatically select a "linear" sizing function if the ratio the largest
element to the smallest is greater than 6.0 and no other sizing function is specified for the
surface. This is usually desirable. When it is not, the user can change this behavior with the
command:
[set] Paver LinearSizing {Off | ON}
Setting paver linear sizing to "off" will keep the default behavior. The size of the element will be
based on the side(s) of the element on the mesh front. For a discussion of sizing functions,
including how to automatically set up size transitions, see Adaptive Meshing.

Controlling Paver Cleanup
The paver uses a mesh clean-up process to improve mesh quality after the initial paving
operation. Clean-up applies local connectivity corrections to increase the number of interior
mesh nodes that are connected to four quadrilaterals. Sometimes it fails to improve the mesh.
The following command allows the user to control some aspects of the clean-up process.

[Set] Paver Cleanup {ON|Off|Extend}
The default option is to clean-up the mesh. The off option will turn clean-up off and may give an
invalid mesh. The extend option enables a non-local topology replacement algorithm. The
command without any option will list the current setting.
The extend option attempts to group several defective nodes in a region that may be replaced
with a template that has fewer defects. The images below show a mesh before and after using
this option.

333

Mesh Generation

Figure 2. Paved mesh before using cleanup extend

334

Cubit 15.1 User Documentation

Figure 3. Paved mesh after using cleanup extend

Pentagon
Applies to: Surfaces
Summary: Produces a pentagon-primitive mesh for a surface
Syntax:

Surface <range> Scheme Pentagon
Discussion:
The pentagon scheme is a meshing primitive for 5-sided regions. It is similar to the triprimitive
and polyhedron schemes, but is hard-coded for 5 sided surfaces.
The pentagon scheme indicates the region should be meshed as a pentagon. The scheme works
best if the shape has 5 well-defined corners; however shapes with more corners can be meshed.
The algorithm requires that there be at least 10 intervals (2 per side) specified on the curves
representing the perimeter of the surface. In addition, the sum of the intervals on any three

335

Mesh Generation

connected sides must be at least two greater than the sum of the intervals on the remaining two
sides. Figure 1 shows two examples of pentagon meshes.

Figure 1. Examples of Pentagon Scheme Meshes

Pinpoint
Applies to: Curves
Summary:Meshes a curve with node spacing specified by the user.
Syntax:

Curve <range> Scheme Pinpoint Location <list of doubles>
Discussion:
The Pinpoint scheme allow the user to specify exactly where on a curve to place nodes. The list
of doubles are absolute positions, measured from the start vertex. The user can enter as many as
needed, and they do not need to be in numerical order. Below is an example of a curve that has
been meshed using the following scheme:

curve 2 scheme pinpoint location 1 4 5 6 6.2 6.4 6.6 9:

336

Cubit 15.1 User Documentation

Polyhedron
Applies to: Surfaces and Volumes.
Summary: Produces an arbitrary-sided block primitive mesh for a surface or volume.
Syntax:

Volume <range> Scheme Polyhedron
Surface <range> Scheme Polyhedron

Discussion:
The polyhedron scheme is a meshing primitive for 2d and 3d n-sided regions. This is similar to
the triprimitive , tetprimitive, and pentagon schemes, except rather than 3, 4, or 5 sides, it allows
an arbitrary number of sides. The scheme works best on convex regions. Surfaces must have
only one loop, and each vertex must be connected to exactly two curves on the surface (e.g., no
hardlines). Volumes must have only one shell, each vertex must be connected to exactly three
surfaces on the volume, and each surface should be meshed with scheme polyhedron. There are
some interval assignment requirements as well, which should be automatically handled by
CUBIT.
If the polyhedron scheme is specified for the volume, then the surfaces of the volume are
automatically assigned scheme polyhedron as well, unless they were hard-set by the user.
Schemes should be specified on all volumes of an assembly prior to meshing any of them.
Scheme polyhedron attaches extra data to volumes; if Cubit is behaving strangely, the user may
need to explicitly remove that data with a reset volume all, or similar command.
Scheme polyhedron was designed for assemblies of material grains, where each volume is
roughly a Voronoi region, and the assembly is a periodic space-filling model (tile). Figure 1
shows two examples of polyhedron meshes.

337

Mesh Generation

Figure 1. Examples of Polyhedron Scheme Meshes

338

Cubit 15.1 User Documentation

Sphere
Applies to: Volumes topologically equivalent to a sphere and having one surface.
Summary: Generates a radially-graded hex mesh on a spherical volume.
Syntax:

Volume <range> Scheme Sphere [Graded_interval <int>] [Az_interval <int>]
[Bias <val>] [Fraction <val>] [Max_smooth_iterations <int=2>]

Discussion:
This scheme generates a radially-graded mesh on a spherical volume having a single bounding
surface. The mesh is a straightforward generalization of the circle scheme for surfaces. The mesh
consists of an inner region and an outer region. The inner region is a mapped mesh of a cube and
the outer region contains fronts that trasition from the cube surface to the sphere surface. The
following describes the parameters that control the sphere mesh.
Graded_interval:
The number of intervals in the outer region from the inner mapped mesh to the surface of the
sphere is controlled by the graded_interval input parameter. Azimuthal mesh lines in the outer
portion of the sphere will have approximately constant radius. If graded_interval is not
specified, a default number of intervals will be computed based on the interval size value
assigned to the sphere volume.
Az_interval:
The number of azimuthal intervals around the equator is controlled by the az_interval input
parameter. To maintain symmetry, the az_interval will be rounded to the nearest multiple of 8.
If az_interval is not specified, a default number of intervals will be computed either based on
the the the interval value or on the mesh size value assigned to the volume. If the interval value is
set (volume 1 interval 40, for example), the interval value will be used to define the number of
azimuthal intervals. Otherwise, the mesh size will be used as the approximate size for elements
on the inner mapped mesh.
Bias:
The bias parameter controls the amount of radial grading in the outer region of the mesh from
the inner mapped mesh to the sphere surface. A bias = 1 will results in equal size intervals, while
a bias < 1 will generate smaller intervals towards the sphere interior and a bias > 1 will generate
smaller elements towards the sphere surface. If the bias parameter is not specified, a default bias
will be computed so that element size gradually increases from the inner mapped mesh to the
sphere surface. The default bias value will also be based on the interval size assigned to the
sphere volume as it attempts to maintain approximately isotropic elements throughout the sphere.
Fraction:
The fraction parameter (between 0 and 1) determines what fraction of the sphere is occupied by
the inner mapped mesh. The fraction is defined as ratio of the diagonal of the cube containing
the mapped mesh to sphere's diameter. The default value for fraction is 0.5. Interval sizes in the
inner mapped mesh are normally constrained by the az_intervals. If az_intervals are not
specified, element sizes in this region will be based upon the interval size assigned to the sphere
volume.
Max_smooth_iterations:
The Max_smooth_iterations parameter determines the number of smoothing iterations
following initial definition of the sphere mesh. By default, the number of smoothing interations
is set to 0, which will result in a symmetric mesh. Note that smoothing can improve the quality

339

Mesh Generation

of the mesh, however, it may disturb the bias and fraction. When bias and fraction are critical
then smoothing iterations should be set to 0.

SPHERE MESH: fraction 0.3 graded_interval 6 az_interval 40 bias 0.8

max_smooth_iterations 0

BIAS (uniform): fraction 0.3 graded_interval 6 az_interval 40 bias 1.0

max_smooth_iterations 0

340

Cubit 15.1 User Documentation

FRACTION: fraction 0.7 graded_interval 6 az_interval 40 bias 1.0 max_smooth_iterations
0

INTERVAL: fraction 0.7 graded_interval 9 az_interval 40 bias 1.0 max_smooth_iterations

0

SMOOTHING: fraction 0.7 graded_interval 9 az_interval 40 bias 1.0

max_smooth_iterations 2

341

Mesh Generation

AZIMUTHAL (mesh coarseness): fraction 0.7 graded_interval 5 az_interval 32 bias 1.0
max_smooth_iterations 2

BIAS (graded): fraction 0.9 graded_interval 9 az_interval 32 bias 1.5

max_smooth_iterations 0

STransition
Applies to: Surfaces
Summary:
Produces a simple transitional mapped mesh.
Syntax:

Surface <surface_id_range> Scheme STransition [Triangle] [Coarse]
Discussion:
The STransition scheme transitions a mesh from one element density to another across a surface.
This scheme is particularly helpful when the Paving scheme produces a poor mesh. The
following two figures show a specific case where the STransition scheme may offer an
improvement.

Pave scheme

STransition scheme

The coarse option forces the mesh to transition to a coarser mesh in the first layer.

342

Cubit 15.1 User Documentation

STransition scheme with
coarse option

For triangular surfaces, the STransition scheme with the triangle option will produce similar
results when compared to the Triprimitive scheme. However, STransition is capable of handling
more varied interval settings. The following triangle fails when using the Triprimitive scheme
but succeeds with the STransition scheme.

STransition scheme on a triangular
surface with intervals set to 3, 3, and
6.

The figures below show the STransition meshing scheme response to different shapes and
interval settings.

STransition scheme on a rectangular
surface with three intervals set to 2
and one set to 4.

STransition scheme on a rectangular
surface with intervals set to 2, 3, 4,
and 5.

The user also has the option of specifying END or SIDE surface vertex types.

343

Mesh Generation

STransition scheme on a hexagon
surface with five intervals set to 2, one
interval set to 8, and user specified
endpoints.

Note, that the Centroid Area Pull smoothing algorithm sometimes gives better results than the
default Winslow smoothing algorithm for STransition meshes.

Stretch
Applies to: Curves
Summary: Permits user to specify the exact size of the first and/or last edges on a curve.
Syntax:

Curve <range> Scheme Stretch [First_size <double>] [Last_size <double>]
[Start Vertex <id>]
Curve <range> Scheme Stretch [Stretch_factor <double>] [Start Vertex
<id>]

Related Commands:
Scheme Bias and Dualbias.

Discussion:
This scheme allows the user to specify the exact length of the first and/or last edge on a curve
mesh. Intermediate edge lengths will vary smoothly between these input values. Reasonable
values for these parameters should be used (for example, the sizes must be less than the total
length of the curve). If last_size is input, first_size must be input also. If stretch_factor is input,
neither first_size nor last_size can be input. This scheme does not currently work on periodic
curves.

Submap
Applies to: Surfaces, Volumes
Summary: Produces a structured mesh for surfaces/volumes with more than 4/6 logical sides
Syntax:

{Surface|Volume} <range> Scheme Submap
Related Commands:

{Surface|Volume} <range> Submap Smooth <on|off>
Discussion:
Submapping (Whiteley, 96) is a meshing tool based on the surface mapping capability discussed
previously, and is suited for mesh generation on surfaces which can be decomposed into
mappable subsurfaces. This algorithm uses a decomposition method to break the surface into
simple mappable regions. Submapping is not limited by the number of logical sides in the

344

Cubit 15.1 User Documentation

geometry or by the number of edges. The submap tool, however is best suited for surfaces and
volumes that are fairly blocky or that contain interior angles that are close to multiples of 90
degrees.
An example of a volume and its surfaces meshed with submapping is shown in Figure 1.

Figure 1. Quadrilateral and Hexahedral meshes generated by submapping

Like the mapping scheme, submapping uses vertex types to determine where to put the corners
of the mapped mesh (See Surface Vertex Types). For surface submapping, curves on the surface
are traversed and grouped into " logical sides " by a classification of the curves position in a local
"i-j" coordinate system.
Volume submapping uses the logical sides for the bounding surfaces and the vertex types to
construct a logical "i-j-k" coordinate system, which is used to construct the logical sides of the
volume. For surface and volume submapping, the sides are used to formulate the interval
constraints for the surface or volume.
Figure 2 shows an example of this logical classification technique, where the edges on the front
surface have been classified in the i-j coordinate system; the figure also shows the submapped
mesh for that volume.

Figure 2. Scheme Submap Logical Properties

In special cases where quick results are desired, submap cornerpicking can be set to OFF. The
corner picking will be accomplished by a faster, but less accurate algorithm which sets the vertex
types by the measured interior angle at the given vertex on the surface. In most cases this is not
recommended.

Set Submap CornerPicking {ON|off}

345

Mesh Generation

After submapping has subdivided the surface and applied the mapped meshing technique
mentioned above, the mesh is smoothed to improve mesh quality. Because the decomposition
performed by submapping is mesh based, no geometry is created in the process and the resulting
interior mesh can be smoothed. Sometimes smoothing can decrease the quality of the mesh; in
this case the following command can turn off the automatic smoothing before meshing:

{Surface|Volume} <range> Submap Smooth <on|off>
Surface submapping also has the ability to mesh periodic surfaces such as cylinders. An example
of a periodic surface meshed with submapping is shown in Figure 3. The requirement for
meshing these surfaces is that the top and bottom of the cylinder must have matching intervals.

Figure 3. Periodic Surface Meshing with Submapping

For periodic surfaces, there are no curves connecting the top and bottom of the cylinder. Setting
intervals in this direction on the surface can be done by setting the periodic interval for that
surface (see Interval Assignment). No special commands need to be given to submap a periodic
surface, the algorithm will automatically detect the fact that the surface is periodic. Currently,
periodic surfaces with interior holes are not supported.

Surface Vertex Types

• Surface Vertex Commands
• Listing and Drawing Vertex Types
• Triangle Vertex Types
• Adjusting the Automatic Vertex Type Selection Algorithm
• Volume Curve Types

Several meshing algorithms in CUBIT "classify" the vertices of a surface or volume to produce a
high quality mesh. This classification is based on the angle between the edges meeting at the
vertex, and helps determine where to place the corners of the map, submap or trimesh, or the
triangles in the trimap or tripave schemes. For example, a surface mapping algorithm must
identify the four vertices of the surface that best represent the surface as a rectangle. Figure 1
illustrates the vertex angle types for mapped and submapped surfaces, and the correspondence
between vertex types and the placement of corners in a mapped or submapped mesh.

346

Cubit 15.1 User Documentation

Figure 1. Angle Types for Mapped and Submapped Surfaces: An End vertex is contained

in one element, a Side vertex two, a Corner three, and a Reversal four.
The surface vertex type is computed automatically during meshing, but can also be specified
manually. In some cases, choosing vertex types manually results in a better quality mesh or a
mesh that is preferable to the user. Vertex types can be specified directly as End, Side, Corner, or
Reversal, or can be specified by giving the desired interior angle as 90, 180, 270, or 360,
respectively.
Vertex types have a firmness, just as meshing schemes do. Automatically selected vertex types
are soft, while user-set vertex types are hard.

Surface Vertex Commands
Vertex types are set using the following commands:

Surface <surface_id> [Vertex <vertex_id_range> [Loop_index <int>]] Type
{End|Side|Corner|Reversal}
Surface <surface_id> [Vertex [<vertex_id_range> [Loop_index <int>]] Angle
<value>
Surface <surface_id> [Vertex <vertex_id_range> [Loop_index <int>]] Type
{Default|Soft|Hard}

If no vertices are specified, the command is applied to all vertices of each surface.
Note that a vertex may be connected to several surfaces and its classification can be different for
each of those surfaces.
The influence of vertex types when mapping or submapping a surface is illustrated in Figure 2.
There, the same surface is submapped in two different ways by adjusting the vertex types of ten
vertices.

347

Mesh Generation

Figure 2. Influence of vertex types on submap meshes; vertices whose types are changed
are indicated above, along with the mesh produced; logical submap shape shown below.

The loop_index is an advanced option used only for vertices where the boundary of a single
surface passes through the same vertex more than once. This case is not common. If no loop
index is specified for such a vertex, the specified vertex type is assigned to all occurrences of the
vertex. The loop index for a specific occurrence of a vertex can be determined by listing the
surface (list surface <id>) to show the list of curves in each loop bounding the surface, with the
start and end vertex listed for each curve. The loop index begins at zero for the first curve in the
first loop, and is incremented by one for subsequent curves through the last curve in the last loop.
The loop index values corresponding to a specific vertex will be the loop index of each curve
whose start vertex is the desired vertex.

Listing and Drawing Vertex Types
Listing a surface lists the types of the vertices. The vertex type settings may also be drawn with
the following commands:

Draw Surface <surface_id_range> {Vertex Angle|Vertex Type}

Triangle Vertex Types
For a surface that will be meshed with scheme trimap or tripave, the user may specify the angle
below which triangles are inserted:

Surface <surface_id_range> Angle <angle>
The user may also set whether to add a triangle at a particular vertex:

Surface <surface_id> [Vertex <vertex_id_range> [Loop_index <int>]] Type
{Triangle|Nontriangle}

Adjusting the Automatic Vertex Type Selection Algorithm
The user may specify the maximum allowable angle at a corner with the following command:

Set {Corner|End} Angle <degrees>
The user may also give greater priority to one automatic selection criteria over the others by
changing the following absolute weights. The corner weight considers how large angles are at
corners. The turn weight considers how L-shaped the surface is. The interval weight considers
how much intervals must change. The large angle weight affects only auto-scheme selection:
surfaces with a large angle will be paved instead. Each weight's default is 1 and must be between
0 and 10. The bigger a weight the more that criteria is considered.

Set Corner Weight <value>

348

Cubit 15.1 User Documentation

Set Turn Weight <value>
Set Interval Weight <value>
Set Large Angle Weight <value>

An illustration of a mesh produced by the submapping algorithm is shown in Figure 2. The
meshes produced by submapping on the left and right result from adjusting the vertex types of
the eight vertices shown.

Volume Curve Types
When sweeping, a 2.5 dimensional meshing scheme, curves perpendicular to the sweep direction
can have a type with respect to the volume. These types are usually automatically selected. The
following commands are useful:

Draw Volume <surface_id_range> {Curve Angle|Curve Type}
List Volume <volume_id> Curve Type
Volume <volume_id> [Curve <curve_id_range>] Type
{End|Side|Corner|Reversal}
Volume <volume_id> [Curve <curve_id_range>] Type {Default|Soft|Hard}

Sweep
Applies to: Volumes
Summary: Produces an extruded hexahedral mesh for 2.5D volumes.
Syntax:

Volume <range> Scheme Sweep [Source [Surface] <range>] [Target [Surface]
<range>]
[Propagate bias]
[Sweep smooth {auto | smart affine | linear | residual | winslow}]
[Sweep transform {LEAST SQUARES | Translate}] [Autosmooth target
{ON|off}]
Volume <range> Scheme Sweep Vector <xval yval zval>
Volume <range> autosmooth target [off|ON]
fixed imprints [on|OFF]
smart smooth [ON|off] tolerance <val 0.0 to 1.0=0.2>
nlayers <val >=0=5>

Related Commands:
Set Multisweep [On|Off]
Multisweep Smoothing {ON|Off}
Multisweep Volume <range> Remove
Volume <range> Redistribute Nodes {ON|off}
[Set] Legacy Sweeper {On|Off}

Discussion:
The sweep algorithm can sweep general 2.5D geometries and can also do pure translation or
rotations. A 2.5D geometry is characterized by source and target surfaces which are
topologically similar. The hexahedral mesh is swept (extruded) between source and target along
a single logical axis. Bounding the swept hexahedra between source and target surfaces, are the
linking surfaces. Figures 1 and 2 show examples of source, target and linking surfaces.

349

Mesh Generation

Command Options: The user can specify the source and target surfaces. The user can also
specify a geometric vector approximating the sweep direction, and let CUBIT determine the
source and target surfaces. The user can specify just the source surfaces, and let cubit guess the
target, or "scheme auto" can also be used.

Figure 1. Sweep Volume Meshing

Figure 2. Multiple Linking Surface Volume Meshing with Scheme Sweep

In general, the procedure for using the sweep scheme is to first mesh the source surfaces. Any
surface meshing scheme may be employed. Figure 1 displays swept meshes involving mapped
and paved source surfaces. Linking surfaces must have either mapping or submapping schemes
applied. The sweep algorithm can also handle multiple surfaces linking the source surface and
the target surfaces. An example of this is shown in Figure 2. Note that for the multiple- linking-
surface meshing case, the interval requirement is that the total number of intervals along each
multiple edge path from the source surface to the target surface must be the same for each path.
Once the appropriate mesh is applied to the source surface and intervals assigned, the mesh
command may be issued.
In many cases auto-scheme selection can simplify this process by recognizing sweepable
geometries and automatically select source and target surfaces. If the source and target surfaces
are not specified, CUBIT attempts to automatically select them. CUBIT also automatically
sets curve and vertex types in an attempt to make the mesh of the linking surfaces lead from a
source surface to a target surface. These automatic selections may occasionally fail, in which
case the user must manually select the source/target surfaces, or some of the curve and vertex

350

Cubit 15.1 User Documentation

types. After making some of these changes, the user should again set the volume scheme to
sweep and attempt to mesh.
Occasionally the user must also adjust intervals along curves, in addition to the usual
surface interval matching requirements. For a given pair of source/target surfaces, there must be
the same number of hexahedral layers between them regardless of the path taken. This constrains
the number of edges along curves of linking surfaces. For example, in Figure 1 right, the number
of intervals through the holes must be the same as along the outer shell.
Propagate bias Option: The propagate bias option attempts to preserve the source bias by
propagating bias mesh schemes from the curves of the source surface to the curves of the target
surface.
Sweep transform Option: Swept meshes are created by projecting points between the source
and target surfaces using affine transformations and then connecting them to form hexahedra.
The method used to calculate the affine transformations is set using the sweep transform option.

Least squares: If the least squares option is selected then affine transformations
between the source and target are calculated using a least squares method.
translate: If the translate option is selected then a simple translate affine
transformation is calculated based upon the centroid of the source and target.

Sweep smooth Option: Note: This option is available only in Legacy mode. The command 'set
legacy sweeper on|off controls the mode. Legacy mode is OFF by default.
To ensure adequate mesh quality, optional smoothing schemes are available to reposition the
interior nodes. The sweep tool permits five types of smoothing that are set with the following
command prior to meshing a volume whose mesh scheme is sweep:

Linear: If this option is selected, no layer smoothing is performed. The node
positions are determined strictly by the affine transformation from the previous
layer. Good quality swept meshes can be constructed using “linear” provided the
volume geometry and meshed linking surfaces permit the volume mesh to be
created by a translation, scaling, and/or rotation of the source mesh. Volumes for
which this is nearly true may also produce acceptable quality with “linear”. As
one would expect, this option generates swept meshes more quickly than the other
sweep smooth options. This option is rarely needed since the next option produces
better results with little time penalty.
Smart affine: The “smart affine” option does minimal smoothing of the interior
nodes. Affine transformations are used to project the source and target surfaces to
the middle surface of the volume. The position of the middle surface nodes is the
average of the projected nodes from the source and target surfaces. The error in
projecting from source and target is computed, and this error is linearly
distributed back to the source and target.
Residual: The “residual” method is often used for meshing volumes that cannot
be swept with the “smart linear” method. It tends to produce better quality meshes
than the “smart linear” method while running faster than the Winslow-based
smoother. The sweeping algorithm uses an affine transformation to calculate the
interior nodes’ positions, but the mesh on the linking surface determines the
positions of the nodes on the boundary of the layer. For the “residual” method,
CUBIT calculates corrective adjustments for interior nodes using the “residuals”
from boundary nodes. The “residual” is defined as the distance between the

351

Mesh Generation

boundary node’s position (as determined by the surface mesh) and the boundary
node’s ideal position (as determined by the affine transformation of the previous
layer). Cubit computes the residual forward from the source and backward from
the target to get best the possible node position.
Winslow: Smooth scheme “winslow” smooths each layer using a weighted,
elliptic smoother. The weights are computed from the source mesh; they help
maintain any biased spacing that occurs on the source mesh. For example, one
might want to use the “winslow” option if the source was a biased mesh that was
created using scheme circle. The biasing of the outer elements of the source mesh
may be destroyed if one of the other smooth options is used. The interior nodes
are initially place using the residual method.

AUTO: This is the default for the sweep smooth option. “auto” causes the
Sweeper to automatically choose between “smart affine” and “residual.” Auto
will choose “off” if the layer needs little or no smoothing or “residual” if it needs
smoothing. Scheme “auto” does not guarantee that no negative Jacobians are
produced. This option produces acceptable results in most cases. If it fails to
produce a quality mesh, then choose one of the other sweep smooth options.
If none of these smooth schemes result in adequate mesh quality, one can consider
trying one of the volume smoothing schemes such as condition number or mean
ratio.

Autosmooth target Option and Command
During sweeping, a quad mesh is placed on each source surface. Then the collection of nodes &
quads from all the source surfaces is projected onto the target surface. The autosmooth target
command or sweep command options control the placement of the nodes onto the target surface.

Volume <range> autosmooth target [off|ON]
fixed imprints [on|OFF]
smart smooth [ON|off] tolerance <val 0.0 to 1.0=0.2>
nlayers <val >=0=5>

Issuing the command “Volume <id> autosmooth target off”, or using these options in the sweep
command, will project the source nodes onto the target without any subsequent smoothing to
improve quality. The result is that the relative placement of the nodes on the target will be as
close to identical as possible to the relative placement of the node on the sources. This should be
used when sweeping models that are very thin, and smoothing of the target could result in
significant skew introduced in the thin layers in the sweep. Axisymmetric models might also
want to turn OFF the autosmooth target so that the nodes are identically placed on the symmetry
plane surfaces.
Issuing the command “Volume <id> autosmooth target on”, or using it as an option in the sweep
command, will call a surface smoother after the initial projection of the nodes onto the target in
order to improve surface element quality. This smoothing does not consider hex element quality,
only quality of the target surface mesh. This command will smooth all nodes on the target
surface. Adding the “fixed imprint on” keyword onto the command will cause the target nodes
which are projections of source nodes on source curves and vertices to remain fixed during
smoothing. Only target nodes, which are projections of source surface nodes will be
smoothed. The “smart smooth on” option provides further control to the user. If “smart
smooth” is turned on, target surface smoothing will only move nodes which are within “nlayers”

352

Cubit 15.1 User Documentation

of a target surface quad element that has a scaled Jacobian quality measure less than the specified
“tolerance” value.

Multisweep
While the basic sweeping algorithm requires a single target surface, the sweeping algorithm can
also handle multiple target surfaces. The multisweep algorithm works by recognizing possible
mesh and topology conflicts between the source and target surfaces and works to resolve these
conflicts through the use of the virtual geometry capabilities in CUBIT. Figure 4 shows some
examples of volumes which have been meshed with the multisweep algorithm.

Figure 4. Examples of Multisweep meshes.

353

Mesh Generation

Linear: If this option is active and/or target surfaces are omitted from the scheme
setting command, CUBIT will determine source and target surfaces
(See Automatic Scheme Selection). Sweeping can be further automated using the
"sweep groups" command.

• Limitations: Not all geometries are sweepable. Even some that appear
sweepable may not be, depending on the linking surface meshes. Highly
curved source and target surfaces may not be meshable with the current
sweep algorithm.

• Grouping Sweepable Volumes
Swept meshing relies on the constraint that the source and target meshes
are topologically identical or the target surface is unmeshed. This results
in there being dependencies between swept volumes connected
through non-manifold surfaces; these dependencies must be satisfied
before the group of volumes can be meshed successfully. For example, if
the model was a series of connected cylinders, the proper way to mesh the
model would be to sweep each volume starting at the top (or bottom) and
continuing through each successive connected volume.
With larger models and with models that contain volumes that require
many source surfaces, the process of determining the correct sweeping
ordering becomes tedious. The sweep grouping capability computes these
dependencies and puts the volumes into groups, in an order which
represents those dependencies. The volumes are meshed in the correct
order when the resulting group is meshed.
To compute the sweep dependencies, use the command:

Group Sweep Volumes
This will create a group named "sweep_groups", which can then be
meshed using the command:

Mesh sweep_groups
In some automated meshing systems, the source and target surfaces are
named using a naming pattern. For example, all source surfaces might be
given names "xxx.source" and all target surfaces might be named
"xxx.target". This allows the automated setting of the sweep direction
based on predetermined names rather than ids. The following command is
used to set the source and targets based on the naming pattern.

Set {Source|Target} Surface Pattern '<pattern>'
[Include Volume Name]

The pattern is checked against all surfaces in the model using a simple
case-sensitive substring match. All surfaces which contain that string of
letters in their name will be designated as either a source or target surface,
depending on which option the user specifies. For example:
br x 10
surface 1 name 'brick.top'

354

Cubit 15.1 User Documentation

surface 2 name 'brick.bottom'
set source surface pattern 'top'
set target surface pattern 'bottom'
volume 1 scheme sweep
list volume 1 brief

Node Redistribution
Volume <range> redistribute nodes {ON|off}

With redistribute set to ON, the boundary nodes of a mappable surface are
moved until the spacing between the nodes are equivalent on the two
opposing curves. In other words, the parametric values of the nodes lying
on the two opposite curves are matched.
Redistribute option ON will assist in avoiding the skewness of the mapped
mesh. In the below examples, the linking surfaces are meshed using
mapped scheme, and with redistribute option ON, the skewness is
significantly avoided (see figures (4) and (5)).
Note:

1. Redistribute option ON will affect all mapped surfaces, not just
the linking surfaces of a swept volume. Even though the example
below shows a swept volume, the command can be used
independent of the sweeping command. That is, it can be used
while meshing surface models that contain mappable surfaces.
2. If the linking surfaces of a swept mesh contain submappable
surfaces, then the affect of redistribute option ON is generally not
seen. The current implementation is restricted to mappable surfaces
only and doesn’t handle submappable surfaces. In the future, we
should be able to easily extend the redistribute option to
submappable surfaces.

355

Mesh Generation

Figure 1 - Linking surfaces of a many-to-one sweepable solid (shown

in green) is mappable

Figure 2 - Highly skewed elements on the linking mapped surface with

'redistribute nodes OFF'

356

Cubit 15.1 User Documentation

Figure 3 - Quality of mesh with 'Redistribute Nodes OFF'

Figure 4 - High skew on the linking mapped surface can be avoided

with 'Redistribute Nodes ON'

357

Mesh Generation

Figure 5 - Quality of mesh with 'Redistribute Nodes ON'

TetMesh
Applies to: Volumes
Summary: Automatically meshes a volume with an unstructured tetrahedral mesh.
Syntax:

Volume <range> Scheme TetMesh [Proximity Layers
{on[<num_layers>]|OFF}] [Geometry Approximation Angle <angle>]

Related Commands:
[Set] Tetmesher Optimize Level <level>
[Set] Tetmesher Optimize Overconstrained {on|OFF}
[Set] Tetmesher Optimize Sliver {on|OFF}
[Set] Tetmesher Optimize Default
[Set] Tetmesher Boundary Recovery {on|OFF}
[Set] Tetmesher Interior Points {ON|off}
[Set] Trimesher Surface Gradation <value>
[Set] Trimesher Volume Gradation <value>
THex Volume All
Volume <volume_id> Tetmesh Respect {Face|Tri|Edge|Node} <range>
Volume <volume_id> Tetmesh Respect Clear
Volume <volume_id> Tetmesh Respect File '<filename>'
Volume <volume_id> Tetmesh Respect Location (options)
Tetmesh Tri <range> [Make {Block|Group} [<id>]]
Tetmesh Tri <range> {Add|Replace} {Block|Group} <id>
Volume <id_range> Tetmesh growth_factor <value 1.0 to 10.0 = 1.0>

Discussion

358

Cubit 15.1 User Documentation

The TetMesh scheme fills an arbitrary three-dimensional volume with tetrahedral elements. The
surfaces are first triangulated with one of the triangle schemes (TriMesh, TriAdvance
or TriDelaunay) or a quadrilateral scheme with the quadrilaterals being split into two triangles
(QTri). If a meshing scheme has not been applied to the surfaces, the TriMesh scheme will be
used.
Included in Cubit is a third party software library for generating tetrahedral meshes called
TetMesh-GHS3D. This is a robust and fast tetrahedral mesher developed by the French
laboratory INRIA and distributed by Distene. It utilizes an algorithm for automatic mesh
generation based upon the Voronoi-Delaunay method. Figure 1 shows a CAD model meshed
with the TetMesh scheme, with the TriMesh scheme used to mesh the surfaces.

(a) (b)

(c) (d)
Figure 1. Tetrahedral mesh generated with the TetMesh scheme using default settings. (a)
Initial CAD geometry (b) CAD model with surface mesh generated with TriMesh scheme.

(c) and (d) Cut-away views of the interior tetrahedral mesh
The TetMesh scheme is usually very good at generating a mesh with its default settings. In most
cases no adjustments to default settings are necessry. Using the size assigned to the volume,
either assigned explicitly or defined with an auto size, the TetMesh scheme will attempt to
maintain the assigned size, except where features smaller than the specified size exist. In this
case, smaller tets will automatically be generated to match the feature size. The tet mesher will
then generate a smooth gradation from the small tets used to capture features, to the size
specified on the volume. This effect is shown in figure 1 where internal transitions in tetrahedra

359

Mesh Generation

size can be seen. User defined sizes and intervals can also be assigned to individual surfaces and
curves for more specific control of element sizes.
A sizing function can also be used with the TetMesh scheme to control element sizes, however
the algorithm used for meshing surfaces will automatically revert to the TriAdvance scheme.
This is because the TetMesh scheme provides built-in capabilities for adaptively controlling the
element sizes based on geometry. More details can be found in Geometry Adaptive Sizing for
TriMesh and TetMesh Schemes
When using the TetMesh and TriMesh schemes, recommended practice is to mesh all surfaces
and volumes simultaneously. This provides the greatest flexibility to the algorithms to determine
feature sizes and their effect on neighboring surfaces and volumes.

TetMesh Scheme Options
The Tetmesh options described below can be set to adjust the default behavior of the tet mesher.
Scheme options are assigned independently to each volume as part of the scheme tetmesh
command.

Proximity Layers {on[<num_layers>]|OFF}
In some thin regions of the model, it may be necessary to ensure a minimum number of element
layers through the thickness to better capture physical properties. Using the proximity layers
setting, the specified minimum num_layers of tetrahedra will be placed in thin regions, even if
the tetrahedra sizes drop below the size assigned to the volume. The default setting for
proximity layers is OFF where element sizes will not be affected in thin regions.

360

Cubit 15.1 User Documentation

Figure 2. Demonstrates the effect of using proximity layers on a cut-away section of a
volume. Note the layers of smaller tets placed in the thin region.

Geometry Approximation Angle <angle>
For non-planar CAD surfaces, an approximation must always be made to capture the curved
features using the linear faces of the tetrahedra. When a geometry approximation angle is
specified, the tet mesher will adjust element sizes on curved surfaces so that the linear edges of
the tetrahedra will deviate no greater than the specified angle from the geometry. Figure 3
illustrates how the geometry approximation angle is determined. If the red curve representes the
geometry and the black segments represent the mesh, the angle θ is the angle between the
tangent plane at point A and the plane of a triangle at A. θ represents the maximum
deviation from the geometry that the mesh will attempt to capture. As shown in figure 2(b), a
smaller geometry approximation angle will normally result in more elements, but it will more
closely approximate the actual geometry. The default approximation angle is 15 degrees.

(a) (b)
Figure 3. The geometry approximation angle θ is shown as the maximum deviation

between the tangent plane at A and the plane of a triangle at A.

361

Mesh Generation

Figure 4. Demonstrates the effect of the geometry approximation angle set on the volume.

Triangle sizes on the interior of surfaces will be adjusted to better capture curvature.

Global Tetmesher Options
The user may set options that control the operation of the tet-meshing algorithms. These
tetmesher options are global settings and apply to all tetmeshes generated when the scheme is set
to TetMesh until the option is changed by the user.

[Set] Tetmesher Optimize Level <level>
The Tetmesher Optimize Level command allows the user to control the degree of optimization
used to automatically improve element quality followng the initial generation of tetrahedra. The
optimization level is an integer in the range 0 to 6, which represent how aggressively the
algorithm will attempt to improve element quality by automatically adjusting element
connectivity and smoothing. The integers 0 to 6 can also be represented as none (0), light (1),
medium (2), standard (3), strong (4), heavy (5), and extreme (6). Greater values will result in
greater computation time, however may result in improved mesh quality. The default is 3 or
standard optimization.

[Set] Tetmesher Optimize Overconstrained {on|OFF}
In some cases, the default mesh generated with the TetMesh scheme may result in cases where
more than one triangle face of a single tetrahedra lies on the same geometric surface. This

362

Cubit 15.1 User Documentation

condition may not be desirable for some FEA analysis. Setting the optimize overconstrained
value to ON will do additional processing on the mesh to ensure this case does not exist,
resulting in slightly more time to generate the mesh. The default for optimize overconstrained
is OFF

[Set] Tetmesher Optimize Sliver {on|OFF}
A sliver tetrahedra is one in which the four nodes of the tet are nearly co-planar. Sliver tets are a
common occurence when using the Delaunay method, but are normally removed by standard
optimization. In some cases, sliver tets may still remain even after optimization. To facilitate
removal of all sliver-shaped tets, the optimize sliver option may be set to ON. In this event,
additional processing will be done on the mesh to attempt to identify and remove all sliver-
shaped tets from the mesh. Since this step may take additional time, and in most cases is not
needed, the default setting is OFF.

[Set] Tetmesher Optimize Default
The Tetmesher Optimize Default command restores the default optimization values: level = 3
(standard), overconstrained = off, and sliver = off.

[Set] Tetmesher Boundary Recovery {on|OFF}
The TetMesh scheme includes a specialized module known as Boundary Recovery. Normally if
the quality of the surface mesh is good, the boundary recovery module is not used and the
resulting tet mesh will conform exactly to the triangles defined on the surfaces without additional
processing. In some cases where the surface mesh contains triangles that are of poor quality (ie.
highly stretched or sliver shaped triangles) the tet mesher is unable to generate sufficiently good
quality elements. When this occurs, the boundary recovery module is automatically invoked.
This module does additional processing to temporarily modify boundary triangles so that
reasonable quality tets may be inserted. The boundary adjustment is done as an intermediate
phase and in most cases the boundary triangulation remains unchanged following meshing. The
TetMesh scheme in Cubit will automatically invoke the boundary recovery module if the
minimum surface mesh quality drops below a condition number of 0.2. However, if the the
boundary recovery option is set to ON, the tet mesher will use the boundary recovery module
regardless of surface mesh quality. Turning this setting ON will normally increase the time to
generate the mesh, but may result in improved mesh quality. The default setting is OFF

[Set] Tetmesher Interior Points {ON|off}
Infrequently, the user desires a model with as few interior points as possible. The Interior
Points command allows the user to enable or disable, or turn OFF the insertion of interior
points. If interior points are disabled, the tetmesher will attempt to mesh the volume using only
the exterior points. This may not be possible and a few points will be inserted to allow tet-
meshing to complete. The default setting is ON, meaning that interior points will be inserted
according to the specified element size.

Using tets as the basis of an unstructured hexahedral mesh
Tet meshing can be used to generate hexahedral meshes using the THex command. Each of the
tetrahedron can be converted into 4 hexes, producing a fully conformal hexahedral mesh, albeit
of poorer quality. These meshes can often be used in codes that are less sensitive to mesh quality

363

Mesh Generation

and mesh directionality. The THex command requires that all tets in the model be converted to
hexahedra with the same command.

Conforming the tetmesh to internal features
In some cases it is necessary for the finite element mesh to conform to internal features of the
model. The tetmesh scheme provides this capability provided the tetmesh respect command has
been previously issued to define the features that will be respected.

Volume <volume_id> Tetmesh Respect {Face|Tri|Edge|Node} <range>
The tetmesh respect command allows the user to specify mesh entities that will be part of a
tetrahedral mesh. These faces, triangles, edges, or nodes are inside the volume since all surface
mesh features will appear in the final tetrahedral mesh by default. These mesh entities specified
to be respected can be generated from other meshing commands on free vertices, curves, or
surfaces.

Figure 2. Example of using tetmesh respect to ensure node 9 is captured in the tetmesh.

Figure 2 is an example of using the tetmesh respect command to enforce a node at the center of
a cube. Node 9 in this example was generated by first creating a free vertex at the center location
and meshing the vertex. (mesh vertex 9). The following commands would then be used to
generate the tetmesh that respected node 9.

volume 1 scheme tetmesh
tetmesh respect node 9
mesh volume 1

The tetmesh respect command can also be used to enforce multiple mesh entities. To
accomplish this, the tetmesh respect command may be issued multiple times. For example, If
node 12 and a triangle 2 inside volume 3 was to appear in the volumetric mesh, the following
commands could be used:

volume 3 scheme tetmesh
volume 3 tetmesh respect node 12
volume 3 tetmesh respect tri 2
mesh volume 1

Unlike the tetmesh respect command described above, the tetmesh respect file and tetmesh
respect location commands do not require underlying geometry.

Volume <volume_id> Tetmesh Respect File '<filename>'
Volume <volume_id> Tetmesh Respect Location (options)

364

Cubit 15.1 User Documentation

These two commands create mesh data that only the tetmesher knows about. Thus, to respect a
point at (1.0, 0.0, -1.0) in your model, enter the command

volume 1 tetmesh respect location 1 0 -1
This is much simpler than creating the vertex, meshing it, and then respecting it.
If the model has many points that must be respected, use the file version of the command. First
generate a file with all of the points, edges, and triangles that should be respected. The format of
the file is the format used by the facet file. Now, use the following command to respect all of the
information in the file for the given volume.

volume 2 tetmesh respect file 'my_points.facet'
Finally, the following command is used to remove the respected data from an entity.

Volume <volume_id> Tetmesh Respect Clear
The tetmesh respect clear command is the only way to remove respected data from a volume
without deleting the volume. Unfortunately, it removes all respected data from the volume.
Therefore, if the model has a lot of data to be respected, it is best to put it in a file or keep a
journal file that can be edited.

Controling the gradation of the mesh size inside the volume
Volume <id_range> Tetmesh growth_factor <value 1.0 to 10.0 = 1.0>

The growth_factor option controls how fast the tetrahedra sizes can change when transitioning
from small to larger sizes within the volume. For example a value of 1.5 will attempt to limit the
change in element size of adjacent tets to no greater than a factor of 1.5. Valid values for
gradation should be greater than or equal to 1.0 and usually less than 2 or 3. The larger the value,
the faster the transition resulting in fewer total elements. Likewise, values closer to 1.0 can result
in significantly more elements, especially when small features are present. The default setting for
growth_factor is 1.0, so that tet sizes should be roughly constant throughout the volume.
Gradation of the triangles on the surfaces can also be controlled independently using the global
settings [set] trimesher surface gradation and [set] trimesher volume gradation.

Generating a Tetmesh from a Skin of Triangles
Tetmesh Tri <range> [Make {Block|Group} [<id>]]
Tetmesh Tri <range> {Add|Replace} {Block|Group} <id>

The Tetmesh Tri command generates a tetrahedral mesh from the list of triangles entered. The
triangles must form a closed surface. The command fails if they do not. The list of triangles may
be a skin, and thus a command such as tetmesh tri in block 1 would be acceptable, should block
1 be a previously defined skin.
The first command form has optional arguments. If the make option and its arguments are
present, then the specified object receives the tet mesh. The command fails if an object with the
optional identifier exists. If the object identifier is omitted, the identifier is set to the next
available block.
The second command form has two options, add and replace. Each option has a required,
associated identifier. If the identifier is missing or invalid, the command fails. The add option
appends the tet mesh to the object. The replace option removes any existing mesh from the
object before adding the tet mesh.

365

Mesh Generation

Tetprimitive
Applies to: Volumes
Summary: Meshes a 4 "sided" object with hexahedral elements using the standard tetrahedron
primitive.
Syntax:

Volume <range> Scheme Tetprimitive [Combine Surface <range>] [Combine
Surface <range>] [Combine Surface <range>] [Combine Surface <range>]

Discussion:
The tetprimitive scheme is used to create a hexahedral mesh in a volume which fits the shape of
a tetrahedral primitive. The Tetprimitive scheme assumes that each of the four surfaces have
been meshed with the triprimitive, or similar, meshing scheme. If more than four surfaces form
the tetrahedron geometry, the surfaces forming a logical side can be combined using the
combine option.

Figure 1. Sphere octant hex meshed with scheme Tetprimitive, surfaces meshed using

scheme Triprimitive

TriAdvance
Applies to: Surfaces
Summary: Automatically meshes surface geometry with triangle elements.
Syntax:

Surface <range> Scheme TriAdvance
Discussion:

366

Cubit 15.1 User Documentation

The triangle meshing scheme TriAdvance fills an arbitrary surface with triangle elements. It is an
advancing front algorithm which allows holes in the surface and transitions between dissimilar
element sizes. It can use a sizing function like the pave scheme if one is defined for the surface.
Future development will add hard lines to this scheme's capabilities. You specify this scheme for
a surface by giving the command:

TriDelaunay
Applies to: Surfaces
Summary: Automatically meshes parametric surface geometry with triangle elements.
Syntax:

Surface <range> Scheme TriDelaunay
Discussion:
The scheme TriDelaunay is a parametric meshing algorithm. It can be run in two modes. The
default mode (asp) combines the Delaunay [Watson,81] criterion for connecting nodes into
triangles with an advancing-front approach for inserting nodes into the mesh. This method
maximizes the number of regular triangles in the mesh but does not guarantee the minimum
angle quality of the triangles. A guaranteed quality (gq) mode can be used for planar surfaces
(only). This mode refines the initial Delaunay configuration by placing points at the centroids of
the worst triangles until the mesh has an acceptable density. To switch between the two modes,
use the following setting command.

[Set] Tridelaunay point placement {gq | guaranteed quality | asp}
TriDelaunay can also utilize a sizing function if one is defined for the surface.

Note: This algorithm is unstable for periodic surfaces which include a singularity point, E.G.
spheres with poles, cone tips and some types of toruses. Use scheme TriMesh, TriAdvance
or QTri to mesh non-parametric or periodic parametric surfaces.

TriMap
Applies to: Surfaces
Summary: Places triangle elements at some vertices, and map meshes the remaining surface.
Syntax:

Surface <range> Scheme Trimap
Related Commands:

Surface <range> Vertex <range> Type {Triangle|Notriangle}
Discussion:
Some surfaces contain bounding curves which meet at a very acute angle. Meshing these
surfaces with an all-quadrilateral mesh will result in a very skewed quad to resolve that angle. In
some cases, this is a worse result than simply placing a triangular element to resolve that angle.
This scheme resolves this situation by placing a triangular element in these tight corners, and
filling the remainder of the surface with a mapped mesh.
The algorithm can automatically compute whether a triangular element is necessary, along with
where to place that element. To override the choice of where triangular elements are used, the
following command can be issued:

367

http://cubit.sandia.gov/help-version12.1/appendix/references.htm
http://cubit.sandia.gov/help-version12.1/mesh_generation/meshing_schemes/traditional/trimesh.htm
http://cubit.sandia.gov/help-version12.1/mesh_generation/meshing_schemes/traditional/triadvance.htm
http://cubit.sandia.gov/help-version12.1/mesh_generation/meshing_schemes/conversion/qtri.htm

Mesh Generation

Surface <range> Vertex <range> Type {Triangle|Notriangle}

TriMesh
Applies to: Surfaces
Summary: Automatically meshes surface geometry with triangle elements using the third part
meshgems tool.
Syntax:

Surface <range> Scheme TriMesh [Geometry Approximation Angle
<angle>]

Related Commands:
[Set] Trimesher Surface Gradation <value>
[Set] Trimesher Volume Gradation <value>

Discussion:
The TriMesh scheme fills a surface of arbitrary shape with triangle elements. The TriMesh
scheme serves as the default method for meshing the surfaces of volumes for the TetMesh
scheme.
Included in Cubit is a third party software library for generating triangle meshes called
MeshGems. This is a robust and fast triangle mesher developed and distributed by Distene.
Figure 1 shows a CAD model where surfaces have been meshed with the TriMesh scheme. The
triangle mesh was then used as input to the TetMesh scheme.

Figure 1. Triangle meshes generated with the TriMesh scheme using default settings on the

surfaces of a CAD model.
The TriMesh scheme is usually very good at generating a mesh with its default settings. In most
cases no adjustments to default settings are necessry. Using the size assigned to the surface,
either assigned explicitly or defined with an auto size, the TriMesh scheme will attempt to
maintain the assigned size, except where features smaller than the specified size exist. In this
case, smaller triangles will automatically be generated to match the feature size. The triangle
mesher will then generate a smooth gradation from the small triangles used to capture features, to
the size specified on the surface. This effect is shown in figure 1 where the transitions in triangle
sizes can be seen. If no size is specified on the surface, it will use the size that was set on its
parent volume. User defined sizes and intervals can also be assigned to individual curves for
more specific control of element sizes.

368

Cubit 15.1 User Documentation

Although rare, if meshing fails when using the TriMesh scheme, Cubit will automatically
attempt to mesh the surface with the TriDelaunay scheme. Subsequent mesh failures will also
attempt meshing with the TriAdvance and QTri schemes.
A sizing function can also be used with the TriMesh scheme to control element sizes, however
the algorithm used for meshing will automatically revert to the TriAdvance scheme. This is
because the MeshGems algorithm provides built-in capabilities for adaptively controlling the
element sizes based on geometry. More details can be found in Geometry Adaptive Sizing for
TriMesh and TetMesh Schemes
When using the TriMesh and TetMesh schemes, recommended practice is to mesh all surfaces
and volumes simultaneously. This provides the greatest flexibility to the algorithms to determine
feature sizes and their effect on neighboring surfaces and volumes.

TriMesh Scheme Options
The TriMesh options described below can be set to adjust the default behavior of the tri mesher.
Scheme options are assigned independently to each surface as part of the scheme TriMesh
command. Note that the options described here will apply only if the TriMesh scheme is
used. TriDelaunay and TriAdvance schemes will not utilize these options when meshing.

Geometry Approximation Angle <angle>
For non-planar CAD surfaces and non-linear curves, an approximation must always be made to
capture the curved features using the linear edges of the triangle. When a geometry
approximation angle is specified, the triangle mesher will adjust triangle sizes on curved
boundaries so that the linear edges of the triangle will deviate from the geometry by no greater
than the specified angle. Figure 2 illustrates how the geometry approximation angle is
determined. If the red curve representes the geometry and the black segments represent the mesh,
the angle θ is the angle between the tangent plane at point A and the plane of a triangle at A. θ
represents the maximum deviation from the geometry that the mesh will attempt to capture. As
shown in figure 2(b), a smaller geometry approximation angle will normally result in more
elements, but it will more closely approximate the actual geometry. The default approximation
angle is 15 degrees.

(a) (b)
Figure 2. The geometry approximation angle θ is shown as the maximum deviation

between the tangent plane at A and the plane of a triangle at A.
Note that the geometry approximation angle is also effective in controlling the element size on
the interior of surfaces as illustrated in figure 3. This is most useful when used in conjunction
with the TetMesh Scheme where smaller tets will be placed in regions of higher curvature.

369

Mesh Generation

Figure 3. Demonstrates the effect of the geometry approximation angle to better capture

surface curvature on the interior of surfaces.

Global Trimesher Gradation Options
The user may set options that control the gradation of the tri-meshing algorithms. These
trimesher options are global settings and apply to all trimeshes generated when the scheme is set
to TriMesh until the option is changed by the user.
The global gradation options control how fast the triangle sizes can change when transitioning
from small to larger sizes. For example a value of 1.5 will attempt to limit the change in element
size of adjacent triangles to no greater than a factor of 1.5. Valid values for gradation should be
greater than 1.0 and usually less than 2 or 3. The larger the value, the faster the transition
resulting in fewer total elements. Likewise, values closer to 1.0 can result in significantly more
elements, especially when small features are present. The default setting for gradation is 1.3.
Gradation can be controlled for both surfaces and volumes.

[Set] Trimesher Surface Gradation <value>
Surface gradation will control the growth of triangles where element size has been determined
by bounding curves. For example, Figure 4 shows a small feature where element sizes have been
determined locally by the length of the small curves. A gradation is applied so that triangle sizes
increase away from the small feature. A surface gradation of 1.3 is shown on the left, while a
surface gradation of 1.1 is shown on the right.

370

Cubit 15.1 User Documentation

(a) (b)
Figure 4. Demonstrates the effect of changing the default gradation, where (a) is the default
gradtion of 1.3, compared with (b) using a gradation of 1.1. Note that both images use the

same interval size setting for the surface.
[Set] Trimesher Volume Gradation <value>

Volume gradation will control the growth of triangles where element size has been determined
by the proximity of other nearby surfaces. For example, Figure 5a and 5b shows a brick with a
small void where the surface meshes are generated with the TriMesh scheme. The surface
gradation has been adjusted to a large number so its effect is negligible. The small element size
determined for the void is propagated to the exterior surfaces. The resulting gradation of the
nearby triangles on the surface is determined by the trimesh volume gradation setting.
Note that the trimesh volume gradation command is different than the growth factor control
setting. The trimesh volume gradation controls the gradation of triangles on the surface due to
nearby features where small tets will exist, whereas the volume <range> tetmesh
growth_factor command controls the gradation of the interior tet elements.

371

Mesh Generation

Figure 5a. An example of a cut-away mesh with a volume gradation, where the small size
on the interior void propagates to the exterior surfaces

Figure 5a. An example of a cut-away mesh with a volume gradation, where the small size

on the interior void propagates to the exterior surfaces

TriPave
Applies to: Surface
Summary: Places triangle elements at some vertices, and paves the remaining surface.
Syntax:

Surface <range> Scheme Tripave
Related Commands:

Surface <range> Vertex <range> Type {triangle|notriangle}
Discussion:
Similar to the trimap algorithm, but uses paving instead of mapping to fill the remainder of the
surface with quadrilaterals.
The algorithm can automatically compute whether a triangular element is necessary, along with
where to place that element. To override the choice of where triangular elements are used, the
following command can be issued:

Surface <range> Vertex <range> Type {triangle|notriangle}

TriPrimitive
Applies to: Surfaces
Summary: Produces a triangle-primitive mesh for a surface with three logical sides
Syntax:

Surface <range> Scheme Triprimitive [SMOOTH | nosmoothing]

372

Cubit 15.1 User Documentation

Discussion:
The triprimitive scheme indicates that the region should be meshed as a triangle. A surface may
use the triprimitive scheme if three "natural", or obvious, corners of the surface can be identified.
For instance, the surface of a sphere octant (shown in the figure below) is handled nicely by the
triprimitive scheme. The algorithm requires that there be at least 6 intervals (2 per side) specified
on the curves representing the perimeter of the surface and that the sum of the intervals on any
two of the triangle's sides be at least two greater than the number of intervals on the remaining
side. The following figure illustrates a triprimitive mesh on a 3D surface.
By default, the triprimitive algorithm will smooth the mesh with an iterative smoothing scheme.
This smoothing can be disabled by using the "nosmoothing" option with this command. The
quality of the mesh will often be significantly degraded by disabling smoothing, but in certain
cases the unsmoothed mesh may be preferred.

Figure 1. Surfaces meshed with scheme Triprimitive

Parallel Meshing
Sculpt

Sculpt
Sculpt is a separate parallel application designed to generate all-hex meshes on complex
geometries with little or no user interaction. Sculpt was developed as a separate application so
that it can be run independently from Cubit on high performance computing platforms. It was
also designed as a separable software library so it can be easily integrated as an in-situ meshing
solution within other codes. Cubit provides a front end command line and GUI for the Sculpt
application. The command will build the appropriate input files based on the current geometry
and can also automatically invoke Sculpt to generate the mesh and bring the mesh back to Cubit.

373

Mesh Generation

• Preparing to Use Sculpt
• Sculpt Parallel Command
• Sculpt Parallel Path Command
• Sculpt Examples
• Sculpt Technical Description
• Sculpt Application Documentation

Preparing to Use Sculpt

Platforms
Sculpt is available for Windows, Mac and Linux operating systems.

Sculpt Installation
Sculpt is a stand-alone executable, separate from Cubit. In order for Cubit to start up Sculpt, it
must be on your system and accessible to Cubit. The default installation of Cubit should install
files in the correct locations for this to occur. Check with Cubit support if it did not come with
your installation or you are not able to locate it or any of its supporting applications.
To run Sculpt from Cubit, four executable files are needed:

• sculpt: Application that controls start-up of mpiexec and psculpt. Main entry point from
Cubit, that checks for the existence and compatibility of either the system mpiexec
application or will use a local cubit instalation of mpiexec.

• psculpt: The main mpi-based Sculpt application. Requires mpiexec to run.
• mpiexec: Standard application available on most linux-based operating systems for

starting up mpi-based applications on multiple processors. This should be available with
your Cubit installation, but is also available from open-mpi.org

• epu: Used for combining multiple exodus files, generated with Sculpt, into a single
exodus file. This executable is optional, but is useful for importing the resulting mesh
into Cubit for viewing. It is part of the SEACAS tool suite developed by Sandia National
Laboratories and is also included with your Cubit installation. It can also be obtained in
open source form from sourceforge.net.

To view the current path to these executables that Cubit will use, issue the following command
from the Cubit command window

 Sculpt Parallel Path List
See the Sculpt Parallel Path Command for more info on setting and customizing these paths.
The following image illustrates the process flow when the sculpt parallel command is used in
Cubit.

374

http://open-mpi.org/
http://seacas.sourceforge.net/

Cubit 15.1 User Documentation

For the Sculpt meshing process, a set of files, including a facet-based stl file are written to disk.
The sculpt application is then started up which in turn invokes mpiexec to start up multiple
instances of psculpt in parallel. psculpt then performs the meshing and writes one exodus file
per processor. These files can then be combined using epu and then imported back into Cubit for
viewing.

Setting your Working Directory
When using the Sculpt Parallel command in Cubit, several temporary files will be written to the
current working directory. Because of this, it is important to set your working directory before
using Sculpt to a desired location where you want these files placed.

Sculpt Parallel Command
The command syntax for preparing a model for Sculpt is:

 Sculpt Parallel [Volume|Block <id_list>]
 [processors <value>]
 [fileroot '<root filename>']
 [exodus '<exodus filename>']
 [overwrite]
 [absolute_path]
 [no_execute]
 [size <value>|autosize <value>]
 [iterations <value>]
 [xint <value> yint <value> zint <value>]
 [box align|{Location <options> Location <options>}]
 [smooth <value>]
 [num_laplace <value>]
 [max_opt_iters <value>]
 [opt_threshold <value>]
 [max_pcol_iters <value>]
 [pcol_threshold <value>]

375

Mesh Generation

 [max_deg_iters <value>]
 [deg_threshold <value>]
 [sideset <value>]
 [void]
 [stair <value>]
 [htet <value>]
 [pillow <value>]
 [combine]
 [import]
 [show]
 [clean]

Option Default Description
Volume | Block
<id_list>

Volume all List of volumes or Blocks to include in the mesh.
One file containing a facetted representation
(STL) per volume will be generated and saved in
the current working directory to be used as input
to Sculpt. Each volume will be treated as a
separate material within sculpt and a conforming
mesh will be generated where volumes touch. If
the Block command is used, one file per block
will be used. Each block represents a separate
material in Sculpt.

processors <value> 4 Number of processors to use for meshing. One
exodus file per processor will be generated.

fileroot '<root
filename>'

sculpt_parallel Root of file names for output. When the sculpt
parallel command is executed, Cubit will
generate multiple files in the working directory
used for input to the Sculpt application. The
'<root filename>' will be used as the basis for
naming these files.

exodus '<exodus
filename>'

<'root
filename'>

If a different filename for resulting exodus files is
desired, the Exodus option can be used. Exodus
files will use <'filename'> as the root and
filenames will be of the form <exodus
filename>.<processors>.<iproc>. For example
where '<exodus filename>'="model",
processors=8, eight files will be written of the
form model.e.8.0, model.e.8.1, ... model.e.8.7.

overwrite OFF (Do not
overwrite)

By default, Cubit will not overwrite an existing
set of files with the same '<root filename>'. To
over-ride, use the overwrite option.

absolute_path OFF (relative
path)

By default, Cubit will write the relative path
names of files used in the .run and .diatom files.
To force absolute path names to be written, use

376

Cubit 15.1 User Documentation

the absolute_path option
no_execute OFF (Invoke

Sculpt)
By default, Cubit will attempt to run sculpt in
parallel on the machine Cubit is currently
running on. To generate just the required input
to run Sculpt at a later time or on another
machine, use this option. A file of the form <root
filename>.run will be generated in the current
working directory. (for example "model.run").
Executing the .run file from the linux command
line should run sculpt in parallel. It can also be
used to run sculpt on a cluster where a Cubit
executable may not be available.

size <value> |
autosize <value>

autosize 10 The size or autosize option may be used.

• The size option will define the absolute
cell size for the base Cartesian grid that
Sculpt will use for generating the mesh.
This is the target size of each edge in the
mesh in the units of the current model.

• The autosize option is a value between 0
and 10. It represents a model
independent size where 1 is the small
size and 10 is large. This is the same
scaling factor used in Cubit's auto sizing
but is divided by ten. A size value will be
computed from the selected autosize and
used as the absolute cell size for the
base Cartesian grid.

iterations <value> 3 An integer controlling the number of bisection
operations performed on each cell when
computing the volume fraction information. The
default value is 3, which in most cases is
sufficient. Higher values may significantly slow
down computation time, but may provide
improved resolution of the geometry.

xintervals <value>
yintervals <value>
zintervals <value>

Automatically
computed
from size

Rather than a cell size, the number of intervals
in the x, y, and z directions may be specified for
the bounding Cartesian grid. Both size and
intervals cannot be specified simultaneously. It
is recommended that intervals be defined so
that aspect ratio for cells is approximately a
cube.

box align | Enclosing Either align or location options may be used to

377

Mesh Generation

{Location <options>
Location <options>

bounding box
automatically
computed
from size with
2.5 additional
cells on each
side

define the bounding box.

• The align option will attempt to orient the
Cartesian grid with the main dimensions
of the geometry. This is done by defining
a tight bounding box around the geometry
using an optimization procedure where
the objective is to minimize the difference
in volume between an enclosing box and
the geometry. The align option is used in
place of an explicit bounding box
definition as it will automatically build an
"aligned" bounding box around the full
geometry. Note that this option will also
write temporary stl and diatom files to the
working directory.

• Location options define the bounds of
the Cartesian grid. The first Location
<option> defines the minimum Cartesian
coordinate of the grid and the second, the
maximum. The <options> can be any
valid method for defining a coordinate
location in cubit. In most cases the
position option can be used. For
example: box location position -5 -5 -5
location position 5 5 5 will define a
Cartesian grid centered about the origin
that is 10 units on each side. The default
box will be the bounding box of the
geometry with an additional 2.5 cell
layers added to each dimension.

smooth <value> 1 (Combined
Laplacian/
Optimization)

Smoothing adjusts node locations following
meshing to improve mesh quality. Sculpt
includes both Laplacian and Optimization-based
smoothing and by default is performed
automatically to achieve maximum possible
mesh quality for the given geometry. See Sculpt
Mesh Quality Control for discussion of Sculpt's
default three-tired smoothing approach. In some
cases it may be worthwhile to experiment with
alternate smoothing parameters as noted here.
Smoothing options available:

• 0 = No smoothing is performed.
• 1 = (Default) Combined

378

Cubit 15.1 User Documentation

Laplacian/Optimization (Hybrid)
smoothing for both surface and volumes.
Boundary buffer layer improvement is
performed at surfaces intersecting the
domain boundary.

• 2 = Surface smoothing using facets as
geometry with Laplacian smoothing and
hybrid volume smoothing. Boundary
buffer improvement is on.

• 3 = Surface smoothing using interpolated
geometry with Laplacian smoothing and
hybrid volume smoothing. Boundary
buffer improvement is off.

• 4 = Surface smoothing using interpolated
geometry with Laplacian smoothing and
Laplacian volume smoothing

• 5-6 = Notot used
• 7 = Surface smoothing using interpolated

geometry with Laplacian smoothing and
hybrid volume smoothing (same as 3).
Except no boundary buffer improvement
is performed.

• 8 = Combined Laplacian/Optimization
(Hybrid) smoothing for both surface and
volumes. (same as 1) Except with no
boundary buffer improvement performed.

• 9 = Same as option 8 however surface
nodes are not projected to the
interpolated surface. This is effective in
smoothing noisy surface data, but can
potentially reduce overall volume.

num_laplace
<value>

2 Number of Laplacian smoothing iterations
performed. See Laplacian Smoothing

max_opt_iters
<value>

5 Indicates the maximum number of iterations of
optimization-based smoothing to perform. May
complete sooner if no further improvement can
be made. See Optimization Smoothing

opt_threshold
<value>

0.60 Indicates the value for scaled Jacobian where
Optimization smoothing will be performed.
Elements with scaled Jacobian less than
opt_threshold and their neighbors will be
smoothed.

max_pcol_iters
<value>

100 Maximum number of spot smoothing (also
known as parallel coloring) iterations to perform.

379

Mesh Generation

May complete sooner if no further improvement
can be made. See Spot Optimization

pcol_threshold
<value>

0.2 Indicates scaled Jacobian threshold for spot
smoothing (also known as parallel coloring). A
parallel coloring algorithm is used to uniquely
identify and isolate nodes to be improved using
optimization.

max_deg_iters
<value>

0 Maximum number of edge collapse iterations to
perform to create degenerate hex elements.
See Creating degenerate hexes

deg_threshold
<value>

0.2 Indicates scaled Jacobian threshold for edge
collapses. Nodes at hexes below this threshold
will be candidates for edge collapses, provided
doing so will improve the minimum scaled
Jacobian at the neighboring hexes.

sideset 0 (No sidesets
generated)

Several options for generating sidesets are
available.

1. Fixed: Exactly 3 sidesets will be
generated acoording to the following:

o Sideset 1: All sides at the domain
boundary. Sides will only be
present in this sideset if the model
intersects the enclosing bounding
box or the void option is used.

o Sideset 2: All sides at the model
boundary. Any side on the model
that is not interior will be included.
This should represent a full
enclosure of the model if it does
not intersect the domain boundary.

o Sideset 3: All sides at material
interfaces. Includes sides on the
interior where adjacent blocks are
different

2. Variable: A variable number of sidesets
will be generated with the following
characteristics:

o Surfaces at the domain boundary
o Exterior material surfaces
o Interfaces between materials

Unlike Fixed sidesets, grouping of sides
will be contiguous. A separate sideset will
be generated for each set of contiguous

380

Cubit 15.1 User Documentation

sides.

3. Geometric Surfaces: Sidesets will be
generated according to surface IDs
currently defined on the geometry model.
One sideset per surface will generated.

4. Geometric Sidesets: Sidesets will be
generated based on the current sidesets
assigned to surfaces in the geometric
model.

void OFF
(Elements not
generated in
void)

If void option is used, then the void space
surrounding the geometry will be treated as a
separate material. Elements will be generated in
the void to the extent of the Cartesian grid
boundaries.

stair <value> 0 (Boundaries
projected)

If the stair option is used, no projection and
smoothing of material interfaces will occur. The
result will be a Cartesian mesh where elements
may be stair-step at the boundaries of the
material regions.

• 0 = Stair option is off (default)
• 1 = Stair-step mesh is generated, but

additional processing is done to ensure
material interfaces are manifold. This
option may add or subtract cells from the
basic mesh (where volume fraction > 0.5)
to ensure no non-manifold connections
between nodes and edges exist in the
final mesh.

• 2 = The exterior boundary will be smooth
while internal material interfaces will be
stair-step. This option also ensures
manifold connections between elements.

• 3 = Fast stair-step mesh. Generates the
final mesh based only on volume fraction
criteria. No additional processing is done
to ensure manifold connections between
edges and nodes.

htet <value> -1.0 (Hexes
only)

Automatically generate tets in place of poor
quality elements. This option can be used to
eliminate poor quality hex elements by replacing
each hex that falls below the user defined

381

Mesh Generation

<value> Scaled Jacobian with 24 tets. Default
value for htet is -1.0. The result will be a non-
conforming mesh at the interface between tets
and hexes. One additional nodeset and sideset
will be generated and output to the exodus file if
the sideset option is specified.

• Sideset 10000 = the set of hex faces that
interface a set of 4 tets.

• Nodeset 1000 = the set of nodes at the
interface between hexes and tets. One
node per face in Sideset 10000 will be
included.

pillow <value> 0 (No pillow) Generate a pillow or additional layer of hexes at
surfaces as a means to improve element quality
near curve interfaces. This is intended to
eliminate the problem of 3 or more nodes from a
single hex face lying on the same curve. The
following options are available:

• 0 = (Default) No pillowing is performed
• 1 = All hexes containing faces on

surfaces will be pillowed.
• 2 = Only hexes that have faces with 3 or

more nodes on a curve will be pillowed.
One additional layer beyond the poor
quads at the curves will be included in the
pillow region.

These options may be modified by adding 2
additional digits to the option. The second digit
will turn on and off smoothing following the
pillow operation and the third digit defines the
number of layers of quads beyond the poor
quality quads at the curves that will be included
in the pillow region. For example:

• 100 = All hexes containing faces on
surfaces will be pillowed, however no
smoothing will be performed following the
pillow operation.

• 203 = Hexes that have faces with 3 or
more nodes on a curve will be pillowed.
Additionally, 3 layers of quads will be
included in the pillow region. No

382

Cubit 15.1 User Documentation

smoothing will be performed.

combine OFF (will not
be combined)

If the combine option is used, following
execution of Sculpt, the resulting exodus
meshes will be combined using the epu seacas
tool. Note that epu should be installed on your
system and the path to epu defined using
the sculpt parallel path command. If not used,
files will not be combined. Epu is a code
developed by Sandia National Laboratories and
is part of the SEACAS tool suite. It combines
multiple Exodus databases produced by a
parallel application into a single Exodus
database. The epu program should be included
with distributions of Cubit beginning with Version
15.0.

import OFF (will not
be imported)

If the import option is used, following execution
of Sculpt, the result will be imported into Cubit
as a free mesh. If the combine option has not
been used, then multiple free meshes will be
imported with duplicate nodes and faces at
processor domain boundaries. Otherwise a
single free mesh, the result of the epu code, will
be imported. Note that the resulting mesh will
not be associated with the original geometry,
however Block (material) definitions will be
maintained. In addition a separate group will be
generated for each imported mesh (One per
processor).

show OFF (will not
display
output)

If the show option is used, while the external
Sculpt process is running, output from the Sculpt
application will be echoed to the Cubit command
window. This option is only effective if the
no_execute is not used.

clean OFF
(temporary
files will not
be deleted)

If the clean option is used, temporary files
generated during the sculpt parallel command
will be deleted. This includes any exodus mesh
files, .stl, .diatom, .log and .run files.

Sculpt Parallel Path Command
The command for letting Cubit know where the Sculpt and related applications are located is:

 Sculpt Parallel Path [List|Psculpt|Epu|Mpiexec]
This command defines the path to psculpt, epu and mpiexec on your system. In most cases,
however, these paths should be automatically set provided Sculpt was successfully installed with

383

Mesh Generation

your Cubit installation. The list option will list the current paths that Cubit will use for these
tools. If an alternate path to these executables is desired, it is recommended that this command be
used in the .cubit initialization file so that it wont be necessary to define these parameters every
time Cubit is run.

Sculpt Mesh Quality Control
In most cases, the Sculpt tool can be used without adjusting default values. Depending on the
characteristics of the geometry to be meshed, the default values may not yield adequate mesh
quality. Upon completion, Sculpt reports to the command line, a summary of the mesh that was
generated. This includes a summary of the mesh quality. Care should be taken to review this
summary to ensure the minimum mesh quality is in a range suitable for analysis.
The element metric used for computing mesh quality in Sculpt is the Scaled Jacobian. This is a
value between -1 and 1 that is a relative measure of the angles at the element's nodes. A value of
1 indicates a perfect 90 degree angle between each of its edges. In most cases a value less than
zero, or negtive Jacobian element, indicates an unusable mesh. Sculpt's default settings try to
achieve a minimum Scaled Jacobian of 0.2, which is normally usable in most analysis. The
following discussion provides several options for adjusting the model or Sculpt parameters to
help improve mesh quality.

1. Locating poor mesh quality: When the Sculpt mesh has been imported back into
CUBIT it is a good idea to display the element quality. You can do this with variations of
the following commands:

 quality hex all scaled jacobian
quality hex all draw mesh

Identify regions where hexes are poor quality and zoom in to these regions.

2. Modifying the geometry: Zooming in to poor quality elements may reveal that the mesh
does not adequately represent the underlying geometry. In some cases you may find that
small features, or small gaps between parts may be on the order of the size of the Sculpt
cell size. If these features are not important to the analysis, you may consider using
Cubit's geometry modification tools to remove features or close small gaps.

3. Modifying the cell size: In cases where small geometric features or gaps are important to
the simulation, it may be necessary to use a smaller base cell size. Use the size or
autosize input parameters or increase the numbers of intervals. Normally to adequately
capture a feature you would want the cell size to be no greater than about 1/3 to 1/2 the
size of the smallest feature you would want to represent in the simulation.

4. Turning on Pillowing for multiple materials: For models that have more than one
material that share an interface, unless the geometry is precisely aligned with the global
axis, it is usually a good idea to turn on pillowing. Pillowing automatically inserts an
additional layer of hexes at interface boundaries to improve mesh quality. Without
pillowing may notice inverted or poor quality elements at curve interfaces where 2 or
more materials meet.

5. Modifying smoothing parameters: Sculpt includes a tiered approach to smoothing to
improve element quality. It starts by applying smoothing to all nodes in the mesh and

384

Cubit 15.1 User Documentation

progressively restricts the smoothing operations to only those nodes that fall below a
user-defined scaled Jacobian threshold. Default numbers of iterations and thresholds for
each smoothing phase have been tuned for general use, however it may be worthwhile to
adjust these parameters. The three smoothing phases include:

o Laplacian Smoothing: Applied to all elements. Very inexpensive fast approach
to improve quality, but can result in degraded element quality if applied to excess.
A fixed default of 2 iterations is applied to all hexes. Increasing the num_laplace
parameter can improve some cases, especially convex shapes

o Optimization Smoothing: Applied only to elements who's scaled Jacobian falls
below the opt_threshold parameter (default 0.6) and their surrounding elements.
This approach uses a more expensive optimization technique to improve regions
of elements simultaneously. The max_opt_iters parameter can control the
maximum number of iterations applied (default is 5). Iterations will terminate,
however, if no further improvement is detected. Because this method optimizes
node locations simultaneously, neighboring nodes with competing optimum can
sometimes limit mesh quality.

o Spot Optimization: Also known as parallel coloring, is applied only to elements
who's element quality falls below the pcol_threshold parameter (default 0.2). This
technique is the most expensive of the techniques, but focusses only on nodes that
are immediately adjacent to poor quality hexes. Each node is smoothed
independently of its neighbors, and may require a high number of iterations using
the max_pcol_iters to achieve desired results. Increasing the pcol_threshold
and max_pcol_iters may yield improved results.

Observing the mesh quality output to the command line following each smoothing
iteration can provide some insight on the effect of modifying smoothing parameters.

6. Creating degenerate hexes: Some geometries will not permit a usable mesh with a
traditional all-hex mesh. Sculpt includes the option to automatically and selectively
collapse element edges to improve low-quality elements. The max_deg_iters and
the deg_threshold values are used to control the creation of degenerates. Degenerate
elements are treated as standard hex elements, but use repeated nodes in the eight-node
connectivity array.

7. Creating hex-dominant mesh Another option for avoiding mesh quality issues is to
generate a few tet elements in the mesh using the htet option. With this option you can
specify a scaled Jacobian threshold value below which hexes will be converted to tet
elements. The interface between hex and tet elements is managed by an automatically
defined set of nodesets and sidesets that describe where multi-point constraints will be
applied.

Sculpt Examples

• Basic Sculpt
• Size and Bounding Box
• Meshing the Void
• Automatic Sideset Definition

385

Mesh Generation

• Running Sculpt Stand-Alone
• Meshing Multiple Materials With Sculpt

The following examples use this simple geometry. Execute these commands prior to performing
the example Sculpt Parallel command line operations

 sphere rad 1
sphere rad 1
vol 2 mov x 2
cylinder rad 1 height 2
vol 3 rota 90 about y
vol 3 mov x 1
unite vol all

Figure 1. Geometry created from the above commands and used for the following

examples.

Basic Sculpt
This example illustrates use of Sculpt with all default options. So that we can view the result, we
will also use the overwrite, combine and import options.

 sculpt parallel over combine import
draw block all

The result of this operation is shown in Figure 2. For this example, behind the scenes, Cubit built
an input file for Sculpt, ran it on 4 processors, combined the resulting 4 meshes, and
subsequently imported the resulting mesh into Cubit. Note that Volume 1 remains "unmeshed"
and we have created a free mesh that is not associated with a volume. The result of any Sculpt
command is always an unassociated free mesh.

386

Cubit 15.1 User Documentation

Figure 2. Free mesh generated from sculpt command

Size and Bounding Box
This example illustrates the use of the size and box options

 delete mesh
sculpt parallel size 0.1 box location position -1.5 0 -1.5 location position 1 1.5
0 over import combine
draw block all

In this case we have used the size option to define the base cell size for the grid. We have also
used the box option to define a bounding box in which the mesh will be generated. Any
geometry falling outside of the bounding box is ignored by Sculpt. Figure 3 shows the mesh
generated with this command.

Figure 3. Sculpt "box" option limits the extent of the generated mesh.

Meshing the Void
In this example we illustrate the use of the void option:

 delete mesh
sculpt parallel size 0.1 box location position -1.5 0 -1.5 location position 1 1.5
0 over import combine void
draw block all

The result is shown in figure 4. Notice that this example is precisely the same as the last with the
exception of the addition of the void option. Mesh is generated in the space surrounding the
volume out to the extent of the bounding box. In this case, an additional material block is defined

387

Mesh Generation

and automatically assigned an ID of 2. The nodes and element faces at the interface between the
two blocks are shared between the two materials.

Figure 4. Sculpt "void" operation generates mesh outside the volume.

Automatic Sideset Definition
In this example we illustrate the use of the sideset option.
Generating sidesets on the free mesh with Cubit: Sideset boundary conditions can be
manually created on the resulting free mesh from Sculpt using the standard Sideset <sideset_id>
Face <id_range> syntax. The Group Seed command is also useful in grouping faces based on a
feature angle to be used in a single sideset.
Generating sidesets in Sculpt: Sculpt also provides several options for defining sidesets as part
of the Sculpt run. The following illustrates one option:

 delete mesh
sculpt parallel size 0.1 box location position -1.5 0 -1.5 location position 1 1.5
0 over import combine void sideset 2
list sideset all
draw sideset all

Once again we use the same syntax but add the sideset 2 option to automatically generate a
series of sidesets. The list command should reveal that 10 sidesets were defined for this example
with IDs 1 to 10. Figure 5 shows the result of the draw command showing all of the sidesets in
different colors. Note that for the sideset 2 option, sidesets are created with the following
criteria:

• Interfaces between materials
• Exterior surfaces
• Surfaces at the domain boundary

See the sideset option above for a description of other options for generating sidesets in Sculpt.

388

Cubit 15.1 User Documentation

Figure 5. Automatic sidesets created using Sculpt

Running Sculpt Stand-Alone
This example illustrates how to set up the files necessary to run Sculpt as a stand-alone process.
This can be done on the same desktop machine or moved to a larger cluster machine more suited
for parallel processing.
Begin by setting your working directory to a location that is convenient for placing example files

 cd "path/to/my/sculpt/examples"
Next we issue the basic sculpt parallel command to mesh the volume

 delete mesh
sculpt parallel processors 8 fileroot "bean" over no_execute

In this case, we used the no_execute option which does not invoke the Sculpt application.
Instead it will write a series of files to the working directory. The fileroot option defines the base
file name for the files that will be written; in this case "bean". We also use the processors
option to set the number of processors to be used to 8.
To see the files that Cubit placed in the working directory, bring up a terminal window on your
desktop and change directories to the current working directory (ie. cd
path/to/my/sculpt/examples). A directory listing should reveal 3 files as shown in Figure 6.

Figure 6. Directory listing of files written from Cubit

The following describes the purpose of each of the resulting files:

• bean.diatom: Diatoms is a file format used by Sandia's CTH and Alegra analysis
programs that includes a rich constructive solid geometry definition. A series of
directives for constructing and orienting primitives to build a complete solid model can

389

Mesh Generation

be used. Included in the Diatom description is an STL import option. While any standard
Diatom description may be used as input to Sculpt, for Cubit's purposes, only the STL
option is used. This file contains a listing of all STL files that will be used as input to
Sculpt.

• bean.run: The .run file contains the unix command line for running sculpt. Note that the
file permissions have been set to execute to allow this file to be used as a unix script.
Figure 7 shows the .run file for this example. Note that the command uses mpiexec and
the psculpt executables, along with their full path. These paths may need to be edited
when running on a different machine. It also includes the default parameters for setting
the sizes, bounding box and smoothing parameters that have been computed by Cubit.

Figure 7. Unix command line for running Sculpt generated by Cubit

• bean_Volume_1.stl: The STL file is a copy of the geometric model. In our case, it is a
representation of the cylinder and sphere object we have been working with. The STL
format is a set of triangles that describe the surfaces of the object. One STL file will be
generated for each Volume. If the Block option is used, then one file for each Block
would be created.

To run sculpt on the same machine, from the terminal window in your current working directory
you would issue the following command:

 ./bean.run
If Sculpt is to be run on a different machine, copy the files in the working directory to the other
machine and issue the same command. Remember to change the path to the mpiexec and
psculpt executables to match those on the new machine. For running on cluster machines that
have scheduling of resources, check with your system administrator for how to submit a job for
running.
After running Sculpt, Figure 8 shows the resulting files that would be written to the current
working directory.

Figure 8. 8 Exodus files were generated and placed in working directory

Note that 8 exodus files have been generated, 1 from each processor. These files can be used by
themselves or used as-is for use in a simlation, or they can be combined into a single file. The
exodus files produced by Sculpt include all appropriate parallel communication information as

390

Cubit 15.1 User Documentation

defined by the Nemesis format. Nemesis is an extension of Sandia's Exodus II format that also
includes appropriate parallel communication information.
To combine the resulting exodus files into a single file, we can use the epu tool. Epu should be
included in your Cubit distribution, but may require you to set up appropriate paths for it to be
recognized. To run epu on this model, use the following command from a unix terminal window:

 epu -p 8 bean.diatom_result
The result should be a single file with the name bean.diatom_result.e. The mesh in this file can
then be imported into Cubit. Switch back to your Cubit application and from the command line
type the following command:

 import mesh "bean.diatom_result.e" no_geom
The result should be the same mesh we generated previously that is shown in Figure 2.

Meshing Multiple Materials With Sculpt
This example illustrates using Sculpt to mesh models with multiple materials. To begin with, we
will modify our current model by adding some additional volumes. Use the following
commands:
 delete mesh
cylinder rad 0.5 height 3
cylinder rad 0.5 height 3
vol 5 mov x 2
The resulting geometry should look like the image in Figure 9.

Figure 9. Geometry used to demonstrate multiple materials with Sculpt

Use this geometry to generate a mesh using Sculpt.
 sculpt parallel size 0.075 over combine import
draw block all

The resulting mesh should look like the image in Figure 10.

391

Mesh Generation

Figure 10. Mesh generated on multiple materials

Notice that one mesh block per volume was created. We should also note that no boolean
operations were performed prior to building the mesh with Sculpt. In fact, volumes 4 and 5 were
significantly overlapping volume 1. This would be an invalid condition for normal Cubit
meshing operations. Figure 11 shows a cut-away image of the mesh using the Clipping Plane
tool.

Figure 11. Cut-away of mesh generated on multiple materials

We should also note that imprint/merge operations typically needed, were also not required.
While it is usually best to avoid overlaps to avoid ambiguities in the topology, Sculpt is able to
generate a mesh giving precedence to the most recently defined materials. Merging is performed
strictly by geometric proximity. Volumes closer than about one half the user input size will
normally be automatically merged.
Next, we will examine the mesh quality of the free mesh. The following command will display a
graphical representation of the Scaled Jacobian metric.

392

Cubit 15.1 User Documentation

 quality hex all scaled jacobian draw mesh
The result is shown in Figure 12. Note the elements (colored red) at the interface between
materials are unacceptable for simulation. This is caused by the Sculpt algorithm projecting
nodes to a common curve interface shared by the materials.

Figure 12. Mesh quality of multi-material mesh.

In most cases, the poor element quality at material interfaces can be improved by using
the pillow option. Adding this option will direct Sculpt to add an additional layer of elements
surrounding each surface. To see the result of pillowing, issue the following commands:

 delete mesh
sculpt parallel size 0.075 over combine import pillow 1
quality hex all scaled jacobian draw mesh

Figure 13. Mesh quality of multi-material mesh using pillow option

The resulting mesh is showed in Figure 13. Note the improved mesh quality at the shared curve
interface. A closer look at the mesh, shown in Figure 14. reveals the additional layer of hexes
surrounding each surface that allows for improved mesh quality when compared with Figure 11.
When generating meshes with multiple materials that must share common interfaces, the pillow
option is usually recommended.

393

Mesh Generation

Figure 14. Cutaway of mesh reveals the additional layer of hexes surrounding each surface

when the pillow option is used.

Sculpt Application
This page describes the Sculpt application, a separate companion application to Cubit designed
to run in parallel for generating all-hex meshes of complex geometry. Sculpt was developed as a
separate application so that it can be run independently from Cubit on high performance
computing platforms. It was also designed as a separable software library so it can be easily
integrated as an in-situ meshing solution within other codes. As installed with Cubit, Sculpt can
be set up and run directly from Cubit, in a batch process from the unix command line or from a
user-defined input file. This documentation describes the input file and command line syntax for
the Sculpt Application when running in batch mode. See this page for using Cubit to set up input
for Sculpt. A brief technical description of Sculpt may also be found here.

• Sculpt System Requirements
• Running Sculpt
• Sculpt Command Documentation
• Sculpt Examples

Sculpt System Requirements
Sculpt is currently built for windows, linux and mac operating systems. Current supported OS
versions should be the same as those supported by Cubit. It is designed to take advantage of 64
bit multicore and distributed memory computers, using open-mpi as the basis for parallel
communications.

Running Sculpt
Sculpt can be run using one of two excutables:

1. psculpt
1. requires the use of mpiexec to start the process. Number of processors to use is

specified by the -np argument to mpiexec. psculpt and its input parameters are
also used as input to mpiexec. For example:

394

Cubit 15.1 User Documentation

mpiexec -np 8 psculpt -stl myfile.stl -cs 0.5

2. If appropriate system paths have not been set, you may need to use full paths
when referring to mpiexec and psculpt.

2. sculpt
1. This application assumes that mpiexec is included in the standard CUBIT

installation directory. The number of processors to use is specified by the -j
option. For example:

sculpt -j 8 -stl myfile.stl -cs 0.5

2. If the -j option is not used, sculpt will default to a single processor for execution.
The -mpi option can also be used with the sculpt application to indicate a specific
mpi installation that is not included with CUBIT. For example:

sculpt -j 8 -mpi /path/to/mpiexec -stl myfile.stl -cs 0.5

3. If the path specified by the -mpi option does not exist or the mpi version is
incompatible, sculpt will attempt to use the local CUBIT-installed mpiexec or else
the system mpiexec in the PATH environment.

Sculpt Command Documentation
Following is a listing of the available input commands to either sculpt or psculpt. When used
from the unix command line, commands may be issued using the short form argument,
designated with a single dash(-), or with the longer form, designated with two dashes (--). When
used in an input file, only the long form may be used, omitting the two dashes (--)

 --help, -h <args> Displays Sculpt command documentation
 --num_procs, -j <args> Number of processors requested
 --input_file, -i <args> Input Parameter File
 --stl_file, -stl <args> Input STL file
 --diatom_file, -d <args> Input Diatom description file
 --exodus_file, -e <args> Output Exodus file base name
 --volfrac_file, -vf <args> Output Volume Fraction file base name
 --input_vfrac, -ivf <args> Input from Volume Fraction file base
name
 --input_micro, -ims <args> Input from Microstructure file base name
 --input_cart_exo, -ice <args> Input from Cartesian Exodus file
 --input_spn, -isp <args> Input from Microstructure spn file
 --nelx, -x <args> Num elements in x
 --nely, -y <args> Num elements in y
 --nelz, -z <args> Num elements in z
 --xmin, -t <args> Min x extent
 --ymin, -u <args> Min y extent
 --zmin, -v <args> Min z extent
 --xmax, -q <args> Max x extent
 --ymax, -r <args> Max y extent
 --zmax, -s <args> Max z extent

395

Mesh Generation

 --cell_size, -cs <args> Cell size (Num elements ignored)
 --stair, -str <args> Don't fit boundary
 --align, -a Automatically align geometry to grid
 --smooth, -S <args> Smoothing method
 --csmooth, -CS <args> Curve smoothing method
 --laplacian_iters, -LI <args> Number of Laplacian smoothing iterations
 --max_opt_iters, -OI <args> Max. number of parallel Jacobi opt.
iters
 --opt_threshold, -OT <args> Stopping criteria for Jacobi opt.
smoothing
 --max_pcol_iters, -CI <args> Max. number of parallel coloring smooth
iters
 --pcol_threshold, -CT <args> Stopping criteria for parallel color
smooth
 --max_deg_iters, -dgi <args> Maximum number of edge collapse
iterations
 --deg_threshold, -dg <args> Convert hexes below threshold to
degenerates
 --adapt_type, -A <args> Adaptive meshing type
 --adapt_threshold, -AT <args> Threshold for adaptive meshing
 --adapt_levels, -AL <args> Number of levels of adaptive refinement
 --mesh_void, -V Mesh void
 --gen_sidesets, -SS <args> Generate sidesets
 --htet, -ht <args> Convert hexes below quality threshold to
tets
 --pillow, -p <args> Set pillow criteria (1=surfaces)
 --quality, -Q Dump quality metrics to file
 --debug_processor, -D <args> Sleep to attach to processor for debug
 --export_comm_maps, -C Export parallel comm maps to debug exo
files
 --write_geom, -G Write geometry to sculpt.stl file (no
mesh)
 --micro_expand, -me <args> Expand Microstructure grid by N layers
 --capture, -c <args> Project to facet geometry
 --quiet, -qt Suppress output
 --print_input, -pi Print input values and defaults then
stop
 --threads_process, -tpp <args> Number of threads per process
 --version, -vs Print Sculpt version information and
exit
 --iproc, -ip <args> Number of processors in I direction
 --jproc, -jp <args> Number of processors in J direction
 --kproc, -kp <args> Number of processors in K direction

Help

--help, -h <args> Displays Sculpt command documentation
When used without arguments, this option will display a full list of all available commands that
can be used with Sculpt. When used with one or more arguments, documentation on a specific
command will be displayed. The "all" argument may be used to display the complete
documentation for all commands.

Number of Processors

396

Cubit 15.1 User Documentation

--num_procs, -j <args> Number of processors requested
The number of processors that Sculpt will use to generate the mesh. The Cartesian domain will
be divided into roughly equal sizes based on this value and the mesh for each portion of the
domain generated independently. Continuity across processor boundaries is maintained with MPI
(Message Passing Interface). Each processor will write a separate Exodus II file to disk
containing its portion of the domain. The Sandia SEACAS tool, "EPU" can be used to join
parallel files into a single file.
If not specified on the command line, the number of processors used will be 1. Also note that the
num_procs argument cannot be used from within an input file. Instead it must be used from the
command line.
For additional control on the arrangement of processor domains see
arguments iproc, jproc, kproc

Input File

--input_file, -i <args> Input Parameter File
Rather than specifying a complicated series of arguments on the command line, an input file may
also be used. An input file is a simple text file containing all arguments and parameters to be
used in the current sculpt run. Input files are normally expected to have a ".i" extension.
Arguments used in the input file are limited to the Long Names indicated for each command.
User comments can also be made anywhere in the file but must follow a "$" sign. The argument
assignments that are intended to be read must be contained within a "begin sculpt" and "end
sculpt" block. All arguments may use upper or lower case and can optionally use "=" between
the command and its parameter. The following is an example input file:

 BEGIN SCULPT
 stl_file = "mygeom.stl"
 cell_size = 0.5
 exodus_file = "mymesh"
 mesh_void = true $TRUE or ON is optional for this command
 END SCULPT

The following is an example of using an input file with sculpt:

sculpt -j 4 -i myinput.i
Note that the number of processors (-j) should always be used on the command line and cannot
be included in the input file. Relative or absolute paths for files may also be used.

STL File

--stl_file, -stl <args> Input STL file
File name of a single STL (facet geometry) file to be used as input. Either an stl_file or
diatom_file designation must be included to run Sculpt.

Diatom File

--diatom_file, -d <args> Input Diatom description file
File name of a diatom file to be used as input to Sculpt. Both stl_file and diatom_file cannot be
used simultaneously. A diatom file is a constructive solid geometry description containing

397

Mesh Generation

primitives for generating a full geometric definition of the model. Diatoms are commonly used
as input to Sandia's CTH and Alegra codes. Multiple STL files can also be defined in a Diatom
file.

Exodus File

--exodus_file, -e <args> Output Exodus file base name
The base file name of the resulting exodus mesh. Exodus files will be in the form
<exodus_file>.e.<nproc>.<iproc>. For example, if the number of processors used is 3 and the
exodus_file argument is "model", the following files would be written:

1. model.e.3.0
model.e.3.1
model.e.3.2

If no exodus_file argument is used, output files will be in the form
<stl_file>_diatom_results.e.<nprocs>.<iproc>. For example, if number of processors used is 3
and the stl_file (or diatom_file) is "model.stl", the following files would be written:

1. model_diatom_results.e.3.0
model_diatom_results.e.3.1
model_diatom_results.e.3.2

A full path may be used when specifying the base exodus file name, otherwise files will be
placed in the current working directory. If the exodus_file option is not used, exodus files will be
placed in the same directory as the input diatom or stl file.

Volume Fraction File

--volfrac_file, -vf <args> Output Volume Fraction file base name
Optionally generate exodus files containing a hex mesh of the Cartesian grid containing volume
fraction data as element variables. If not specified, no volume fraction data files will be
generated.

Input Volume Fraction File

--input_vfrac, -ivf <args> Input from Volume Fraction file base name
Sculpt can optionally take an exodus file containing volume fraction data stored as element
variables. Normally the exodus file has initially been written using the --volfrac_file (-vf) option.
Since the exodus file will be a Cartesian grid spread accross multiple processors, the base
filename for the parallel series of exodus files is used as the argument for this command. The
input volume fraction file(s) would be used instead of an STL or diatom file. Since computing
volume fractions from geometry can be time consuming, precomputing the volume fractions and
reading them from a file can be advantageous if multiple meshes are to be generated from the
same volume fraction data.

Input Microstructure File

398

Cubit 15.1 User Documentation

--input_micro, -ims <args> Input from Microstructure file base name
A microstructure file is an ascii text file containing volume fraction data for each cell of a
Cartesian grid. The format for this file includes header information followed by data for each
cell. The following is an example:

 TITLE = triple line system
 VARIABLES = x y z, phi_1, phi_2, phi_3
 ZONE i = 2 , j = 2 , k = 2
 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000
 1.0000 0.0000 0.0000 0.3333 0.3333 0.3334
 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000
 1.0000 1.0000 0.0000 0.0000 1.0000 0.0000
 0.0000 0.0000 1.0000 0.2000 0.4000 0.4000
 1.0000 0.0000 1.0000 0.6000 0.1000 0.3000
 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000
 1.0000 1.0000 1.0000 0.9000 0.0000 0.1000

The header information should contain the following:
TITLE: any descriptive character string
VARIABLES: a list of variables separated by spaces or commas. It should include x, y, z as the
first three variable names. The remaining names are arbitrary. The number of variable names
listed must correspond to the number of data values for each cell of the Cartesian grid.
ZONE: Specify the number of cells in the i, j and k directions (corresponding to x, y, and z
respectively)
The body of the file will contain one line per cell of the grid. The first three values correspond to
the centroid location of a cell in the grid. The remaining values represent volume fractions for
the cell for each variable listed. The sum of the volume fractions for each individual cell should
be 1.0
Currently this format assumes that cell sizes are exactly 1.0 x 1.0 x 1.0 and the minimum cell
centroid location is always 0.0, 0.0, 0.0. This results in a Cartesian grid with minimum
coordinate = (-0.5, -0.5, -0.5) and maximum coordinate = (i-0.5, j-0.5, k-0.5)
Example usage of this command is as follows:

 sculpt -j 8 -ims my_micro_file.tec -p 1

Smoothing: Sculpt will set automatic defaults for smoothing if user options have not been
defined. These include:
--smooth 9 (surface smoothing option - no surface projection)
--csmooth 5 (curve smoothing option - hermite interpolation)
These options will generally provide a smoother curve and surface represention but may not
adhere strictly to the volume fraction geometric definition. To over-ride the defaults, consider
using the following options:
--smooth 8 (surface smoothing option - projection to interpolated surface)
--csmooth 2 (curve smoothing option - projection to interpolated curve)
Pillowing: For most 3D models it is recommended using pillowing since triple junctions (curves
with at least 3 adjacent materials) will typically be defined where malformed hex elements would
otherwise be generated. Surface pillowing (option 1) is usually sufficient to remove poor quality
elements at triple junctions.

399

Mesh Generation

Boundary Conditions: Exactly seven nodesets will automatically be generated with this
command. Each nodeset will contain the set of nodes corresponding to the following criteria:

 Nodeset ID Contains nodes
 1 on minimum X domain boundary
 2 on maximum X domain boundary
 3 on minimum Y domain boundary
 4 on maximum Y domain boundary
 5 on minimum Z domain boundary
 6 on maximum Z domain boundary
 7 at all interior triple junctions

Input Cartesian Exodus File

--input_cart_exo, -ice <args> Input from Cartesian Exodus file
An exodus mesh containing a Cartesian grid of elements can also be used as the source of a
sculpt mesh. For this option the following conditions must be met:

1. A single (non-parallel) exodus II format file.
2. Contains only hex elements configured as a Cartesian grid.
3. All hex elements must be exactly equilateral cubes.
4. Each hex element has been assigned to exactly one block. (Any number of blocks may be

defined in the file)

Provided these conditions are met, sculpt will treat each block as a separate material and generate
a smooth conforming mesh between the materials. This option is useful for converting a stair-
step mesh into a smooth conforming mesh. The resulting sculpt mesh will have the same
dimensions as the original exodus mesh, but will add layers of hexes at material interfaces.
Example usage of this command is as follows:

 sculpt -j 8 -ice my_cartesian_file.e -p 1

Smoothing: Sculpt will set automatic defaults for smoothing if user options have not been
defined. These include:
--smooth 9 (surface smoothing option - no surface projection)
--csmooth 5 (curve smoothing option - hermite interpolation)
These options will generally provide a smoother curve and surface represention but may not
adhere strictly to the volume fraction geometric definition. To over-ride the defaults, consider
using the following options:
--smooth 8 (surface smoothing option - projection to interpolated surface)
--csmooth 2 (curve smoothing option - projection to interpolated curve)
Pillowing: For most 3D models it is recommended using pillowing since triple junctions (curves
with at least 3 adjacent materials) will typically be defined where malformed hex elements would
otherwise be generated. Surface pillowing (option 1) is usually sufficient to remove poor quality
elements at triple junctions.
Boundary Conditions: Exactly seven nodesets will automatically be generated with this
command. Each nodeset will contain the set of nodes corresponding to the following criteria:

400

Cubit 15.1 User Documentation

 Nodeset ID Contains nodes
 1 on minimum X domain boundary
 2 on maximum X domain boundary
 3 on minimum Y domain boundary
 4 on maximum Y domain boundary
 5 on minimum Z domain boundary
 6 on maximum Z domain boundary
 7 at all interior triple junctions

--input_spn, -isp <args> Input from Microstructure spn file

Microstructure spn File Input

--input_spn, -isp <args> Input from Microstructure spn file
A .spn file is an optional method for importing volume fraction data into sculpt for meshing. This
format is a simple ascii text file containing one integer per cell of a Cartesian grid. Each integer
represents a unique material identifier. Any number of materials may be used, however for
practical purposes, the number of unique materials should not exceed more than about 50 for
reasonable performance. An example file containing a 3 x 3 x 3 grid with 2 materials may be
defined as follows:

 1 1 2 1 2 1 1 1 1
 1 2 2 1 2 2 1 1 2
 2 1 1 1 2 1 1 2 2

Any unique integer may be used to identify a material. All cells with the same ID will be defined
as a continuous block with the same exodus block ID in the final mesh. All integers should be
separated by a space or newline. The number of integers in the file should exactly correspond to
the size of the Cartesian grid. The dimensions of the Cartesian grid must be specified on the
command line as part of the input. The following is an example:

 sculpt -j 8 -x 10 -y 24 -z 15 -isp "my_spn_file.spn" -p 1

The order of the cells in the input file will be read according to the following schema:

 for (i=0; i<nx; i++)
 for (j=0; j<ny; j++)
 for (k=0; k<nz; k++)
 // read next value from file

Where nx, ny, nz are the number of cells in each Cartesian direction. The initial size of the
Cartesian grid will be exactly nx X ny X nz with the minimum coordinate at (0.0, 0.0, 0.0)
Smoothing: Sculpt will set automatic defaults for smoothing if user options have not been
defined. These include:
--smooth 9 (surface smoothing option - no surface projection)
--csmooth 5 (curve smoothing option - hermite interpolation)
These options will generally provide a smoother curve and surface represention but may not
adhere strictly to the volume fraction geometric definition. To over-ride the defaults, consider
using the following options:
--smooth 8 (surface smoothing option - projection to interpolated surface)
--csmooth 2 (curve smoothing option - projection to interpolated curve)

401

Mesh Generation

Pillowing: For most 3D models it is recommended using pillowing since triple junctions (curves
with at least 3 adjacent materials) will typically be defined where malformed hex elements would
otherwise be generated. Surface pillowing (option 1) is usually sufficient to remove poor quality
elements at triple junctions.
Boundary Conditions: Exactly seven nodesets will automatically be generated with this
command. Each nodeset will contain the set of nodes corresponding to the following criteria:

 Nodeset ID Contains nodes
 1 on minimum X domain boundary
 2 on maximum X domain boundary
 3 on minimum Y domain boundary
 4 on maximum Y domain boundary
 5 on minimum Z domain boundary
 6 on maximum Z domain boundary
 7 at all interior triple junctions

Number of Intervals

 --nelx, -x <args> Num elements in x
 --nely, -y <args> Num elements in y
 --nelz, -z <args> Num elements in z
Defines the number of intervals in x, y, and z directions respectively of the base Cartesian grid
used for defining the volume fraction definition and meshing. For best results the intervals
specified should result in approximately equilateral cells.

Bounding Box Range

 --xmin, -t <args> Min x extent
 --ymin, -u <args> Min y extent
 --zmin, -v <args> Min z extent
 --xmax, -q <args> Max x extent
 --ymax, -r <args> Max y extent
 --zmax, -s <args> Max z extent
Defines the bounding box or range of the Cartesian mesh to be used for meshing

Cell Size

 --cell_size, -cs <args> Cell size (Num elements ignored)
Defines a target edge size for the cells of the base Cartesian grid. Both interval and cell_size
cannot be specified simultaneously. If cell_size is used without a range specification, a bounding
box of the geometry will be computed and used as the default range.

Stair

 --stair, -str <args> Don't fit boundary
The stair option generates a stair-step mesh where the cells of the Cartesian grid are used in the
final mesh without projection or smoothing to the material interfaces. Cells selected from the
Cartesian grid to be used in the final mesh will have volume fraction greater than 0.5. Several
different options for the stair argument are available:

402

Cubit 15.1 User Documentation

• 0 = Stair option is off (default)
• 1 = Stair-step mesh is generated, but additional processing is done to ensure material

interfaces are manifold. This option may add or subtract cells from the basic mesh (where
volume fraction > 0.5) to ensure no non-manifold connections between nodes and edges
exist in the final mesh.

• 2 = The exterior boundary will be smooth while internal material interfaces will be stair-
step. This option also ensures manifold connections between elements.

• 3 = Fast stair-step mesh. Generates the final mesh based only on volume fraction criteria.
No additional processing is done to ensure manifold connections between edges and
nodes.

Note: The stair-step option currently does not support generation of sidesets. The -SS or --
gen_sidesets option will be ignored when using the stair option.

Align

 --align, -a Automatically align geometry to grid
The align option will attempt to orient the Cartesian grid with the main dimensions of the
geometry. This is done by defining a tight bounding box around the geometry using an
optimization procedure where the objective is to minimize the difference in volume between an
enclosing box and the geometry. Using the align command will override any bounding box
parameters previously entered and will build an "aligned" bounding box around the full
geometry. It is currently only implemented for STL geometry and will ignore any other diatom
definitions. Note that this option will also write temporary stl and diatom files to the working
directory.

Smooth

 --smooth, -S <args> Smoothing method
Automatic adjustment of node locations following meshing to improve element quality. The
default smooth options in most cases should be sufficient, however in some cases it may be
worthwhile to experiment with different smoothing methods. The surface smoothing options
available are: (Default is 1)

• 0 = No smoothing is performed.
• 1 = (Default) Combined Laplacian/Optimization (Hybrid) smoothing for both surface and

volumes. Boundary buffer layer improvement is performed at surfaces intersecting the
domain boundary.

• 2 = Surface smoothing using facets as geometry with Laplacian smoothing and hybrid
volume smoothing. Boundary buffer improvement is on.

• 3 = Surface smoothing using interpolated geometry with Laplacian smoothing and hybrid
volume smoothing. Boundary buffer improvement is off.

• 4 = Surface smoothing using interpolated geometry with Laplacian smoothing and
Laplacian volume smoothing

• 5-6 = Not used.
• 7 = Surface smoothing using interpolated geometry with Laplacian smoothing and hybrid

volume smoothing (same as 3). No boundary buffer improvement performed.

403

Mesh Generation

• 8 = Combined Laplacian/Optimization (Hybrid) smoothing for both surface and volumes.
(same as 1). No boundary buffer improvement performed.

• 9 = Same as option 8 however surface nodes are not projected to the interpolated surface.
This is effective in smoothing noisy surface data, but can potentially reduce overall
volume.

Curve Smoothing

 --csmooth, -CS <args> Curve smoothing method
The csmooth option controls the smoothing method used on curves. In most cases the default
should be sufficient, however it may be useful to experiment with different options. The default
curve smoothing option is 5 (Volume Fraction). The following curve smoothing options are
available:

• 0 = No curve smoothing will be performed.
• 1 = Circle smoothing. Nodes projected to a fitted circle defined current node and its two

neighbors.
• 2 = Hermite smoothing. Nodes projected based on Hermite interpolation. Note that this

method can only be used in serial (-j 1)
• 3 = Average Tangent. Nodes projected based on average tangent of neighbors. Note that

this method can only be used in serial (-j 1)
• 4 = Neighbor Surface Normal. Nodes projected based on neighboring surface normals

and the resulting intersecting planes.
• 5 = Volume Fraction. (Default) Nodes projected to initial curve interface defined from

the original volume fraction data.
• 6 = Linear. Nodes projected to the linear segment defined by the node and its two

immediate neighbors.

Laplacian Iterations

 --laplacian_iters, -LI <args> Number of Laplacian smoothing iterations
Number of Laplacian smoothing iterations performed when Hybrid smoothing option is used.
See Laplacian Smoothing Default value is 2.

Maximum Optimization Iterations

 --max_opt_iters, -OI <args> Maximum number of opt. smoothing iterations
to perform
Indicates the maximum number of iterations of optimization-based smoothing to perform. May
complete sooner if no further improvement can be made. See Optimization Smoothing

Optimization Threshold

 --opt_threshold, -OT <args> Stopping criteria for Jacobi opt.
smoothing

404

Cubit 15.1 User Documentation

Indicates the value for scaled Jacobian where Optimization smoothing will be performed.
Elements with scaled Jacobian less than opt_threshold and their neighbors will be smoothed.
Default value is 0.60.

Maximum Parallel Coloring Iterations

 --max_pcol_iters, -CI <args> Max. number of parallel coloring smooth
iters
Maximum number of spot smoothing (also known as parallel coloring) iterations to perform.
May complete sooner if no further improvement can be made. See Spot Optimization. Default is
100.

Parallel Coloring Threshold

 --pcol_threshold, -CT <args> Stopping criteria for parallel color smooth
Indicates scaled Jacobian threshold for spot smoothing (also known as parallel coloring). A
parallel coloring algorithm is used to uniquely identify and isolate nodes to be improved using
optimization. Default is 0.2

Maximum Degenerate Iterations

 --max_deg_iters, -dgi <args> Maximum number of edge collapse iterations
Maximum number of edge collapse iterations to perform to create degenerate hex elements.
See Creating degenerate hexes. Default is -1.

Degenerate (Edge Collapse) Threshold

 --deg_threshold, -dg <args> Maximum number of edge collapse iterations
Indicates scaled Jacobian threshold for edge collapses. Nodes at hexes below this threshold will
be candidates for edge collapses, provided doing so will improve the minimum scaled Jacobian
at the neighboring hexes. Default is 0.

Adaptive Refinement Type

 --adapt_type, -A <args> Adaptive meshing type
Indicates the type of adaptive meshing to be performed. Options include:

• 0 = No Refinement: Cartesian grid as defined by xint, yint, and zint is used as the basis
for sculpt mesh.

• 1 = Geometry Adaptive: The Cartesian grid will first be locally refined based on the
geometric features of the model. Each cell of the Cartesian grid meeting the
adapt_threshold will be uniformly refined by subdiving into eight child cells.

To maintain a conforming mesh, transition elements will be inserted to transition between
smaller and larger element sizes. Default is 0 (or that no adaptive refinement will take place).

Adaptive Refinement Threshold

405

Mesh Generation

 --adapt_threshold, -AT <args> Adaptive threshold value
For geometry adaptive refinement (adapt_type=1) each Cartesian grid cell will have a percentage
of the cell (volume fraction) filled with material. If by refining the cell the difference between
the average volume fraction of the resulting child cells and its parent cell exceeds the
adapt_threshold, then the cell is marked for uniform refinement. Default threshold value is 0.4

Number of Adaptive Levels

 --adapt_levels, -AL <args> Max Adaptive Levels
The number of levels of adaptive meshing to be performed. One level of refinement will split
each Cartesian grid cell identified for uniform refinement into eight child cells. Two levels of
refinement will split each cell into sixty-four child cells. This option is currently limited to a
maximum of two levels. Default is 2 (if adapt_type is not 0, otherwise, default is 0).

Mesh Void

 --mesh_void, -V Mesh void
If mesh_void option is used, then the void space surrounding the geometry will be treated as a
separate material. Elements will be generated in the void to the extent of the Cartesian grid
boundaries.

Generate Sidesets

 --gen_sidesets, -SS <args> Generate sidesets
Several options for generating sidesets are available. Indicate which option to use with integer 1
to 4

1. Fixed: Exactly 3 sidesets will be generated according to the following:
o Sideset 1: All sides at the domain boundary. Sides will only be present in this

sideset if the model intersects the enclosing bounding box or the void option is
used.

o Sideset 2: All sides at the model boundary. Any side on the model that is not
interior will be included. This should represent a full enclosure of the model if it
does not intersect the domain boundary.

o Sideset 3: All sides at material interfaces. Includes sides on the interior where
adjacent blocks are different

2. Variable: A variable number of sidesets will be generated with the following
characteristics:

o Surfaces at the domain boundary
o Exterior material surfaces
o Interfaces between materials

Unlike Fixed sidesets, grouping of sides will be contiguous. A separate sideset will be
generated for each set of contiguous sides.

3. Geometric Surfaces: Sidesets will be generated according to imported surface ID
information. STL files may include an optional surface designation for any or all

406

Cubit 15.1 User Documentation

triangles in the file. Surface information may be written automatically from Cubit based
on geometric surface IDs or sideset IDs. See the cubit sculpt parallel sideset option for
more details. If present, one sideset will be generted for each surface designation in the
STL file. Following is an example surface designation in an STL file. It would appear
following all triangles.

 surface 1
 0 1 2 3 4 5 6 7 8 9
 10 11 12 13 14 15 16 17 18 19
 20 21 22 23
 endsurface 1

4. The id following the surface designation will be used as the sideset ID. Up to 10 triangle
IDs, per line may be assigned to the surface. Triangle IDs are assigned based on order
they appear in the STL file. Any number of surfaces may be defined. For this option, the
assumption is that all triangles included in the STL files will be included in at least one
surface designation.

5. Geometric Sidesets: Similar to option 3 above, except that only a portion of the triangles
may be designated as sideset surfaces. This option is useful when using Cubit to identify
specific surfaces as sidesets.

HTet

 --htet, -ht <args> Convert hexes below quality threshold to
tets
Automatically generate tets in place of poor quality elements. This option can be used to
eliminate poor quality hex element by replacing each hex that falls below the user defined Scaled
Jacobian with 24 tets. Default value for htet is -1.0. The result will be a non-conforming mesh at
the interface between tets and hexes. One additional nodeset and sideset will be generated and
output to the exodus file if the sideset option is specified.
Sideset 10000 = the set of hex faces that interface a set of 4 tets.
Nodeset 1000 = the set of nodes at the interface between hexes and tets. One node per face in
Sideset 10000 will be included.

Pillow

 --pillow, -p <args> Set pillow criteria (1=surfaces)
Generate a pillow or additional layer of hexes at surfaces as a means to improve element quality
near curve interfaces. This is intended to elimate the problem of 3 or more nodes from a single
hex face lying on the same curve. The following options are available:

• 0 = (Default) No pillowing is performed
• 1 = All hexes containing faces on surfaces will be pillowed.
• 2 = Only hexes that have faces with 3 or more nodes on a curve will be pillowed. One

additional layer beyond the poor quads at the curves will be included in the pillow region.

407

Mesh Generation

• 3 = Insert pillow layers at domain boundaries. This option is useful where the void option
is used to generate a mesh in the full Cartesian grid and where the adapt option has been
used. One layer of hexes is inserted on each of the six faces of the Cartesian Domain.

These options may be modified by adding 2 additional digits to the option. The second digit will
turn on and off smoothing following the pillow operation and the third digit defines the number
of layers of quads beyond the poor quality quads at the curves that will be included in the pillow
region. For example:

• 100 = All hexes containing faces on surfaces will be pillowed, however no smoothing
will be performed following the pillow operation.

• 203 = Hexes that have faces with 3 or more nodes on a curve will be pillowed.
Additionally, 3 layers of quads will be included in the pillow region. No smoothing will
be performed.

Quality

 --quality, -Q Dump quality metrics to file
A file named "quality.csv" will be created in the current working directory (or appended).
Quality metrics and other details of the run will be written to this file. This option is currently on
by default.

Debug Processor

 --debug_processor, -D <args> Sleep to attach to processor for debug
Used for debugging. All processes will sleep until the designated process is attached to a
debugger.

Export Communication Maps

 --export_comm_maps, -C Export parallel comm maps to debug exo
files
Used for debugging and verification. Exodus files of the mesh containing the communication
nodes and faces at processor boundaries will be written as nodes and side sets. This provides a
way to visually check the validity of the parallel communication maps.

Write Geometry

 --write_geom, -G Write geometry to sculpt.stl file (no
mesh)
The geometry generated by sculpt can be exported as an stl file called "sculpt.stl". Prior to
generating the mesh, Sculpt defines a temporary facet-based geometry description of the
boundaries of the model. This option will generate the facet-based geometry, dump it to the file
"sculpt.stl", and then stop without generating the mesh. Additionally, one stl file per processor
will be generated in the form "sculpt.stl.<n>.<j>", where <n> is the current processor number
and <j> is the total number of processors used.

Expand Microstructure Grid

408

Cubit 15.1 User Documentation

 --micro_expand, -me <args> Expand Microstructure grid by N layers
This option expands the Cartesian grid by a specified number of layers. It can be used with any
of the following input options:

1. --input_micro
--input_cart_exo
--input_spn

In some cases the interior material interfaces may intersect the domain boundaries at small acute
angles. When this occurs it may be difficult or impossible to achieve computable mesh quality at
these intersections. To address this problem, one or more layers of hexes may be added to the
Cartesian grid. The volume fractions from cells at the boundary are copied to generate additional
layers. This has the effect of increasing the angle of intersection for any material interfaces
intersecting the domain boundary. Usualy a value of 1 or 2 is sufficient to sufficiently improve
quality.
Note that the resulting mesh in the expanded layers serves only to improve mesh quality and will
only duplicate existing data at the boundaries. It may not reflect the actual material structure
within the expansion layers.

Capture Geometry

 --capture, -c <args> Project to facet geometry
This is an experimental option still in development. Following meshing and smoothing, sculpt
will project nodes to the initial triangle facets defined in an initial STL input file. Node
projection is based only on the closet facet, so features (curves) will not be honored. This option
may however be useful for models that do not contain sharp features. The capture argument is
currently limited to 0=off, 1=on.

Threads per Process

 --threads_process, -tpp <args> Number of threads per process
This option is currently experimental and under development. Sculpt may use shared memory
parallelism to improve performance. When built with the Kokkos library, some algorithms in
sculpt will use shared memory parallel threads in addition to MPI distributed memory
parallelism (MPI+X). Currently this option is implemented only for surface and volume
Laplacian smoothing algorithms. This option may not be available requiring a custom build of
sculpt to be used. Check with developers if you would like to use this option.

Version

 --version, -vs Print Sculpt version information and
exit
Prints Sculpt version information and exits.

Processor Arrangement

 --iproc, -ip <args> Number of processors in I direction

409

Mesh Generation

 --jproc, -jp <args> Number of processors in J direction
 --kproc, -kp <args> Number of processors in K direction
Arguments iproc, jproc and kproc provide user control over the processor decomposition in I, J,
and K directions respectively. iproc * jproc * kproc must equal the number of processors
specified on the command line using the -j option.

Quiet

 --quiet, -qt Suppress output
Suppress any output to the command line from Sculpt as it is running.

Print Input

 --print_input, -pi Print input values and defaults then
stop
Display all input parameters and defaults used in the current Sculpt run to the output window and
then stop. No mesh (or volume fractions) will be generated.

Sculpt Examples
The following illustrate simple use cases of the Sculpt application. To use these examples, copy
the following stl and diatom files to your working directory

1.

brick1.stl
brick2.stl
bricks.diatom

Example 1

sculpt -j 4 -stl brick1.stl -cs 0.5
Runs sculpt with 4 processors with geometry input from brick1.stl. Uses a base Cartesian cell
size of 0.5. The bounding box and all other parameters will be defaulted. The result should be the
4 exodus files:

 brick1.stl_results.e.4.0
 brick1.stl_results.e.4.1
 brick1.stl_results.e.4.2
 brick1.stl_results.e.4.3
These files can be combined into a single file using the SEACAS tool epu

epu -p 4 brick1.stl_results
The result of this operation should be a single file:

 brick1.stl_results.e
To view the resulting mesh in Cubit, use the import free mesh command. For example:

1. import mesh "brick1.stl_results.e" no_geom

410

Cubit 15.1 User Documentation

Figure 1. Example 1 mesh

Example 2

mpiexec -np 4 psculpt -x 46 -y 26 -z 26 -t -6.5 -u -6.5 -v -6.5 -q 16.5 -r
6.5 -s 6.50 -d bricks.diatom
In this case we use mpiexec to start 4 processes of psculpt. We explicitly define the number of
Cartesian intervals and the dimensions of the grid. Rather than using the -stl option, we use the -
d option which allows us to specify the diatom file, bricks.diatom. This file allows us to specify
multiple stl files, where each one represents a different material. In this case we use both
brick1.stl and brick2.stl, which are called out in bricks.diatom.
We can use similar commands as used in Example 1 to combine and import the free mesh into
Cubit for display.

Figure 2. Example 2 mesh

Sculpt Technical Description
This document provides a brief technical overview of the Sculpt application, a separate
companion application to Cubit designed to generate all-hex meshes of complex geometries.
Details on command arguments to Sculpt may be found here. Also information for using Cubit to
set up input for Sculpt may be found here.
The method for generating an all-hex mesh employed by Sculpt is often referred to in the
literature as an overlay-grid or mesh-first method. This differs significantly from the algorithms
employed by Sweeping and Mapping, which are classified as geometry-first methods. Mapping
and Sweeping start with the geometry, carefully fitting logical groupings of hexes to conform to

411

Mesh Generation

a recognized topology. In contrast, the Sculpt method begins with a base Cartesian grid
encompassing the geometry which is used as the basis for the mesh. Geometric features are
carved or sculpted from the Cartesian grid and boundaries smoothed to create the final hex mesh.
The obvious benefit of the Sculpt (mesh-first) method over Mapping and Sweeping (geometry-
first) methods is there is no need to decompose the geometry into mappable or sweebable
components, a process that can often be very time consuming, tedious and sometimes
impossible. Input to Sculpt can be any geometry regardless of features and complexity.
The basic Sculpt procedure is illustrated in figure 1. Beginning with a Cartesian grid as the base
mesh, shown in figure 1(a), a geometric description is imposed. Nodes from the base grid that
are near the boundaries are projected to the geometry, locally distorting the nearby hex cells
(figure 1(b)). A pillow layer of hexes is then inserted at the surfaces by duplicating the interface
nodes on either side of the boundaries and inserting hexes (figures 1(c) and (d)). While
constraining node locations to remain on the interfaces, smoothing procedures can now be
employed to improve mesh quality of nearby hexes (figure 1(e)).

Figure 1. The procedure for generating a hex
mesh using the Sculpt overlay grid method
Sculpt is limited to capturing geometric features with the available resolution of the selected base
mesh. Because of this, care should be taken in selecting an appropriate cell size. In addition, no
attempt is made by the Sculpt procedure to capture sharp exterior features. Figure 2 shows an
example of a sculpt mesh of a CAD model. Note that exterior corner features are rounded,
however the effect of sharp feature capture becomes less pronounced as resolution increases as
demonstrated in figures 3(a) and (b).

412

Cubit 15.1 User Documentation

Figure 2. Hex mesh generated

using the Sculpt overlay grid procedure

Figure 3. Examples of the same model meshed at
two different resolutions showing a cutaway view of the mesh.
Another aspect of model preparation for computational simulation involves geometry cleanup
and simplification. In most cases, geometry-first methods, such as Sweeping, require an accurate
non-manifold boundary representation before mesh generation can begin. Small, sometimes

413

Mesh Generation

unseen gaps, overlaps and misalignments can result in sliver elements or mesh failure. Tedious
manual geometry simplification and manipulation is often required before meshing can
commence. Sculpt, however employs a solution that avoids much of the geometry inaccuracy
issues inherent in CAD design models. Using a faceted representation of the solid model, a
voxel-based volume fraction representation is generated. Figure 4 illustrates the procedure where
a CAD model serving as input (figure 4(a)) is processed by a procedure that will generate
volume fraction scalar data for each cell of an overlay Cartesian grid (figure 4(b)). One value per
material per cell is computed that represents the volume fraction of material filling the cell. A
secondary geometry representation is then extracted using an interface tracking technique from
which the final hex mesh is generated (figure 4(c)). While similar to its initial facet-based
representation, the new secondary geometry description developed from the volume fraction data
results in a simplified model that tends to wash over small features and inaccuracies that are
smaller than the resolution of the base cell size.

Figure 4. A representation of the procedure used to generate a hex mesh with Sculpt using
Volume Fractions.
While acknowledging some loss in model fidelity in this new volume-fraction based geometric
model, the advantage and time-savings to the analyst of being able to ignore troublesome
geometry issues is enormous. At the same time it may be important to understand what the
additional discrete approximations will make to solution accuracy and employ relevant
engineering judgement in the use of this technology.

References
The following technical papers, written by the author of Sculpt, describe the Sculpt procedure in
more depth. These papers were presented at the International Meshing Roundtable and are
external links to pdf documents.
 Parallel Hex Meshing from Volume Fractions: Describes the basic algorithms and
mathematics used in the Sculpt procedure.
 Parallel Smoothing for Grid-Based Methods: A brief description of the smoothing procedures
used in Sculpt.
 Validation of Grid-Based Hex Meshes with Computational Solid Mechanics: Describes a
study where computational results from Sculpt meshes are compared with Sweep meshes using
the Sierra Solid Mechanics Tool as a comparison.
 A Template-Based Approach for Parallel Hexahedral Two-Refinement: Describes the
refinement procedures used for generating adapted Sculpt meshes.

414

http://www.imr.sandia.gov/papers/imr20/Owen.pdf
http://www.imr.sandia.gov/papers/imr21/RNOwen.pdf
http://www.imr.sandia.gov/papers/imr22/IMR22_3_Owen.pdf
http://www.imr.sandia.gov/papers/imr24/03_IMR24_Owen.pdf

Cubit 15.1 User Documentation

pCamal
pCamal is an application written and maintained by the Cubit development team. It is designed
to work in a distributed computing environment to generate 3D hex elements of a sweep mesh. It
first uses the serial Cubit application to generate the 2D quad elements. These elements are
written to a file that can then be used by pCamal to generate the most time consuming and
memory intensive portion of the mesh: the 3D hex elements. The following describes how to set
up the necessary inputs to pCamal using Cubit's sweeping command.
To set up for pCamal, first use the parallel meshing setting:

Set Parallel Meshing {on|OFF}
You would then use the sweep scheme and mesh your 3D volumes as normal. When Cubit
performs the mesh operation on a volume that has a sweep scheme applied when the parallel
meshing option is ON, only the surface entities will be meshed, leaving the hex elements for
pCamal. Surfaces will be meshed with appropriate source, target and linking surface
designations.

Exporting a Parallel Mesh for pCAMAL
The following command can be used for exporting a mesh in exodus format for use with
pCAMAL

Export Parallel "<filename>" [Block <id_list>] [Overwrite] [Processor
<number>]

The options are the same as those for the export genesis command except for the addition of the
processor option.
The processor option allows the user to specify the number of processors that will be used to
mesh the volume with the pCAMAL option. This same option exists in the pCAMAL application
and is more often used there since the number of available processors is known then rather than
when the output file is created in Cubit.
If the processor option is given, Cubit attempts to balance the number of sweepable volumes to
run on N processors by converting many-to-one sweeps to one-to-one sweeps, subdividing the
sweep volume along its sweep direction, or partitioning the source surface of a one-to-one sweep
if the number of source quads is much larger than the number of layers.
To determine if you are currently in parallel meshing mode you may list the current status using
the List Parallel command.

List Parallel Meshing
Note: pCamal is not currently distributed with the current release of Cubit. Contact the Cubit
developers if you are interested in obtaining a copy of the executable for linux operating systems.

Parallel Meshing
Cubit has been designed as a serial application, using a single CPU to generate its meshes. In
some cases, where memory or time constraints are critical, parallel meshing may be necessary.
Cubit currently provides a few separate applications designed to run in parallel either on a
desktop or on massively parallel cluster machines. In these cases, Cubit can be used as a pre-
processor to manipulate geometry and set up for meshing, however the actual meshing procedure
is performed as a separate process or on another machine. The following two parallel meshing
applications are available:

415

Mesh Generation

• pCamal
• Sculpt

A separate application for parallel refinement is also available:

• STK_Adapt

Free
Radialmesh
Summary: Creates a free cylindrical mesh with precise node locations based on input radii,
angles, and offsets, then creates mesh-based geometry to fit the mesh.
Syntax:

Create Radialmesh \
 NumZ <val> [Span <val>] \
 Zblock 1 [<offset val>] \
 {Interval|Bias|Fraction|First Size} <val> \
 [{Interval|Bias|Fraction|Last Size} <val>] \
 Zblock 2 [<offset val>] \
 {Interval|Bias|Fraction|First Size} <val> \
 [{Interval|Bias|Fraction|Last Size} <val>] \
 ... NumZ \

 NumR <val> {Trisection|Initial Radius<val>} \
 Rblock 1 <offset radius val> \
 {Interval|Bias|Fraction|First Size} <val> \
 [{Interval|Bias|Fraction|Last Size} <val>] \
 Rblock 2 <offset radius val> \
 {Interval|Bias|Fraction|First Size} <val> \
 [{Interval|Bias|Fraction|Last Size} <val>] \
 ... NumR \

 NumA <val> [Full360] [Span <val>] \
 Ablock 1 [<offset angle val>] \
 {Interval|Bias|Fraction|First Angle} <val> \
 [{Interval|Bias|Fraction|Last Angle} <val>] \
 Ablock 2 [<offset angle val>] \
 {Interval|Bias|Fraction|First Angle} <val> \
 [{Interval|Bias|Fraction|Last Angle} <val>] \
 ... NumA

Discussion:
The purpose of the radialmesh command is to create a cylindrical mesh with precise node
locations. Unlike all other meshing commands which place nodes using smoothing algorithms to
optimize element quality, node locations for the radialmesh command are calculated based on the
input radii, angles, and offsets. In addition, the radialmesh command does not mesh existing

416

Cubit 15.1 User Documentation

geometry. Rather, it creates a mesh based on the input parameters, after which a mesh-based
geometry is created to fit the free mesh.
The radialmesh command requires input for the 3 coordinate directions (Z, radial, angular). The
number of blocks in each direction is specified with the numZ, numR, and numA values in the
command. Each block forms a new volume in the final mesh. All bodies in the mesh are merged
to form a conformal mesh between blocks.
The Radialmesh command can create meshes which span any angle greater than 0.0 up to 360
degrees. In addition, meshes can model either a tri-section (see Figure 1), or a non-trisection
mesh (see Figure 2).

Figure 1. Tri-section Radialmesh

Figure 2. Non-tri-section Radialmesh

The command to generate the mesh in Figure 1 is:

create radialmesh \
 numZ 1 zblock 1 1 interval 5 \
 numR 3 trisection rblock 1 2 interval 5 \
 rblock 2 3 interval 5 \
 rblock 3 4 interval 5 \
 numA 1 span 90 ablock 1 interval 10

The command to generate the mesh in Figure 2 is:

create radialmesh \
 numZ 1 zblock 1 1 interval 5 \

417

Mesh Generation

 numR 1 initial radius 3 rblock 1 4 interval 5 \
 numA 1 span 90 ablock 1 interval 10

A mesh can span an entire 360 degrees by using the “full360” keyword. For example, the mesh
in Figure 3 was generated with the following command:

create radialmesh numZ 1 zblock 1 1 interval 5 \
 numR 3 trisection rblock 1 1 interval 5 \
 rblock 2 2 interval 5 \
 rblock 3 3 interval 5 \
 numA 5 full360 span ablock 1 interval 5 \
 ablock 2 interval 5 \
 ablock 3 interval 5 \
 ablock 4 interval 5

Figure 4. Radialmesh using full360 option

After the mesh is generated, the radialmesh command fits the mesh with mesh based geometry.
The surfaces created to fit the mesh are given special names according to their location on the
geometry. To see the names of the surfaces, issue the command label surface name after
creating a radialmesh. Also, if you create a tri-section mesh, the edges on the center axis are
given names. To see these names issue the command label curve name after creating a trisection
Radialmesh.
The user can control the number of intervals and the spacing of these intervals using the optional
parameters in each rblock, zblock and ablock. There are 11 combinations that these can be
combined as listed below:

• Interval Only- Example: "interval 5." The block will be meshed with 5 equally spaced
intervals.

418

Cubit 15.1 User Documentation

• First Size Only- Example: “first size 2.5.” The block will be meshed with intervals of
approximately 2.5 in length. The total number of intervals is internally calculated and
depends on the overall block length.

• Fraction Only- Example: “fraction 0.3333.” The block will be meshed with intervals
approximately 0.3333*overall block length.

• Interval and Bias- Example: “interval 5 bias 1.5.” There will be 5 intervals on the block,
which each interval being 1.5 times the previous one. The length of each interval is
calculated internally.

• Interval and Fraction- Example: “interval 5 fraction 0.25.” There will be 5 intervals on
the block, the first being .25 of the length of the block with the remaining decreasing in
size.

• Interval and First Size- Example: “interval 5 first size 0.2.” There will be 5 intervals on
the block, the first being 0.2 in length. The remaining intervals will increase or decrease
to fill the blocks length.

• First Size and Last Size- Example: “first size 0.2 last size 0.4.” The first interval will be
0.2 in length. The last interval will be 0.4 in length. The total number of intervals is
internally calculated to allow for transition between the 2 specified sizes.

• First Size and Bias- Example “first size 0.2 bias 0.85.” The first interval will be 0.2 in
length and the remaining intervals will scale by a factor of 0.85 from one to the next until
the block is filled. The total number of intervals is internally calculated and depends on
the overall block length.

• Fraction and Bias- Example “fraction 0.25 bias 1.25.” The first interval will be 0.25 of
the overall block length and the remaining intervals will scale by a factor of 1.25 from
one to the next until the block is filled. The total number of intervals is internally
calculated and depends on the overall block length.

• Interval and Last Size- Example: “last size 1.5 interval 5.” The last interval will be 1.5
in length. The remaining intervals will scale up or down to fit 5 intervals in the block.

• Last Size and Bias- Example: “last size 2.0 bias 1.1.” The last interval will be 2.0 in
length. The remaining intervals will scale by 1.1 until the block is filled. The total
number of intervals is internally calculated and depends on the overall block length.

Figure 5 shows an example of a bias spaced mesh with the following command:
create radialmesh numZ 2 zblock 1 1 first size 0.2 \
 zblock 2 10 first size 0.2 last size 1.0 \
 numR 3 trisection rblock 1 1 interval 5 \
 rblock 2 2 first size .25 \
 rblock 3 5 first size .25 bias 2.0 \
 numA 1 span 90 ablock 1 interval 5

419

Mesh Generation

Figure 5. Radialmesh created with biased spacing

Mesh Quality Assessment
Mesh Quality Assessment

• Metrics for Edge Elements
• Metrics for Triangular Elements

420

Cubit 15.1 User Documentation

• Metrics for Quadrilateral Elements
• Metrics for Tetrahedral Elements
• Metrics for Hexahedral Elements
• Mesh Quality Command Syntax
• Mesh Quality Example Output
• Automatic Mesh Quality Assessment
• Controlling Mesh Quality
• Coincident Node Check
• Mesh Topology Check
• Measuring Number of Tets Through the Thickness

The `quality' of a mesh can be assessed using several element quality metrics available in
CUBIT. Information about the CUBIT quality metrics can be obtained from the command

Quality Describe {Hex | Hexahedral | Tet | Tetrahedral | Face | Quad |
Quadrilateral | Tri | Triangular}

which gives data on the quality metrics for each of the above element types. The following pages
discuss the mesh quality assessment capabilities in CUBIT.

Automatic Mesh Quality Assessment
CUBIT performs an automatic calculation of mesh quality which warns users when a particular
meshing scheme or other meshing operation has created a mesh whose quality may be
inadequate. These warnings are supplied in case the user forgets to manually check the mesh
quality.
CUBIT automatically calculates the SHEAR quality of hexahedral and quadrilateral elements
and the SHAPE quality of tetrahedral and triangular elements. The SHEAR metric measures
element skew and ranges between zero and one with a value of zero signifying a non-convex
element, and a value of one being a perfect, right-angled element. The SHAPE metric also ranges
between zero and one with a value of zero signifying a degenerate or inverted element and a
value of one signifying a perfect, equilateral element. The quality of the mesh is then defined to
be the minimum value of the shear metric for hexahedral and quadrilateral elements and the
shape metric for tetrahedral and triangular elements, with the minimum taken over the elements
in the mesh.
If the quality of the mesh is zero, the code reports "ERROR: Negative Jacobian Element
Generated" to the command window. By default, if the quality of the mesh is positive but less
than a certain threshold, the code reports "WARNING: Poorly-Shaped Element Generated" to the
command window. Also reported in this case is the ID of the offending element, the value of its
shear (or shape) metric, and the value of the threshold to which it was compared. The default
value of the threshold parameter is 0.2. Users may change the threshold value by issuing the
command

Set Quality Threshold <double=0.2>
The user may also change what type of message is printed in the case of a poor quality, but
positive Jacobian mesh. This message can be printed as a warning (the default) or an error or can
be turned off completely using the command

Set Print Quality { WARNING|Error|Off }

421

Mesh Generation

The above commands only affect the message generated for meshes with a quality greater than
zero and less than the given threshold value; an error will always be generated for meshes with a
quality of zero (that is, for meshes containing negative Jacobian elements).

Coincident Node Check
The ability to check for coincident nodes in the model is available in CUBIT. It uses an efficient
octal hash tree to make the comparisons. The command is:

Quality Check Coincident Node [In]
[Group|Body|Volume|Surface|Curve|Vertex <id_range>] [Merge [Delete]] [
HIGHLIGHT|Draw [color <number>]] [List] [Into Group [names|id]]

If no entity list is given, the command works on all the nodes in the model. If an entity list is
given, then it compares the nodes on those entities with the rest of the nodes in the model. By
default the command highlights the coincident nodes in the graphics window and lists the total
number of coincident nodes found. You can also have it clear the graphics and draw the nodes,
and/or list the coincident node ids. Optionally, the coincident nodes found can be placed in a
group.
If the model being operated on is from an imported universal file (i.e., no geometry exists in the
model), you can merge the coincident nodes with the merge option. In this case delete allows you
to delete the extra nodes (recommended). If you do not delete them they are placed into an output
group.
You can control the tolerance used to check between nodes with the following setting (default =
1e-8):

set Node Coincident Tolerance [<value>]

Controlling Mesh Quality
If the quality of a model after meshing isn't acceptable, there are two options available to
improve that quality. The user can ask for more smoothing, or delete the mesh and start over.
There are some commands that the user can invoke before meshing the model which can help to
improve mesh quality. Some of them are discussed here.
Skew Control
The philosophy behind the skew control algorithm is one of subdividing surfaces into blocky,
four-sided areas which can be easily mapped. The goal of this subdivide-and-conquer routine is
to lessen the skew that a mesh exhibits on submapped regions. By controlling the skew on these
surfaces, the mesh of the underlying volume will also demonstrate less skew.
The commands for skew control are:

Control Skew Surface <surface_id_range> [Individual]
Delete Skew Control Surface {surface_list} [Propagate]

The keyword Individual is deprecated. Its purpose is to specify that surfaces should be
processed without regards to the other surfaces in the given list. This is not necessary, and could
lead to problems with the final mesh. When the command is entered, the algorithm immediately
processes the surfaces, inserting vertices and setting interval constraints on the resulting
subdivided curves. In this way, the mesh is more constrained in its generation, and the resulting
skew on the model can be lessened. The only surfaces that can utilize this algorithm are those

422

Cubit 15.1 User Documentation

that lend themselves to a structured meshing scheme, although future releases might lessen this
restriction.
The user also has the ability to delete the changes that the skew control algorithm has made. This
is done by using the delete skew control command.
When the user requests the deletion of the skew control changes on a given surface, every curve
on that surface will have the skew control changes deleted, even if a given curve is shared with
another surface on which skew control was performed. If the user wishes to propagate the
deletion of skew control to all surfaces which are affected by one (or more) particular surfaces,
the keyword propagate should be used.
Propagate Curve Bias
When a bias mesh scheme is applied to a curve, this sometimes creates skewing of the surface
mesh that is attached. Sometimes the user will want to ensure that the same bias is applied to
curves on attached surfaces so that this skewing is minimized. The command for doing this is:

Propagate Curve Bias [Surface|Volume|Body|Group <id_list>]
This command will search out all simply mappable surfaces in the input list, find which curves
of those have a bias scheme set, and will propagate that bias across the mappable surfaces.
Adjust Boundary

Adjust Boundary {Surface|Group} <id_range> [Angle <double>]
This command can be used to improve element quality for mapped or submapped surface
meshes. Often, due to vertex positions, the curve meshing for a surface will lead to a poor quality
surface mesh. This command can be used to adjust the curve meshes in an attempt to generate a
better quality surface mesh. The command works by looking at the angle the mesh edges leave
the boundary. In a perfect mapped or submapped mesh, the mesh edges will be orthogonal to the
boundary, or will go off at 90 degree angles. The adjust boundary command looks at the
deviation of the mesh edges, and if it is greater than the prescribed angle deviation, it will move
the node location such that it is 90 degrees, if possible. The deviation angle by default is 5
degrees and can be changed by the user through the [Angle <double>] option in the command.
In order to modify the curve meshes, the surface meshes are first deleted then later remeshed
after the curve meshes have been repositioned and fixed. This command assumes that the
volumes attached to the surface have not been meshed, if they have been, the command will
return an error message. It should be noted that this command, while useful, may not always
work due to interval constraints (i.e., you may need to change the intervals on the surface), or if
the surfaces are not very blocky.

Metrics for Edge Elements
The metrics used for edge elements in CUBIT are summarized in the following table:

Function Name Dimension Full Range Acceptable Range

Length L^0 0 to inf None

Quality Metric Definitions:
Length: Distance between beginning and ending nodes of an edge

423

Mesh Generation

Comments on Algebraic Quality Measures

1. The quality command for edge length only accepts edge elements as input; it does not
accept geometry as input.

2. The length metric is currently only available for edge elements. Edge elements are
created by default when curves and surfaces are meshed. Edge elements are not created
for interior volume elements.

Metrics for Hexahedral Elements
The metrics used for hexahedral elements in CUBIT are summarized in the following table:

Function
Name Dimension Full

Range
Acceptable

Range Reference

Aspect Ratio L^0 1 to inf 1 to 4 1

Skew L^0 0 to 1 0 to 0.5 1

Taper L^0 0 to +inf 0 to 0.4 1

Element
Volume L^3 -inf to inf None 1

Stretch L^0 0 to 1 0.25 to 1 2

Diagonal Ratio L^0 0 to 1 0.65 to 1 3

Dimension L^1 0 to inf None 1

Condition No. L^0 1 to inf 1 to 8 5

Jacobian L^3 -inf to inf None 5

Scaled
Jacobian L^0 -1 to +1 0.5 to 1 5

Shear L^0 0 to 1 0.3 to 1 5

Shape L^0 0 to 1 0.3 to 1 5

Relative Size L^0 0 to 1 0.5 to 1 5

Shear & Size L^0 0 to 1 0.2 to 1 5

424

Cubit 15.1 User Documentation

Shape & Size L^0 0 to 1 0.2 to 1 5

Distortion L^0 0 to 1 0.6 to 1 6

Hexahedral Quality Definitions
Aspect Ratio: Maximum edge length ratios at hex center.
Skew: Maximum |cos A| where A is the angle between edges at hex center.
Taper: Maximum ratio of lengths derived from opposite edges.
Element Volume: Jacobian at hex center.
Stretch: Sqrt(3) * minimum edge length / maximum diagonal length.
Diagonal Ratio: Minimum diagonal length / maximum diagonal length.
Dimension: Pronto-specific characteristic length for stable time step calculation. Char_length =
Volume / 2 grad Volume.
Condition No. Maximum condition number of the Jacobian matrix at 8 corners.
Jacobian: Minimum pointwise volume of local map at 8 corners & center of hex.
Scaled Jacobian: Minimum Jacobian divided by the lengths of the 3 edge vectors.
Shear: 3/Mean Ratio of Jacobian Skew Matrix
Shape: 3/Mean Ratio of weighted Jacobian Matrix
Relative Size: Min(J, 1/J), where J is the determinant of weighted Jacobian matrix
Shear & Size: Product of Shear and Size Metrics
Shape & Size: Product of Shape and Size Metrics
Distortion: {min(|J|)/actual volume}*parent volume, parent volume = 8 for hex
References for Hexahedral Quality Measures

1. (Taylor, 89)
2. FIMESH code
3. Unknown
4. (Knupp, 00)
5. P. Knupp, Algebraic Mesh Quality Metrics for Unstructured

Initial Meshes, to appear in Finite Elements for Design
and Analysis.

6. SDRC/IDEAS Simulation: Finite Element Modeling - User's Guide

Mesh Quality Example Output
The typical summary output from the command quality surface 24 is shown in Figure 1. Figure
2 shows the corresponding histogram. The colored element display resulting from the command
quality surface 1 draw `Skew' is shown Figure 3. A color legend is also printed to the console
as shown in Figure 4.

425

Mesh Generation

Figure 1. Typical Summary for a Quality Command

Figure 2. Histogram output from command "Quality Surface 24 Draw Histogram"

426

Cubit 15.1 User Documentation

Figure 3. Graphical output of quality metric for command "Quality Surface 24 Skew Draw

Mesh"

Figure 4. Legend for command "Quality Surface 1 Skew Draw Mesh"

Mesh Quality Command Syntax
The base command to view the quality of a mesh is the following:

Quality {geom_and_mesh_list} [metric name] [quality options] [filter
options]

Where the list contains surfaces and volumes and groups that have been meshed with faces,
triangles, hexes, and tetrahedra; the list can also specify individual mesh entities or ranges of
mesh entities.
If a specific metric name is given, only that metric or metrics are computed for the specified
entities. Note that the metric given must be one which applies to the given entities. To see a list

427

Mesh Generation

of quality metrics for individual entities see the Mesh Quality Assessment section and select the
desired entity type: hexahedral, tetrahedral, quadrilateral, triangle. or edge
The metric name can also be more general than a specific metric. Four generalized options for
metric name can be used:
Allmetrics: All of the metrics corresponding to the element type of the geom_and_mesh_list will
be computed and reported.
Algebraic: All algebraic metrics corresponding to the element type of the geom_and_mesh_list
will be computed and reported (e.g., Shape, Shear, Relative Size).
Robinson: All Robinson metrics corresponding to the element type of the geom_and_mesh_list
will be computed and reported (e.g., Aspect Ratio, Skew, Taper).
Traditional: All the traditional Cubit metrics corresponding to the element type of the
geom_and_mesh_list will be computed and reported (e.g., area, volume, angle, stretch,
dimension).
If no metric name is supplied, the default metric is "Shape".
Quality Options
The quality options are:

Scope
[Global | Individual]

If the user specifies individual, one quality summary is generated for each entity specified on the
command line. If the user specifies global, or specifies neither, then one quality summary is
generated for each mesh element type.

Draw
[Draw [Histogram] [Mesh] [Monochrome] [Add]]

If the user specifies draw histogram, then histograms are drawn in a separate graphics window.
The window contains one histogram for each quality metric. If the user specifies draw mesh,
then the mesh elements are drawn in the default graphics window. A color-coded scale will
appear in the graphics window. The histogram and mesh graphics are color coded by quality: a
small metric value corresponds to red, a large metric value to blue and in-between values
according to the rainbow. You can grab the side of color bar and resize it. The text gets smaller
as the color bar width decreases. You can also grab in the middle of the color bar and move it
around. It can be repositioned to the bottom or top and it will automatically change orientations.
See Figure 1.

428

Cubit 15.1 User Documentation

Figure 1. Quality Scale

If monochrome is specified, then the graphics are not color-coded. If add is specified, then the
current display is not cleared before drawing the mesh elements.

List
[List [Detail] [Id] [Verbose Errors]] [Geometry]

If the user specifies List, then the quality data is summarized in text form. List Detail lists the
mesh elements by ascending quality metric. List Id lists the ids of the mesh elements. If Verbose
Errors is specified, then details about unacceptable quality elements are printed out above the
summaries. If Geometry is specified, then a list of the geometric entities that own the elements
will be printed.

Filter
There are several options available to filter the output of the quality command, using the
following filter options :

[High <value>] [Low <value>]
Discards elements with metric values above or below value; either or both can be used to get
elements above or below a specified value or in a specified range.

429

Mesh Generation

[Top <number>] [Bottom <number>]
Keeps only number elements with the highest or lowest metric values. For example, " Quality
hex all aspect ratio top 10 " would request the elements with the 10 highest values of the aspect
ratio metric.

Metrics for Quadrilateral Elements
The metrics used for quadrilateral elements in CUBIT are summarized in the following table:

Function
Name Dimension Full

Range
Acceptable

Range Reference

Aspect Ratio L^0 1 to inf 1 to 4 1

Skew L^0 0 to 1 0 to 0.5 1

Taper L^0 0 to +inf 0 to 0.7 1

Warpage L^0 0 to 1 0.9 to 1.0 NEW

Element Area L^2 -inf to inf None 1

Stretch L^0 0 to 1 0.25 to 1 2

Minimum
Angle degrees 0 to 90 45 to 90 3

Maximum
Angle degrees 90 to 360 90 to 135 3

Condition No. L^0 1 to inf 1 to 4 4

Jacobian L^2 -inf to inf None 4

Scaled
Jacobian L^0 -1 to +1 0.5 to 1 4

Shear L^0 0 to 1 0.3 to 1 5

Shape L^0 0 to 1 0.3 to 1 5

Relative Size L^0 0 to 1 0.3 to 1 5

Shear & Size L^0 0 to 1 0.2 to 1 5

Shape & Size L^0 0 to 1 0.2 to 1 5

430

Cubit 15.1 User Documentation

Distortion L^2 -1 to 1 0.6 to 1 6

Quadrilateral Quality Definitions
Aspect Ratio: Maximum edge length ratios at quad center
Skew: Maximum |cos A| where A is the angle between edges at quad center
Taper: Maximum ratio of lengths derived from opposite edges
Warpage: Cosine of Minimum Dihedral Angle formed by Planes Intersecting in Diagonals
Element Area: Jacobian at quad center
Stretch: Sqrt(2) * minimum edge length / maximum diagonal length
Minimum Angle: Smallest included quad angle (degrees).
Maximum Angle: Largest included quad angle (degrees).
Condition No. Maximum condition number of the Jacobian matrix at 4 corners
Jacobian: Minimum pointwise volume of local map at 4 corners & center of quad
Scaled Jacobian: Minimum Jacobian divided by the lengths of the 2 edge vectors
Shear: 2/Condition number of Jacobian Skew matrix
Shape: 2/Condition number of weighted Jacobian matrix
Relative Size: Min(J, 1/J), where J is determinant of weighted Jacobian matrix
Shear and Size: Product of Shear and Relative Size
Shape and Size: Product of Shape and Relative Size
Distortion: {min(|J|)/actual area}*parent area, parent area = 4 for quad
Comments on Algebraic Quality Measures
Shape, Relative Size, Shape & Size, and Shear are algebraic quality metrics that apply to
quadrilateral elements. Cubit encourages the use of these metrics since they have certain nice
properties (see reference 5 below). The metrics are referenced to a square-shaped quadrilateral
element, thus deviations from a square are measured in various ways.
Shape measures how far skew and aspect ratio in the element deviates from the reference
element.
Relative size measures the size of the element vs. the size of reference element. If the element is
twice or one-half the size of the reference element, the relative size is one-half. The reference
element for the Relative Size metric is a square whose area is determined by the average area of
all the quadrilaterals on the surface mesh under assessment
Shape and size metric measures how both the shape and relative size of the element deviate from
that of the reference element.
The SHEAR metric is based on the condition number of the skew matrix. SHEAR is really just
an algebraic skew metric but, since the word skew is already used in the list of quad quality
metrics, Cubit has chosen to use the word 'shear.'
Shear = 1 if and only if quadrilateral is a rectangle.
The Robinson 'skew' metric equals the ideal (zero) if the quad is a rectangle. It also attains the
ideal if the quad is a trapezoid, a kite, or even triangular!
References for Quadrilateral Quality Measures

1. (Robinson, 87)
2. FIMESH code.
3. Unknown.
4. (Knupp, 00)

431

Mesh Generation

5. P. Knupp, Algebraic Mesh Quality Metrics for Unstructured Initial Meshes, submitted for
publication.

6. 6. SDRC/IDEAS Simulation: Finite Element Modeling--User's Guide

Details on Robinson Metrics for Quadrilaterals
The quadrilateral element quality metrics that are calculated are aspect ratio, skew, taper,
element area, and stretch. The calculations are based on metrics described in (Robinson, 87). An
illustration of the shape parameters is shown in Figure 1, below. The stretch metric is calculated
by dividing the length of the shortest element edge divided by the length of the longest element
diagonal.

Figure 1. Illustration of Quadrilateral Shape Parameters (Quality Metrics)

Metrics for Tetrahedral Elements
The metrics used for tetrahedral elements in CUBIT are summarized in the following table:

Function Name Dimension Full
Range

Acceptable
Range Reference

Aspect Ratio
Beta L^0 1 to inf 1 to 3 1

Aspect Ratio
Gamma L^0 1 to inf 1 to 3 1

Element Volume L^3 -inf to inf None 1

Condition No L^0 1 to inf 1 to 3 2

Jacobian L^3 -inf to inf None 2

Scaled Jacobian L^0 -1 to 1 0.2 to 1 2

Shape L^0 0 to 1 0.2 to 1 3

Relative Size L^0 0 to 1 0.2 to 1 3

432

Cubit 15.1 User Documentation

Shape and Size L^0 0 to 1 0.2 to 1 3

Distortion L^0 -1 to 1 0.6 to 1 4

Tetrahedral Quality Definitions
Aspect Ratio Beta: CR / (3.0 * IR) where CR = circumsphere radius, IR = inscribed sphere
radius
Aspect Ratio Gamma: Srms**3 / (8.479670*V) where Srms = sqrt(Sum(Si**2)/6), Si = edge
length
Element Volume: (1/6) * Jacobian at corner node
Condition No.: Condition number of the Jacobian matrix at any corner
Jacobian: Minimum pointwise volume at any corner
Scaled Jacobian: Minimum Jacobian divided by the lengths of 3 edge vectors
Shape: 3/Mean Ratio of weighted Jacobian Matrix
Relative Size: Min(J, 1/J), where J is the determinant of the weighted Jacobian matrix
Shape & Size: Product of Shape and Relative Size Metrics
Distortion: {min(|J|)/actual volume}*parent volume, parent volume = 1/6 for tet
For tetra10 elements, the distortion metric can be used in conjunction with the shape metric to
determine whether the mid-edge nodes have caused negative Jacobians in the element. The shape
metric only considers the linear (parent) element. If a tetra10 has a non-positive shape value then
the element has areas of negative Jacobians. However, for elements with a positive shape metric
value, if the distortion value is non-positive then the element contains negative Jacobians due to
the mid-side node positions.
Note that, for tetrahedral elements, there are several definitions of the term "aspect ratio" used in
literature and in software packages. Please be aware that the various definitions will not
necessarily give the same or even comparable results.
References for Tetrahedral Quality Measures

1. (Parthasarathy, 93)
2. (Knupp, 00)
3. P. Knupp, Algebraic Mesh Quality Metrics for Unstructured Initial Meshes, to appear in

Finite Elements for Design
and Analysis.

4. SDRC/IDEAS Simulation: Finite Element Modeling - User's Guide

Mesh Topology Check
The ability to check for non-manifold topology among mesh entities is given with the following
command.

Quality Check Topology [[Hex <range>] [Tet <range>] [Face <range>] [Tri
<range>]]

If no entity list is given, it will check the entire model. Multiple element types are also allowed.
The command checks for non-manifold boundaries (edges) in the element set entered. For quads
and tris the command lists and highlights all edges that have more than two tris or faces
connected.

433

Mesh Generation

Figure 1. Topology check for quads and tris

For hexes and tets it looks for edges with two or more elements connected that do not share
common faces.

Figure 2. Topology check for hexes and tets

Additional topology checks fall into three categories:

• - model edges
• - coincident nodes
• - coincident quadrilateral(faces) or triangles

Model Edge Check
The model edge check will find edges with adjoining quadrilaterals or triangles whose angles
between the surface normals exceed a specified value. The default angle is 40 degrees.
The following commands check for model edges:

Topology check model edge {group|volume|surface|curve} <id_range> [angle
<value>] DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT
GROUP[{<name>|{<id>}|nogroup]
Topology check model edge {block|sideset|nodeset} <id_range> [angle <value>]
DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT
GROUP[{<name>|{<id>}|nogroup]

434

Cubit 15.1 User Documentation

Topology check model edge {hex|tet|face|tri|edge} <id_range> [angle <value>]
DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT
GROUP[{<name>|{<id>}|nogroup]

The optional angle parameter allows the user to specify a custom angle value against which the
check will be performed. The default angle is 40 degrees.
By default, the command will draw the model edges.
By default, very little information is output to the command line. The optional verbose
parameter will output a list of the flagged model edges.
By default, the model edges will be written to the group ‘model_edges’. Optionally, the user
may specify no grouping, or the user may specify the name or id of an existing group into which
the model edges will be written. The contents of the existing group will be replaced by the model
edges.
Interface Checks
Cubit will verify the interfaces between sections of a model. The existence of coincident nodes,
for example, may not necessarily be an error in the model if the nodes are in sliding contact or
are constrained by some type of multi-point constraint. The existence of coincident
quadrilaterals or triangles may indicate that the model is not correctly joined.
The following commands check for coincident nodes.

Topology check coincident node {group|volume|surface|curve|vertex} <id_range>
[tolerance <value>] DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT
GROUP[{<name>|{<id>}|nogroup]
Topology check coincident node {block|sideset|nodeset} <id_range> [tolerance
<value>] DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT
GROUP[{<name>|{<id>}|nogroup]
Topology check coincident node {hex|tet|face|tri|edge|node} <id_range> [tolerance
<value>] DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT
GROUP[{<name>|{<id>}|nogroup]

The optional tolerance parameter allows the user to specify a custom tolerance value against
which the check will be performed. The default tolerance is 1.0 e-6.
The default group name is ‘coincident_nodes.’
All other options behave similarly to those described above under Model Edge Check.
The following commands check for coincident quadrilaterals.

Topology check coincident quad {group|volume|surface} <id_range> [tolerance
<value>] DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT
GROUP[{<name>|{<id>}|nogroup]
Topology check coincident quad {block|sideset|nodeset} <id_range> [tolerance
<value>] DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT
GROUP[{<name>|{<id>}|nogroup]
Topology check coincident quad {hex|tet|face} <id_range> [tolerance <value>]
DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT
GROUP[{<name>|{<id>}|nogroup]

The default group name is ‘coincident_quads.’
All other optional parameters behave similarly to those described above.
The following commands check for coincident triangles.

435

Mesh Generation

Topology check coincident tri {group|volume|surface} <id_range> [tolerance
<value>] DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT
GROUP[{<name>|{<id>}|nogroup]
Topology check coincident tri {block|sideset|nodeset} <id_range> [tolerance <value>]
DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT
GROUP[{<name>|{<id>}|nogroup]
Topology check coincident tri {hex|tet|face|tri} <id_range> [tolerance <value>]
DRAW|nodraw|highlight] [BRIEF|verbose] [RESULT
GROUP[{<name>|{<id>}|nogroup]

The default group name is ‘coincident_tris.’
All other optional parameters behave similarly to those described above.

Metrics for Triangular Elements
The metrics used for triangular elements in CUBIT are summarized in the following table:

Function
Name Dimension Full

Range
Acceptable

Range Reference

Element Area L^2 0 to inf None 1

Maximum
Angle degrees 60 to 180 60 to 90 1

Minimum
Angle degrees 0 to 60 30 to 60 1

Condition No L^0 1 to inf 1 to 1.3 2

Scaled
Jacobian L^0 -1 to 1 0.2 to 1 2

Relative Size L^0 0 to 1 0.25 to 1 3

Shape L^0 0 to 1 0.25 to 1 3

Shape and
Size L^0 0 to 1 0.25 to 1 3

Distortion L^2 -1 to 1 0.6 to 1 4

Approximate Triangular Quality Definitions:
Element Area: (1/2) * Jacobian at corner node
Maximum Angle: Maximum included angle in triangle
Minimum Angle: Minimum included angle in triangle
Condition No. Condition number of the Jacobian matrix
Scaled Jacobian: Minimum Jacobian divided by the lengths of 2 edge vectors
Relative Size: Min(J, 1/J), where J is determinant of weighted Jacobian matrix
Shape: 2/Condition number of weighted Jacobian matrix
Shape & Size: Product of Shape and Relative Size
Distortion: {min(|J|)/actual area}*parent area, parent area = 1/2 for triangular element

436

Cubit 15.1 User Documentation

Comments on Algebraic Quality Measures
Relative Size, Shape, and Shape & Size are algebraic metrics, which have well behaved
properties. Cubit encourages the use of these metrics over other metrics. These metrics are
referenced to an ideal element which, in the case of triangular elements, is an equilateral triangle.
Thus deviations from an equilateral triangle are measured in various ways by the algebraic
metrics.
Relative size measures the size of the element vs. the size of reference element. If the element is
twice or one-half the size of the reference element, the relative size is one-half. By default, the
size of the reference element is the average size of all the elements that the quality command is
currently evaluating.
The shape and size metric measures how both the shape and relative size of the element deviate
from that of the reference element.
References for Triangular Quality Measures

1. Traditional.
2. Knupp, 2000.
3. P. Knupp, Algebraic Mesh Quality Metrics for Unstructured Initial Meshes, submitted for

publication.
4. SDRC/IDEAS Simulation: Finite Element Modeling--User's Guide

Mesh Modification
Mesh Modification

• Mesh Smoothing
• Mesh Refinement
• Mesh Scaling
• Mesh Pillowing
• Mesh Coarsening
• Mesh Cleanup
• Node and Nodeset Repositioning
• Collapsing Mesh Edges
• Align Mesh
• Creating and Merging Mesh Elements
• Matching Tetrahedral Meshes
• Remeshing

After meshing is completed, it may be desirable to change features of the mesh without
remeshing the whole volume. Mesh modification methods include tools for improving mesh
quality, repositioning mesh elements, or changing mesh density. These methods can be applied
on the whole model, or on small sections of the model without requiring remeshing the
geometry, and without modifying the underlying geometry.

437

Mesh Generation

Mesh Smoothing
Mesh Smoothing

• Centroid Area Pull
• Equipotential
• Laplacian
• Smart Laplacian
• Condition Number
• Mean Ratio
• Winslow
• Untangle
• Edge Length

Related Topics

• Smoothing mesh-based geometry
• Smoothing free meshes

After generating the mesh, it is sometimes necessary to modify that mesh, either by changing the
positions of the nodes or by removing the mesh altogether. CUBIT contains a variety of mesh
smoothing algorithms for this purpose. Node positions can also be fixed, either by specific node
or by geometry entity, to restrict the application of smoothing to non-fixed nodes.
Mesh smoothing in CUBIT operates in a similar fashion to mesh generation, i.e. it is a two-step
process whereby a smooth scheme is chosen and set, then a smooth command performs the
actual smoothing. Like meshing algorithms, there is a variety of smoothing algorithms available,
some of which apply to multiple geometry entity types and some which only apply to one
specific type (these algorithms are described below.) To smooth the mesh on a geometry entity,
the user must perform the following steps:

1. Set the smooth scheme for the object using the following command:

{Curve|Surface|Volume} <range> Smooth Scheme <scheme>
where <scheme> is any acceptable smooth scheme described in this section. Also
set any scheme-specific information, using the smooth scheme setting commands
described below.

2. Smooth the object, using the command:

Smooth Curve <range>
Smooth Surface <range> [Global]
Smooth {Body|Volume|Group} <range>

Groups of entities may be smoothed, by smoothing a group or a body.
If a Body is specified, the volumes in that Body are smoothed. If a Group is specified, only the
volume meshes within these groups are smoothed - no smoothing of the surface meshes is
performed.

438

Cubit 15.1 User Documentation

Global Smoothing
When smoothing a set of surfaces, the keyword global can be added to the smooth command
such as

Smooth Surface <range> [Global]
If the smoothing algorithm for two neighboring surfaces are both allowed to move boundary
nodes, then appending the "global" keyword will often result in a higher quality mesh near the
curve(s) shared by those two surfaces.

Focused Smoothing on Groups of Mesh Entities
Meshed entities such as hexes or tris can be smoothed individually or in groups by specifying the
entities in a list.

Smooth {Hex|Tet} <range>[Scheme {Equipotential|Laplacian|Random}]
Smooth {Face|Tri} <range>[Scheme {Laplacian|Centroid|Winslow}] [Target
Surface <id>]
Smooth Edge <id_range> [Scheme Laplacian] [Target Surface <id>]

The Smooth Edge command allows the user to smooth individual edges owned by a curve.
Specifying a target curve allows the user to move the edges on a meshed curve to a different
curve. The target curve or surface does not necessarily need to be the owning curve or surface of
the nodes. For example, if given two curves (A and B) and curve A was meshed, the target
smoothing could be used to move all of the edges of curve A onto curve B. The smooth scheme
option for the edge smoothing is currently limited only to the laplacian scheme.
The Smooth Face|Tri command is used to smooth individual faces or triangles. The target
option is similar to the curve target option above. Faces or Tris can be smoothed to a surface that
is not necessarily the owning surface; in fact, the faces or tris do not even have to be attached to
any surface. This makes this option especially helpful for smoothing free meshes. Specifying a
smooth scheme allows for relaxation based surface smoothers (i.e. centroid area pull, laplacian,
winslow) to be utilized during targeted smoothing. It is not currently enabled for optimization
based smoothing schemes.

Smooth Tolerance
Smoothing algorithms move nodes in an attempt to improve the quality of the mesh elements.
Most of these algorithms are iterative, and the algorithm terminates when some criterion is met.
Specifically, for the Laplacian and Equipotential style smoothers, smoothing is terminated either
by satisfying a smoothing tolerance or by performing the maximum number of smoothing
iterations. For these smoothers, the smooth tolerance may be set by the user:

[Set] Smooth Tolerance <tol>
The value <tol> tells the smoother to stop when node movement is less than tol *
local_minimum_edge_length.
The default value for tol is 0.05. The maximum number of iterations may be set by the user. For
volumes, the smooth tolerance and iterations may also be set by
(Note: The above command affects all smoother that respect tolerance.)

Volume Smooth Tolerance <tol>
Volume Smooth Iterations <iters>

439

Mesh Generation

(Note: The above two commands only affect the volume smoothers.)

Boundary Mesh Smoothing
Where used in the smooth schemes below, the Free keyword permits the nodes lying on the
bounding entities to "float" along those entities; without this keyword, boundary nodes remain
fixed.
Nodal positions may be fixed so that no smoothing scheme, either implicit or explicit, will move
them, with the following command:

{Curve|Surface|Volume} <range> Node Position {Fixed|Free}
Node <range> Position {Fixed|Free}

The following command does not fix nodal positions, but does fix the connectivity of the mesh,
preventing certain volume schemes from changing the bounding mesh:

{Curve|Surface|Volume} Mesh {Fixed|Free}
The additional following scheme is available for research purposes and can be used only after
issuing a 'set developer on' command.

• Randomize

Adjust Boundary Orthogonal
Applies to: Surface Meshes
Summary: This smoother creates a near orthogonal grid and optionally will make an orthogonal
grid if the geometry permits.
Syntax:

Adjust Boundary [Orthogonal] {Surface|Group} <id_range> [Iterations
<val>] [snap_to_normal [curve <id>] [fixed curve <id>]]

Discussion:
Adjust Boundary Orthogonal iteratively applies the centroidal area pull algorithm with free
boundary nodes. This approximates the affects of an elliptical smoothing algorithm. This
algorithm works best with mapped meshes which have an element aspect ratio close to 1. The
snap_to_normal option is not allowed for non-mapped meshes.

440

Cubit 15.1 User Documentation

Figure 1. The affect of the "adjust boundary orthogonal surface 1" on a chevron shape.
Note that the nodes are pulled into the acute angles and the edges at the boundary are

pulled into a position that is closer to perpendicular at the boundary.
With some geometries with a mapped mesh it is possible to draw a line that is orthogonal to a
boundary curve along the entire u or v direction of the mesh. In these cases, this command
optionally allows the user to specify the option snap_to_normal. Nodal lines will be created
normal to the first curve this is found that will allow perpendicular element edges to span the
mesh. The user may optionally specify a curve that is used as the perpendicular basis for
projecting the edges.
An edge may also be set as fixed so that a subsequent adjust boundary orthogonal will not affect
that edge. If both snap_to_normal and fixed are set, the curve ids MUST be identical.

441

Mesh Generation

Figure 2. The affect of adjust boundary orthogonal with the snap to normal curve option is

shown. The resulting mesh is orthogonal to the given boundary and projects straight
through the mesh.

The following is an example of how to use this command to create the desired grid in Cubit.
Note that to get the desired orthogonal grid the user must adjust the surfaces one at a time.
reset
create surface ellipse major radius 2 minor radius 1 zplane
imprint volume 1 with position 0 1 0
create curve offset curve 2 distance 1 extended
create curve offset curve 4 distance 2 extended
create surface skin curve 2 4
create surface skin curve 4 5
delete surface 1
merge all
surface all scheme map
mesh surf all

442

Cubit 15.1 User Documentation

adjust boundary orthogonal surface 2 snap_to_normal curve 6
adjust boundary orthogonal surface 3 snap_to_normal curve 4 fixed curve 4
Centroid Area Pull
Applies to: Surface Meshes
Summary: Attempts to create elements of equal area
Syntax:

Surface <range> Smooth Scheme Centroid Area Pull [Free]
Discussion:
This smooth scheme attempts to create elements of equal area. Each node is pulled toward the
centroids of adjacent elements by forces proportional to the respective element areas (Jones, 74).

Condition Number
Applies to: Triangular or Quadrilateral Surface Meshes, Tetrahedral or Hexahedral Volume
Meshes. Does not apply to Mixed Element Meshes.
Summary: Optimizes the mesh condition number to produce well-shaped elements.
Syntax:

Surface <surface_id_range> Smooth Scheme Condition Number [beta
<double=2.0>] [cpu <double=10>]

Related Commands:
Untangle

Discussion:
The condition number smoother is designed to be the most robust smoother in Cubit because it
guarantees that if the initial mesh is non-inverted then the smoothed mesh will also be non-
inverted. The price exacted for this capability is that this smoother is not as fast as some of the
other smoothers.
Condition Number measures the distance of an element from the set of degenerate (non-convex
or inverted) elements. Optimization of the condition number increases this distance and improves
the shape quality of the elements. Condition number optimization requires that the given mesh
contain no negative Jacobians. If the mesh contains negative Jacobians and this command is
issued, Cubit automatically calls the Untangle smoother and attempts to remove the negative
Jacobians. If successful, condition number smoothing occurs next; the resulting mesh should
have no negative Jacobians. If untangling is unsuccessful, condition number smoothing is not
performed.
There is no "fixed/free" option with this command; boundary nodes are always held fixed.
The command above only sets the smoothing scheme; to actually smooth the mesh one must
subsequently issue the command "smooth surface <surface_id_range>" or "smooth volume
<volume_id_range>".
Stopping Criteria: Smoothing will proceed until the objective function has been minimized or
until one of two user input stopping criteria are satisfied. To input your own stopping criterion
use the optional parameters 'beta' and 'cpu' in the command above. The value of beta is compared
at each iteration to the maximum condition number in the mesh. If the maximum condition
number is less than the value of beta, the iteration halts. In Cubit condition number ranges from
1.0 to infinity, with 1.0 being a perfectly shaped element. Thus the smaller the maximum
condition number, the better the mesh shape quality. The default value of the beta parameter is

443

Mesh Generation

2.0. The value supplied for the "cpu" stopping criterion tells the code how many minutes to
spend trying to optimize the mesh. The default value is 10 minutes. Optimization may also be
halted by using "control-C" on your keyboard.
To view a detailed report of the smoothing in progress issue the command "set debug 91 on"
prior to smoothing the surfaces or volumes. You will get a synopsis of whether or not untangling
is needed first and whether the stopping criteria have been satisfied. In addition the following
printout information is given for each iteration of the conjugate gradient numerical optimization:

Iteration=n, Evals=m, Fcn=value1, dfmax=value2, time=value3
ave_cond=value4, max_cond=value5, min_jsc=value6

n is the iteration count, m is the number of objective function evaluations performed per
iteration, value1 is the value of the objective function (this usually decreases
monotonically), value2 is the norm of the gradient (does not always decrease monotonically),
and value3 is the cumulative cpu time (in seconds) spent up to the current iteration. The
minimum possible value of the objective function is zero but this is attained only for a perfect
mesh. ave_cond, max_cond, and min_jsc are the average and maximum condition number, and
the minimum scaled jacobian. ave_cond generally decreases monotonically because it is directly
related to value1.

Edge Length
Applies to: Surfaces
Summary: This smoother tries to make all edge lengths equal
Syntax:

Surface <range> Smooth Scheme Edge Length
Discussion:
Edge Length smoothing in Cubit is provided by MESQUITE, a mesh optimization toolkit by
Argonne National Laboratory and Sandia National Laboratories. (See Brewer, et al. 2003 for
more details on the MESQUITE toolkit.) This smooth scheme may be useful for lengthening the
shortest edge length in paved meshes.
Interior node positions are adjusted in an optimization loop where the optimal element has an
ideal shape (square) and has an area equal to the average element area of the input mesh.
NOTE: This smoother should be avoided when the mesh contains high aspect-ratio elements that
the user wants to keep.
Because this smoother essentially tries to make all the edge lengths equal, it is designed to work
well on meshes whose elements have aspect ratios close to 1. The farther from 1 the aspect ratio
is, the less applicable this smoother will be.

Equipotential
Applies to: Volume Meshes
Summary: Attempts to equalize the volume of elements attached to each node
Syntax:

Volume <range> Smooth Scheme Equipotential [Free]
Discussion:
This smoother is a variation of the Equipotential (Jones, 74) algorithm that has been extended to
manage non-regular grids (Tipton, 90). This method tends to equalize element volumes as it

444

Cubit 15.1 User Documentation

adjusts nodal locations. The advantage of the equipotential method is its tendency to "pull in"
badly shaped meshes. This capability is not without cost: the equipotential method may take
longer to converge or may be divergent. To impose an equipotential smooth on a volume, each
element must be smoothed in every iteration--a typically expensive computation. While
a Laplacian method can complete smoothing operations with only local nodal calculations, the
equipotential method requires complete domain information to operate.

Laplacian
Applies to: Curve, Surface, and Volume meshes
Summary: Tries to make equal edge lengths
Syntax:

{Surface|Volume} <range> Smooth Scheme Laplacian [Free] [Global]
Discussion:
The length-weighted Laplacian smoothing approach calculates an average element edge length
around the mesh node being smoothed to weight the magnitude of the allowed node movement
(Jones, 74). Therefore this smoother is highly sensitive to element edge lengths and tends to
average these lengths to form better shaped elements. However, similar to the mapping
transformations, the length-weighted Laplacian formulation has difficulty with highly concave
regions.
Currently, the stopping criterion for curve smoothing is 0.005, i.e., nodes are no longer moved
when smoothing moves the node less than 0.005 * the minimum edge length. The maximum
number of smoothing iterations is the maximum of 100 and the number of nodes in the curve
mesh. Neither of these parameters can currently be set by the user.
Using the global keyword when smoothing a group of surfaces will allow smoothing of mesh on
shared curves to improve the quality of elements on both surfaces sharing that curve.

Mean Ratio
Applies to: Triangular or Quadrilateral Surface Meshes, Tetrahedral or Hexahedral Volume
Meshes. Does not apply to Mixed Element Meshes.
Summary: Moves interior mesh nodes to optimize the average mean ratio metric value of the
mesh.
Syntax:

Surface <surface_id_range> Smooth Scheme Mean Ratio [cpu <double=10>]
Volume <volume_id_range> Smooth Scheme Mean Ratio [cpu <double=10>]

Discussion:
CUBIT includes a mean ratio smoother provided by MESQUITE, a mesh optimization toolkit by
Argonne National Laboratory and Sandia National Laboratories. (See Brewer, et al. 2003 for
more details on the MESQUITE toolkit.) This smoother is similar in purpose to the Condition
Number smoother. However, the Mean Ratio smoother uses a second order optimization method,
and therefore it will often reach a near-optimal mesh more quickly than the Condition Number
smoother. The Mean Ratio smoother requires the initial mesh to be untangled, but the smoother
is guaranteed to not tangle the mesh. If the user attempts to call the Mean Ratio smoother on a
tangled mesh, an untangler will first attempt to untangle the mesh before calling the Mean Ratio
smoother.

445

Mesh Generation

The Mean Ratio smoother's optimization process terminates when one of the following three
criteria is met:

1. The mesh is "close" to an optimal mesh configuration.
2. The maximum allotted time has been exceeded.
3. The user interrupts the smoothing process.

The user has control over the second and the third criteria only. For criterion 2, the default is for
the smoother to terminate after ten minutes even if a near-optimal mesh has not been reached.
The user can change this time bound by specifying the optional "cpu" argument in the command
listed above. This argument takes a single, positive number that represents the time (in minutes)
that will be used as a time bound. If the user wishes to terminate the process early, criteria three
allows the user to "interrupt" (for example, on some platforms, by pressing CTRL-C) the
process. If the process is terminated early, the mesh will not revert to the original node positions;
CUBIT will instead keep the partially optimized mesh.

Smart Laplacian
Applies to: Surface and Volume meshes
Summary: Tries to make equal edge lengths while ensuring no degradation in element shape
Syntax:

{Surface|Volume} <range> Smooth Scheme Smart Laplacian
Discussion:
The Smart Laplacian smoothing approach is a variation on the standard Laplacian algorithm. The
algorithm iteratively loops over the mesh and updates nodes based on the location of their
neighbors. First, a patch of elements is formed around a given node. The quality of this patch is
assessed to determine the quality of the worst shaped element. Then a new candidate node
position is calculated as the average of the neighboring nodes. The quality of the patch is
assessed again using the candidate node position. If there has been no degradation in the quality
of the elements in the patch, the candidate node position is accepted; otherwise, the candidate
node position is rejected and the node is returned to its previous position.
The Smart Laplacian smoother is intended to provide a reliable smoother that is nearly as fast as
the Length-Weighted Laplacian smoother. Due to the dual goals of this smoother, making equal
edge length and improving element shape, it will not always be able to make progress. However,
it is often useful as a quick alternative to the more time-consuming optimization methods
like Mean Ratio or Condition Number. When this smoother fails to make significant progress,
the optimization methods can be tried.
The Smart Laplacian Smoother uses the Mean Ratio quality measure to assess element shape.
This smoother is ensuring no degradation in the minimum Mean Ratio. The Mean Ratio
smoother is optimizing the same metric, but it is attempting to improve the average Mean Ratio
quality.

Untangle
Applies to: Triangular or Quadrilateral Surface Meshes Tetrahedral or Hexahedral Volume
Meshes. Does not apply to Mixed Element Meshes.
Summary: Removes as many negative Jacobians from the mesh as possible by minimizing a
certain objective function.

446

Cubit 15.1 User Documentation

Syntax:
Surface <surface_id_range> Smooth Scheme Untangle [beta <double=0.02>]
[cpu <double=10>]
Volume <volume_id_range> Smooth Scheme Untangle [beta <double=0.02>]
[cpu <double=10>]

Related Commands:
Condition Number

Discussion:
The Untangle 'smoother' is designed to eliminate negative Jacobians from a given mesh by
moving nodes to appropriate locations. If a mesh node is not involved in causing a negative
Jacobian it will not be moved. If a mesh has no negative Jacobians, the Untangler will not move
any of the nodes. This smoother is not magic: if an untangled mesh does not exist for the given
mesh topology, the untangler will not untangle the mesh. Instead, it will do the best it can and
exit gracefully. An untangled mesh produced by this smoother will often have poor shape
quality; in that case it is recommended that untangling be followed by condition number
smoothing. The untangle smoother is automatically called by the condition number smoother.
There is no "fixed/free" option with this command; boundary nodes are always held fixed. As a
result, users should be aware that the volume untangler cannot succeed if the volume contains a
surface mesh which contains a negative Jacobian. In that case, one must first remove the surface
mesh negative Jacobians by invoking the surface Untangler and then invoke the volume
Untangler.
The command above only sets the smoothing scheme; to actually smooth the mesh one must
subsequently issue the command "smooth surface <surface_id_range>" or "smooth volume
<volume_id_range>".
Stopping Criteria: Untangling will proceed until the objective function has been minimized or
the optional user input "cpu" has been satisfied. The latter stopping criterion tells the code how
many minutes to spend trying to untangle the mesh. The default value is 10 minutes.
Optimization may also be halted by using "control-C" on your keyboard.
Beta Parameter: An optional user input parameter "beta" plays a role in determining the optimal
mesh. Optimization proceeds until the minimum scaled Jacobian of the mesh is (roughly) greater
than beta. To remove negative Jacobians one would need beta=0 (however, as a safety margin,
we choose beta=0.02 as the default). To further improve the scaled Jacobian of the mesh, input a
larger value of "beta". If a mesh with all scaled Jacobians greater than "beta" does not exist,
optimization will continue until the cpu time stopping criterion has been met. Therefore, it is best
not to use "beta" values too large (say, greater than 0.2) without also decreasing the cpu time
limit.
To view a detailed report of the smoothing in progress issue the command "set debug 91 on"
prior to smoothing the surfaces or volumes. You will get a synopsis of whether or not untangling
is needed and whether the stopping criteria are satisfied. In addition the following printout
information is given for each iteration of the conjugate gradient numerical optimization:

Iteration=n, Evals=m, Fcn=value1, dfmax=value2, time=value3
min_jsc=value4

n is the iteration count, m is the number of objective function evaluations performed per
iteration, value1 is the value of the objective function (this usually decreases

447

Mesh Generation

monotonically), value2 is the norm of the gradient (does not always decrease monotonically),
and value3 is the cumulative cpu time (in seconds) spent up to the current iteration. The
minimum possible value of the objective function is zero; this value is attained only when the
minimum scaled Jacobian of the mesh exceeds "beta". The minimum scaled jacobian is also
reported.

Winslow
Applies to: Surface meshes
Summary: Elliptic smoothing technique for structured and unstructured surface meshes
Syntax:

Surface <range> Smooth Scheme Winslow [Free]
Discussion:
Winslow elliptic smoothing (Knupp, 98) is based on solving Laplaces equation with the
independent and dependent variables interchanged. The method is widely used in conjunction
with the mapping and submapping methods to give smooth meshes with positive Jacobians, even
on non-convex two-dimensional regions. The method has been extended in CUBIT to work on
unstructured meshes.

Align Mesh
At times it is desirable to have identical meshes on two different surfaces or curves. The align
mesh command will attempt to assign correspondence between nodes on surfaces or curves and
move the nodes on one surface or curve to match the configuration on the other. The command
syntax is:

Align Mesh Surface <id> [CloseTo] Surface <id> [Tolerance <tol>]
Align Mesh Curve <id> [CloseTo] Curve <id> [Tolerance <tol>]

These two commands align the mesh on the first entity with that of the second entity. This means
that nodes on the first entity will be moved to the closest location possible to their corresponding
nodes on the second entity. This is done without regard to mesh quality, so it is possible to invert
elements with this command.
Align Mesh Node <id> [CloseTo] Node <id> [Tolerance <tol>]
This command aligns the first node with the second node, within the limits of the geometric
entities that own the nodes. This is also done without respect for element quality.
And example of this is given as follows:
brick x 10
volume 1 copy move 11
surface all except 10 6 vis off
transparent
graphics perspective off
at 5.552503 3.832384 0.134127
from 34.651051 3.640138 -0.193121
up 0.006514 0.999945 -0.008172 mesh surface all
surface 6 smooth scheme randomize free
smooth surface 6
node 432 move 0 0 -0.2
align mesh node 944 node 432

448

Cubit 15.1 User Documentation

node 432 move 0 0 0.4
align mesh curve 23 closeto curve 12
align mesh surf 10 closeto surf 6

Collapsing Mesh Edges
CUBIT currently offers several options for modifying an existing finite element mesh. In
addition to providing for coarsening and refining of hexahedral and triangle meshes, CUBIT can
also reposition nodes by smoothing or by moving individual nodes.
The collapse edge command is also provided for making small modifications to an existing
triangle mesh.

Meshedit Collapse Edge <id>
This command will collapse the two triangles associated with the given edge, effectively
removing the triangles from the mesh. This command only works on surface meshes, and only
with triangles. If volumetric elements, or quads, are attached to the edge, the command does
nothing to the mesh.

Creating and Merging Mesh Elements
The following forms of the create and merge commands operate on meshed entities only. They
allow low-level editing of meshes to make minor corrections to a mostly correct mesh. They are
not designed for major modifications to existing meshes. Because Cubit's display routines were
not designed with these type of operations in mind, these commands may cause the current
display of the affected entities to take an unexpected form. An appropriate drawing command
can be used to return the display to the desired view.
The delete commands for deleting individual elements are still under development, but they may
be used after setting a developer flag.
Creating Mesh Elements
The create command uses existing mesh nodes to create new mesh entities.

Creating Hex and Tet Elements
Create {Hex|Tet} Node <range> [Owner Volume <id>]

Using the nodes specified, this form of the command creates a new hex or tet that will be owned
by the specified volume. For a hex, 8 nodes are required. The order in which the nodes are
specified is very important. They should describe two opposing faces of the hex; the normal of
the first face should point into the hex and the normal of the second face should point out of the
hex. For example, to create the hex shown in Figure 1 below, the following command would be
entered:

create hex node 1,2,3,4,5,6,7,8 owner volume 1

449

Mesh Generation

Figure 1. Node Numbering for the Create Hex command

To create a tet, 4 nodes are specified. The base is specified as a tri with the normal point toward
the fourth node using the right hand rule. To create the tet shown in Figure 2, the following
command would be entered:

create tet node 1,2,3,4 owner volume 1

Figure 2. Node ordering for Create Tet Command

Creating Wedge Elements
Create Wedge Node <range> [Owner Volume <id>]

450

Cubit 15.1 User Documentation

To create a wedge, 6 nodes are specified. The base is specified as a tri with the normal pointing
inward using the right hand rule. To create the wedge shown in Figure 3, the following command
would be entered:
create wedge node 1,2,3,4,5,6 owner volume 1

Figure 3. Node ordering for Create Wedge Command

Note: The wedge command is still under development. To enable this feature, use the developer
command features by issuing the command Set Developer Commands On.

Creating Face and Tri Elements
Create {Face|Tri} Node <range> [Owner {Volume|Surface} <id>]

The next form of the command creates a face or tri that will be owned by the specified volume or
surface. Four nodes are specified for a face, three nodes for a tri. The nodes should be specified
in the order needed to produce a face or tri with the normal in the desired direction using the
right hand rule.

Creating Edge Elements
Create Edge Node <range> [Owner {Volume|Surface|Curve} <id>]

This form of the command creates an edge that will be owned by the specified volume, surface,
or curve. Two nodes must be specified; order is unimportant.

Creating Nodes

451

Mesh Generation

Create Node Location <x> <y> <z> Owner {Volume|Surface|Curve|Vertex}
<id>

The last form of the command creates a node at the specified location that will be owned by the
specified volume, surface, curve, or vertex. The location is specified by three absolute values that
represent the position of the node in 3D space.
Merging Nodes
The merge node command is used to join two mesh entities one node at a time. It should be used
with care because merging nodes of different meshed entities may have unpredictable results.
The syntax is:

Merge Node <id1> <id2>
The merge node command replaces the node specified as id1 with the node id2. The command is
equivalent to deleting node id1 and creating node id2 in the same location. The resultant merged
node takes on the characteristics of the replaced node such as position and owner. This may
include some or all of the higher level mesh entities related to the merged node.
Caution should be taken when using the merge node command because other commands
involving the related meshed entities may not work properly following the merge.

Mesh Cleanup

• Tetrahedral Mesh Cleanup
• Hexahedral Mesh Cleanup

Once a mesh has been created or imported, Cubit has tools to both manually and automatically
improve the quality of a mesh. Mesh Cleanup is the name for the automatic tools which
automatically find bad elements and fixing them by both recomputing node locations (i.e.
smoothing) AND redefining the local element connectivity. To automatically cleanup a mesh,
use the following command:

Cleanup {Volume|Block} <id_range> [angle <value=150>]
This command will cleanup either a tet or a hex mesh as described below.
Cleaning Up a Tetrahedral Mesh
An alternative to the remesh command for tetrahedral meshes is the cleanup command. For this
command the existing mesh is validated and "optimized" by the tetmesher, instead of being
deleted and replaced with a different mesh.
To cleanup a tetrahedral volume mesh use the following command:

Cleanup {Volume|Block} <id_range>
A second variation of the Cleanup command allows remeshing of tetrahedra that are either part
of a free mesh (not owned by a volume) or are a subset of the tetrahedra in the volume. The
command is:

Cleanup Tet <id_range> [Free]
For example, the command

cleanup tet all free

452

Cubit 15.1 User Documentation

will gather all tetrahedra in a free mesh or single volume, generate a triangle boundary surface,
and "optimize" the mesh, ignoring any volume or blocks. Without the optional free keyword, the
tets will be processed volume by volume or block by block retaining the boundary between
adjacent volumes or blocks.
Also, the command

cleanup tet 200 to 300
will gather the tetrahedra in the range [200, 300], generate a triangle boundary surface, and
"optimize" the mesh. If the tetrahedra in the range are disjointed, i.e., multiple, independent sets,
this operation may fail. It is best to specify a contiguous set of elements.
Note: Cubit will issue an error if the tetrahedra are owned by more than one volume or mesh
container.
Cleaning Up a Hexahedral Mesh
The command to cleanup a hex mesh is:

Cleanup Volume <id_range> [angle <value=150>]
Hexahedral mesh cleanup is newer to Cubit and currently only a single type of bad element is
found and fixed. The hex mesh quality configuration that is currently implemented is when a
column of hex elements is on the boundary of a volume, the hexes in the column each have 2
adjacent quad faces on the boundary, and the dihedral angle between those 2 faces is greater than
the specified angle tolerance. This situation is illustrated in Figure 1 where the red column of
hexahedra has a good angle on the source surface, which flattens out to 180 degree angle on the
target creating inverted hex elements. The angle parameter determines how large the angle can
get before being cleaned up.

Figure 1. Example of hexahedral mesh with case handled by hex mesh cleanup.

Figure 2 illustrates the result of hex mesh cleanup. Internally, Cubit finds the column of
hexahedra with the bad elements, as well as an adjacent column of hexahedra, and then
automatically performs some hex column operations followed by smoothing to improve the
quality of the elements locally.

453

Mesh Generation

Figure 2. The mesh from Figure 1 after hex mesh cleanup.

Remeshing
Mesh generation is frequently an iterative process of meshing, deleting the mesh, and remeshing.
The remesh command is a convenient tool to bypass the mesh deletion process when used to
remesh a volume. You may also use the remesh command to replace a localized set of deformed
tetrahedra after analysis. Thus, remeshing can become part of an optimization loop.
Use the following command to remesh hexahedra:

Remesh Volume <range>
Use the following command to remesh tetrahedra:

Remesh {Volume|Block|Tet} <range> [FIXED|free]
or to remesh a range of tets based upon quality criteria:

Remesh Tet <id_range> | [quality <tet_metric> [less than|greater than]
<value> ...] [inflate <value>][FIXED|free][preview]

Remeshing a Swept Volume Mesh
The remesh command can be useful when using the sweep scheme. When a sweep scheme is
applied to the volume, it will delete the target surface mesh on a volume with one of the
sweeping schemes and then remesh the volume. It is useful when changing between sweep
smooth options as in the following example below.
volume 1 scheme sweep
mesh volume 1
At this stage, the user may discover that poor quality elements may have been generated. The
user could then do the following:
volume 1 sweep smooth winslow
remesh volume 1
At this point, the volume is remeshed using the sweep smooth winslow option.

454

Cubit 15.1 User Documentation

Remeshing Tetrahedra
When used for tetrahedra, the Remesh command generates a new tetrahedral mesh after deleting
the existing mesh described by the list of tetrahedra, volumes, or blocks. When remeshing a list
of tetrahedra, the smallest set of tets possible is replaced, which often means a partial remeshing
of volumes, surfaces and/or curves. This set will always include the input list of tetrahedra but
may include more.
Each tetrahedron may only be in one volume or block, but the list of tetrahedra may span
volumes or blocks. Each block is treated individually if multiple blocks are specified.
The default FIXED option will ensure that any triangle or edge in the tetrahedron list to be
remeshed that lie on geometric surfaces or curves will not be affected by the remesh operation.
In contrast, the free option allows edges and triangles on curves and surfaces to be removed and
remeshed. Use the FIXED option when it is important to maintain the boundary mesh
configuration fixed, otherwise the free option will remesh the portions of curves and surfaces in
the remesh region.
The Remesh command can be used to selectively remove and remesh a small portion of
tetrahedron in the mesh that have been identified as poor quality. This can be an effective tool for
improving mesh quality on a deformed mesh following an analysis without the need to
regenerate the full mesh.
The quality option will identify those tetrahedra from the full model and apply the remeshing
opertaion only to those tetrahedra. Any of the standard quality metrics for tetrahedra may be used
as the <tet_metric>. These include: Aspect Ratio Bet, Aspect Ratio Gam, Element Volume,
Condition No., Jacobian, Scaled Jacobian, Shape, Relative Size, Shape And Size,
Distortion, Allmetrics, Algebraic and Traditional. The metric specification is used in
conjunction with a less than or greater than specification and a threshold value. For example,
the syntax below would remesh all tetrahedra in the mesh who's scaled jacobian metric was less
than 0.2.

remesh tet quality Scaled Jacobian less than 0.2 inflate 1 free
The inflate option can be used to expand the set of tets selected by the quality metric criteria.
The <value> input following the inflate option is the number of tet layers surrounding the poor
quality tets that will be included in the remesh region. Usually a value of 1 is sufficient to allow
the tet mesher to generate better quality elements, however 2 or greater will remesh a larger
portion of the mesh. A value of 0 is generally not recommended as it usually does not provide
enough space for the tet mesher to improve element quality. The inflate option can also be used
independently from the remesh command. See the Inflate command described below.
This command also allows for multiple quality criteria. For example, the following command
would use both aspect ratio and scaled jacobian as criteria for remeshing. Any number of quality
criteria may be included in the command syntax:

remesh tet quality Scaled Jacobian less than 0.2 Aspect Ratio Bet greater
than 4 inflate 1 free

The preview option will display the tetrahedra selected by the quality criteria and inflate
options without actually performing the remeshing operation.
Sizing functions may be used with tet remeshing. See Mesh Adaptivity and Sizing Functions
and Exodus II-based Field Function for more information.

Inflating a set of Tets

455

Mesh Generation

In cases where a set of tets are to be remeshed, it is useful to be able to expand the set to include
additional surrounding tets. This is to allow the mesher more freedom to place good quality
elements, but also to ensure a valid shape in which the mesher has to work. The Inflate command
starts with a given set of tetrahedra and will expand the set based on the number of user defined
layers as well as manifold criteria. The result will be added to the curent group, or a new group
can be created. The following describes the syntax and arguments to this command:

Inflate [group <id>|tet <range>][manifold][layer <value>][add|create
<"name">][draw]

group<id>|tet<range>: input to this command can be with a group name, group id, or a range of
tets. The group must contain at least 1 tet. The tets need not be contiguous.
manifold: This option will add tets to the set where the boundary or skin of the tets meet at a
single edge or node. This ensures that a complete valid manifold definition of the boundary of
the set of tetrahedra can be defined. This is important for the tetrahedral mesh generator which
requires a manifold boundary definition. both layer and manifold can be used in the same
command.
layer <value>: This option will add the number of layers of tets indicated by value to the set. A
layer is defined by all tets connected by at least a node to the skin of the existing set. This option
alone does not guarantee a valid manifold definition. Use both the layer and manifold in the
same command options to ensure a manifold definition.
add|create<"name">: The add option will add tets in the inflated region to the input group. An
input group must be specified for this to be a valid option. The create option will create a new
group and add all tets (including the input), to a new group specified by <"name">. If
neither add nor create are specified, a new default group named "inflated_tets" will be created.
If a group of that name already exists, it will be added to.
draw: The draw option will display both the input set of tets and the inflated tets in the graphics
window. The input tets will be displayed in green and the inflated tets will be displayed in red.
Examples:
Generate a simple tet mesh. For tets with ids 1 to 10, define a 1 layer buffer and ensure it
maintains a manifold boundary. The result will be placed in a new group called "inflated_tets"
and displayed in the graphics window.

brick x 10
vol 1 scheme tetmesh
mesh vol 1
inflate tet 1 to 10 layer 1 manifold draw

Create a group called "bad_tets"containing all tets in volume 1with quality metric (scaled
Jacobian) less than 0.2. Expand that group by one layer and remesh it.

group 'bad_tets' equals qual vol 1 scaled high 0.2
inflate bad_tets layer 1 manifold add
remesh tet in bad_tets

Edge Swapping
The edge swap command allows a user to target a specific edge between two triangles (similar
functionality for quads and tets has not been included) and change the connectivity of the
triangles. Multiple edges can be swapped simultaneously. The input order of the edges is the
order in which the swaps will be performed.

456

Cubit 15.1 User Documentation

Typically, the edge swap command is used to specifically repair local mesh connectivity.

Swap Edge <id_list>
The following images show the before and after views of a model where the highlighted edge is
swapped. The edge in each image is the same edge.

Image 1 - Before edge swapping

Image 2 - After edge swapping

Matching Tetrahedral Meshes
The intended use of this function is for importing two exodus or genesis files that have non-
conforming mesh where they touch and modifying the meshes locally to make them
conforming. The result is a single mesh that is stitched together at the locally modified region.

457

Mesh Generation

This functionality is currently only available for tetrahedral meshes.

Tetrahedral mesh matching will work on free mesh only. The interface where the two meshes
will be matched need not be planar. A single target sideset and one or more source sidesets
should be provided. The source sideset should be completely enclosed in the target sideset so that
the boundaries of the two sidesets do not intersect. The two meshes need not touch exactly at the
sidesets but the closer the meshes are to touching the better the results will be. Small gaps or
overlaps will generally be allowed. Both of the meshes involved in the matching should be
contained in defined blocks prior to issuing the command.

The syntax for the command is:

Meshmatch tet sideset <id_list> onto sideset <id>

The one or more sidesets specified before the 'onto' keyword are the source sideset(s). The
sideset after the 'onto' keyword is the target sideset.

Mesh Coarsening
Hexahedral Coarsening
CUBIT provides a limited number of options for coarsening hexahedral meshes. The options
currently available for hex coarsening rely on the hex sheet extraction process described in Mesh
Refinement page. Removing a sheet from a hexahedral mesh essentially means that a complete
layer of hexes will be removed and the adjacent layers expanded to take its place.

Extracting a Single Hex Sheet
The following command can be used to extract a single hex sheet.

Extract sheet { Edge <id> | Node <id_1> <id_2> }
The edge or node pair are used to define the sheet that will be extracted. Figure 3 below shows
an example of extracting a hex sheet. In this example the hex sheet is specified by the node pair
highlighted in the images. Note that the entire layer of hexes between the highlighted nodes has
been removed and the neighboring layers have been expanded to take its place.

Figure 3. Example of Hex Sheet Extraction

458

Cubit 15.1 User Documentation

Note: Also see the Mesh Refinement section for a description of hex sheet drawing.

Extracting multiple sheets along a curve
Another option for extracting hex sheets can be done by specifying a curve at which to perform
the sheet extraction operations. In this case, multiple layers of hexes can be removed by
specifying a curve perpendicular to the hex layers. The command for coarsening perpendicular to
a curve is as follows:

Coarsen Mesh Curve <id> Factor <value> [NO_SMOOTH|smooth]
Coarsen Mesh Curve <id> Remove {<num_edges>|edge <id_ranges>}
[NO_SMOOTH|smooth]

Figure 4. Coarsening a mesh by extracting sheets perpendicular to a curve

The first option uses the Factor argument. The factor argument controls how much larger the
edges will be on the curve. For example, Figure 4 shows the coarsen mesh curve command used
with a factor of 2. In this case, the command attempts to make the mesh edges approximately
twice the length relative to their original length along the curve.
The second option uses the Remove argument. With this option, a specified number of layers
may be removed from the mesh. This may be accomplished by indicating an exact number, or by
providing a list of edge IDs that correspond to the layers that will be removed.
The NO_SMOOTH|smooth option allows the user to improve the element quality after the
sheet extraction process by smoothing the remaining nodes. The default for both of these
commands is to not smooth. Smoothing may also be accomplished after sheet extraction by using
the smooth volume command.

Uniform hex coarsening
By applying the coarsen mesh curve command multiple times to curves that are orthogonal in the
model, the effect of uniform coarsening of the mesh may be achieved.

Mesh Refinement

• Global Mesh Refinement
• Refining at a Geometric or Mesh Feature
• Hexahedral Refinement Using Sheet Insertion

459

Mesh Generation

• Local Refinement of Tets, Triangles, and Edges
• Parallel Refinement

CUBIT provides several methods for conformally refining an existing mesh. Conformal mesh
refinement does not leave hanging nodes in the mesh after refinement operations, rather
conformal mesh refinement provides transition elements to the existing mesh. Both local and
global mesh refinement operations are provided.
Global Mesh Refinement
The Refine Surface and Refine Volume commands provide capability for globally refining an
entire surface or volume mesh. Global refinement will only be used if the entire body is included
in the command. Otherwise, the command will be interpreted as local refinement (see below.)
This distinction can be important because the global refinement algorithm divides each element
into fewer sub-elements than local refinement. The command syntax is:

Refine Volume <range>numsplit<int>
Refine Surface <range>numsplit<int>

The numsplit option specifies how many times to subdivide an element. A value of 1 will split
every triangle and quadrilateral into four pieces, and every tetrahedron and hexahedron into eight
pieces. Examples of global refinement on each element are shown below.

original mesh

NumSplit = 1

NumSplit = 2

original mesh

NumSplit = 1

NumSplit = 2

460

Cubit 15.1 User Documentation

original mesh

NumSplit = 1

NumSplit = 2

original mesh

NumSplit = 1

NumSplit = 2

Figure 1. Example of uniform refinement for each of the mesh entities
Refining at a Geometric or Mesh Feature
CUBIT also provides methods for local refinement around geometric or mesh features.
Individual elements or groups of elements can be refined in this manner using the following
syntax.

Refine {Node|Edge|Tri|Face|Tet|Hex} <range>
[NumSplit<int = 1>|Size <double> [Bias <double>]]
[Depth <int>|Radius <double>] [Sizing_Function]
[Smooth]
Refine {Vertex|Curve|Surface} <range>
[NumSplit<int = 1>|Size <double> [Bias <double>]]
[Depth <int>|Radius <double>] [Sizing_Function]
[Smooth]

To use these commands, first select mesh or geometric entities at which you would like to
perform refinement. Refinement will be applied to all mesh entities associated with or within
proximity of the entities. The all keyword may be used to uniformly refine all elements in the
model
The following is a description of refinement options.
NumSplit
Defines the number of times the refinement operation will be applied to the elements in the
refinement region. For uniform or global refinement, where all elements in the model are to be
refined, A NumSplit value of 1 will split each triangle and quadrilateral into four elements, and

461

Mesh Generation

each tetrahedron and hexahedraon into eight elements. A numsplit of 2 would result in 16 and 64
elements respectively. For uniform refinement, the total number of elements obeys the following:

1. NE = NI * E^NumSplit

where NE is the final number of elements, NI is the initial number of elements and E is 4 or 8
for 2D and 3D elements respectively.
In cases where only a portion of the elements are selected for refinement, the elements at the
boundary between the refined and non-refined elements will be split to accommodate a transition
in element size. The transition pattern will vary depending on the local features and surrounding
elements. For non-uniform refinement of hexahedron, for a numsplit of 1, each element in the
uniform refinement zone will be subdivided into 27 (E=27) elements rather than 8. This affords
greater flexibility in transitioning between the refined and unrefined elements.
Size, Bias
The Size and Bias options are useful when a specific element size is desired at a known location.
This might be used for locally refining around a vertex or curve. The Bias argument can be used
with the Size option to define the rate at which the element sizes will change to meet the existing
element sizes on the model. Figure 2 shows an example of using the Size and Bias options
around a vertex. Valid input values for Bias are greater than 1.0 and represent the maximum
change in element size from one element to the next. Since refinement is a discrete operation, the
Size and Bias options can only approximate the desired input values. This may cause apparent
discontinuities in the element sizes. Using the default smooth option can lessen this effect. It
should also be noted that the Size option is exclusive of the NumSplit option. Either NumSplit or
Size can be specified, but not both.

original mesh

Bias=2.0

Bias=1.5

Figure 2. Example of using the Size and Bias options at a Vertex.
Depth
The Depth option permits the user to specify how many elements away from the specified entity
will also be refined. Default Depth is 1. Figure 3 shows an example of using the depth option
when refining at a node.

462

Cubit 15.1 User Documentation

original mesh

Depth=1

Depth=2

Figure 3. Example of using the Depth option at a node to control how far from the node to
propagate the refinement.

Radius
Instead of specifying the number of elements to describe how far to propagate the refinement, a
real Radius may be entered. The effects of the Radius are similar to that shown in Figure 3,
except that the elements whose centroid fall within the specified Radius will be refined.
Transition elements are inserted outside of this region to transition to the existing elements.
Sizing Function
Refinement may also be controlled by a sizing function. CUBIT uses sizing functions to control
the local density of a mesh. Various options for setting up a sizing function are provided,
including importing scalar field data from an exodus file. In order to use this option, a sizing
function must first be specified on the surface or volume on which the refinement will be
applied. See Adaptive Meshing for a description of how to define a sizing function.
Smooth
The default mode for refinement operations is to NOT perform smoothing after splitting the
elements. In many cases, it may be necessary to perform smoothing on the model to improve
quality. The smooth option provides this capability.
Controlling Regularity of Triangle Refinement
The default behavior of triangle refinement is to attempt to maximize element quality using the
basic one->four template. This can sometimes result in an irregular pattern, where one or more
edges are swapped. To enforce regularity of the triangle refinement pattern, regardless of quality,
the folowing setting may be used.

1. Set Triangle Refine Regular {on|OFF}
Hexahedral Refinement Using Sheet Insertion
Several tools for refining a hexahedral mesh using sheet insertion and deletion are available in
CUBIT.

• Refining at a Geometric Feature
• Refining along a Path
• Refining a Hex Sheet
• Directional Refinement
• Hex Sheet Drawing

Refining at a Geometric Feature
The following commands offer additional controls on refinement with respect to one or more
geometric features of the model.

463

Mesh Generation

An existing hexahedral mesh can be refined at a geometric feature using the following command:
Refine Mesh Volume <id> Feature {Surface | Curve | Vertex | Node}
<id_range> Interval <integer>

This command refines the mesh around a given feature by adding sheets of hexes. These sheets
can be generalized as planes for surfaces, cylinders for curves, and spheres for vertices.
The interval keyword specifies the number of intervals away from the feature to insert the new
sheet of hexes. For this command a single sheet of hexes is inserted into the hexahedral mesh.
Figure 4 shows an example of this command where the feature at which refinement is to be
performed is a curve. In this case the interval chosen was, 2. This indicated that the elements 2
intervals away from the curve would be refined.

Figure 4. Example of Refinement at a curve

Refining along a path
Hexahedral meshes can be refined from a specific node and along a propagated path using the
following command

Refine Mesh Start Node <id> Direction Edge <id> End Node <id> [Smooth]
Figure 5 shows a swept mesh and its cross section. The cross section view on the left shows a
path that has been propagated through the mesh between the start node and end node. This path
is then projected along a chain of edges in the direction given by the direction edge as shown in
Figure 5. The start node and end node must be on the same sweep layer. This refinement
procedure also requires the volume's meshing scheme to be set to sweep. If the smooth keyword
is given the mesh will be smoothed after the refinement step is complete.

464

Cubit 15.1 User Documentation

Figure 5. Refining a Mesh Along a Path

Refining a Hex Sheet
The following command can be used to refine the elements in one or more hex sheets:

Refine Mesh Sheet [Intersect] { Node <id_1> <id_2> | Edge <id_range> } {
Factor <double> | Greater_than <size> } [Smooth] [in volume <id_range>
[depth <num_layers]]

The node and edge keywords are used to define the hex sheet(s) to be refined. If the node option
is chosen, only one node pair can be entered (see Figure 6). If the edge option is chosen, one or
more edges can be entered (see Figure 7).

Figure 6. Refine mesh sheet node 796 782 greater_than 6

Figure 7. Refine mesh sheet edge 1584 1564 1533 1502 1471 greater_than 6

The factor and greater_than keywords are used to specify the refinement criteria for the
selected hex sheet(s). If the factor keyword is used, the length of the smallest edge in the hex
sheet is determined and any edge in the hex sheet with a length greater than the smallest length

465

Mesh Generation

multiplied by the factor is refined. If the greater_than keyword is used, any edge in the hex sheet
with a length greater than the specified size is refined.
The intersect keyword is optional. It is used to more easily define multiple hex sheets to be
refined. If the intersect keyword is entered, the node and edge keywords are used to define a
chord rather than a sheet (a chord is the two-dimensional equivalent of the three-dimensional
sheet). The chord will be limited to the surface(s) associated with the nodes or edge entered, and
all sheets intersecting the chord will be selected for refinement (see Figure 8). When the node
keyword is used with the intersect option, the nodes must define an edge on the surface of the
mesh.

Figure 8. Refine mesh sheet intersect edge 1499 greater_than 6

The smooth keyword is also optional. When the smooth keyword is entered, the elements that
have been refined are smoothed in an attempt to improve element quality. Figure 9 shows the
same command as Figure 8 with the addition of the smooth keyword. Smoothing may or may not
be beneficial, depending on the situation.

Figure 9. Refine mesh sheet intersect edge 1499 greater_than 6 smooth

Directional Refinement
Mesh sheet refinement can also be used to refine a mesh in a particular direction. This can help
control anisotropy. The following command can be used as a short cut for specifying what
sheets should be used in refinement.

Refine Volumes <id_range> using {Plane <options> | Surface <id_range> | Curve
<id_range> } [Depth <num_layers>] [Smooth]

The volumes specified indicate which hexes can be refined. A transition layer will be made out
of hexes surrounding the indicated volumes. If the depth option is used, additional layers of
hexes around the specified volumes will be included in the refinement region. Behind the using
option, if the plane option is employed, all the edges in the volume which are parallel to the
plane (to a small tolerance) are used to specify the sheets to refine. If the surface or curve option
is employed instead, all the edges in the surfaces or curves will be used.

466

Cubit 15.1 User Documentation

For example, Figure 10 and 11 shows directional refinement using the plane option. The
command used to convert the mesh in Figure 10 to Figure 11 is:

refine vol 2 using plane xplane depth 1

Figure 10. Starting mesh

Figure 11. Directional result of refinement resulting from using the plane option on the

refinement command.

467

Mesh Generation

Directional refinement can be used iteratively to reduce or create anisotropy of any level. This is
done by applying the direction refinement command iteratively. A second iteration of directional
refinement can be applied by issuing the same command again. To improve element quality,
however, it is often recommended to perform refinement parallel to the plane before subsequent
iterations. For example, taking the mesh in Figure 11 as input, the following commands will
generate the mesh in Figure 12.

refine mesh sheet edge (at 4.5 5 5 ordinal 1) factor 0
refine vol 2 using plane xplane depth 1

Figure 12. A 2nd iteration of direction refinement is applied.

Hex Sheet Drawing
Since refinement of hex meshes generally occurs by inserting hex sheets, tools have been
provided to draw a specified sheet or group of sheets.
This command draws a sheet of hexes that is defined by the edge or node pair.

Draw Sheet {Edge <id> |Node <id_1> <id_2>}[Mesh [List]] [Color
<color_name>] [Gradient]

The following command draws the three sheets that intersect to define the given hex. These
sheets are drawn green, yellow, and red. To draw a specific sheet, list its color in the command.

Draw Sheet Hex <id> [Green][Yellow][Red][Mesh [List]] [Gradient]
The 'gradient' keyword for both commands draws the sheet in gradient shading according to the
distance between opposite hex faces that are parallel to the sheet.
The 'mesh' keyword will draw the hexes in the hex sheet. If the 'list' keyword is also given, the
ids of the hexes in the sheet will be listed.

468

Cubit 15.1 User Documentation

Local Refinement of Tets, Triangles, and Edges
Local refinement of tets, triangles, and edges is available by refining individual entities or by
refining to guarantee a user-specified number of tests through the thickness:

• Single Entity Refinement
• 'N' Tets Through the Thickness Refinement

Single Entity Refinement
Local refinement of tets, triangles, and edges is available. When refining triangles a node is
inserted at the enter of the triangle and three new triangles are connected to this node. The
original triangle is deleted. The command to refine triangles is:

Refine Local Tri <tri_id_list>
When refining an edge, a node splits the original edge between two triangles and four new
triangles are created and connected to the new node. The command to refine an edge is:

Refine Local Edge <edge_id>
When refining a tet edge, the tet edge is split by a node and then all tets attached to the original
edge are split into two through a triangle that goes through the new node. All other adjacent
nodes and edges are unmodified by the operation. Note that on the interior of the mesh tet edges
are not represented explicitly so the command takes two nodes as input to define the edge. The
command to refine a tet edge is:

Refine Tet_edge Node <node1_id> <node2_id>

'N' Tets Through the Thickness Refinement
Cubit provides a capability to guarantee a user-specified number of tets through the thickness.
This functionality is intended to work on an existing tet mesh using mesh refinement. The user
specifies the geometry or mesh defining the thin region and also the number of desired tets
through the thickness and the refinement algorithm will run until it meets this criteria. The
number of tets through the thickness in this context is interpreted as the number of mesh edges
through the thickness and the algorithm will continue to do refinement until there are no mesh
edge paths through the thin region that contain fewer mesh edges than the number specified by
the user. The command for doing this is:

Refine min_through_thickness <val> source {surface|node|tri|nodeset|sideset|block}
<id_range> target {surface|node|tri|nodeset|sideset|block} <id_range> [anisotropic]
[single_iteration] [dont_fill_in_gaps]

The various options are described below.
anisotropic: When this option is specified in the command the algorithm will only attempt to
refine the edges that go roughly normal to the source and target entities. This will give an
anisotropic result. The meshes on the source and target will generally not be affected when this
option is used. When this option is not specified the refinement algorithm will be isotropic in
nature and will propagate much more. However, it will tend to have better transitioning from the
refined region to the non-refined regions.
dont_fill_in_gaps: When this option is specified in the command the algorithm will NOT try to
grow the regions that will be refined. When the regions are grown it helps to avoid leaving small
pockets of mesh that are not refined (splotchiness). This has effect only on isotropic refinement
(when the "anisotropic" option is NOT used).

469

Mesh Generation

single_iteration: When this option is specified in the command the algorithm will only run for
one iteration even if the min_through_thickness criteria is not met.
A quality command for querying the minimum number of tets through the thickness is found
here.
Below is an example using the following commands:
refine min_through_thickness 4 source surf 1 target surf 2 anisotropic
refine min_through_thickness 4 source surf 7 target surf 13 3 14 anisotropic
Surfaces 1 and 2 are the two surfaces on opposite sides of the thin region in the green volume
and surfaces 7 13 3 14 are the surfaces on opposite sides of the thin region in the yellow volume.

Figure 13. Before N through the thickness refinement.

470

Cubit 15.1 User Documentation

Figure 14. After N through the thickness refinement.

Parallel Refinement
Global mesh refinement can be used to increase global mesh density with a single command. If
an extremely large mesh is desired, one approach is to generate a coarse mesh with the desired
relative mesh gradations, and then perform global mesh refinement to scale the number of
elements up across the model. Depending on the amount of refinement requested, this can exceed
the memory limits of Cubit running on a single processor. Global parallel mesh refinement
allows refinement to go beyond the memory limits of a single processor. The resulting mesh size
is only limited by the number of processors you have available to perform the refinement. The
command syntax is:

Refine Parallel [Fileroot <'root filename'>] [Overwrite] [No_geom] [No_execute]
[Processors <int>] [Numsplit <int>] [Version <'Sierra version'>]

This command causes Cubit to write two files to disk. First, Cubit writes an Exodus file named
<root filename>.in.e which contains the mesh elements in the current Cubit session. Second,
Cubit writes an OpenNURBS 3dm file http://www.opennurbs.org. named .3dm, which contains a
definition of the geometry from the current Cubit Session. The Fileroot argument specifies the
full path and root of the files that will be written. Additional blocks are written to the Exodus file
to correspond to the geometry entities in the 3dm file. The Overwrite argument specifies if
existing files on disk with the same names should be overwritten or not.
When the mesh is refined in STK_Adapt, the new nodes created during refinement will be
projected to the geometry definitions from the OpenNURBS file. If the No_geom argument is
specified, only the Exodus file is written, and new nodes will be placed by evaluating the shape
functions of the elements being evaluated.

471

http://www.opennurbs.org/

Mesh Generation

The exported Exodus and OpenNURBS files are prepared specifically for input into the Sierra
STK_Adapt program. By default, Cubit spawns STK_Adapt in the background after exporting
the files. If the No_execute argument is specified, the Cubit command exports the files, but does
not spawn STK_Adapt. The user can then move those files to a large parallel machine to perform
the STK_Adapt refinement.
If No_execute is not specified, then Cubit will spawn Sierra STK_Adapt in the background to
perform the refinement. The Processors argument specifies the number of processors to use for
the STK_Adapt run. The Numsplit argument specifies how many times the global refinement
should be performed. If Numsplit = 1, then each element edge is split into 2 sub-edges. If
Numsplit = 2, then each element is split into 4 sub-edges, etc. The optional Version argument
allows the user to specify which version of STK_Adapt should be run. Possible values for
Version include "head", "4.22.0", etc.
Refine parallel command creates groups to visualize the association between mesh entities (edge,
tri, and quads) and geometric entities (curves & surfaces). There are three types of groups that
exist for each mesh entity type edge, tri, and quad. First group contains unique 1-1 map between
mesh entity and geometric entity. Note that issuing "Debug 212" command before calling the
refine parallel command, will create separate group for each geometric entity containing unique
mesh entities. Next group contains mesh entities that point to multiple geometric entities. And
the final group contains mesh entities not associated with any geometric entity.
After the Refine Parallel command finishes, the mesh in Cubit does not change, normally
because the resulting mesh would be too big to store in Cubit on a single processor. Instead, the
refined mesh is written to disk in a series of Exodus files, one per processor, using the Fileroot
argument as the root of the Exodus file names. For example, if Fileroot is "somemesh" and
Processors is 8, STK_Adapt will write out eight Exodus files named somemesh.e.8.0,
somemesh.e.8.1, â€¦, somemesh.e.8.7. These files can be kept distributed for an analysis run, or
united using the Sierra EPU command. In this example, Cubit would have written out a file
called somemesh.in.e, which contains all of the sideset, nodeset, and block definitions defined in
the Cubit session. All of these sidesets, nodesets and blocks are transferred to the refined exodus
files (somemesh.e.8.0, etc.) for use in the subsequent analysis. The somemesh.e.* files will also
contain several other blocks which correspond to geometric entities defined in somemesh.3dm to
enable the mesh to be refined to the CAD geometry, and should be ignored by downstream
applications.
Sierra STK_Adapt must be in the PATH on the computer Cubit is running on. If Sierra
STK_Adapt cannot be found, Cubit returns an error and no refinement is performed. Information
on how to download and build Sierra STK_Adapt can be found
at http://trilinos.sandia.gov/packages/stk/.

Block Repositioning
A capability to reposition blocks is provided. This capability will retain all the current
connectivity of the nodes involved. Unlike the Nodeset Move command, this command works
for blocks containing free mesh (mesh not owned by geometry.)

Block <id_range> Move <delta_x><delta_y><delta_z>

Node and Nodeset Repositioning
A capability to reposition nodesets and individual nodes is provided. This capability will retain
all the current connectivity of the nodes involved, but it cannot guarantee that the new locations

472

http://trilinos.sandia.gov/packages/stk/

Cubit 15.1 User Documentation

of the moved nodes do not form intersections with previously existing mesh or geometry. This
capability is provided to allow the user maximum control over the mesh model being
constructed, and by giving this control the user can possible create mesh that is self-intersecting.
The user should be careful that the nodes being relocated will not form such intersections.
The user can reposition nodes appearing in the same nodeset using the NodeSet Move
command. Moves can be specified using either a relative displacement or an absolute position.
The command to reposition nodes in a nodeset is:

Nodeset <nodeset_list> Move <delta_x> <delta_y> <delta_z>
Nodeset <nodeset_list> Move To <x_pos> <y_pos> <z_pos>

The first form of the command specifies a relative movement of the nodes by the specified
distances and the second form of the command specifies absolute movement to the specified
position. The third form of the command specifies a displacement with respect to a specified
surface normal.
Individual nodes can be repositioned using the Node Move command. Moves are specified as
relative displacements. The command syntax is:

Node <range> Move <delta_x> <delta_y> <delta_z>
Node <range> Move {[X <val>] [Y <val>] [Z <val>]}
Node <range> Move Normal to Surface <id> distance <val>

Nodes can also be repositioned using a location or direction specification. See Location,
Direction, and Axis Specification for details on the location and direction specification. The
command syntax is:

Node <range> Move Location <options>
Node <range> Move Direction <options>

See also Transforming Mesh Coordinates.

Mesh Pillowing
Mesh pillowing is a mesh refinement technique that inserts a layer or 'pillow' of elements around
the boundary of an enclosed mesh. It can be used to improve mesh quality while preserving the
outer boundary of the selected element set. Mesh Pillowing can be used to quickly perform a
number of meshing tasks, such as inserting a uniform boundary layer a specified distance from
an outer boundary, or inserting a ring of elements around a hole.

Figure 1: A single hex before (a) and after (b) a pillow operation. The far right (c) depicts a

pillow operation with the front surface designated as a 'through' surface.

473

Mesh Generation

During a typical pillow operation, the user selects a set of elements, called a 'shrink set', to define
what elements will be operated on. All elements on the outer boundary of the shrink set are then
shrunk towards the center of the set. New elements are then created to fill the gap between the
original boundary and the shrunk boundary. The newly created elements form the pillow around
the selected shrink set. Figure 1a and 1b show an example of a pillow operation performed on a
single hex. Geometry surfaces, or mesh element faces can be specified as through surfaces for
the pillowing operation. This means that the pillow will extend through the selected surfaces, and
no new elements will be created along them. Figure 1c shows the effect of pillowing a single hex
with one surface selected as a through surface.
In some cases a shrink set may not be valid due to the geometry of a specific region. As the
exterior nodes of the shrink set move towards the middle they must be able to maintain
appropriate geometric associations. Nodes on vertices must move along curves, nodes on curves
must move along surfaces. If there are multiple curves or surfaces along which an exterior node
might travel, then the ownership is ambiguous and the pillowing will fail.
Using the optional distance keyword with a specified value allows manual control of the
distance that each boundary element is shrunk towards the center of the shrink set. If no distance
value is specified, an appropriate value is calculated for each element. If a distance value is
specified, all newly created nodes will have their position fixed by default. This allows the user
to smooth the mesh without altering the node positions of the newly created hexes. If the
optional unfix_nodes keyword is used, this default behavior is changed, and any smooth
operations will alter the newly created node locations. By default, a smooth operation is
automatically performed following any pillow operation unless the optional no_smooth keyword
is used.
Similar analogous commands are available for creating a pillow around a set of two dimensional
faces.
Syntax:
Pillow Hex <ids> [Through { [Surface <ids>][Face <ids>][Tri <ids>] }] [Distance <value>
] [Unfix_nodes] [No_smooth]
Pillow Face <ids> [Through Curve <ids>] [Distance <value>] [Unfix_nodes]
[No_smooth]

474

Cubit 15.1 User Documentation

Figure 2: Example model using pillow operations to create ordered nodes a specified

distance around the boundary of a mesh.

Mesh Column Operations
Column operations allow users direct control over the mesh connectivity while maintaining full-
geometric associativity. Often, hex meshing schemes such as sweeping and mapping result in
mesh topology forced into unnatural shapes, such as a square shaped source surface mesh getting
swept into a circular target surface. Often forcing meshes into shapes like this results in poor
element quality because of non-optimal element angles. The Column commands allow users to
directly modify mesh topology to make minor tweaks to a mesh improving element
quality. Column operations are almost always followed by smoothing to enable element quality
improvement.

Cubit provides tools to perform insertion, deletion, swapping, grouping, and drawing of hex
columns.

• Column Insertion
• Column Deletion

475

Mesh Generation

• Column Swapping
• Column Groups
• Drawing Columns

Column Insertion
A single column can be inserted into the mesh by using the following command:

column open node <center node id> <orientation node ids>
For example, given the following meshed brick:

we issue the command, column open node 89 88 90 , to get this result:

Column Deletion
Columns can be removed with neighboring columns being joined together using collapse
commands. Collapse commands are of two types: interior and boundary.
For interior node collapse, the two nodes which are opposite on a face are combined together.
The column associated with the face is removed. Use the following command:

column collapse node <opposite node ids>
For example, given the following meshed brick:

476

Cubit 15.1 User Documentation

we issue the command, column collapse node 51 59, to get this result:

The column collapse command can be used with boundary nodes. For example, we issue the
command, column collapse boundary node 13 2 11, to get this result:

477

Mesh Generation

Column Swapping
Faces between two hex columns can be swapped using the following command:

column swap node <old edge node ids> <new edge node ids>
For example, given the following meshed brick:

we issue the command, column swap node 103 94 102 18, to get this result:

478

Cubit 15.1 User Documentation

Column Groups
A group consisting of hexes that comprise a column can be created using the following
command:

column { face <id> | edge <id1> <id2> | hex <id1> <id2> } group
Drawing Columns
Columns can be drawn using the following command:

draw column { face <id> | edge <id1> <id2> | hex <id1> <id2>}

Scaling the Number of Elements in a Hexahedral Mesh
Mesh Scaling is a tool to globally refine or coarsen a hexahedral mesh, while avoiding the 8X
multiplier required by template-based global refinement methods. Mesh Scaling works only on
all-hex meshes.
Template-based refinement methods replace each element in the mesh with a 2x2x2 template of
hexahedra, resulting in an 8X element count increase. In contrast, Mesh Scaling decomposes the
mesh into locally structured and swept sub-blocks, often called the block decomposition. Blocks
in the decompositions span over element boundaries, stopping only at the non-swept mesh
singularities (i.e. non-4-valent nodes and edges), and geometric, boundary condition, and loading
constraints on the mesh. Mesh Scaling then remeshes the entire model conforming to the blocks
in the decomposition, using the original mesh as a sizing function, multiplied by the scale factor.
Mesh Scaling allows a series of meshes to be built, each of which contain similar mesh structure,
which can be used for solution verification. For example, if input mesh has 10,000 hexahedra,
scaling with a multiplier of 2.0 will result in a mesh with approximately 20,000 hexahera, that
also has the same element orientation and approximate element sizing gradations as the original
mesh. Additional meshes can be built by scaling the original mesh again with multipliers of 4, 6,
8, etc. to generate a series of meshes. This series of meshes can then be used for solution
convergence studies at a computational cost much less than if traditional global refinement is
used.
The syntax to scale a mesh in Cubit is:

scale mesh [multiplier <double>] [minimum <int>]
[{SWEPT_BLOCKS|structured_blocks}] [feature_angle <value>] [force_structured
in {[volume <ids>] [surface <ids>]}]

479

Mesh Generation

The multiplier parameter specifies the target number of hexahedral elements to be in the mesh
after mesh scaling. If not specified, the default value for multiplier is 2.0. The locations of the
new nodes on the boundary of the mesh created during scaling will be projected to lie on the
associated CAD geometry. For example: Figure 1 illustrates an all-hex mesh associated to a
CAD model with 3025 hex elements. Figure 2 illustrates the mesh after scaling with a multiplier
of 2.0, resulting in 6804 hex elements. Note that the Scale Mesh command attempts to match the
requested multiplier as close as possible, but there is no guarantee it will match it exactly.

Figure 1. Input mesh for Mesh Scaling. The mesh contains 3025 hex elements.

480

Cubit 15.1 User Documentation

Figure 2. The mesh from Figure 1 scaled with the command "Scale Mesh Multi 2". The

resulting mesh contains 6804 hex elements.
Mesh Scaling decomposes the mesh into a block decomposition composed of either "Structured"
or "Swept" blocks. Structured block are locally a MxNxO locally structured mesh. Mesh Scaling
increases or decreases M, N, and O by small amounts to perform scaling, until the desired
multiplier is reached. For example, a structured block that is originally 3x4x10 may get scaled to
4x5x12 distributing the refinement in all 3 directions.
Swept blocks are locally single-source-to-single-target sweeps with a source meshed with quad
elements, which are swept any number of layers forming hex elements along the way. Each quad
on the source forms a column or stack of hex elements along the sweep. Mesh Scaling remeshes
the source surface with a new quad mesh using a sizing function derived from the original mesh
on the source multiplied by the scale factor. The new mesh on the source is then swept a new
number of layers which is the old number of layers multiplied by the scale factor.
Users can control what type of blocks are constructed in the block decomposition by using the
swept_blocks or structured_blocks options. If swept_blocks is specified, the block
decomposition will put swept blocks in regions where sweeps can be identified, and structured
blocks everywhere else. If structured_blocks is specified, structured blocks will be added
everywhere. In general, using swept_blocks will give you a smoother, more evenly distributed
refinement when compared to using structured_blocks. This is because by specifying
swept_blocks, there is typically a big reduction in the number of blocks in the decomposition.
With more blocks in the decomposition, the requested scale factor is often reached before all of

481

Mesh Generation

the blocks get any refinement, especially for smaller scale factors. This results in regions of the
mesh that appear to have no change. In contrast, with swept_blocks, there are typically
significantly fewer blocks in the decomposition, increasing the likelihood that all blocks will
recieve at least some refinement. However, using the structured_blocks will result in a mesh
with element orientations closer to the original mesh. This is because structured blocks are bound
to maintain any mesh singularity in the mesh (i.e. an internal edge in the mesh with something
other than 4 hexes attached). Specifying swept_blocks does not maintain all mesh singularities,
rather they are incorporated into sweptblocks, and remeshing of the source surface may introduce
a different set of mesh singularities.
The creation of swept blocks is the default if nothing is specified.
In some cases, the user may want to turn on sweptblocks for some of the model, while turning it
off for other parts of the model. If the original mesh was constructed with considerable care
given to build a structured mesh in a few small regions, turning on swept_blocks can destroy the
carefully added structure, replacing it with a pave-and-swept mesh. This can be avoided by using
the force_structured parameter. For example, Figure 3 illustrates a mesh with 2 highlighted
surfaces. Surface 34 was meshed with paving. In constrast, surface 108 was meshed with great
care from the user to ensure a very structured mesh around the holes. However, the mesh on
surface 108 does have some mesh irregularities, and the adjacent hex element structure is a swept
mesh. Therefore, by default, Mesh Scaling will detect this as a swept block. Figure 4 illustrates
the mesh you will get with the command "scale mesh multi 2". Notice that the carefully
constructed structured mesh around the holes has been replaced with a standard paved mesh.
Figure 5 illustrates the mesh from Figure 3 scaled using the force_structured option. In this
case, "scale mesh multi 2 force_structured in surface 108" was specified, allowing the mesh
on surface 34 to be scaled with a new paved mesh while allowing structured blocks to be used
near surface 108. Optionally, we also could have used the command: scale mesh multi 2
force_structured in volume 1, although this would result in maintaining all irregular nodes in
both surface 108 and 34, resulting in more blocks, and thus a less smooth result.

482

Cubit 15.1 User Documentation

Figure 3. Input mesh for Mesh Scaling. Surface 108 contains a non-mapped, but still

structured mesh. Surface 34 contains a paved mesh.

Figure 4. The mesh from Figure 3 scaled with the command "Scale Mesh Multi 2". The

structured mesh on surface 108 is replaced with a paved mesh.

483

Mesh Generation

Figure 5. The mesh from Figure 1 scaled with the command "Scale Mesh Multi 2

force_structured in Surface 108". The structured mesh in surface 108 is maintained, while
the remainder of the volume is scaled with swept blocks.

The minimum parameter provides further control allowing the user to specify the minimum
number of intervals added on curves in the block decomposition. The multiplier provided to the
mesh_scale command serves as the target on the number of elements in the output mesh. Mesh
Scaling will output a mesh with approximately multiplier*n, where n is the number of elements
in the input mesh. Depending on the structure of the mesh, for low multipliers, and if
minimum=0 is specified, there is no guarantee that every block in the decomposition will be
refined in all 3 directions. This is because the target number of elements may have been reached
before every block in the decomposition is refined in all 3 directions, leading to the unevenly
distributed refinement discussed above. To guarantee that every block will be refined in all 3
directions, the minimum parameter can be used. Specifying minimum 1 (which is the default),
will guarantee that at least one element interval will be added to every element block in all 3
directions, which guarantees that the entire domain of the mesh will be scaled by at least a little
bit. An uneven distribution of refinement is also the result if structured_blocks is specified
when you have adjacent structured blocks that have significantly different dimensions. For
example, if you get 2 adjacent structured blocks in the decomposition where the first block is
1x10x12, which is immediately adjacent to the second block which is originally 6x10x12, Mesh
Scaling could remesh the blocks as 2x11x13 and 7x11x13, which is the minimum refinement
that can be done ensuring some refinement everywhere. However, this leads to an unevenly
refined mesh.
Mesh Scaling enables solution verification by enabling easy generation of a series of similar
meshes of increasing mesh density on a model. When generating the series of meshes with mesh
scaling, each mesh in the series should be generated with a multiplier at least 2X larger than the
multiplier generating the previous mesh in the series. Less than this will likely not produce

484

Cubit 15.1 User Documentation

sufficient changes in the mesh to be significant in the solution verification. The minimum
parameter can also help to ensure that each mesh changes slightly from the previous mesh in the
series. A good set of (Multiplier,Minimum Interval) parameters for generating a series of meshes
for solution verification is:

(2X, 1) (4X, 2) (8X, 3) (16X, 4), etc.
where each multiplier is 2X the previous multiplier and the minimum interval increase is 1
more than the previous specified. However, caution must be maintained that you do not be too
aggressive with the minimum interval parameters. For example, the parameter series:

(2X, 1) (3X, 2) (4X, 3) (5X, 4) (6X, 5) (7X, 6) (8X, 7) etc.
would be too aggressive, given that the multiplier increases very slowly, while the minimum
interval increases quickly. This will cause the surface paver to be forced to generate very high
transitions in element size, often causing poor element quality or mesh generation failure. If you
must use these multipliers, then a less aggressive minimum series is recommended such as:

(2X, 1) (3X, 1) (4X, 2) (5X, 2) (6X, 2) (7X, 2) (8X, 3) etc.
For best results, never scale a previously scaled mesh. Rather, generate all meshes in the series
by scaling the original mesh using different multipliers.
Coarsening can be achieved by specifying a multiplier less than 1. For example, a multiplier of
0.9 will attempt to decrease the element count by 10%. Coarsening, however, is constrained by
the mesh irregularities and geometric, boundary condition and loading constraints. Thus
coarsening will only be possible up to the point that these constraints can still be satisfied.
Mesh Validity
After a mesh is generated, it is checked to ensure that the mesh has valid connectivity. If an
invalid mesh is formed, then CUBIT automatically deletes it. This default behavior can be
changed with the following command:

Set Keep Invalid Mesh [on|off]
The current behavior can be viewed with the following command:

List Keep Invalid Mesh
The Jacobian quality metric is also computed automatically to check quality after a mesh is
generated. If the quality is poor, a warning is printed to the terminal.

Adaptivity and Sizing Functions
Mesh Adaptivity and Sizing Functions
CUBIT provides several options for controlling the density of a mesh by adapting to various
geometric, analysis, or user-defined properties. Interval sizes are
defined automatically, explicitly, or through sizing functions. The sizing functions can be based
on the physical features of the model, a previous analysis solution, or a user-specified bias.
Adaptivity can apply to meshing either curves or surfaces.
Adaptive Curve Meshing
CUBIT provides several ways to adaptively mesh curves. Three curve meshing schemes are
provided for this purpose. They include the following schemes:

• Curvature
• FeatureSize

485

Mesh Generation

The first two schemes use characteristics of the geometric model to define element sizes. The
third scheme uses a field function typically defined from a previous analysis
solution. FeatureSize is an alpha feature and should be used with caution.
Adaptive Surface Meshing
Adaptive surface meshing in CUBIT produces a function following mesh which sizes elements
based on the value of the driving function at the spatial location at which the element is to be
placed. Adaptive surface meshing is performed using the paving, triadvance or tridelaunay
algorithms in combination with an appropriate sizing function. The types of sizing functions that
can be used are

• Bias Sizing
• Constant Sizing
• Curvature Sizing
• Linear Sizing
• Interval Sizing
• Inverse Sizing
• Super Sizing
• Test Sizing
• Exodus-based field function
• Geometry Adaptive (Skeleton Sizing)
• Geometry Adaptive for TriMesh and TetMesh Schemes

Super sizing and test sizing functions are alpha features and should be used with caution.
The procedure for adaptively meshing a surface is to designate paving, triadvance or tridelaunay
as the mesh scheme for that surface, assign sizing function types, and mesh the surface.
The command syntax of these commands is:

Surface < id > Scheme {Pave|TriAdvance|TriDelaunay}
then
Import Sizing Function '<exodusII_filename>' Block <block_id> Variable
'<variable_name>' Time <time> [Deformed]
Surface <id> Sizing Function [Type] Exodus [Min <min_value> Max
<max_value>]
or
Surface <id> Sizing Function [Type]
{Constant|Curvature|Interval|Inverse|Linear|Super|Test|None}] [Neighbor
[<max_neighbors>]]
(See note below regarding 'Neighbor' parameter)
or
Surface <id> Sizing Function [Type] Bias Start Curve <id_range> {Finish
Curve <id_range>| Factor <val>}
then
Mesh Surface <id>

Adaptive Volume Meshing
Adaptive volume meshing in CUBIT produces a function following mesh that sizes elements
based on the value of the driving function at the spatial location at which the element is to be
placed. Adaptive volume meshing is performed using the tetmesh scheme in combination with an

486

Cubit 15.1 User Documentation

appropriate sizing function. The types of sizing functions that can be used
are constant, test, geometry adaptive and geometry adaptive (skeleton sizing). Test sizing is an
alpha feature and should be used with caution. Other sizing functions will be added in future
versions of Cubit.
The procedure for adaptively meshing a volume is to designate tetmesh as the mesh scheme for
that volume, assign sizing function types, and mesh the volume.
The command syntax of these commands is:

Volume <id> scheme tetmesh
Volume <id> Sizing Function [Type] {Constant|Test|None}
Mesh Surface <id>

The following sections describe details of the various volume sizing methods.

• Constant Sizing
• Test Sizing
• Geometry Adaptive (Skeleton Sizing)
• Geometry Adaptive for TriMesh and TetMesh Schemes

Note regarding 'Neighbor' parameter:
The maximum neighbors is the number of points used by the sizing function to compute the
size at the requested point. If the number of neighbors is zero, all of the points on the boundary
are used in the size calculation. If the number of neighbors is some other number, only that
number of closest points are used in the calculation.
Bias Sizing Function
Syntax:

Surface <id> Sizing Function Type Bias Start Curve <id_range>
{Finish Curve <id_range>| Factor <val>}

Synopsis:
The Bias sizing function for surfaces is similar to biasing curves. Indeed, setting a bias sizing
function for a surface will bias the boundary curves, as well as control paving to follow the bias
inside the surface. You first specify the size of a couple of bounding curves (the start curves),
then specify the bias sizing function for the surface.
Discussion:
Recall that for biasing curves, you specify the start and end vertex. For the bias sizing function,
you specify the start curves, from which to bias away. The sizes of these curves should already
be set before setting the surface sizing function since their average size is taken to be the starting
size (almost). If the start curve sizes change, then you should set the surface sizing function
again.
You can either supply a geometric factor, or the set of finish curves whose sizes you want to
match at that distance. A geometric factor. It automatically sizes and biases or dualbiases the
non-start curves, including any finish curves. These curves need not be perpendicular to the
starting curves. The interval count and scheme are soft-set, so they won't be changed if they are
already hard-set. If the size of the start curves or finish curves are changed, then the sizing
function command should be re-issued.
The sizing function value at a point is defined in terms of the straight-line distance from the point
to the closest starting curve. So, it works best if all the starting curves have the same size, and the

487

Mesh Generation

surface is relatively flat. But, starting curves need not be parallel to one another. Similarly, the
non-start curves need not have any particular orientation wrt the start curves.
The bias sizing function was designed to easily set the sizes of a sequence of adjoining surfaces:
assign a size to the curve you want to bias away from, then set the bias sizing function of the first
surface, with its finish curves being the start curve of the second surface, etc. See the last
example below.
Examples:
Here are some example journal files and resulting pictures:

bias_sz_fn_demo.jou
brick x 100 y 10 z 10
color vol 1 red
surface 1 scheme pave
surface all except 1 visibility off
label curve interval
graph text 2
display
mesh 1
curve 4 size 2
surface 1 sizing function type bias start curve 4 factor 1.3
mesh surface 1
see figure 1

Figure 1. Surface with bias sizing function factor > 1.

mesh 2
delete mesh
surface 1 sizing function type bias start curve 4 factor {1/1.1}
mesh surface 1
see figure 2

Figure 2. Surface with bias sizing function factor < 1

mesh 3
reset
cyl rad 6 z 1
cyl rad 4 z 1
sub 2 from 1
section body 1 yplane
section body 1 xplane
surf all except 19 vis off

488

Cubit 15.1 User Documentation

color vol 1 red
display
finish curve mesh
surf 19 scheme qtri base scheme pave
surface 19 size 0.7
curve 26 size 0.07
surface 19 sizing function type bias start curve 26 finish curve 25
mesh surface 19
pause
see figure 3

Figure 3. Surface with bias sizing function start and finish curve. Scheme qtri, base scheme

pave.
dual bias mesh
delete mesh
curve 25 26 size 0.02
curve 25 26 scheme equal
surface 19 sizing function type bias start curve 26 25 factor 1.3
mesh surface 19

489

Mesh Generation

zoom curve 12
pause
see figure 4

Figure 4. Close up of surface with dual bias sizing function start and finish curve. Scheme

qtri, base scheme pave.
funny face
reset
prism sides 5 z 1 radius 1
cylinder radius 0.1 z 1
body 2 move -0.4 0 0
subtract 2 from 1
cylinder radius 0.1 z 1
body 3 move 0.2 0 0
subtract 3 from 1
prism sides 6 radius 0.2 z 1
body 4 move 0 -0.4 0
subtract 4 from 1
surface all except 34 visibility off
color vol 1 red
display
surface 34 scheme pave
curve 23 19 size 0.01
surface 34 sizing function type bias start curve 19 23 factor 1.3
mesh surface 34
see figure 5

490

Cubit 15.1 User Documentation

Figure 5. Bias away from two round holes.

bias surface chain
reset
cylinder radius 1 z 1
cylinder radius 0.2 z 1
cylinder radius 0.4 z 1
cylinder radius 0.8 z 1
imprint body all
delete body 2 3 4
section body 1 xplane
section body 1 yplane
surface all except 42 43 44 45 vis off
color volume 1 red
surface all scheme pave
curve 55 interval 36
surface 43 sizing function type bias start curve 55 factor 1.3
surface 44 sizing function type bias start curve 57 factor 1.3
curve 57 had its size determined by a prior bias sizing function
surface 45 sizing function type bias start curve 58 factor 1.3

491

Mesh Generation

surface 42 sizing function type bias start curve 55 factor 1.3
mesh surface 42 43 44 45
display
highlight curve in surface 42 43 44 45
see figure 6

Figure 6. A chain of biased surfaces. Only one curve's intervals were explicitly set.

Constant Sizing Function
Syntax:

Surface <id> Sizing Function [Type] Constant
Volume <id> Sizing Function [Type] Constant

Synopsis:
The Constant sizing function specifies that a constant element size be used over the interior of
the surface or volume. The value used as the constant size is the interval size that has been set for
the entity. For example, the following commands will cause the mesh size to be smaller on the
interior than on the surface's bounding curves.

reset
brick x 10

492

Cubit 15.1 User Documentation

surface 1 scheme pave
curve in surface 1 interval 5
surface 1 size 0.5
surface 1 sizing function constant
mesh surface 1

Figure 1. Constant Sizing Function

Curvature Sizing Function
The Curvature sizing function determines element size based on the curvature evaluation of a
surface at the current location. Two surface curvature values (taken perpendicular to each other)
are compared at the location of interest, and the largest is used as the sizing function for the
mesh. Figure 1 shows a solid with a highly deformed surface which displays rapid change of
surface curvature at several locations.

Figure 1. NURB solid with high surface curvature change

Figure 2 depicts a normal paved mesh of this surface using a common size on all bounding
curves and no sizing function in the interior. The total number of quadrilateral shell elements for

493

Mesh Generation

this case is 1988. Figure 3 shows a mesh which was generated with the curvature sizing function
option. The mesh is graded denser in the regions of quickly changing curvature, such as at the
tops of the hills and at the bottom of the valley. Due to the intense interrogation of the underlying
geometric modeler which the curvature method relies on, this option can be very computationally
expensive.

Figure 2. NURB mesh with no interior sizing function

Figure 3. NURB mesh with curvature sizing function

Exodus II-based Field Function
The ability to specify the size of elements based on a general field function is also available in
CUBIT. With this capability, the desired element size can be determined using a field variable
read from a time-dependent variable in an Exodus II file. Both quadrilateral and triangle
elements are supported for surfaces, but only tetrahedral elements are supported for volumes at
this time.
A field function is a time-dependent variable in an Exodus II file. Either node-based or element-
based variables may be used. Currently, field functions are imported from element and node-
based Exodus II data. The mesh block containing the corresponding elements must be imported
along with the field function data.
Exodus variable-based adaptive meshing is accomplished in CUBIT in several steps:

1. Surface mesh scheme set to Pave or TriMesh, and/or volume mesh scheme set to
Tetmesh.

2. An Exodus mesh and time-dependent variable for that mesh is read into CUBIT.
3. The mesh and variable data are associated to geometry.
4. The Exodus variable is normalized to give localized size measures, and the

surface/volume sizing function type is designated.
5. Geometry is meshed

494

Cubit 15.1 User Documentation

Importing a field function and associating it with its geometry, and normalizing that function are
done in two separate steps to allow renormalization. The following command is used to read in a
field function and its associated mesh:

Import Sizing Function '<exodusII_filename>' Block <block_id> Variable
`<variable_name>' Time <time_val> [Deformed]

where block_id is the element block to be read, variable_name is the Exodus time-dependent
variable name (either element-based or nodal-based),and time_val is the problem time at which
the data is to be read. The Deformed keyword indicates whether deformation has been
accounted for on the new model (for information on creating deformed 2D geometry from
EXODUSII data, see Importing 2D EXODUSII Files) and needs to be accounted for in the sizing
function data. When this command is given, the nodes and elements for that element block are
read in and associated to geometry already initialized in CUBIT.
Note that when a sizing function is read in, the mesh is stored in an ExodusMesh object for the
corresponding geometry, and therefore the geometry is not considered meshed. Also note that if
deformation is not being modeled, the geometry to which the mesh is being associated must be in
the same state as it was when that mesh was written (see Importing a Mesh for more details on
importing meshes).
Once the field function has been read in and assigned to geometry, it can be normalized before
being used to generate a mesh. The normalization parameters are specified in the same command
that is used to specify the sizing function type for the surface or volume. The syntax of this
command is:

Surface <id> Sizing Function Type Exodus [Min <min_val> Max
<max_val>]
Volume <id> Sizing Function Type Exodus [Min <min_val> Max
<max_val>]

If normalization parameters are specified, the field function will be normalized so that its range
falls between the minimum and maximum values input. Subsequent normalizations operate on
the normalized data and not on the original data. If an element-based variable is used for the
sizing function, each node is assigned a sizing function that is the average of variables on all
elements connected to that node. Nodal variables are used directly.
After the sizing function normalization, the geometry may be meshed using the normal meshing
command.
For example, the left image in Figure 1 depicts a plastic strain metric which was generated by
PRONTO-3D [Taylor, 89] a transient solid dynamics solver, and recorded into an ExodusII data
file. When the file is read back into CUBIT, the paving algorithm is driven by the function
values at the original node locations, resulting in an adaptively generated mesh [Attaway, 93].
The right image in Figure 1 depicts the resulting mesh from this plastic strain objective function.

495

Mesh Generation

Figure 1. Plastic strain metric and the adaptively generated mesh

Surface/Curve Meshing with Exodus II - based Field Functions
While adaptively meshing a surface using a field function, the curves will be meshed using the
Exodus II information. To override this, curves may have their meshing scheme set to equal or
some other desired scheme. While adaptively meshing a volume using a field function, the
surfaces and curves will be meshed using the Exodus II information. To override this for a
surface, one can set the sizing function to "none" for that surface.

Geometry Adaptive Sizing Function (Skeleton Sizing)
The Geometry Adaptive Sizing Function, also referred to as the Skeleton Sizing Function
(Quadros 2005; Quadros 2004; Quadros 2004(2)), automatically generates a mesh sizing
function based upon geometric properties of the model. This sizing scheme attempts to create a
sizing function that allows unstructured meshing schemes to generate a mesh with the following
properties:

• The sizes of the mesh elements vary smoothly throughout the mesh
• The mesh elements resolve the geometry to a sufficient degree
• The mesh elements do not over-resolve the geometry.

The geometry adaptive sizing function can be used to create sizing information for surfaces,
solids, and assemblies.
This sizing function uses geometric properties to influence mesh size. The scheme calculates or
estimates:

• 3D-proximity (thickness though the volume)
• 2D-proximity (thickness across a surface)
• 1D-proximity (curve length)
• Surface curvature
• Curve curvature.

These properties are then used to calculate a sizing function throughout the geometric entity (or
entities). Regions of relatively high complexity will have a fine mesh size, while regions of
relatively low complexity will have a coarse mesh size. For example, generally, a high-curvature
region on a surface will have a finer mesh size than a low-curvature region on that surface

496

Cubit 15.1 User Documentation

Figure 1: Overview of Computational Framework

Figure 2: Skeleton Sizing Function example in the GUI

497

Mesh Generation

Skeleton Sizing Behaviors
Skeleton sizing can be specified on single or multiple surface(s)/volume(s) at a time from the
GUI (Meshing Control Panel) or the command-line. The following describes how specifying
sizing on entities can change skeleton sizing’s behavior:
Single surfaces/volumes – If skeleton sizing is applied to surfaces/volumes one at a time, each
entity’s sizing is not influenced by the others. On the command-line, issue a separate command
for each entity. In the GUI, specify only one surface or volume before selecting “Apply Size”.
Multiple surfaces – If skeleton sizing is applied on multiple surfaces together, then geometric
features of a particular surface may affect its neighboring surfaces.
Multiple volumes (assembly sizing) – Skeleton sizing can be applied to assembly models so that
geometric features of a volume may influence its neighbors. Volumes should first be imprinted
and merged before they are specified together for skeleton sizing.
Command Line Syntax
Skeleton sizing on surfaces:
Surface <surface_id_range> Sizing Function Skeleton
{[scale <1 to 10 = 7>] [time_accuracy_level <1 to 3 = 2>]
[min_depth <3 to 8 = 5>] [max_depth <4 to 9 = 7>] [facet_extract_ang <1 to 30 = 10>]
[min_num_layers_2d < 1 to N = 1>] [min_num_layers_1d < 1 to N = 1>]
[max_span_ang_surf <5.0 to 75.0 = 45.0 degrees>]
[max_span_ang_curve <5.0 to 75.0 = 45.0 degrees>]
[min_size <float>] [max_size <float>] [max_gradient <float=1.5>]}
Skeleton sizing on volumes:

Volume <range> Sizing Function Skeleton
{[scale <1 to 10 = 7>] [time_accuracy_level <1 to 3 = 2>]
[min_depth <3 to 8 = 5>] [max_depth <4 to 9 = 7>] [facet_extract_ang <1 to 30 = 10>]
[min_num_layers_3d < 1 to N = 1>] [min_num_layers_2d < 1 to N = 1>]
[min_num_layers_1d < 1 to N = 1>]
[max_span_ang_surf <5.0 to 75.0 = 45.0 degrees>]
[max_span_ang_curve <5.0 to 75.0 = 45.0 degrees>]
[min_size <float>] [max_size <float>] [max_gradient <float=1.5>]}

The options are explained below:
Basic Arguments

• max_size (default=auto): The value for max_size is calculated automatically by default.
Users can specify any positive real number based on the dimensions of the model to
control the max size of the elements. If the skeleton sizing function creates large
elements, than this argument can be used to control the maximum element size.

• min_size(default=auto): The value for min_size is calculated automatically by default.
Users can specify any positive real number based on dimension of the model to specify
the minimum size of the elements.

• max_gradient (1.0 to 3.0, default 1.5): The transition in element size is controlled using
this parameter. Larger values of max_gradient result in fewer elements, but also lead to
more abrupt transitions in size and possibly poorer quality elements.

Scaling and Accuracy Arguments:

498

Cubit 15.1 User Documentation

• scale (1 to 10, default 7): The overall size of the elements is controlled by this argument.
A coarser mesh can be generated by increasing the value of scale up to 10.0. To get a
finer mesh, decrease the value of the scale (minimum value = 1).

• time_accuracy_level (1 to 3, default 2): This controls the computational time and
accuracy level by adjusting various internal parameters of the skeleton sizing function.
Users should try levels in increasing order. Level 1 takes the shortest time to compute the
skeleton sizing function and Level 3 takes the longest time to compute the skeleton sizing
function. However, Level 1 is less accurate than Level 2 and Level 3.

Advanced Arguments

Lattice Arguments:
The skeleton sizing function is generated and stored on a background octree grid whose cells are
subdivided based on the graphics facets of the model. The level of subdivision of the background
grid affects how well the sizing function captures the geometric complexity of features.
Reasonable defaults have been selected for the following two refinement (subdivision)
parameters, but these may be overridden for use with simple (decrease parameters) or more
complex (increase parameters) models.

• min_depth (default auto): min_depth controls the maximum cell dimension of the
background octree grid. The higher the value of min_depth, the smaller the dimension of
the maximum-sized cell. Computational time increases with increasing min_depth. By
default the min_depth is calculated based on the geometric complexity of the input model
and mesh size specified on sub-entities.

• max_depth (default auto): max_depth controls the minimum cell dimension. If the object
contains very fine features then increasing the value of max_depth is suggested. The
maximum depth has been limited to 9. By default the max_depth is calculated based on
the geometric complexity of the input model and mesh size specified on sub-entities.

• facet_extract_ang (default 10 degree): facet_extract_ang is used to control the faceted
representation of NURBS model. This option gives control of the accuracy of a faceted
approximation of the model used to compute the adaptive sizing. For models with high
curvature regions, decreasing the tolerance will give a better approximation of the
geometry and avoid the creation of random dense meshes. Note that increasing this angle
too much can generate invalid facets over curved regions, while decreasing the angle too
much can cause signficant slowdowns in sizing calculations.

Source Entity Arguments

• min_num_layers_3d (Any value greater than 1, default 1): This parameter ensures that a
minimum specified number of layers exist across the thickness of the volume. This
parameter could be useful in generating meshes for mold flow simulation.

• min_num_layers_2d (Any value greater than 1, default 1): This parameter ensures that a
minimum specified number of layers exist across the thickness of a surface.

• min_num_layers_1d (Any positive integer value, default 1): This ensures that any curve
contains a minimum specified number of intervals.

499

Mesh Generation

• max_span_ang_curve (Range 5.0 to 75.0, default 45.0): Maximum spanning angle is a
parameter that controls the mesh size at curved regions of curves. It is defined as the
angle subtended by the normals at the end nodes of the mesh edge in the curved region of
a curve. When a finer mesh is needed at curved regions of curves, then
max_span_ang_curve should be decreased.

• max_span_ang_surf (Range 5.0 to 75.0, default 45.0 deg): Maximum spanning angle is
a parameter that controls the mesh size at curved regions of surfaces. It is the angle
subtended by the normals at the end nodes of the mesh edge in a curved region of a
surface. When a finer mesh is needed at curved regions of surfaces, then
max_span_ang_surf should be decreased.

Note: These arguments override the basic arguments. For example, time accuracy level 1
internally sets min_depth = 4 and max_depth = 6, and when min_depth is set to 4 and max_depth
is set to 7 in the advanced options (recommended for models with fine features), then advanced
options override the basic options. In the command-line, to override the depths set by a
time_accuracy_level, specify min_depth and max_depth after it.
Adding User Specified Sizing Sources
Skeleton sizing function gives an option to manually add sizing sources on geometric entiies
such as vertices, curves, and surfaces. These sizing sources control the size and scope (region of
influence via num_layers) at geometric entities. The below command gives the syntax for adding
sizing sources. Please note that the below command for adding sizing sources should be called
after issuing the above given skeleton sizing command. First, the skeleton sizing command
automatically generates sizing sources based on the geometric factors such as proximity, surface
curvature, curve length, etc. Issuing the below command creates sizing sources in addition to the
automatically generated sizing sources. Finally, when the meshing command is called, the mesh
sizing function is calculated using all the sizing sources.

Volume <vol_id_range> Sizing Function Skeleton add size_source
{vertex|curve|surface} <id_range> size <double> num_layers <int>

Skeleton with Other Sizing Controls
Skeleton sizing function produces a smooth sizing function when called with other sizing
controls available in Cubit. Skeleton sizing function behaves as SOFT firmness level.
Skeleton sizing function always respects interval count specified on the curves. Skeleton
sizing function respects interval size on curves and surfaces only if it is specified after
calling the skeleton sizing function.

500

Cubit 15.1 User Documentation

Figure 3: Skeleton sizing function with other sizing controls

Limitations

• Currently, the skeleton sizing function is primarily intended for use with ACIS
models. Skeleton sizing may be used on facet-based models (STL, facet, and MBG
format) models, but results are not guaranteed. Sizing function generation with
other geometry engines in Cubit is not guaranteed or supported in Cubit 10.1.

• The skeleton sizing function has mainly been tested with trimesh and tetmesh
schemes. In general, structured or semi-structured meshing schemes do not have
enough flexibility to utilize the skeleton sizing function. It is recommended that the
skeleton sizing be used only with unstructured meshing schemes. However, if using
skeleton sizing in conjunction with the pave scheme for surfaces, decreasing the
max_gradient and scale arguments is suggested.

• For sizing function generation of assemblies in Cubit 10.1, at least
time_accuracy_level 2 is generally recommended. This helps ensure that the
geometric complexity of small features is captured. For example, “volume all sizing
function skeleton time_accuracy_level 2”

Interval Sizing Function
The Interval sizing function is similar to the Linear function, but bases edge length at a location
on the squared lengths of edges bounding the surface weighted by their inverse distance from the
current location. An example is shown below.

501

Mesh Generation

Figure 1. NURB mesh with interval sizing function, 34 by 16 density

Inverse Sizing Function
The Inverse sizing function is also similar to the Linear function, but this method bases edge
length at a location on the inverse lengths of edges bounding the surface weighted by their
inverse distance from the current location (see Figure 1). The difference between the three linear
sizing functions (Linear, Interval, Inverse) is sometimes subtle, but is driven by the geometry
being meshed since the influence of these functions is strongly controlled by the number,
positioning, and mesh density of the bounding curves relative to the interior surface area.

502

Cubit 15.1 User Documentation

Figure 1. NURB mesh with inverse sizing function, 34 by 16 density

Linear Sizing Function
The Linear class of sizing functions determines element size based on a weighted average of
edge lengths for mesh edges bounding the surface being meshed. There are several variants of
this class of sizing function. The Linear function bases edge length at a location on the lengths of
edges bounding the surface weighted by their inverse distance from the current location. The
result of this weighting is a more gradual change in mesh density during a transition between
dense and coarse mesh. Figure 1 shows the same NURB surface mesh but with intervals of 34 on
two curves and intervals of 16 on the remaining two bounding curves and no sizing function. It
can be observed that the mesh progresses more rapidly inward from the coarser meshed curves,
which locates the transition region much closer to the finer meshed curves. To combat this, the
Linear function weights the sizing of new elements such that these transitions occur slower.
Figure 2 displays two views of the same NURB geometry with the same bounding curve mesh
density using the linear sizing function.

503

Mesh Generation

Figure 1. NURB mesh with no sizing function, 34 by 16 density

Figure 2. NURB mesh with linear sizing function, 34 by 16 density

Geometry Adaptive Sizing for TriMesh and TetMesh Schemes
The TriMesh and TetMesh schemes in Cubit are based upon third party libraries known as
MeshGems that are developed and distributed by Distene. They are robust and fast triangle and
tet meshing algorithms that have built in capabilities for adaptively controlling the mesh size
based upon feature sizes. In most cases the sizing controls provided as part of the scheme

504

Cubit 15.1 User Documentation

command are sufficient to control mesh sizes. As such, the sizing functions described in this
section cannot be used with the the MeshGems triangle and tet meshing algorithms. If a sizing
function is assigned to a volume or surface, and the TriMesh or TetMesh scheme is selected,
rather than using the MeshGems algorithm for meshing the surfaces, it will automatically revert
to using the TriAdvance scheme. Any settings defined with the TriMesh or TetMesh scheme
will be ignored and the sizing function will be used to determine local mesh sizes.
When using the TriMesh and TetMesh schemes, recommended practice is to mesh all surfaces
and volumes simultaneously. This provides the greatest flexibility to the algorithms to determine
feature sizes and their effect on neighboring surfaces and volumes. The default settings for
TriMesh and TetMesh schemes will automatically provide geometry adaptive mesh sizing.
These default settings can however be adjusted by using the settings on the scheme command.
The scheme settings are described in the TetMesh and TriMesh sections of the documentation.
Mesh Deletion
Meshing a complex model often involves iteration between setting mesh parameters, meshing,
and checking mesh quality. This often requires removing mesh, for only an entity or for an entity
and all its lower order geometry, or sometimes for the entire model.
The command to remove all existing mesh entities from the model is:

Delete Mesh
The command for deleting mesh on a specific entity is:

Delete Mesh {geom_list} [Propagate]
These commands automatically cause deletion of mesh on higher dimensional entities owning
the target geometry.
If the Propagate keyword is used, mesh on lower order entities is deleted as well, but only if that
mesh is not used by another higher order entity. For example, if two surfaces (surfaces 1 and 2)
sharing a single curve are meshed, and the command "delete mesh surface 1 propagate" is
entered, the mesh on surface 1 is deleted, as well as the mesh on all the curves bounding surface
1 except the curve shared by surface 2. In some cases, the capability to delete individual mesh
faces on a surface is needed. Deleting a mesh face involves closing a face by merging two mesh
nodes indicated in the input. The syntax for this command is:

Delete Face <face_id> Node <node_id> [Node <diagonal_node_id>]
This command is provided primarily for developers' use, but also provides the user fine control
over surface meshes. At the present time, this command works only with faces appearing on
geometric surfaces and should be used before any hex meshing is performed on any volume
containing the face to be deleted.
Automatic Mesh Deletion
Cubit will automatically delete the mesh from a geometry that is about to be modified by a
geometry modification command. To change this behavior, so that Cubit will issue an error
instead of automatically deleting the mesh, use the following command.
Set Mesh Autodelete [ON|Off]

Free Meshes
A free mesh is a mesh that is not associated with any underlying geometric entities. A free mesh
contains only mesh elements (hexahedrons, triangles, edges, nodes, etc), and not volumes,

505

Mesh Generation

surfaces, etc. Since there is no underlying geometry, operations on free meshes are limited. The
following operations can be performed on free meshes in some capacity:

• Creating a free mesh
• Creating mesh-based geometry to fit a free mesh
• Mesh merging
• Mesh transformations
• Mesh smoothing
• Mesh quality operations
• Mesh refinement
• Cleaning up a free mesh
• Assigning boundary conditions
• Skinning a free mesh
• Mesh deletion
• Bottom-up element creation
• Exporting a free mesh

Creating a free mesh
A free mesh can be created in three ways.

1. Importing a mesh into Cubit using the Import Mesh [No_Geom] command. This option
is discussed in detail in Importing Exodus II Files.

2. Disassociating an existing mesh from its geometry
3. Creating a mesh with the geometry-tolerant mesh scheme

Disassociating a mesh from its geometry
The command to disassociate a mesh from existing geometry is:

Disassociate Mesh [From] {Volume|Surface|Curve|Vertex} <id_range>
For example:
brick x 10
mesh volume all
disassociate mesh from volume 1
delete volume 1
When a mesh is disassociated from its geometry, a group called 'disassociate elements' is created
to contain the free mesh.
Creating Mesh-Based Geometry to fit a Free Mesh
It is possible to create underlying mesh-based geometry to own a free mesh. It is similar in
functionality to the Import Mesh Geometry command, but it does not not require the extra
import/export step. So for example, a user would be able to read in a free mesh, fix any mesh
problems, and then create the mesh-based geometry without having to write the mesh to a file
first. The command syntax is:

Create Mesh Geometry {Hex|Tet|Face|Tri|Block} <range> [Feature_Angle
<angle=135>] [Acis] [Keep]

The command also applies to any subset of the mesh. For example, you can create mesh
geometry for a group of hexes or element blocks.

506

Cubit 15.1 User Documentation

If the keep option is specified, the mesh will be duplicated so you will have two copies of the
mesh: The original mesh and the new mesh that is owned by the new MBG geometry. If the keep
option is not specified, the existing mesh will be reused, and duplicate elements will not be
created. Elements will now be owned by the new MBG geometry. The command will check for
mesh ownership and will issue warning and enable the keep option if the mesh is owned. The
keep option is not specified by default.
Also note that any genesis entites defined on the free mesh will be maintained with this option.
The genesis entities will not however be transfered to the new MBG entities and will not be used
as criteria for building the new MBG geometry. Other options such as creating a spline
representation and building geometry from genesis entities are not supported in this command.
Exporting the free mesh and reimporting using "import mesh geometry" may be an option if
these features are desired.
The Acis option will attempt to create ACIS geometry from the mesh. This option is an alpha
feature and can only be used if developer commands have been turned on. For more detail see:
Acis Geometry From Mesh
Merging a free mesh
To merge two free meshes, the equivalence command may be used. The command syntax is:

Equivalence Node <range> [Tolerance <value>]
All nodes in the given range that are within the specified tolerance will be merged. For example:
br x 10
volume 1 copy move x 10
mesh volume all
disassociate mesh from volume 1 2
delete volume 1 2
equivalence node all tolerance 0.05
merges all nodes that are within 0.05 of each other
Free Mesh Transformation Operations
Mesh transformations for free meshes are achieved through the use of the group transformation
commands, given in Basic Group Operations. All members of a free mesh are automatically
assigned to a group. These groups can then be modified using group operations. The following
command sequence illustrates how transformations might be applied to a free mesh.
brick x 10
mesh volume 1
disassociate mesh from volume 1
delete volume 1
group disassociated_elements move x 10
group disassociated_elements rotate 15 about x
group disassociated_elements scale 0.25
group disassociated_elements reflect 1 1 0
group 'node_group' add node 1 to 121
group node_group move z 5
##The moved nodes do not also move the attached geometry, as one might expect.
If a group is composed of mesh entities, these commands will only operate on the nodes in the
group. All nodes of the group will be moved, scaled, rotated, or reflected as specified. If there are
no nodes in the group, Cubit will return an error. Including all nodes in the group will transform

507

Mesh Generation

the whole model. Including only a subset of nodes will transform those nodes and their enclosed
elements, but it will not transform the whole mesh.
Disassociated mesh elements cannot be copied using the Group copy commands. To create a
copy they must be exported and reimported. Alternatively, they can be associated with mesh-
based geometry, and then copied using the typical copy commands.
Extruding Mesh Elements
Mesh elements can be extruded to create new elements from existing nodes, edges, faces or
triangles. A direction or curve can be used to specify how the elements are created. The distance
parameter is optional and if not specified the length of the given direction will be used instead.
Specifying a value for the layers option determines how many elements will be created in the
given distance. Twist can also be specified and requires an angle of twist and a twist axis.
Create Element Extrude {Node|Edge|Face|Tri} <element_list> {Direction <options>|Along
Curve <curve_list>} [Distance <value>] [Layers <num_layers] [Twist <angle> Axis
<axis_options>]
#Extrude a face in a given direction:
create node location 0 0 0
create node location 1 0 0
create node location 1 1 0
create node location 0 1 0
create face node 1 to 4
create element extrude face 1 direction 0 0 1 distance 3 layers 3
create element extrude face 1 direction 0 0 1 distance 3 layers 3 twist 90 axis direction 0 0 1
origin 0 0 0
#Sweep face along curve
create node location 0 0 0
create node location 1 0 0
create node location 1 1 0
create node location 0 1 0
create face node 1 to 4
create vertex location position 0 0 0
create vertex location position 0 .2 1
create vertex location position 0 1 2
create vertex location position 0 3 2
create vertex location position 0 4 1
create vertex location position 0 5 0
create curve spline vertex 1 2 3 4 5
create element extrude face 1 layers 5 along curve 1

508

Cubit 15.1 User Documentation

Figure 1. Extruding mesh elements along a spline

Offsetting Mesh Elements
Faces and triangle elements can be used to create hexahedral and wedge elements from an offset
command. The default offest direction is normal to the selected face. The Oppposite_normal
option will use the reverse direction. The layers parameter determines how many elements will
be created in the given direction.

Create Element Offset {Face|Tri} <element_list>
[Normal_to|Opposite_normal] {Distance <value>] [Layers <num_layers>]

#Create wedge and hex elements from face and tri elements via offset
create node location 0 0 0
create node location 1 0 0
create node location 1 1 0
create node location 0 1 0
create node location 2 0 1
create node location 2 1 1
create node location 1 2 0
create face node 1 to 4 create face node 3 2 5 6
create tri node 7 4 3
create tri node 7 3 6
create element offset face all tri all distance 3 layers 3 opposite_normal
Revolving Mesh Elements
Elements can be created by revolving an existing element around a given axis. The Attempt_fix
parameter will try to fix any poorly formed hex elements by collapsing them into wedge
elements. Angle determines the amount of rotation around the axis. The Layers option
determines how many elements will be created in the given rotation.

509

Mesh Generation

Create Element Revolve {Edge|Face|Tri} <element_list> Axis <axis_options>
Angle <angle> [Layers <num_layers>] [Attemp_fix]

#Revolve 2 faces around the Y-axis and collapse inner hexes to wedges
create node location 0 0 0
create node location 1 0 0
create node location 1 1 0
create node location 0 1 0
create node location 2 0 0
create node location 2 1 0
create face node 1 2 3 4
create face node 2 5 6 3
create element revolve face 1 2 axis 0 1 0 angle 180 layers 4 attempt_fix

Figure 2. Revolving free mesh elements to create hex and wedge elements

Smoothing a free mesh
Interior nodes can be smoothed using commands such as smooth hex all, or smooth tet all in
block 100. These commands will smooth only the interior node on the elements used in the
command. The nodes on the boundary will remain unchanged. To smooth nodes on a boundary,
the target smoothing option can be used. Targeted smoothing allows the user to smooth a group
of mesh elements to a surface or curve that is not their owner. Targeted smoothing is discussed
under Mesh Smoothing. The following sequence of commands illustrate the capability of
smoothing a free mesh to a target surface.
sphere rad 25
webcut vol 1 plane xplane offset 18
delete vol 2
webcut volume 1 plane yplane offset 8
webcut volume 1 plane yplane offset -8
delete vol 1 3

510

Cubit 15.1 User Documentation

surf 16 copy
delete vol 4
surf 18 scheme pave
surf 18 size 2
mesh surf 18
disassociate mesh surf 18 ##Mesh and geometry overlap
refine face 1 radius 3
set developer on ## Smoothing free mesh is a developer command
smooth face all scheme laplacian
##Smoothed mesh is away from surface
smooth face all scheme laplacian target surface 18
##Smoothed mesh is aligned with surface

Figure 3. Smoothing without a target (above) and smoothing to a target surface (below).

Mesh quality on a free mesh
The mesh quality checks for a free mesh are the same as for other geometry-based meshes. The
difference is in how you specify elements in the command. Instead of specifying volumes or
surfaces you would specify groups of hexes, faces, tris, or tets. Examples are given below:
quality hex all
quality face all scaled jacobian
quality tet 1 to 100 draw mesh
Mesh refinement on a free mesh
Refinement for a free mesh is limited to refinement of mesh elements. Refinement may be
accomplished by specifying groups of mesh elements which to refine using the regular
refinement options. For boundary elements, the refinement scheme will use averaging methods
to determine node placement, in the absence of a boundary geometry to define node placement.
Cleaning up a free mesh
A free tet mesh may be cleaned up using the Cleanup Tet command. For example
cleanup tet all
#cleans up all tets

511

Mesh Generation

cleanup tet 1 to 1000
#cleans up all tets in the range [1,1000]
It is best to specify contiguous sets of elements for this command.
Assigning boundary conditions
Assigning boundary conditions on free meshes can be accomplished by explicitly specifying
mesh elements, by creating a sideset or block from the skin of a group of elements, or by creating
groups based on feature angle using the seed method. Once the group is created it is easy to
assign it to a nodeset or sideset.
Cubit will respect block, nodeset, and sideset data that is associated with an imported free mesh,
or disassociated mesh. The following command sequence illustrates how the group seed
operation could be used for assigning boundary conditions on free meshes.
##Creating blocks, nodesets and sidesets on free meshes
cylinder radius 3 z 12
volume 1 size 0.5
mesh volume 1
disassociate mesh from volume 1
delete volume 1
group 'mygroup1' add seed face 752 feature_angle 45
##Groups all faces on the cylindrical surface
group 'mygroup2' add seed face 752 feature_angle 45 divergence
##Groups only faces within 45 degrees of seed face
sideset 1 group mygroup1
sideset 2 group mygroup2
block 1 hex all
draw sideset 1
draw sideset 2
draw block 1

512

Cubit 15.1 User Documentation

Figure 4. Grouping faces on free meshes using the seed method. The feature angle method
is used on the left with a feature angle of 45 degrees. On the right is the result if using the

divergence method.
Even though boundary conditions can be defined directly only on geometry entities, these
geometry-based BCs will be maintained on the free mesh following the disassociate command.
The following command line sequence illustrates this capability.
##Respecting blocks, nodesets and sidesets in mesh elements after disassociation
brick x 10
mesh vol 1
sideset 1 surface 1
nodeset 1 curve 1
block 1 volume 1
disassociate mesh from volume 1
draw sideset 1
draw nodeset 1
draw block 1
Skinning a free mesh
The skin command takes a list of mesh elements and returns the triangles and faces on the
boundary of that group. The group of elements returned from the command can be assigned to
either a group, sideset, or block. Free meshes can be skinned by specifying either a list of
hexahedra, a list of tetrahedra, or a list of blocks.
Deleting free mesh elements
Typically meshes are deleted by specifying owning geometry. For free meshes, the meshes
cannot be deleted in this fashion. Instead, the mesh may be deleted using the Delete mesh
command. The syntax is:

513

Mesh Generation

Delete Mesh
This command will delete all mesh entities in the entire model. To specify groups of elements for
deletion, you can use the individual deletion commands. The command to delete a group of free
mesh elements is:

Delete {Node|Hex|Tet|Face|Tri} <id_range> [No_propagate]
When deleting elements, the default behavior will be that the child mesh entities will be deleted
when they become orphaned. For example, when a hex is deleted, if its faces, edges and vertices
are no longer used by adjacent hex elements, then they will also be deleted. The no_propagate
option will leave any child mesh entities regardless if they become orphaned.
Bottom-up element creation
Bottom-up mesh element creation methods are available for free meshes. The difference between
element creation methods for free meshes versus associated meshes is that the free meshes
commands do not have a command option to associate the elements with an owning body.
Otherwise the commands are identical to mesh element creation commands for associated
meshes. The command syntax for free meshes is:

Create Node <x> <y> <z>
Create {Hex|Tet|Tri|Face|Edge} Node <id_range>

Exporting free meshes
Free meshes can be exported as ExodusII files. All elements belonging to any block are
exported. Any elements not belonging to a block will not be exported (i.e. Cubit will not assign
default blocks).

Skinning a Mesh
The Skin command takes a range of hexahedra, tetrahedra, blocks, or volumes and generates a
collection of triangles or quadrilaterals on the exterior of the volumetric elements. This is the
skin mesh.
Skin {Block|Volume} <range> [Individual] [Nomake]
Skin {Element|Hex|Tet|Wedge|Pyramid|Face|Tri|Block|Volume} <range> [Nomake]
Skin {Element|Hex|Tet|Wedge|Pyramid|Face|Tri|Block|Volume} <range> [Make
{Block|Sideset [<id>] |Group [<name>|<id>]}
Skin {Element|Hex|Tet|Wedge|Pyramid|Face|Tri|Block|Volume} <range> {Add|Replace}
{Block|Sideset [<id>] |Group [<name>|<id>]}
The Individual keyword tells Cubit to skin Blocks or Volumes, one by one independently of
each other, even if they share merged surfaces.
The Nomake keyword tells Cubit to not create any kind of grouping of the mesh faces resulting
from the skinning operation.
If the Make option and its arguments are present, then the specified object (block, sideset or
group) receives the skin mesh. The command fails if an object with the optional identifier
already exists. If the object identifier is omitted, the identifier is set to the next object of that
type. The skin mesh is stored in the next available sideset if the Make option is missing.
Another command form has two options, Add and Replace. Each option has a required,
associated identifier. If the identifier is missing or invalid, the command fails. The Add option
appends the skin mesh to the object. The Replace option removes any existing mesh from the
object before adding the skin mesh.

514

Cubit 15.1 User Documentation

The skin mesh will respect the merged volumes. If two adjacent volumes are merged, the skin
mesh will not include the merged surface. If the volumes are not merged, each volume will
generate a separate skin surface. If volumes are not merged, they are treated separately. The skin
command will also respect any number of interior voids. All surface elements will be oriented
forward with respect to the originating volumes.
The primary use for the skin command is to generate surface meshes of quads or tris for sidesets
and remeshing.
For Face and Tri elements (2d elements), the skin is a set of edges (1d elements.) The skin for
3d elements is a set of 2d elements.

Mesh Import
Importing a Mesh

• Importing 2D Exodus II Files
• Importing Exodus II Files
• Importing Patran Files
• Importing I-DEAS Files
• Importing Abaqus Files
• Importing Nastran Files
• Importing Fluent Files

ExodusII finite element data files can be imported into CUBIT. Several options for importing the
mesh are available, (including mesh transformations):

• Importing a free mesh without geometry.
• Importing a free mesh and associating the mesh with ACIS-based geometry currently

residing in CUBIT.
• Importing a 2D mesh and constructing ACIS-based Geometry
• Importing a mesh and constructing Mesh-Based Geometry from dihedral angles and

boundary conditions.
• Importing a preview mesh.

Importing 2D Exodus Files
CUBIT has a limited capability to create ACIS Geometry from 2D ExodusII finite element mesh
files. (For a more general capability, see the Import Mesh Geometry command, which will create
Mesh-Based Geometry).
To import a 2D Exodus II file and create ACIS geometry, the following command can be used:

Import Free Mesh '<filename>' {Time <t> | Step <step#> | Last}
CUBIT can create ACIS geometry from 2D Exodus II data files (4, 8, or 9 node QUAD or
SHELL element types) that do not have enclosed voids (holes surrounded by mesh) and which
were originally generated with CUBIT and exported to ExodusII with the Nodeset Associativity
option set to on. The Nodeset Associativity command records the topology of the geometry into
special nodesets which allow CUBIT to reconstruct a new solid model from the mesh even after
it has been deformed. The new solid model of the deformed geometry can be remeshed with

515

Mesh Generation

standard techniques or meshed with a sizing function that can also be imported into CUBIT from
the same ExodusII file. CUBIT's implementation of the paving and triadvance algorithms can
generate a mesh following a sizing function to capture a gradient of any variable (element or
nodal) present in the ExodusII file.
In order for this feature to be effective, the following commands must be issued when the mesh
is exported and later imported:

nodeset associativity on
set associativity complete on

The first command ensures that the geometry will be correctly recovered from the mesh, while
the second ensures that boundary condition and material IDs will be recovered.

Importing Abaqus Files
The command to import a mesh from an Abaqus format file is:

Import Abaqus [Mesh Geometry] '<input_filename>' [Feature Angle
<angle>] [Nobcs]

Including the keyword Mesh Geometry will instruct CUBIT to create mesh-based geometry.
This will provide the user with the ability to remesh geometric entities. If the user does not
import with the Mesh Geometry flag, he will have to tell CUBIT to draw the mesh after the
import is done in order to view it.
The Feature Angle is used when building the surface topology to determine when to split a
surface into two surfaces. If the angle between two neighboring element normals is less than
Feature Angle, then the two elements will be placed on separate surfaces. If the keyword Feature
Angle is not supplied, the default 135 degrees is used. For a description of importing mesh
geometry see Importing Exodus II Files.
The keyword nobcs can be included if boundary conditions are not to be imported.
The Abaqus importer can import the following Abaqus file formats: flat file, part-independent,
and part-dependent.
It should be noted that CUBIT sometimes cannot successfully generate mesh-based geometry for
complex models. If this occurs, import the mesh without the Mesh Geometry flag, and draw the
mesh to view it.
To list Abaqus cards supported by Cubit:

List Abaqus Import Cards
This command will list out all supported Abaqus cards that CUBIT can interpret.
Table 1. Supported Element Types

 1st Order 2nd Order

Triangle
S3

CAX3
CPE3

STRI65
CAX6
CPE6

Quadrilateral
S4

CAX4
CPE4

S8
CAX8
CPE8

Tetrahedron C3D4 C3D10
Hexahedron C3D8 C3D20

516

Cubit 15.1 User Documentation

Line Element

B21
B31

T2D2
T3D2

SPRINGA
SPRING1
SPRING2

B22
B32

T2D3
T3D3

See http://www.simulia.com/ for more information on the ABAQUS file format.

Importing Exodus II Files

• Importing a Free Mesh without Geometry
• Importing a Free Mesh onto Existing Geometry
• Creating Mesh-based Geometry on Import

The commands to import meshes from an Exodus II format file are:
Import Mesh '<exodusII_filename>' [Block <block_ids>] [Unique Genesis
IDs] [Shell] No_Geom [group_name '<free_mesh_group_name>']] [[Time
<time>|Step <step>|Last] [Scale <value>]]
Import Mesh '<exodusII_filename>' [Block <block_ids>] [Unique Genesis
IDs] [Shell] [{Group|Body|Volume|Surface|Curve|Vertex} <id_range> |
Preview]
Import Mesh Geometry '<exodusII_filename>' [Block <id_range>|ALL]
[Unique Genesis IDs] [Start_id <id>] [Use [NODESET|no_nodeset]
[SIDESET|no_sideset] [Feature_Angle <angle>]
[LINEAR|Gradient|Quadratic|Spline|Acis] [Deformed {Time <time>|Step
<step>|Last} [Scale <value>]] [MERGE|No_Merge] [Export_facets <1|2|3>]
[Merge_nodes <tolerance>]

Related Commands:
Import Mesh Geometry (options)
Import Free Mesh (2D)
Delete Mesh Preview
Export [Genesis | Mesh] '<filename>'
List Import Mesh NodeSet Associativity
List [Export Mesh] NodeSet Associativity
[Set] Import Mesh NodeSet Associativity [ON|off]
[Set] [Export Mesh] NodeSet Associativity [on|OFF]
Transforming Mesh Coordinates
Set Import Mesh [Vertex] [Curve] [Surface] Tolerance <distance>
Set Import Mesh NodeSet Order [On|Off]
List Import Mesh NodeSet Order

517

http://www.simulia.com/

Mesh Generation

Importing a Free Mesh Without Geometry
The command to import a free mesh from an Exodus II format file without mesh-based geometry
is:

Import Mesh '<exodusII_filename>' [Block <block_ids>] [Unique Genesis
IDs] [Shell] No_Geom [group_name '<free_mesh_group_name>']] [[Time
<time>|Step <step>|Last] [Scale <value>]]

When a free Exodus II mesh is imported into Cubit, it contains no geometric or topological
information. Previously, the user could either associate that mesh with existing geometry, or
build mesh-based geometry to fit the mesh. A third option, as of Cubit 11.1, allows the user to
retain the disassociated mesh as a free mesh inside Cubit.
A free mesh may be modified as described in the Free Mesh section of the documentation. This
includes limited access to smoothing, renumbering, transformations, refinement, mesh quality,
and other mesh centric operations.
When an Exodus II File is imported as a free mesh, Cubit will automatically create a group
called "free_elements" to contain the free mesh elements.
Deformation information can be read in via the Time/Step/Last and Scale parameters.
Note: The Import Mesh [No_Geom] command is not to be confused with the Import Free
Mesh command which applies only to 2D Exodus II Files.The term "Free Mesh" in both places
of the documentation refers to the same thing - a mesh without geometry. However, in the case
of all other import mesh commands, the imported free mesh ends up associated with geometry.
The Import Mesh [No_Geom] is the only way to import a free mesh that remains disassociated
from geometry.
Importing a Mesh Onto Existing Geometry
The command to import a free mesh from an Exodus II format file and associate it with existing
geometry is:

Import Mesh '<exodusII_filename>' [Block <block_ids>] [Unique Genesis
IDs] [Shell] [{Group|Body|Volume|Surface|Curve|Vertex} <id_range> |
Preview]

The user can import a mesh from an Exodus II file and associate the mesh with matching
geometry. The resulting mesh may then be manipulated normally. For example, the mesh may
be smoothed or portions of it deleted and remeshed. The user can save their work by exporting
the geometry and mesh, and then restore the geometry and mesh later. In some cases, saving and
restoring can be faster or more reliable than replaying journal files.
Saving and importing a mesh may be useful for teams working on creating a conforming mesh of
a large assembly so that they can pass information to one another. For example, a team member
can export the mesh on the surfaces between two parts, and another team member import the
mesh for use on an adjoining part of the assembly.
As of cubit version 7.0, any higher order elements, block definitions, nodesets, and sidesets are
retained on import.

Importing a Mesh with Nodeset Associativity
Meshes can be imported into CUBIT that contain nodeset associativity data used for defining
finite element boundary conditions. If an exported CUBIT mesh is going to be imported back
onto the same geometry, then before exporting the user should issue the following command:

518

Cubit 15.1 User Documentation

set export mesh nodeset associativity on
This causes extra nodeset data to be written, which associates every node to a geometric entity,
resulting in an import which is more reliable. When importing, if the user does not want to use
the nodeset associativity data that exists in a file, then before importing the following command
should be used:

set import mesh nodeset associativity off
The user may wish to turn geometry associativity off if, for example, the geometry is no longer
identical as a result of curves being composited, or CUBIT names changed due to a ACIS
version changes.

Importing a Mesh onto Modified Geometry
Although there are some exceptions, CUBIT requires that the mesh be imported onto the same
geometry from which it was exported.
Since merge information is not stored with the ACIS representation, care should be taken that the
geometry is merged the same way on export and import of the mesh. If not, importing the mesh
one block at a time in successive commands may increase the chance of a successful import, at
the cost of more memory and time.
Between exporting and importing a mesh, the geometry may be modified slightly by compositing
entities. Mesh import will, however not be successful if entities are partitioned or a body
is webcut. In some cases mesh import may be successful on modified geometry if the new
vertices match up exactly with nodes of the mesh, and the new curves match up exactly with
edge chains of the mesh. Unless this criteria is met, associating the mesh with the geometry will
be unsuccessful.

Mesh Import Tolerance
To change the tolerance with which imported mesh must line up with geometry issue the
command:

Set Import Mesh [Vertex] [Curve] [Surface] Tolerance <distance>

Specifying a Portion of the Mesh to be Imported
The Block option in the Import Mesh command indicates that only the specified element block
should be imported from the Exodus II file. In the same manner, the Volume and other geometry
options provide a way to import the nodes and element on the indicated geometry. If neither
a block nor a geometry entity is specified, then the entire mesh file is read.
If a block is specified without specifying a geometry entity, associativity or proximity is used to
determine which volume the block elements should be associated with. If a block and a volume
are specified, the block elements are associated with the specified volume, provided they actually
match. If a volume is specified without a block, associativity data is used to find a block
corresponding to the given volume.

Unique Genesis IDs and Shell Options
The Unique Genesis IDs option is used to preserve ids in the genesis file in the case that id
overlap exists when importing into CUBIT. This can occur when importing into an active session
where CUBIT ids have already been assigned.

519

Mesh Generation

The Shell Option is used as a flag to alert the program that there are shell elements in the file.
Shell elements can not always be detected by the import program, and this ensures that the shell
elements will be included in the model.

Nodeset Ordering
If the Import mesh NodeSet Order flag is on, the nodesets will be read in a manner which allows
them to be associated with existing geometry. This means the nodesets are assumed to be in
ascending order. If the flag is set to false, the goemetry nodesets in imported mesh files are
assumed to be in random order. This value is on by default, and should not need to be changed
by the user.
Creating Mesh-Based Geometry on Import
CUBIT's mesh generation tools require an underlying geometry representation. In most cases,
the ACIS solid modeling engine, compiled with CUBIT, is used to represent the geometry.
However, in some cases, an ACIS representation is not available, and a previously developed
finite element mesh is the only available representation of the model. In order to utilize CUBIT's
mesh generation tools, the import mesh geometry command provides an option for creating
geometry directly from the finite element mesh.
The import mesh geometry command will create a new volume for every block defined in the
Exodus II file. It will also create curves, surfaces and vertices at appropriate locations on the
model based on dihedral angles (also called feature angles) and assigned nodesets and/or
sidesets. The mesh used to construct the geometry will be owned by the new geometric entities.
This means that the mesh can be deleted, remeshed, or smoothed using any of CUBIT's meshing
tools by simply using the new geometry definition. CUBIT will assign appropriate intervals to
the new curves as well as determine an acceptable meshing scheme for surfaces and volumes.
The command to import a finite element mesh from an ExodusII format file and generate
geometry from the mesh is:

Import Mesh Geometry '<exodusII_filename>'
[Block <id_range>|ALL] [Unique Genesis IDs] [Start_id <id>] [Use
[NODESET|no_nodeset] [SIDESET|no_sideset] [Feature_Angle <angle>]
[LINEAR|Gradient|Quadratic|Spline|Acis] [Deformed {Time <time>|Step
<step>|Last} [Scale <value>]] [MERGE|No_Merge] [Export_facets <1|2|3>]
[Merge_nodes <tolerance>]

File Name
Type the name of file to import in single quotation marks. The file must reside in the current
directory. For information on changing the current directory, see CUBIT environment
commands. To list all the files in the current directory, type ls at the command prompt.

Blocks
Use this option to select the specific blocks to be imported from the Exodus II file. If no blocks
are entered, then all blocks will be read and imported from the file. Standard ID parsing can also
be used in this argument to select a range of blocks. For example "1 to 5" or "1, 5 to 10 except
6".
Each unique block selected to be imported will define a new body in the geometric model.
Figure 1 shows a simple example of the geometry generated from the 3D finite element mesh.

520

Cubit 15.1 User Documentation

Figure 1. Example of mesh based geometry (right) created from a finite element mesh (left)
Blocks may be composed of 1D, 2D or 3D elements. For blocks composed of 2D elements (i.e.
QUAD4, SHELL etc.), a sheet body will be created. One dimensional elements (i.e.. BEAM,
TRUSS, etc.) will define curves. Where a block may be composed of more than one
disconnected sets of elements, one body will be created for each continuous region of elements
assigned to the same block. Where possible, the ID of the new body will be the same as the block
ID. Since IDs must be unique, if a body ID is already in use, the next available ID will
automatically assigned by the program.

Unique Genesis IDs
The Unique Genesis IDs option is used to preserve ids in the Cubit session in the case that id
overlap exists when importing an Exodus II file. This can occur when importing into an active
session where ids for blocks, nodesets or sidesets have already been assigned. The default
behavior, when ID collisions occur, is to include any new entity into the existing block nodeset
or sideset. If the Unique Genesis IDs option is used, Cubit will automatically generate a unique
ID for any block, nodeset or sideset imported. A report of the collisions and their new IDs will be
displayed on import in the command window.

Start ID
Use this option to specify an alternate ID value for imported mesh entities. The specified value
will be used as the starting ID for BOTH nodes and mesh elements. The new IDs will be
assigned consecutively from the starting value. If the new ID values for any of the imported
entities would conflict with existing IDs, the command does not abort but moves the starting ID
for all element types to the same useable starting ID value.

Nodesets/Sidesets
Use the nodeset and sideset options to use any nodeset and sideset information in the Exodus II
file in constructing geometry. Recall that nodesets and sidesets are generic boundary condition
data assigned to nodes, edges or faces of the finite elements. It is useful to group mesh entities
belonging to unique boundary conditions into geometric entities. This permits the user to remesh
a particular region of the model without having to reassign boundary conditions.

521

Mesh Generation

If the nodeset and sideset arguments are given, geometric entities will be generated for each
unique set of nodes, edges or element faces assigned to a nodeset or sideset. The default is to use
any nodeset and sideset information available in the file. Figure 2 shows an example of how
nodeset and sideset information might be used to generate geometry.

Figure 2. Example of geometry created from mesh entities assigned to nodesets (3) and

sidesets (1 and 2).
Upon import, nodesets and sidesets are automatically created with the appropriate geometric
entities assigned to them. The IDs of the new geometric entities, if generated from boundary
condition data, will be the same as the nodeset and sideset IDs. Where doing so would conflict
with existing geometric IDs, the program will automatically select the next available ID.

Feature Angle
Use this option to specify the angle at which surfaces will be split by a curve or where curves
will be split by a vertex. 180 degrees will generate a surface for every element face, while 0
degrees will define a single, unbroken surface from the shell of the mesh. The default angle is
135 degrees.

Figure 3. Example use of Feature Angle

Figure 3 shows an example of the use of different feature angles. On the left is a simple two-
element hex mesh. Specifying a feature angle greater than 120 degrees would create the
geometry in the center image. Using a feature angle less than 120 degrees and greater than 90
degrees would define the geometry on the right.

Smooth Curves and Surfaces
This argument allows the option of using a higher-order approximation of the surface when
remeshing/refining the resulting geometry. Default is to use the original mesh faces themselves
as the curve and surface geometry representation. If the finite element model to be imported is to
represent geometry with curved surfaces, it may be useful to select this option. If selected, it will

522

Cubit 15.1 User Documentation

use a 4th order B-Spline approximation to the surface [Walton,96]. Figure 4 shows the effect of
the smooth curve and surface option.

Figure 4. Effect of Smooth Curve and Surface Option for remeshing of mesh-based

geometry
In this figure the top image is the original finite element mesh imported into CUBIT. In this
example both models have been remeshed with the same element size. The difference is that the
figure on the right uses the smooth curve and surface option. While this option can improve the
surface representation, it should be noted that memory requirements and meshing times can
sometimes be affected.
If importing the Exodus II file using the command line, other options for surface representations
are also available.

[LINEAR|Gradient|Quadratic|Spline|Acis]
The method used from the GUI is either Linear or Spline. The Gradient and Quadratic
methods are still somewhat experimental and may not be as general purpose as the Spline
representation. The Acis option will attempt to create ACIS geometry from the mesh. This option
is an alpha feature and can only be used if developer commands have been turned on. For more
detail see: Acis Geometry From Mesh

Apply Deformations
This option permits the user to import time-dependant deformation information from the Exodus
file. For this option, any vector data in the Exodus II file is assumed to be deformation
information. If selected, deformations will be applied to the nodes upon import. Enter a specific
time step value, integer step, or the last time available in the file. If time-dependant data is
available in the Exodus II file, selecting the down arrow in the edit field will display the
available time steps in the file. Default time is the last time step.

523

Mesh Generation

Figure 5. Example of remeshing of a deformed finite element mesh

Figure 5 shows an example of using Mesh-Based Geometry for a large deformation analysis. In
this case, the analysis [Attaway et. al.,98] began and continued until mesh quality became
unacceptable. At that point, the mesh was imported into CUBIT and geometry re-created from
the computed deformations. The finite element mesh could then be removed, remeshed or
improved and written back to an Exodus II file. After remapping [Wellman,99] the appropriate
analysis variables back to the mesh, the analysis could then be restarted. This process was
repeated multiple times until the desired results were achieved.
Note: Care should be taken when using large deformations, as inverted elements (negative
Jacobians) may produce unpredictable results with the resulting geometric representation.
Also available is an optional scale factor. This applies the indicated scale to all deformations.
Default is 1.0.

Merge
This option allows the user to either merge or not merge the resulting volumes. The default
option is to merge adjacent volumes. This results in non-manifold topology, where neighboring
volumes share common surfaces. Using the no_merge option, adjacent volumes will generate
distinct/separate surfaces.

Merge Nodes
The merge_nodes option will allow the user to specify a different tolerance for merging nodes
on import. The default value is 1e-6.
Note: Care should be taken when setting import merge tolerances. Setting a tolerance too low
will not merge adjacent nodes. Setting the tolerance too high can produce undesirable results,
and severely tangle the mesh.

Export Facets
[export_facets <1|2|3>]

This is primarily a debug option available only from the command line. This option will export
the shell of the Exodus mesh to an ASCII file in the form of facets. The resulting file can be
imported to Cubit using the "Import Facets" command. Export options: 1 = export only the
exterior facets to file "facets.shell"; 2 = export only the interior facets between element blocks to
file "facets.inter"; 3 = export all boundary facets to file "facets.all".

524

Cubit 15.1 User Documentation

Importing I-DEAS Files
The command to import a mesh from an I-DEAS format file is:

Import Ideas [Mesh Geometry] '<input_filename>' [Feature Angle <angle>]
[Nobcs]

Including the keyword Mesh Geometry will instruct CUBIT to create mesh-based geometry.
This will provide the user with the ability to remesh geometric entities. If the user does not
import with the Mesh Geometry flag, he will have to tell CUBIT to draw the mesh after the
import is done in order to view it.
The Feature Angle is used when building the surface topology to determine when to split a
surface into two surfaces. If the angle between two neighboring element normals is less than
Feature Angle, then the two elements will be placed on separate surfaces. If the keyword Feature
Angle is not supplied, the default 135 degrees is used. For a description of importing mesh
geometry see Importing Exodus II Files.
The keyword nobcs can be included if boundary conditions are not to be imported.
It should be noted that CUBIT sometimes cannot successfully generate mesh-based geometry for
complex models. If this occurs, import the mesh without the Mesh Geometry flag, and draw the
mesh to view it.
To see more information on the I-DEAS file format, visit their website at www.siemens.com.

Importing Nastran Files
The command to import a mesh from an Nastran format file is:

Import Nastran [Mesh Geometry] '<input_filename>' [Feature Angle
<angle>] [Nobcs]

Including the keyword Mesh Geometry will instruct CUBIT to create mesh-based geometry.
This will provide the user with the ability to remesh geometric entities. If the user does not
import with the Mesh Geometry flag, he will have to tell CUBIT to draw the mesh after the
import is done in order to view it.
The Feature Angle is used when building the surface topology to determine when to split a
surface into two surfaces. If the angle between two neighboring element normals is less than
Feature Angle, then the two elements will be placed on separate surfaces. If the keyword Feature
Angle is not supplied, the default 135 degrees is used. For a description of importing mesh
geometry see Importing Exodus II Files.
The keyword nobcs can be included if boundary conditions are not to be imported.
It should be noted that CUBIT sometimes cannot successfully generate mesh-based geometry for
complex models. If this occurs, import the mesh without the Mesh Geometry flag, and draw the
mesh to view it.
See http://en.wikipedia.org/wiki/Nastran for more information on the NASTRAN file format.

Importing Patran Files
The command to import a mesh from an Patran format file is:

Import Patran '<neutral_filename>'
Import Patran Mesh Geometry '<neutral_filename>' [Use [Feature_Angle
<angle>] [Linear|Gradient|Quadratic|Spline]]

525

http://www.siemens.com/
http://en.wikipedia.org/wiki/Nastran

Mesh Generation

See Importing Exodus II Files for a description of the import options.
For more information on the Patran file format, see their website at www.mscsoftware.com.

Importing Fluent Files
The command to import a mesh from a fluent format file is:

Import Fluent [Mesh Geometry] '<input_filename>' [Feature Angle <angle>]
[nobcs]

Including the keyword Mesh Geometry will instruct CUBIT to create mesh-based geometry.
This will provide the user with the ability to remesh geometric entities. If the user does not
import with the Mesh Geometry flag, he will have to tell CUBIT to draw the mesh after the
import is done in order to view it.
The Feature Angle is used when building the surface topology to determine when to split a
surface into two surfaces. If the angle between two neighboring element normals is less than
Feature Angle, then the two elements will be placed on separate surfaces. If the keyword Feature
Angle is not supplied, the default 135 degrees is used. For a description of importing mesh
geometry see Importing Exodus II Files.
The keyword nobcs can be included if boundary conditions are not to be imported.
It should be noted that CUBIT sometimes cannot successfully generate mesh-based geometry for
complex models. If this occurs, import the mesh without the Mesh Geometry flag, and draw the
mesh to view it.

526

http://www.mscsoftware.com/

FINITE ELEMENT MODEL
Finite Element Model

• Global Element IDs
• Exodus Boundary Conditions
• Non-Exodus Boundary Conditions
• Exporting the Finite Element Model

This chapter describes the techniques used to complete the definition of the finite element model.
The definitions of the basic items in an Exodus database are briefly presented, followed by a
description of the commands a user would typically enter to produce a customized finite element
problem description, and how to export the finite element model.

Exodus
Element Block Specification

• Creating Blocks
• Assigning a Name or Description to an Element Block
• Defining the Element Type
• Default Element Blocks
• Duplicate Block Elements
• Assigning Attributes
• Displaying Blocks
• Deleting Blocks
• Renumbering Element Blocks
• Automatically Assigning Mesh Edges to a Block (Rebar)
• Creating Spider Blocks
• Creating Beam Blocks
• Creating Spring Blocks
• Creating Sphere Blocks
• 2d Elements
• Mixed Element Output
• Adding Materials to a Block

Element blocks are the method CUBIT uses to group related sets of elements into a single entity.
Each element in an element block must have the same basic and specific element type.
The preferred method for defining blocks is to use geometric entities such as volumes, surfaces
or curves. Blocks can also be defined using mesh entities. If a block is defined at a geometric
entity, each of the elements owned by the geometry are automatically assigned to the block.
Deleting or remeshing the geometry automatically changes the set of elements grouped into the
block. If mesh entities are used to specify a block, deleting the mesh will also delete the elements
from the block.
Some important notes regarding Element Blocks are as follows:

• Multiple volumes, surfaces, and curves can be contained in a single element block
• A volume, surface, or curve can only be in one element block

527

Finite Element Model

• Element Block id's are arbitrary and user-defined. They do not need to be in any
contiguous sequence of integers.

• Element Blocks can be assigned a single floating point number, referred to as the block
Attribute; this number is used to represent the length or thickness of Bar and Shell
elements, respectively. The attribute defaults to 1.0 if not specified.

Creating Element Blocks
Element blocks are defined with the following Block commands.

Block <block_id> [ADD|Remove] {Vertex | Node} <range>
Block <block_id> [ADD|Remove] {Curve | Edge} <range>
Block <block_id> [ADD|Remove] {Surface | Face | Tri} <range>
Block <block_id> [ADD|Remove] {Volume | Hex | Tet | Pyramid | Wedge}
<range>
Block <block_id> [ADD|Remove] Group <range>

These commands define blocks based on a list of geometric or mesh entities. A block can only
hold entities of the same dimensionality. For example, a block defined to hold vertices and nodes
cannot also hold hexes. The above commands reflect this restriction. This restriction also applies
when adding entities using groups. When creating a block using a group containing entities of
different dimensionality the behavior is undefined.
Adding geometric entities to a block effectivily adds all mesh entities of the same dimensionality
contained in the geometric entity to the block. For example, adding a volume to a block adds all
hexes, tets, pyramids and wedges contained in the volume to the block. Removing geometry
entities works in the same manner. Thus the following commands:

Block 1 add volume 1
Block 1 remove hex 1

Creates block 1 containing all of the hexes, tets, pyramids and wedges in volume 1 except for
hex 1.
When a mesh entity, or a meshed geometric entity is put into a block, it is assigned a Global
Element ID which is exported to the exodus file for tracking during analysis.
Assigning a Name or Description to an Element Block
The following commands can be used to assign a name or description to an element block.
Assigning a name to a block can be more intuitive than using traditional integer IDs, and the
name and description are preserved in DART metadata-enabled applications (like SIMBA). This
command is also available for nodesets and sidesets.

Block<ids> Name "<new_name>"
Block<ids> Description "<description>"

Defining the Element Type
Each block must have a specific element type associated with it. To assign an element type to a
block, use the following command:

Block <block_id_range> Element Type <type>
Available element types are defined by the Exodus II file format specification (Schoof, 95).
CUBIT supports the following element types:

Nodes: SPHERE SPRING

528

Cubit 15.1 User Documentation

Curves: BAR BAR2 BAR3 BEAM BEAM2 BEAM3 TRUSS TRUSS2 TRUSS3
SPRING
Surfaces: QUAD QUAD4 QUAD5 QUAD8 QUAD9 SHELL SHELL4 SHELL8
SHELL9 HEXSHELL TRI TRI3 TRI6 TRI7 TRISHELL TRISHELL3
TRISHELL6 TRISHELL7
Volumes: HEX HEX8 HEX9 HEX20 HEX27 PYRAMID TETRA TETRA4
TETRA8 TETRA10 TETRA14

If the element type is not assigned for an element block, it will be assigned a default type
depending on which type of geometry entity is contained in the block. The default values used
for element type are:

Volume: 8-node hexahedral elements (HEX8) will be generated for hex meshes.
TETRA4 will be generated for tet meshes.
Surface: 4-node shell elements (SHELL4) will be generated for quad meshes and
TRISHELL3 for tri meshes.
Curve: 2-node bar elements (BAR2) will be generated.
Node: 1-node elements (SPHERE) will be generated.

Higher order nodes are moved to curved geometry by default. To change this, use the following
command:

set Node Constraint [ON|off|smart]
On means higher order nodes snap to curved geometry. Off means the nodes retain their
positions. “smart” means higher order nodes will only snap to geometry if they do not cause
quality problems after being moved. Nodes that cannot be moved without causing quality
problems are placed at the average location of the element nodes: for edges, this means on the
line containing the edge; for 2d elements, this usually means on the plane containing the element.
Several examples of specifying various types of element blocks are given in the Appendix.
Default Element Blocks
When exporting an ExodusII file, if the user has not specified any Element Blocks, by default
element blocks will be written for any meshed volumes. This default behavior can be changed, to
write surface, volume, or no meshes by default. This option can be set using the command

Set Default Block [ON|off|Volume|Surface|Curve]
Default behavior, ON, is for the blocks to automatically be written based on their owning
geometry. When the OFF setting is used, only the mesh contained in blocks created by the user
will be exported. Mesh not in an element block at export time, will not be exported. The export
will still succeed and no error will be thrown. If Volume is specified, only elements contained in
volumes will have default blocks specified. Similarly, the Surface or Curve argument indicates
that only surfaces or curves containing elements will use default blocks, respectively.
When default blocks are used, the IDs for the resulting blocks will be the ID of the owning
geometry.
Duplicate Block Elements
By default, any given element cannot be included in more than one block. However, when using
the following command, an element may be included in more than one block. Please note, since
material properties are assigned to blocks, using this command to allow duplicate block elements
may result in an element being assigned to multiple materials.

Set Duplicate Block Elements {on|OFF}

529

Finite Element Model

Cubit stores only a single Global Element ID (GID) for each element. If an element is placed into
more than one block, when the model is exported to Exodus, new additional GIDs will be
assigned to the element for each additional block that an element is in. These additional GIDs are
exported to the exodus file, but Cubit currently only stores and tracks the first GID assigned.
Assigning Attributes to Blocks
It may be necessary to associate attributes with a specific element block. Attributes are generally
integer or floating point values that represent some physical property in the region occupied by
the block, such as material properties or shell thickness. To assign an attribute to an element
block, use the following command:

Block <block_id_range> Attribute <value>
The default number of attributes of an element block is dependent on the element type of the
element block. Except for the element blocks of the element types below, all element blocks
contain zero attributes by default.

Element Type Number Default Attributes

SPHERE 1

BAR 3

BEAM 7

TRUSS 1

SPRING 1

SHELL 1

TRISHELL 1

To assign more attributes than the number of default attributes use the following command:
Block <id_range> Attribute Count <1-20>

CUBIT will store up to 20 attributes per block. Specify the maximum number of attributes to be
stored on the block with this command. Once this command has been executed, individual
attributes may be set using the following command:

Block <id_range> Attribute Index <index> <value>
The index is an integer from 1 to the maximum count specified in the Block Attribute Count
command. The value may be any valid floating point number.
Displaying Element Blocks
Blocks can be viewed individually with CUBIT by employing the following command:

Draw Block <block_id_range> [Color <color_spec>] [add] [thickness [offset
[scale <val>] | include_normal]]

For blocks that are of type SHELL and TRISHELL or one of its variants including the
[thickness] keyword and parameters will result in the blocks being color-coded by shell thickness

530

Cubit 15.1 User Documentation

with a corresponding color bar. Blocks can be drawn with their specified thickness, so they
visually have a thickness. This thickness can also be scaled in the draw command. Arrows
defining the shell normal direction will be displayed as well as a legend showing the thickness
values.
Block colors can also be changed using the following command:

Color Block <block_id_range> {color|Default}
Deleting Element Blocks
All Nodesets, Sidesets and Blocks may be deleted from the model using the following command:

Reset Genesis
To remove only Blocks, the following may be used:

Reset Block
To remove a specific block, use:

Delete Block <block_id_range>
Renumbering Element Blocks
The block renumber command gives the user the ability to renumber blocks to fit the user's
needs. The command is:

Block <id_range> renumber start_id <id> [uniqueids]
The id_range must include existing entities or the command will fail.
The start_id plus the number of entities must specify a new id space that does not overlap with
the existing block ids. In other words, if the current block numbers are 100, 105, 106, and 109, a
start_id of 102 would suggest new block numbers of 102, 103, 104, and 105. This would cause
an id space conflict and the command will fail.
If the user specifies the uniqueids option, then the new entity id space must not conflict with the
existing id space of all blocks, nodesets, and sidesets.
Example:
Assume:
block ids: 100, 105, 106, 109

block all renumber start 20
block 20 renumber start 24
After commands:
block ids: 21, 22, 23, 24
To renumber the elements within a block, see the renumber command

Automatically Assigning Mesh Edges to a Block (Rebar)
After a mesh has been defined within a volume, it may be useful to use the existing mesh edges
as the basis for an element block. Such an element block might be composed of bars or truss type
elements that might propagate through a solid medium such as rebar placed in reinforced
concrete. Although the Block <id> Edge <range> command could be used for this task, it
would prove extremely tedious defining the individual edges to add to the block. To make this
process easier, the following command can be used:

531

Finite Element Model

Rebar Start <x> <y> <z> Direction <x> <y> <z> [Length <value>] Block
<id> [Element Type
{bar|bar2|bar3|BEAM|beam2|beam3|truss|truss2|truss3}]

The Rebar command allows the user to specify a starting location for a set of edges and an
initial direction. The program will find the closest existing node in the mesh to Start <x> <y>
<z> and begin propagating through the mesh in the specified Direction <x> <y> <z>, adding
edges to the block as it propagates through the mesh. The edge that is attached to the last node
and is within a fixed 30 degrees of the specified direction is added to the block. The Propagation
of the edges continues until either the optional Length value is reached or an edge does not meet
the Direction criteria. Also required with this command is a block ID. An Element Type can
also be specified.
Similarly, you can use the following command which will use the 30 degree cone described
above to gather edges from a surface into a single block using the Cartesian x, y, and/or z
vectors.

Rebar Surface <range> [x] [y] [z] Block <id> [Element Type
{bar|bar2|bar3|BEAM|beam2|beam3|truss|truss2|truss3}] [Propagate]

Diagonal and Orthogonal Rebar Blocks
Another method for generating rebar blocks include the Diagonal/Orthogonal option. This
command can only be used on surfaces that have been meshed with the mapping scheme. This
command will create a block of edges from the mapped mesh by starting in one corner and
gathering edges orthogonally, or creating new edges diagonally based on the option specified,
using the parametric coordinate system dictated by the mapping scheme on the surface. The
spacing option dictates how many edges are skipped over before starting the next set of rebar
edges.

Rebar Surface <range> {Diagonal|Orthogonal} [Spacing <int>] [Block <id>
[Element Type {bar|bar2|bar3|BEAM|beam2|beam3|truss}]

CUBIT> rebar surf 1 diagonal spacing 2 block 2

532

Cubit 15.1 User Documentation

CUBIT> rebar surf 1 orthogonal spacing 3 block 3

Specifying a set of nodes
A final rebar option allows the user to create or group rebar edges into a specified block using
nodes. Edges are created, or gathered, using the ordered list of nodes specified in the command.

Rebar Node <range> [Target Block <id>] [Element Type
{bar|bar2|bar3|BEAM|beam2|beam3|truss}]

CUBIT> rebar node 113 105 97 89 81 73 65 57 49 target block 1

A related command for creating curve geometry directly from mesh edges is the Create Curve
from Mesh command. See Curve creation for more details.
Creating Spider Blocks
The block creation tool also allows the user to create a special block of bar elements that can be
used as part of the boundary specification. This command creates beam type elements directly
without creating any underlying geometry.

533

Finite Element Model

The command for creating this type of block is:
Block <id> Joint {Vertex <id> | Node <id> }Spider
{Surface|Curve|VertexFace|Tri|Node} <range> [preview] [Element Type
{bar|bar2|bar3|BEAM|beam2|beam3|truss|truss2|truss3}]

The joint node is the starting location of the bar elements and the spider location is the
terminating location of the bar elements. You can specify the terminating location as either a
node, vertex, geometric surface or the face of a mesh entity. Some analysis codes refer to these
bar elements as tied contacts or rigid bar elements. They can be used to tie models together or to
enforce specific kinds of boundary conditions. For example, in the figure below a block of beam
elements is used to tie a node at the center of the circle to every node on the edge of the
circle. This arrangement can be used to enforce circularity but still allow for displacement of the
entire circle. This may occur if there are additional structures above the cylinder that are being
excluded from the current finite element model. The beam elements were created by a series of
commands of the form

block 10 joint node 1 spider node 2
The preview option can be included to draw the location of the beam blocks on the screen
without actually executing the command.
When specifying vertex ids, please know the bar elements will be tied to the nodes associated
with the vertex, not the vertex itself.

Figure 1. Beam elements created with the Spider command

Creating Beam Blocks
Properties for blocks that are beam types (beam, beam2, beam3) have additional commands to
define a cross-sectional area. The following command can be used to change the type of cross-
sectional area of a beam block:

Block <id> beam_type {CIRCLE|box|rectangle|pipe|ibeam|general}
The dimensions are set by listing them after the keyword beam_dimensions:

534

Cubit 15.1 User Documentation

Block <id> beam_dimensions <values>
The order in which the values need to be specified are described in the chart below.
If the solver used is to integrate over the section during the simulation, turn section_integration
on using the following command:

Block <id> section_integration {ON|off}
The beam normal vector is a vector normal to the plane of motion and tangent to the first
bending axis. This vector can be set using the following command:
Block <id> beam_normal <x><y><z>

Section Profile Order to Specify Dimensions
Circle Radius
Pipe Outer radius, wall thickness
Rectangle Width, height

Box Total width, total height, thickness (right), thickness (top),
thickness (left), thickness (bottom)

I-Beam
Distance to bending axis (from bottom), total height, bottom
width, top width, thickness (bottom), thickness (top), thickness
(web)

General Area, Ixx, Ixy, Iyy, Polar moment of inertia (J)
Creating Spring Blocks
Spring blocks that will be exported to Abaqus can contain additional properties related to Abaqus
springs. Users can specify the spring type, stiffness, and DOFs associated with Abaqus
springs. The spring type mapping to Abaqus elements is in the following table.

CUBIT Block Spring Type Abaqus Element Type
Node_to_node SPRINGA
Node_to_node SPRING1
Node_to_ground_fixed SPRING2
The spring type is set using the spring_type keyword. In order to use this command, the block
must already have an element type of “SPRING.” If a DOF is associated with a spring, the
spring_dof_1 keyword is used to specify the DOF on the first node and spring_dof_2 is used to
specify the DOF on the second node (SPRING2 only).

Block <id> [spring_type {NODE_TO_NODE | node_to_node_fixed_axis |
node_to_ground}] [stiffness <k>] [spring_dof_1 <n>] [spring_dof_2 <n>]

Creating Sphere Blocks
Sphere elements are created in CUBIT by inserting either nodes or vertices into a block.

Block <id> {node|vertex} <id_range>
The command above causes CUBIT to internally create a sphere element and associate it to the
inserted node, or to the node associated to the inserted vertex.

Example:
brick x 10
vol all size 5
mesh vol all
create vertex 0 0 10
#{sph_vtx_id=Id("vertex")}

535

Finite Element Model

mesh vertex {sph_vtx_id}
#{sph_nd=Id("node")}
block 1 volume 1
block 2 vertex {sph_vtx_id}
block 3 joint node {sph_nd} spider surf 1
locate sphere all

The example commands above will generate the model illustrated in the figure below.

Figure 2. A sphere element created and connected to a solid mesh with 2d elements.

You can interact with sphere elements in Cubit with the commands below:
locate sphere <id_range>
draw sphere <id_range>
highlight sphere <id_range>
list sphere ids
list sphere <id_range>

2D Elements
CUBIT is a 3d mesh generator by default. Element types, by default, are respectively
TRISHELL and SHELL for triangle and quad elements. If a 2d mesh is desired, blocks types
must be explicitly set to TRI or QUAD.

Example:
create brick x 10
surface 1 scheme trimesh
mesh surface 1
block 1 surface 1
block 1 element type tri
export mesh "mymesh.exo"

536

Cubit 15.1 User Documentation

Sideset 1 will be based on the TRI and QUAD elements in blocks 1 and 2, with the side
numbering referring to the edges of the triangles and quads.
Mixed Element Output
The Set Block Mixed Output command controls the behavior of blocks containing different
element types when exporting in a file format that doesn't support blocks with mixed element
types. If DEGENERATE, all elements will be exported in one block, but tets and pyramids will
be written as degenerate hexes, and triangles will be written as degenerate quads. If OFFSET (set
by default), then new element blocks will be created separating the types. Hex and Quad blocks
retain the block id, whereas tets, triangle, pyramids and wedges get put into other blocks. The ids
of the other blocks are based on the block id plus the offset for that type. Those values are set
using the offset commands.

Set Block Mixed Element Output { OFFSET | Degenerate }
Set Block Triangle Offset <value>
Set Block Tetrahedron Offset <value>
Set Block Pyramid Offset <value>

Adding Materials to a Block
Block <id> Material <id|'name'>

If a material is assigned to an element block, the material properties will be associated with the
block's elements when the mesh is exported. If no material is assigned to a block, a default
material will be used during export.

Exodus II File Specification
Exodus II Manual
The full Exodus II manual is available from the web.
Element Block Definition Examples

Multiple Element Blocks
Multiple element blocks are often used when generating a finite element mesh. For example, if
the finite element model consists of a block which has a thin shell encasing the volume mesh, the
following block commands would be used:

Block 100 Volume 1
Block 100 Element Type Hex8
Block 200 Surface 1 To 6
Block 200 Element Type Shell4
Block 200 Attribute 0.01
Mesh Volume 1
Export Genesis `block.g'

This sequence of commands defines two element blocks (100 and 200). Element block 100 is
composed of 8-node hexahedral elements and element block 200 is composed of 4-node shell
elements on the surface of the block. The "thickness" of the shell elements is 0.01. The finite
element code which reads the Genesis file (block.g) would refer to these blocks using the
element block IDs 100 and 200. Note that the second line and the fourth line of the example are
not required since both commands represent the default element type for the respective element
blocks.

537

http://endo.sandia.gov/SEACAS/Documentation/exodusII.pdf

Finite Element Model

Surface Mesh Only
If a mesh containing only the surface of the block is desired, the first two lines of the example
would be omitted and the Mesh Volume 1 line would be changed to, for example

Mesh Surface 1 To 6.

Two-dimensional Mesh
CUBIT also provides the capability of writing two-dimensional Genesis databases similar to
FASTQ. The user must first assign the appropriate surfaces in the model to an element block.
Then a Quad* type element may be specified for the element block. For example

Block 1 Surface 1 To 4
Block 1 Element Type Quad4

In this case, it is important for users to note that a two-dimensional Genesis database will result.
In writing a two-dimensional Genesis database, CUBIT ignores all z-coordinate data. Therefore,
the user must ensure that the Element Block is assigned to a planar surface lying in a plane
parallel to the x-y plane. Currently, the Quad* element types are the only supported two-
dimensional elements. Two-dimensional shell elements will be added in the near future if
required.

Exodus II Model Title
CUBIT will automatically generate a default title for the Genesis database. The default title has
the form:

cubit(genesis_filename): date: time
The title can be changed using the command:

Title '<title_string>'

Exodus Coordinate Frames
CUBIT allows the user to define coordinate systems (frames) that are written to an Exodus II
file. These coordinate frames are generally used as reference coordinate systems during analysis.
In CUBIT, the user may define multiple exodus coordinate frames. When created, a coordinate
frame is assigned an id. Exodus coordinate frames can be created using x-y-z coordinates, nodes
or vertices with the following commands:

Exodus Create Coordinate Frame
<xval> <yval> <zval>//origin
<xval> <yval> <zval> //z-axis
<xval> <yval> <zval> //xz-plane
[tag { 'R' | 'C' | 'S' }]
Exodus Create Coordinate Frame Node
<node_origin_id>
<node_zaxis_id>
<node_xzplane_id>
[tag { 'R' | 'C' | 'S' }]
Exodus Create Coordinate Frame Vertex
<vertex_origin_id>

538

Cubit 15.1 User Documentation

<vertex_zaxis_id>
<vertex_xzplane_id>
[tag { 'R' | 'C' | 'S' }]

Using the 'tag' option specifies the type of coordinate frame, i.e., rectangular (R), cylindrical (C)
or spherical (S). The default coordinate frame type is rectangular. Exodus coordinate frames may
also be listed and deleted using the commands below:

List Exodus Coordinate Frame [ids] [<frame_id>]
Delete Exodus Coordinate Frame [ids] [<frame_id>| all]

Any exodus coordinate frames that exist at the time the exodus file is exported will be written
out in the exodus file.

Defining Materials and Media Types
Materials can be defined in CUBIT and assigned to element blocks. If an element block is
exported without a material assigned to it, a default material (with properties for common steel)
will be exported for it.

Create Material [id] [Name <'name'>] [Elastic_modulus <value>]
[Poisson_ratio <value>] [Shear_modulus <value>] [Density <value>]
[Specific_heat <value>] [Conductivity <value>] [User constants <value ...>]
[DepVar <value>]
Modify Material <id_list|'name'|all> [Name <'name'>] [Elastic_modulus
<value>] [Poisson_ratio <value>] [Shear_modulus <value>] [Density
<value>] [Specific_heat <value>] [Conductivity <value>] [User constants
<value ...>] [DepVar <value>]
Create Media [id] [Name <'name'>] [Fluid|Porous|Solid]
Modify Media <id_list|'name'|all> [Name <'name'>] [Fluid|Porous|Solid]

Materials can be created with any number of the following material properties:

• Elastic modulus
• Poisson Ratio
• Density
• Specific Heat
• Conductivity
• Shear Modulus (must satisfy E = 2G(1+v))
• User Constants
• DepVar (Only written to Abaqus file)

Media types include:

• Fluid
• Porous
• Solid

Any properties that are not initialized by the user will have a default value of 0.
Materials and media types can be listed and deleted using the following commands:

539

Finite Element Model

List Material <id_list|'name'|all>
Delete material <id_list|'name'|all>
List Media <id_list|'name'|all>
Delete Media <id_list|'name'|all>

Materials and media can be added to an existing block using the following command:
Block <id> Material <id|'name'>
Block <id> Media <id|'name'>

Exodus Boundary Conditions
Sandia's finite element analysis codes have been written to transfer mesh definition data in
the ExodusII file format (citation Schoof, 95). The ExodusII database exported during a CUBIT
session is sometimes referred to as a Genesis database file; this term is used to refer to a subset
of an Exodus file containing the problem definition only, i.e., no analysis results are included in
the database.
The ExodusII database contains mechanisms for grouping elements into Element Blocks, which
are used to define material types of elements. ExodusII also allows the definition of groups of
nodes and element sides in Nodesets and Sidesets, respectively; these are useful for defining
boundary and initial conditions. Using Element Blocks, Nodesets and Sidesets allows the
grouping of elements, nodes and sides for use in defining boundary conditions, without storing
analysis code-specific boundary condition types. This allows CUBIT to generate meshes for
many different types of finite element codes.
Element Blocks
Element Blocks (also referred to as simply, Blocks) are a logical grouping of elements all having
the same basic geometry and number of nodes. All elements within an Element Block are
required to have the same element type. Access to an Element Block is accomplished through a
user-specified integer Block ID. Typically, Element Blocks can also be assigned material
properties to associate material properties with a group of elements.
Nodesets
Nodesets are a logical grouping of nodes accessed through a user-specified Nodeset ID. Nodesets
provide a means to reference a group of nodes with a single ID. They are typically used to
specify load or boundary conditions on portions of the CUBIT model or to identify a group of
nodes for a special output request in the finite element analysis code.
Sidesets
Sidesets are another mechanism by which constraints may be applied to the model. Sidesets
represent a grouping of element sides and are also referenced using an integer Sideset ID. They
are typically used in situations where a constraint must be associated with element sides to
satisfactorily represent the physics (for example, a contact surface or a pressure.
Element Types
The basic elements used to discretize geometry were described in the mesh generation chapter.
Within each basic element type, several specific element types are available. These specific
element types vary by the number of nodes used to define the element, and result in different
orders of accuracy of the element. The element types available for each basic element type
defined in CUBIT are summarized in the following table. For a description of the node and side
numbering conventions for each specific element type, see the Appendix. Element types can be
set for individual Element Blocks, either before or after meshing has been performed. Higher-

540

Cubit 15.1 User Documentation

order nodes are created only when the mesh is being exported to the Exodus II file, and persist in
the CUBIT database after file export.
Table 1. Element Types Defined in CUBIT

Basic
Element

Type

Specific Element
Type Notes

Edge BAR, BEAM Bars have 2 DOF's per node,
Beams 3

Triangle

TRI, TRI3, TRI6,
TRI7, TRISHELL,
TRISHELL3,
TRISHELL6,
TRISHELL7

Tri element nodal coordinates
are always 3D.

Quadrilateral

QUAD, QUAD4,
QUAD8, QUAD9;
SHELL, SHELL4,
SHELL8, SHELL9

Quad element nodal
coordinates are 2D, that is their
nodes contain only x and y
coordinates. Shell element
nodal coordinates are 3D.

Tetrahedron TETRA, TETRA4,
TETRA8, TETRA10

TETRA8 contains vertex nodes
and mid-face nodes,
experimental element used in
Sandia FEA research

Hexahedron HEX, HEX8, HEX20,
HEX27

Nodeset and Sideset Specification

• Creating Nodesets and Sidesets
• Assigning Names and Descriptions to Nodesets and Sidesets
• Grouping Faces on a Surface into a Sideset
• Deleting Nodesets and Sidesets
• Renumbering Nodesets and Sidesets
• Displaying Nodesets and Sidesets
• Nodeset Associativity Data
• Equation-Controlled Distribution Factors
• Nodesets/Sidesets/Blocks Behavior with Geometric Entity Copy

Boundary conditions such as constraints and loads are applied to the finite element model
using nodesets or sidesets, also known as Genesis entities. Rather than attempting to maintain
specific boundary condition information, such as load, temperature, constraint, etc., Genesis
entities are the generic vehicle for the user to set up boundary conditions on the model. Nodes,
elements and element faces are instead grouped together and assigned unique IDs. Node, element
and face IDs assigned to Genesis entities can then be written to the Exodus II mesh file. Once

541

Finite Element Model

imported to the intended analysis application, the nodeset and sideset IDs can be appropriately
interpreted as specific physical boundary conditions.
The preferred method for creating Genesis entities is to assign vertices, curves, surfaces or
volumes to a specific nodeset or sideset ID. Any mesh entity owned by the geometric entity in a
nodeset or sideset is automatically assigned to the same nodeset or sideset. This allows greatest
flexibility in generating and updating the finite element mesh. For example, if a surface belongs
to a specific sideset, remeshing the surface will automatically delete any old faces from the
sideset and add the faces of the new mesh.
In some cases, the geometric model does not provide enough resolution to define the desired
boundary conditions. In this case, the model may be partitioned using CUBIT's virtual geometry
features. Where this may not be feasible, mesh entities can also be added directly to the desired
nodeset or sideset. Where individual mesh entities have been added to nodesets or sidesets,
deleting the mesh will also remove these elements from the Genesis entity. If the geometry is
remeshed, the new mesh entities must also be added once again to the nodesets or sidesets.
Nodesets can be created from groups of nodes categorized by their owning volumes, surfaces,
curves or vertex. Individual nodes may also be added to a nodeset. Nodes can belong to more
than one nodeset.
Sidesets can be created from groups of element sides or faces categorized by their owning
surfaces or curves or by their individual face IDs. Element sides and faces can also belong to
more than one sideset.
Creating Nodesets and Sidesets
Nodesets and Sidesets are created in CUBIT by assigning the appropriate geometry or mesh
entities in the model to a nodeset or sideset ID. The following commands can be used:

Nodeset <nodeset_id> [ADD|Remove] {Curve | Surface | Volume | Vertex |
Node} <range>
Sideset <sideset_id> [ADD|Remove] Group <id_range>
Sideset <sideset_id> [ADD|Remove] {Curve|Surface|Edge|Face|Tri}
<id_range>
Sideset <sideset_id> [Add] Edge <id_range> [wrt {{Tri|Face} <id_range> | all
}]
Sideset <sideset_id> [Add] Face <id_range> [wrt {Hex <id_range> | all}]
Sideset <sideset_id> [Add] Tri <id_range> [wrt {Tet <id_range> | all}]
Sideset <sideset_id> [Add] Surface <id_range> [wrt {{Volume|Surface}
<id_range> | all}] [FORWARD|Reverse|Both]
Sideset <sideset_id> [Add] Curve <id_range> [wrt {Surface <id_range> | all}
]

Like element blocks, Nodesets and Sidesets are given arbitrary, user-defined ID numbers. If
there are no user-defined Nodesets or Sidesets, none are written to the Exodus II file.
With Sidesets, direction is often important. For surfaces, the direction may be specified using
the Forward, Reverse, or Both options. The Forward option will write a sideset in relation to
hexes in the surface's forward volume, which is the volume that the surface's normal points away
from. The Reverse option will write a sideset in relation to hexes in the surface's reverse volume,
which is the volume that the surface's normal points into. The Both option will allow sidesets to
be written in relation to the hexes that lie in volumes on both sides of the surface. The default
is Forward. The user can additionally specify the volume from which the hexes should be taken
in relation to by using the wrt Volume option.

542

Cubit 15.1 User Documentation

Direction is equally important for curves in Sidesets. The wrt Surface option allows the user to
indicate which surface's faces will be included in the Sideset. The wrt All option will include all
faces attached to the curve. The default is wrt All.

Useful hint:
When creating nodesets and sidesets it is often userful to use the Extended Command Line Entity
Specification. Here is an example that creates a nodeset which includes all the nodes on the
exterior of the geometry:

Create the geometry
Create brick x 10
Create cylinder height 10 radius 2
Move volume 2 z 10
Merge the geometry
Merge volume all
Mesh the geometry
Mesh volume all
Create a nodeset that includes only those nodes
located on the exterior of the geometry
Nodeset 1 add surface in volume all with not is_merged

The following commands remove nodes from the nodeset that belong to a surface. Continuing
from the previous example:

Remove surface 2 from the nodeset
Nodeset 1 remove surface 2
Remove nodes from the nodeset
that belong to the curves that bound surface 2
Nodeset 1 remove node in curve in surface 2

Nodes can also be added or removed based upon their coordinates. Here is an example that
removes all the nodes with a z coordinate equal to 15. Continuing from the previous example:

Remove the nodes with a z coordinate equal to 15
Nodeset 1 remove node in surface all with z_coord = 15

Assigning Names and Descriptions to Nodesets and Sidesets
Nodesets and sidesets can be assigned names and descriptions. Using names and descriptions is
often more intuitive than using traditional integer IDs. When exporting a mesh as a DART
artifact, names and descriptions are included in the metadata, making them available to DART
metadata-enabled applications such as SIMBA. To give a name or description to nodeset or
sideset, use one of the following commands:

{Nodeset|Sideset} <ids> Name "<new_name>"
{Nodeset|Sideset} <ids> Description "<description>"

This command can also be used to define names and descriptions for Element Blocks.
Grouping Faces on a Surface into a Sideset
A sideset can be created from a subset of the faces on a given surface by using one of the
following commands:

543

Finite Element Model

SideSet <sideset_id> Surface <id_range> Patch Maximum <x> <y> <z> Minimum <x> <y>
<z>
SideSet <sideset_id> Surface <id_range> Patch Center <x> <y> <z> Radius <value>
[Filter] [Partition]
SideSet <sideset_id> Surface <id_range> Patch Center <x> <y> <z> Outer_radius <value>
Inner_radius <value> [Filter] [Partition]
SideSet <sideset_id> Surface <id_range> Patch Cylinder <axis_specification> Radius
<rad> [Filter] [Partition]
SideSet <sideset_id> Surface <id_range> Patch Cylinder <axis_specification>
Outer_radius <rad> Inner_radius <rad> [Filter] [Partition]
These commands place only the faces meeting the specified criteria into the sideset.

• Using the maximum and minimum options will include all faces on the surface whose
centroid falls within the axis-aligned box defined by the maximum and minimum points.

• Using the center and radius options will include all faces on the surface whose centroid
falls within the sphere defined by center and radius.

• Using the center, outer_radius, and inner_radius options will include all faces on the
surface whose centroid falls within the sphere defined by center and outer_radius, but
excluding those faces whose centroid falls within the sphere defined by center and
inner_radius. In other words, a face will be included if the distance between the face and
the center point is between inner_radius and outer_radius.

• Using the cylinder option will include all faces whose centroid falls within a cylinder of
infinite length with the given axis and radius. The axis is specified as described
in Specifying an Axis.

• Using the optional inner_radius will exclude those faces whose centroid is closer to the
axis than the specified inner_radius.

Normally, these commands place the individual elements into the sideset. If the mesh on the
surface is deleted, the elements will be removed from the sideset. If the surface is then remeshed,
new elements will NOT automatically be added to the sideset. This is usually the intended
behavior.
If the filter option is included, only a single connected set of elements is added to the sideset. If
the shape of the surface is such that multiple disconnected sets of elements fall within the
specified spherical or cylindrical region, the filter option will limit the faces added to the sideset
to the one set closest to center.
Using the partition option changes this behavior. The partition option causes the surface to be
split, based on the faces included in the patch. The newly created patch surface will be added to
the sideset instead of the individual elements. If the mesh is deleted and a new mesh is generated,
the new mesh on the patch surface will automatically be included in the sideset, just as occurs
with other geometric entities assigned to sidesets.
Note that the sideset patch commands work with both triangular and quadrilateral faces.

Grouping elements in voids and enclosures
The sideset start enclosure command creates sidesets of monotonically increasing ID numbers
containing the elements comprising the watertight skin of the input elements. When there's a

544

Cubit 15.1 User Documentation

'void' in the middle of the elements, a region devoid of elements, though still enclosed by
elements, this enclosed region will also have a sideset defined on the skin of the enclosed region.
Sideset Start <id> Enclosure {Volume|Hex|Tet} <range>
The start id is the id of the sideset at which to start. The ID numbers will increase monotonically
unless there is a conflicting ID number. The command will add as many sidesets as there are
fully continuous regions or tris or faces in the input group. This function can be particularly
helpful for calculations for radiation enclosures.
Deleting Nodesets and Sidesets
All Nodesets, Sidesets and Blocks may be deleted from the model using the following command:

Reset Genesis
To remove only nodesets or sidesets, the following may be used:

Reset Nodeset
Reset Sideset

To remove a specific nodeset or sideset, use:
Delete Nodeset <nodeset_id_range>
Delete Sideset <sideset_id_range>

Renumbering Nodesets and Sidesets
The nodeset and sideset renumber commands give the user the ability to renumber these entities
to fit the user's needs. The command is:

{Nodeset|Sideset} <id_range> renumber start_id <id> [uniqueids]

Example:
Assume:
sideset ids: 1, 2, 4, 6, 10

sideset all renumber start 30
After renumbering:
sideset ids: 30, 31, 32, 33, 34

The id_range must specify existing nodesets or sidesets, respectively, or the command will fail.
The new ids to be assigned cannot contain the id of an existing nodeset (when renumbering
nodesets), or an existing sideset (when renumbering sidesets).
For example, given sidesets with ids 100, 105, 106, and 109, the command
sideset all renumber start_id 102
would attempt to renumber the sideset ids to 102, 103, 104, and 105. Since sideset 105 already
exists, the command will fail.
When the uniqueids option is specified, the new ids to be assigned cannot contain the id of an
existing nodeset OR an existing sideset OR an existing block. For example, given sidesets with
ids 100, 105, 106, and 109, and given blocks with ids 201, 202, and 203, the command
sideset all renumber start_id 200 uniqueids
would attempt to renumber the sideset ids to 200, 201, 202, and 203. While this does not conflict
with existing sideset ids, it does conflict with the existing block ids and so the command will fail.

545

Finite Element Model

Displaying Nodesets and Sidesets
Nodesets and Sidesets can be viewed individually through CUBIT by employing the following
commands:

Draw NodeSet <nodeset_id_range> [Color <color_spec>] [add]
Draw SideSet <sideset_id_range> [Color <color_spec>] [add]

Nodeset and Sideset colors can also be changed using the following commands:
Color NodeSet <nodeset_id_range> {color|Default}
Color SideSet <sideset_id_range> {color|Default}

Nodeset Associativity Data
Nodesets can be used to store geometry associativity data in the Exodus II file. This data can be
used to associate the corresponding mesh to an existing geometry in a subsequent CUBIT
session. This functionality can be used either to associate a previously-generated mesh with a
geometry (See Importing an Exodus II File), or to associate a field function with a geometry for
adaptive surface meshing (See Adaptive Meshing).
The commands to control and list whether associativity data is written or read from an Exodus II
files are the following:

List Import Mesh NodeSet Associativity
List [Export Mesh] NodeSet Associativity
List [Export Mesh] NodeSet Associativity Complete
set Import Mesh NodeSet Associativity [ON|off]
[set] [Export Mesh] NodeSet Associativity [on|OFF]
[set] [Export Mesh] NodeSet Associativity Complete [On|OFF]

Associativity data is stored in the Exodus II file in two locations. First, a nodeset is written for
each piece of geometry (vertices, curves, etc) containing the nodes owned for that geometry.
Then, the name of each geometry entity is associated with the corresponding nodeset by writing
a property name and designating the corresponding nodeset as having that property. Nodeset
numbers used for associativity nodesets are determined by adding a fixed base number
(depending on the order of the geometric entity) to the geometric entity id number. The base
numbers for various orders of geometric entities are shown in the following table. For example,
nodes owned by curve number 26 would be stored in associativity nodeset 40026.
Table 1. Nodeset ID base numbers for geometric entities
Geometric Entity Base Nodeset ID
Vertex 50000
Curve 40000
Surface 30000
Volume 20000
Instead of storing just the nodes owned by a particular entity, nodes for lower order entities are
also stored. For example, the associativity nodeset for a surface would contain all nodes owned
by that surface as well as the nodes on the bounding curves and vertices.
Equation-Controlled Distribution Factors
By default, distribution factors on nodesets or sidesets are written with a constant value of "1" at
each node. It is also possible to vary the distribution factor for each node in a nodeset or sideset,

546

Cubit 15.1 User Documentation

using an equation to control the value of the distribution factor at each node. To do so, an
equation must first be defined using the command:

Create Equation "<expression>" name "<name>"
where expression is any mathematical expression which evaluates to a single number, and name
is the name by which this equation will be known. The expression is written using aprepro
syntax, with a few differences from the use of APREPRO in its usual context.

1. The expression as a whole is not wrapped in curly braces "{" and"}".
2. The expression may include any of the following pre-defined variables:

{x} - The x-coordinate of the current node
{y} - The y-coordinate of the current node
{z} - The z-coordinate of the current node
{n} - The CUBIT ID of the current node. This is the ID of the node in CUBIT,
which may not be the same as the node's ID in the Exodus II file.

For example, to define an equation which varies from -10 to 10 based on the sine of the node's
x_coordinate:

Create Equation "10*sin({x})" Name "my_equation"
Once an equation has been defined, it can be applied to a nodeset or sideset:

{Nodeset|Sideset} <id> Distribution Equation "<equation_name>"
For example, to apply the equation created earlier to nodeset 10:

Nodeset 10 Distribution Equation "my_equation"
When nodeset 10 is written to an Exodus II file, "my_equation" will be evaluated once for each
node in the nodeset, with the values of {x}, {y}, {z}, and {n} set to appropriate values for the
node. The result is used as the distribution factor for that node.
Here is a complete example that writes out the distribution factors 0.0, 0.5, and 1.0 for the 3
nodes on the curve:

Create a straight line from (0,0,0) to (1,0,0)
create vertex 0 0 0
create vertex 1 0 0
create curve vertex 1 2
Mesh with 3 nodes
curve 1 interval 2
mesh curve 1
Create a block and a nodeset
block 1 curve 1
nodeset 1 curve 1
Define an equation and apply it to the nodeset
create equation "{x}" name "simple_eq"
nodeset 1 distribution equation "simple_eq"
Write the mesh
export mesh "temp.g" overwrite

547

Finite Element Model

Here is another complete example that varies the distribution factors for sideset 20 from zero to
1, depending on the node's x-coordinate. The sideset is applied to sides of HEX20 elements, so
each element side has 8 different distribution factors.

Mesh a cube
brick x 10
mesh volume 1
Create a block of 20-noded hexes
block 1 volume 1
block 1 element type hex20
Apply a sideset to be used for a variable pressure
sideset 20 surface 1
Define an equation and apply it to the sideset
create equation "({x}+5)/10" name "zero_to_one"
sideset 20 distribution equation "zero_to_one"
Write the mesh
export mesh "temp.g" overwrite

Note that distribution equations only affect Exodus II output. Equations are currently ignored for
other mesh file types.
See APREPRO in the appendix.
Nodesets/Sidesets/Blocks Behavior with Geometric Entity Copy
The below commands can be used to set the behavior of nodesets/sideset/blocks when a copy
command is applied on geometric entities. The default OFF option states that the
nodesets/sideset/blocks will not be copied to new geometric entity if the original geometric entity
contains nodesets/sideset/blocks. The "on" option implies that the nodesets/sideset/blocks present
in the original geometric entity will be copied to new geometric entity. The use_original option
indicates that the new geometric entities created after the copy command will have the
nodesets/sidesets/blocks present in the original geometric entities.

set copy_nodeset_on_geometry_copy [on | OFF| use_original]
set copy_sideset_on_geometry_copy [on | OFF| use_original]
set copy_block_on_geometry_copy [on | OFF| use_original]

Non Exodus
Cubit Boundary Conditions

• Sets
• Restraints
• Loads
• Contacts
• CFD Boundary Conditions
• Miscellaneous commands
• CUBIT Initial Conditions

In CUBIT, boundary conditions are applied to sidesets or nodesets. Sidesets and nodesets can
contain geometry or mesh. This means that models can be remeshed without worrying about

548

Cubit 15.1 User Documentation

losing boundary condition data if the boundary condition is applied to a geometry-based
sideset/nodeset.
The sideset/nodeset used by a boundary condition will be visible to the user, and the user can
modify the sideset/nodeset separately from the boundary condition. Sidesets/nodesets can be
assigned to (or removed from) a boundary condition at any time.
Boundary conditions are broken into four groups: Restraints, loads, contact, and cfd. Each
restraint that is created will belong to a restraint set, each load will belong to a load set, and each
contact definition will belong to a contact set. A boundary condition set consists of any number
of restraints, contact pairs, and loads. CFD boundary conditions do not belong to boundary
condition sets.
Table 1: Overview of boundary condition entities available in Cubit
Entity Description and scope

Acceleration Creates an acceleration boundary condition (acts on a
body, volume, surface, curve, or vertex)

Velocity Creates a velocity boundary condition (acts on a body,
volume, surface, curve, or vertex)

Boundary
Condition Set

Creates a BC set (contains restraint, load and contact
sets)

Contact Region Creates a contact region between two surfaces or two
curves

Contact Pair Creates a contact pair between two previously defined
contact regions

Displacement Creates a displacement boundary condition (acts on a
body, volume, surface, curve or vertex)

Temperature Create a temperature boundary condition (acts on a
surface, curve or vertex)

Force Creates a force boundary condition (acts on a surface,
curve or vertex)

Pressure Creates a pressure boundary condition (acts on a
surface or curve)

Heat flux Creates a heat flux boundary condition (acts on a
surface or curve)

Inlet Velocity Creates an inlet velocity boundary condition (acts on a
surface)

Inlet Pressure Creates an inlet pressure boundary condition (acts on a
surface)

Inlet Massflow Creates an inlet massflow boundary condition (acts on a
surface)

Outlet Pressure Creates an outlet pressure boundary condition (acts on
a surface)

Farfield Pressure Creates a farfield pressure boundary condition (acts on

549

Finite Element Model

a surface)

Symmetry Creates a symmetry boundary condition (acts on a
surface)

CUBIT Initial Conditions
In CUBIT, initial conditions can be applied to nodesets. CUBIT supports the following types of
initial conditions: displacement, velocity, acceleration, temperature, and generic field. For now,
initial conditions are only supported by CUBIT's Abaqus exporter. The commands to create an
initial condition are:

Create initialcondition [id] type temperature [name <'name'>] [{add|on} nodeset
<entity_list>] [value <val>]
Create initialcondition [id] type displacement [name <'name'>] [{add|on} nodeset
<entity_list>] [dof {1|2|3|4|5|6} {value <value>|off}]
Create initialcondition [id] type velocity [name <'name'>] [{add|on} nodeset
<entity_list>] [dof {1|2|3|4|5|6} {value <value>|off}]
Create initialcondition [id] type acceleration [name <'name'>] [{add|on} nodeset
<entity_list>] [dof {1|2|3|4|5|6} {value <value>|off}]
Create initialcondition [id] type field [name <'name'>] [{add|on} nodeset
<entity_list>] [variable <n> value <val>

For most of the initial conditions, only two pieces of data are required: a list of nodesets this IC
is applied to, and an initial value. Optionally, a name can be specified for the initial
condition. To modify an initial condition, replace the word “create” with the word “modify.” If
modifying an IC, the IC’s ID must be passed in so CUBIT knows which IC you are
modifying. Example:

Modify initialcondition 3 value 1.23
Use this command to list the information about a set of initial conditions:

List initialcondition <id_list>
Use this command to delete a set of initial conditions:

Delete initialcondition <id_list>
Using CFD Boundary Conditions

• Inlet Velocity
• Inlet Pressure
• Inlet Massflow
• Outlet Pressure
• Farfield Pressure
• Symmetry

CUBIT can export models to the Fluent mesh format and supports defining the above CFD
boundary conditions. Only the region on which the BC acts can be defined in CUBIT. The data
associated with each boundary condition (pressure, velocity, mass values) is not defined within
CUBIT and must be assigned using a CFD model editor, such as Fluent.
The following shows the commands for creating and modifying CFD boundary conditions. To
delete them, use the delete command (see Miscellaneous Commands).

550

Cubit 15.1 User Documentation

Inlet Velocity
Create Inletvelocity [id] [name <'name'>] [{Add|On} {Surface} <entity_list>]
Modify Inletvelocity [id] [name <'name'>] [{Add|Remove} {Surface}
<entity_list>]

Inlet Pressure
Create Inletpressure [id] [name <'name'>] [{Add|On} {Surface}
<entity_list>]
Modify Inletpressure [id] [name <'name'>] [{Add|Remove} {Surface}
<entity_list>]

Inlet Massflow
Create Inletmassflow [id] [name <'name'>] [{Add|On} {Surface}
<entity_list>]
Modify Inletmassflow [id] [name <'name'>] [{Add|Remove} {Surface}
<entity_list>]

Outlet Pressure
Create Outletpressure [id] [name <'name'>] [{Add|On} {Surface}
<entity_list>]
Modify Outletpressure [id] [name <'name'>] [{Add|Remove} {Surface}
<entity_list>]

Farfield Pressure
Create Farfieldpressure [id] [name <'name'>] [{Add|On} {Surface}
<entity_list>]
Modify Farfieldpressure [id] [name <'name'>] [{Add|Remove} {Surface}
<entity_list>]

Symmetry
Create Symmetry [id] [name <'name'>] [{Add|On} {Surface} <entity_list>]
Modify Symmetry [id] [name <'name'>] [{Add|Remove} {Surface}
<entity_list>]

Using Contact Surfaces

• Contact Region
• Contact Pair
• Auto-Contact Tool

The Contact Region
To define contact between two entities, Cubit requires each entity to be defined as a
separate contact region. Each region can be made up of multiple 1D or 2D entities.

Create Contact Region [id] [Name <'name'>] [{Add|On}
{Sideset|Surface|Curve|Face|Tri|Edge} <entity_list>]

551

Finite Element Model

Modify Contact Region {id_list|'name'|All} [Name <'name'>] [{Add|Remove}
{Sideset|Surface|Curve|Face|Tri|Edge} <entity_list>]

The Contact Pair
create contact pair [id] [name <'name'>] [master contact region <id|'name'>] [slave
contact region <id|'name'>] [friction <value>] [tolerance <value>] [tied {on|OFF}]
[General <on|OFF> [Exterior <on|OFF>]]
modify contact pair {id_list|'name'|all} [name <'name'>] [master contact region
<id|'name'>] [slave contact region <id|'name'>] [friction <value>] [tolerance <value>]
[tied {on|OFF}] [General <on|OFF> [Exterior <on|OFF>]]

A contact pair is composed of two contact regions. One region will be the ‘master’ surface, and
the other will be the ‘slave.’ 2D contact regions can not be mixed with 1D contact regions. The
friction coefficient can also be included. The tolerance keyword is currently unused. Use the
tied keyword to specify that the contact is to define tied contact between the two contact regions,
essentially “gluing” the parts together. Currently, this option is only available when using the
Abaqus Exporter.
The General keyword can be used to specify general (i.e. global) contact without specifying
surfaces/curves to use as contact pairs. Currently, this keyword is only valid when exporting to
Abaqus. If the Exterior keyword is used with the General keyword, then Abaqus will consider
all exterior surfaces when determining contact regions. If the Exterior keyword is omitted, then
the user must provide a master contact region and/or a slave contact region.

Auto-Contact Tool
With the auto-contact tool, Cubit can search for contact pairs and automatically set up all of the
necessary contact regions and contact pairs.

Create Contact Autoselect [{Volume|Surface|Curve} <ids>] [Master Volume
<id>] [Maxgap <value>] [Curve_Contact]

The optional geometry list can be used to limit Cubit’s search to only a subset of entities. If this
list is omitted, all bodies in the model will be searched. The optional master volume keyword
can be used to tell Cubit which volume should be used as the master contact region. If this
keyword is omitted, the user will not have control over which volume is the master region.
The maxgap keyword can be used to control how Cubit searches for contact regions. This value
is used as the maximum amount of gap that can exist between two surfaces and be identified as a
contact region. If this keyword is omitted, the geometry tolerance is used. The curve_contact
keyword can be used to indicate the model requires curve contact as opposed to surface contact.

Using Loads

• Force
• Pressure
• Heat Flux
• Convection

552

Cubit 15.1 User Documentation

Forces
Create Force [id] [Name <'name'>] [{Add|On}
{Nodeset|Surface|Curve|Vertex|Face|Tri|Edge|Node} <entity_list>] [Force
Value <val>] [Moment Value <val>] [Direction { direction_options}]
Create Force [id] [Name <'name'>] [{Add|On}
{Nodeset|Surface|Curve|Vertex|Face|Tri|Edge|Node} <entity_list>] [Vector
<val> <val> <val> <val> <val> <val>]
Modify Force {id_list|'name'|all} [Name <'name'>] [{Add|Remove}
{Nodeset|Surface|Curve|Vertex|Face|Tri|Edge|Node} <entity_list>] [Force
Value <val>] [Moment Value <val>] [Direction { direction_options}]
Modify Force {id_list|'name'|all} [Name <'name'>] [{Add|Remove}
{Nodeset|Surface|Curve|Vertex|Face|Tri|Edge|Node} <entity_list>] [Vector
<val> <val> <val> <val> <val> <val>]

A CUBIT user has the ability to create forces on 0D, 1D, and 2D entities. A force can be created
using the direction syntax (see Specifying Direction). If the vector keyword is used, the first
three values are the force components, and the last three values are the moment components.
The use of the force and moment keywords specify the type of load. If both a force and a
moment are to be applied, first create one of them, then modify it to add the other. Note that
every instance of a force or moment keyword must have an accompanying value keyword.
Regarding force and moment keywords, the following detail may be helpful:
A user may create a force and moment at the same time, but can only specify a
direction once. If the force and moment have the same unit vector, it will be
successful. If a users wants to create a force in the direction 1,2,3 and a moment in the
direction 1,0,0, the user will have to create one, then add the other by modifying it.
Using Pressure

Create Pressure [id] [Name <'name'>] [{Add|On}
{Sideset|Surface|Curve|Face|Tri|Edge} <entity_list>] [Magnitude <value>]
[TOP|Bottom] [PRESSURE|Totalforce]
Modify Pressure {id_list|'name'|all} [Name <'name'>] [{Add|Remove}
{Sideset|Surface|Curve|Face|Tri|Edge} <entity_list>] [Magnitude <value>]
[TOP|Bottom] [PRESSURE|Totalforce]

Cubit users can create pressure boundary conditions on 1D and 2D entities. Positive surface
pressures acting on solid elements are defined as pointing into the face of the elements. Pressures
are always normal to the face. For shells and independent surfaces, a ‘left-hand-rule’ is
employed. Point your left thumb at the surface in question. If the direction your fingers curl
matches the direction of ascending vertex numbering, the direction of the pressure vectors will
match the direction of your thumb.

Value
The value variable is the magnitude of the pressure boundary condition. If the user leaves this
value blank, CUBIT will assign the pressure magnitude to zero (possibly a trivial case) and issue
a warning. Typing a negative value will not flip the direction of the pressure arrows on the
display; instead, the pressure magnitude will be negative.

Pressure and Total Force

553

Finite Element Model

The pressure and totalforce keywords are used to modify the pressure boundary condition. The
pressure keyword is the default. All pressures applied with this keyword present (or with both of
these keywords absent from the command string) are pure pressures. If the user enters the
totalforce keyword, the pressure magnitude is divided by the area of the surface the pressure is
acting on (or the length of the curve, for a curve pressure). In effect, the user is entering a force
that is treated and exported as a pressure.

Top and Bottom
The top keyword (default) indicates the pressure will occur on the top of a shell element.
Specifying bottom will cause the pressure to be applied to the bottom of the element.
Using Heat Flux

Create Heatflux [id] [Name <'name'>] [{Add|On}
{Sideset|Surface|Curve|Face|Tri|Edge} <entity_list>] [Value <value>]
Create Heatflux [id] [Name <'name'>] [{Add|On} {Sideset|Surface|Face|Tri}
<entity_list>] [Top <value> Bottom <value>]
Modify Heatflux {id_list|'name'|All} [Name <'name'>] [{Add|Remove}
{Sideset|Surface|Curve|Face|Tri|Edge} <entity_list>] [Value <value>]
Modify Heatflux {id_list|'name'|All} [Name <'name'>] [{Add|Remove}
{Sideset|Surface|Face|Tri} <entity_list>] [Top <value> Bottom <value>]

A CUBIT user may apply heat flux boundary conditions to 1D and 2D entities, including thin-
shell elements.

Top and Bottom Values
Heat fluxes can be applied to thin-shell elements as well. The same rules apply to thin-shell heat
fluxes as to thin-shell temperatures: thin-shell heat fluxes can only be applied to surfaces and
heat flux boundary conditions cannot contain regular and thin-shell heat flux values (see journal
below). However, thin-shell heat flux commands do not contain gradient or middle keyword
options. Only top and bottom keywords are supported.

Using Convection

Create Convection [id] [Name <'name'>] [{Add|On}
{Sideset|Surface|Curve|Face|Tri|Edge} <entity_list>] [Surrounding {<value>|
Top <value> Bottom <value>} Coefficient {<value>| Top <value> Bottom
<value>}]
Modify Convection [id] [Name <'name'>] [{Add|On}
{Sideset|Surface|Curve|Face|Tri|Edge} <entity_list>] [Surrounding {<value>|
Top <value> Bottom <value>} Coefficient {<value>| Top <value> Bottom
<value>}]

A Cubit user can apply convection boundary conditions to 1D and 2D entities. Convection is a
transport of thermal energy that is proportional to the difference between the surface temperature
and the temperature of the surroundings.

Surrounding

554

Cubit 15.1 User Documentation

The surrounding keyword specifies the temperature surrounding the entity with the convection
boundary condition.

Coefficient
The coefficient keyword is a convection coefficient, in units of energy per length times time
times temperature (i.e., [energy]/([length]*[time]*[temperature])).

Miscellaneous Boundary Condition Commands

• Delete
• List
• Draw
• Highlight

Delete
The BC delete keyword combination is used to delete boundary conditions. The current list of all
entities that can be deleted using this command were shown in Table 1. Cubit currently has no
‘undo’ command to ‘undelete’ a boundary condition deletion.

Delete {bc_type} [<id-range>|All]
Delete Boundary Conditions

Every set (and boundary condition within them) can be deleted at once by typing delete
boundary conditions. This command will delete all boundary conditions from your model.
List
The List keyword combination is used to list boundary conditions. The current list of all entities
that can be listed using this command was shown in Table 1. Cubit’s parser can evaluate
boundary conditions given the entities they act on. For example, "List pressure in surface 1" will
list all pressures that act on Surface 1.

List {bc_type} [<id-range>]
List Boundary Conditions

Every set (and boundary condition within them) may be listed at once by typing list boundary
conditions. CUBIT will list the number of sets and individual boundary conditions in your
model. This command will list the total number of each type of set and boundary condition,
including boundary conditions that are not a part of a BC set.
Draw

Draw {bc_type} {<id-range>|all}[Add]
The draw keyphrase allows a CUBIT user to draw any type of boundary condition. This
command will clear the graphics window of every part of the model except for the selected
boundary condition. Using the add keyword will permit multiple boundary conditions to be
drawn at the same time. Any combination of boundary conditions and entities that were valid for
delete and list are also valid for draw.
Highlight

Highlight {bc_type} {<id-range>|All}

555

Finite Element Model

The highlight keyphrase allows a CUBIT user to highlight any boundary condition. Highlighting
a boundary condition will turn it bright orange and the vectors defining it will thicken. The
highlight command is similar to the draw command.
Using Constraints
Constraints couple the motion of a set of nodes to the motion of a reference node. Rigid bodies
and kinematic constraints do exactly this for blocks and sidesets, respectively. A distributing
constraint allows users to average the constrained motion of a sideset by using weight factors to
control force transmission (to be specified outside of CUBIT). A tie constraint can be used to tie
the elements of one sideset to the elements of another. Currently, only the Abaqus Exporter
supports this type of constraint.
Note that as of CUBIT 13.0, constraints are supported by the Abaqus Importer/Exporter
only. Contact the CUBIT support team if support in additional file formats is needed.
To create a constraint, use one of the following commands:

Create Constraint {Kinematic|Distributing} [name '<name>'] [vertex|node] <id>
sideset <id>
Create Constraint Rigidbody [name '<name>'] [vertex|node] <id> block <id>
Create Constraint Tie [name '<name>'] master sideset <id> slave sideset <id>

A constraint’s name, dependent object, and independent object can be changed using the
following commands:

Modify Constraint <id|name> [name '<name>'] [vertex|node] <id> sideset <id>
Modify Constraint <id|name> [name '<name>'] [vertex|node] <id> block <id>
Modify Constraint <id|name> [master sideset <id>] [slave sideset <id>]

Constraints can be listed or deleted using the following commands:
List Constraint <id_range>
Delete Constraint <id_range>

Using Restraints

• Displacement
• Acceleration
• Velocity
• Temperature

Displacements/Accelerations/Velocities
A CUBIT user has the ability to create displacement boundary conditions on most geometric
entities found within Cubit.

Create Displacement [id] [Name <'name'>] [{Add|On}
{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node}
<entity_list>] [DOF {All|{[1][2][3][4][5][6]}} Fix <value>]
[SmallestCombine|Average|LargestCombine|OVERWRITE]
Modify Displacement {id_list|'name'|all} [name <'name'>] [{Add|Remove}
{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node}
<entity_list>] [DOF {All|{[1][2][3][4][5][6]}} {Fix <value>|Free}]
[SmallestCombine|Average|LargestCombine|OVERWRITE]

Create Acceleration [id] [Name <'name'>] [{Add|On}
{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node} <entity_list>]

556

Cubit 15.1 User Documentation

[DOF {All|{[1][2][3][4][5][6]}} Fix <value>]
[SmallestCombine|Average|LargestCombine|OVERWRITE]
Modify Acceleration {id_list|'name'|all} [name <'name'>] [{Add|Remove}
{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node} <entity_list>]
[DOF {All|{[1][2][3][4][5][6]}} {Fix <value>|Free}]
[SmallestCombine|Average|LargestCombine|OVERWRITE]
Create Velocity [id] [Name <'name'>] [{Add|On}
{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node} <entity_list>]
[DOF {All|{[1][2][3][4][5][6]}} Fix <value>]
[SmallestCombine|Average|LargestCombine|OVERWRITE]
Modify Velocity {id_list|'name'|all} [name <'name'>] [{Add|Remove}
{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node} <entity_list>]
[DOF {All|{[1][2][3][4][5][6]}} {Fix <value>|Free}]
[SmallestCombine|Average|LargestCombine|OVERWRITE]

A number of required and optional keywords make the BC create displacement command one of
the more complicated of the boundary condition commands. These keywords will be examined
individually in detail.
Degrees of Freedom
The dof keyword is the heart of this command. It specifies how to constrain the entity in
question. The keyword is an abbreviation for ‘degree of freedom’. Typing the optional keyword
all tells CUBIT that the entered command will encompass all six degrees of freedom. The
degrees of freedom (1 - 6) are defined below in Table 2.

Table 2: CUBIT definitions of the six degrees of freedom.
DOF Physical analog
1 x-translation
2 y-translation
3 z-translation
4 x-rotation
5 y-rotation
6 z-rotation
CUBIT will allow displacement commands to be applied upon between one and all six of the
degrees of freedom. The degrees of freedom do not need to be entered in any order. The
command strings ‘ 1 2 3 4 5 6 ‘ ‘2 6 1 4 3 5’ and ‘all’ will end with the same result.

Fixed or Free
The fix and free keywords tell CUBIT whether an entity’s displacement defined by the dof
keyword is to be enforced with a finite value or not. If the displacement is fixed, the entity will
be constrained in the pre-specified degrees of freedom. A decimal number entered after the fix
keyword will be the value of the enforced degree(s) of freedom. CUBIT allows the user to leave
this value blank if the enforced displacement is to be zero, for convenience. However, entering
‘0’ is still permitted. If a user wishes to remove a displacement from an entity, he or she should
just delete it rather than trying to set all of the degrees of freedom to free.

Displacement Combinations

557

Finite Element Model

The SmallestCombine, Average and LargestCombine keywords deal with displacement
combinations. These keywords only apply when a user is modifying an existing displacement
boundary condition.
The SmallestCombine keyword will compare the existing displacement values with the current
(residing on the command line) displacement values. The keyword will modify the displacement
to the match the displacements dictated by the boundary condition that has the smallest absolute
value. If the boundary condition with the smallest absolute value is the existing value, the
displacement boundary condition will be unchanged. If the current boundary condition has a
smaller absolute value than the existing displacement, the displacement boundary condition will
be changed to incorporate the new values.
The Average keyword will average the existing displacement values with the current (residing
on the command line) displacement values. Note that these averages are not continually updated
(i.e., they are not weighted). If a user created a displacement boundary condition and constrained
a degree of freedom to 10.0 and then constrained the same degree of freedom to 20.0 with the
Average keyword, the new displacement value would be 15.0. But if a user constrained the same
degree of freedom to 30.0, while using the Average keyword, the new displacement value would
be 22.5 ([15+30]/2), not 20.0 ([10+20+30]/3).
The LargestCombine keyword will compare the existing displacement values with the current
(residing on the command line) displacement values. The keyword will modify the displacement
to the match the displacements dictated by the boundary condition that has the largest absolute
value. If the boundary condition with the largest absolute value is the existing value, the
displacement boundary condition will be unchanged. If the current boundary condition has a
larger absolute value than the existing displacement, the displacement boundary condition will
be changed to incorporate the new values.
When none of these keywords are specified, CUBIT will combine displacements in its default
mode, Overwrite. The Overwrite keyword overwrites the entity’s previous displacement
boundary condition(s) with the displacement values specified in the command.

Temperature
CUBIT can create temperature boundary conditions on most geometric and mesh entities. The
temperature boundary condition can also be applied to thin-shell elements.

Create Temperature [id] [Name <'name'>] [{Add|On}
{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node}
<entity_list>] [Value <val>]
Create Temperature [id] [Name <'name'>] [{Add|On}
{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node}
<entity_list>] [{ Top <val> Bottom <val> | [Middle <val>] [Gradient <val>] }
]
Modify Temperature {id_list|'name'|all} [name <'name'>] [{Add|Remove}
{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node}
<entity_list>] [Value <val>]
Modify Temperature {id_list|'name'|all} [name <'name'>] [{Add|Remove}
{Nodeset|Volume|Surface|Curve|Vertex|Hex|Tet|Face|Tri|Edge|Node}
<entity_list>] [{ Top <val> Bottom <val> | [Middle <val>] [Gradient <val>] }
]

558

Cubit 15.1 User Documentation

The value keyword defines the amplitude (temperature). The other command options are
discussed below

Top, Gradient, Middle, Bottom
The above keywords are only used for thin-shell elements (i.e., 2D entities). The valid
combinations are limited to: top and bottom, middle and gradient, only gradient or only middle.
It should be noted that temperature boundary conditions cannot contain regular and thin-shell
temperature values.

Boundary Condition Sets

Create bcset [id] [name <'name'>] [After bcset <id>] [{Add|Remove} {bc_type} <id-
range | <with name 'name'> >] [analysistype {STATIC|heat|dynamic|modal}]
[modal_max_frequency <value>]
Modify bcset {id_list|'name'|all} [name <'name'>] [After bcset <id>] [{Add|Remove}
{bc_type} <id-range | <with name 'name'> >] [analysistype
{STATIC|heat|dynamic|modal}]

*** ABAQUS Parameters ***
Modify bcset {id_list|'name'|all} [max_step_increments
<value>] [nonlinear_geometry <on|OFF>][perturbation <on|OFF>][stabilize
<on|OFF>] [steadystate <on|OFF>][modal_max_frequency <value>]
Modify bcset {id_list|'name'|all} [initial_step_size <value>] [step_period
<value>][min_step_size <value>] [max_step_size
<value>][min_step_temperature_change <value>]
Modify bcset {id_list|'name'|all} [mass_scaling <on|OFF>] [mass_scaling_dt
<value>][mass_scaling_factor <value>] [mass_scaling_type
<'uniform'|'BELOW_MIN'|'set_equal_dt'>]
Modify bcset {id_list|'name'|all} [restart <on|OFF>][restart_overlay
<on|OFF>] [{restart_frequency|restart_num_intervals} <value>]
Modify bcset {id_list|'name'|all} [output_field <on|OFF>] [output_field_frequency
<value>] [output_history <on|OFF>] [output_history_frequency <value>]
Modify bcset {id_list|'name'|all} [el_file <on|OFF>][el_file_frequency
<value>] [node_file <on|OFF>][node_file_frequency <value>]
Modify bcset {id_list|'name'|all} [el_print <on|OFF>][el_print_frequency
<value>] [node_print <on|OFF>][node_print_frequency <value>]

*** NASTRAN Parameters ***
Modify bcset {id_list|'name'|all} {displacement_output <on|OFF>
{PLOT|print|punch|punchprint} {group <ALL|none|<id>> }}
Modify bcset {id_list|'name'|all} {oload <on|OFF> {PLOT|print|punch|punchprint}
{group <ALL|none|<id>> }}
Modify bcset {id_list|'name'|all} {mpcforces <on|OFF>
{PLOT|print|punch|punchprint} {group <ALL|none|<id>> }}
Modify bcset {id_list|'name'|all} {spcforces <on|OFF>
{PLOT|print|punch|punchprint} {group <ALL|none|<id>> }}
Modify bcset {id_list|'name'|all} {stress <on|OFF> {PLOT|print|punch|punchprint}
{group <ALL|none|<id>> } {CENTER|cubic|sgage|corner} {VONMISES|maxs}}

559

Finite Element Model

Modify bcset {id_list|'name'|all} {element_strain_energy <on|OFF>
{PLOT|print|punch|punchprint} {group <ALL|none|<id>> }
{AVERAGE|amplitude|peak}}

CUBIT can create BC sets, which is a group of previously defined loads, restraints and contact
pairs. A BCSet is used to define a load case (analysis step) when writing out 3rd party analysis
decks. A BCSet can be a static analysis set, a thermal analysis set, a modal analysis set, or a
dynamic analysis set by specifying the analysistype. The After keyword can be used to define
the order that the BCSets will be written when the model is exported.
Several solver-specific parameters can be set for a BCSet. For ABAQUS, parameters associated
with *STEP, *STATIC, *DYNAMIC, *FREQUENCY, *HEAT TRANSFER, *MASS
SCALING, *RESTART, *OUTPUT, *EL FILE, *NODE FILE, *EL PRINT, and *NODE
PRINT can be modified. For Nastran, output requests can be defined for Displacement,
Reaction Loads, MPC Forces, SPC Forces, Stress, and Element Strain Energy.

Export
Exporting Sierra Files
Sierra input decks can be exported from Cubit. This capability was added in response
to a need to translate Abaqus input decks to Sierra input decks by importing the Abaqus
deck into CUBIT and then immediately exporting the Sierra deck. Therefore, it is
assumed that most of the input deck information has been created outside of CUBIT
and that the user will not interact with it in CUBIT .

The Sierra input deck writer is simply another export format and as a result it can be
used for any currently defined mesh and input deck info defined in Cubit.

The Sierra input deck exporter relies on some of the mesh-specific information that is
generated when exporting the Genesis mesh. Therefore, you should export the
Genesis mesh before exporting the Sierra input deck.

Defining PARAMS for NASTRAN
List Nastran Exporter Params
Set Nastran Exporter Params Add '<param_string>'
Set Nastran Exporter Params Remove '<param_string>'
Set Nastran Exporter Params Clear
Nastran uses “PARAMS” to define additional instructions and settings in its Bulk Data file. Any
string can be defined as a Nastran Exporter Param, and it will be exported to the Nastran file as
“PARAM, <string>”.

Instancing Parts with ABAQUS
The ABAQUS file format allows users to instance a mesh multiple times. An example of this
would be to create a mesh of a single bolt, but instance the bolt mesh several times in the
ABAQUS model file to generate multiple bolts.
To create an ABAQUS file with instanced parts, use the following syntax:

560

Cubit 15.1 User Documentation

Export Abaqus <’filename’> [Block <id_list>] [Sideset <id_list>] [Nodeset
<id_list>] [BCSet <id_list>] [Instance Block <id_list> [Source_csys <id>]
[Target_csys <id_list>] [Overwrite] [Cubitids] [Everything]

Any block defined in Cubit can be instanced n number of times in the ABAQUS file. To instance
a block, a source coordinate system and a target coordinate system (where the mesh will be
translated and rotated to) need to be defined. If no source coordinate system is given in the
command, the default (global) coordinate system is used. The instance keyword can be used as
many times as needed.
Note: By default, the Abaqus exporter writes 6 decimal places. The command "set Abaqus
precision <n>" can be used to change the number of decimal places written.

Exporting an Exodus II File
After defining the element blocks, nodesets and sidesets for a model, the model can be written to
the Exodus II file using the command:

Export [Genesis|Mesh] '<filename>' [dimension {2|3}] [Block <id_list>]
[cubitids] [XML '<filename>']

The Genesis or Mesh arguments are optional and both indicate that an Exodus II format will be
written. The filename can be any valid filename. Where a full path is not specified, the file will
be written in the current working directory.
The dimension argument is also optional. Most element types have an inherent dimensionality
associated with them. For example, a truss or beam element is inherently 2D while a hex or tetra
element is 3D. Without this argument, only the x-y location of the nodal coordinates of 2D
elements are written to the Exodus II file. Using the argument dimension 3, in this example,
permits the full 3D coordinates to be written.
The optional Block argument may also be added to the Export command. Without this
argument, all blocks defined in the current model will be exported to the Exodus II file. This
argument permits the user to specify only a portion of the blocks in the model. The <id_list>
may be any valid set of integers corresponding to the Blocks in the current model.
The XML optional argument may also be added to the Export command. When this argument is
included and assembly data exists in the model, an XML file is written which describes the
relationship between block IDs in the Exodus II file and parts in the assembly. See the Parts,
Assemblies and Metadata section for details.
Element and Node ID Maps
Element ID map and node ID map are always written to the Exodus II file. The IDs written to the
node ID map are the node IDs used to refer to nodes at the Cubit command line. The IDs written
to the element ID map are the Global Element IDs which are assigned to the hex, tet, quad, etc.
when they are added to an element block. The node and element ID maps can be used when a
particular element or node is refered to in a downstream application and the corresponding node
or element in Cubit must be found. Some analysis and post-processing applications consider
these maps to be optional, while others ignore the maps even if they are present. See the Exodus
manual for more information on element and node ID maps.
Exporting a Parallel Mesh for pCAMAL

Export Parallel "<filename>" [Block <id_list>] [Overwrite] [Processor
<number>]

561

http://endo.sandia.gov/SEACAS/Documentation/exodusII.pdf
http://endo.sandia.gov/SEACAS/Documentation/exodusII.pdf

Finite Element Model

The Export Parallel command is used to output an ExodusII file with the boundary mesh or
shell for sweepable volumes that were meshed with set parallel meshing enabled. The options are
the same as those for the "export genesis" command except for the addition of the processor
option.
The processor option allows the user to specify the number of processors that will be used to
mesh the volume with the pCAMAL option. This same option exists in the pCAMAL application
and is more often used there since the number of available processors is known then rather than
when the output file is created in Cubit.
If the processor option is given, Cubit attempts to balance the number of sweepable volumes to
run on n processors by converting many-to-one sweeps to one-to-one sweeps, subdividing the
sweep volume along its sweep direction, or partitioning the source surface of a one-to-one sweep
if the number of source quads is much larger than the number of layers.
Converting an Exodus II file to ASCII
The Exodus II file format is binary. It is frequently necessary to view the contents of the Exodus
II file as plain text. A publicly available tool known as ncdump can be used to view the contents
of an Exodus II file. ncdump is part of the netCDF library and is currently available from
Unidata at the following URL:
http://www.unidata.ucar.edu/
On a UNIX platform, typical use of the ncdump utility is:

ncdump filename.e > filename.txt
In this format, the ncdump utility will take the Exodus II file, filename.e, and dump the contents
to an ASCII file filename.txt
Another option for converting between binary and ASCII formats of Exodus II files is a utility
known as exotxt. Exotxt is part of the SEACAS tool suite. Contact the Sandia CUBIT
development team for a copy of this utility.
Note that the 'stock' ncdump utility should work for most meshes; however, Sandia increases
some of the dimensions in order to handle larger meshes (more element blocks, boundary
conditions, variables). The dimensions we increase in netcdf.h are:
NC_MAX_DIMS (max dimensions per file) from 100 to 65536
NC_MAX_VARS (max variables per file) from 2000 to 524288
Controlling Exodus II Output Precision
By default, exodus files are written with double precision numbers. It may be useful to change
this for large meshes to decrease output file size. This can be done using the following
command:
Set Exodus Single Precision [On|Off]
This command toggles the Exodus output file between single precision (floats) and double
precision.
Large Exodus Format
The Set Large Exodus command enables the large exodus file setting to create a model that can
store individual datasets larger than 2 gigabytes. This modifies the internal storage used by
ExodusII and also puts the underlying netcdf file into the "64-bit offset" mode.
Set Large Exodus [ON|Off]
Exodus NetCDF4/HDF5 Format
The Set Exodus NetCDF command enables the exodus NetCDF4/HDF5 file setting to create a
model that can store even larger files with unlimited dimensions. This modifies the internal

562

http://www.unidata.ucar.edu/
http://endo.sandia.gov/seacas

Cubit 15.1 User Documentation

storage used by ExodusII to an HDF5 based file. This setting overrides the Set Large Exodus
setting.
Set Exodus NetCDF4 [On|OFF]
Exporting Geometry Association with the Exodus Mesh
Optionally, you can also export the associated ACIS geometry and the correspondence between
the mesh and the geometry by using the export m2g command.
Exporting the Finite Element Model
For information on exporting an Exodus File, see Exporting Exodus II Files. Custom translators
are available to translate between the Exodus II format and a limited number of other analysis
code formats. Contact the cubit development team for a current list of supported translator
formats. The general syntax for the various exporters is as follows. The specific exporter
commands are listed below.

Export {Abaqus [Explicit]* [Partial]* | Nastran | Ideas | Patran | LSDyna |
Fluent} <’filename’> [Block <id_list>] [Sideset <id_list>] [Nodeset <id_list>]
[BCSet <id_list>] [dimension {2|3}***] [Overwrite] [Cubitids] [Everything]
[NX]**
Export {Sierra | VRML} <'filename'> [Overwrite]
* Explicit and Partial keywords only available with Abaqus Exporter
** NX keyword only available with I-DEAS Exporter
***The dimension argument is also optional. Most element types have an
inherent dimensionality associated with them. For example, a truss or beam
element is inherently 2D while a hex or tetra element is 3D. Without this
argument, only the x-y location of the nodal coordinates of 2D elements are
written to the Exodus II file. Using the argument dimension 3, in this example,
permits the full 3D coordinates to be written.

The Abaqus Exporter has a few additional keywords available. See the last paragraph below for
an explanation of those keywords:

Export Abaqus <'filename'> [Block <id_list>] [Sideset <id_list>] [Nodeset <id_list>]
[BCSet <id_list>] [dimension {2|3}] [nodefile <'filename'>] [elementfile <'filename'>]
[flatfile] [overwrite] [cubitids] [everything]

If no blocks are exported, Cubit will export all nodes and elements in the model. If one or more
blocks are entered in the command, only those blocks will be exported. Similarly, if no BCSets
are entered in the command, Cubit will export all boundary conditions as a single BCSet. If one
or more BCSets are entered into the command, only those BCSets will be exported. Use the
overwrite flag to overwrite an existing file.
By default, Cubit will reassign node and element IDs based on which block they are in. Using
the cubitids option will retain the Cubit node and element IDs in the mesh file. If more than one
element shares the same ID in Cubit, the mesh export will not occur and the user will need to fix
the model before exporting Cubit IDs. This can be done with the renumber command. If the
everything keyword is present, Cubit will export all nodes and elements in the model, whether
they are in a block or not.
The I-DEAS Universal file can be read into Siemen’s NX application if the file is generated
using the NX keyword. This is because extra information must be written to an I-DEAS
Universal file in order for NX to be able to read it.
There are a few keywords specifically for the Abaqus exporter. Flatfile can be used if the user
desires Cubit to write out the model as a "flat file." Abaqus refers to files a "flat files" when they

563

Finite Element Model

do not use the *PART/*INSTANCE structure. All nodes and elements will be defined at the
global level. The keywords elementfile and nodefile can be used to instruct Cubit to export the
nodes and/or elements to a separate file.
If the Explicit keyword is used with Abaqus, Cubit will write an Abaqus Explicit deck. The one
Explicit-only feature that Cubit supports is Fixed Mass Scaling.
If the Partial keyword is used with Abaqus, Cubit will write a partial Abaqus deck. Cubit will
output the mesh as defined by the Abaqus keywords PART, NODE, ELEMENT, NSET,
ELSET, and SURFACE. Everything else is ignored. Use the Abaqus keyword INCLUDE to
include this file in a master Abaqus deck for analysis.
Specific Exporter Commands:

Export Abaqus [explicit] '<filename>' [Block <id_list>] [Sideset <id_list>] [Nodeset
<id_list>] [BCSet <id_list>] [group <id_list>] [instance block <id_list> [source_csys
<id_list>] target_csys <id_list> [preview]] [dimension {2|3}] [overwrite] [cubitids]
[everything] [partial]
Set Abaqus Precision <n=6>
Note: This command can be used to control the number of decimal places written to the
Abaqus file.
Export Nastran '<filename>' [Block <id_list>] [Sideset <id_list>] [Nodeset <id_list>]
[BCSet <id_list>] [dimension {2|3}] [overwrite] [cubitids [everything]]
Export Ideas '<filename>' [NX] [Block <id_list>] [Sideset <id_list>] [Nodeset
<id_list>] [BCSet <id_list>] [dimension {2|3}] [overwrite] [cubitids] [everything]
Export Patran '<filename>' [Block <id_list>] [Sideset <id_list>] [Nodeset <id_list>]
[BCSet <id_list>] [overwrite] [everything][dimension {2|3}]
Export Lsdyna '<filename>' [Block <id_list>] [Sideset <id_list>] [Nodeset <id_list>]
[BCSet <id_list>] [overwrite]
Export Fluent '<filename>' [Block <id_list>] [Sideset <id_list>] [Nodeset <id_list>]
[BCSet <id_list>] [dimension {2|3}] [overwrite] [everything]
Note: The following command is for exporting mesh geometry, (.msh format.)
Export Fluent '<filename>' [Surface <id_list>|Volume <id_list>] [Overwrite]
Export Sierra <'filename'> [Overwrite]
Export VRML <'filename'> [Overwrite]

Additional Information on building Cubit models for CFD
Instancing parts with ABAQUS
Defining PARAMS for NASTRAN
Supported element types

Cubit
Element

Type
ExodusII Abaqus Nastran

I-
DEAS
UNV

Patran LS-DYNA Fluent

Sphere SPHERE ELEMENT_SPH
Spring SPRING SPRINGA/SPRING1/SPRING2 CBUSH1D**
Bar BAR B21** CROD** 121** Bar2
Bar2 BAR2 B21** CROD** 121** Bar2
Bar3 BAR3 B22** CROD** 121**
Beam BEAM B31 CROD** 21** Bar2 ELEMENT_BEAM

564

Cubit 15.1 User Documentation

Beam2 BEAM2 B31 CROD** 21** Bar2 ELEMENT_BEAM
Beam3 BEAM3 B32 CROD** 24**
Truss TRUSS T3D2/T3D2T*,** CROD** 121** Bar2 ELEMENT_BEAM
Truss2 TRUSS2 T3D2/T3D2T*,** CROD** 121** Bar2 ELEMENT_BEAM
Truss3 TRUSS3 T3D2/T3D2T*,** CROD** 121**
Quad QUAD CPE4R/CPE4RT* CQUAD4 54 Quad4 ELEMENT_SHELL 3
Quad4 QUAD4 CPE4R/CPE4RT* CQUAD4 54 Quad4 ELEMENT_SHELL 3
Quad5 QUAD5 Quad5
Quad8 QUAD8 CPE8R/CPE8RT* CQUAD8 55 Quad8
Quad9 QUAD9 S9R5 CQUAD 55 Quad9
Shell SHELL S4R/S4RT* CQUAD4 94*** Quad4 ELEMENT_SHELL
Shell4 SHELL4 S4R/S4RT* CQUAD4 94*** Quad4 ELEMENT_SHELL
Shell8 SHELL8 S8R/S8RT* CQUAD8 95*** Quad8
Shell9 SHELL9 S9R5 95*** Quad9
Tri TRI CPS3/CPS3T* CTRIA3 51 Tri3 ELEMENT_SHELL 1
Tri3 TRI3 CPS3/CPS3T* CTRIA3 51 Tri3 ELEMENT_SHELL 1
Tri6 TRI6 CPS6/CPS6T* CTRIA6 52 Tri6
Tri7 TRI7 52 Tri7
Trishell TRISHELL STRI3 CTRIA3 91 Tri3 ELEMENT_SHELL
Trishell3 TRISHELL3 STRI3 CTRIA3 91 Tri3 ELEMENT_SHELL
Trishell6 TRISHELL6 STRI65 CTRI6 92 Tri6
Trishell7 TRISHELL7 92 Tri7
Hex HEX C3D8R/C3D8RT* CHEXA 115 Hex8 ELEMENT_SOLID 4
Hex8 HEX8 C3D8R/C3D8RT* CHEXA 115 Hex8 ELEMENT_SOLID 4
Hex9 HEX9
Hex20 HEX20 C3D20R/C3D20RT* CHEXA 116 Hex20
Hex27 HEX27 CHEXA
Tetra TETRA C3D4/C3D4T* CTETRA 111 Tet4 ELEMENT_SOLID 2
Tetra4 TETRA4 C3D4/C3D4T* CTETRA 111 Tet4 ELEMENT_SOLID 2
Tetra8 TETRA8
Tetra10 TETRA10 C3D10/C3D10MT* CTETRA 118 Tet10 ELEMENT_SOLID
Tetra14 TETRA14
Wedge WEDGE C3D6/C3D6T* CPENTA 112 ELEMENT_SOLID 6
Hexshell HEXSHELL

*Thermal element

565

Finite Element Model

**Check to make sure the element's properties are correct after exporting
***Also exports lofting factor for shell elements (IDEAS)
Supported boundary conditions types

Cubit
Element

Type
ExodusII Abaqus Nastran

I-
DEAS
UNV

Patran LS-
DYNA Fluent

BC Set *STEP SUBCASE 2428
Displacement *BOUNDARY SPC 791 08
Temperature *BOUNDARY TEMP 791 10
Force *CLOAD FORCE/MOMENT 790 07
Pressure *DSLOAD PLOAD4 790 6
Convection *SFILM *** CONV 790 17
Heat Flux *DSFLUX QHBDY 790 16
Contact *CONTACT 2471
Materials *MATERIAL MAT1_, MAT4_ 1716 03
CFD
Boundary
Conditions

Interior 2
Wall 3
Inlet
Pressure 4

Inlet
Massflow 20

Inlet Velocity 10
Outlet
Pressure 5

Far-field
Pressure 9

Symmetry 7
*** Does not allow separate temperatures for top and bottom of shell elements. Values will be
averaged.

Exporting Fluent Grid Files
Geometry can be exported from Cubit to the Fluent .msh format. This format can be used to
exchange grid information between .msh compatible programs including Fluent, GAMBIT, and
TGrid. The command used to export the mesh geometry is:
Export Fluent '<filename>' [Surface <id_list>|Volume <id_list>] [Overwrite]
The filename should be enclosed in either single or double quotes. By convention, the file
extension .msh is applied to grid files. The extension should be included in the filename section.

566

Cubit 15.1 User Documentation

Other file extensions such as .cas may be used, but they cannot be guaranteed to be compatible
with either GAMBIT or TGrid.
In order to guarantee that the grid file will be compatible with Fluent, all bodies must be merged
(See Geometry Merging). Several types of Fluent boundary condition zones are now
implemented in Cubit. They are:

• axis
• exhaust fan
• fan
• inlet vent
• intake fan
• interface
• interior
• mass flow inlet
• outflow
• outlet vent
• periodic
• periodic shadow
• porous jump
• pressure far field
• pressure inlet
• pressure outlet
• radiator
• symmetry
• velocity inlet
• wall

Boundary condition zones created in two different ways. The first way involves user-defined
mesh groups consisting only of quads (3D), triangles (3D), or element edges (2D) (See Geometry
Groups). The second way involves sidesets. Specifying a boundary condition consists of
selecting a user-defined mesh group or a sideset, or a surface. Selecting a surface automatically
assigns the boundary condition to the sideset associated with that surface. The boundary
condition type is specified and is either given a name or an id (See Using CFD Boundary
Conditions). Groups or sidesets of mixed type (e.g. hexes and faces) will not be exported. All
surfaces not set to one of the first seven boundary condition types are automatically set to type
‘wall’. The various parameters for each of the boundary condition types must be set within either
Fluent or GAMBIT.
Cell zones are automatically created for 3D meshes containing blocks. Blocks must contain
entire and continuous volumes in order to create a valid grid. In 2D models, the cell zones are
created from sidesets containing only quads or tris. In order to create a valid grid, these sidesets
must contain whole, continuous surfaces. All cell zones are by default set to type ‘fluid.’
If no entities are specified, the entire model is exported. In order to export selected entities, the
types ‘volume’ and ‘surface’ can be specified. In 2D cases, use ‘surface’ while in the 3D case
use ‘volume.’
The exporter can handle higher-order elements, although Fluent will convert the elements to
first-order upon import.

567

Finite Element Model

Transforming Mesh Coordinates
A mesh can be scaled and transformed to a new location as it is written to or read from an
Exodus file. To transform a mesh during import or export use the following command:

Transform Mesh {Input|Output}
[Scale <xyz_factor>]
[Scale <x_factor> <y_factor> <z_factor>]]
[Scale {X|Y|Z} <factor>]
[Translate <dx> [<dy> [<dz>]]]
[Translate {X|Y|Z} <distance>]
[Rotate <degrees> about {X|Y|Z}]
[Reset]

This command may be repeated any number of times using any number of options. Transform
commands are cumulative, added to the effect of previous transforms. If more than one
transformation is entered in the same command, transformations are applied in the order they
appear in the command.
To clear a transformation matrix, use the Reset option:

Transform Mesh {Input|Output} Reset
Mesh input and output transformations are also cleared when you reset the entire model using
the Reset command.
Transforming a mesh during output does not change the position of the mesh within CUBIT. It
only changes the nodal positions written to the Exodus file. Nodal positions may be changed
within CUBIT by transforming the body that contains the mesh. See Geometry Transforms for
information on how to apply transformations to a Body.
Transforming a mesh during input does change the position of the mesh with CUBIT. The file
being read is not modified.
Transformations applied during mesh input are independent of transformations applied during
mesh output.
The following example generates a simple mesh, writes the mesh with its coordinates scaled by a
factor of 2, and then re-imports that mesh, restoring the scaling to what it originally was in
CUBIT.

brick x 10
volume 1 interval 4
mesh vol 1
transform mesh output scale 2
export mesh 'temp.exo'
delete mesh
transform mesh input scale .5
import mesh 'temp.exo'

See Geometry Transforms for information on how to apply transformations to a Body.
See Nodeset and Nodeset Repositioning
See Importing a Mesh
See Mesh Based Geometry

568

Cubit 15.1 User Documentation

Export Mesh and Its Geometry Association
Cubit offers the option to export a complete finite element mesh, along with its association to an
ACIS geometry model. This is useful if a 3rd party application is going to be used to modify the
mesh after exporting from Cubit, and you want the geometry available to project to during the
modification operations. The command is:

Export m2g '<fileroot>' [override]
The fileroot argument to this command is not a complete filename, rather, it is a full path and
filename without the file extension. The export m2g command will write out:

• fileroot.sat: An Acis geometry file containing the geometric model.
• fileroot.exo: The full mesh in the exodus format.
• fileroot.m2g: An ascii file defining how the mesh in fileroot.exo is associated to

fileroot.sat.

An example usage of the export m2g command is the Sierra mesh_scale command. Sierra
mesh_scale is a batch program which performs the same mesh scaling as can be performed in
Cubit with the scale mesh command. When generating new nodes on the boundary of the mesh,
Sierra mesh_scale projects the locations of the new nodes to the ACIS geometry model by
leveraging the information exported by the export m2g command.

569

STEP BY STEP TUTORIALS
Step-By-Step Tutorials
The purpose of this chapter is to demonstrate the capabilities of CUBIT for finite element mesh
generation as well as provide a brief tutorial on the use of the software package. This chapter is
designed to demonstrate step-by-step instructions for generating a simple mesh on a perforated
brick.
The following activity demonstrates the basics of using CUBIT to generate and mesh a
geometry. By following these steps, you will become familiar with the basics of the command-
line and GUI interfaces without stopping for detailed explanations. All the commands introduced
in this tutorial are documented in subsequent chapters on this manual.
Here are a few tips for the examples in the tutorial:

• Focus on the instructions preceded with "Step" numbers. These walk you through a series
of explicit activities that describe how to complete the task.

• Refer to the screen shots and other pictures that show what you should see on your own
monitor as you progress through the tutorial.

• In this tutorial, command line options will look like this:

cubit> <Your commands go here>
If you do not have the Graphical User Interface (GUI) version of CUBIT, follow the steps in the
right column below, otherwise, proceed through the steps on the left:
GUI CL
Overview Overview
Step 1 Step 1 Beginning Execution
Step 2 Step 2 Creating the Brick
Step 3 Step 3 Creating the Cylinder
Step 4 Step 4 Adjusting the Graphics Display
Step 5 Step 5 Forming the Hole
Step 6 Step 6 Setting Interval Sizes
Step 7 Step 7 Surface Meshing
Step 8 Step 8 Volume Meshing
Step 9 Step 9 Inspecting the Model
Step 10 Step 10 Defining Boundary Conditions
Step 11 Step 11 Exporting the Mesh
Additional Tutorials
ITEM Tutorial - A tutorial on the new ITEM wizard.
Power Tools GUI Tutorial - A tutorial on geometry decomposition and cleanup using the Power
Tools on the new CUBIT GUI.
Decomposition Tutorial - A series of webcutting hints and suggestions for creating sweepable
volumes on various models.
Geometry Cleanup Process Flow - A flowchart on geometry cleanup and defeaturing.

571

Step by Step Tutorials

572

Cubit 15.1 User Documentation

Geometry Cleanup Process Flow

573

Step by Step Tutorials

574

Cubit 15.1 User Documentation

ITEM
ITEM Tutorial
Overview
This tutorial will demonstrate the use of the Immersive Topology Environment for Meshing
(ITEM) to create a finite element mesh. ITEM is a wizard-like environment that guides a user
through a typical mesh generation process from import to export. Each page in the ITEM
workflow is linked to other pages, and one can easily move around in the environment by
clicking on links on each page. Most of the pages contain diagnostic tools that search the model
for specific geometry or mesh-related issues. Clicking on a entity in the ITEM output window
will then generate specific command suggestions to resolve the problem. The following topics
are included in this tutorial:

• Importing a geometry
• Creating the finite element model
• Removing small features
• Using merge tolerance to find and fix small misalignments
• Decomposing a model
• Generating a mesh
• Validating the mesh
• Creating boundary conditions
• Exporting the mesh

The model that will be used is shown below.

575

Step by Step Tutorials

ITEM Tutorial
Step 1: Import Geometry

• Click on ITEM tab on the power tools panel on the left hand side of the screen.
• Click on Import or create geometry

576

Cubit 15.1 User Documentation

• Click on Import a CAD model
• Click on Acis
• Browse for the "item_tutorial.sat" file and import. The file may be in the Cubit

directory/folder under 'tutorials.'
• Leave the default options selected on the import dialog box.
• Click Done
• Click Done

In most cases, clicking the Done button also acts like a "Back" button. Clicking Done will return
the user to the previous page while preserving any changes made on that page.

ITEM Tutorial
Step 2: Setup The FEA Model

• Click on Setup the FEA model
• Click on Set Defaults (this determines a default mesh size and populates the fields

accordingly-it also previews the mesh if the Auto Preview Mesh checkbox is checked)

577

Step by Step Tutorials

• Examine the preview mesh

578

Cubit 15.1 User Documentation

• Click Done to return to the previous page.
• Click Done again to return to the main ITEM task page

ITEM Tutorial
Step 3: Remove Small Features

• Click Prepare Geometry
• Click Run Checked Diagnostics: The red exclamation point indicates a problem area

that may need to be addressed

579

Step by Step Tutorials

• Click on Remove small features
• Click on the button with three dots (...) next to the small curve length input box. This will

open the small feature size panel. The small feature size panel is a tool to help the user
find an appropriate small feature size. The smallest feature size is the smallest detail in
the model that needs to be resolved in the mesh. It is also used for several calculations
and diagnostic tools in the geometry ITEM panels. Any feature that is smaller than the
smallest feature size will be flagged as a small curve or surface, and will need to be
removed.

580

Cubit 15.1 User Documentation

• Click on Find small features
• Change the Number to 20
• Click on Find Small features again. One important thing to note is that the smallest

features will only include vertex-vertex and vertex-curve pairs on the same volume. The
small gaps and misalignments between volumes will be addressed during the imprinting
and merging step.

In addition to setting the small feature size, the smallest feature size panel of itself is a useful tool
for visualizing and grouping small features. Sometimes it is useful just to have a list of the
smallest features and a means of quickly visualizing and grouping them.

• Scan through the vertex-vertex pairs on the list. Right-click on any of the entities on the
list and select Zoom to Pair or Fly-in to zoom in on the small feature.

• Locate pair Vertex 75 and 74
• Clicking on the pair should populated the small feature size input box and the bottom of

the window.
• Click Done

581

Step by Step Tutorials

• You should now be on the Remove Small Features page. Click Detect small features.
There should be 4 small surfaces on the list.

• Click on the plus sign to open the Small Surfaces group. The first four surfaces are small
filleted surfaces that are easily removed.

• Click on Surface 10
• Click on Remove Surface from the Solutions window
• Click Execute

582

Cubit 15.1 User Documentation

• Repeat for Surface 18, Surface 16, Surface 35

583

Step by Step Tutorials

• On the 4th small surface execute the Rebuild Topology solution. The rebuild topology
option will remove curves or surfaces from a model and reconstruct the geometry using
real geometry operations. In this case, it replaces the sharp lip surface with a gradual
surface, as shown in the following image.

584

Cubit 15.1 User Documentation

• The rest of the small curves in the model are at the small feature size limit of 0.25. To
remove these from the list, either change small feature size to a smaller value like 0.24,
Or click Mark ALL as Okay

• Click Done to return to the main Prepare Geometry page

ITEM Tutorial
Step 4: Connect Volumes
The next step in the mesh generation process is to merge all shared curves and surfaces. This is
necessary so that adjacent volumes can shared boundary meshes. For most geometries, this step
presents no major complications. But in many cases, misalignments, tolerance problems, or other
cleanup operations can prevent proper merging. The ITEM panel is designed to guide users
through imprint/merge problems.

• Click Connect Volumes
• Click Imprint and merge
• Click on the button with three small dots (...) next to the Merge Tolerance field
• Click Estimate Merge Tolerance. The merge tolerance panel is used to help the user

find an appropriate merge tolerance. In addition to determining a proper tolerance for
merging, the merge tolerance can also be used as a diagnostic tool to find small
misalignments, as will be demonstrated below. Many of these can be resolved prior to
imprinting and merging.

585

Step by Step Tutorials

• Check vertex-curve and vertex-surface pairs
• Look in the ouput of the command line workspace. A proximity is nearly coincident

entities that would be merged at the given tolerance. From the given list, you can tell that
there are 4 entities that would be merged at a merge tolerance of 0.025 which would not
be merged if the merge tolerance were 0. This means that those entities are less than
0.025 apart.

• Change the search parameter to very small number like Min=0.001 and search again.
• Four Vertex-Vertex Pairs appear
• Open Vertex/Vertex pairs group
• Right click on first pair and choose Label Pair to view
• Click on the first solution (tweak surface 46 to surface 7) and click Execute

586

Cubit 15.1 User Documentation

• Click Done
• Click Imprint/Merge button
• Click Detect Potential Problems
• .

No problems should appear on the list, signifying that imprinting and merging has most likely
been successful. There are several diagnostic tools on this page that help to determine if
imprint/merging has been successful. These include:

• Overlapping Surfaces- Surfaces that overlap, but are not merged.
• Non-manifold curves- Two curves that are merged but that don't have any merged

surfaces.
• Non-manifold vertices- Two vertices that are merged, but do not share any merged

curves.

587

Step by Step Tutorials

• Floating volumes- Volumes that are not connected to any other volumes (meaning they
are not merged)

All of these diagnostics could be run at any time but the results are most meaningful after an
imprint/merge operation.

• Click Done
• Click Done

ITEM Tutorial
Step 5: Build a Meshable Topology
The next step in the mesh generation process can be one of the most challenging. Building a
meshable topology involves decomposing an assembly into meshable parts. For sweeping, this
means decomposing it into volumes composed of many-to-one and one-to-one sweepable parts.
Each decomposed volume is further constrained because it needs to be able to share boundary
meshes on merged surfaces. Since the number of possible decomposition strategies are
numerous, it is not yet possible to automatically decompose most models. Instead, the ITEM
framework seeks to provide possible decomposition options to the user, which they can be easily
executed (and if necessary, quickly undone).

• Click Build meshable topology
• Click Decompose volume
• Click Check Meshability
• Examine Volume 3. There is 1 source and 1 target surface and it is sweepable.
• Examine Volume 1. There are two source surfaces and two target surfaces. It needs to be

webcut cylindrically through middle

588

Cubit 15.1 User Documentation

• Click on Volume 1
• Choose cylindrical webcut and execute making sure the imprint and merge after webcut

is checked

589

Step by Step Tutorials

• Examine Volume 2. The tall portion should be swept around in the direction of the holes.
The bottom portion should be swept from top to bottom. It is many to one sweepable if
webcut cylindrically around inner cylinder.

• Choose cylindrical webcut that cuts off thicker part at bottom of Volume 4.

590

Cubit 15.1 User Documentation

591

Step by Step Tutorials

• Click Done.
• Click Done after running checked diagnostics again to verify.
• Click Done.

ITEM Tutorial
Step 6: Meshing the Geometry
The actual mesh generation process is usually quite iterative. Rare is the case where meshing
succeeds perfectly on the first try, even when all volumes are "meshable". Even if it does
succeed, it is usually constrained by areas of poor quality elements. ITEM was designed to help
users navigate the iterative mesh generation process. When meshing fails, the mesh generation
panel helps to explain common error messages and suggest possible strategies for getting a
model to mesh.

• Click Mesh the geometry
• Click Generate Mesh. Meshing succeeds in this case, but on closer inspection, it appears

as though it has forced a mapped mesh on two surfaces that would be better as paved
surfaces.

• Right click on Meshed Volumes and select Delete Mesh

592

Cubit 15.1 User Documentation

• Click on Volume 3-Surface 44 - Notice the scheme is set to map

• Click on the Meshing-Surface command panel and set the scheme to pave for Surface
44

593

Step by Step Tutorials

• Repeat for Surface 20
• Go to command panel for Meshing-Volume and select Volume 3. Change the scheme to

Sweep.

594

Cubit 15.1 User Documentation

The mesh density didn’t adequately capture the mesh features. To decrease the mesh size, return
to the setup panel.

• Back on the ITEM Panel, click on Setup the FEA model button on the left panel.
• Change the mesh size by moving the target mesh density slider one position to the left.
• Click Apply next to the Element Size

595

Step by Step Tutorials

• Click on Done
• Click on Mesh the geometry
• Click on Generate Mesh

596

Cubit 15.1 User Documentation

ITEM Tutorial
Step 7: Validate Mesh

• Click on Validate Mesh
• Click on Check mesh quality
• Click on Analyze Quality - No bad elements found

597

Step by Step Tutorials

ITEM Tutorial
Step 8: Define Boundary Conditions
Exodus boundary conditions are specified as generic blocks, nodesets, and sidesets. Clicking on
a boundary condition type on the ITEM panel will open the corresponding command panel.

• Click on Define boundary conditions on the ITEM panel
• Click on Define Block. This opens the Material Properties->Block Panel and

automatically assigns a default block id of 1.
• Set selection type to Volume
• Select Volumes 1 5
• Click Apply

598

Cubit 15.1 User Documentation

• Click on Define Block on the ITEM Panel. It should automatically increment the Block
ID for you.

• Select Volume 3
• Click Apply

599

Step by Step Tutorials

• Click Create Block on the ITEM Panel to increment block ID
• Select Volumes 4 6
• Click Apply

600

Cubit 15.1 User Documentation

• Change to the Element Type panel by selecting from the drop-down list
• Change the Element Type to Hex9
• Click Apply

601

Step by Step Tutorials

• On the ITEM panel click Done

ITEM Tutorial
Step 9: Export the Exodus Model
Cubit primarily supports the Exodus format for mesh export. But there are also limited export
abilities for other formats as well. For a list of export capabilities see Exporting the Finite
Element Model

• Click on the Export the Mesh link from the main ITEM task page
• Set the export type to Genesis. This opens the export mesh dialog box on the command

panels.

602

Cubit 15.1 User Documentation

• Assign a filename
• Click Apply (all blocks will exported by default).

•
Congratulations on completing the ITEM tutorial. Click on the arrow to return to the
main tutorial page.

603

Step by Step Tutorials

Power Tools
Power Tools GUI Tutorial
Overview
This tutorial demonstrates using the Power Tools on the CUBIT GUI for geometry
decomposition and cleanup. The following features will be covered:

• Importing Geometry
• Analyzing Geometry
• Geometry Power Tools
• Webcutting
• Imprint/Merge
• Mesh Power Tools
• Meshing

Each of these steps is described in detail in the following sections. For this tutorial you will need
to have a basic understanding of the CUBIT GUI functionality, including how to select entities,
maneuver in the graphics window, operate the Control Panel, and use toolbars. If you have not
already done so, we recommend completing the Basic Tutorial first. The following image shows
the geometry that will be used for this tutorial.
NOTE: Many of the steps in this tutorial include operations on specific entities which are
identified by ID. When the solid modeling kernal is updated in Cubit the ID space may change.
As such, you may not be able to rely on the IDs specified in this tutorial. Please look at the
associated graphics to determine which entity/ID is being referred to.

604

Cubit 15.1 User Documentation

Power Tools GUI Tutorial
Step 1: Import the Geometry
Begin by opening a new session of CUBIT. To complete this tutorial, you will need to download
the ACIS file that contains the geometry definition.

• Download geometry file knuckle.sat (Note: This link will not work from within Cubit.
You will need to access this documentation from the cubit web site, or locate the file on
your computer. It is included in the distribution of CUBIT under
components\cubit\help\step_by_step_tutorials\power_tools)

• Select the Import option from File menu

605

Step by Step Tutorials

• The following dialog box will appear. Open the file by clicking on the name and selecting
Open. If you do not see the file, make sure that you are in the right directory, and that the
file type is set to ACIS.

606

Cubit 15.1 User Documentation

• Leave all of the import settings on their default settings and select Finish

Your graphics window should now appear as follows:

607

Step by Step Tutorials

• Use the mouse to rotate the image in the graphics window to get a better perspective. For
help with using the mouse in the graphics window, see Mouse Based Zoom, Pan and
Rotate .

608

Cubit 15.1 User Documentation

Power Tools GUI Tutorial
Step 2: Analyze the Geometry
The Geometry Power Tools are located in the Entity Tree Window under the blue geometry tab.
This menu provides access to many of the geometry analysis and clean-up tools in CUBIT.

609

Step by Step Tutorials

Many geometries that are imported from other solid modeling software contain inconsistencies
or small gaps that can cause meshing to fail. These problems are the result of differences in
tolerances, file transfer loss, or inherent limitations in the parent system. In other instances, the
geometry has no inconsistencies, but may be unsuitable for meshing because of topology such as
small angles, overlap, or features smaller than the desired meshing size. The geometry analysis
tool will analyze the volumes and return a list of suspected problems. To see a list of analysis
options, click the "Show Options" box below the Analyze button.
Many of these problems can be fixed using the tools on the Power Tools menu. These include
Split Surface, Heal, Tweak, Remove, Merge, Composite, Collapse Angle, Collapse Curve, and
Collapse Surface. Many of these tools will be demonstrated in this tutorial.

• Open the geometry repair tab in the Entity Tree window
• Type all in the Volumes to Analyze field
• Set the Shortest Edge Length to 1
• Press Analyze

610

Cubit 15.1 User Documentation

After the Analyze Button is pushed, display area will appear as shown above. There are four
suspected problems with this geometry: Curves with Small Angles, Blend Surfaces, Close
Loops, and Badly Defined Geometry. The numbers in parentheses indicate the number of
occurrences of this problem in the model. Clicking on the + sign by each label will list the
CUBIT entities by ID with this problem. Clicking on the + sign by each entity will cause that
entity's children or parents to be listed (depending on the entity and the type of geometry test).
See documentation on Geometry Repair for more information about the display window.
Clicking on the name of an entity will highlight that entity in the graphics window.

• Select Vertex 45 under Curves with Small Angles

Observe that this vertex is highlighted in the graphics window.

• Right click and select Zoom To from the list of options

The graphics window should look like this:

611

Step by Step Tutorials

• Right Click on Vertex 45 and select Reset Zoom from the list of options

The image should now be reset to the previous graphics state.
You can experiment with some of the other options in the top half of the right click menu. They
are:

• Fly-in - Animated zoom feature
• Locate - Labels entity
• Draw - Draw this entity by itself
• Draw with Neighbors - Draw this entity with all adjacent curves and surfaces
• Clear Highlights - Clear all highlighted entities
• Reset Graphics - Refresh graphics screen

The graphics window may also be reset by pressing the reset graphics button on the menu.

612

Cubit 15.1 User Documentation

Power Tools GUI Tutorial
Step 3: Healing the Geometry
The first step to improving any geometry is to look for badly defined geometry and to fix it using
the Autoheal tool in CUBIT. The Geometry Analysis tool may detect these inconsistencies, but
only if such a function exists in the parent software. It is always a good idea to run the Autoheal
on imported geometry. In this example, the Power Tools has located some badly defined curves.
This step will show you how to use the geometry repair tool to fix these curves.

• Highlight all of the badly defined curves by holding down the Shift key while selecting
• Right click and select Heal Owning Body from the list of options

OR

• Click the button

613

Step by Step Tutorials

The Geometry Repair Tool does not execute any geometry clean-up commands directly, but
directs you to the place on the Control Panel where this function can be executed. The following
menu will appear on the Control Panel. Notice that the id of the owning body has already been
pasted into the input window.

• Select the Autoheal button
• Press Apply

614

Cubit 15.1 User Documentation

The output window on the CUBIT GUI should appear with the following message. You may
have to scroll to see the whole thing. The percentage before and after healing are 97% to 100%.
Healing has been successful.

Run the geometry analysis test again to guarantee that all bad geometry has been removed.

615

Step by Step Tutorials

• Press the Analyze Button in the Geometry Repair window

Power Tools GUI Tutorial
Step 4: Mesh Power Tools
The Mesh Power Tool provides an easy and graphical way to determine if volumes are meshable.
This tool will employ the AutoScheme feature in CUBIT to select and assign schemes to
meshable volumes. If a volume is not currently meshable, it will be flagged and highlighted. Use
the Mesh Power Tool to determine if the volume is currently meshable.

• Click on the purple Mesh Tools tab in the Power Tools window.
• Select Volume as the entity type in the pull-down menu (It may already be selected)
• Enter all in the input window
• Press Analyze

Volume 1 will appear under the "No Scheme Set" heading.

• Toggle the Graphics Button in the bottom left corner

616

Cubit 15.1 User Documentation

The graphics window should look like this with Volume 1 highlighted in red. Using this graphics
feature, all volumes that are meshable will be highlighted in green, and all volumes that are not
currently meshable will be highlighted in red.

• Turn the Graphics Button off so that Volume 1 is shown in green again

Power Tools GUI Tutorial
Step 5: Splitting Filleted Surfaces
The previous step determined that the volume was not currently meshable, and that further
decomposition was required. This decomposition can be performed using the tools in the
Geometry Repair power tools. A good place to start is with blend surfaces.
A blend surface is a transitional surface that connects two orthogonal planes, also known as a
fillet. Blend surfaces can be problematic in meshing because there is no clear transition between
the two orthogonal surfaces, making sweeping or mapping algorithms difficult. The Split Surface
function divides these blend surfaces (or any surface) into two distinct surfaces.

• Select Surface 22 from the list of blend surfaces
• Right click and select Zoom To from the list of options

617

Step by Step Tutorials

The graphics window should look like this:

• Right click with Surface 22 highlighted and select the Split button

OR

• Click the button on the tool panel

618

Cubit 15.1 User Documentation

The Geometry-Surface-Modify-Split Menu will appear on the Control Panel. Make sure the
Surface id is input in the window.

• Press the Preview Button

619

Step by Step Tutorials

The blue line shows where the surface will be split.

620

Cubit 15.1 User Documentation

• Press the Apply Button

The surface should now appear split.

• Repeat these steps with the opposite blend surface (ID 10)

Power Tools GUI Tutorial
Step 6: Web Cutting
Since the model has several through holes, sweeping is not possible from a single source and
target. However, it is possible to divide the model into three sweepable regions. The figure below
shows where to divide the model to get it into sweepable regions. These regions coincide with
the holes in the model.
Web cutting is this process of dividing volumes into sweepable regions by cutting with a plane.
For this exercise, you will use the curves that were just created with the split surface command to
cut the volume.

621

Step by Step Tutorials

In order to visualize the process more clearly, switch to the isometric view.

• Change the view to isometric in the Display menu under View Point

622

Cubit 15.1 User Documentation

The web cutting menu is located under Geometry-Volume-Webcut on the Control Panel.

• Click on Geometry, then Volume, then Webcut on the Control Panel
• Select Plane Normal to Curve (near vertex) from the list of options

623

Step by Step Tutorials

The following image shows the entity ids that will be used to webcut the volume. Select entities
with the mouse by clicking on them.

624

Cubit 15.1 User Documentation

• Enter Volume 1 by typing it or selecting from the graphics window
• Enter Curve 35 by typing it or selecting from the graphics window
• Change the Type to Near Vertex
• Enter Vertex 51 by typing it or selecting from the graphics window
• Press Preview

625

Step by Step Tutorials

A blue preview plane should appear in the following position. Check to make sure that your
model looks the same.

626

Cubit 15.1 User Documentation

• Press Apply

The volume has now been split into two volumes. Volume 2 is shown in yellow.
Repeat these steps with the other side of the part. The Volume and Curve ids will remain the
same.

• Enter Vertex 49 in the input window or select from the graphics window
• Press Preview, then Apply

The final webcut volume should look like this:

627

Step by Step Tutorials

Power Tools GUI Tutorial
Step 7: Removing Small Surfaces
Some surfaces are too small for analysis and should be removed from the model. In this example,
Surface 15 and Surface 17 may fall into that category, assuming that the distance between curves
on these surfaces is smaller than the desired final mesh size. You can remove these surfaces by
extending adjacent surfaces until they intersect.

• Rotate the model to the following orientation

628

Cubit 15.1 User Documentation

• Press Analyze on the Geometry Power Tools menu

You will notice that a new category has appeared labeled Overlapping Surfaces. This is because
there are two new surfaces created for each of the webcuts that overlap a surface on the original
body. This can be removed using the Imprint/Merge function which will be explained in Step 9.

• Zoom to Surface 17 in the graphics display
• Right Click on Surface 17 in the Geometry Repair window and select Remove

OR

• Press the Remove Button on the tool bar

629

Step by Step Tutorials

The Control Panel will appear under the Geometry-Surface-Modify- Remove heading. The
Surface id should appear in the input window.

• Make sure that Surface 17 appears in the window and the Extend button is checked
• Press Apply

630

Cubit 15.1 User Documentation

The small surface no longer appears.

631

Step by Step Tutorials

• Highlight Surface 15 and select the Remove option

Surface 15 is shown highlighted in the following image.

• The Geometry-Surface-Modify-Remove option appears on the Control Panel. Make sure
that Surface 15 appears in the input window.

• Press Apply

Reset the Zoom to show the entire model.

632

Cubit 15.1 User Documentation

Power Tools GUI Tutorial
Step 8: Tweaking Surfaces
Tweaking is the process of deleting, moving, or offsetting, surfaces and extending or trimming
adjacent surfaces to fill in the gaps. Tweaking is useful for eliminating gaps between
components, simplifying geometry or changing the dimensions of an entity. Tweaking will be
used in this example to decrease the radius of the upper cylinder.
Begin by reanalyzing the geometry.

• Press Analyze on the Power Tools menu

There should be 1 entry under the "Close Loops" category for Surface 38. A close loop
(pronounced KLOS) is a surface which has two loops that are within some small distance of each
other at their closest points. The parameter for distance is the square of the shortest edge length
parameter.

• Press the Tweak Button (since you are not tweaking Surface 41 directly, the
surface does not need to be highlighted when you press the tweak button)

The Geometry-Surface-Modify-Tweak will open on the Control Panel as shown below.

633

Step by Step Tutorials

• Enter Surface 16 by typing it in at the input line or selecting from the graphics window
• Select the Offset option from the pull-down menu

Surface 16 is shown highlighted below.

634

Cubit 15.1 User Documentation

• Enter an Offset Value of -0.9.

The offset value is a percentage of the current size. Entering -0.9 will decrease the radius by 10
percent.

• Press Apply

The graphics window should now look like this. Notice that the radius of the cylinder has shrunk
inward, increasing the gap between the edges on Surface 41.

635

Step by Step Tutorials

Power Tools GUI Tutorial
Step 9: Imprint/Merge
Imprinting is the process of projecting curves from one surface onto an overlapping surface.
Merging is the process of taking two overlapping surfaces and merging them into one surface
shared by two volumes, creating non-manifold geometry. Both imprinting and merging are
necessary to make adjacent volumes have identical meshes at their intersection. Imprinting and
merging is almost always necessary after webcutting.

• To open the imprint/merge menu, select the Geometry icon, then Volume, then
Imprint/Merge on the Control Panel

• Enter all in the input window Check the Imprint and Merge boxes
• Press Apply

636

Cubit 15.1 User Documentation

You will not notice any visible changes in the graphics window after imprint/merge operations,
but results of the operations will be printed in the output window. Confirm that both surfaces
have been merged by reading the output in the graphics window (You may have to scroll to see
all of the results)
You can return to the Power Tools menu to see that the Close Loops and Overlapping Surfaces
are gone.

• Press Analyze in the Power Tools menu

The display window will now read "Nothing Found" to indicate that are no geometry tests that
fail.

637

Step by Step Tutorials

Power Tools GUI Tutorial
Step 10: Compositing Surfaces
Composite surfaces are adjacent surfaces that have been merged into one surface. Composite
surfaces are created using Virtual Geometry, which is a built-in geometry kernel that sits on top
of the existing geometry, and does not change the underlying geometry definition. Virtual
geometry has the added advantage of being reversible. It can be removed after meshing. The
general purpose for using composite surfaces is to deconstrain the mesh. For example,
compositing two surfaces will remove the requirement that nodes be placed on the curve between
the surfaces. Composite surfaces will be used in this example to facilitate the sweeping
algorithm.

• Open the Mesh Tools tab
• Enter 'all' in the input field
• Press Analyze
• Toggle the Reset Graphics button to show entities in green and red (for meshable and

non-meshable volumes)

No volumes are listed as automatically meshable. In the graphics window, red indicates that the
volume scheme has not been set. Green indicates that the scheme has been set.

• Toggle the Reset Graphics button so it returns to the normal colors
• Open the Geometry Tools tab

• Press the Composite Button on the toolbar

638

Cubit 15.1 User Documentation

The Geometry-Surface-Modify-Composite menu will open on the Control Panel.

639

Step by Step Tutorials

• Select Surfaces 9 and 27 (shown in the image above) by entering them in at the input
line, using CTRL-Click (Windows) in the graphics window, or Command Key-Click
(Macintosh) in the graphics window

• Make sure the Create button is checked
• Press Apply

640

Cubit 15.1 User Documentation

The two surfaces should appear merged.

Repeat these steps with the opposite side.

641

Step by Step Tutorials

• Rotate the view window so Surface 6 and 24 are visible

• Select Surface 6 and Surface 24 by using CTRL-Click (Windows), Command Key-Click
(Macintosh), or entering the ids the input window

• Press Apply

642

Cubit 15.1 User Documentation

Check to see that the surfaces have been composited and that your graphics window looks like
the following image.

643

Step by Step Tutorials

Finally, surfaces 11, 25, and 26 (shown below) need to be composited.

644

Cubit 15.1 User Documentation

Use the command panel to choose surfaces for the composite command.

645

Step by Step Tutorials

Press the apply button and check the results in the graphics window.

646

Cubit 15.1 User Documentation

Power Tools GUI Tutorial
Step 11: Meshing the Model
Use the Mesh Power Tools to apply schemes to the remaining volumes.

• Press the Mesh Tools tab in the Power Tools window
• Press Analyze

647

Step by Step Tutorials

All of the schemes have now been set with a sweeping algorithm. The model is ready to be
meshed. All volumes should appear green in the graphics window.

648

Cubit 15.1 User Documentation

• Toggle the Reset Graphics button to return volumes to their original colors

Select Volume as the entity, and Intervals as the Action.

• Enter all in the "Select Volumes" input window
• Select Constant Size from the list of sizing options
• Enter 2 for the size
• Press Apply Size
• Press Preview

649

Step by Step Tutorials

The graphics window should appear as follows, with the mesh size increments highlighted on all
of the curves in the model.

650

Cubit 15.1 User Documentation

• Go to Mode - Meshing, Entity - Volume, Action - Mesh, and press the Mesh Button

There is no need to press the Apply Scheme button since the scheme have already been set in the
Meshing Tools.

651

Step by Step Tutorials

The final mesh should look like this:

652

Cubit 15.1 User Documentation

Congratulations! You have just completed the Power Tools Tutorial. Click on the arrow
to return to the Tutorial home.

Decomposition
Decomposition Tutorial
Creating Sweepable Volumes Through Webcutting
Most volumes require some measure of decomposition before they can be meshed with a
hexahedral meshing scheme. The most common hexahedral meshing tool is the sweeping
algorithm. Sweeping is the process of creating a hexahedral mesh by extruding a quadrilateral
surface mesh from a source surface onto a topologically similar target surface by way of a
linking surface. The surface mesh can be meshed with any surface meshing scheme (i.e.
structured or unstructured mesh), but the most common surface meshing scheme for the
sweeping algorithm is the pave scheme. In fact, the sweeping algorithm is sometimes called the
"pave-sweep" algorithm. Most volumes aren't automatically sweepable, which is why geometry
decomposition is so important to the meshing process. Decomposition usually involves a series
of webcutting, boolean, and virtual geometry operations that break up a larger model into
sweepable regions. Studies have shown that this step in the meshing process is the most time
consuming for the analyst. The goals of this tutorial are for the user to learn to:

1. Recognize sweepable volumes

653

Step by Step Tutorials

2. Recognize how to decompose a model into sweepable parts
3. Gain proficiency with webcutting and other decomposition techniques
4. Avoid common pitfalls with decomposition and sweeping

Why use sweeping?
Of all the hexahedral meshing schemes in the Cubit toolkit, sweeping is considered the most
reliable at producing high quality elements. Although decomposing a model into sweepable
volumes can be time-consuming, and sometimes falls into the realm of trying to fit a square peg
into a round hole, the pave-sweep algorithm has a high rate of success, and it sometimes the only
way to get a hexahedral mesh on a model.
What makes a volume sweepable?
Recognizing sweepable topologies can be an art form. Sweepable volumes can be comprised of
many different topologies. We typically classify sweeping problems into three groups, based on
the number of source/target surfaces.

Basic Sweep Groups
One-to-one: A volume with a one source surface and one target surface.

Many-to-one: A volume with multiple source surfaces and one target surface

654

Cubit 15.1 User Documentation

Multisweep (or Many-to-Many): A volume with multiple target surfaces

Points to consider when determining whether a volume is sweepable

• Swept surface meshes can be extruded through a volume which is rotated or translated.
However, if the translation/rotation is severe then the quality of the resulting mesh may
be poor.

• A volume with multiple target surfaces and a single source surface can sometimes be
inverted and handled as a many-to-one sweepable volume. Otherwise, it is treated as a
multisweep problem.

• Imprinting introduces new topology onto surfaces. Sweepable volumes may not be
sweepable after imprinting and merging adjacent surfaces

655

Step by Step Tutorials

• Multisweep is still under development, and has limitations, so if you are having difficulty
with the multisweep algorithm, it is usually a good idea to decompose it into many-to-one
or one-to-one sweepable regions.

• Cubit won’t always automatically recognize your volume as a sweepable volume, even if
it is. Sometimes, you have to give it a list of source/target surfaces explicitly.

Basic Sweep Paths
In addition to the different topologies, sweepable volumes can be classified by the sweep
direction. These include: top-to-bottom, inside-to-outside, and around (rotational). Be sure to
consider all the possibilities for sweep directions when you begin decomposing a model. And
keep in mind that sweep paths must be compatible with adjacent volumes. To be compatible,
overlapping surfaces must have the same scheme (i.e. both must be a linking surface or a paved
surface). The volume below is meshed three different times with the three different sweep
directions. Notice the difference in element sizes and orientations between the meshes. See if you
can pick out the different source and target surfaces in each example. As an exercise, try to mesh
this model with each of the different sweep paths.

Top-to-Bottom Inside-to-Outside Around (Rotational)

Many-to-one Many-to-one
One-to-one (this is the
default sweep direction
for this model)

What are some good strategies for decomposing my model?
Recognizing when a volume is sweepable is a difficult task of itself, but being able to come up
with viable webcutting, compositing, and boolean strategies to make a volume sweepable is even
more difficult, and can only be achieved through practice. Here are some general principles to
follow when decomposing a model.

1. Select your sweep path
2. Use as few webcuts as possible
3. Set your own source and target surfaces if Cubit does not pick them automatically
4. If one of your volumes does not mesh, or has an undesirable mesh, try changing the order

in which you mesh volumes. This will hardset the intervals on the volumes.
5. The Reset Volume command will remove all schemes and interval settings from

volumes.
6. If changing the mesh order or resetting the volumes does not work and you continue to

get "Matching Intervals Failed" errors, set explicit intervals on some or all curves.
7. Make additional webcuts if necessary.

656

Cubit 15.1 User Documentation

8. Check for sliver surfaces or curves that may have been introduced during decomposition
and remove these through tweaking collapsing, or compositing.

9. Change surface vertex types on mapped or submapped surfaces if you need to force a
certain configuration

10. Use partitioning to introduce virtual geometry constraints without affecting the
underlying geometry

11. Composite surfaces to remove constraints without affecting the underlying geometry
12. Save your work often. For a complex model, the meshing process can be very iterative.

You may need to start over many times until you find an acceptable solution.

The following is a compilation of several different decomposition problems of varying difficulty.
If you accessed this help from the Cubit program (as opposed to the web documentation), you
will need to browse for the geometry files from within your Cubit installation directory. They
should be located in the "/components/cubit/help/step_by_step_tutorials/decomposition"
directory of the Cubit installation folder.
Example Image File
Beginner

Sweeping through multiple
adjacent volumes

example01.sat

Interlocking rings

example02.sat

Webcutting using the "sweep"
option

example03.sat

Using the loft command

example04.sat

657

Step by Step Tutorials

Multiple sweep directions

example05.sat

Advanced

Employing symmetry and
controlling skew

example06.sat

Using virtual geometry

example07.sat

Sweeping volumes with
narrow angles and surfaces

example08.sat

Example 1. Sweeping multiple adjacent volumes
The following model has several interior volumes which share surfaces. This example may at
first seem complex, but it actually requires very little decomposition. The key to this example is
that each of the interior volumes is already sweepable, oriented along the same sweep axis, and

658

Cubit 15.1 User Documentation

none of the linking surfaces have additional topology introduced through imprint/merge. In fact,
there is only one required webcut to make this model automatically sweepable.

Figure 1. Exterior view

Figure 2. Interior view

We examine several of the volumes below.
Source Surface(s) Target Surface(s) Sweep type

Many-to-one
Sweepable
Imprinting and
merging adjacent
volumes creates
additional partitions
on the source
surface, but the
target surface does
not contain imprints.

659

Step by Step Tutorials

Many-to-one
Sweepable
Multiple source
surfaces due to
interior void

One-to-One
Sweepable
Source and target
surfaces are single
surfaces, and there
are no imprints on
the linking surfaces

Many-to-one
Sweepable
Interior void causes
multiple source
surfaces.

Multisweep
Imprinting causes
multiple source
surfaces and
interior void causes
multiple target
surfaces. This
volume requires
decomposition

Suggested webcut
Webcut Command

CUBIT> webcut volume 5 with
sheet extended from surface
70
CUBIT> imprint all
CUBIT> merge all
CUBIT> volume all size 0.15
CUBIT> volume all scheme
auto

660

Cubit 15.1 User Documentation

Final mesh
The final mesh is created at a size of 0.15 for all volumes.

Example 2. Interlocking rings
The following example is composed of two rings of constant cross-section that can be swept
along their axes. The problem here is that the rings overlap, forming a tetrahedral shape which
cannot be swept. The key to solving this problem is separating out the region of overlap,
explicitly setting the source and target surfaces, and using the tetprimitive scheme on the
tetrahedral region.

Suggested webcuts
Webcut Command

CUBIT> webcut body 1 plane surface 5

661

Step by Step Tutorials

CUBIT> webcut body 2 sheet extended from
surface 4

CUBIT> webcut body 3 plane surface 12

CUBIT> webcut body 4 sheet extended from
surface 10
CUBIT> imprint all
CUBIT> merge all

There are five volumes that result from the webcutting. Two of them are automatically
sweepable. Two of them must have their schemes set explicitly, and one of them is meshed using
the tetprimitive scheme.
Webcut Command

One-to-one Sweepable
Source and target are set
automatically using autoscheme
CUBIT> volume 1 3 scheme auto

One-to-one Sweepable
Must have source and target set
explicitly
CUBIT> volume 2 scheme sweep
source 17 target 7
CUBIT> volume 4 scheme sweep
source 29 target 18

662

Cubit 15.1 User Documentation

Non-sweepable
Use the tetprimitive scheme
CUBIT> curve in volume 5
interval 6
CUBIT> volume 5 scheme
tetprimitive
CUBIT> volume all size 0.5
CUBIT> mesh volume all

Final mesh
The final mesh is created at a size of 0.5 for all volumes.

Example 3. Webcutting using the sweep option
This example introduces additional webcutting options. This example would be a simple many-
to-one sweep except for the overhanging lip and the protrusions on the bottom surface. To a
beginner user, it may at first seem reasonable to use the bottom surface as a webcutting plane.
However, this will not create a many-to-one sweepable volume. Instead, you need to use the
protruding surfaces as cutting planes, and extend them through the entire volume.

Suggested webcuts
Webcut Command

663

Step by Step Tutorials

CUBIT> webcut volume 1 with sheet
extended from surface 27

CUBIT> webcut volume 1 with plane
surface 30

CUBIT> webcut vol all sweep surf 26
vector -1 0 0 through_all
Now Volume 3 (red) has only 1 target
surface.
CUBIT> imprint all
CUBIT> merge all
CUBIT> volume all size 0.05
CUBIT> mesh volume all

Final mesh
The final mesh is created at a size of 0.05 for all volumes.

664

Cubit 15.1 User Documentation

Example 4. Using the Loft command
In the next example, the loft command significantly decreases the number of required webcuts.
This model also demonstrates using 2 separate sweep paths (top-to-bottom and rotational) on
adjacent volumes.

Original Volume
Webcuts created from
sweeping surfaces (not
recommended)

Webcuts using loft
command
(recommended)

Suggested webcuts
Webcut Command

CUBIT> webcut body 2 loop curve 6

665

Step by Step Tutorials

CUBIT> webcut body 2 sheet extended
from surface 1

CUBIT> create surface from surface
10
CUBIT> create surface from surface
4
CUBIT> create body loft surface 19
20

CUBIT> webcut body 3 tool body 7
CUBIT> delete body 5 6 7

666

Cubit 15.1 User Documentation

CUBIT> webcut body 2 3 plane yplane
CUBIT> imprint all
CUBIT> merge all
CUBIT> volume all size 0.15
CUBIT> mesh volume all

Final mesh
The final webcut model consists of a central shaft which can be swept top to bottom, and a
surrounding casing which can be swept around. This is possible because the shared surface is a
linking surface for both types of sweeps. The final mesh is created with a size of 0.15

Example 5. Multiple sweep directions
The next example gives another example of using different sweep directions on the same model.
The following model shows a brick which is perforated by several cylindrical shafts. The shafts
do not intersect each other.

667

Step by Step Tutorials

Suggested webcuts
Webcut Command

CUBIT> webcut volume all with plane
yplane offset 20

668

Cubit 15.1 User Documentation

CUBIT> webcut volume all with plane
yplane offset -20
CUBIT>imprint all
CUBIT>merge all

All of the volumes in this model are now one-to-one sweepable. However, the source and target
surfaces for the main block portions must be set explicitly

CUBIT>volume 8 scheme Sweep source
surface 94 target surface 90 rotate
off
CUBIT>volume 10 scheme sweep source
surface 71 target surface 73 rotate
off
CUBIT>volume 12 scheme Sweep source
surface 97 target surface 100
rotate off
CUBIT>volume all size 2
CUBIT>mesh volume all

Final mesh
In this model it is possible to have different sweep directions since the surfaces which overlap
are both linking surfaces. The final mesh is created with a mesh size of 2 and is shown below.

669

Step by Step Tutorials

Example 6. Employing Symmetry
One technique for creating a symmetric mesh on a symmetric model is to mesh only half of the
volume, then copy the mesh onto the other half. The following example employs this technique.
This model at first appears quite simple, but it actually requires a good deal of webcutting to get
a reasonable mesh that is not highly skewed.

670

Cubit 15.1 User Documentation

Suggested webcuts
Webcut Command

671

Step by Step Tutorials

CUBIT> webcut body 1 with
plane xplane offset 0
CUBIT> delete body 2

CUBIT> webcut body 1 with
cylinder radius 2.75 axis y

672

Cubit 15.1 User Documentation

CUBIT> webcut body 1 3 with
plane yplane offset 0

CUBIT> webcut body 1 with
plane yplane offset -15

CUBIT> webcut body 1 6 4 with
plane surface 64

673

Step by Step Tutorials

CUBIT> webcut body 1 with
plane surface 67

CUBIT> webcut body 5 with
plane zplane offset 1.5
CUBIT> webcut body 11 with
plane zplane offset -1.5

674

Cubit 15.1 User Documentation

CUBIT> create vertex on curve
540 distance 2 from vertex
368
CUBIT> webcut body 4 with
plane vertex 409 vertex 410
vertex 630

CUBIT> create vertex on curve
1093 distance 3 from vertex
646
CUBIT> webcut body 14 with
plane vertex 570 vertex 569
vertex 647
This wedge shape webcut is a
method of controlling skew in the
final mesh.

CUBIT> unite body 5 11 12

675

Step by Step Tutorials

CUBIT> unite body 4 13
CUBIT> delete vertex all
CUBIT> imprint all
CUBIT> merge all
CUBIT> vol all size .5

CUBIT> surf 229 size .25
CUBIT> mesh surf 229
CUBIT> volume 5 scheme sweep
source 229 target 230
CUBIT> mesh volume 5

676

Cubit 15.1 User Documentation

CUBIT> volume 4 scheme sweep
source surface 526 target 528
CUBIT> mesh volume 4

CUBIT> volume 14 scheme sweep
source 543 target 541
CUBIT> mesh volume 14
CUBIT> delete mesh
CUBIT> unmerge all

CUBIT> webcut body 6 with
plane surface 524

677

Step by Step Tutorials

CUBIT> unite body 16 17

CUBIT> webcut body 8 with
plane surface 524

678

Cubit 15.1 User Documentation

CUBIT> webcut body 18 with
plane surface 540

CUBIT> webcut volume 9 with
plane zplane offset -3 rotate
5 about x
This is another effort to prevent
skew in the final mesh
CUBIT> imprint all
CUBIT> merge all

CUBIT> mesh volume 5 (swept
around)
CUBIT> mesh volume 4 (mapped)
CUBIT> mesh volume 14 (swept
top to bottom)
CUBIT> volume 15 scheme map
CUBIT> curve all in volume 15
size 0.5
CUBIT> mesh volume 15

CUBIT> volume 18 scheme
tetprimitive
CUBIT> volume 18 interval 3
CUBIT> mesh volume 18

679

Step by Step Tutorials

CUBIT> volume 9 scheme sweep
source surface 579 601 target
surface 592 rotate off
CUBIT> mesh volume 9
CUBIT> mesh volume 20

CUBIT> volume 6 scheme sweep
source 569 target 570
CUBIT> mesh volume 6

CUBIT> volume 3 scheme sweep
source 224 target 226
CUBIT> surf 224 226 scheme
map
CUBIT> mesh volume 3

680

Cubit 15.1 User Documentation

CUBIT> volume 19 scheme sweep
source 543 target 586
CUBIT> mesh volume 19

CUBIT> volume 17 scheme sweep
source 545 583 582 target 239
CUBIT> mesh volume 17

CUBIT> volume 8 scheme sweep
source 574 597 601 target 241
CUBIT> mesh volume 8

681

Step by Step Tutorials

CUBIT> volume 7 1 size 2
CUBIT> volume 7 1 scheme auto

CUBIT> volume 10 scheme sweep
source 270 target 267
CUBIT> mesh volume 7 1
CUBIT> mesh volume 10

CUBIT> unmerge all
CUBIT> body all copy reflect
x
CUBIT> merge all

682

Cubit 15.1 User Documentation

Final mesh
The entire mesh is copied and reflected around the x axis during the last step. The advantage of
symmetry in this example is that it cuts the decomposition in half, and it also ensures a perfectly
symmetrical mesh.

Example 7. Using virtual geometry in geometry decomposition
Virtual geometry is used to change the properties of mesh without changing the underlying
geometry. The next example uses virtual geometry to remove unwanted sliver curves, and to
create a sweepable volume. The composite curve function is used to combine sliver curves that
are created from webcutting a slightly curved surface. Then the partition surface command is
used to create additional partitions on a surface to ensure sweepability.

683

Step by Step Tutorials

Suggested webcuts
Webcut Command

CUBIT> webcut volume 1 sweep surface 2
vector 0 0 -1 through_all

CUBIT> webcut volume 3 sweep surface 108
vector 0 0 -1 through_all

684

Cubit 15.1 User Documentation

CUBIT> webcut volume 3 sweep surface 13
vector 0 0 -1 through_all
CUBIT> webcut volume 3 sweep surface 28
vector 0 0 -1 through_all
CUBIT> webcut volume 3 sweep surface 74
vector 0 0 -1 through_all

CUBIT> webcut volume 3 with sheet extended
from surface 197

CUBIT> webcut volume 8 with sheet extended
from surface 224

685

Step by Step Tutorials

CUBIT> webcut volume 11 10 12 9 with plane
surface 28

CUBIT> webcut volume 3 with plane normal to
curve 116 fraction 0.5

CUBIT> webcut volume 3 17 with plane normal
to curve 835 close_to vertex 487

CUBIT> webcut volume 18 19 with sheet
extended from surface 376

686

Cubit 15.1 User Documentation

CUBIT> webcut volume 3 17 with sheet
extended from surface 378

CUBIT> webcut volume 8 with sheet extended
from surface 73
CUBIT> webcut volume 8 with sheet extended
from surface 72
CUBIT> webcut volume 8 with sheet extended
from surface 133
CUBIT> webcut volume 8 with sheet extended
from surface 71

CUBIT> webcut volume 8 with plane vertex 709
vertex 713 vertex 702

CUBIT> unite volume 36 45
CUBIT> unite volume 37 43
CUBIT> unite volume 35 44
CUBIT> unite volume 39 42

687

Step by Step Tutorials

CUBIT> webcut volume 29 with plane vertex 81
vertex 93 vertex 154

CUBIT> unite volume 33 36 50 11
CUBIT> unite volume 10 49 37 31
CUBIT> unite volume 12 52 35 34
CUBIT> unite volume 9 51 39 32
CUBIT> unite volume 9 22
CUBIT> unite volume 12 23
CUBIT> unite volume 20 33
CUBIT> unite volume 21 10

CUBIT> webcut volume 12 with plane vertex 86
vertex 71 vertex 76
CUBIT> webcut volume 53 with plane vertex
738 vertex 87 vertex 741
CUBIT> webcut volume 12 with plane vertex 72
vertex 85 vertex 74
CUBIT> webcut volume 55 with plane vertex
754 vertex 205 vertex 208
CUBIT> webcut volume 12 sweep surface 731
along curve 1073 through_all
CUBIT> unite volume 53 57 56
CUBIT> unite volume 54 12 55
CUBIT> webcut volume 9 with plane vertex 99
vertex 101 vertex 103
CUBIT> webcut volume 58 with plane vertex
769 vertex 98 vertex 772
CUBIT> webcut volume 9 with plane vertex 106
vertex 104 vertex 100
CUBIT> webcut volume 60 with plane vertex
781 vertex 201 vertex 198
CUBIT> webcut volume 9 sweep surface 764
along curve 1078 through_all
CUBIT> unite volume 58 62 60
CUBIT> unite volume 59 9 61
CUBIT> webcut volume 20 with plane vertex
140 vertex 138 vertex 135
CUBIT> webcut volume 63 with plane vertex
139 vertex 137 vertex 134
CUBIT> webcut volume 20 with plane vertex
141 vertex 800 vertex 796
CUBIT> webcut volume 64 with plane vertex
803 vertex 220 vertex 223
CUBIT> webcut volume 63 sweep surface 803
along curve 1238 through_all

688

Cubit 15.1 User Documentation

CUBIT> unite volume 20 67 66
CUBIT> unite volume 65 63 64
CUBIT> webcut volume 21 with plane vertex
165 vertex 163 vertex 160
CUBIT> webcut volume 68 with plane vertex
164 vertex 162 vertex 159
CUBIT> webcut volume 21 with plane vertex
825 vertex 169 vertex 822
CUBIT> webcut volume 69 with plane vertex
830 vertex 216 vertex 213
CUBIT> webcut volume 68 sweep surface 836
along curve 1069 through_all
CUBIT> unite volume 21 72 69
CUBIT> unite volume 70 68 71
These are the steps to webcut each of the stiffeners into
the configuration shown. It is repeated for each of the
stiffeners. This is also the step which creates the sliver
curves which must be composited out later.

689

Step by Step Tutorials

CUBIT> webcut volume 70 65 59 54 with plane
surface 2

CUBIT> unite volume 1 76 75 73 74

CUBIT> unite volume 28 47 46 41 48 38 8 30
29 40

690

Cubit 15.1 User Documentation

CUBIT> webcut volume 28 with plane surface
870
CUBIT> webcut volume 28 77 with plane
surface 871
CUBIT> webcut volume 28 77 with plane
surface 878
CUBIT> webcut volume 28 77 with plane
surface 879

CUBIT> webcut volume 1 81 2 82 with plane
normal to curve 1849 fraction 0.5

CUBIT>webcut volume 19 18 with plane normal
to curve 843 fraction 0.75

691

Step by Step Tutorials

CUBIT> create curve vertex 1122 vertex 471
on surface 1134

CUBIT> webcut volume 19 sweep curve 2073
along curve 2042 through_all
CUBIT> webcut volume 18 with sheet extended
from surface 1146
CUBIT> webcut volume 18 with sheet extended
from surface 1135

CUBIT> unite volume 91 92
CUBIT> delete curve 2073

CUBIT> unite volume 89 18
CUBIT> unite volume 88 19
CUBIT> imprint all
CUBIT> merge all

692

Cubit 15.1 User Documentation

Composite small curves formed from webcuts
CUBIT> composite create curve 1456 1468
CUBIT> composite create curve 1459 1467
CUBIT> composite create curve 1499 1511
CUBIT> composite create curve 1502 1510
CUBIT> composite create curve 1371 1379
CUBIT> composite create curve 1370 1381
CUBIT> composite create curve 1423 1413
CUBIT> composite create curve 1422 1414
CUBIT> volume all scheme auto

Create the partitioned curves shown using existing
vertices
CUBIT> partition create surface 1067 vertex
311 175
CUBIT> partition create surface 1067 vertex
174 312
CUBIT> partition create surface 1063 vertex
123 294
CUBIT> partition create surface 1251 vertex
170 226
CUBIT> partition create surface 1082 vertex
195 115
CUBIT> partition create surface 1082 vertex
242 116
CUBIT> partition create surface 1077 vertex
117 309
CUBIT> partition create surface 1255 vertex
118 310

Meshing order is significant in this case. Since
meshing a volume will hard set the interval counts on
curves and surfaces, you will need to make sure that all
of the interval counts are the same on adjacent
volumes. Usually the meshing algorithm can handle
this interval matching, but sometimes it helps to mesh
volumes in a certain order. In this case, the meshing
order also significantly changes the quality in the
resulting mesh.
CUBIT> reset volume all
CUBIT> volume all scheme auto
CUBIT> volume 81 scheme sweep source surface
979 target surface 1061 rotate off
CUBIT> volume 81 sweep smooth auto
CUBIT> volume 85 scheme sweep source surface
1061 target surface 889 rotate off
CUBIT> volume 85 sweep smooth auto
CUBIT> volume all size 0.1
CUBIT> curve 2125 2122 interval 12
CUBIT> mesh vol 5 6 7 13 14 15 16 (COLORED
GREEN)
CUBIT> mesh Volume 85 81 77 83 78 82 87 28
80 79 (COLORED RED)

693

Step by Step Tutorials

CUBIT> mesh vol 88 89 91 90 17 3 (COLORED
YELLOW)
CUBIT> mesh volume with not is_meshed
(COLORED WHITE)

Final mesh
The final mesh is shown below.

Example 8. Sweeping volumes with narrow angles and surfaces
Narrow angles are a challenge for sweeping algorithms. In the next example, a well-placed
webcut shaves off the end of the small angle to create an additional surface for the sweeping
algorithm.

694

Cubit 15.1 User Documentation

Suggested webcuts
Webcut Command

CUBIT> webcut volume 1 with sheet
extended from surface 16

CUBIT> webcut volume 5 with plane
surface 50

695

Step by Step Tutorials

CUBIT> webcut volume 4 with plane
surface 47

CUBIT> webcut volume 3 with sheet
extended from surface 36

CUBIT> webcut volume 2 with plane
surface 25

696

Cubit 15.1 User Documentation

CUBIT> unite volume 3 9 7

CUBIT> webcut volume 5 with sheet
extended from surface 13

CUBIT> webcut volume 5 with sheet
extended from surface 69

697

Step by Step Tutorials

CUBIT> webcut volume 4 with sheet
extended from surface 13

CUBIT> webcut volume 4 with sheet
extended from surface 69

CUBIT> webcut volume 5 with plane
vertex 23 vertex 25 vertex 31

698

Cubit 15.1 User Documentation

CUBIT> webcut volume 4 with plane
vertex 23 vertex 25 vertex 31

CUBIT> webcut volume 16 with plane
vertex 18 vertex 9 vertex 33

CUBIT> webcut volume 17 with plane
vertex 18 vertex 9 vertex 33

699

Step by Step Tutorials

CUBIT> webcut volume 6 with plane
normal to curve 26 distance 0.6
from vertex 25

CUBIT> delete volume 20

700

Cubit 15.1 User Documentation

CUBIT> webcut volume 8 with plane
normal to curve 33 distance 0.6
from vertex 31

CUBIT> delete volume 8

701

Step by Step Tutorials

CUBIT> unite volume 3 21 6
CUBIT> imprint volume all
CUBIT> merge volume all
CUBIT> volume all size 0.3
CUBIT> volume all scheme auto

CUBIT> volume 2 scheme sweep source
13 target 69
CUBIT> volume 2 sweep smooth auto
CUBIT> unmerge volume all

702

Cubit 15.1 User Documentation

CUBIT> webcut volume 2 3 with plane
zplane

CUBIT> webcut volume 3 with sheet
extended from surface 154

CUBIT> webcut volume 23 with sheet
extended from surface 153

703

Step by Step Tutorials

CUBIT> webcut volume 11 with plane
zplane noimprint nomerge
CUBIT> imprint volume all
CUBIT> merge volume all

CUBIT> volume 11 scheme sweep
source surface 221 target surface
222 rotate off
CUBIT> volume 11 sweep smooth auto

CUBIT> volume 28 scheme sweep
source surface 222 target surface
221 rotate off
CUBIT> volume 28 sweep smooth auto

704

Cubit 15.1 User Documentation

CUBIT> volume 22 scheme sweep
source surface 176 target surface
179 rotate off
CUBIT> volume 22 sweep smooth auto

CUBIT> volume 2 scheme sweep source
surface 173 target surface 170
rotate off
CUBIT> volume 2 sweep smooth auto

CUBIT> volume 24 scheme sweep
source surface 204 target surface
202 rotate off
CUBIT> volume 24 sweep smooth auto

705

Step by Step Tutorials

CUBIT> volume 25 scheme sweep
source surface 205 target surface
207 rotate off
CUBIT> volume 25 sweep smooth auto

CUBIT> volume 26 scheme sweep
source surface 214 target surface
216 rotate off
CUBIT> volume 26 sweep smooth auto

CUBIT> volume 27 scheme sweep
source surface 217 target surface
219 rotate off
CUBIT> volume 27 sweep smooth auto

706

Cubit 15.1 User Documentation

CUBIT> volume 3 scheme sweep source
surface 197 187 target surface 200
rotate off
CUBIT> volume 3 sweep smooth auto

CUBIT> volume 23 scheme sweep
source surface 212 193 target
surface 210 rotate off
CUBIT> volume 23 sweep smooth auto
CUBIT> volume all scheme auto
CUBIT> volume all size 0.2
CUBIT> mesh volume all

Final mesh
The final mesh is shown below.

707

Step by Step Tutorials

GUI
GUI Basic Tutorial
Overview
This tutorial demonstrates the use of CUBIT to create and mesh a brick with a through-hole. The
primary steps in performing this task are:

• Creating the geometry
• Setting the interval sizes and meshing schemes
• Meshing the geometry
• Specifying the boundary conditions
• Exporting the mesh

708

Cubit 15.1 User Documentation

The geometry for this tutorial is a brick with a cylindrical hole in the center, shown in the figure
below. This figure also shows the curve and surface identification (ID) numbers, which are
referenced in the command lines options shown with each step. The final meshed body is shown
in the next figure.

Geometry for Brick with Cylindrical Hole

Generated Mesh for Brick with Cylindrical Hole

709

Step by Step Tutorials

GUI Basic Tutorial
Step 1: Beginning Execution
Type "cubit" from a UNIX prompt or select cubit from the start menu if you are running on a PC
with Windows. The CUBIT Application Window will appear as illustrated below:

CUBIT Application Window

The use of each window in the CUBIT program is described briefly below

Graphics
Window

The current model will be displayed here. Zooming,
panning, and rotating are also performed in this
window.

Drop Down
Menus

Functions such as file management, edit controls,
display options, user preferences, journal file
management, window manipulation, and help are
available in the pull-down menus.

Toolbars

This is a large selection of selectable icons that
duplicate the functions found in the pull-down menus.
Additionally, picking types, and mouse selection
controls are found here.

Power Tools
The Power Tools contains the ITEM workflow, the
geometry tree, geometry repair power tools, meshing
power tools, and mesh quality power tools.

710

Cubit 15.1 User Documentation

Command
Line
Workspace

The command line workspace contains both the cubit
command, error, history, and script windows. The
command window is used to enter cubit commands
and view the output. The error window is used to view
cubit errors. The history window is used to view
recent commands. The optional script window is used
for Python programming.

Command
Panels

Most Cubit commands are available in the command
panels. The panel is organized topologically, by
mode.

Properties
Page

This is a list of properties of the selected geometry,
mesh, boundary condition, or assembly. Some of the
properties can also be edited from this window.

GUI Basic Tutorial
Step 2: Creating the Brick
Now you may begin generating the geometry to be meshed. You will create a brick of width 10,
depth 10 and height 10. The width and depth correspond to the x and y dimensions of the object
being created. The "width" or x-dimension is screen-horizontal and the "depth" or y-dimension is
screen-vertical. The height or z-dimension is out of the screen.

• On the Command Panel, select Geometry, then Volume, then Create. Brick is the
default type.

711

Step by Step Tutorials

• Enter values for X, Y, and Z. Note, X (width) has a default value of 10. Select Apply to
create the brick.

The brick should appear in your Graphics window as shown below.

712

Cubit 15.1 User Documentation

Display of Brick

If you would like to change the rendering mode of your model, you may click on one of the view
buttons in the Display Tools tool bar.

713

Step by Step Tutorials

GUI Basic Tutorial
Step 3: Creating the Cylinder
Now you must form the cylinder which will be used to cut a hole in the brick.

• Select Cylinder from the Create combo box.

• Enter 12 for the height and 3 for the radius. Then select Apply.

The brick and the cylinder should appear in your display window as shown below:

714

Cubit 15.1 User Documentation

Brick and Cylinder

GUI Basic Tutorial
Step 4: Adjusting the Graphics Display
The geometry is drawn in the graphics window in perspective mode, by default from a viewing
direction of the +z axis. This view can now be adjusted to verify the proper orientation of the
geometry just created.
The following button clicks apply for 3-button mice (these are the default GUI settings):

• left will pick when the mouse is over an entity. Left click will also pan when held down.
• middle will rotate
• right will show a context menu when an entity is selected. Right click will zoom when

no entity is selected.

Mouse button behavior can be customized from the Tools-Options menu for use with non 3-
button mice.

715

Step by Step Tutorials

Use the mouse buttons to make the display look like the figure below.

View from Different Perspective

GUI Basic Tutorial
Step 5: Forming the Hole
Now the cylinder can be subtracted from the brick to form the hole in the block.

• Select the Boolean action button. Then select Subtract from the Boolean combo box.

716

Cubit 15.1 User Documentation

• Enter 2 for Subtract Volume ID(s) and 1 for From Volume ID(s).
• Select the Apply button

You can also select the brick or cylinder interactively. Place the cursor in the Subtract Volume
ID(s) field and click. This field is known as a Pick Widget. Clicking in a pick widget
automatically sets the graphics pick mode for the entity type expected by the pick widget. Move
the cursor to the graphics window and, using the left mouse button, select an entity. The id of the
selected entity will be echoed into the pick widget field. Holding the control key while selecting
entities in the graphics window will select multiple entities.
Notice that both original volumes are deleted in the Boolean operation and replaced with a new
volume, with an id of 1. The result of this operation is a single volume, a brick with a hole
through it, as shown below.

717

Step by Step Tutorials

Brick after Subtracting Cylinder

We have now completed creating the geometry, and are ready to generate a mesh.

GUI Basic Tutorial
Step 6: Setting Interval Sizes
The volume shown in Step 5 will be meshed by sweeping a surface mesh from one side of the
brick to the other. Before generating any mesh, the user must specify the size of the elements to
be generated. In this example, one element size will be specified for the volume as a whole and a
smaller size will be specified for around the hole. A direct interval setting will be specified for
the sweep direction.
To set the interval size for the overall volume, do the following:

• Change the mode to Meshing, then select Volume followed by Intervals.

718

Cubit 15.1 User Documentation

• Place the cursor into the Select Volumes field. Since this is a pick widget, click
anywhere on the volume in the graphics window. Alternatively, type 1 in the field. Set
the Interval Size to 1.0 and select Apply Size

Since the brick is 10 units in length on a side, this specifies that each straight curve is to receive
approximately 10 mesh elements.
In order to better resolve the hole in the middle of the top surface, we set a smaller size for the
curve bounding this hole.

• Change the object of the command panel to curve by selecting Curve from the Entity
buttons and Mesh from the Action Buttons.

Note: There is not a separate interval action panel for curves. The interval and mesh actions for
curves are grouped together in one panel.

719

Step by Step Tutorials

• Place the cursor into the Select Curves pick widget field. Select the near end of the
cylinder in the graphics window. Once you have selected the curve, the id of that curve,
15 should appear in the Selected Curves field. Select Size

• Enter 0.5 for the size and select Apply Size.

Finally, we would like to generate exactly 5 element layers in the sweep direction. This is
accomplished by setting the intervals on one of the curves in the sweep direction.

• Place the cursor back into the Selected Curves field and enter 11.
• Select the Interval radio button
• Enter an interval count of 5 and select Apply.

720

Cubit 15.1 User Documentation

GUI Basic Tutorial
Step 7: Surface Meshing
Now all necessary intervals have been set, the meshing can proceed. Begin by meshing the front
surface (with the hole) using the paving algorithm. This is done in two steps. First, set the
scheme for that surface to Pave, then issue the command to Mesh.

• Select Surface then Mesh buttons in the Control Panel.
• Select Pave in the Available Mesh Schemes combo box.

721

Step by Step Tutorials

Place the cursor into the Surface ID(s) field. Select the front surface of the object by selecting
anywhere within the region indicated. The id of Surface 11 will be echoed in the field.

722

Cubit 15.1 User Documentation

• Select the Apply button to set the scheme.
• Select the Mesh button to mesh the surface.

A mesh should be generated on surface 11 using the paving algorithm. The result is shown
below.

723

Step by Step Tutorials

Surface Meshed with Paving

GUI Basic Tutorial
Step 8: Volume Meshing
The volume mesh can now be generated. Again, the first step is to specify the type of meshing
scheme that should be used and the second step is to issue the order to mesh. In certain cases, the
scheme can be determined by CUBIT automatically. For sweepable volumes, the automatic
scheme detection algorithm also identifies the source and target surfaces of the sweep
automatically.
To instruct the code to automatically determine the meshing scheme, and in this case the source
and target surfaces, do the following:

• Select Volume then Mesh on the control panel.

724

Cubit 15.1 User Documentation

• Place the cursor into the Volume ID(s) field then select the volume in the Graphics
Window. The id of Volume 1 should appear in the field. Choose the Automatically
Calculate scheme using the combo box provided.

• Select Apply Scheme to set the scheme. Then select Mesh to mesh the volume.

725

Step by Step Tutorials

The final meshed body will appear in the Graphics Window, as shown below:

Smooth Shade View of Volume Mesh

GUI Basic Tutorial
Step 9: Inspecting the Model
The type, quality, and speed of rendering the image can be controlled in CUBIT by selecting one
of the buttons in the Display icon group. These icons appear by default in the icon bar above the
graphics window. They can be used to change the display mode to wire frame, hidden line, true
hidden line, transparent or smooth shade.

726

Cubit 15.1 User Documentation

For example, the following two figures result from selecting the Hidden Line and Wire Frame
Mode buttons respectively.

Hidden Line View of Mesh

727

Step by Step Tutorials

Wire Frame View of Mesh

Although CUBIT automatically computes limited quality metrics after generating a mesh and
warns the user about certain cases of bad quality, it is still a good idea to inspect a broader set of
quality measures. To do this, use the Command Window to enter the command:

CUBIT> quality volume 1 Allmetrics
The results of the quality are displayed in the Command Window. For an explanation of each
quality metric along with acceptable ranges, see Mesh Quality Assessment. For the purposes of
this tutorial, you can assume the quality metrics shown are in an acceptable range.

GUI Basic Tutorial
Step 10: Defining Boundary Conditions
Let us assume that we need to define one material type for the entire mesh, and a single node-
based boundary condition on all surfaces. This is accomplished by identifying an Element Block
and a Nodeset, respectively; the id numbers assigned to these entities are assigned by the user,
usually by some convention meaningful to the analysis to be done. The element block and
nodeset are identified from the Materials and Properties button on the control panel.

728

Cubit 15.1 User Documentation

• Select the Materials and Properties button and then Blocks in the Control Panel
window

• Select Add in the combo box
• Enter a Block ID of 100
• Select the Volume radio button
• Enter the id of Volume 1 by selecting it in the graphics window, or just manually

entering in ID(s) field
• Press Apply

Create a nodeset by following the steps below

• Open the Nodeset window on the Control Panel
• Select Add from the combo box
• Enter a Nodeset id of 100
• Select the Surface radio button and type all in the ID(s) field
• Press Apply

729

Step by Step Tutorials

GUI Basic Tutorial
Step 11: Exporting the Mesh
Finally, the mesh needs to be written to an Exodus II file. This is easily done:

• From the File menu, select Export.
• Set the file export type to Genesis Files from file type combo box.
• Enter a file name in the dialog, such as brick_with_hole.g, and select Save. Since this is

a standard file management dialog, the user may browse or use any other file
management functionality supported by the platform.

• Set the dimension to 3d
• Select the Export All check box

730

Cubit 15.1 User Documentation

• Select Finish to export the mesh.

Command Line
Command Line Basic Tutorial
Overview
This tutorial demonstrates the use of CUBIT to create and mesh a brick with a through-hole. The
primary steps in performing this task are:

• Creating the geometry
• Setting the interval sizes and meshing schemes
• Meshing the geometry
• Specifying the boundary conditions
• Exporting the mesh

Each of these steps is described in detail in the following sections. The geometry in this tutorial
is a brick with a cylindrical hole in the center, shown in the figure below. This figure also shows
the curve and surface identification (ID) numbers, which are referenced in the command lines
shown with each step. The final meshed body is shown in the next figure.

731

Step by Step Tutorials

Geometry for Cube with Cylindrical Hole

Generated Mesh for Cube with Cylindrical Hole

732

Cubit 15.1 User Documentation

Command Line Basic Tutorial
Step 1: Beginning Execution
Type "cubit" from a UNIX prompt to begin execution of CUBIT. A CUBIT console window will
appear which tells the user which CUBIT version is being run and the most recent revision date.
An example of the UNIX output window is shown below. This window echoes the commands
and relays information about the success or failure of attempted actions.

Some things to notice are:

• At the top of the CUBIT window you will be told where the commands entered in this
CUBIT session will be journaled. For example: "Commands will be journaled to
`cubit01.jou' for this example.

• In addition to the CUBIT version, the code also reports the versions of ACIS and VTK
that have been compiled into CUBIT.

• The command line prompt appears after the banner screen, and appears as "CUBIT>".
• Commands are entered at that prompt, followed by the "Enter" key.
• Upon startup, a graphics window should also appear, with an axis triad in the lower left

hand corner (this window will not appear if CUBIT is started with the -nographics
option.)

Command Line Basic Tutorial
Step 2: Beginning Execution
Now you may begin generating the geometry to be meshed. You will create a brick of width 10,
depth 10 and height 10. The width and depth correspond to the x and y dimensions of the object
being created. The "width" or x-dimension is screen-horizontal and the "depth" or y-dimension is
screen-vertical. The height or z-dimension is out of the screen. The command to create this
object is:

cubit> create brick width 10 depth 10 height 10 (OR)

733

Step by Step Tutorials

cubit> create brick x 10
The cube should appear in your display window as shown below:

Display of Brick

Command Line Basic Tutorial
Step 3: Creating the Cylinder
Now you must form the cylinder which will be used to cut the hole from the brick. This is
accomplished with the command:

cubit> create cylinder height 12 radius 3
At this point you will see both a brick and a cylinder appear in the CUBIT display window, as
shown below:

734

Cubit 15.1 User Documentation

Brick and Cylinder

Command Line Basic Tutorial
Step 4: Adjusting the Graphics Display
The geometry is drawn in the graphics display in perspective mode by default from a viewing
direction of the +z axis. This view can now be adjusted to verify the proper orientation of the
geometry just created. The orientation of the geometry can be adjusted using the command line
or interactively with the mouse.

Command Line
You can adjust the orientation of the object from the command line. For example, the from
command can be used as follows

cubit>from 20 15 25
cubit>display

Mouse

735

Step by Step Tutorials

To interactively change the orientation, activate your graphics window by placing your cursor in
the window or by clicking at the top of it (this will vary depending upon your window settings in
your operating system).

• Use the left mouse button to interactively rotate the view
• Use the middle mouse button to zoom in or out
• Use the right mouse button to pan the view.

Use the mouse buttons to make the display look the figure below:

View from a Different Perspective

Command Line Basic Tutorial
Step 5: Forming the Hole
Now, the cylinder can be subtracted from the brick to form the hole in the block. Issue the
following command:

cubit> subtract 2 from 1

736

Cubit 15.1 User Documentation

Note that both original volumes are deleted in the Boolean operation and replaced with a new
volume (with an id of 1) which is the result of the Boolean operation Subtract .

The result of this operation is a single body, a brick with a hole through as shown below:

Brick after Subtracting the Cylinder

We have now completed creating the geometry, and are ready to generate a mesh.

Command Line Basic Tutorial
Step 6: Setting Interval Sizes
The volume shown in Step 5 will be meshed by sweeping a surface mesh from one side of the
brick to the other. Before generating any mesh, the user must specify the size of the elements to
be generated. In this example, one element size will be specified for the volume as a whole and a
smaller size will be specified for around the hole. A direct interval setting will be specified for
the sweep direction.
To set the interval size for the overall volume, enter the command

cubit> volume 1 size 1.0

737

Step by Step Tutorials

Since the brick is 10 units in length on a side, this specifies that each straight curve is to receive
approximately 10 mesh elements.
In order to better resolve the hole in the middle of the top surface, we set a smaller size for the
curve bounding this hole. To find the id number of the curve bounding the hole, the user can
either pick the curve (See Selecting Entities with the Mouse) or turn curve labels on and
regenerate the view. To do the latter, use the command

cubit> label curve on
cubit> display

The default size of the labels can sometimes be too small to read. To change the text size, use the
graphics text size command:

cubit> graphics text size 2
cubit> display

The result is shown in the figure below. Then the interval size can be set for the appropriate
curve:

Geometry with Curve Labeling Turned on

738

Cubit 15.1 User Documentation

cubit> curve 15 interval size 0.5
Finally, we would like to generate exactly 5 element layers in the sweep direction. This is
accomplished by setting the intervals on curve 11:

cubit> curve 11 interval 5

Command Line Basic Tutorial
Step 7: Surface Meshing
Now that all the necessary intervals have been set, the meshing can proceed. Begin by meshing
the front surface (with the hole) using the paving algorithm. This is done in two steps. First, set
the scheme for that surface to Pave; then, issue the command to Mesh. Since the surface to be
paved is number 11, issue the command:

cubit> surface 11 scheme pave
With the meshing scheme specified, we proceed to mesh the surface:

cubit> mesh surface 11
cubit>display

The results are shown below:

739

Step by Step Tutorials

Surface Meshed with Paving

Command Line Basic Tutorial
Step 8: Surface Meshing
The volume mesh can now be generated. Again, the first step is to specify the type of meshing
scheme to be used and the second step is to issue the order to mesh. In certain cases, the scheme
can be determined by CUBIT automatically. For sweepable volumes, the automatic scheme
detection algorithm also identifies the source and target surfaces of the sweep automatically.
To instruct the code to automatically determine the meshing scheme and in this case the source
and target surfaces, enter the command:

cubit> volume 1 scheme auto
To view the results of auto scheme selection, certain data about the volume can be listed:

cubit> list volume 1

740

Cubit 15.1 User Documentation

The results of this command are shown below; note that the scheme, and in this case the source
and target surfaces, are reported toward the top of the list output.

Output from Listing Volume 1

With the scheme set, the mesh command may be given:
cubit> mesh volume 1

The final meshed body will appear in the display window, as shown below:

741

Step by Step Tutorials

View of Volume Mesh

Command Line Basic Tutorial
Step 9: Inspecting the Model
The type, quality, and speed of rendering the image can be controlled in CUBIT by using several
graphics mode commands, such as Wire Frame, Hidden Line, Transparent and Smooth Shade.
For example:

cubit> graphics mode wireframe
The wire frame display is illustrated below:

742

Cubit 15.1 User Documentation

Wire Frame View of Mesh

Next, try:
cubit> graphics mode hiddenline

The hidden line display is illustrated below:

743

Step by Step Tutorials

Hidden Line View of Mesh

Next, try:
cubit> graphics mode transparent

The transparent display is shown below.

744

Cubit 15.1 User Documentation

Transparent View of Mesh

Next, try:
cubit> graphics mode smoothshade

The smooth shade display is shown below. For detailed information on the viewing mode
options, See Graphics Modes.

745

Step by Step Tutorials

Smooth Shade View of Mesh

Although CUBIT automatically computes limited quality metrics after generating a mesh and
warns the user about certain cases of bad quality, it is still a good idea to inspect a broader set of
quality measures. To do this, enter the command:

cubit> quality volume 1
The results of the quality output are shown below. For an explanation of quality metrics along
with acceptable ranges, see Mesh Quality Assessment. For the purposes of this tutorial, you can
assume the quality metrics shown below are in an acceptable range.

Quality Table from Volume 1's Hex Mesh

746

Cubit 15.1 User Documentation

Command Line Basic Tutorial
Step 10: Defining Boundary Conditions
Let us assume that we need to define one material type for the entire mesh, and a single node-
based boundary condition on all surfaces. This is accomplished by identifying an Element Block
and a Nodeset, respectively; the id numbers assigned to these entities are assigned by the user,
usually by some convention meaningful to the analysis to be done. The element block and
nodeset are identified using the commands:

cubit> block 100 volume 1
cubit> nodeset 100 surface all in volume 1

Command Line Basic Tutorial
Step 11: Exporting the Mesh
Finally, the mesh needs to be written to an ExodusII file. This is easily done:

cubit> export genesis `brick_with_hole.g'
The filename and extension are arbitrary and, like the block and nodeset numbers, are usually
named according to a convention meaningful to the analysis.

747

ITEM
Immersive Topology Environment for Meshing (ITEM)
The Cubit Geometry and Meshing Toolkit team at Sandia has taken on the ambitious task of
reducing the time for simulation by specifically addressing the bottlenecks in the mesh
generation process. It is not unusual for the meshing process to take upwards of three-quarters of
the entire simulation time. With its many tools developed for a wide range of application areas, it
takes time to gain enough proficiency in Cubit to quickly generate a mesh from a complex
geometry. As a result, the Immersive Topology Environment for Meshing (ITEM) was
developed. ITEM is a user-interactive meshing tool that guides the user through a typical mesh
generation process.
With the ultimate goal of reducing the time to generate a mesh for simulation, ITEM has been
developed within the Cubit Geometry and Meshing Toolkit to take advantage of its extensive
tool suite. Built on top of these tools it attempts to improve the user experience by accomplishing
three main tasks:

1. Guiding the user through the workflow
2. Providing the user with smart options
3. Automating geometry and meshing tasks

Guiding the user through the workflow.
In software of any complexity where usage may be occasional or infrequent, the overhead of
learning the new tool to a point of proficiency may be daunting. Given a solid model that may
have been designed for manufacturing purposes, the analysts may be faced with generating a
mesh. They may not be working with Cubit on a daily basis, but would like to take advantage of
the powerful tools provided by the software.
To address this, ITEM provides a wizard-like environment that steps the user through the
geometry and meshing process. For someone unfamiliar with the software, it provides an
interactive, step-by-step set of tools for accomplishing the major tasks in the process. For those
more familiar with the tools, it serves as a reminder of the major tasks, but is flexible enough to
accommodate a more iterative approach, allowing them to jump between major tasks easily.
Currently restricting the workflow to models requiring three-dimensional, solid elements, ITEM
uses the following steps:

1. Define the Geometric Model: Import a CAD model or create geometry within the Cubit
environment.

2. Set up the model: Define basic information such as element shape, volumes to be
meshed and element sizes or budgets.

3. Clean up the geometry: Detect common issues and simplify geometric features on the
CAD model.

4. Meshing: Perform operations to make the model meshable, such as imprint/merge,
scheme selection, decomposition and performing the meshing.

5. Validate the Mesh: Check element quality and perform mesh improvement operations
6. Apply boundary conditions regions: Define regions where boundary conditions may be

applied using nodeset, sideset and block definitions.
7. Export the mesh: Define a target analysis code format and export the mesh.

749

ITEM

Providing the user with smart options.
Solid models used for analysis may have a huge variety of different characteristics that may
prevent them from being easily meshed. Questions such as, What are the problems associated
with my model? What are the current roadblocks to generating a mesh on this model? and What
should I do to resolve the problems, are constantly being asked by the analysts. Without an
extensive knowledge of the tools and algorithms, it may be difficult to answer these questions
effectively.
ITEM addresses this issue by providing smart options to the user. Based on the current state of
the model, it will automatically run diagnostics and determine potential solutions that the user
may consider. For example, where unwanted small features may exist in the model, ITEM will
direct the user to these features and provide a range of geometric solutions to the problem.
Scrolling through the solutions provides a preview of the expected result. The user can then
select the solution that seems most appropriate and execute the solution to change or simplify the
geometry. This diagnostic-solution approach is the basis for the ITEM design and is the common
mode of user interaction while in this environment. This contrasts with the more traditional hunt-
and-guess approach of providing the user with an array of buttons and icons that they may
choose from and guessing what may result. ITEM, on the other hand, serves in effect, as an
expert providing guidance to the user as they proceed through the geometry and meshing
process.
Automating geometry and meshing tasks.
With all of the advanced research and development that has gone into the meshing and geometry
problem, a push-button solution for any arbitrary solid model may seem like the ideal objective
of any meshing tool. Although for many cases, this would be the best solution, for others it may
not even be desirable. A push-button solution assumes a certain amount of trust in the geometric
reasoning the software chooses to provide. This may be more trust than an occasional user who
is tasked with a high consequence simulation may be willing to give. Even if the user is willing
to accept full automation, in many cases, the geometric complexity of the model may be beyond
the capability of current algorithms to adequately resolve.
On the other hand, once the user is familiar with the characteristics of the solutions that the
software provides, they may not be concerned with examining and intervening on every detail of
the model creation process. Instead, in the interest of increasing efficiency, they may want the
fastest solution possible. Providing the option for the user to automate as much of the geometry
and meshing process as possible is another important aspect of ITEM.
For various characteristic geometric problems that are encountered in a solid model, ITEM can
determine from the potential geometric solutions, which of them may be most applicable and
apply that solution without any user intervention. For many configurations of geometry, a
completely automated solution may be available. For others, only a portion of the process may
be able to be automated. Where an adequate solution cannot be determined automatically, the
smart options described above are available to help guide the user. As new advances in
geometric reasoning and advanced meshing algorithms are developed, ITEM will incorporate
these into the solutions for automation.
It should be clear that ITEM is not intended to be a fully automated system for meshing solid
models. Instead it is intended to be a flexible environment that will guide the user through the
model generation process by offering solution alternatives and providing automation should the
user choose. The remainder of this document is organized according to the basic workflow used
in ITEM. The objective is to describe the general problems that may be encountered in

750

Cubit 15.1 User Documentation

developing an analysis model and how ITEM and Cubit may be used to address the problems. In
developing this environment, many new innovative tools were invented and developed to help
support this new approach to mesh and model generation.

How to Use the ITEM Wizard
The ITEM Workflow
The Immersive Topology Environment for Meshing (ITEM) is a wizard-like environment that
guides the user through the mesh generation process from geometry definition to export. ITEM
was designed to provide a step-by-step set of tools to help new users generate a mesh with very
little previous knowledge of the CUBIT program. But ITEM is also flexible enough to
accomodate advanced users who want to use a more iterative approach, or who just want to use
ITEM for a specific tool or panel.
The main ITEM task page is shown below. To access this page, click on the "wizard hat" icon
from the Power Tools window.

Main ITEM Task Panel

The main item tasks are shown both in the text window, and also along the sidebar. The icons in
the sidebar are available from any of the ITEM panels. It is acceptable to jump to different tasks
during the process, although beginning users may just want to follow the steps in order. To get to
the main task page, click on the Task icon on the sidebar during any step in the process.
Many meshing tasks require an iterative approach to the mesh generation process. For your
convenience, if you do click on one of the task buttons from a different panel, it will take you to
the last visited panel in that section. For example, if you are on the mesh generation page, and

751

ITEM

you click on the prepare geometry section, it will take you to the last page you visited in the
prepare geometry section.
There are two help links at the bottom of the main task page. The first link will open this
document which describes the general ITEM process and how to use the panels. This page is
only accessible from the main task page. The second link opens the main ITEM documentation
which describes each process in the ITEM mesh generation process in detail. This document can
be accessed from any of the ITEM panels.
To proceed through the ITEM panels you must either click on a task or click on the "Done"
button at the bottom of each page. There is no "Back" button on the ITEM interface. But in most
cases, clicking the "Done" button works like a "Back" button.
Using an ITEM Panel
The item panels are designed to be self-explanatory, with plenty of documentation on each page,
and access to more help if needed. However, it does help to be generally familiar with the main
types of panels.
Task panels that link to other ITEM panels
Some ITEM panels provide a list of tasks that link to other ITEM panels. Sometimes the tasks
are designed to be completed in sequential or iterative fashion. In that case, you will be returned
to the task page after selecting done on each sub-panel where you can select the next task. The
Prepare Geometry panel is an example of this case. Each of the tasks with a warning flag should
be completed. As you return to this panel, you may need to run the diagnostics again, and
possibly even revisit previous task pages.
In other cases, the list of tasks is a presents a list of choices, from which you will only select one
option. The Import Geometry Page shown below is such an example. It gives a list of different
geometry import/creation options and you just select one of the alternatives.

Prepare Geometry

Import Geometry

752

Cubit 15.1 User Documentation

ITEM Panel ITEM Panel

Task Panels that Link to Control Panels
A few of the ITEM task panels will provide links to existing control panel topics. Clicking on a
link from one of these panels will NOT open a new panel, but will open the corresponding
control panel. The Define Boundary Conditions page is an example of this type of panel.

Define Boundary Conditions Panel

Set-up Panels
A set-up panel is used to provide input or set-up options for your model. The most prominent set-
up panel is the Set-up FEA Model page which is used to define mesh budget, element type, and
element size. Another set-up page is the Define Metrics page under the Validate Mesh task. This
panel is used to define quality metrics for your model. These panels provide useful information
for the diagnostics used in other panels.

753

ITEM

Setup FEA Model Panel

Diagnostic Panels
The most useful type of ITEM panel is the diagnostic panel. These panels each focus on a
specific diagnostic such as invalid topology, small features, blend surfaces, overlapping surfaces,
or meshability. Most of theses panels contain some or all of the following features.

• Diagnostic Button - Clicking on this button will run a series of tests on the model.
• Output Window - Displays the results of the diagnostics and lists entities with problems.

Includes a right-click menu with visualization and other options.
• Automatically Repair Button - Tries to solve the problems automatically.
• Solution Window - Presents a list of specific solutions based on the entity you select in

the output window. This window also contains several right-click context menu items for
each solution, including a "More Information" button which will open the documentation
to information about that specific task. Another useful feature of the solution window is
that in most cases clicking on one of the solutions will preview that option in the graphics
window.

• Execute Button - Executes the solution selected.

754

Cubit 15.1 User Documentation

• Additional Options - Sometimes you won't see your desired solution in the list.
Additional solutions with brief descriptions are provided at the bottom of the panel.
Clicking on these links will open the corresponding control panel.

• More Information Link - Opens a page describing the diagnostics and solutions used
for this panel.

The Small Features Panel shows an example diagnostic panel in ITEM.

Remove Small Features Diagnostic Panel

755

ITEM

Undo Button
The Undo button allows you to reverse the most recent command. To enable the Undo button,
click on the "Enable Undo" option from the Edit menu. The undo button works by saving
information about your model after each step. For large or complex models, this can be time
consuming, so you may need to disable the undo feature. Additionally, not all commands are
enabled for undo. Many of the graphics and meshing commands, and various default settings are
not included. Within ITEM, many commands are bundled into a single button click. Clicking
undo will attempt to reverse all of the executed commands. See the command line window for
the results of the undo command.
Magic Mesh Button
This button, shown at the top of each ITEM panel, provides the user with the opportunity to use
Cubit’s internal automation algorithms to generate a mesh. In addition to simply issuing a mesh
command, it will attempt to execute the following steps.

• Geometry Cleanup: Check for small or ill-defined geometry and automatically resolve it
• Auto-scheme: Automatically set meshing schemes and select sources and targets for hex

meshing
• Decomposition: If hex meshing, attempt to decompose the volume to admit a sweep or

mapped mesh
• Force Sweeps: For almost-sweepable geometry, modify the linking surfaces to force a

sweep
• Imprint/Merge: For assemblies, imprint adjacent volumes and merge common surfaces
• Overlap check: Check for any remaining overlapping volumes and attempt to resolve

merge problems
• Mesh sizing: For tetrahedral meshing, automatically define a sizing function based on

geometry characteristics
• Interval Matching: For hex meshing, coordinate the assignment of curve intervals.
• Sweep grouping: Determine an appropriate order to mesh volumes to reduce

dependencies
• Mesh: Perform the mesh operation volume(s)
• Mesh Quality: Check mesh quality and locally optimize if necessary

If for any reason, Cubit is unable to complete these steps without further user intervention, the
process will stop and the user will directed to continue with the ITEM workflow. For simple
geometries, executing the magic mesh button at this phase of the workflow may be all that is
necessary to completely define a good quality mesh. For other more complex geometry,
considerable user intervention may be required.
The magic mesh button may be executed at any time during the ITEM workflow by selecting the
button at the top right corner of the ITEM panel. Once the user has visited the various panels of
the ITEM interface to provide user intervention, the automatic execution of the appropriate
operations will not longer be attempted.
Getting Help
There are several ways to get help from within the ITEM interface. Most of these have already
been discussed, but they are listed here again for reference:

• How to Use ITEM - This document which is available only from the main task page

756

Cubit 15.1 User Documentation

• Guide to Meshing in ITEM - A document which describes the ITEM workflow, and
how to use the diagnostics on each page. This is accessible from each page using the
More Information links.

• Individual help topics for specific solutions - Opens the documentation to help for each
specific solution topic. This is accessible from the right-click menu when a command is
selected in the solutions window.

• Documentation included on panels - Many of the panels contain brief descriptions and
explanations to describe the features and tools on that panel.

Setting up the Finite Element Model
Once the geometry to be meshed has been imported or created, the first step to defining the mesh
is to set up the model. Basic parameters that are needed through the rest of the ITEM workflow
are defined at this stage. Subsequent diagnostics and workflow may change based on how the
model is initially set up.
Element Shape
Either a hexahedral or tetrahedral element shape may be selected. The meshing algorithm used to
mesh the volumes will change based on this setting. Specific element characteristics such as the
order of the element (i.e. TET10, HEX20) may be specified at a later time. The steps that will be
displayed in the workflow will change based on the element type that is selected.
FEA Model Size
The number of elements or average size of the elements is an important aspect of defining your
analysis model. Geometric features that are considerably smaller than the average element size,
in most cases should be ignored since the mesh resolution will not be able to adequately capture
them. Defining the element size at this point in the workflow permits subsequent diagnostic tests
and operations to have a relative measure of what is “small”. More detailed sizing attributes such
as biasing and geometry-adaptive sizing may be defined later in the ITEM workflow.
One of three different mechanisms may be used to define the size, element budget, element size
and mesh density. Each of these values is dependent on the other. As a result, changing one value
will automatically change the other.

• Element Budget: This value is an approximate number of elements that should be
generated in the entire model. The element budget for hexahedra, Nhex, is related to the
element size, esize, by the following relationship:

• Where Vmodel is the geometric volume of the solid model. The element budget for

tetrahedra vs. hexahedra is approximately 1:7. That is, for an equivalent edge length, a
tetrahedral mesh will contain roughly seven times as many elements as a hexahedral
mesh.

• Element Size: Element budget and mesh density are indirect methods for setting the
element size, esize. This value can also be set explicitly. It represents the approximate
average edge length of elements in the model. This size will determine the relative
definition of small for subsequent diagnostic tests and will be used to set the mesh size
the meshing algorithms will use.

757

ITEM

• Mesh Density: The mesh density is represented by an integer between 1 and 10, where 1
is the finest resolution and 10 is the coarsest. It is a heuristic measure of how fine of a
mesh will be generated and permits the user to indirectly set an element size without
explicitly defining a real value. In most cases, the mesh density, md is related to the
element size, esize by the following heuristic relationship:

Where Vmax is the of the geometric volume of the largest volume in the solid
model. Changing the target mesh density will display a preview of the approximate
nodal spacing on the curves of the model in the graphics window.

Defining the Geometric Model
Various methods may be used to define a geometric model. In most cases, a solid model is
created in a commercial CAD tool such as Pro/Engineer or Solidworks. It can also be generated
natively within Cubit using geometry commands. One of the most time consuming tasks in
developing an analysis model is in dealing with geometric anomalies. Carefully considering how
the model is constructed and what format the model will be defined in can eliminate many
potential problems downstream in the model creation workflow. The following describes the
various solutions for defining geometry within Cubit along with their pros and cons:

• Geometry Formats
• Creating Your Own Geometry
• Scripting
• CUB Files

Geometry Formats
Cubit can use one of three different commercial geometry representations, ACIS (.sat, .sab),
Pro/E (.g) or Catia (.cat). It may also use a facetted format (MBG) that is developed in-house at
Sandia. When a model of any of these formats is imported, Cubit uses the appropriate third party
geometry kernel to directly manage and evaluate the geometry. Since the geometry is considered
“native” when any of these formats is used, no translation step is required.
Since commercial solid modelers do not necessarily agree on formats and representations, using
a translation process to convert a non-native format to a native format, can introduce errors in the
geometry. While this in itself may not be a show-stopper, it can frequently add hours to an
otherwise simple process while the user is forced to clean up dirty geometry. Neutral formats
such as STEP and IGES are common in the CAE industry. They can often be an ideal solution
for representing the analysis solid model. In Cubit, when importing a neutral format, it is
automatically translated to the ACIS format. The user should be careful however in selecting
these formats as commercial solid modeling engines frequently interpret standard specifications
for these formats in different ways sometimes resulting in unusual results. Wherever possible a
native format should be used.
Native geometry kernels provide the most accurate way for transferring data between solid-
model based applications. Since these geometry kernels must be licensed and incorporated into
the Cubit distribution separately, one drawback is the additional licensing and cost for
maintaining these kernels. Cubit is currently able to provide licenses for ACIS and Pro/E kernels

758

Cubit 15.1 User Documentation

for government and academic use. Additional licensing arrangements may be required for Catia
or for any commercial use.
Creating your own geometry
Cubit offers a wide variety of tools for creating geometry natively. The advantage to this is the
ability to control the geometry creation process without the need for another CAD tool. Although
Cubit is not designed to be a CAD tool it does provide many tools for both bottom-up and
primitive creation.
Bottom-up creation refers to the process of building geometry from its basic components starting
with vertices, curves, surfaces and then volumes. This process can be somewhat tedious, but is
often useful for generating auxiliary geometry once a CAD model has been imported.
Primitive creation refers to the various operations for generating geometric primitives such as
bricks, spheres, cylinders and cones. Once defined, operations for repositioning the objects and
performing Boolean operations between them may be used. Relatively complex models may be
generated using this approach.
Scripting
One advantage to generating your own geometry within Cubit is the ability to parameterize the
construction of the model. Cubit utilizes a rich command language that can be stored as a script
or journal file. Parameters representing dimensions of objects may be defined in the script and
conveniently adjusted to update the geometry representation. For more ambitious users, Cubit
also has the ability to interpret python scripts, allowing a high degree of customization that can
employ the full capability of the python scripting language.
It should be noted that when using Cubit, commands are automatically echoed to an external
temporary journal file on disk and to the history window. Observing these commands is a good
way to become familiar with Cubit’s internal command language. Copying and pasting selected
commands to a text editor is an ideal method for building a parameterized journal file. Journal
files may be built up and played back to reproduce the entire process of building an analysis
model.
CUB Files
A CUB file is Cubit’s database file. You may want to think of it as a snap-shot of the current
state of the model. While journal files record the process for creating the model, a CUB file
stores only the end state. It can include both geometry in its native format and any mesh
information as well as attributes and boundary condition information. Restoring a CUB file will
write over any existing data you currently have defined.

Generating a Mesh in ITEM
The mesh generation panel in ITEM is different from the other panels in Cubit. Meshing errors
can arise from a number of different problems. Many of these problems are caused from
improper geometry preparation/cleanup. Other problems can be caused from improper interval
settings, or meshing schemes. Instead of suggesting specific operations as it does on other
panels, the meshing panel in ITEM will suggest several possible solutions based on the error
message output. Each of these solutions may require significant user input, and may require you
to revisit previous ITEM panels or Control panels. To open the appropriate Control panel, you
can right click on the solution and select "Show Command Panel". For convenience, these
general solutions are described here, including which ITEM panels and which Control panels
they refer to. References to help topics are also included.

759

ITEM

Figure 1. ITEM Mesh Panel

ITEM Meshing Suggestions

1. The volume is not decomposed enough. It may need to be webcut.

Diagnostic: This solution message appears when auto scheme selection fails. There are
many reasons that auto scheme selection may have failed. Check to make sure that your
volume is broken up into meshable parts. For sweepable volumes, this means that each
volume should only have one target surface.
Action: Right-clicking on this solution and selecting the "Show command panel" option
will open the webcutting commands on the control panel. Alternatively, you can also
return to the ITEM decomposition panel for more webcutting suggestions.

Help Topics:
Geometry Decomposition explains diagnostics and solutions on the ITEM decomposition
panel
Decomposition Tutorial has several webcutting tips and examples.

760

Cubit 15.1 User Documentation

Web Cutting Documentation contains all of the syntax for webcutting commands in
Cubit.

2. Meshing schemes may need to be manually set.

Diagnostic: This solution message appears when auto scheme selection fails, interval
matching fails, or interval assignments fail. Setting the schemes manually may help
resolve some of these issues. It may also help to set source and target surfaces explicitly
for swept meshes.
Action: The volume schemes can be set explicitly from the Volume-Mesh control panel.
The "Set Source and Target" panel in ITEM can be used to aid in setting explicit source
and target surfaces for swept meshes.

Help Topics:
Recognizing Nearly Sweepable Regions explains how ITEM might be used to recognize
nearly sweepable regions.
Meshing the Geometry has some suggestions for getting difficult geometry to mesh.
Decomposition Tutorial has several examples where the meshing schemes have to be set
manually.
Meshing Schemes gives an overview of all of the meshing schemes in Cubit.

3. The mesh size or number of intervals on a volume may need to be changed.

Diagnostic: This solution message appears for many reasons: auto scheme selection fails,
interval matching fails, interval assignments fail, inconsistent edge-face ratios, odd
number of intervals on a paver loop, or connectivity problems. Setting explicit intervals
may be necessary
Action: The volume mesh intervals can be set explicitly from the Volume-Interval
control panel. The "Set Element Sizes" panel in ITEM can be used to aid in setting
explicit sizes and sizing functions for meshes.

Help Topics:
Interval Assignment has links to different interval assignment methods in Cubit
Bias, Dualbias describes how to create a biased mesh and Controlling Mesh Quality
describes how to propagate a curve bias.
Decomposition Tutorial has several examples where the meshing intervals are set
manually.
Mesh Adaptivity and Sizing Functions describes how to use sizing functions in Cubit.

4. Compositing surfaces or curves to remove unnecessary details may resolve the
problem.

Diagnostic: This solution message appears when auto-scheme selection fails. A model
may contain small curves or surfaces that need to be composited with adjacent surfaces.
Or it may just contain more detail than is needed for analysis. Compositing surfaces and
curves does not affect the underlying geometry.

761

ITEM

Action: The Remove Small Features or Force Sweep Topology panels in ITEM may
suggest several possible candidates for compositing. The Surface-Modify-Composite or
the Curve-Modify-Composite panels can be used to composite surfaces or curves
respectively. These panels are also used to delete virtual geometry from curves or
surfaces.

Help Topics:

Removing Small and Narrow Features describes using ITEM to remove small and narrow
features in your model.
Forced Sweepability describes using ITEM to force sweepability using virtual geometry.
Composite Curves explains how to composite curves in Cubit.
Composite Surfaces explains how to composite surfaces in Cubit.
Decomposition Tutorial Example 7 has an example of using composite curves to improve
meshability.
Power Tools Tutorial has another example of using composite geometry.

5. Collapsing surfaces, curves, or angles to remove unnecessary details may resolve the
problem.

Diagnostic: This solution message appears when auto-scheme selection fails. Collapsing
a surface involves splitting a surface, and compositing it with adjacent surfaces.
Action: The Remove Small Features panel in ITEM may suggest several possible
candidates for collapse. The Surface-Modify-Collapse, Curve-Modify-Collapse, or
Vertex-Modify-Collapse Angle panels can also be used to collapse surfaces, curves, or
angles respectively.

Help Topics:
Removing Small and Narrow Features describes using ITEM to remove small and narrow
features in your model.
Collapse Angle explains how to collapse angles in Cubit.
Collapse Curves explains how to collapse curves in Cubit.
Collapse Surfaces explains how to collapse surfaces in Cubit.

6. Removing unnecessary surfaces or curves to simplify geometry may improve the
chances that a volume will mesh.

Diagnostic: This solution message appears when auto-scheme selection fails. Removing
unnecessary surfaces may improve meshability.
Action: The Remove Small Features panel in ITEM may suggest several possible
candidates for removal. The Surface-Modify-Tweak panel, Surface-Modify-Remove
panel, Curve-Modify-Tweak or the Volume-Modify-Remove Slivers panels are also used
to remove unnecessary features in a model.

Help Topics:
Removing Small and Narrow Features describes using ITEM to remove small and narrow

762

Cubit 15.1 User Documentation

features in your model.
Removing Geometric Features describes the syntax for removing unneeded surfaces and
vertices, including sliver surfaces.
Tweaking Geometry contains the syntax for tweaking surfaces, curves, and vertices.
Power Tools Tutorial has an example of using the tweak surface command to simplify a
model.

7. Smoothing the mesh may improve the mesh quality.

Diagnostic: This solution message appears when mesh generation creates poor quality
elements, particularly if it creates inverted or "negative Jacobian" elements. In some
cases, smoothing a mesh may get rid of these bad elements.
Action: Depending on the geometry type, the smoothing panel can be accessed from the
Control panel under Volume-Smooth or Surface-Smooth panels. It is also helpful to use
the Validate Mesh page in ITEM for assessing quality metrics.

Help Topics:
Mesh Smoothing describes the different smoothing schemes in Cubit and how to use
them.
Mesh Validation describes how to use quality metrics in ITEM and gives suggestions on
smoothing schemes to try.
Mesh Quality Assessment describes the different quality metrics in Cubit and how to use
them.

8. Deleting the mesh on an entity in order to further decompose or modify it may be
necessary.

Diagnostic: This solution message appears when mesh generation creates a poor quality
mesh, due to negative Jacobians, inconsistent edge-face ratios, connectivity problems, or
any other invalid mesh configuration. Mesh generation can be a very iterative process. It
is sometimes necessary to delete a mesh and try different schemes, sizes, or even just
change the meshing order. Sometimes you must further decompose or modify your
geometry to get it to mesh.
Action: To delete a mesh, you can select it in the graphics window and choose Delete
Mesh from the right-click context menu. You can also delete a mesh from any of the
Mesh-Entity-Delete panels on the Control Panel.

Help Topics:
Mesh Deletion describes command line syntax for deleting a mesh.

9. Changing vertex types may make the surface or volume meshable.

Diagnostic: This solution message appears when mesh generation fails to assign valid
vertex types on mapped or submapped surfaces.

763

ITEM

Action:To change the vertex type on a surface, select the Surface-Mesh-Submap-
Advanced or Surface-Mesh-Map-Advanced panels. From here you can assign and view
vertex types.

Help Topics:
Surface Vertex Types describes how to change the vertex types on a geometry.

Validating the Mesh in ITEM
Advancements in the mesh generation algorithms have significantly reduced the amount of
quality problems seen in the initially generated mesh. Further, ITEM generally relies on the most
robust meshing algorithms available in CUBIT, specifically sweeping for hexahedral mesh
generation (Scott,05) and the Tetmesh-GHS3D (George,91) meshing software
(See http://www.distene.com). However, some problems can still exist, and therefore ITEM has
integrated quality diagnostics and solution options.
Diagnostics: After the mesh has been generated, the user may choose to perform element quality
checks. ITEM utilizes the Verdict (Stimpson,07) library where a large number of mesh quality
metrics have been defined and available as a modular library. If no user preference is specified,
ITEM uses the Scaled Jacobian distortion metric to determine element quality. This check will
warn users of any elements that are below a default or user-specified threshold, allowing various
visualization options for displaying element quality.
Solutions: If the current element quality is unacceptable, ITEM will present several possible
mesh improvement solutions. The most promising solutions are provided through ITEM's
interface to two smoothers: mean ratio optimization and Laplacian smoothing. These are
provided as part of the Mesquite (Brewer,03) mesh quality improvement tool built within
CUBIT. The user has the option of performing these improvements on the entire mesh, subsets
of the mesh defined by the element quality groups, or on individual elements. The Laplacian
smoothing scheme allows the users to smooth just the interior nodes or to simultaneously smooth
both the interior and boundary nodes in an attempt to improve surface element quality.

Clean Up
Clean Up the Geometry
Meshing packages have the challenge of dealing with a host of geometry problems. Many of
these problems can be generalized as file translation issues. Typically, the geometry used in a
meshing package has not been created there but in one of many CAD packages. Exporting these
files out of CAD and into a neutral file format (IGES, STEP, SAT) accepted by the meshing
software can introduce misrepresentations in the geometry. If the CAD and meshing packages do
not support the same file formats, a second translation may be necessary, possibly introducing
even more problems.
Another complication caused by file translation is that of tolerances. Some CAD packages see
two points as coincident if they are within 1e-3 units, while others use 1e-6. If the meshing
software's tolerance is finer than the CAD package's, this disparity in tolerance can cause
subsequent geometry modification operations in the meshing package to inadvertently create
sliver features, which tend to be difficult and tedious to deal with. This tolerance problem also
causes misalignment issues between adjacent volumes of assemblies, hindering the sharing of
coincident geometry in order to produce a conformal mesh.

764

http://www.distene.com/

Cubit 15.1 User Documentation

Modeling errors caused by the user in the CAD package is another problem that the meshing
package has to correct. In the CAD package, the user may not create the geometry correctly,
causing some parts to overlap, or introduce small gaps between parts that should touch. Many
times these problems are detected in the meshing package at a point when it is not feasible to
simply go back into the CAD system and fix the problem, so the meshing package must be
capable of correcting it.
Several approaches for addressing the geometry cleanup problem have been proposed in the
literature, but they typically provide operations that are automatically applied to the geometry
once one or more topology problems have been identified. While very effective in many cases,
they generally lack the ability for the user to have control over the resolution of these CAD
issues while still maintaining the option for automation. The ITEM environment provides tools
to both diagnose these common issues and to provide a list of solutions from which the user may
select that will correct the problems.
For the purposes of mesh generation, features in a solid model that should be carefully
considered and addressed prior to meshing generally fit in one of four categories:

• Bad geometry representation As a result of translation errors between CAD
representations, errors or differences in the way the geometry is interpreted may occur.
Depending on the severity of the problem, sometimes a mesh can be generated even with
a less-than perfect geometric representation, however, in most cases, these should be
resolved before meshing.

• Small details in the model In some cases there exist small details in the geometry that, if
meshed, would result in very small elements and a potentially huge element budget.
Small curves and surfaces can sometimes result from details in the design solid model
that may not be necessary for analysis or may even be a result of careless construction of
the CAD model. In either case, it is important to remove or modify these features before
meshing.

• Compatible topology for meshing scheme Several meshing algorithms, such as the
structured, mapping and sweeping techniques require a specific configuration of vertices,
curves and surfaces in order to operate. Operations to decompose the geometry into a
meshable topology are often needed. Other unstructured techniques like paving, and
tetrahedral meshing do not require decomposition.

• Conformal topology for assemblies Assemblies of parts are often required to have a
conformal mesh across their interface. (i.e. Shared nodes at a common boundary). The
operations imprint and merge are often required to connect parts together so that when
meshed, the representation will be a single continuous mesh.

Being able to recognize when a problem exists and what operations to apply to resolve issues in
each of the four categories described above, is indeed an art-form and requires significant
experience to become proficient. ITEM will not take the place of an experienced user, but it is
intended to offer the user help along the way by detecting potential problems and suggesting
solutions they might consider.

Blend Surfaces
Blend surfaces are common in solid model meshing problems. A blend surface, also known as a
fillet or chamfer, is problematic for sweeping algorithms which have trouble assigning vertex

765

ITEM

types on blend surfaces. While blend surfaces present a challenge for meshing applications, there
are many tools within ITEM to help guide the user through possible solutions.
Diagnostic: Blend surfaces are detected by looping over the curves on a surface and examining
the angles, surface normals, and curvature of curves and adjacent surfaces.
Solutions: The current solution to blend surfaces is to remove the surface and attempt to extend
adjacent surfaces to fill in the gap. An example of blend surfaces that have been removed is
shown below. This is useful for models which can be simplified without losing important
topology.

Figure 1. A volume which has been simplified by removing blend surfaces.

Resolving Problems with Conformal Assemblies
Where more than a single geometric volume is to be modeled, a variety of common problems
may arise that must be resolved prior to mesh generation. These are typically a result of
misaligned volumes defined in the CAD package or problems arising from the imprint and merge
operations in the meshing package. ITEM addresses some of the same problems by allowing the
option for user interaction as well as full automation using the CAD geometry representation.
The proposed environment utilizes two main diagnostics to detect potential problems: the
misalignment check, and the overlapping surfaces check. Associated with both of these are
solutions that are specific to the entity and from which the user may preview and select to
resolve the problem.
Resolving Misaligned Volumes with Manage Gaps/Overlaps Tool
The Manage Gaps/Overlaps Tool within the geometry cleanup area of ITEM allows the user to
quickly search an assembly for gaps and overlaps between assembly components. The search
criteria for gaps is a tolerance specified by the user and defines the maximum gap between
components to look for. A gap angle can also be specified which specifies how "parallel" two
entities must be to be considered in the gap check. The overlap check simply asks Cubit to see if
any of the volumes are overlapping and doesn't require a tolerance from the user. The results are
displayed in a list of pairs of volumes. The user can right-click on these pairs and tell Cubit to
draw the pair. A useful graphical depiction of the gap or overlap will be displayed. When the
user clicks on a pair in the list a set of solutions for fixing the gap or overlap will also be
displayed below in a separate list. The user can select a solution and click the "Execute" button
to execute it. The gap solutions are either a surface "tweak" operation and the overlap solution

766

Cubit 15.1 User Documentation

can be either a tweak operation or a Boolean operation to remove the overlap. This tool provides
a powerful way to quickly work through the assembly and fix gaps and overlaps.

Resolving Misaligned Volumes with Near Coincident Vertex Checks
The near coincident vertex check or misalignment check is used to diagnose possible
misalignments between adjacent volumes. This diagnostic is performed prior to the imprint
operation in order to reduce the sliver surfaces and other anomalies which can occur as a result
of imprinting misaligned volumes. With this diagnostic, the distance between pairs of vertices on
different volumes are measured and flagged when they are just beyond the merge tolerance. The
merge tolerance, T, is the maximum distance at which the geometry kernel will consider the
vertices the same entity. A secondary tolerance, Ts, is defined where Ts > T which is used for
determining which pairs of vertices may also be considered for merging. Pairs of vertices whose
distance, d is T < d > Ts are presented to the user, indicating areas in the model that may need to
be realigned. The misalignment check should also detect small distances between vertices and
curves on adjacent volumes.
When pairs of vertices are found that are slightly out of tolerance, the current solution is to move
one of the surfaces containing one vertex of the pair to another surface containing the other
vertex in the pair. Moving or extending a surface is known as tweaking.

767

ITEM

Figure 1. Example of a solution generated to correct misaligned volumes using the tweak

operator
The result of this procedure will be a list of possible solutions that will be presented to the users.
They can then graphically preview the solutions and select the one that is most appropriate to
correct the problem.
Correcting Merge Problems
The merge operation is usually performed immediately following imprinting and is also subject
to occasional tolerance problems. In spite of correcting misalignments in the volume, the
geometry kernel may still miss merging surfaces that may occupy the same space on adjacent
volumes. If volumes in an assembly are not correctly merged, the subsequent meshes generated
on the volumes will not be conformal. As a result, it is vital that all merging issues be resolved
prior to meshing. The ITEM environment provides a diagnostic and several solutions for
addressing these issues.
An overlapping surface check is performed to diagnose the failed sharing of topology between
adjacent volumes. In contrast to the misalignment check, the check for overlapping surfaces is
performed after the imprinting and merging operations. The overlapping surface check will
measure the distance between surfaces on neighboring volumes to ensure that they are greater
than the merge tolerance apart. Pairs of surfaces that failed to merge and that are closer than the
merge tolerance are flagged and displayed to the user as potential problems.
A test for nonmanifold curves and vertices is also performed after imprinting and merging to find
geometry that was not merged correctly. The test for nonmanifold curves is looking for curves
that are merged, but do not share merged surfaces. Similarly, the test for nonmanifold vertices is
looking for merged vertices that do not share any merged curves. Another test for floating
volumes is performed to identify volumes that are not attached to any other entities.
If imprinting and merging has been performed and a subsequent overlapping surface check finds
overlapping surface pairs, the user may be offered three different options for correcting the
problem: force merge, tolerant imprint of vertex locations and tolerant imprint of curves.
If the topology for both surfaces in the pair is identical, the force merge operation can generally
be utilized. The merge operation will remove one of the surface definitions in order to share a
common surface between two adjacent volumes. Normally this is done only after topology and
geometry have been determined to be identical, however the force merge will bypass the
geometry criteria and perform the merge. Figure 2 shows a simple example where the bounding
vertices are identical but the surface definitions are slightly different so that the merge operation
fails. Force merge in this case would be an ideal choice.

768

Cubit 15.1 User Documentation

Figure 2. Example where the merge operation will fail, but force merge will be successful

The force merge operation is presented as a solution where a pair of overlapping surfaces are
detected and if any of the following criteria are satisfied:

• All curves of both surfaces are merged
• All vertices between the two surfaces are merged and all the curves are coincident to

within 1% of their length or 0.005, whichever is larger
• All the curves of both surfaces are either merged or overlapping and a vertex of any curve

of one surface that will imprint onto any other curve of the other surface cannot be
identified

• At least one curve of one surface may be imprinted onto the other and if both surfaces
have an equal number of curves and vertices, and the overlapping area between the 2
surfaces is more than 99% of the area of each surface. This situation generally prevents
generating sliver surfaces

• At least one vertex of surface B may be imprinted onto surface A, and if both surfaces
have equal number of curves and vertices, and the vertex(s) of surface B to imprint onto
surface A lies too close to any vertices of surface A

• All the curves of both surfaces are either merged or overlapping and no vertices of any
curve of surface A will imprint onto any other curve of surface B

Individual vertices may need to be imprinted in order to accomplish a successful merge. The
solution of imprinting a position x,y,z onto surface A or B is presented to the user if the
following criteria is met

• Curves between the two surfaces overlap within tolerance, and a vertex of curve A lies
within tolerance to curve B and outside tolerance to any vertex of curve B. Tolerance is
0.5% of the length of the smaller of the 2 curves or the merge tolerance (0.0005),
whichever is greater.

769

ITEM

Figure 3. Curve on surface A was not imprinted on surface B due to tolerance mismatch.

Solution is defined to detect and imprint the curve
In some cases one or more curves may not have been correctly imprinted onto an overlapping
surface which may be preventing merging. This may again be the result of a tolerance mismatch
in the CAD translation. If this situation is detected a tolerant imprint operation may be performed
which will attempt to imprint the curve onto the adjacent volume. Figure 3 shows an example
where a curve on surface A is forced to imprint onto surface B using tolerant imprint, because it
did not imprint during normal imprinting. The solution of a curve of surface A to be imprinted
onto surface B may be presented to the user if all 3 of the following conditions are satisfied:

• There are no positions to imprint onto the owning volume of either surface
• Curve of surface A is not overlapping another curve of surface B
• Curve of surface A passes tests to ensure that it is really ON surface B

Contact Surfaces
A contact surface is two surfaces which overlap, but are not merged. In a physical sense, this
could represent two surfaces which come in contact with each other, as opposed to two surfaces
which merely form a partition for meshing purposes. It is easy using the ITEM interface to
identify and select contact surfaces in your model. Simply select surfaces in the graphics window
and press the "Add" button on the ITEM interface. The contact surfaces will be shown in the
window.
To remove a contact surface from the list, right click on the surface and select "Not a Contact
Surface" from the context menu to remove that specific surface, or "Remove all contact surfaces"
to remove all contact surfaces. Several other visualization tools are also available from the
context menu including Zoom, Fly-in, Draw, List, Locate, etc.

Geometry Decomposition
Automatic decomposition has been researched and tools have been developed which have met
with some limited success [Lu,99 , Staten,05]. Automatic decomposition requires complex
feature detection and sub-division algorithms. The decomposition problem is at least on the same
order of difficulty as the auto-hex meshing problem. Fully automatic methods for quality
hexahedral meshing have been under research and development for many years [Blacker,93 ,
Folwell,98 , Price,95]. However, a method that can reliably generate hexahedral meshes for
arbitrary volumes, without user intervention and that will build meshes of an equivalent quality
to mapping and sweeping techniques, has yet to be realized. Although fully automatic techniques

770

Cubit 15.1 User Documentation

continue to progress [Staten,06], the objective of the proposed environment is to reduce the
amount of user intervention required while utilizing the tried and true mapping and sweeping
techniques as its underlying meshing engine.
Instead of trying to solve the all-hex meshing problem automatically, the ITEM approach to this
problem is to maintain user interaction. The ITEM algorithms determine possible
decompositions and suggest these to the user. The user can then make the decision as to whether
a particular cut is actually useful. This process helps guide new users by demonstrating the types
of decompositions that may be useful. It also aids experienced users by reducing the amount of
time required to set up decomposition commands.
Diagnostics: The current diagnostic for determining whether a volume is mappable or sweepable
is based upon the autoscheme tool described in [White,00]. Given a volume, the autoscheme tool
will determine if the topology will admit a mapping, sub-mapping or sweeping meshing scheme.
For volumes where a scheme cannot be adequately determined, a set of decomposition solutions
are generated and presented to the user.
Solutions: The current algorithm for determining possible cut locations is based on the algorithm
outlined in [Lu,99] and is described here for clarity:

• Find all curves that form a dihedral angle less than an input value (currently 135)
• Build a graph of these curves to determine connectivity
• Find all curves that form closed loops
• For each closed loop:

o Find the surfaces that bound the closed loop
o Save the surface
o Remove the curves in the closed loop from the processing list

• For each remaining curve:
o Find the open loops that terminates at a boundary
o For each open loop:

 Find the surfaces that bound the open loop
 Save the surfaces

• For each saved surface:
o Create an extension of the surface
o Present the extended surface to the user as a possible decomposition location.

This relatively simple algorithm detects many cases that are useful in decomposing a volume.
Future work will include determining symmetry, sweep, and cylindrical core decompositions.
These additional decomposition options should increase the likelihood of properly decomposing
a volume for hexahedral meshing.
Figure 1 shows an example scenario for using this tool. The simple model at the top is analyzed
using the above algorithm. This results in several different solutions being offered to the user,
three of which are illustrated here. As each of the options is selected, the extended cutting
surface is displayed providing rapid feedback to the user as to the utility of the given option.
Note that all solutions may not result in a volume that is closer to being successfully hex-
meshed. Instead the system relies on some user understanding of the topology required for
sweeping.
Each time a decomposition solution is selected and performed, additional volumes may be
added, which will in turn be analyzed by the autoscheme diagnostic tool. This interactive process

771

ITEM

continues until the volume is successfully decomposed into a set of volumes which are
recognized as either mappable or sweepable.

Figure 1. ITEM decomposition tool shows 3 of the several solutions generated that can be

selected to decompose the model for hex meshing

Forced Sweepability
In some cases, decomposition alone is not sufficient to provide the necessary topology for
sweeping. The forced sweepability capability attempts to force a model to have sweepable
topology given a set of source and target surfaces. The source-target pairs may have been
identified manually by the user, or defined as one the solutions from the sweep suggestion
algorithm described above. All of the surfaces between source and target surfaces are referred to
as linking surfaces. Linking surfaces must be mappable or submappable in order for the
sweeping algorithm to be successful. There are various topology configurations that will prevent
linking surfaces from being mappable or submappable.
Diagnostics: The first check that is made is for small curves. Small curves will not necessarily
introduce topology that is not mappable or submappable but will often enforce unneeded mesh
resolution and will often degrade mesh quality as the mesh size has to transition from small to
large. Next, the interior angles of each surface are checked to see if they deviate far from 90
multiples. As the deviation from 90 multiples increases the mapping and submapping algorithms
have a harder time classifying corners in the surface. If either of these checks identify potential
problems they are flagged and potential solutions are generated.
Solutions: If linking surface problems are identified ITEM will analyze the surface and generate
potential solutions for resolving the problem. Compositing the problem linking surface with one
of its neighbors is a current solution that is provided. ITEM will look at the neighboring surfaces
to decide which combination will be best. When remedying bad interior angles the new interior
angles that would result after the composite are calculated in order to choose the composite that
would produce the best interior angles. Another criterion that is considered is the dihedral angle
between the composite candidates. Dihedral angles close to 180 are desirable. The suggested
solutions are prioritized based on these criteria before being presented to the user. Figure 1
shows an example of a model before and after running the forced sweepability solutions. The top
and bottom of the cylinder were chosen as the source and target surfaces respectively.

772

Cubit 15.1 User Documentation

Figure 1. Non-submappable linking surface topology is composited out to force a sweepable

volume topology

Bad geometry representation
As a result of translation errors between CAD representations, errors or differences in the way
the geometry is interpreted may occur. Depending on the severity of the problem, sometimes a
mesh can be generated even with a less-than perfect geometric representation, however, in most
cases, these should be resolved before meshing.
Detecting Invalid Geometry
In most cases, bad or invalid topology or geometry definition comes from problems which arise
in the CAD translation process. CUBIT’s main geometry kernel, ACIS is used to represent the
model if it has been imported using an IGES or STEP format. Translation to and from these
neutral formats is frequently the cause of bad geometry. ITEM will use the geometry validation
procedures built into the ACIS kernel to detect if there is any bad geometry and will list the
entities that may be causing a problem.
Since the validation procedures are specific to ACIS, models that may have been imported from
another native format such as Pro/E will not provide this diagnostic. Although this may seem like
a severe limitation, importing native formats rarely have bad geometry, since no translation
process is necessary.
It is good practice to always check your model for bad geometry before proceeding to other
geometry or meshing operations. In some cases, if a webcut or meshing operation fails, the cause
is an invalid geometric definition that has not been adequately healed. Resolving bad geometry
problems up front, in most cases is essential to obtaining a mesh. On the other hand, if the
location of the bad geometry in the model is such that it will not effect subsequent Boolean or
decomposition operations, there may be a chance that completely resolving bad geometry is not
necessary. Simply ignoring bad geometry that cannot be easily repaired with automatic
procedures may be a reasonable solution, provided the user is aware of the potential limitations.
Resolving Invalid Geometry
To resolve invalid geometry, ITEM uses the heal procedure built into the ACIS geometry kernel.
In almost all cases, this is a fully automatic procedure. Simply selecting the automatic repair
button will make the appropriate adjustments to the geometry. This can be done one volume at a
time by healing the owning volume, or by healing the full model all at once. If healing was
successful, No problems detected should be displayed.
If auto repair does not successfully repair the geometry, you may want to try additional options
available in Cubit for healing. See the Cubit documentation for a complete description of
additional healing options.

773

ITEM

Determining an Appropriate Merge Tolerance
Determining the appropriate merge tolerance for a model can be essential for creating conformal
meshes on some models. The merge tolerance is a value that identifies at which distance
different entities can be considered the same entity. Many entities will fail to merge because of
widespread geometry tolerance or alignment problems that are either too difficult, time-
consuming or even impossible to resolve. Specifying a merge tolerance that is larger than these
small discrepancies allows the user to account for geometry that is misaligned. But specifying a
merge tolerance that is too large can combine features the user wishes to keep, and possibly
corrupt the model. The ideal merge tolerance should be smaller than the smallest feature, but
larger than the biggest gap or misalignment that cannot be resolved. Since it is not always a
simple task to determine either of these features, the ITEM workflow provides a diagnostic tool
designed to guide the user to find the small misalignments that may lead to merge problems. It
then presents possible solutions to fix these problems, or the ability to change the merge
tolerance to ignore them.
Opening the Merge Tolerance Panel
To open the merge tolerance tool from the ITEM Wizard, click on Prepare Geometry->Connect
Volumes->Imprint and Merge. Then click on the button with three dots next to the Merge
Tolerance input field.

Figure 1. How to open the merge tolerance panel

The merge tolerance panel is shown in the following image.

774

Cubit 15.1 User Documentation

Figure 2. The Merge Tolerance Diagnostic Panel

Estimating Merge Tolerance with Small Feature Size
Since the merge tolerance must be smaller than the smallest feature in the mesh, the best place to
start is by finding the smallest feature and using that value to create an estimate for the merge
tolerance. To find the smallest feature, click on the small button with three dots next to the input
box for Small Features.
Note: The small feature checks will not find misalignments between different volumes- it will
only list vertex-vertex pairs and vertex-curve pairs on the same volume. The small feature size is
used on the merge tolerance panel to find an initial estimate for the merge tolerance.
After determining the smallest feature size, click on the Estimate Merge Tolerance button to
come up with a rough estimate for the merge tolerance. It is important to note that this is only an
estimate. After an initial estimate is made, it can be fine tuned using the Fine Tune Merge
Tolerance tool.

775

ITEM

Fine Tuning the Merge Tolerance
In the fine tune merge tolerance area, the user may search for vertex-vertex, vertex-curve, and
vertex-surface pairs that are within user-specified ranges. This includes checks between entities
on different volumes. This allows the user to determine if the merge tolerance he/she has
determined will capture all of the merges he/she intends. The user can check/uncheck which
pairs to search for and what range to look in. The results from the search will show up in the
window below and the user can select the results, right click on it, and choose Draw with
Volumes to zoom into that pair of features. For vertex-vertex pairs there may be tweak solutions
presented to the user in the list box below for fixing the problems.
Setting the Merge Tolerance
The Apply button next to Estimated Merge Tolerance edit field is used to take the estimated
merge tolerance and use it to set the merge tolerance in CUBIT by issuing the Merge Tolerance
<val> command.

Building a Sweepable Topology
The hex meshing problem presents a number of additional challenges to the user that tetrahedral
meshing does not. Where a good quality tetrahedral mesh can generally be created once small
features and imprint/merge problems have been addressed, the hexahedral meshing problem
poses additional topology constraints which must be met.
Although progress has been made in automating the hex meshing process, the most robust
meshing algorithms still rely on geometric primitives. Mapping [Cook, 82] and sub-
mapping [Whiteley, 96] algorithms rely on parametric cubes and sweeping[Knupp, 98; Scott, 05]
relies on extrusions. Most real world geometries do not automatically fit into one of these
categories so the topology must be changed to match the criteria for one of these meshing
schemes. ITEM addresses the hex meshing topology problem through four primary diagnostic
and solution mechanisms.

1. Detecting blend surfaces
2. Detecting and suggesting decomposition operations
3. Recognizing nearly sweepable topologies and suggesting source-target pairs
4. Detecting and compositing surfaces to force a sweep topology

Small details in the model
The small feature removal area of ITEM focuses on identifying and removing small features in
the model that will either inhibit meshing or force excessive mesh resolution near the small
feature. Small features may result from translating models from one format to another or may be
intentional design features. Regardless of the origin small features must often be removed in
order to generate a high quality mesh.
ITEM will recognize small features that fall in four classifications:

1. small curves
2. small surfaces
3. narrow surfaces
4. surfaces with narrow regions

776

Cubit 15.1 User Documentation

These operations may involve either real, virtual or a combination of both types of operations to
remove these features. A virtual operation is one in which does not modify the CAD model, but
rather modifies an overlay topology on the original CAD model. Real operations, on the other
hand directly modify the CAD model. Where real operations are provided by the solid modeling
kernel upon which CUBIT is built, virtual operations are provided by CUBIT's CGM (Tautges,
00) module and are implemented independently of the solid modeling kernel. The following
describes the diagnostics for finding each of the four classifications of small features and the
methods for removing them.
Small Curves
Diagnostic: Small curves are found by simply comparing each curve length in the model to a
user-specified characteristic small curve size. A default epsilon (ε) is automatically calculated as
10 percent of the user specified mesh size, but can be overridden by the user.
Solutions: ITEM provides three different solutions for eliminating small curves from the model.
The first solution uses a virtual operation to composite surfaces. Two surfaces near the small
curve can often be composited together to eliminate the small curve as shown in Figure 1(a).
The second solution for eliminating small curves is the collapse curve operation. This operation
combines partitioning and compositing of surfaces near the small curve to generate a topology
that is similar to pinching the two ends of the curve together into a single point. The partitioning
can be done either as a real or virtual operation. Figure 1(b) illustrates the collapse curve
operation.
The third solution for eliminating small curves is the remove topology operation. This operation
can be thought of as cutting out an area around the small curve and then reconstructing the
surfaces and curves in the cut-out region so that the small curves no longer exist. (Clark, 07)
provides a detailed description of the remove topology operation. This operation has more
impact on the actual geometry of the model because it redefines surfaces and curves in the
vicinity of a small curve. The reconstruction of curves and surfaces is done using real operations
followed by composites to remove extra topology introduced during the operation. Figure 1(c)
shows the results using the remove topology operation.

Figure 1. Three operators used for removing small curves (a) composite; (b) collapse curve;

(c) remove topology
Small and Narrow Surfaces
ITEM also addresses the problem of small and narrow surfaces. Both are dealt with in a similar
manner and are described here.

777

ITEM

Diagnostic: Small surfaces are found by comparing the surface area with a characteristic small
area. The characteristic small area is defined simply as the characteristic small curve length
squared or ε2.
Narrow surfaces are distinguished from surfaces with narrow regions by the characteristic that
the latter can be split such that the narrow region is separated from the rest of the surface.
Narrow surfaces are themselves a narrow region and no further splits can be done to separate the
narrow region. Figure 2 shows examples of each. ITEM provides the option to split off the
narrow regions, subdividing the surface so the narrow surfaces can be dealt with independently.
Narrow regions/surfaces are also recognized using the characteristic value of ε. The distance, di
from the endpoints of each curve in the surface to the other curves in the surface are computed
and compared to ε. When di<ε other points on the curve are sampled to identify the beginning
and end of the narrow region. If the narrow region encompasses the entire surface, the surface is
classified as a narrow surface. If the region contains only a portion of the surface, it is classified
as a surface with a narrow region.

Figure 2. Two cases illustrating the difference between surfaces with narrow regions and

narrow surfaces
Solutions: ITEM provides four different solutions for eliminating small and narrow surfaces
from the model. The first solution uses the regularize operation. Regularize is a real operation
provided by the solid modeling kernel that removes unnecessary/redundant topology in the
model. In many cases a small/narrow surface's definition may be the same as a surface next to it
and therefore the curve between them is not necessary and can be regularized out. An example of
regularizing a small/narrow surface out is shown in Figure 3.

778

Cubit 15.1 User Documentation

Figure 3. When the small surface’s underlying geometric definition is the same as a

neighbor the curve between them can be regularized out.
The second solution for removing small/narrow surfaces uses the remove operation. Remove is
also a real operation provided by the solid modeling kernel. However, it differs from regularize
in that it doesn't require the neighboring surface(s) to have the same geometric definition. Instead
the remove operation removes the specified surface from the model and then attempts to extend
and intersect adjacent surfaces to close the volume. An example of using the remove solution is
shown in Figure 4.

Figure 4. The remove operation extends an adjacent surface to remove a small surface

The third solution for removing small/narrow surfaces uses the virtual composite operation to
composite the small surface with one of its neighbors. This is very similar to the use of
composites for removing small curves. An example is shown in Figure 5.

Figure 5. Composite solution for removing a narrow surface

The final solution for removing small/narrow surfaces uses the remove topology operation
(Clark, 07). The remove topology operation behaves the same as when used for removing small
curves in that it cuts out the area of the model around the small/narrow surface and replaces it
with a simplified topology. In the case of a small surface where all of the curves on the surface
are smaller than the characteristic small curve length, the small surface is replaced by a single

779

ITEM

vertex. In the case of a narrow surface where the surface is longer than the characteristic small
curve length in one of its directions, the surface is replaced with a curve. The remove topology
operation can be thought of as a local dimensional reduction to simplify the topology. The
remove topology operation can also be used to remove networks of small/narrow surfaces in a
similar fashion. Examples of using the remove topology solution to remove small/narrow
surfaces are shown in Figures 6 and Figure 7.

Figure 6. Remove topology solution for removing a narrow surface

Figure 7.Remove topology solution for removing a network of narrow surfaces

Determining the Small Feature Size
The smallest feature size is a value that represents the size of the smallest detail in the volume
that the user wants to include in the final mesh. Any details that are smaller than this size should
be removed from the model before completing the other steps of the meshing process. Small
details can result from a variety of different reasons. Sometimes the model contains excessive
detail that the user does not need. Other times, small features such as extra curves are created
during import to account for a mismatching topology. Still other times, the small features are the
result of webcutting or other decomposition methods. Ideally there should be a minimum
threshold at which the user decides to keep all features above the given size, and remove the rest.
The smallest feature size is used for other diagnostic tools, so selecting an appropriate feature
size is important for other steps in the mesh generation process.
After the Find Small Features button is pressed, Cubit lists the 10 closests vertex-vertex and
vertex-curve pairs. The pairs are listed in the display window from smallest to largest. To see
more pairs, change the search parameter in the input box. To visualize each pair, the user can
right click on a feature and select the Draw Pair with Volumes option. After determining the
smallest feature size the user can enter it in the edit field at the bottom of the panel and it will be

780

Cubit 15.1 User Documentation

used in later calculations. The user can also right click on one of the pairs in the list and
choose Use as smallest feature to populate the edit field at the bottom of the panel.
Why doesn’t the list include small gaps between volumes?
The smallest feature check is only searching over vertex-vertex and vertex-curve pairs in the
same volume. Small gaps and misalignments are not included in this list. The purpose of the
small feature diagnostic panel is to search for features that need to be removed prior to meshing.
A feature is an entity such as a small curve or sliver surface that exists on a single volume which
must be resolved by the mesh. A gap or misalignment is two entities that should be coincident,
but are not, due to translation or other problems. Gaps and misalignments may not hinder mesh
generation on a given volume, but they do prevent proper imprinting and merging.
The imprint/merge, merge tolerance, and overlapping volume panels contain diagnostics that
check for misalignment problems. The purpose of those diagnostics is to enable imprinting and
merging of a volume with small misalignments.
Note: The smallest feature size is used as a metric on the merge tolerance page, but it is only
used to get an initial estimate for the merge tolerance. Small feature size and merge tolerance
represent different metrics, and should not be confused.
In Figure 1, the small feature size diagnostic finds small features with lengths of 0.707, 0.15 and
0.25. The user may decide that the smallest feature he or she wishes to keep is the one at the 0.25
size. If he sets the small feature size to 0.25, the other features will be flagged as small curves
and surfaces on the Small Features page. They can then be removed using tweaking and other
geometry clean-up commands. If he sets the small feature size to 0.707, none of the features will
be flagged as small features.
In addition to the features shown, this model contains two vertices that are slightly misaligned
due to geometry translation problems. The nearly coincident vertices are not listed on the small
features list because the vertices lie on different volumes. To find these near coincident vertices,
the user would use the merge tolerance panel.

781

ITEM

Figure 1. Small Features and Overlap on a Model

Recognizing Nearly Sweepable Regions
The purpose of geometry operations such as decomposition is to transform an unmeshable region
into one or more meshable regions. However, even the operations suggested by the
decomposition tool can degenerate into guesswork if they are not performed with a specific
purpose in mind. Without a geometric goal to work toward, it can be difficult to recognize
whether a particular operation will be useful.
Incorporated within the proposed ITEM environment are algorithms that are able to detect
geometry that is nearly sweepable, but which are not fully sweepable due to some geometric
feature or due to incompatible constraints between adjacent sections of geometry. By presenting
potential sweeping configurations to the user, ITEM provides suggested goals to work towards,
enabling the user to make informed decisions while preparing geometry for meshing.
Unlike the decomposition solutions presented in the previous section, the purpose of recognizing
nearly sweepable regions is to show potential alternative source-target pairs for sweeping even
when the autoscheme tool does not recognize the topology as strictly sweepable. When
combined with the decomposition solutions and the forced sweepability capability described

782

Cubit 15.1 User Documentation

later, it provides the user with an additional powerful strategy for building a hexahedral mesh
topology.
Diagnostics: In recognizing nearly sweepable regions, the diagnostic tool employed is once
again the autoscheme tool described in [White, 00]. Volumes that do not meet the criteria
defined for mapping or sweeping are presented to the user. The user may then select from these
volume for which potential source-target pairs are computed.
Solutions: The current algorithm for determining possible sweep configurations is an extension
of the autoscheme algorithm described in [White, 00]. Instead of rejecting a configuration which
does not meet the required sweeping constraints, the sweep suggestion algorithm ignores certain
sweeping roadblocks until it has identified a nearly feasible sweeping configuration. The
suggestions are presented graphically, as seen in Figure 1. In most cases, the source-target pairs
presented by the sweep suggestion algorithm are not yet feasible for sweeping given the current
topology. The user may use this information for further decomposition or to apply solutions
identified by the forced sweepability capability described next. The sweep suggest algorithm also
provides the user with alternative feasible sweep direction solutions as shown in Figure 1. This is
particularly useful when dealing with interconnected volumes where sweep directions are
dependent on neighboring volumes.

Figure 1. (a) ITEM displays the source and target of a geometry that is nearly sweepable.
The region is not currently sweepable due to circular imprints on the side of the cylinder.

(b) Alternative feasible sweep directions are also computed.

783

APPENDIX
Appendix

• Alpha Commands
• Available Colors
• Element Numbering
• FullHex vs. NodeHex Representation
• APREPRO
• Cubit Python Interface
• Navigation XML Files
• FASTQ
• Periodic Space-filling Models (Tile)
• Generating Meshes for Adaptive Topological Optimization (ATO)
• References

Alpha
Alpha Commands
CUBIT has several functions that are currently in development and are considered "Alpha"
features. These features can be can be accessed or hidden within Cubit by typing the following
command:

Set Developer Commands {On|OFF}
The commands that are currently developer commands are:

• Automatic Detail Suppression
• Automatic Geometry Decomposition
• Cohesive Elements
• Deleting Mesh Elements
• Feature Size
• Optimize Jacobian
• Mesh Cutting
• Mesh Grafting
• Randomize Smoothing
• Refine Mesh Boundary
• Sculpting
• Sculpt Parallel
• Super Sizing Function
• Test Sizing Function
• Triangle Mesh Coarsening
• Transition

Automatic Detail Suppression
Note: This feature is under development. The command to enable or disable features under
development is:

785

Appendix

Set Developer Commands {On|OFF}
Geometry models often have small features, which can be difficult to resolve in a mesh. In fact,
these features are sometimes too small to see, and are revealed only when the user attempts to
mesh the geometry. Automatic detail suppression identifies and removes the following types of
features from the geometric model:

• valence-2 vertices
• short edges
• small faces

Details are removed using virtual geometry , which means they can be restored later if desired.
There are several stages to the automatic detail suppression process, all of which can be
controlled separately by the user. Small details are identified using the command:

Detail <ref entity list> [identify] [dimension <dim> [only]]
The results are placed in a series of groups named "detail_vertices", "detail_edges",
"detail_faces" and "detail_volumes". These details can be drawn or highlighted using the normal
group commands:

Draw {detail_vertices | detail_edges | detail_faces | detail_volumes}
Highlight {detail_vertices | detail_edges | detail_faces | detail_volumes}

Or by using the following command:
Detail <ref entity list> draw [dimension <dim> [only]]

Details are removed automatically from the model using the command:
Detail <ref entity list> remove [dimension <dim> [only]]

The dimension option is used to identify the maximum dimension of entities examined for small
detail identification (<dim> is 3, 2, 1 for volumes, surface, and curves, respectively). If the only
identifier is specified, only entities of the specified dimension are examined, otherwise that
dimension and all lower dimensions are examined.
In some cases, details are identified which the user would like to retain in the model; likewise,
the algorithm used to identify small details sometimes misses small details the user would like
removed from the model. To include or exclude geometric entities from the list of small details
to be removed, the following command is used:

Detail <ref entity list> [include | exclude]
Example
Shown below is a model of a game die meshed with identical mesh size, with details included
(left) and removed (right).

786

Cubit 15.1 User Documentation

Note: "Small" Measurement
Automatic detail suppression identifies "small" geometric entities by comparing their "size" to
the mesh size assigned by the user to the entity. Anything smaller than that size is identified as
being a detail and put in the appropriate detail group (e.g. detail_faces, detail_edges, etc.). The
size of an edge is simply its arc length; surfaces and volumes are measured using the "hydraulic
diameter" (see next note).
Note: Hydraulic Diameter
The hydraulic diameter of a surface is computed as 4.0*A/P, where A is the surface area and P is
the summed arc lengths of all bounding curves. For circles, the hydraulic diameter is the circle
diameter; for squares, it is the length of the bounding curves. Similarly, for volumes, the
hydraulic diameter is computed as 6.0*V/A, which evaluates to the diameter and bounding curve
length for perfect spheres and cubes, respectively.

Automatic Geometry Decomposition
Note: This feature is under development. The command to enable or disable features under
development is:

Set Developer Commands {On|OFF}
In many cases, model geometry includes protrusions which, when cut off using geometry
decomposition, are easily meshable with existing algorithms. CUBIT includes a feature-based
decomposition capability, which automates this process. This algorithm operates by finding
concave curves in the model, grouping them into closed loops, then forming cutting surfaces
based on those loops. Although this algorithm is still in the research stage, it can be useful for
automating some of the decomposition required for typical models.
To automatically decompose a model, use the command

Cut Body <body_id_range> [Trace {on|off}] [Depth <cut_depth>]
If the Trace option is used, the algorithm prints progress information as decomposition
progresses. The Depth option controls how many cuts are made before the algorithm returns; by
default, the algorithm cuts the model wherever it can.
Automatic decomposition is used to decompose the model shown in Figure 1 (left), with the
results shown in Figure 1 (right). In this case, automatic decomposition performs all but one of
the required cuts.

787

Appendix

Figure 1. Model where automatic decomposition was utilized.

Cohesive Elements
Note: This feature is under development. The command to enable or disable features under
development is:

Set Developer Commands {On|OFF}
Cohesive elements are used to model things like adhesive that may lose its bond. Elements in a
cohesive region originally have zero volume or area, and then expand as the simulation
progresses.
Cubit supports 2D cohesive regions. Cohesive elements are implemented in Cubit as element
blocks with an element type of FLATQUAD. The cohesive region is identified by assigning
geometric curves to the FLATQUAD element block. When the element block is exported, each
edge on the specified curves is represented in the exported file as a 4-noded quadrilateral element
with zero area. The quadrilateral element is formed by duplicating each node in the original
edge and then connecting the two original and two duplicate nodes to form a zero-area
quadrilateral.
The image below shows how a FLATQUAD is represented in an exported mesh file. The figure
on the left is how the mesh appears in Cubit. The figure on the right is how the mesh appears in
the output file. Note that the figure on the right is a topological representation, not a true
geometric representation. In reality, the nodes on the left side of block 100 are coincident with
the nodes on the right side of block 100, causing the pink elements to have zero area.

788

Cubit 15.1 User Documentation

Multiple Curves in FLATQUAD Blocks
Multiple curves may be assigned to a single FLATQUAD element block, as long as the curves
do not form a branching path. The figure below, for example, shows an acceptable configuration
of multiple curves.

789

Appendix

Although multiple curves may be assigned to a single cohesive block, the curves assigned to a
block of type FLATQUAD must not branch. A branch occurs whenever three or more curves
share a common vertex, as shown in the figure below.

Deleting Mesh Elements
Element deletion for owned geometry is no longer available unless the developer flag is turned
on. Element deletion is still available without the developer flag for free meshes. The command
to enable or disable features under development is:

Set Developer Commands {On|OFF}
The following forms of the delete commands operate on meshed entities only. They allow low-
level editing of meshes to make minor corrections to a mostly correct mesh. They are not
designed for major modifications to existing meshes. Because Cubit's display routines were not
designed with these type of operations in mind, these commands may cause the current display
of the affected entities to take an unexpected form. An appropriate drawing command can used
to return the display to the desired view.
When deleting elements, the default behavior will be that the child mesh entities will be deleted
when they become orphaned. For example, when a hex is deleted, if its faces, edges and vertices
are no longer used by adjacent hex elements, then they will also be deleted. The no_propagate
option will leave any child mesh entities regardless if they become orphaned.

790

Cubit 15.1 User Documentation

The delete command removes one or more mesh entities from an existing mesh. Additional mesh
entities may be deleted as well depending on the particular form of the command. Exactly which
entities are removed is explained in the following descriptions.

Delete {Hex|Tet} <range> [No_Propagate]
Deletes the specified hexes or tets. All associated tris, faces, edges, and nodes are also deleted
unless the no_propagate option is given.

Delete Wedge <range>
Deletes the specified wedges. No other mesh entities are affected.

Delete {Face|Tri} <range> [No_Propagate]
Deletes the specified faces or tris. For faces, all hexes that contain the face are also deleted. For
tris, all tets that contain the tri are also deleted. All associated edges and nodes are also deleted
unless the no_propagate option is given.

Delete Edge <range> [No_Propagate]
Deletes the specified edges. Any associated tris, faces, hexes, and tets are also deleted. Any
associated nodes are also deleted unless the no_propagate option is given.

Delete Node <range>
Deletes the specified nodes. Any associated edges, tris, faces, hexes, and tets are also deleted.

FeatureSize
Note: This feature is under development. The command to enable or disable features under
development is:

Set Developer Commands {On|OFF}
Applies to: Curves
Summary: Meshes a curve based on its proximity to nearby geometry and size of nearby
geometric features. This is an alpha feature and should be used with caution.
Syntax:

Curve <range> Scheme Featuresize
Related Commands:

Curve <range> Density <density_factor>
Discussion:
The user may also automatically bias the mesh from small elements near complicated geometry
to large elements near expanses of simple geometry. Meshing a curve with scheme featuresize
places nodes roughly proportional to the distance from the node to a piece of geometry that is
foreign to the curve. Foreign means that the geometric entity doesn't contain the curve, or any of
its vertices (i.e. the entity's intersection with the curve is empty). It is known that featuresize is a
continuous function that varies slowly. Featuresize meshing is very automatic and integrated
with interval matching. Featuresize meshing works well with paving, and in some cases with
structured surface-meshing schemes (map, submap) as well.
If desired, the user may specify the exact or goal number of intervals with a size or interval
command, and then the featuresize function will be used to space the nodes.

791

Appendix

The featuresize function may also be scaled by the user to produce a finer or coarser mesh using
the density command as follows:

Curve <range> Density <density_factor>
The default scaling factor or density is 1. Higher densities also reduce the transition rate of the
node spacing. A density of 2 usually gives a good quality mesh. A density below about 0.5 could
produce rapid transitions and poor mesh quality. The following shows an example of different
density values when using the featuresize scheme.

Importing Abaqus Files
Note: This feature is under development. The command to enable or disable features under
development is:

Set developer commands {on|OFF}
The command to import a mesh from an Abaqus format file is:

Import Abaqus [Mesh Geometry] '<input_filename>' [Feature Angle
<angle>]

For a description of importing mesh geometry see Importing Exodus II Files.

Mesh Cutting
Note: This feature is under development. The command to enable or disable features under
development is:
 Set Developer Commands {On|OFF}
The term "mesh cutting" refers to modifying an existing mesh by moving nodes to a cutting
entity and modifying the connectivity of the mesh so that the original mesh fits a new geometry.
The behavior of mesh cutting is intended to be similar to web cutting in that the process results in
a decomposition of the original geometry. The difference is that the decomposition is performed
on meshed geometry and results in the creation of virtual geometry partitions. The underlying
acis body remains unchanged. The user has the option to determine what is partitioned during
mesh cutting: the volume, the surfaces only, or nothing.
The current scope of mesh cutting is limited to cutting hex meshed volumes with planes and
extended surfaces. These cutting entities are also limited in that mesh cutting will not work if
they pass through a vertex at the end of more than two curves. Mesh cutting does not work on tet
meshes or surface meshes.
The steps of mesh cutting include:

• Create a starting mesh. This mesh is typically simpler than the desired final mesh and
can be created with sweeping, mapping, or some other available meshing algorithm.

792

Cubit 15.1 User Documentation

Currently, the starting mesh must be a single volume: mesh cutting does not handle
merged volumes or assemblies.

• Create a cutting entity that can be used to capture the new detail in the mesh. Currently,
mesh cutting works with planes or sheets extended from surfaces. It is important to note
that if an extended surface is used, mesh cutting will not capture any geometric features
(curves or vertices) of the surface.

• Issue the command to cut the mesh. The meshcut commands are similar in syntax and
behavior to the webcut commands.

The following entities with the associated commands are available for mesh cutting:

Coordinate Plane
A coordinate plane can be used to cut the model, and can optionally be offset a positive or
negative distance from its position at the origin.

Meshcut Volume <range> Plane {xplane|yplane|zplane} [offset <dist>]
The planar surface to be used for mesh cutting can also be previewed using the Draw Plane
command.

Planar Surface
An existing planar surface can also be used to cut the model.

Meshcut Volume <range> Plane Surface <surface_id>
The planar surface to be used for mesh cutting can also be previewed using the Draw Plane
command.

Plane from 3 points
Any arbitrary planar surface can be used by specifying three nodes that define the plane.

Meshcut Volume <range> Plane Node <3_node_ids>

Extended Surface
An extended surface or "sheet" can also be used for mesh cutting. In this case, the sheet is not
restricted to be planar and will be extended in all directions possible. When cutting with an
extended surface mesh cutting will ignore all curves and vertices of the surface. Also, the
resolution of the mesh will determine how well curved surfaces are captured with meshcutting. A
surface with high curvature will not be captured accurately with a coarse mesh. Note that some
spline surfaces are limited in extent and may not give an expected result from mesh cutting.

Meshcut Volume <range> Sheet [Extended From] Surface <surface_id>
Note: When cutting with surfaces extended from composite surfaces the default underlying
surface approximation may result in a poor final mesh for mesh cutting. This problem can be
fixed using the following command:

Composite closest_pt surface <id> gme
See the discussion on composite geometry for a more detailed description of this command.

793

Appendix

Meshcut Options
The following options can be used with all the meshcut commands:
[PARTITION VOLUME|partition surface|no_partition]: By default, mesh cutting will create
virtual partitions of the volume being cut to match the cutting entity. This option allows mesh
cutting to also create only the surface partitions or create no partitions for the volume or surfaces.
[no_refine]: This option tells mesh cutting not to refine the mesh around the cutting entity.
[no_smooth]: This option tells mesh cutting not to perform the final smoothing step after the cut
has been made.
Meshcutting Scope
The following is a list of the current scope and limitations of meshcutting.

• Meshcutting only works on hex meshes.
• Meshcutting only works for single volumes. It currently does not handle assembly

meshes.
• Currently, only planes and extended surfaces can be used as the cutting entity.
• Curves and vertices on the cutting entity will not be captured in the mesh.
• Meshcutting will not work if the cutting entity passes through a meshed vertex that is at

the end of more than two curves.
• The resolution of the mesh determines how well a non-planar cutting entity will be

captured in the resulting mesh. Small features and high curvature will not be captured by
a coarse mesh.

• Spline surfaces are limited in extent and may not give expected results if used as an
extended cutting surface.

Meshcutting Example
The figures below show an example of mesh cutting. Figure 1 shows the body that will be
meshed. This body is a brick with intersecting through-holes. The steps to create a mesh for this
body are listed below.

794

Cubit 15.1 User Documentation

Figure 1: The original, unmeshed body

Step 1: Create a starting mesh. Figure 2 below shows the starting mesh for this problem. The
commands for this mesh are:
cubit> create brick x 10
cubit> create cylinder radius 3 z 15
cubit> subtract 2 from 1
cubit> volume 1 scheme sweep
cubit> volume 1 size .75
cubit> mesh volume 1

795

Appendix

Figure 2: The starting mesh

Step 2: Create a cutting entity. Figure 3 shows the volume that will be used to cut the mesh. The
commands are:
cubit> create cylinder radius 2 z 15
cubit> rotate body 3 about x angle 90

796

Cubit 15.1 User Documentation

Figure 3: The starting mesh and cutting entity

Step 3: Cut the mesh. Figure 4 shows the new mesh after the original mesh has been cut. At this
point we have 3 meshed volumes. The commands for this step are:
cubit> meshcut vol 1 sheet surface 13
cubit> draw volume 1 4 5

797

Appendix

Figure 4: The mesh after meshcutting

Step 4: Final step. Figure 5 shows the final mesh after the mesh of the mesh of the two extra
volumes is deleted. The commands are:
cubit> delete mesh vol 4 5 propagate
cubit> draw volume 1

798

Cubit 15.1 User Documentation

Figure 5: Final mesh after deleting unneeded elements

Mesh Grafting
Note: This feature is under development. The command to enable or disable features under
development is:

Set Developer Commands {On|OFF}
Grafting is used to merge a meshed surface with a dissimilar unmeshed surface. In the process,
the location of the nodes on the meshed surface will be adjusted to fit to the bounding curves of
the unmeshed surface and the connectivity of the original mesh may be changed to improve the
final quality of the mesh. This allows an unmeshed volume to be attached--or grafted--onto a
meshed volume. Grafting is particularly useful for models that have intersecting sweep directions
(see example below).
The command syntax for grafting is:

Graft {Surface <range> | Volume <id>} onto Volume <id> [no_refine]
[no_smooth]

The Graft command will check that the second volume is meshed. It then searches for surfaces
on the second volume that overlap with the other volume or range of surfaces that is specified. If
overlapping surfaces are found the mesh will then be adjusted on the second volume and after
any needed imprinting is done the overlapping surfaces will be merged together.

799

Appendix

Grafting Options
[no_refine]: This option tells grafting not to modify the connectivity of the original mesh. The
mesh is still adjusted to fit the boundary of the branch surface but no new elements are added.
[no_smooth]: This option tells grafting not to perform the final smoothing of the modified
surface or volume mesh.
Grafting Scope
The following is a list describing the current scope and limitations of grafting:

• Grafting only works on volumes meshed with hex elements.
• The unmeshed branch surface cannot have any point outside the boundary of the meshed

trunk surface.
• Grafting may have difficulty with branch surfaces that are very thin with respect to the

element size of the meshed surface or that have sharp angles.
• If grafting fails some of the nodes of the original mesh may have been moved. Check the

mesh quality and re-smooth if needed.

Grafting Example
This example shows the four basic steps of grafting:

1. Partition the geometry (optional).
2. Mesh the trunk volume.
3. Graft the branch volume onto the trunk volume.
4. Mesh the branch volume.

Step 1: Partition the geometry
Figure 1 shows the model that will be meshed. The arrows in the figure show the two
intersecting sweep directions. Figure 2 shows the model decomposed for grafting.

Figure 1. A model with two intersecting sweep directions.

800

Cubit 15.1 User Documentation

Figure 2. The model decomposed for grafting

Step 2: Mesh the trunk volume.
Figure 3 shows the mesh of the trunk volume. At this point the mesh on the trunk surface
adjacent to the branch surface is a structured mesh that does not align with the boundary of the
branch surface. The trunk and branch surfaces are two separate surfaces.

Figure 3. Meshed trunk volume.

Step 3: Graft the branch onto the trunk
Figure 4 shows the trunk surface after it has been modified to fit the branch surface. At this point
the two surfaces have been merged together.

801

Appendix

Figure 4. Trunk surface after grafting.

Step 4: Mesh the branch volume.
The final mesh is shown in Figure 5.

Figure 5. Final mesh

Optimize Jacobian
Note: This feature is under development. The command to enable or disable features under
development is:

Set Developer Commands {On|OFF}
Applies to: Volume meshes
Summary: Produces locally-uniform hex meshes by optimizing element Jacobians
Syntax:

Volume <range> Smooth Scheme Optimize Jacobian [param]

802

Cubit 15.1 User Documentation

Discussion:
The Optimize Jacobian method minimizes the sum of the squares of the Jacobians (i.e., volumes)
attached to the smooth node. Meshes smoothed by this means tend to have locally-uniform hex
volumes.
The parameter <param> has a default value of 1, meaning that the method will attempt to make
local volumes equal. The parameter, which should always be between 1 and 2 (with 1.05
recommended), can be used to sacrifice local volume equality in favor of moving towards
meshes with all-positive Jacobians.

Randomize
Note: This feature is under development. The command to enable or disable features under
development is:

Set Developer Commands {On|OFF}
Applies to: Curve, Surface and Volume meshes
Summary: Randomizes the placement of nodes on a geometry entity
Syntax:

{Surface|Volume} <range> Smooth Scheme Randomize [percent]
Discussion:
This scheme will create non-smooth meshes. If a percent argument is given, this sets the amount
by which nodes will be moved as a percentage of the local edge length. The default value for
percent is 0.40. This smooth scheme is primarily a research scheme to help test other smooth
schemes.

Refine Mesh Boundary
Note: This feature is under development. The command to enable or disable features under
development is:
 Set Developer Commands {On|OFF}
Boundary effects to be modeled in the analysis code frequently require a refined mesh near a
specific surface. CUBIT provides this capability with the Refine Mesh Boundary command. This
command is similar to the Refine Mesh Volume Feature command except that it can insert
multiple sheets of hexes near the specified surface.

Refine Mesh Boundary Surface <range> Volume <id> {Bias <double>}
{First_delta <double> | Thickness <double>} [Layer <num_layers=1>]
[SMOOTH|No_smooth]

With this command num_layers of hexes can be inserted at the first interval from the specified
surface. A bias factor indicating the change in element size must be specified. You must also
indicate a first_delta or thickness which represents the distance to the first inserted layer. The
mesh in Figure 5 with bias 1.0 and first_delta of 5. The default smooth option provides the
capability to smooth the mesh following the refinement procedure.

803

Appendix

Figure 5. Example of Boundary Surface Refinement

Super Sizing Function
Note: This feature is under development. The command to enable or disable features under
development is:

Set Developer Commands {On|OFF}
The Super sizing function computes both the Curvature and the Linear function and takes the
smaller value of the two. This is an alpha feature and should be used with caution. The following
is an example of Super element sizing.

804

Cubit 15.1 User Documentation

Figure 1. NURB mesh with super sizing function, 34 by 16 density

Test Sizing Function
Note: This feature is under development. The command to enable or disable features under
development is:

Set Developer Commands {On|OFF}
The Test sizing function is a hardwired numerical function used to demonstrate the transitional
effect of sizing function-based and adaptive paving. The function is a periodic function which is
repeated in 50x50 unit intervals on a 2D surface in the first quadrant (x > 0, y > 0, z = 0). This is
an alpha feature and should be used with caution. An example of a surface meshed with this
sizing function is shown in Figure 1.

Figure 1. Test sizing function for spline geometry

805

Appendix

Figure 2. Test sizing function for square geometry

Transition
Note: This feature is under development. The command to enable or disable features under
development is:

Set Developer Commands {On|OFF}
Applies to: Surfaces
Summary: Produces a specified transition mesh for specific situations
Syntax:

Surface <range> Scheme Transition
{Triangle|Half_circle|Three_to_one|Two_to_one|Convex_corner|Four_to_tw
o} [Source Curve <id>] [Source Vertex <id>]

Discussion:
The transition scheme supplies a set of transition primitives which serve to transition a mesh
from one density to another across a given surface. The six transition sub-types are demonstrated
here.

Scheme Transition Triangle creates four
quads in a triangle that has sides of three,
two, and one intervals.

806

Cubit 15.1 User Documentation

Scheme Transition Half_circle creates
three intervals on the flat and three on the
curved part of the half-circle, then creates
four quads in the surface.

Scheme Transition Three_to_one creates
four quads on a rectangular surface that
has intervals of three, one, one, and one
on its sides.

Scheme Transition Two_to_one creates
three quads on a rectangular surface that
has intervals of two, two, one and one on
its sides :

Scheme Transition Convex_corner takes
a six-sided block with a convex corner and
connects that inner corner to the opposite
one, creating two quads on the surface.

807

Appendix

Scheme Transition Four_to_two creates
seven quads on a rectangular surface that
has intervals of four, two, two, and two on
its sides.

The user also has the option of specifying a source curve and/or a source vertex. The rules for
these specifications are as follows

• If both a curve and vertex are specified, the vertex must be on the curve.
• The Convex_corner sub-type does not allow a source curve.
• The Four_to_two sub-type does not allow a source vertex.
• The source curve will be the curve that will be given the fewest intervals.
• The source vertex will specify which corner will be used for the scheme, in cases where

this makes sense (primarily in the Triangle, and Two_to_one cases).
• If none of the optional information is given, the program will assign the source curve to

be the shortest one on the face, in keeping with the most probable

Triangle Mesh Coarsening
Note: This feature is under development. The command to enable or disable features under
development is:

Set Developer Commands {On|OFF}
CUBIT provides the capability for coarsening triangle surface meshes. Triangle coarsening uses
a technique known as edge collapsing to coarsen a mesh. With this technique, triangle edges are
selectively eliminated from the mesh until the specified criteria have been met. The following
commands will coarsen an existing triangle surface mesh:

Coarsen {Node|Edge|Tri} <range> {Factor|Size <double> [Bias <double>]}
[Depth <int>|Radius <double>] [Sizing_Function] [no_smooth]
Coarsen {Vertex|Curve|Surface} <range> {Factor|Size<double>
[Bias<double>]} [Depth<int>|Radius<double>] [Sizing_Function]
[no_smooth]

Important: These commands are currently implemented only for triangle shaped elements.
To use these commands, first select mesh or geometric entities at which you would like to
perform coarsening. Coarsening operations will be applied to all mesh entities associated with or
within proximity of the entities. The all keyword may be used to uniformly coarsen all triangles
in the model.
Following is a description of each of the coarsen options:
Factor
Defines the approximate size relative to the existing edge lengths for which the coarsening will
be applied. For example, a factor of 2 will attempt to make every edge length within the
specified region approximately twice the size. A factor of 3 will make everything three times the

808

Cubit 15.1 User Documentation

size. Valid input values for factor must be greater than 1. Figure 1 shows an example where a
coarsening factor of 2 was applied

Figure 1. Example of coarsening all triangles with a factor of 2.

Size, Bias
The Size and Bias options are useful when a specific element size is desired at a known location.
This might be used for locally coarsening around a vertex or curve. The Bias argument can be
used with the Size option to define the rate at which the element sizes will change to meet the
existing element sizes on the model. Valid input values for Bias are greater than 1.0 and
represent the maximum change in element size from one element to the next. Since coarsening is
a discrete operation, the Size and Bias options can only approximate the desired input values.
This may cause apparent discontinuities in the element sizes. Using the default smooth option
can lessen this effect. It should also be noted that the Size option is exclusive of the Factor
option. Either Factor or Size can be specified, but not both.
Depth
The Depth option permits the user to specify how many elements away from the specified entity
will also be coarsened. Default Depth is 1.

Figure 2. Coarsening performed at a node with factor = 3 and depth = 3

Radius

809

Appendix

Instead of specifying the number of elements to describe how far to propagate the coarsening, a
real Radius may be entered.
Sizing Function
Coarsening may also be controlled by a sizing function. CUBIT uses sizing functions to control
the local density of a mesh. Various options for setting up a sizing function are provided,
including importing scalar field data from an exodus file. In order to use this option, a sizing
function must first be specified on the surface on which the coarsening will be applied. See
Adaptive Meshing for a description of how to define a sizing function.
No_Smooth
The default mode for coarsening operations is to perform smoothing after coarsening the
elements. This will generally provide better quality elements. In some cases it may be necessary
to retain the original node locations after coarsening. The no_smooth option provides this
capability.

Available Colors
All color commands in CUBIT require the specification of a color name. The following table
lists the colors available in CUBIT at this time. The table lists the color number (#), color name,
and the red, green, and blue components corresponding to each color, for reference.

Number Color Name Red Green Blue

0 black 0.000 0.000 0.000

1 grey 0.500 0.500 0.500

2 green 0.000 1.000 0.000

3 yellow 1.000 1.000 0.000

4 red 1.000 0.000 0.000

5 magenta 1.000 0.000 1.000

6 cyan 0.000 1.000 1.000

7 blue 0.000 0.000 1.000

8 white 1.000 1.000 1.000

9 orange 1.000 0.647 0.000

10 brown 0.647 0.165 0.165

11 gold 1.000 0.843 0.000

12 lightblue 0.678 0.847 0.902

13 lightgreen 0.000 0.800 0.000

810

Cubit 15.1 User Documentation

14 salmon 0.980 0.502 0.447

15 coral 1.000 0.498 0.314

16 pink 1.000 0.753 0.796

17 purple 0.627 0.125 0.941

18 paleturquoise 0.686 0.933 0.933

19 lightsalmon 1.000 0.627 0.478

20 springgreen 0.000 1.000 0.498

21 slateblue 0.416 0.353 0.804

22 sienna 0.627 0.322 0.176

23 seagreen 0.180 0.545 0.341

24 deepskyblue 0.000 0.749 1.000

25 khaki 0.941 0.902 0.549

26 lightskyblue 0.529 0.808 0.980

27 turquoise 0.251 0.878 0.816

28 greenyellow 0.678 1.000 0.184

29 powderblue 0.690 0.878 0.902

30 mediumturquoise 0.282 0.820 0.800

31 skyblue 0.529 0.808 0.922

32 tomato 1.000 0.388 0.278

33 lightcyan 0.878 1.000 1.000

34 dodgerblue 0.118 0.565 1.000

35 aquamarine 0.498 1.000 0.831

36 lightgoldenrodyellow 0.980 0.980 0.824

37 darkgreen 0.000 0.392 0.000

38 lightcoral 0.941 0.502 0.502

811

Appendix

39 mediumslateblue 0.482 0.408 0.933

40 lightseagreen 0.125 0.698 0.667

41 goldenrod 0.855 0.647 0.125

42 indianred 0.804 0.361 0.361

43 mediumspringgreen 0.000 0.980 0.604

44 darkturquoise 0.000 0.808 0.820

45 yellowgreen 0.604 0.804 0.196

46 chocolate 0.824 0.412 0.118

47 steelblue 0.275 0.510 0.706

48 burlywood 0.871 0.722 0.529

49 hotpink 1.000 0.412 0.706

50 saddlebrown 0.545 0.271 0.075

51 violet 0.933 0.510 0.933

52 tan 0.824 0.706 0.549

53 mediumseagreen 0.235 0.702 0.443

54 thistle 0.847 0.749 0.847

55 palegoldenrod 0.933 0.910 0.667

56 firebrick 0.698 0.133 0.133

57 palegreen 0.596 0.984 0.596

58 lightyellow 1.000 1.000 0.878

59 darksalmon 0.914 0.588 0.478

60 orangered 1.000 0.271 0.000

61 palevioletred 0.859 0.439 0.576

62 limegreen 0.196 0.804 0.196

63 mediumblue 0.000 0.000 0.804

812

Cubit 15.1 User Documentation

64 blueviolet 0.541 0.169 0.886

65 deeppink 1.000 0.078 0.576

66 beige 0.961 0.961 0.863

67 royalblue 0.255 0.412 0.882

68 darkkhaki 0.741 0.718 0.420

69 lawngreen 0.486 0.988 0.000

70 lightgoldenrod 0.933 0.867 0.510

71 plum 0.867 0.627 0.867

72 sandybrown 0.957 0.643 0.376

73 lightslateblue 0.518 0.439 1.000

74 orchid 0.855 0.439 0.839

75 cadetblue 0.373 0.620 0.627

76 peru 0.804 0.522 0.247

77 olivedrab 0.420 0.557 0.137

78 mediumpurple 0.576 0.439 0.859

79 maroon 0.690 0.188 0.376

80 lightpink 1.000 0.714 0.757

81 darkslateblue 0.282 0.239 0.545

82 rosybrown 0.737 0.561 0.561

83 mediumvioletred 0.780 0.082 0.522

84 lightsteelblue 0.690 0.769 0.871

85 mediumaquamarine 0.400 0.804 0.667

Element Numbering
This appendix describes the element node and side numbering conventions used in Exodus II
files written by CUBIT. This information is located here for convenience, but is identical to the
information presented in the Exodus II manual; citation Schoof, 95

813

http://endo.sandia.gov/SEACAS/Documentation/exodusII.pdf

Appendix

Node Numbering
The node numbering used for the basic elements is shown Figure 1. Specific element types of
lower order just contain the number of nodes needed for those elements; for example, QUAD4 or
QUAD elements use just the first four nodes shown for quadrilaterals in Figure 1.

Figure 1. Local Node Numbering for CUBIT element types

Side Numbering
Element sides are used to specify boundary conditions that act over a length or area, for example
pressure- or flux-type boundary conditions. Each element side is represented in the Exodus II
format by an element number and the local side number for that element. The local side
numbering for the basic elements is shown in Figure 2.

Figure 2. Local side numbering for CUBIT element types

Triangular Shell Element Numbering
A three-dimensional shell element with triangular topology will have the element type
'TRIANGLE'. This type can be modified for different element orders by appending the number
of nodes onto the end of the type. For example, a 6-node shell could have the element type
'TRIANGLE6'. However, any element whose type begins with the 8 letters 'TRIANGLE' in
upper, lower, or mixed case will refer to an element with a triangular topology. The element can
exist in either three-space or two-space.
Attributes:
1. If the element exists in two-space, there are no required attributes.
2. If the element exists in three-space, there is one required attribute which is the thickness of the
shell.
3. If the number of attributes is equal to the number of nodes in the connectivity of the element,
then the attributes are assumed to specify the thickness of the element at each of the elements
nodes. The ordering of the attributes matches the ordering of the elements nodes.

814

Cubit 15.1 User Documentation

Node Ordering
The node ordering of the 3D triangle matches the node ordering of the 2D triangle as shown in
Figure 3.

Figure 3. Local Node Numbering for CUBIT triangular element types

Side Set Side Ordering
The sideset side ordering is different for the element in the 2D and 3D instances.
In 2D, the sideset side ordering matches what is shown in Figure 4.

Figure 4. Local sideset numbering for CUBIT triangular element types

In 3D, the sideset side and node ordering is the same as for a quad shell except that there are only
3 or 6 nodes.
Then:
side 1 == {1,2,3}
side 2 == {3,2,1}
side 3 == {1,2}
side 4 == {2,3}
side 5 == {3,1}
If it is a higher order triangular shell (6 or 7 nodes), then the higher-order nodes are added on to
the end of the above:
side 1 == {1,2,3,4,5,6,7}
side 2 == {3,2,1,6,5,4,7}
side 3 == {1,2,4}
side 4 == {2,3,5}
side 5 == {3,1,6}

815

Appendix

FullHex vs. NodeHex Representation
CUBIT has two different internal representations of hexes: FullHexes and NodeHexes. The
NodeHex is a lighter weight data structure, but occasionally nodeset and sideset shortcomings
can be overcome by using FullHexes. The user can select which type of hexes get created when
generating or importing a volume mesh with the following command:

Set FullHex [Use] [on|OFF]
Using the FullHex representation increases the memory used to store a mesh by a factor of
approximately five.

APREPRO
APREPRO
Within CUBIT there is support for a programming language called APREPRO (An Algebraic
Preprocessor for Parameterizing Finite Element Analyses). In addition to the standard
APREPRO functionality, CUBIT extends the language with its own functions to aid in the
meshing process. Included here is a summary of the CUBIT-specific APREPRO functionality.
For a description of the APREPRO language and its usage, please refer to the APREPRO user's
manual (PDF).

• Using APREPRO in CUBIT
• APREPRO Functions
• APREPRO Journaling

Note: APREPRO variables can be created and modified from the GUI. Enable/disable the editor
from the View/Aprepro editor menu option. The editor is a docking window and can be placed
anywhere in the GUI.
Using APREPRO in CUBIT
To use APREPRO within CUBIT, simply enclose APREPRO statements within curly braces '{}'
as part of the CUBIT command. Any APREPRO statements included in a command will be
evaluated before the command is executed. For example, if the APREPRO variable 'my_x' is
given the value of 3, the command

 brick x {my_x}
will become

 brick x 3
before the command is executed by CUBIT. Note that this means APREPRO will NOT give
CUBIT parametric modeling abilities. In the above example, if the value of 'my_x' is later
changed to 5, the size of the brick already created will not automatically change to five.
APREPRO expressions can also exist on separate lines. When doing this, it is recommended to
add the CUBIT comment character '#' before the APREPRO statement. This will tell CUBIT to
treat the evaluated expression as a comment, which will prevent errors from being issued in
many cases.
Consider the following example:

 #{my_x = 3}
 #{my_y = my_x + 2}
 #{if(my_y < my_x)}
 brick x {my_x} y {my_y}
 #{else}
 create cylinder radius {my_x} height {my_y}

816

Cubit 15.1 User Documentation

 #{endif}
In the first two lines, only APREPRO statements are being executed (values are assigned to the
variables 'my_x' and 'my_y'). After being evaluated by APREPRO, these two lines will be sent to
CUBIT as
 #3
 #5
If the comment character was omitted instead CUBIT would issue several errors about incorrect
command syntax. However, because these lines start with the comment character, they are
ignored by CUBIT. Also note that the character '$' may be used in place of '#' for comments.
Loops
Repeated processing of a group of lines can be controlled with the {loop(control)}, {endloop}
commands, as noted in section 6.2.5 of the APREPRO documentation.
A loop may also be terminated before running the specified number of times using a #{break}
statement. As soon as a #{break} statement is encountered, the loop is exited and the rest of the
statements in the loop will not execute. Additional iterations of the loop will not be executed
either.
For example, the following commands will create 3 bricks:

 #{_x = 1}
 #{loop(10)}
 brick x 1
 #{if(_x == 2)}
 #{break}
 #{endif}
 #{_x++}
 pause
 brick x 1
 #{endloop}

When a #{break} statement executes, anything in the loop following the #{break} statement will
be skipped, including the #{endif}. For this reason, a #{break} statement not only exits the
loops, but also terminates the most recent #{if} statement exactly as #{endif} would do.
#{break} statements should not be used outside of #{if} statements.
It is also possible to terminate a loop using the #{abortloop} statement. #{abortloop} will
terminate all loops (including nested loops) without executing the contents of the loop(s). This
can be useful when a typo is made while manually entering a loop at the command line. Instead
of ending the loop normally and waiting for the loop to execute with numerous errors, the loop
will end immediately without any execution or errors. Please note, however, that the
#{abortloop} statement is only valid within a loop block; otherwise, it will generate errors.
When creating a loop, APREPRO will record all lines that are given to the command line until
the corresponding #{endloop} is reached. During this process, no commands will be passed to
CUBIT. Once the terminating #{endloop} is reached, APREPRO will expand the loop, repeating
the recorded lines the number of times specified by the loop counter, and send the expanded list
of commands to CUBIT. If the terminating #{endloop} is accidentally omitted, CUBIT may
appear to be unresponsive to commands because APREPRO is still recording lines for the loop.
In situations like these, the #{abortloop} statement may be used to terminate any unfinished
loops and restore the command line to a working state.

817

Appendix

Also note that it is not recommended to use the 'pause' command within a loop, as it can lead to
situations in which the user must repeatedly enter the command 'resume' to execute the entire
loop. In situations like these #{abortloop} will NOT terminate the loop because it has already
been expanded by APREPRO and CUBIT is simply executing a list of commands.
Deleting APREPRO Variables
There are two ways to delete an APREPRO variable in CUBIT. The first is to use the APREPRO
'delete' function. The delete function takes the name of the variable to be deleted as its argument,
as shown in the following example:

 #{my_var = 2}
 ...
 #{delete('my_var')}

The second way to delete an APREPRO variable is by using the 'reset aprepro' command:
 #{my_var = 2}
 #{some_var = 3}
 ...
 reset aprepro

This will delete all APREPRO variables and reset APREPRO to its initial state.
Other Examples
The following example shows the use of some of the string functions.

 #{t1 = "ATAN2"}{t2="(0,-1)"}
 #{t3 = tolower(t1 // t2)}

 ... The variable t3 is equal to the string atan2(0,-1)
 #{execute(t3)}

 ...t3 = 3.141592654
 The result is the same as executing {atan2(0,-1)} This is admittedly a very contrived example;
however, it does illustrate the workings of several of the functions. In the first example, an
expression is constructed by concatenating two strings together and converting the resulting
string to lowercase. This string is then executed.
The following example uses the rescan function to illustrate a basic macro capability in
APREPRO. The example creates vertices in CUBIT equally spaced about the circumference of a
180 degree arc of radius 10. Note that the macro is 5 lines long (2 of the lines start with #, with
the exception of the looping constructs - the actual journal file for this would not continue lines
but would put each one on one long line).

 #{num = 0} {rad = 10} {nintv = 10} {nloop = nintv + 1}
 #{line = 'Create Vertex {polarX(rad,(++num-1)*180/nintv)} {polarY(rad,(num-
1)*180/nintv)}'}
 #{loop(nloop)}
 {rescan(line)}
 #{endloop}

Note the loop construct to automatically repeat the rescan line. To modify this example to
calculate the coordinates of 101 points rather than eleven, the only change necessary would be to
set {nintv=100}.
APREPRO Functions
CUBIT adds a number of APREPRO functions to aid in the meshing process. A description of
each function is available in the categories below.

818

Cubit 15.1 User Documentation

• Geometry Query Functions
• Mesh Query Functions
• Group, Block, and Assembly Functions
• Id Functions
• Miscellaneous Functions
• Pre-defined Variables

Table 1. Geometry Functions
Syntax Description

BBox_XMin("type", id)

Returns the xmin value of the bounding box of the
specified geometric entity. “type” can be “volume”,
“surface”, “curve”, “vertex”, or “group”. If “volume”,
“surface”, “curve”, or “vertex” it will calculate the bounding
box for the entity with the given id. If “group” it will calculate
the combined bounding box for the group. A group can
have any of the geometry types (vol, surf, curve, vert) in it
and can be of mixed types.

BBox_XMax("type", id)

Returns the xmax value of the bounding box of the
specified geometric entity. “type” can be “volume”,
“surface”, “curve”, “vertex”, or “group”. If “volume”,
“surface”, “curve”, or “vertex” it will calculate the bounding
box for the entity with the given id. If “group” it will calculate
the combined bounding box for the group. A group can
have any of the geometry types (vol, surf, curve, vert) in it
and can be of mixed types.

BBox_YMin("type", id)

Returns the ymin value of the bounding box of the
specified geometric entity. “type” can be “volume”,
“surface”, “curve”, “vertex”, or “group”. If “volume”,
“surface”, “curve”, or “vertex” it will calculate the bounding
box for the entity with the given id. If “group” it will calculate
the combined bounding box for the group. A group can
have any of the geometry types (vol, surf, curve, vert) in it
and can be of mixed types.

BBox_YMax("type", id)

Returns the ymax value of the bounding box of the
specified geometric entity. “type” can be “volume”,
“surface”, “curve”, “vertex”, or “group”. If “volume”,
“surface”, “curve”, or “vertex” it will calculate the bounding
box for the entity with the given id. If “group” it will calculate
the combined bounding box for the group. A group can
have any of the geometry types (vol, surf, curve, vert) in it
and can be of mixed types.

BBox_ZMin("type", id)
Returns the zmin value of the bounding box of the
specified geometric entity. “type” can be “volume”,
“surface”, “curve”, “vertex”, or “group”. If “volume”,

819

Appendix

“surface”, “curve”, or “vertex” it will calculate the bounding
box for the entity with the given id. If “group” it will calculate
the combined bounding box for the group. A group can
have any of the geometry types (vol, surf, curve, vert) in it
and can be of mixed types.

BBox_ZMax("type", id)

Returns the zmax value of the bounding box of the
specified geometric entity. “type” can be “volume”,
“surface”, “curve”, “vertex”, or “group”. If “volume”,
“surface”, “curve”, or “vertex” it will calculate the bounding
box for the entity with the given id. If “group” it will calculate
the combined bounding box for the group. A group can
have any of the geometry types (vol, surf, curve, vert) in it
and can be of mixed types.

GeomCentroid_X("type",
id)

Returns the x coordinate of the centroid of the specified
geometric entity. "type" can be "volume" or "group". If
“volume” it calculates the centroid for the volume with the
given id (single volume). If “group” it must be a group of
volumes and it will calculate the combined centroid for the
whole group with the given id.

GeomCentroid_Y("type",
id)

Returns the y coordinate of the centroid of the specified
geometric entity. "type" can be "volume" or "group". If
“volume” it calculates the centroid for the volume with the
given id (single volume). If “group” it must be a group of
volumes and it will calculate the combined centroid for the
whole group with the given id.

GeomCentroid_Z("type",
id)

Returns the z coordinate of the centroid of the specified
geometric entity. "type" can be "volume" or "group". If
“volume” it calculates the centroid for the volume with the
given id (single volume). If “group” it must be a group of
volumes and it will calculate the combined centroid for the
whole group with the given id.

Length(id) Returns the length of the curve with the given id.

Length(x, y, z, ord) Returns the length of the curve identified by the given
center point coordinates and ordinal value.

NumCurves() Returns the number of curves in the model.
NumSurfaces() Returns the number of surfaces in the model.
NumVertices() Returns the number of vertices in the model.
NumVolumes() Returns the number of volumes in the model.
Radius(id) Returns the radius of the curve at its midpoint.

Radius(x, y, z, ord) Returns the radius of the curve identified by the given
center point coordinates and ordinal value.

SurfaceArea(id) Returns the surface area of the surface with the given id.

820

Cubit 15.1 User Documentation

SurfaceArea(x, y, z, ord) Returns the surface area of the surface identified by the
given center point coordinates and ordinal value.

Type("entity name") Returns the type of the specified entity name
Volume(id) Gets the geometric volume of the volume with the given id.

Volume(x, y, z, ord) Gets the geometric volume of the volume identified by the
given center point coordinates and ordinal value.

Vx(id), Vy(id), Vz(id) Gets the x, y or z coordinate of vertex with the given id.
Vx(x, y, z, ord)
Vy(x, y, z, ord)
Vz(x, y, z, ord)

Gets the x, y or z coordinate of vertex identified by the
given center point coordinates and ordinal value.

VertexAt(x, y, z, ordinal) Returns the id of the vertex with the idless reference,
x,y,z,ordinal.

CurveAt(x, y, z, ordinal) Returns the id of the curve with the idless reference,
x,y,z,ordinal.

SurfaceAt(x, y, z, ordinal) Returns the id of the surface with the idless reference,
x,y,z,ordinal.

VolumeAt(x, y, z, ordinal) Returns the id of the volume with the idless reference,
x,y,z,ordinal.

Table 2. Mesh Functions
Syntax Description
EdgeLength(id) Returns the length of the edge with the given id.

EdgeLength(x, y, z, ord) Returns the length of the edge identified by the given
center point coordinates and ordinal value.

FaceArea(id) Returns the area of the face with the given id.

FaceArea(x, y, z, ord) Returns the area of the face identified by the given
center point coordinates and ordinal value.

HexVolume(id) Returns the volume of the hex with the given id.

HexVolume(x, y, z, ord) Returns the volume of the hex identified by the given
center point coordinates and ordinal value.

IntNum(id) Returns the number of intervals on a curve with the
given id.

IntNum(x, y, z, ord)
Returns the number of intervals on a curve identified
by the given center point coordinates and ordinal
value.

IntSize(id) Returns the interval size on a curve with the given id.

IntSize(x, y, z, ord) Returns the interval size on a curve identified by the
given center point coordinates and ordinal value.

MeshCentroid_X("type", id)
Returns the x coordinate of the centroid of the
specified mesh entity. “type” can be “volume”, “block”,
or “group”. If “volume” it calculates the centroid of the

821

Appendix

3D elements in the volume with the given id. If “block”
it calculates the centroid of the elements in the block
with the given id. If “group” it must be a group of
volumes and it calculates the centroid of the group
with the given id.

MeshCentroid_Y("type", id)

Returns the y coordinate of the centroid of the
specified mesh entity. “type” can be “volume”, “block”,
or “group”. If “volume” it calculates the centroid of the
3D elements in the volume with the given id. If “block”
it calculates the centroid of the elements in the block
with the given id. If “group” it must be a group of
volumes and it calculates the centroid of the group
with the given id.

MeshCentroid_Z("type", id)

Returns the z coordinate of the centroid of the
specified mesh entity. “type” can be “volume”, “block”,
or “group”. If “volume” it calculates the centroid of the
3D elements in the volume with the given id. If “block”
it calculates the centroid of the elements in the block
with the given id. If “group” it must be a group of
volumes and it calculates the centroid of the group
with the given id.

MeshLength(id) Gets the length of the meshed curve with the given id.

MeshLength(x, y, z, ord) Gets the length of the meshed curve identified by the
given center point coordinates and ordinal value.

MeshSurfaceArea(id)
Returns the total area of all triangle or quadrilateral
elements on the surface with the given id. This will
vary from the geometric surface area since the mesh
approximates the boundary with linear mesh edges.

MeshSurfaceArea(x, y, z,
ord)

Returns the total area of all triangle or quadrilateral
elements on the surface identified by the given center
point coordinates and ordinal value. This will vary from
the geometric surface area since the mesh
approximates the boundary with linear mesh edges.

MeshVolume(id)
Returns the total volume of all mesh elements in the
volume with the given id. This will vary from the actual
geometric volume since the mesh approximates
curved boundaries with linear mesh edges.

MeshVolume(x, y, z, ord)

Returns the total volume of all mesh elements in the
volume identified by the given center point coordinates
and ordinal value. This will vary from the actual
geometric volume since the mesh approximates
curved boundaries with linear mesh edges.

MinSurfaceMeshQuality(id, Returns the worst value of the specified element

822

Cubit 15.1 User Documentation

"metric") quality metric of all elements on the given surface.

Acceptable metrics include:
shape
aspect ratio
condition no
distortion
element area
jacobian
maximum angle
minimum angle
relative size
scaled jacobian
shape and size
shear and size
shear
skew
stretch
taper
warpage

MinSurfaceMeshQuality(x, y,
z, ord, "metric")

Returns the worst value of the specified element
quality metric of all elements on the surface identified
by the given center point coordinates and ordinal
value.

Acceptable metrics include:
shape
aspect ratio
condition no
distortion
element area
jacobian
maximum angle
minimum angle
relative size
scaled jacobian
shape and size
shear and size
shear
skew
stretch
taper
warpage

MinVolumeMeshQuality(id,
"metric")

Returns the worst value of the specified element
quality metric of all elements in the volume with the

823

Appendix

given id.

Acceptable metrics include:
shape
aspect ration bet
aspect ratio gam
aspect ratio
condition no
diagonal ratio
dimension
distortion
element volume
jacobian
relative size
scaled jacobian
shape and size
shear and size
shear
skew
stretch
taper

MinVolumeMeshQuality(x, y,
z, ord, "metric")

Returns the worst value of the specified element
quality metric of all elements in the volume identified
by the given center point coordinates and ordinal
value.

Acceptable metrics include:
shape
aspect ration bet
aspect ratio gam
aspect ratio
condition no
diagonal ratio
dimension
distortion
element volume
jacobian
relative size
scaled jacobian
shape and size
shear and size
shear
skew
stretch
taper

824

Cubit 15.1 User Documentation

NumEdgesOnCurve(id) Returns the number of edges on the curve with the
given id.

NumEdgesOnCurve(x, y, z,
ord)

Returns the number of edges on the curve identified
by the given center point coordinates and ordinal
value.

NumElemsOnSurface(id) Returns the number of elements on the surface with
the given id.

NumElemsOnSurface(x, y, z,
ord)

Returns the number of elements on the surface
identified by the given center point coordinates and
ordinal value.

NumElemsInVolume(id) Returns the number of elements in the volume with
the given id.

NumElemsInVolume(x, y, z,
ord)

Returns the number of elements in the volume
identified by the given center point coordinates and
ordinal value.

Nx(id), Ny(id), Nz(id) Gets the x, y or z coordinate of node with the given id.
Nx(x, y, z, ord)
Ny(x, y, z, ord)
Nz(x, y, z, ord)

Gets the x, y or z coordinate of node identified by the
given center point coordinates and ordinal value.

TetVolume(id) Returns the volume of the tet with the given id.

TetVolume(x, y, z, ord) Returns the volume of the tet identified by the given
center point coordinates and ordinal value.

TriArea(id) Returns the area of the tri with the given id.

TriArea(x, y, z, ord) Returns the area of the tri identified by the given
center point coordinates and ordinal value. .

Table 3. Group, Block, and Assemblyl Metadata Functions
Syntax Description

BlockAttributeName(id, index) Returns the name for the specified attribute index in
the block within the given id

BlockAttributeValue(id, index) Returns the value for the specified attribute index in
the block within the given id

NumInGrp("groupname") Returns the number of entities in the given group.
NumTypeInGroup("group_name",
"entity_type")

Returns the number of "entity_type" in group
"group_name".

NumVolsInPart("part_name") Returns the number of volumes assigned to the
part with the specified name.

PartInVol(id) Returns the name and instance number of the
part that the volume has been assigned to.

Table 4. ID Functions
Syntax Description

825

Appendix

CurveAt(x, y, z, ordinal) Returns the id of the curve with the idless
reference, x,y,z,ordinal.

EdgeAt(x, y, z, ordinal) Returns the id of the edge with the idless reference,
x,y,z,ordinal.

FaceAt(x, y, z, ordinal) Returns the id of the quad face with the idless
reference, x,y,z,ordinal.

GroupMemberId("group_name",
"entity_type", index)

Returns the ID of "entity_type" in group
"group_name" at the specified index. If the group
contains multiple entity types the index will only be
relevant for the entity type specified and will behave
as if the group only contained that entity type.

HexAt(x, y, z, ordinal) Returns the id of the hexahedra element with the
idless reference, x,y,z,ordinal.

Id("type")

Returns the ID of the entity most recently created
with the specified type. Acceptable types include:
"body", "volume", "surface", "curve", "vertex",
"group", "node", "edge", "quad", "face", "tri", "hex",
"tet", or "pyramid".

NodeAt(x, y, z) Returns the id of the node closest to the xyz
location.

NodeAt(x, y, z, ordinal) Returns the id of the Node with the idless
reference, x,y,z,ordinal.

PyramidAt(x, y, z, ordinal) Returns the id of the pyramid element with the
idless reference, x,y,z,ordinal.

SurfaceAt(x, y, z, ordinal) Returns the id of the surface with the idless
reference, x,y,z,ordinal.

TetAt(x, y, z, ordinal) Returns the id of the tetraheral element with the
idless reference, x,y,z,ordinal.

TriAt(x, y, z, ordinal) Returns the id of the triangle with the idless
reference, x,y,z,ordinal.

VertexAt(x, y, z, ordinal) Returns the id of the vertex with the idless
reference, x,y,z,ordinal.

VolumeAt(x, y, z, ordinal) Returns the id of the volume with the idless
reference, x,y,z,ordinal.

WedgeAt(x, y, z, ordinal) Returns the id of the wedge element with the idless
reference, x,y,z,ordinal.

Table 5. Miscellaneous Functions
Syntax Description

FileExists("file name") Checks if the given file exists. Returns non-zero if
true.

826

Cubit 15.1 User Documentation

GeometryEngineVersion("engine
name")

Get the version for the specified geometry engine.

get_error_count() Returns the current error count in CUBIT

get_warning_count() Returns the current warning count in CUBIT

HasFeature("feature name") Checks if the specified feature is available.
Returns non-zero if the feature is enabled.

Print(msg) Prints msg

PrintError(svar) Outputs the string svar to stderr.

Quote(svar) Returns the string svar, enclosed in single
quotes.

SessionId() Returns the unique id for the current CUBIT
session.

set_error_count(val) Sets the error count in CUBIT to val

set_warning_count(val) Sets the warning count in CUBIT to val

TimerStart() Starts the CPU timer

TimerStop() Stops the CPU timer

Table 6. Pre-defined Variables
The following APREPRO variables are predefined in CUBIT.

Variable Description

CUBIT Variable to indicate that CUBIT is defined

CUBIT_VERSION Current version of CUBIT (not to be confused with
VERSION, which stores the current version of
APREPRO)

APREPRO Journaling
When using APREPRO, statements can be echoed to a journal file. To do so, use the following
command:

[set] Journal [Graphics|Names|Aprepro|Errors] [on|off]
Simply typing "journal aprepro" without an argument will display the current aprepro journaling
setting.
For example,

bri x {2*5.0}
is journaled as

brick x {2*5.0}

827

Appendix

if aprepro journaling is ON, or
brick x 10

if aprepro journaling is off. The default is ON.
APREPRO Comments
Comments are also journaled. This is useful for documenting aprepro definitions and
descriptions.
Comments on the same line as a command get split into two separate lines in the journal file.
Significant Figures
When journal aprepro is ON, numbers are journaled exactly as they are entered. The maximum
number of significant digits is determined by the command input.
When journal aprepro is off, numeric results of aprepro statements are journaled according to the
maximum number of significant digits hard-coded into CUBIT, using the value of DBL_DIG.
Loops and Journaling
Loops are not journaled as loops, per se. For example, the APREPRO expression:

{loop(3)}
bri x {x}

{endloop}
is journaled as:

bri x {x}
bri x {x}
bri x {x}

Multi-line Strings
Multi-line strings are currently not journaled (both definitions and when they are expanded). For
example,

#{line = 'bri x 10
mesh vol 1'}
{line}

will be journaled as
bri x 10
mesh vol 1

Note that bri x 10\n mesh vol 1 was not journaled as {line}

Python
Importing Cubit into Python
Python users are able to import Cubit into Python and make calls into Cubit via CubitInterface
and the other Python classes described in this section. Below is a simple Python script. The key
parts are ensuring the Cubit libraries are on the path and ensuring the cubit.init() call is made
first.

import sys

add Cubit libraries to your path
sys.path.append('/opt/cubit/bin')

import cubit

828

Cubit 15.1 User Documentation

#start cubit - this step is key
cubit.init([''])

height = 1.2
blockHexRadius = 0.1732628

#hexagon
baseBlock = cubit.prism(height, 6, blockHexRadius, blockHexRadius)

#etc . . .

Python Interface
The following Python functions and objects provide capability to query and modify Cubit
models.
Functions
CubitInterface - Cubit model query and modify functions.
Classes
PyObserver - A base class to be extended to perform custom actions on Cubit events.
PyObservable - The base class of all interface objects.
Entity - The base class of all the geometry and mesh types.
GeomEntity - The base class for specifically the Geometry types (Body, Surface, etc.).
Body - Defines a body object that mostly parallels Cubit's Body class.
Volume - Defines a volume object that mostly parallels Cubit's RefVolume class
Surface - Defines a surface object that mostly parallels Cubit's RefFace class.
Curve - Defines a curve object that mostly parallels Cubit's RefEdge class.
Vertex - Defines a vertex object that mostly parallels Cubit's RefVertex class.
CubitFailureException - An exception class to alert the caller when the underlying Cubit
function fails.
InvalidEntityException - An exception class to alert the caller that an invalid entity was
attempted to be used.
InvalidInputException - An exception class to alert the caller of a function that invalid inputs
were entered.
MeshImport - Mesh import interface
CubitInterface
The CubitInterface provides a Python/C++ interface into Cubit.
It provides an object oriented structure that allows a developer to manipulate objects familiar to
Cubit such as bodies, volumes, surfaces, etc. It also allows developers to create and manipulate
as well as query geometry.
Class Member Functions
 init Use init to initialize Cubit.

Using a blank list as the input
parameter is acceptable.

 destroy Closes the current journal file.
 set_cubit_interrupt This sets the global flag in

Cubit that stops all

829

Appendix

interruptable processes.
 set_playback_paused_on_error Sets whether or not playback

is paused when an error
occurs.

Bool is_playback_paused_on_error Gets whether or not playback
is paused when an error
occurs.

Bool developer_commands_are_enabled This checks to see whether
developer commands are
enabled.

str get_version Get the Cubit version.
str get_revision_date Get the Cubit revision date.
str get_build_number Get the Cubit build number.
str get_acis_version Get the Acis version number.
int get_acis_version_as_int Get the Acis version number

as an int.
str get_exodus_version Get the Exodus version

number.
str get_graphics_version Get the VTK version number.
 print_cmd_options Used to print the command

line options.
Bool is_modified Get the modified status of the

model.
 set_modified Set the status of the model

(is_modified() is now false). If
you modify the model after
you set this flag, it will register
true.

Bool is_undo_save_needed Get the status of the model
relative to undo
checkpointing.

 set_undo_saved Set the status of the model
relative to undo checkpointin.

Bool is_command_echoed Check the echo flag in cubit.
Bool is_volume_meshable Check if volume is meshable

with current scheme.
 journal_commands Set the journaling flag in cubit.
Bool is_command_journaled Check the journaling flag in

cubit.
str get_current_journal_file Gets the current journal file

830

Cubit 15.1 User Documentation

name.
 cmd Pass a command string into

Cubit.
 silent_cmd Pass a command string into

Cubit and have it executed
without being verbose at the
command prompt.

[int] parse_cubit_list Parse a Cubit style list of IDs
(1,2,4 to 19 by 3 or all) into a
list of integers.

 print_raw_help Used to print out help when a
?, & or ! is pressed.

int get_error_count Get the number of errors in
the current Cubit session.

[str] get_mesh_error_solutions Get the paired list of mesh
error solutions and help
context cues.

float get_view_distance Get the distance from the
camera to the model (from -
at).

[float] get_view_at Get the camera 'at' point.
[float] get_view_from Get the camera 'from' point.
 reset_camera reset the camera in all open

windows this includes
resetting the view, closing the
histogram and color windows
and clearing the scalar bar,
highlight, and picked entities.

 unselect_entity Unselect an entity that is
currently selected.

Bool is_perspective_on Get the current perspective
mode.

Bool is_occlusion_on Get the current occlusion
mode.

Bool is_scale_visibility_on Get the current scale visibility
setting.

Bool is_select_partial_on Get the current select partial
setting.

int get_rendering_mode Get the current rendering
mode.

831

Appendix

 set_rendering_mode Set the current rendering
mode.

 clear_preview Clear preview graphics
without affecting other display
settings.

str get_pick_type Get the current pick type.
float get_mesh_edge_length Get the length of a mesh

edge.
float get_meshed_volume_or_area Get the total volume/area of a

entity's mesh.
int get_mesh_intervals Get the interval count for a

specified entity.
float get_mesh_size Get the mesh size for a

specified entity.
float get_auto_size Get the auto size for a given

set of volumes. Note, this
does not actually set the
interval size on the volumes. It
simply returns the size that
would be set if an 'size auto
factor n' command were
issued.

float get_quality_value Get the metric value for a
specified mesh entity.

str get_mesh_scheme Get the mesh scheme for the
specified entity.

str get_mesh_scheme_firmness Get the mesh scheme
firmness for the specified
entity.

str get_mesh_interval_firmness Get the mesh interval
firmness for the specified
entity.

Bool is_meshed Determines whether a
specified entity is meshed.

Bool is_merged Determines whether a
specified entity is merged.

str get_smooth_scheme Get the smooth scheme for a
specified entity.

int get_hex_count Get the count of hexes in the
model.

int get_pyramid_count Get the count of pyramids in

832

Cubit 15.1 User Documentation

the model.
int get_tet_count Get the count of tets in the

model.
int get_quad_count Get the count of quads in the

model.
int get_tri_count Get the count of tris in the

model.
int get_edge_count Get the count of edges in the

model.
int get_node_count Get the count of nodes in the

model.
str get_element_count Get the number of elements

which have been assigned to
a block, given a global
element id, and will be
exported.

int get_volume_element_count Get the count of hexes, tets,
pyramids, and wedges in a
volume. NOTE: This count
does not distinguish between
elements which have been
put into a block or not.

int get_surface_element_count Get the count of quads, and
triangles in a surface. NOTE:
This count does not
distinguish between elements
which have been put into a
block or not.

Bool volume_contains_tets Determine whether a volume
contains tets.

[int] get_hex_sheet Get the list of hex elements
forming a hex sheet through
the given two node ids. The
nodes must be adjacent in the
connectivity of the hex i.e.
they form an edge of the hex.

Bool is_visible Query visibility for a specific
entity.

Bool is_virtual Query virtualality for a specific
entity.

Bool contains_virtual Query virtualality of an entity's
children.

833

Appendix

[int] get_source_surfaces Get a list of a volume's sweep
source surfaces.

[int] get_target_surfaces Get a list of a volume's sweep
target surfaces.

int get_common_curve_id Given 2 surfaces, get the
common curve id.

int get_common_vertex_id Given 2 curves, get the
common vertex id.

str get_merge_setting Get the merge setting for a
specified entity.

str get_curve_type Get the curve type for a
specified curve.

str get_surface_type Get the surface type for a
specified surface.

[float] get_surface_normal Get the surface normal for a
specified surface.

[float] get_surface_centroid Get the surface centroid for a
specified surface.

str get_surface_sense Get the surface sense for a
specified surface.

[str] get_entity_modeler_engine Get the modeler engine type
for a specified entity.

[float] get_bounding_box Get the bounding box for a
specified entity.

[float] get_total_bounding_box Get the bounding box for a list
of entities.

float get_total_volume Get the total volume for a list
of volume ids.

str get_entity_name Get the name of a specified
entity.

int get_entity_color_index Get the color of a specified
entity.

Bool is_multi_volume Query whether a specified
body is a multi volume body.

Bool is_sheet_body Query whether a specified
volume is a sheet body.

Bool is_interval_count_odd Query whether a specified
surface has an odd loop.

Bool is_periodic Query whether a specified
surface or curve is periodic.

834

Cubit 15.1 User Documentation

Bool is_surface_planar Query whether a specified
surface is planer.

Bool get_undo_enabled
int number_undo_commands
[str] get_aprepro_vars Gets the current aprepro

variable names.
str get_aprepro_value_as_string Gets the string value of an

aprepro variable.
Bool get_node_constraint Query current setting for node

constraint (move nodes to
geometry).

str get_vertex_type Get the Vertex Types for a
specified vertex on a specified
surface. Vertex types include
"side", "end", "reverse",
"unknown".

[int] get_relatives Get the relatives
(parents/children) of a
specified entity.

[int] get_adjacent_surfaces Get a list of adjacent surfaces
to a specified entity.

[int] get_adjacent_volumes Get a list of adjacent volumes
to a specified entity.

[int] get_entities Get all geometry entities of a
specified type.

[int] get_list_of_free_ref_entities Get all free entities of a given
geometry type.

int get_owning_body Get the owning body for a
specified entity.

int get_owning_volume Get the owning volume for a
specified entity.

int get_owning_volume_by_name Get the owning volume for a
specified entity.

float get_curve_length Get the length of a specified
curve.

float get_arc_length Get the arc length of a
specified curve.

float get_distance_from_curve_start Get the distance from a point
on a curve to the curve's start
point.

835

Appendix

float get_curve_radius Get the radius of a specified
arc.

[float] get_curve_center Get the center point of the
arc.

float get_surface_area Get the area of a surface.
float get_volume_area Get the area of a volume.
float get_hydraulic_radius_surface_area Get the area of a hydraulic

surface.
float get_hydraulic_radius_volume_area Get the area of a hydraulic

volume.
[float] get_center_point Get the center point of a

specified entity.
int get_valence Get the valence for a specific

vertex.
float get_distance_between Get the distance between two

vertices.
 print_surface_summary_stats Print the surface summary

stats to the console.
 print_volume_summary_stats Print the volume summary

stats to the console.
int get_volume_count Get the current number of

volumes.
int get_body_count Get the current number of

bodies.
int get_surface_count Get the current number of

surfaces.
int get_vertex_count Get the current number of

vertices.
int get_curve_count Get the current number of

curves.
int get_curve_count Get the current number of

curves in the passed-in
volumes.

Bool is_catia_engine_available Determine whether catia
engine is available.

[int] evaluate_exterior_angle find all curves in the given list
with an exterior angle (the
angle between surfaces) less
than the test angle. This is
equivalent to the df parser

836

Cubit 15.1 User Documentation

"exterior_angle" test. (draw
curve with exterior_angle >90)

[int] get_small_curves Get the list of small curves for
a list of volumes.

[int] get_smallest_curves Get a list of the smallest
curves in the list of volumes.
The number returned is
specified by 'num_to_return'.

[int] get_small_surfaces Get the list of small surfaces
for a list of volumes.

[int] get_narrow_surfaces Get the list of narrow surfaces
for a list of volumes.

[int] get_small_and_narrow_surfaces Get the list of small or narrow
surfaces from a list of
volumes.

[int] get_surfs_with_narrow_regions Get the list of surfaces with
narrow regions.

[int] get_small_volumes Get the list of small volumes
from a list of volumes.

[int] get_blend_surfaces Get the list of blend surfaces
for a list of volumes.

[int] get_small_loops Get the list of close loops
(surfaces) for a list of
volumes.

[int] get_tangential_intersections Get the list of bad tangential
intersections for a list of
volumes.

[int] get_coincident_vertices
[[str]] get_solutions_for_near_coincident_vertices Get lists of display strings and

command strings for near
coincident vertices.

[[str]] get_solutions_for_imprint_merge Get lists of display strings and
command strings for
imprint/merge solutions.

[[str]] get_solutions_for_small_surfaces Get lists of display, preview
and command strings for
small surface solutions.

[[str]] get_solutions_for_small_curves Get lists of display, preview
and command strings for
small curve solutions.

[[str]] get_solutions_for_surfaces_with_narrow_regions Get lists of display, preview

837

Appendix

and command strings for
surfaces with narrow regions
solutions.

[int] get_overlapping_volumes Get the list of overlapping
volumes for a list of volumes.

[[int]] get_mergeable_vertices Get the list of mergeable
vertices from a list of
volumes/bodies.

[[str]] get_solutions_for_blends Get the solution list for a given
blend surface.

[[int]] get_blend_chains Queries the blend chains for a
surface.

float get_merge_tolerance Get the current merge
tolerance value.

str get_exodus_entity_name Get the name associated with
an exodus entity.

str get_exodus_entity_description Get the description associated
with an exodus entity.

[float] get_all_exodus_times Open an exodus file and get a
vector of all stored time
stamps.

int get_block_id Get the associated block id for
a specific curve, surface, or
volume.

[int] get_block_ids Get list of block ids from a
mesh geometry file.

[int] get_block_id_list Get a list of all blocks.
[int] get_nodeset_id_list Get a list of all nodesets.
[int] get_sideset_id_list Get a list of all sidesets.
[int] get_bc_id_list Get a list of all bcs of a

specified type.
str get_bc_name Get the name for the specified

bc.
[int] get_nodeset_id_list_for_bc Get a list of all nodesets the

specified bc is applied to.
[int] get_sideset_id_list_for_bc Get a list of all sidesets the

specified bc is applied to.
int get_next_sideset_id Get a next available sideset

id.
int get_next_nodeset_id Get a next available nodeset

838

Cubit 15.1 User Documentation

id.
int get_next_block_id Get a next available block id.
[int] get_block_volumes Get a list of volume ids

associated with a specific
block.

[int] get_block_surfaces Get a list of surface
associated with a specific
block.

[int] get_block_curves Get a list of curve associated
with a specific block.

[int] get_block_vertices Get a list of vertices
associated with a specific
block.

[int] get_block_nodes Get a list of nodes associated
with a specific block.

[int] get_block_edges Get a list of edges associated
with a specific block.

[int] get_block_tris Get a list of tris associated
with a specific block.

[int] get_block_faces Get a list of faces associated
with a specific block.

[int] get_block_pyramids Get a list of pyramids
associated with a specific
block.

[int] get_block_tets Get a list of tets associated
with a specific block.

[int] get_block_hexes Get a list of hexes associated
with a specific block.

[int] get_volume_hexes get the list of any hex
elements in a given volume

[int] get_volume_tets get the list of any tet elements
in a given volume

[int] get_nodeset_volumes Get a list of volume ids
associated with a specific
nodeset.

[int] get_nodeset_surfaces Get a list of surface ids
associated with a specific
nodeset.

[int] get_nodeset_curves Get a list of curve ids
associated with a specific

839

Appendix

nodeset.
[int] get_nodeset_vertices Get a list of vertex ids

associated with a specific
nodeset.

[int] get_nodeset_nodes Get a list of node ids
associated with a specific
nodeset. This only returns the
nodes that were specifically
assigned to this nodeset. If
the nodeset was created as a
piece of geometry,
get_nodeset_nodes will not
return the nodes on that
geometry See also
get_nodeset_nodes_inclusive.

[int] get_nodeset_nodes_inclusive Get a list of node ids
associated with a specific
nodeset. This includes all
nodes specifically assigned to
the nodeset, as well as nodes
associated to a piece of
geometry which was used to
define the nodeset.

[int] get_sideset_curves Get a list of curve ids
associated with a specific
sideset.

[int] get_curve_edges get the list of any edge
elements on a given curve

[int] get_sideset_surfaces Get a list of any surfaces in a
sideset.

[int] get_sideset_quads Get a list of any quads in a
sideset.

[int] get_surface_quads get the list of any quad
elements on a given surface

[int] get_surface_tris get the list of any tri elements
on a given surface

str get_entity_sense Get the sense of a sideset
item.

str get_wrt_entity Get the with-respect-to entity.
Bool is_using_shells Get the shell use for a

sideset.
[str] get_geometric_owner Get a list of geometric owners

840

Cubit 15.1 User Documentation

given a list of mesh entities.
[int] get_volume_nodes Get list of node ids owned by

a volume. Excludes nodes
owned by bounding surfs,
curves and verts.

[int] get_surface_nodes Get list of node ids owned by
a surface. Excludes nodes
owned by bounding curves
and verts.

[int] get_curve_nodes Get list of node ids owned by
a curve. Excludes nodes
owned by bounding vertices.

int get_vertex_node Get the node owned by a
vertex.

int get_id_from_name Get id for a named entity.
[int] get_group_groups Get group groups (groups that

are children of another group).
[int] get_group_bodies Get group bodies (bodies that

are children of a group).
[int] get_group_volumes Get group volumes (volumes

that are children of a group).
[int] get_group_surfaces Get group surfaces (surfaces

that are children of a group).
[int] get_group_curves Get group curves (curves that

are children of a group).
[int] get_group_vertices Get group vertices (vertices

that are children of a group).
[int] get_group_nodes Get group nodes (nodes that

are children of a group).
[int] get_group_edges Get group edges (edges that

are children of a group).
[int] get_group_quads Get group quads (quads that

are children of a group).
[int] get_group_tris Get group tris (tris that are

children of a group).
[int] get_group_tets Get group tets (tets that are

children of a group).
[int] get_group_hexes Get group hexes (hexes that

are children of a group).
int get_next_group_id Get the next available group

841

Appendix

id from Cubit.
 delete_all_groups Delete all groups.
 delete_group Delete a specific group.
 set_max_group_id Reset Cubit's max group id

This is really dangerous to
use and exists only to
overcome a limitation with
Cubit. Cubit keeps track of the
next group id to assign. But
those ids just keep
incrementing in Cubit. Some
of the power tools in the Cubit
GUI make groups 'under the
covers' for various operations.
The groups are immediately
deleted. But, creating those
groups will cause Cubit's
group id to increase and
downstream journal files may
be messed up because those
journal files are expecting a
certain ID to be available.

int create_new_group Create a new group.
 remove_entity_from_group Remove a specific entity from

a specific group.
 add_entity_to_group Add a specific entity to a

specific group.
[int] get_mesh_group_parent_ids Get the group ids which are

parents to the indicated mesh
element.

Bool is_mesh_element_in_group Indicates whether a mesh
element is in a group.

Bool is_part_of_list Routine to check for the
presence of an id in a list of
ids.

int get_last_id Get the id of the last created
entity of the given type.

str get_assembly_classification_level Get Classification Level for
metadata.

str get_assembly_classification_category Get Classification Category
for metadata.

str get_assembly_weapons_category Get Weapons Category for

842

Cubit 15.1 User Documentation

metadata.
str get_assembly_metadata Get metadata for a specified

volume id.
Bool is_assembly_metadata_attached Determine whether metadata

is attached to a specified
volume.

str get_assembly_name Get the stored name of an
assembly node.

str get_assembly_path Get the stored path of an
assembly node.

str get_assembly_description Get the stored description of
an assembly node.

int get_assembly_instance Get the stored instance
number of an assembly node.

str get_assembly_file_format Get the stored file format of
an assembly node.

str get_assembly_units Get the stored units measure
of an assembly node.

str get_assembly_material_description Get the stored material
description of an assembly
part.

str get_assembly_material_specification Get the stored material
specification of an assembly
part.

int get_exodus_id Get the exodus/genesis id for
this element.

str get_geometry_owner Get the geometric owner of
this mesh element.

[int] get_connectivity Get the list of node ids
contained within a mesh
entity.

[int] get_expanded_connectivity Get the list of node ids
contained within a mesh
entity, including interior
nodes.

[int] get_sub_elements Get the lower dimesion
entities associated with a
higher dimension entities. For
example get the faces
associated with a hex or the
edges associated with a tri.

843

Appendix

[float] get_nodal_coordinates Get the nodal coordinates for
a given node id.

Bool get_node_position_fixed Query "fixedness" state of
node. A fixed node is not
affecting by smoothing.

str get_sideset_element_type Get the element type of a
sideset.

str get_block_element_type Get the element type of a
block.

int get_exodus_element_count Get the number of elements in
a exodus entity.

int get_block_attribute_count Get the number of attributes
in a block.

float get_block_attribute_value Get a specific block attribute
value.

[str] get_valid_block_element_types Get a list of potential element
types for a block.

int get_nodeset_node_count Get the number of nodes in a
nodeset.

int get_geometry_node_count
str get_mesh_element_type Get the mesh element type

contained in the specified
geometry.

Bool is_on_thin_shell Determine whether a BC is on
a thin shell. Valid for
temperature, convection and
heatflux.

Bool temperature_is_on_solid Determine whether a BC
temperature is on a solid.
Valid for convection and
temperature.

Bool convection_is_on_solid Determine whether a BC
convection is on a solid. Valid
for convection.

Bool convection_is_on_shell_area Determine whether a BC
convection is on a shell top or
bottom. Valid for convection.

float get_convection_coefficient Get the convection coefficient.
float get_bc_temperature Get the temperature. Valid for

convection, temperature.

844

Cubit 15.1 User Documentation

Bool temperature_is_on_shell_area Determine whether a BC
temperature is on a shell
area. Valid for convection and
temperature and on top,
bottom, gradient, and middle.

Bool heatflux_is_on_shell_area Determine whether a BC
heatflux is on a shell area.

float get_heatflux_on_area Get the heatflux on a
specified area.

int get_cfd_type Get the cfd subtype for a
specified cfd BC.

float get_contact_pair_friction_value Get the contact pair's friction
value.

float get_contact_pair_tolerance_value Get the contact pair's
tolerance value.

Bool get_contact_pair_tied_state Get the contact pair's tied
state.

Bool get_contact_pair_general_state Get the contact pair's general
state.

Bool get_contact_pair_exterior_state Get the contact pair's exterior
state.

int get_displacement_coord_system Get the displacement's
coordinate system id.

str get_displacement_combine_type Get the displacement's
combine type which is
"Overwrite", "Average",
"SmallestCombine", or
"LargestCombine".

float get_pressure_value Get the pressure value.
str get_pressure_function Get the pressure function.
float get_force_magnitude Get the force magnitude from

a force.
float get_moment_magnitude Get the moment magnitude

from a force.
[float] get_force_direction_vector Get the direction vector from a

force.
[float] get_force_moment_vector Get the moment vector from a

force.
str get_constraint_type Get the type of a specified

constraint.

845

Appendix

str get_constraint_reference_point Get the reference point of a
specified constraint.

str get_constraint_dependent_entity_point Get the dependent entity of a
specified constraint.

float get_material_property
int get_media_property
[str] get_material_name_list
[str] get_media_name_list
 set_label_type
int get_label_type
Body body Gets the body object from an

ID.
Volume volume Gets the volume object from

an ID.
Surface surface Gets the surface object from

an ID.
Curve curve Gets the curve object from an

ID.
Vertex vertex Gets the vertex object from an

ID.
 reset Executes a reset within cubit.
Body brick Creates a brick of specified

width, depth, and height.
Body sphere Creates all or part of a

sphere.
Body prism Creates a prism of the

specified dimensions.
Body pyramid Creates a pyramid of the

specified dimensions.
Body cylinder creates a cylinder of the

specified dimensions
Body torus creates a torus of the

specified dimensions
Vertex create_vertex Creates a vertex at a x,y,z.
Curve create_curve Creates a curve between two

vertices.
Body create_surface Creates a surface from

boundary curves.
[Body] sweep_curve Create a Body or a set of

846

Cubit 15.1 User Documentation

Bodies from a swept curve.
Body copy_body Creates a copy of the input

Body.
[Body] tweak_surface_offset Performs a tweak surface

offset command.
[Body] tweak_surface_remove Removes a surface from a

body and extends the
surrounding surfaces if
extend_ajoining is true.

[Body] tweak_curve_remove Removes a curve from a body
and extends the surrounding
surface to fill the gap.

[Body] tweak_curve_offset Performs a tweak curve offset
command.

[Body] tweak_vertex_fillet Performs a tweak vertex fillet
command.

[Body] subtract Performs a boolean subtract
operation.

[Body] unite Performs a boolean unite
operation.

 move Moves the Entity the specified
vector.

 scale Scales the Entity according to
the specified factor.

 reflect Reflect the Entity about the
specified axis.

[int] get_volumes_for_node
int get_mesh_error_count
Class Variables
const int CI_ERROR -
Member Function Documentation

init(argv)
Use init to initialize Cubit. Using a blank list as the input parameter is acceptable.

Parameters

argv List of start-up directives. A blank list such as [''] will suffice. See Cubit Help for
details

847

Appendix

destroy()
Closes the current journal file.

set_cubit_interrupt(interrupt)
This sets the global flag in Cubit that stops all interruptable processes.

Parameters

interrupt Boolean set to TRUE if process is to be stopped

set_playback_paused_on_error(pause)
Sets whether or not playback is paused when an error occurs.

Parameters

pause True if playback should be paused when an error occurs.

Bool is_playback_paused_on_error()
Gets whether or not playback is paused when an error occurs.

Return
True if playback should be paused when an error occurs.

Bool developer_commands_are_enabled()
This checks to see whether developer commands are enabled.

Return
True if developer commands are enabled, otherwise False

str get_version()
Get the Cubit version.

Return
A string containing the current version of Cubit

str get_revision_date()
Get the Cubit revision date.

Return
A string containing Cubit's last date of revision

848

Cubit 15.1 User Documentation

str get_build_number()
Get the Cubit build number.

Return
A string containing the current Cubit build number

str get_acis_version()
Get the Acis version number.

Return
A string containing the Acis version number

int get_acis_version_as_int()
Get the Acis version number as an int.

Return
An integer containing the Acis version number

str get_exodus_version()
Get the Exodus version number.

Return
A string containing the Exodus version number

str get_graphics_version()
Get the VTK version number.

Return
A string containing the VTK version number

print_cmd_options()
Used to print the command line options.

Bool is_modified()
Get the modified status of the model.

Return

849

Appendix

A boolean indicating whether the model has been modified

set_modified()
Set the status of the model (is_modified() is now false). If you modify the model after you set
this flag, it will register true.

Bool is_undo_save_needed()
Get the status of the model relative to undo checkpointing.

Return
A boolean indicating whether the model has been modified

set_undo_saved()
Set the status of the model relative to undo checkpointin.

Bool is_command_echoed()
Check the echo flag in cubit.

Return
A boolean indicating whether commands should be echoed in Cubit

Bool is_volume_meshable(volume_id)
Check if volume is meshable with current scheme.

Parameters

volume_id

Return
A boolean indicating whether volume is meshable with current scheme

journal_commands(state)
Set the journaling flag in cubit.

Parameters

state A boolean that turns journaling on (1) and off (0)

Bool is_command_journaled()

850

Cubit 15.1 User Documentation

Check the journaling flag in cubit.

Return
A boolean indicating whether commands are journaled by Cubit

str get_current_journal_file()
Gets the current journal file name.

Return
The current journal file name.

cmd(input_string)
Pass a command string into Cubit.

Example

 cubit.cmd("brick x 10")

Parameters

input_string Pointer to a string containing a complete Cubit command

silent_cmd(input_string)
Pass a command string into Cubit and have it executed without being verbose at the command
prompt.

Example

 cubit.silent_cmd("display")

Parameters

input_string Pointer to a string containing a complete Cubit command

[int] parse_cubit_list(type, int_list, include_sheet_bodies)
Parse a Cubit style list of IDs (1,2,4 to 19 by 3 or all) into a list of integers.

Parameters

type The specific entity type represented by the list of IDs
int_list The string that contains the user's ID list
include_sheet_bodies - include sheet bodies in the integer list (1 if yes, 0 if no)

Return

851

Appendix

A vector of validated integers

print_raw_help(input_line, order_dependent, consecutive_dependent)
Used to print out help when a ?, & or ! is pressed.

Parameters

input_line The current command line being typed by the user
order_dependent Is set to '1' if the key pressed is not &, otherwise '0'
consecutive_dependent Is set to '1' if the pressed is '?', otherwise '0'

int get_error_count()
Get the number of errors in the current Cubit session.

Return
The number of errors in the Cubit session.

[str] get_mesh_error_solutions(error_code)
Get the paired list of mesh error solutions and help context cues.

Parameters

error_code The error code associated with the error solution

Return
List of 'married' strings. First string is solution text. Second string is help context cue. Third
string is command_panel cue.

float get_view_distance()
Get the distance from the camera to the model (from - at).

Return
Distance from the camera to the model

[float] get_view_at()
Get the camera 'at' point.

Return
The xyz coordinates of the camera's current position

852

Cubit 15.1 User Documentation

[float] get_view_from()
Get the camera 'from' point.

Return
The xyz coordinates of the camera's from position

reset_camera()
reset the camera in all open windows this includes resetting the view, closing the histogram and
color windows and clearing the scalar bar, highlight, and picked entities.

unselect_entity(entity_type, entity_id)
Unselect an entity that is currently selected.

Example

 cubit.unselect_entity("curve", 221)

Parameters

entity_type The type of the entity to be unselected
entity_id The ID of the entity to be unselected

Bool is_perspective_on()
Get the current perspective mode.

Return
True if perspective is on, otherwise false

Bool is_occlusion_on()
Get the current occlusion mode.

Return
True if occlusion is on, otherwise false

Bool is_scale_visibility_on()
Get the current scale visibility setting.

Return
True if scale is visible, otherwise false

853

Appendix

Bool is_select_partial_on()
Get the current select partial setting.

Return
True if partial select is on, otherwise false

int get_rendering_mode()
Get the current rendering mode.

Return
The current rendering mode of the graphics subsystem

set_rendering_mode(mode)
Set the current rendering mode.

Parameters

mode Integer associated with the rendering mode. Options are 1,7,2,8, or 5

clear_preview()
Clear preview graphics without affecting other display settings.

str get_pick_type()
Get the current pick type.

Return
The current pick type of the graphics system

float get_mesh_edge_length(edge_id)
Get the length of a mesh edge.

Parameters

edge_id Specifies the id of the edge

Return
The length of the mesh edge

float get_meshed_volume_or_area(geom_type, entity_ids)
Get the total volume/area of a entity's mesh.

854

Cubit 15.1 User Documentation

Example

 area = cubit.get_meshed_volume_or_area("volume", 1)

Parameters

geom_type Specifies the type of entity - volume, surface, hex, tet, tri, quad
entity_ids A list of ids for the entity type

Return
The entity's meshed volume or area

int get_mesh_intervals(geom_type, entity_id)
Get the interval count for a specified entity.

Example

 intervals = cubit.get_meshed_intervals("surface", 12)

Parameters

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Return
The entity's interval count

float get_mesh_size(geom_type, entity_id)
Get the mesh size for a specified entity.

Example

 mesh_size = cubit.get_mesh_size("volume", 2)

Parameters

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Return
The entity's mesh size

float get_auto_size(volume_id_list, size)

855

Appendix

Get the auto size for a given set of volumes. Note, this does not actually set the interval size on
the volumes. It simply returns the size that would be set if an 'size auto factor n' command were
issued.

Example

 double get_auto_size(volume_list)

Parameters

volume_id_list
size The auto factor for the AutoSizeTool

Return
The interval size from the AutoSizeTool

float get_quality_value(mesh_type, mesh_id, metric_name)
Get the metric value for a specified mesh entity.

Parameters

mesh_type Specifies the mesh entity type (hex, tet, tri, quad)
mesh_id Specifies the id of the mesh entity
metric_name Specifies the name of the metric (skew, taper, jacobian, etc)

Return
The value of the quality metric

str get_mesh_scheme(geom_type, entity_id)
Get the mesh scheme for the specified entity.

Example

 scheme = cubit.get_mesh_scheme("surface", 12)

Parameters

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Return
The entity's meshing scheme

str get_mesh_scheme_firmness(geom_type, entity_id)
Get the mesh scheme firmness for the specified entity.

856

Cubit 15.1 User Documentation

Example

 firmness = cubit.get_mesh_firmness("surface", 12)

Parameters

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Return
The entity's meshing firmness (HARD, LIMP, SOFT, etc)

str get_mesh_interval_firmness(geom_type, entity_id)
Get the mesh interval firmness for the specified entity.

Example

 firmness = cubit.get_mesh_interval_firmness("surface", 12)

Parameters

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Return
The entity's meshing firmness (HARD, LIMP, SOFT, etc)

Bool is_meshed(geom_type, entity_id)
Determines whether a specified entity is meshed.

Example

 if cubit.is_meshed("surface", 137):

Parameters

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Bool is_merged(geom_type, entity_id)
Determines whether a specified entity is merged.

Example

 if cubit.is_merged("surface", 137):

857

Appendix

Parameters

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

str get_smooth_scheme(geom_type, entity_id)
Get the smooth scheme for a specified entity.

Example

 smooth_scheme = cubit.get_smooth_scheme("curve", 122)

Parameters

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Return
The smooth scheme associated with the entity

int get_hex_count()
Get the count of hexes in the model.

Return
The number of hexes in the model

int get_pyramid_count()
Get the count of pyramids in the model.

Return
The number of pyramids in the model

int get_tet_count()
Get the count of tets in the model.

Return
The number of tets in the model

int get_quad_count()
Get the count of quads in the model.

Return

858

Cubit 15.1 User Documentation

The number of quads in the model

int get_tri_count()
Get the count of tris in the model.

Return
The number of tris in the model

int get_edge_count()
Get the count of edges in the model.

Return
The number of edges in the model

int get_node_count()
Get the count of nodes in the model.

Return
The number of nodes in the model

int get_element_count()
Get the number of elements which have been assigned to a block, given a global element id, and
will be exported.

Return
The number of elements in the model

int get_volume_element_count(volume_id)
Get the count of hexes, tets, pyramids, and wedges in a volume. NOTE: This count does not
distinguish between elements which have been put into a block or not.

Parameters

volume_id

Return
The number of elements (hexes, tets, wedges, and pyramids) in a volume

int get_surface_element_count(surface_id)

859

Appendix

Get the count of quads, and triangles in a surface. NOTE: This count does not distinguish
between elements which have been put into a block or not.

Parameters

surface_id

Return
The number of elements (both quads and tris) in a surface

Bool volume_contains_tets(volume_id)
Determine whether a volume contains tets.

Parameters

volume_id

Return
bool

[int] get_hex_sheet(node_id_1, node_id_2)
Get the list of hex elements forming a hex sheet through the given two node ids. The nodes must
be adjacent in the connectivity of the hex i.e. they form an edge of the hex.

Parameters

node_id_1
node_id_2

Return
A list of hex ids in the hex sheet

Bool is_visible(geom_type, entity_id)
Query visibility for a specific entity.

Example

 if cubit.is_visible("volume", 4)):

ERROR: EOF in multi-line statement

Parameters

geom_type Specifies the geometry type of the entity

860

Cubit 15.1 User Documentation

entity_id Specifies the id of the entity

Bool is_virtual(geom_type, entity_id)
Query virtualality for a specific entity.

Example

 if cubit.is_virtual("surface", 134)):

ERROR: EOF in multi-line statement

Parameters

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Bool contains_virtual(geom_type, entity_id)
Query virtualality of an entity's children.

Example

 if cubit.contains_virtual("surface", 134)):

ERROR: EOF in multi-line statement

Parameters

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

[int] get_source_surfaces(volume_id)
Get a list of a volume's sweep source surfaces.

Parameters

volume_id Specifies the volume id

Return
List of surface ids

861

Appendix

[int] get_target_surfaces(volume_id)
Get a list of a volume's sweep target surfaces.

Parameters

volume_id Specifies the volume id

Return
List of surface ids

int get_common_curve_id(surface_1_id, surface_2_id)
Given 2 surfaces, get the common curve id.

Parameters

surface_1_id The id of one of the surfaces
surface_2_id The id of the other surface

Return
The id of the curve common to the two surfaces

int get_common_vertex_id(curve_1_id, curve_2_id)
Given 2 curves, get the common vertex id.

Parameters

curve_1_id The id of one of the curves
curve_2_id The id of the other curves

Return
The id of the vertex common to the two curves, 0 if there is none

str get_merge_setting(geom_type, entity_id)
Get the merge setting for a specified entity.

Example

 merge_setting = cubit.get_merge_setting("surface", 33)

Parameters

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Return

862

Cubit 15.1 User Documentation

A text string that indicates the merge setting for the entity

str get_curve_type(curve_id)
Get the curve type for a specified curve.

Parameters

curve_id ID of the curve

Return
Type of curve

str get_surface_type(surface_id)
Get the surface type for a specified surface.

Parameters

surface_id ID of the surface

Return
Type of surface

[float] get_surface_normal(surface_id)
Get the surface normal for a specified surface.

Parameters

surface_id ID of the surface

Return
surface normal at the center

[float] get_surface_centroid(surface_id)
Get the surface centroid for a specified surface.

Parameters

surface_id ID of the surface

Return
surface centroid

str get_surface_sense(surface_id)

863

Appendix

Get the surface sense for a specified surface.

Parameters

surface_id ID of the surface

Return
surface sense as "Reversed" or "Forward" or "Both"

[str] get_entity_modeler_engine(geom_type, entity_id)
Get the modeler engine type for a specified entity.

Example

 engine_list = cubit.get_entity_modeler_engine("surface", 47)

Parameters

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Return
A vector of modeler engines associated with this entity

[float] get_bounding_box(geom_type, entity_id)
Get the bounding box for a specified entity.

Example

 vector_list = cubit.get_bounding_box("surface", 22)

Parameters

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Return
A vector of coordinates describing the entity's bounding box. Ten (10) values will be returned in
axis-min, axis-max, and axis-range order, repeated for x-axis, y-axis, and z-axis and ending with
the total diagonal measure.

[float] get_total_bounding_box(geom_type, entity_list)
Get the bounding box for a list of entities.

Example

864

Cubit 15.1 User Documentation

 vector_list = cubit.get_total_bounding_box("surface",
entity_list)

Parameters

geom_type Specifies the geometry type of the entity
entity_list List of ids associated with geom_type

Return
A vector of coordinates for the entity's bounding box. Twelve (12) values will be returned in xyz
set order repeated four (4) times per set.

float get_total_volume(volume_list)
Get the total volume for a list of volume ids.

Parameters

volume_list List of volume ids

Return
The total volume of all volumes indicated in the id list

str get_entity_name(geom_type, entity_id)
Get the name of a specified entity.

Example

 name = cubit.get_entity_name("vertex", 22)

Parameters

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Return
The name of the entity

int get_entity_color_index(entity_type, entity_id)
Get the color of a specified entity.

Example

 color_index = cubit.get_entity_color_index("curve", 33)

Parameters

865

Appendix

entity_type Specifies the type of the entity
entity_id Specifies the id of the entity

Return
The color of the entity

Bool is_multi_volume(body_id)
Query whether a specified body is a multi volume body.

Parameters

body_id Id of the body

Return
True if body contains multiple volumes, otherwise false.

Bool is_sheet_body(volume_id)
Query whether a specified volume is a sheet body.

Parameters

volume_id Id of the volume

Return
True if volume is a sheet body, otherwise false

Bool is_interval_count_odd(surface_id)
Query whether a specified surface has an odd loop.

Parameters

surface_id Id of the surface

Return
True if surface is/contains an odd looop, otherwise false.

Bool is_periodic(geom_type, entity_id)
Query whether a specified surface or curve is periodic.

Example

 if cubit.is_periodic("surface", 22):

Parameters

866

Cubit 15.1 User Documentation

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Return
True is entity is periodic, otherwise false

Bool is_surface_planar(surface_id)
Query whether a specified surface is planar.

Example

 if cubit.is_surface_planar(22):

Parameters

surface_id Specifies the id of the surface

Return
True is surface is planar, otherwise false

Bool get_undo_enabled()

int number_undo_commands()

[str] get_aprepro_vars()
Gets the current aprepro variable names.

str get_aprepro_value_as_string(var_name)
Gets the string value of an aprepro variable.

Parameters

var_name

Bool get_node_constraint()
Query current setting for node constraint (move nodes to geometry).

Return
True if constrained, otherwise false

867

Appendix

str get_vertex_type(surface_id, vertex_id)
Get the Vertex Types for a specified vertex on a specified surface. Vertex types include "side",
"end", "reverse", "unknown".

Parameters

surface_id Id of the surface associated with the vertex
vertex_id Id of the vertex

Return
The type -- "side", "end", "reverse", or "unknown"

[int] get_relatives(source_geom_type, source_id, target_geom_type)
Get the relatives (parents/children) of a specified entity.

Example

 curve_list = cubit.get_relatives("surface", 12, "curve")

Parameters

source_geom_type The entity type of the source entity
source_id The id of the source entity
target_geom_type The target geometry type

Return
A list of ids of the target geometry type

[int] get_adjacent_surfaces(geom_type, entity_id)
Get a list of adjacent surfaces to a specified entity.

Example

 surface_id_list = cubit.get_adjacent_surfaces("curve", 22)

Parameters

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Return
A list of surfaces ids

[int] get_adjacent_volumes(geom_type, entity_id)
Get a list of adjacent volumes to a specified entity.

868

Cubit 15.1 User Documentation

Example

 volume_id_list = cubit.get_adjacent_volumes("curve", 22)

Parameters

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Return
A list of volume ids

[int] get_entities(geom_type, include_sheet_bodies)
Get all geometry entities of a specified type.

Example

 entity_id_list = cubit.get_entities("volume")

Parameters

geom_type Specifies the geometry type of the entity
include_sheet_bodies If true, then those routines requesting volumes or bodies will have

sheet bodies returned. Normally, when requesting volume lists,
sheet bodies are specifically excluded. Some parts of the Cubit
interface need to see sheet bodies when requesting volumes,
hence, the parameter.

Return
A list of ids of the specified geometry type

[int] get_list_of_free_ref_entities(geom_type)
Get all free entities of a given geometry type.

Example

 free_curve_id_list =
cubit.get_list_of_free_ref_entities("curve")

Parameters

geom_type Specifies the geometry type of the free entity

Return
A list of ids of the specified geometry type

869

Appendix

int get_owning_body(geom_type, entity_id)
Get the owning body for a specified entity.

Example

 body_id = cubit.get_owning_body("curve", 12)

Parameters

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Return
ID of the specified entity's owning body

int get_owning_volume(geom_type, entity_id)
Get the owning volume for a specified entity.

Example

 volume_id = cubit.get_owning_volume("curve", 12)

Parameters

geom_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Return
ID of the specified entity's owning volume

int get_owning_volume_by_name(entity_name)
Get the owning volume for a specified entity.

Example

 volume_id = cubit.get_owning_volume_by_name("TipSurface")

Parameters

entity_name Specifies the name (supplied by Cubit) of the entity

Return
ID of the specified entity's owning volume or 0 if name is unknown

float get_curve_length(curve_id)

870

Cubit 15.1 User Documentation

Get the length of a specified curve.

Parameters

curve_id ID of the curve

Return
Length of the curve

float get_arc_length(curve_id)
Get the arc length of a specified curve.

Parameters

curve_id ID of the curve

Return
Arc length of the curve

float get_distance_from_curve_start(x, y, z, curve_id)
Get the distance from a point on a curve to the curve's start point.

Parameters

x value of the point to measure
y value of the point to measure
z value of the point to measure
curve_id ID of the curve

Return
Distance from the xyz to the curve start

float get_curve_radius(curve_id)
Get the radius of a specified arc.

Parameters

curve_id ID of the curve

Return
Radius of the curve

[float] get_curve_center(curve_id)
Get the center point of the arc.

871

Appendix

Parameters

curve_id ID of the curve

Return
x, y, z center point of the curve in a vector

float get_surface_area(surface_id)
Get the area of a surface.

Parameters

surface_id ID of the surface

Return
Area of the surface

float get_volume_area(volume_id)
Get the area of a volume.

Parameters

volume_id ID of the volume

Return
Area of the volume

float get_hydraulic_radius_surface_area(surface_id)
Get the area of a hydraulic surface.

Parameters

surface_id ID of the surface

Return
Hydraulic area of the surface

float get_hydraulic_radius_volume_area(volume_id)
Get the area of a hydraulic volume.

Parameters

volume_id ID of the volume

Return

872

Cubit 15.1 User Documentation

Hydraulic area of the volume

[float] get_center_point(entity_type, entity_id)
Get the center point of a specified entity.

Example

 center_point = cubit.get_center_point("surface", 22)

Parameters

entity_type Specifies the geometry type of the entity
entity_id Specifies the id of the entity

Return
Vector of doubles representing x y z

int get_valence(vertex_id)
Get the valence for a specific vertex.

Parameters

vertex_id ID of vertex

float get_distance_between(vertex_id_1, vertex_id_2)
Get the distance between two vertices.

Parameters

vertex_id_1 ID of vertex 1 vertex_id_2 ID of vertex 2 /return distance
vertex_id_2

print_surface_summary_stats()
Print the surface summary stats to the console.

print_volume_summary_stats()
Print the volume summary stats to the console.
The number of bodies in the current model, if any

int get_body_count()
Get the current number of bodies.

873

Appendix

Return
The number of volumes in the current model, if any

int get_volume_count()
Get the current number of volumes.

Return
The number of volumes in the current model, if any

int get_surface_count()
Get the current number of surfaces.

Return
The number of surfaces in the current model, if any

int get_vertex_count()
Get the current number of vertices.

Return
The number of vertices in the current model, if any

int get_curve_count()
Get the current number of curves.

Return
The number of curves in the current model, if any

int get_curve_count(target_volume_ids)
Get the current number of curves in the passed-in volumes.

Parameters

target_volume_ids

Return
The number of curves in the volumes

Bool is_catia_engine_available()
Determine whether catia engine is available.

874

Cubit 15.1 User Documentation

Return
True if catia engine is available, otherwise false

[int] evaluate_exterior_angle(curve_list, test_angle)
find all curves in the given list with an exterior angle (the angle between surfaces) less than the
test angle. This is equivalent to the df parser "exterior_angle" test. (draw curve with
exterior_angle >90)

Parameters

curve_list a list of curve ids (integers)
test_angle the value (in degrees) that will be used in testing the exterior angle

Return
a list of curve ids that meet the angle test.

[int] get_small_curves(target_volume_ids, mesh_size)
Get the list of small curves for a list of volumes.

Parameters

target_volume_ids List of volume ids to examine. in Cubit is valid as input here.
mesh_size Indicate the mesh size used as the threshold

Return
List of small curve ids

[int] get_smallest_curves(target_volume_ids, num_to_return)
Get a list of the smallest curves in the list of volumes. The number returned is specified by
'num_to_return'.

Parameters

target_volume_ids List of volume ids to examine. in Cubit is valid as input here.
num_to_return Indicate the number of curves to return

Return
List of smallest curve ids

[int] get_small_surfaces(target_volume_ids, mesh_size)
Get the list of small surfaces for a list of volumes.

Parameters

875

Appendix

target_volume_ids List of volume ids to examine.
mesh_size Indicate the mesh size used as the threshold

Return
List of small surface ids

[int] get_narrow_surfaces(target_volume_ids, mesh_size)
Get the list of narrow surfaces for a list of volumes.

Parameters

target_volume_ids List of volume ids to examine.
mesh_size Indicate the mesh size used as the threshold

Return
List of small surface ids

[int] get_small_and_narrow_surfaces(target_ids, small_area, small_curve_size)
Get the list of small or narrow surfaces from a list of volumes.

Parameters

target_ids
small_area Indicate the area threshold
small_curve_size Indicate size for 'narrowness'

Return
List of small or narrow surface ids

[int] get_surfs_with_narrow_regions(target_ids, narrow_size)
Get the list of surfaces with narrow regions.

Parameters

target_ids
narrow_size Indicate the size that defines 'narrowness'

Return
List of surface ids

[int] get_small_volumes(target_volume_ids, mesh_size)
Get the list of small volumes from a list of volumes.

876

Cubit 15.1 User Documentation

Parameters

target_volume_ids List of volume ids to examine.
mesh_size Indicate the mesh size used as the threshold

Return
List of small volume ids

[int] get_blend_surfaces(target_volume_ids)
Get the list of blend surfaces for a list of volumes.

Parameters

target_volume_ids List of volume ids to examine. List of blend surface ids

[int] get_small_loops(target_volume_ids, mesh_size)
Get the list of close loops (surfaces) for a list of volumes.

Parameters

target_volume_ids List of volume ids to examine.
mesh_size Indicate the mesh size used as the threshold

Return
List of close loop (surface) ids

[int] get_tangential_intersections(target_volume_ids, upper_bound, lower_bound)
Get the list of bad tangential intersections for a list of volumes.

Parameters

target_volume_ids List of volume ids to examine.
upper_bound Upper threshold angle
lower_bound Lower threshold angle

Return
List of surface ids associated with bad tangential angles

[int] get_coincident_vertices(target_volume_ids, high_tolerance)

Parameters

target_volume_ids
high_tolerance

877

Appendix

Return
Paired list of vertex ids considered coincident

[[str]] get_solutions_for_near_coincident_vertices(vertex_id1, vertex_id2)
Get lists of display strings and command strings for near coincident vertices.

Parameters

vertex_id1
vertex_id2

Return
Vector of three string vectors. Vector 1 will contain display strings to be shown to users. Vector
2 will contain Cubit command strings. This second set of strings may contain concatenated
strings delimited by '&&&'. In other words, one instance of command string may in fact contain
multiple commands separated by the '&&&' sequence. Vector 3 will contain Cubit preview
strings.

[[str]] get_solutions_for_imprint_merge(surface_id1, surface_id2)
Get lists of display strings and command strings for imprint/merge solutions.

Parameters

surface_id1 overlapping surface 1 surface_id2 overlapping surface 2
surface_id2

Return
Vector of three string vectors. Vector 1 will contain display strings to be shown to users. Vector
2 will contain Cubit command strings. This second set of strings may contain concatenated
strings delimited by '&&&'. In other words, one instance of command string may in fact contain
multiple commands separated by the '&&&' sequence. Vector 3 will contain Cubit preview
strings.

[[str]] get_solutions_for_small_surfaces(surface_id, small_curve_size, mesh_size)
Get lists of display, preview and command strings for small surface solutions.

Parameters

surface_id Small surface
small_curve_size Threshold value used to determine what 'small' is
mesh_size Element size of the model

Return

878

Cubit 15.1 User Documentation

Vector of three string vectors. Vector 1 will contain display strings to be shown to users. Vector
2 will contain Cubit command strings. Vector 3 will contain Cubit preview strings.

[[str]] get_solutions_for_small_curves(curve_id, small_curve_size, mesh_size)
Get lists of display, preview and command strings for small curve solutions.

Parameters

curve_id Small curve
small_curve_size Threshold value used to determine what 'small' is
mesh_size Element size of the model

Return
Vector of three string vectors. Vector 1 will contain display strings to be shown to users. Vector
2 will contain Cubit command strings. Vector 3 will contain Cubit preview strings.

[[str]] get_solutions_for_surfaces_with_narrow_regions(surface_id,
small_curve_size, mesh_size)
Get lists of display, preview and command strings for surfaces with narrow regions solutions.

Parameters

surface_id Small surface
small_curve_size Threshold value used to determine what 'small' is
mesh_size Element size of the model

Return
Vector of three string vectors. Vector 1 will contain display strings to be shown to users. Vector
2 will contain Cubit command strings. Vector 3 will contain Cubit preview strings.

[int] get_overlapping_volumes(target_volume_ids)
Get the list of overlapping volumes for a list of volumes.

Parameters

target_volume_ids List of volume ids to examine.

Return
volume_list List of overlapping volumes ids

[[int]] get_mergeable_vertices(target_volume_ids)
Get the list of mergeable vertices from a list of volumes/bodies.

879

Appendix

Parameters

target_volume_ids List of volume ids to examine.

Return
list of lists of mergeable vertices (potentially more than a pair)

[[str]] get_solutions_for_blends(surface_id)
Get the solution list for a given blend surface.

Parameters

surface_id the surface being queried

Return
Vector of three string vectors. Vector 1 will contain display strings to be shown to users. Vector
2 will contain Cubit command strings. Vector 3 will contain Cubit preview strings.

[[int]] get_blend_chains(surface_id)
Queries the blend chains for a surface.

Parameters

surface_id surface to retrieve the blend chains from

Return
A set of lists of id's in each blend chain

float get_merge_tolerance()
Get the current merge tolerance value.

Return
The value of the current merge tolerance

str get_exodus_entity_name(entity_type, entity_id)
Get the name associated with an exodus entity.

Example

 entity_name = cubit.get_exodus_entity_name("sideset", 33)

Parameters

entity_type "block", "sideset", nodeset"
entity_id Id of the entity in question

880

Cubit 15.1 User Documentation

Return
Name of the entity or "" if none

str get_exodus_entity_description(entity_type, entity_id)
Get the description associated with an exodus entity.

Example

 entity_description =
cubit.get_exodus_entity_description("sideset", 33)

Parameters

entity_type "block", "sideset", nodeset"
entity_id Id of the entity in question

Return
Description of the entity or "" if none

[float] get_all_exodus_times(filename)
Open an exodus file and get a vector of all stored time stamps.

Parameters

filename Fully qualified exodus file name

Return
List of time stamps in the exodus file

int get_block_id(entity_type, entity_id)
Get the associated block id for a specific curve, surface, or volume.

Example

 block_id = cubit.get_block_id("surface", 33)

Parameters

entity_type Type of entity
entity_id Id of entity in question

Return
Block id associated with this entity or zero (0) if none

881

Appendix

[int] get_block_ids(mesh_geom_file_name)
Get list of block ids from a mesh geometry file.

Parameters

mesh_geom_file_name Fully qualified name of a mesh geometry file

Return
List of block ids in the mesh geometry file

[int] get_block_id_list()
Get a list of all blocks.

Return
List of all active block ids

[int] get_nodeset_id_list()
Get a list of all nodesets.

Return
List of all active nodeset ids

[int] get_sideset_id_list()
Get a list of all sidesets.

Return
List of all active sideset ids

[int] get_bc_id_list(bc_type_in)
Get a list of all bcs of a specified type.

Parameters

bc_type_in as an enum defined by CI_BCTypes. 1-9 is FEA, 10-30 is CFD

Return
List of all active bc ids

str get_bc_name(bc_type_in, bc_id)
Get the name for the specified bc.

882

Cubit 15.1 User Documentation

Parameters

bc_type_in type of bc, as defined by enum CI_BCTypes. 1-9 is FEA, 10-30 is CFD
bc_id ID of the desired bc.

Return
The bc name

[int] get_nodeset_id_list_for_bc(bc_type_in, bc_id)
Get a list of all nodesets the specified bc is applied to.

Parameters

bc_type_in Type of bc to query, as defined by enum CI_BCTypes. 1-9 is FEA, 10-30 is
CFD

bc_id ID of the bc to query

Return
A list of nodeset ID's associated with that bc

[int] get_sideset_id_list_for_bc(bc_type_in, bc_id)
Get a list of all sidesets the specified bc is applied to.

Parameters

bc_type_in Type of bc to query, as defined by enum CI_BCTypes. 1-9 is FEA, 10-30 is
CFD

bc_id ID of the bc to query

Return
A list of sideset ID's associated with that bc

int get_next_sideset_id()
Get a next available sideset id.

Return
Next available sideset id

int get_next_nodeset_id()
Get a next available nodeset id.

Return
Next available nodeset id

883

Appendix

int get_next_block_id()
Get a next available block id.

Return
Next available block id

[int] get_block_volumes(block_id)
Get a list of volume ids associated with a specific block.

Parameters

block_id User specified id of the desired block

Return
A list of volume ids contained in the block

[int] get_block_surfaces(block_id)
Get a list of surface associated with a specific block.

Parameters

block_id User specified id of the desired block

Return
A list of surface ids contained in the block

[int] get_block_curves(block_id)
Get a list of curve associated with a specific block.

Parameters

block_id User specified id of the desired block

Return
A list of curve ids contained in the block

[int] get_block_vertices(block_id)
Get a list of vertices associated with a specific block.

Parameters

block_id User specified id of the desired block

884

Cubit 15.1 User Documentation

Return
A list of vertex ids contained in the block

[int] get_block_nodes(block_id)
Get a list of nodes associated with a specific block.

Parameters

block_id User specified id of the desired block

Return
A list of node ids contained in the block

[int] get_block_edges(block_id)
Get a list of edges associated with a specific block.

Parameters

block_id User specified id of the desired block

Return
A list of edge ids contained in the block

[int] get_block_tris(block_id)
Get a list of tris associated with a specific block.

Parameters

block_id User specified id of the desired block

Return
A list of tri ids contained in the block

[int] get_block_faces(block_id)
Get a list of faces associated with a specific block.

Parameters

block_id User specified id of the desired block

Return
A list of face ids contained in the block

885

Appendix

[int] get_block_pyramids(block_id)
Get a list of pyramids associated with a specific block.

Parameters

block_id User specified id of the desired block

Return
A list of pyramid ids contained in the block

[int] get_block_tets(block_id)
Get a list of tets associated with a specific block.

Parameters

block_id User specified id of the desired block

Return
A list of tet ids contained in the block

[int] get_block_hexes(block_id)
Get a list of hexes associated with a specific block.

Parameters

block_id User specified id of the desired block

Return
A list of hex ids contained in the block

[int] get_volume_hexes(volume_id)
get the list of any hex elements in a given volume

Parameters

volume_id User specified id of the desired volume

Return
A list of the hex ids in the volume

[int] get_volume_tets(volume_id)
get the list of any tet elements in a given volume

Parameters

886

Cubit 15.1 User Documentation

volume_id User specified id of the desired volume

Return
A list of the tet ids in the volume

[int] get_nodeset_volumes(nodeset_id)
Get a list of volume ids associated with a specific nodeset.

Parameters

nodeset_id User specified id of the desired nodeset

Return
A list of volume ids contained in the nodeset

[int] get_nodeset_surfaces(nodeset_id)
Get a list of surface ids associated with a specific nodeset.

Parameters

nodeset_id User specified id of the desired nodeset

Return
A list of surface ids contained in the nodeset

[int] get_nodeset_curves(nodeset_id)
Get a list of curve ids associated with a specific nodeset.

Parameters

nodeset_id User specified id of the desired nodeset

Return
A list of curve ids contained in the nodeset

[int] get_nodeset_vertices(nodeset_id)
Get a list of vertex ids associated with a specific nodeset.

Parameters

nodeset_id User specified id of the desired nodeset

Return
A list of vertex ids contained in the nodeset

887

Appendix

[int] get_nodeset_nodes(nodeset_id)
Get a list of node ids associated with a specific nodeset. This only returns the nodes that were
specifically assigned to this nodeset. If the nodeset was created as a piece of geometry,
get_nodeset_nodes will not return the nodes on that geometry See also
get_nodeset_nodes_inclusive.

Parameters

nodeset_id User specified id of the desired nodeset

Return
A list of node ids contained in the nodeset

[int] get_nodeset_nodes_inclusive(nodeset_id)
Get a list of node ids associated with a specific nodeset. This includes all nodes specifically
assigned to the nodeset, as well as nodes associated to a piece of geometry which was used to
define the nodeset.

Parameters

nodeset_id User specified id of the desired nodeset

Return
A list of node ids contained in the nodeset

[int] get_sideset_curves(sideset_id)
Get a list of curve ids associated with a specific sideset.

Parameters

sideset_id User specified id of the desired sideset

Return
A list of curve ids contained in the sideset

[int] get_curve_edges(curve_id)
get the list of any edge elements on a given curve

Parameters

curve_id User specified id of the desired curve

Return
A list of the edge element ids on the curve

888

Cubit 15.1 User Documentation

[int] get_sideset_surfaces(sideset_id)
Get a list of any surfaces in a sideset.

Parameters

sideset_id User specified id of the desired sideset

Return
A list of the surfaces defining the sideset

[int] get_sideset_quads(sideset_id)
Get a list of any quads in a sideset.

Parameters

sideset_id User specified id of the desired sideset

Return
A list of the quads in the sideset

[int] get_surface_quads(surface_id)
get the list of any quad elements on a given surface

Parameters

surface_id User specified id of the desired surface

Return
A list of the quad ids on the surface

[int] get_surface_tris(surface_id)
get the list of any tri elements on a given surface

Parameters

surface_id User specified id of the desired surface

Return
A list of the tri ids on the surface

str get_entity_sense(source_type, source_id, sideset_id)
Get the sense of a sideset item.

889

Appendix

Example

 sense = cubit.get_entity_sense("face", 332, 2)

Parameters

source_type Item type - could be 'face', 'quad' or 'tri'
source_id ID of entity
sideset_id ID of the sideset

Return
Sense of the source_type/source_id in specified sideset

str get_wrt_entity(source_type, source_id, sideset_id)
Get the with-respect-to entity.

Example

 wrt_entity = cubit.get_wrt_entity("face", 332, 2)

Parameters

source_type Item type - could be 'face', 'quad' or 'tri'
source_id ID of entity
sideset_id ID of the sideset

Return
'with-respect-to' entity of the source_type/source_id in specified sideset

Bool is_using_shells(sideset_id)
Get the shell use for a sideset.

Parameters

sideset_id ID of the sideset

Return
True if the sideset uses shells, otherwise false

[str] get_geometric_owner(mesh_entity_type, mesh_entity_list)
Get a list of geometric owners given a list of mesh entities.

Example

 owner_list = cubit.get_geometric_owner("quad", id_list)

890

Cubit 15.1 User Documentation

Parameters

mesh_entity_type The type of mesh entity. Only works for 'quad, 'face', or 'tri'
mesh_entity_list A string containing space delimited ids, Cubit command form (i.e. 'all',

'1 to 8', '1 2 3', etc)

Return
A list of geometry owners in the form of 'surface x', 'curve y', etc.

[int] get_volume_nodes(vol_id)
Get list of node ids owned by a volume. Excludes nodes owned by bounding surfs, curves and
verts.

Parameters

vol_id id of volume

Return
vector of IDs of nodes owned by the volume

[int] get_surface_nodes(surf_id)
Get list of node ids owned by a surface. Excludes nodes owned by bounding curves and verts.

Parameters

surf_id id of surface

Return
vector of IDs of nodes owned by the surface

[int] get_curve_nodes(curv_id)
Get list of node ids owned by a curve. Excludes nodes owned by bounding vertices.

Parameters

curv_id id of curve

Return
vector of IDs of nodes owned by the curve

int get_vertex_node(vert_id)
Get the node owned by a vertex.

Parameters

891

Appendix

vert_id id of vertex

Return
ID of node owned by the vertex. returns -1 of doesn't exist

int get_id_from_name(name)
Get id for a named entity.

Example

 entity_id = cubit.get_id_from_name("member_2")

Parameters

name Name of the entity to examine return Integer representing the entity

[int] get_group_groups(group_id)
Get group groups (groups that are children of another group).

Parameters

group_id ID of the group to examine return List of group ids contained in the specified
group

[int] get_group_bodies(group_id)
Get group bodies (bodies that are children of a group).

Parameters

group_id ID of the group to examine return List of body ids contained in the specified
group

[int] get_group_volumes(group_id)
Get group volumes (volumes that are children of a group).

Parameters

group_id ID of the group to examine return List of volume ids contained in the specified
group

[int] get_group_surfaces(group_id)
Get group surfaces (surfaces that are children of a group).

Parameters

892

Cubit 15.1 User Documentation

group_id ID of the group to examine return List of surface ids contained in the specified
group

[int] get_group_curves(group_id)
Get group curves (curves that are children of a group).

Parameters

group_id ID of the group to examine return List of curve ids contained in the specified
group

[int] get_group_vertices(group_id)
Get group vertices (vertices that are children of a group).

Parameters

group_id ID of the group to examine return List of vertex ids contained in the specified
group

[int] get_group_nodes(group_id)
Get group nodes (nodes that are children of a group).

Parameters

group_id ID of the group to examine return List of node ids contained in the specified
group

[int] get_group_edges(group_id)
Get group edges (edges that are children of a group).

Parameters

group_id ID of the group to examine return List of edge ids contained in the specified
group

[int] get_group_quads(group_id)
Get group quads (quads that are children of a group).

Parameters

group_id ID of the group to examine return List of quad ids contained in the specified
group

893

Appendix

[int] get_group_tris(group_id)
Get group tris (tris that are children of a group).

Parameters

group_id ID of the group to examine return List of tri ids contained in the specified group

[int] get_group_tets(group_id)
Get group tets (tets that are children of a group).

Parameters

group_id ID of the group to examine return List of tet ids contained in the specified
group

[int] get_group_hexes(group_id)
Get group hexes (hexes that are children of a group).

Parameters

group_id ID of the group to examine return List of hex ids contained in the specified
group

int get_next_group_id()
Get the next available group id from Cubit.

delete_all_groups()
Delete all groups.

delete_group(group_id)
Delete a specific group.

Parameters

group_id ID of group to delete

set_max_group_id(max_group_id)
Reset Cubit's max group id This is really dangerous to use and exists only to overcome a
limitation with Cubit. Cubit keeps track of the next group id to assign. But those ids just keep
incrementing in Cubit. Some of the power tools in the Cubit GUI make groups 'under the covers'
for various operations. The groups are immediately deleted. But, creating those groups will cause

894

Cubit 15.1 User Documentation

Cubit's group id to increase and downstream journal files may be messed up because those
journal files are expecting a certain ID to be available.

Parameters

max_group_id

int create_new_group()
Create a new group.

Return
group_id ID of new group

remove_entity_from_group(group_id, entity_id, entity_type)
Remove a specific entity from a specific group.

Example

 cubit.remove_entity_from_group(3, 22, "surface")

Parameters

group_id ID of group from which the entity will be removed
entity_id ID of the entity to be removed from the group
entity_type Type of the entity to be removed from the group. Note that only geometric

entities can be removed

add_entity_to_group(group_id, entity_id, entity_type)
Add a specific entity to a specific group.

Example

 cubit.add_entity_to_group(3, 22, "surface")

Parameters

group_id ID of group to which the entity will be added
entity_id ID of the entity to be added to the group
entity_type Type of the entity to be added to the group. Note that this function is valid

only for geometric entities

[int] get_mesh_group_parent_ids(element_type, element_id)
Get the group ids which are parents to the indicated mesh element.

895

Appendix

Example

 parent_id_list = cubit.get_mesh_group_parent_ids("tri", 332)

Parameters

element_type Mesh type of the element
element_id ID of the mesh element return List of group ids that contain this mesh

element

Bool is_mesh_element_in_group(element_type, element_id)
Indicates whether a mesh element is in a group.

Example

 if cubit.is_mesh_element_in_group("tet", 445):

Parameters

element_type Mesh type of the element
element_id ID of the mesh element return True if in a group, otherwise false

Bool is_part_of_list(target_id, id_list)
Routine to check for the presence of an id in a list of ids.

Parameters

target_id Target id
id_list List of ids

Return
True if target_id is member of id_list, otherwise false

int get_last_id(entity_type)
Get the id of the last created entity of the given type.

Example

 last_id = cubit.get_last_id("surface")

Parameters

entity_type Type of the entity being queried

Return
Integer id of last created entity

896

Cubit 15.1 User Documentation

str get_assembly_classification_level()
Get Classification Level for metadata.

Return
Requested data

str get_assembly_classification_category()
Get Classification Category for metadata.

Return
Requested data

str get_assembly_weapons_category()
Get Weapons Category for metadata.

Return
Requested data

str get_assembly_metadata(volume_id, data_type)
Get metadata for a specified volume id.

Parameters

volume_id ID of the volume
data_type Magic number representing the type of assembly information to return. 1 =

Part Number, 2 = Description, 3 = Material Description 4 = Material
Specification, 5 = Assembly Path, 6 = Original File

Return
Requested data

Bool is_assembly_metadata_attached(volume_id)
Determine whether metadata is attached to a specified volume.

Parameters

volume_id ID of the volume

Return
True if metadata exists, otherwise false

897

Appendix

str get_assembly_name(assembly_id)
Get the stored name of an assembly node.

Parameters

assembly_id Id that identifies the assembly node

Return
Name of the assembly node

str get_assembly_path(assembly_id)
Get the stored path of an assembly node.

Parameters

assembly_id Id that identifies the assembly node

Return
Path of the assembly node

str get_assembly_description(assembly_id)
Get the stored description of an assembly node.

Parameters

assembly_id Id that identifies the assembly node

Return
Description of the assembly node

int get_assembly_instance(assembly_id)
Get the stored instance number of an assembly node.

Parameters

assembly_id Id that identifies the assembly node

Return
Instance of the assembly node

str get_assembly_file_format(assembly_id)
Get the stored file format of an assembly node.

Parameters

898

Cubit 15.1 User Documentation

assembly_id Id that identifies the assembly node

Return
File Format of the assembly node

str get_assembly_units(assembly_id)
Get the stored units measure of an assembly node.

Parameters

assembly_id Id that identifies the assembly node

Return
Units of the assembly node

str get_assembly_material_description(assembly_id)
Get the stored material description of an assembly part.

Parameters

assembly_id Id that identifies the assembly node

Return
Material Description of the assembly part

str get_assembly_material_specification(assembly_id)
Get the stored material specification of an assembly part.

Parameters

assembly_id Id that identifies the assembly node

Return
Material Specification of the assembly part

int get_exodus_id(entity_type, entity_id)
Get the exodus/genesis id for this element.

Example

 exodus_id = cubit.get_exodus_id("hex", 221)

Parameters

entity_type The mesh element type

899

Appendix

entity_id The mesh element id

Return
Exodus id of the element if element has been written out, otherwise 0

str get_geometry_owner(entity_type, entity_id)
Get the geometric owner of this mesh element.

Example

 geom_owner = cubit.get_geometry_owner("hex", 221)

Parameters

entity_type The mesh element type
entity_id The mesh element id

Return
Name of owner

[int] get_connectivity(entity_type, entity_id)
Get the list of node ids contained within a mesh entity.

Example

 node_id_list = cubit.get_connectivity("hex", 221)

Parameters

entity_type The mesh element type
entity_id The mesh element id

Return
List of node ids

[int] get_expanded_connectivity(entity_type, entity_id)
Get the list of node ids contained within a mesh entity, including interior nodes.

Example

 node_id_list = cubit.get__expanded_connectivity("hex", 221)

Parameters

entity_type The mesh element type

900

Cubit 15.1 User Documentation

entity_id The mesh element id

Return
List of all node ids associated with the element, including interior nodes

[int] get_sub_elements(entity_type, entity_id, dimension)
Get the lower dimesion entities associated with a higher dimension entities. For example get the
faces associated with a hex or the edges associated with a tri.

Example

 face_id_list = cubit.get_sub_elements("hex", 221, 2)

Parameters

entity_type The mesh element type of the higher dimension entity
entity_id The mesh element id
dimension The dimension of the desired sub entities

Return
List of ids of the desired dimension

[float] get_nodal_coordinates(node_id)
Get the nodal coordinates for a given node id.

Parameters

node_id The node id

Return
a triple containing the x, y, and z coordinates

Bool get_node_position_fixed(node_id)
Query "fixedness" state of node. A fixed node is not affecting by smoothing.

Parameters

node_id The node id

Return
True if constrained, otherwise false

str get_sideset_element_type(sideset_id)
Get the element type of a sideset.

901

Appendix

Parameters

sideset_id The id of the sideset to be queried

Return
Element type

str get_block_element_type(block_id)
Get the element type of a block.

Parameters

block_id The block id

Return
Element type

int get_exodus_element_count(entity_id, entity_type)
Get the number of elements in a exodus entity.

Example

 element_count = cubit.get_exodus_element_count(2, "sideset")

Parameters

entity_id The id of the entity
entity_type The type of the entity

Return
Number of Elements

int get_block_attribute_count(block_id)
Get the number of attributes in a block.

Parameters

block_id The block id

Return
Number of attributes in the block

float get_block_attribute_value(block_id, index)
Get a specific block attribute value.

902

Cubit 15.1 User Documentation

Parameters

block_id The block id
index The index of the attribute

Return
List of attributes

[str] get_valid_block_element_types(block_id)
Get a list of potential element types for a block.

Parameters

block_id The block id

Return
List of potential element types

int get_nodeset_node_count(nodeset_id)
Get the number of nodes in a nodeset.

Parameters

nodeset_id The nodeset id

Return
Number of nodes in the nodeset

int get_geometry_node_count(entity_type, entity_id)

Parameters

entity_type
entity_id

str get_mesh_element_type(entity_type, entity_id)
Get the mesh element type contained in the specified geometry.

Example

 element_type = cubit.get_mesh_element_type("surface", 2)

Parameters

entity_type The type of entity

903

Appendix

entity_id The id of the entity

Return
Mesh element type for that entity

Bool is_on_thin_shell(bc_type_in, entity_id)
Determine whether a BC is on a thin shell. Valid for temperature, convection and heatflux.

Parameters

bc_type_in
entity_id

Bool temperature_is_on_solid(bc_type_in, entity_id)
Determine whether a BC temperature is on a solid. Valid for convection and temperature.

Parameters

bc_type_in
entity_id

Bool convection_is_on_solid(entity_id)
Determine whether a BC convection is on a solid. Valid for convection.

Parameters

entity_id

Bool convection_is_on_shell_area(entity_id, shell_area)
Determine whether a BC convection is on a shell top or bottom. Valid for convection.

Parameters

entity_id
shell_area

float get_convection_coefficient(entity_id, cc_type)
Get the convection coefficient.

Parameters

entity_id
cc_type

904

Cubit 15.1 User Documentation

float get_bc_temperature(bc_type, entity_id, temp_type)
Get the temperature. Valid for convection, temperature.

Parameters

bc_type
entity_id
temp_type

Bool temperature_is_on_shell_area(bc_type, bc_area, entity_id)
Determine whether a BC temperature is on a shell area. Valid for convection and temperature
and on top, bottom, gradient, and middle.

Parameters

bc_type
bc_area
entity_id

Bool heatflux_is_on_shell_area(bc_area, entity_id)
Determine whether a BC heatflux is on a shell area.

Parameters

bc_area
entity_id

float get_heatflux_on_area(bc_area, entity_id)
Get the heatflux on a specified area.

Parameters

bc_area
entity_id

int get_cfd_type(entity_id)
Get the cfd subtype for a specified cfd BC.

Parameters

entity_id ID of the cfd BC

Return
Integer corresponding to the type of cfd, as defined by CI_BCTypes

905

Appendix

float get_contact_pair_friction_value(entity_id)
Get the contact pair's friction value.

Parameters

entity_id

float get_contact_pair_tolerance_value(entity_id)
Get the contact pair's tolerance value.

Parameters

entity_id

Bool get_contact_pair_tied_state(entity_id)
Get the contact pair's tied state.

Parameters

entity_id

Bool get_contact_pair_general_state(entity_id)
Get the contact pair's general state.

Parameters

entity_id

Bool get_contact_pair_exterior_state(entity_id)
Get the contact pair's exterior state.

Parameters

entity_id

int get_displacement_coord_system(entity_id)
Get the displacement's coordinate system id.

Parameters

entity_id

str get_displacement_combine_type(entity_id)

906

Cubit 15.1 User Documentation

Get the displacement's combine type which is "Overwrite", "Average", "SmallestCombine", or
"LargestCombine".

Parameters

entity_id

float get_pressure_value(entity_id)
Get the pressure value.

Parameters

entity_id

str get_pressure_function(entity_id)
Get the pressure function.

Parameters

entity_id

float get_force_magnitude(entity_id)
Get the force magnitude from a force.

Parameters

entity_id

float get_moment_magnitude(entity_id)
Get the moment magnitude from a force.

Parameters

entity_id

[float] get_force_direction_vector(entity_id)
Get the direction vector from a force.

Parameters

entity_id

[float] get_force_moment_vector(entity_id)
Get the moment vector from a force.

907

Appendix

Parameters

entity_id

str get_constraint_type(constraint_id)
Get the type of a specified constraint.

Parameters

constraint_id ID of the constraint

Return
A std::string indicating the type -- Kinematic, Distributing, Rigidbody

str get_constraint_reference_point(constraint_id)
Get the reference point of a specified constraint.

Parameters

constraint_id ID of the constraint

Return
A std::string indicating the reference point

str get_constraint_dependent_entity_point(constraint_id)
Get the dependent entity of a specified constraint.

Parameters

constraint_id ID of the constraint

Return
A std::string indicating the dependent entity

float get_material_property(mp, entity_id)

Parameters

mp
entity_id

int get_media_property(entity_id)

Parameters

908

Cubit 15.1 User Documentation

entity_id

[str] get_material_name_list()

[str] get_media_name_list()

set_label_type(entity_type, label_flag)

Parameters

entity_type
label_flag

int get_label_type(entity_type)

Parameters

entity_type

Body body(id_in)
Gets the body object from an ID.

Parameters

id_in The ID of the body

Return
The body object

Volume volume(id_in)
Gets the volume object from an ID.

Parameters

id_in The ID of the volume

Return
The volume object

Surface surface(id_in)
Gets the surface object from an ID.

909

Appendix

Parameters

id_in The ID of the surface

Return
The surface object

Curve curve(id_in)
Gets the curve object from an ID.

Parameters

id_in The ID of the curve

Return
The curve object

Vertex vertex(id_in)
Gets the vertex object from an ID.

Parameters

id_in The ID of the vertex

Return
The vertex object

reset()
Executes a reset within cubit.

Body brick(width, depth, height)
Creates a brick of specified width, depth, and height.

Parameters

width The width of the brick being created
depth The depth of the brick being created
height The height of the brick being created

Return
A Bodyobject of the newly created brick

Body sphere(radius, x_cut, y_cut, z_cut, inner_radius)

910

Cubit 15.1 User Documentation

Creates all or part of a sphere.

Parameters

radius The radius of the sphere
x_cut If 1, cuts sphere by yz plane (default to 0)
y_cut If 1, cuts sphere by xz plane (default to 0)
z_cut If 1, cuts sphere by xy plane (default to 0)
inner_radius The inside radius if the sphere is hollow (default to 0)

Return
A Bodyobject of the newly created sphere

Body prism(height, sides, major, minor)
Creates a prism of the specified dimensions.

Parameters

height The height of the prism
sides The number of sides of the prism
major The major radius
minor The minor radius

Return
A Bodyobject of the newly created prism

Body pyramid(height, sides, major, minor, top)
Creates a pyramid of the specified dimensions.

Parameters

height The height of the pyramid
sides The number of sides of the pyramid
major The major radius
minor The minor radius
top determines size for the top of the pyramid. Defaults to 0, meaning it will go to a

point

Return
A Bodyobject of the newly created pyramid

Body cylinder(hi, r1, r2, r3)
creates a cylinder of the specified dimensions

911

Appendix

Parameters

hi the height of the cylinder
r1 radius in the x direction
r2 radius in the y direction
r3 used to adjust the top. If set to 0, will produce a cone. Set to r1/r2 to get a straight

cylinder

Return
A body object of the newly created cylinder

Body torus(r1, r2)
creates a torus of the specified dimensions

Parameters

r1 radius from center to center of circle to be swept (r1>r2)
r2 radius of circle swept to create torus (r1>r2)

Return
A Bodyobject of the newly created torus

Vertex create_vertex(x, y, z)
Creates a vertex at a x,y,z.

Parameters

x The x location of the vertex (default to 0)
y The y location of the vertex (default to 0)
z The z location of the vertex (default to 0)

Return
A Vertexobject

Curve create_curve(v0, v1)
Creates a curve between two vertices.

Parameters

v0 The start vertex
v1 The end vertex

Return
A Curveobject

912

Cubit 15.1 User Documentation

Body create_surface(curves)
Creates a surface from boundary curves.

Parameters

curves A list of curve objects from which to make the surface

Return
A Bodyobject of the newly created Surface

[Body] sweep_curve(curves, along_curves, draft_angle, draft_type, rigid)
Create a Body or a set of Bodies from a swept curve.

Parameters

curves A list of curves to sweep
along_curves A list of curves to sweep along
draft_angle The sweep draft angle (default to 0)
draft_type The draft type (default to 0) 0 => extended (draws two straight tangent

lines from the ends of each segment until they intersect) 1 => rounded
(create rounded corner between segments) 2 => natural (extends the
shapes along their natural curve) ***

rigid The inside radius if the sphere is hollow (default to False)

Return
A List of newly created Bodies

Body copy_body(init_body)
Creates a copy of the input Body.

Parameters

init_body The Bodyto be copied

Return
A Bodyidentical to the input Body

[Body] tweak_surface_offset(surfaces, distances)
Performs a tweak surface offset command.

Parameters

surfaces A list of surface objects to offset
distances A list of distances associated with the offset for each surface

913

Appendix

Return
A list of the body objects of the modified bodies

[Body] tweak_surface_remove(surfaces, extend_ajoining, keep_old, preview)
Removes a surface from a body and extends the surrounding surfaces if extend_ajoining is true.

Parameters

surfaces The surfaces to be removed
extend_ajoining Extend the ajoining surfaces (default to true)
keep_old Keep the old body (default to false)
preview Flag to show the preview or not (default to false)

Return
A list of changed body objects

[Body] tweak_curve_remove(curves, keep_old, preview)
Removes a curve from a body and extends the surrounding surface to fill the gap.

Parameters

curves
keep_old Keep the old body (defaults to false)
preview Flag to show the preview (defaults to false)

Return
A list of changed body objects

[Body] tweak_curve_offset(curves, distances, keep_old, preview)
Performs a tweak curve offset command.

Parameters

curves A list of curve objects to offset
distances A list of distances associated with the offset for each curve
keep_old Keep the old body (defaults to false)
preview Flag to show the preview (defaults to false)

Return
A list of changed body objects

[Body] tweak_vertex_fillet(verts, r0, keep_old, preview)
Performs a tweak vertex fillet command.

914

Cubit 15.1 User Documentation

Parameters

verts A list of vertex objects to fillet
r0 radius of the fillet
keep_old Keep the old body (defaults to false)
preview Flag to show the preview (defaults to false)

Return
A list of changed body objects

[Body] subtract(tool_in, from_in, imprint_in, keep_old_in)
Performs a boolean subtract operation.

Parameters

tool_in List of Bodyobjects to subtract
from_in List of Bodyobjects to be subtracted from
imprint_in Flag to set the imprint (defaults to false)
keep_old_in Flag to keep the old volume (defaults to false)

Return
A list of changed body objects

[Body] unite(body_in, keep_old_in)
Performs a boolean unite operation.

Parameters

body_in A list of body objects to unite
keep_old_in Flag to keep old bodies (defaults to false)

Return
A list of changed bodies

move(entity, vector, preview)
Moves the Entity the specified vector.

Parameters

entity The Entityto be moved
vector The vector the Entitywill be moved
preview Flag to show the preview or not, default is false

scale(entity, factor, preview)

915

Appendix

Scales the Entity according to the specified factor.

Parameters

entity The Entityto be scaled
factor The scale factor
preview Flag to show the preview or not, default is false

reflect(entity, axis, preview)
Reflect the Entity about the specified axis.

Parameters

entity The Entityto be reflected
axis The axis to be reflected about
preview Flag to show the preview or not, default is false

[int] get_volumes_for_node(node_name, node_instance)

Parameters

node_name
node_instance

int get_mesh_error_count()

PyObservable
The base class of everything in the CubitInterface.
The PyObservableclass allows a user to be able to 'observe' any entity in the CubitInterface.
Thus, a user would be able to handle events within Cubit appropriately.

Example

 import cubit
 class TestObserver(cubit.PyObserver):
 def notify_observers(self, obsvd, evt):
 if evt == 2:
 print 'Entity destroyed!'
 elif evt == 11 or evt == 12 or evt == 13:
 print 'Volume changed!'
 else:
 print 'Unknown event! '
 testobs = TestObserver()
 br = cubit.brick(1,1,1)
 testobs.register_observable(br)
 cubit.scale(br,2)
 cubit.cmd('delete body 1')

916

Cubit 15.1 User Documentation

Inheritance
PyObservable
Entity
GeomEntity
Body | Curve | Surface | Vertex | Volume

Class Member Functions
 notify_observers Notify the observer of a event.
Member Function Documentation

notify_observers(event_type)
Notify the observer of a event.

Example

 import cubit
 class TestObserver(cubit.PyObserver):
 def notify_observers(self, obsvd, evt):
 if evt == 2:
 print 'Entity destroyed!'
 elif evt == 11 or evt == 12 or evt == 13:
 print 'Volume changed!'
 else:
 print 'Unknown event! '

Parameters

event_type The type of event

PyObserver
A base class to be extended to perform custom actions on Cubit events.
Class Member Functions
 register_observable Register a PyObservable to be watched by this PyObserver.
 unregister_observable Unregister a PyObservable to be watched by this

PyObserver.
 notify_observers The function called when an event happens.
Member Function Documentation

register_observable(observable)
Register a PyObservable to be watched by this PyObserver.

Parameters

observable The PyObservableto be observed by this PyObserver

917

Appendix

unregister_observable(observable)
Unregister a PyObservable to be watched by this PyObserver.

Parameters

observable The PyObservableto stop being observed by this PyObserver

notify_observers(observable, event_type)
The function called when an event happens.

Parameters

observable The PyObservableon/to which the event is occuring
event_type An integer representing a specific event type

CubitFailureException
An exception class to alert the caller when the underlying Cubit function fails.
Class Member Functions
str what
Member Function Documentation

str what()

Body
Defines a body object that mostly parallels Cubit's Body class.
Inheritance
PyObservable
Entity
GeomEntity
Body

Class Member Functions
[
float
]

get_mass_props Get the mass properties of the
Body, specifically the center of
gravity.

int point_containment Get whether a point is in, on, or
outside the Body.

float volume Get the volume of the Body.
Bool is_sheet_body Get whether the Body is a sheet

body or not.
Member Function Documentation

[float] get_mass_props()

918

Cubit 15.1 User Documentation

Get the mass properties of the Body, specifically the center of gravity.

Example

 props = body.get_mass_props()

Return
A vector (or list) of numerical data corresponding to the center of gravity of the body with
indices as follows: 0 - x coordinate 1 - y coordinate 2 - z coordinate

int point_containment(loc_in)
Get whether a point is in, on, or outside the Body.

Example

 on_out_in = body.point_containment([0,0,0])

Parameters

loc_in

Return
Whether a point is unknown (-1), outside (0), in (1), or on (2) the Body

float volume()
Get the volume of the Body.

Example

 vol = body.volume()

Return
The volume of the Body

Bool is_sheet_body()
Get whether the Body is a sheet body or not.

Example

 is_sheet = body.is_sheet_body()

Return
Whether the Bodyis a sheet body or not

919

Appendix

Curve
Defines a curve object that mostly parallels Cubit's RefEdge class.
Inheritance
PyObservable
Entity
GeomEntity
Curve

Class Member Functions
 color Set the color of the Curve.
int color Get the color of the Curve.
[
float
]

tangent Get the tangent to the Curve at a
particular point.

[
float
]

curvature Get the curvature of the Curve at a
particular point.

[
float
]

closest_point Get the curvature of the Curve at a
particular point.

[
float
]

closest_point_trimmed Get the curvature of the Curve at a
particular point.

float length Get the length of the Curve.
[
float
]

curve_center Get the center point of the Curve.

[
float
]

position_from_fraction Get the position of the point a
specified fraction along the Curve.

float start_param Get the lowest value of the Curve
in uv space.

float end_param Get the highest value of the Curve
in uv space.

float u_from_position Get the u value of a particular
position on the Curve.

[
float
]

position_from_u Get the position of a particular u
value for the Curve.

float u_from_arc_length Get the u value for a point a
specified arc length away from a
specified root parameter on the

920

Cubit 15.1 User Documentation

Curve.
float fraction_from_arc_length Get the fraction along the Curve a

specified arc length is away from a
given Vertex.

[
float
]

point_from_arc_length Get the position on a Curve that is
a specified arc length away from
the specified root parameter.

float length_from_u Get the length between two
specified parameters on a Curve.

Bool is_periodic Get whether the Curve is periodic
or not.

Member Function Documentation

color(value)
Set the color of the Curve.

Example

 curve.color(0)

Parameters

value The color value that the curve will have

int color()
Get the color of the Curve.

Example

 col = curve.color()

Return
The color value associated with the curve's current color

[float] tangent(point)
Get the tangent to the Curve at a particular point.

Example

 tan = curve.tangent([0,0,0])

Parameters

921

Appendix

point A vector containing 3 doubles representing coordinates of a location on the Curve

Return
The tangent to the Curveat the location specified

[float] curvature(point)
Get the curvature of the Curve at a particular point.

Example

 curvature = curve.curvature([0,0,0])

Parameters

point A vector containing 3 doubles representing coordinates of a location on the Curve

Return
The curvature of the Curveat the location specified

[float] closest_point(point)
Get the curvature of the Curve at a particular point.

Example

 close = curve.closest_point([0,0,0])

Parameters

point A vector containing 3 doubles representing coordinates of a location on the Curve

Return
The closest point to the Curvefrom the location specified

[float] closest_point_trimmed(point)
Get the curvature of the Curve at a particular point.

Example

 close = curve.closest_point([0,0,0])

Parameters

point A vector containing 3 doubles representing coordinates of a location on the Curve

Return

922

Cubit 15.1 User Documentation

The closest point to the Curvefrom the location specified

float length()
Get the length of the Curve.

Example

 len = curve.length()

Return
The length of the Curve

[float] curve_center()
Get the center point of the Curve.

Example

 center = curve.curve_center()

Return
A vector containing the coordinates of the Curve's center according to the following: 0 - x
coordinate 1 - y coordinate 2 - z coordinate

[float] position_from_fraction(fraction_along_curve)
Get the position of the point a specified fraction along the Curve.

Example

 pos = curve.position_from_fraction(0.5)

Parameters

fraction_along_curve A decimal value between 0 and 1 to determine a particular
position along the Curve

Return
A vector containing the coordinates of the position a specified fraction along the Curve: 0 - x
coordinate 1 - y coordinate 2 - z coordinate

float start_param()
Get the lowest value of the Curve in uv space.

Example

923

Appendix

 start = curve.start_param()

Return
The beginning value of the parameter

float end_param()
Get the highest value of the Curve in uv space.

Example

 end = curve.end_param()

Return
The ending value of the parameter

float u_from_position(position)
Get the u value of a particular position on the Curve.

Example

 u = curve.u_from_position([0,0,0])

Parameters

position A vector containing the coordinates of the input position

Return
The u value of the position along the Curve

[float] position_from_u(u_value)
Get the position of a particular u value for the Curve.

Example

 position = curve.position_from_u(0.5)

Parameters

u_value The u value of the position along the Curve

Return
A vector containing the coordinates of the output position

924

Cubit 15.1 User Documentation

float u_from_arc_length(root_param, arc_length)
Get the u value for a point a specified arc length away from a specified root parameter on the
Curve.

Example

 u = curve.u_from_arc_length(0, 0.5)

Parameters

root_param The beginning parameter from which the arc length is added to
arc_length The length away from the root parameter of the output parameter

Return
The u value of the Curvethe arc length away from the root parameter

float fraction_from_arc_length(root_vertex, length)
Get the fraction along the Curve a specified arc length is away from a given Vertex.

Example

 fraction = curve.fraction_from_arc_length(vertex, 0.5)

Parameters

root_vertex The Vertexto start from (vertex object)
length The length along the Curveaway from the root Vertex

Return
The fraction of the Curvethat is the specified length away from the specified Vertex

[float] point_from_arc_length(root_param, arc_length)
Get the position on a Curve that is a specified arc length away from the specified root parameter.

Example

 position = curve.point_from_arc_length(0, 0.5)

Parameters

root_param The root parameter from which the arc length is added to
arc_length The arc length along the Curveaway from the root parameter

Return
A vector that contains the coordinates of a position a specified arc length away from the root
parameter

925

Appendix

float length_from_u(parameter1, parameter2)
Get the length between two specified parameters on a Curve.

Example

 length = curve.length_from_u(0, 0.5)

Parameters

parameter1 The beginning parameter
parameter2 The ending parameter

Return
The length between the two specified paramters along the Curve

Bool is_periodic()
Get whether the Curve is periodic or not.

Example

 periodic = curve.is_periodic()

Return
Whether the Curveis periodic or not

Entity
The base class of all the geometry and mesh types.
Inheritance
PyObservable
Entity
GeomEntity
Body | Curve | Surface | Vertex | Volume

Class Member Functions
 destroy_cubit_entity
[
float
]

bounding_box Get the bounding
box of the Entity.

[
float
]

center_point Get the center point
of the Entity.

int id Get the id of the
Entity.

926

Cubit 15.1 User Documentation

 is_visible Set the visibility state
of the Entity.

int is_visible Get the visibility
state of the Entity.

 is_transparent Set the tranparency
state of the Entity.

int is_transparent Get the tranparency
state of the Entity.

Member Function Documentation

destroy_cubit_entity()

[float] bounding_box()
Get the bounding box of the Entity.

Example

 b_box = entity.bounding_box()

Return
The bounding box as a vector (or list) where the indices correspond to the values as follows: 0 -
minimum x value 1 - minimum y value 2 - minimum z value 3 - maximum x value 4 - maximum
y value 5 - maximum z value

[float] center_point()
Get the center point of the Entity.

Example

 center = entity.center_point()

Return
The center point as a vector (or list) where the indices correspond to the values as follows: 0 - x
value 1 - y value 2 - z value

int id()
Get the id of the Entity.

Example

927

Appendix

 id = entity.id()

Return
The id of the Entity

is_visible(visibility_flag)
Set the visibility state of the Entity.

Example

 entity.is_visible(1)

Parameters

visibility_flag The flag that sets whether the Entityis visible (1) or not (0)

int is_visible()
Get the visibility state of the Entity.

Example

 vis = entity.is_visible()

Return
The current visiblity state of the Entity(1 if visible, 0 if not)

is_transparent(transparency_flag)
Set the tranparency state of the Entity.

Example

 entity.is_transparent(1)

Parameters

transparency_flag The flag that sets whether the Entityis transparent (1) or not (0)

int is_transparent()
Get the tranparency state of the Entity.

Example

 trans = entity.is_transparent()

928

Cubit 15.1 User Documentation

Return
The current transparency state of the Entity(1 if transparent, 0 if not)

GeomEntity
The base class for specifically the Geometry types (Body, Surface, etc.).
Inheritance
PyObservable
Entity
GeomEntity
Body | Curve | Surface | Vertex | Volume

Class Member Functions
 mesh Mesh the

GeomEntity.
Bool is_meshed Return the

current mesh
state of the
GeomEntity.

 smooth Smooths the
mesh on the
GeomEntity.

 remove_mesh Removes the
mesh on the
GeomEntity.

str entity_name Return the first
name of the
GeomEntity.

 entity_name Assign a name
to the
GeomEntity.

[str] entity_names Return the all
the names of
the GeomEntity.

int num_names Return the
number of
names for the
GeomEntity.

 remove_entity_name Remove a
specific name
from the list of
names
assigned to the
GeomEntity.

929

Appendix

 remove_entity_names Remove all the
names
assigned to the
GeomEntity.

int dimension Get the
dimensions of
the GeomEntity.

[Body] bodies Get the bodies
in the
GeomEntity.

[
Volume]

volumes Get the
volumes in the
GeomEntity.

[
Surface]

surfaces Get the
surfaces in the
GeomEntity.

[Curve] curves Get the curves
in the
GeomEntity.

[Vertex] vertices Get the vertices
in the
GeomEntity.

Member Function Documentation

mesh()
Mesh the GeomEntity.

Example

 geomEntity.mesh()

Bool is_meshed()
Return the current mesh state of the GeomEntity.

Example

 mesh = geomEntity.is_meshed()

Return
Whether the GeomEntityis meshed or not

930

Cubit 15.1 User Documentation

smooth()
Smooths the mesh on the GeomEntity.

Example

 geomEntity.smooth()

remove_mesh()
Removes the mesh on the GeomEntity.

Example

 geomEntity.remove_mesh()

str entity_name()
Return the first name of the GeomEntity.

Example

 name = geomEntity.entity_name()

Return
The first name of the GeomEntity

entity_name(name)
Assign a name to the GeomEntity.

Example

 geomEntity.entity_name("Brick1")

Parameters

name The name to be assigned to the GeomEntity

[str] entity_names()
Return the all the names of the GeomEntity.

Example

 names = geomEntity.entity_names()

931

Appendix

Return
A vector (or list) of all the names of the GeomEntity

int num_names()
Return the number of names for the GeomEntity.

Example

 num = geomEntity.num_names()

Return
The number of names for the GeomEntity

remove_entity_name(name)
Remove a specific name from the list of names assigned to the GeomEntity.

Example

 geomEntity.remove_entity_name("Brick1")

Parameters

name The name to be removed from the list of names assigned to the GeomEntity

remove_entity_names()
Remove all the names assigned to the GeomEntity.

Example

 geomEntity.remove_entity_names()

int dimension()
Get the dimensions of the GeomEntity.

Example

 dim = geomEntity.dimension()

Return
The dimension of the GeomEntity

932

Cubit 15.1 User Documentation

[Body] bodies()
Get the bodies in the GeomEntity.

Example

 bodies = geomEntity.bodies()

Return
A vector (or list) of bodies contained within the GeomEntity

[Volume] volumes()
Get the volumes in the GeomEntity.

Example

 volumes = geomEntity.volumes()

Return
A vector (or list) of volumes contained within the GeomEntity

[Surface] surfaces()
Get the surfaces in the GeomEntity.

Example

 surfaces = geomEntity.surfaces()

Return
A vector (or list) of surfaces contained within the GeomEntity

[Curve] curves()
Get the curves in the GeomEntity.

Example

 curves = geomEntity.curves()

Return
A vector (or list) of curves contained within the GeomEntity

[Vertex] vertices()
Get the vertices in the GeomEntity.

933

Appendix

Example

 vertices = geomEntity.vertices()

Return
A vector (or list) of vertices contained within the GeomEntity

InvalidEntityException
An exception class to alert the caller that an invalid entity was attempted to be used. Likely the
user is attempting to use an Entity who's underlying CubitEntity has been deleted.
Class Member Functions
str what
Member Function Documentation

str what()

InvalidInputException
An exception class to alert the caller of a function that invalid inputs were entered.
Class Member Functions
str what
Member Function Documentation

str what()

Surface
Defines a surface object that mostly parallels Cubit's RefFace class.
Inheritance
PyObservable
Entity
GeomEntity
Surface

Class Member Functions
 color Set the color of the surface.
int color Get the color of the surface.
[[Curve]] ordered_loops Get the ordered loops of the

Surface.
[float] normal_at Get the normal at a particular

point on the Surface.
[float] closest_point_trimmed Get the nearest point on the

Surface to point specified.
[float] closest_point_trimmed Get the nearest point on the

934

Cubit 15.1 User Documentation

Surface to point specified.
int point_containment Get whether a point is on or off of

the Surface.
[float] principal_curvatures Get the principal curvatures of the

Surface.
[float] position_from_u_v Get the Cartesian coordinates

from the uv coordinates on the
Surface.

[float] u_v_from_position Get the uv coordinates from the
supplied Cartesian coordinates
on the Surface.

[float] get_param_range_U Get range of u for the Surface.
[float] get_param_range_V Get range of v for the Surface.
float area Get area of the Surface.
Bool is_planar Get whether the Surface is planar

or not.
Bool is_cylindrical Get whether the Surface is

cylindrical or not.
Member Function Documentation

color(value)
Set the color of the surface.

Example

 surface.color(0)

Parameters

value The color value that the surface will have

int color()
Get the color of the surface.

Example

 col = surface.color()

Return
The color value associated with the surface's current color

935

Appendix

[[Curve]] ordered_loops()
Get the ordered loops of the Surface.

Example

 loops = surface.ordered_loops()

Return
A vector of vectors (or list of lists) of Curves in loops: 0, 0 - loop 1 curve 1 0, 1 - loop 1 curve 2
1, 0 - loop 2 curve 1 etc...

[float] normal_at(location)
Get the normal at a particular point on the Surface.

Example

 norm = surface.normal_at([0,0,0])

Parameters

location A vector containing three values that are the coordinates of a point

Return
A vector (or list) of doubles representing values of normal vector as follows: 0 - x value 1 - y
value 2 - z value

[float] closest_point_trimmed(location)
Get the nearest point on the Surface to point specified.

Example

 nearest = surface.closest_point_trimmed([0,0,0])

Parameters

location A vector containing three values that are the coordinates of a point

Return
A vector (or list) of doubles representing values of nearest point as follows: 0 - x coordinate 1 - y
coordinate 2 - z coordinate

[float] closest_point_trimmed(location)
Get the nearest point on the Surface to point specified.

936

Cubit 15.1 User Documentation

Example

 nearest = surface.closest_point_trimmed([0,0,0])

Parameters

location A vector containing three values that are the coordinates of a point

Return
A vector (or list) of doubles representing values of nearest point as follows: 0 - x coordinate 1 - y
coordinate 2 - z coordinate

int point_containment(point_in)
Get whether a point is on or off of the Surface.

Example

 on_off = surface.point_containment([0,0,0])

Parameters

point_in A vector containing three values that are the coordinates of a point

Return
A python boolean representing whether the point is off (0) or on (1) the Surface

[float] principal_curvatures(point)
Get the principal curvatures of the Surface.

Example

 curvatures = surface.principal_curvatures([0,0,0])

Parameters

point A vector containing three values that are the coordinates of a point

Return
A list of two floats representing the curvatures 0 - curvature 1 1 - curvature 2

[float] position_from_u_v(u, v)
Get the Cartesian coordinates from the uv coordinates on the Surface.

Example

 pos = surface.position_from_u_v(0, 0)

937

Appendix

Parameters

u The u parameter
v The v parameter

Return
The Cartesian coordinates of the supplied uv coordinates as a vector: 0 - x coordinate 1 - y
coordinate 2 - z coordinate

[float] u_v_from_position(location)
Get the uv coordinates from the supplied Cartesian coordinates on the Surface.

Example

 uv = surface.position_from_u_v([0,0,0])

Parameters

location A vector containing the Cartesian coordinates

Return
The curvature values: 0 - The u parameter 1 - The v parameter

[float] get_param_range_U()
Get range of u for the Surface.

Example

 bounds = surface.get_param_range_U()

Return
The curvature values: 0 - The lowest value in the u direction 1 - The highest value in the u
direction

[float] get_param_range_V()
Get range of v for the Surface.

Example

 lower_bound, upper_bound = surface.get_param_range_V()

Return
The curvature values: 0 - The lowest value in the v direction 1 - The highest value in the v
direction

938

Cubit 15.1 User Documentation

float area()
Get area of the Surface.

Example

 area = surface.area()

Return
The area of the Surface

Bool is_planar()
Get whether the Surface is planar or not.

Example

 planar = surface.is_planar()

Return
Whether the Surfaceis planar or not

Bool is_cylindrical()
Get whether the Surface is cylindrical or not.

Example

 cyl = surface.is_cylindrical()

Return
Whether the Surfaceis cylindrical or not

Vertex
Defines a vertex object that mostly parallels Cubit's RefVertex class.
Inheritance
PyObservable
Entity
GeomEntity
Vertex

Class Member Functions
 color Set the color of the Vertex.
int color Get the color of the Vertex.

939

Appendix

[float
]

coordinates Get the Cartesian coordinates of the
Vertex.

Member Function Documentation

color(value)
Set the color of the Vertex.

Example

 vertex.color(0)

Parameters

value The color value that the vertex will have

int color()
Get the color of the Vertex.

Example

 col = vertex.color()

Return
The color value associated with the vertex's current color

[float] coordinates()
Get the Cartesian coordinates of the Vertex.

Example

 position = vertex.coordinates()

Return
A vector containing the coordinates of the Vertexwith indices corresponding to the coordinates
as follows: 0 - x coordinate 1 - y coordinate 2 - z coordinate

Volume
Defines a volume object that mostly parallels Cubit's RefVolume class.
Inheritance
PyObservable
Entity
GeomEntity
Volume

940

Cubit 15.1 User Documentation

Class Member Functions
float volume Get the volume of the Volume.
 color Set the color of the Volume.
int color Get the color of the Volume.
[float] principal_axes Get the principal axes of the Volume.
[float] principal_moments Get the principal moments of the Volume.
[float] centroid Get the centroid of the Volume.
Member Function Documentation

float volume()
Get the volume of the Volume.

Example

 vol = volume.volume()

Return
The volume of the Volume

color(value)
Set the color of the Volume.

Example

 volume.color(0)

Parameters

value The color value that the volume will have

int color()
Get the color of the Volume.

Example

 col = volume.color()

Return

941

Appendix

The color value associated with the volume's current color

[float] principal_axes()
Get the principal axes of the Volume.

Example

 axes = volume.principal_axes()

Return
A vector (or list) of the principal axes of the volume with the indices of the vector corresponding
to the values as follows: 0 - axis 1 x value 1 - axis 1 y value 2 - axis 1 z value 3 - axis 2 x value 4
- axis 2 y value 5 - axis 2 z value 6 - axis 3 x value 7 - axis 3 y value 8 - axis 3 z value

[float] principal_moments()
Get the principal moments of the Volume.

Example

 moments = volume.principal_moments()

Return
A vector (or list) of the principal moments of the volume with the indices of the vector
corresponding to the values as follows: 0 - x moment 1 - y moment 2 - z moment

[float] centroid()
Get the centroid of the Volume.

Example

 centroid = volume.centroid()

Return
A vector (or list) of the coordinates of the centroid of the volume with the indices of the vector
corresponding to the values as follows: 0 - x coordinate 1 - y coordinate 2 - z coordinate

942

Cubit 15.1 User Documentation

Navigation XML Files
The Cubit GUI includes a section referred to as the Command Panel. It is comprised of a
hierarchy of buttons used to navigate to panels that accept user input and generate Cubit
command strings. The following example shows the command panel used to create a brick. The
user navigates to the command panel by pressing the "Mode - Geometry" button, then the
"Entity - Volume" button, followed by the "Action - Create" button, then finally selecting the
"Brick" option from the pull-down menu.

Before Cubit 14.0, this hierarchy was not modifiable by any third party. With the release of
Cubit 14.0, any user can modify the contents of the button hierarchy by adding, deleting, or
modifying buttons and command panels. The button hierarchy is expressed in a series of XML
files located in the directory 'bin/xml.'
The controlling XML file is named, "CubitNavigationRoot.xml." A snippet from the file is
shown below:

943

Appendix

The first two levels of the hierarchy are managed in this file. Subsequent levels of the hierarchy
are managed in more specific XML files. For example, the remaining hierarchy associated with
geometry volumes is managed in the file named, "GeometryVolumeNavigation.xml." A snippet
from that file is shown below:

Users may modify the Label, ToolTip, or Icon url. Users may remove entire categories if
necessary. Users should not modify NavigationNode or NavigationReference tags.
Users may create their own command panels using Qt and add them to the hierarchy.
FASTQ
FASTQ is a program developed to create geometry and two-dimensional mesh. The user may
choose to upload FASTQ files and work with the files in an environment that accepts a limited
number of FASTQ commands.
Table 1. FASTQ Commands Executable in Cubit
Syntax Description
set fastq on Cubit is in FASTQ mode.
set fastq off Cubit exits FASTQ mode.

944

Cubit 15.1 User Documentation

nine Mesh will be generated using nine-node
quadrilateral elements.

eight Mesh will be generated using eight-node
quadrilateral elements.

five Mesh will be generated using five-node
quadrilateral elements.

import fastq "
*.fsq " Imports FASTQ files into Cubit.

Table 2. Brief List of Importable FASTQ Commands Supported in Cubit
Syntax Description

point <point_id> <x-coord> <y-
coord> [<z-coord>]

This creates a point at the
specified coordinates with the id
given by the user. The z-
coordinate is optional because
FASTQ is a two-dimensional
meshing tool.

line <line_id> str <begin_pt>
<end_pt> 0 [interval] [factor]

This creates a straight line with
the given beginning and end
points and an id is assigned to the
line. The interval option
determines the number of
intervals or subdivisions of the
line for mesh generation. The
factor option is the ratio of the
interval lengths as the intervals
progress towards the end point of
the line. For example, if a factor of
2 is specified, each interval will be
2 times longer than the interval
before it. If a factor is not
specified, the default factor is 1.

line <line_id> circ <begin_pt>
<end_pt> <center_pt> [interval]
[factor]

The command creates a circular
arc (or logarithmic spiral) about a
center point. The beginning and
ending points specify where to
position the circular arc. The third
point in the command specifies
the center of the circular arc.
Interval and factor are defined in
the explanation for the Line (STR)
Command.

line <line_id> cirm <begin_pt>
<end_pt> <center_pt> [interval]

The CIRM line is similar to the
CIRC line. The difference

945

Appendix

[factor] between the CIRM line and the
CIRC line is the function of the
third point. The third point on a
CIRM line is between the
beginning and end points and
becomes a part of the circular arc.
The arc will be drawn through all
three points.

line <line_id> cirr <begin_pt>
<end_pt> <center_pt> [interval]
[factor]

The command creates a circular
arc. The beginning and end points
function the same as the other
commands to create a circular
arc, but the third point is used
differently. The x value of the third
point will be used as the radius of
the arc to be created. If the x
value is positive, the center point
is placed on the left of a straight
line drawn through the beginning
and end points. If the x value is
negative, the center is placed on
the right side of the line.

line <line_id> para <begin_pt>
<end_pt> <center_pt> [interval]
[factor]

This command creates the tip of a
parabolic arc. The third point is
the peak of the parabola. The
beginning and end points must be
equidistant from the third point.

line <line_id> corn <begin_pt>
<end_pt> <center_pt> [interval]
[factor]

The command creates a corner
formed by two line segments. The
first segment is created by
connecting the first and third
points. The second segment is
created by connecting the third
and second points. The line
segments can have their interval
size set as if the two lines were
one.

side <side_id> <list_of_lines>
This creates a group made up of
the given lines and assigns the id
given by the user.

region <region_id> <block_id>
<list_of_lines_or_sides>

A region is a list of lines/sides that
enclose an area to be meshed.
The region is formed from the list
of lines and/or sides; the region is

946

Cubit 15.1 User Documentation

given the id specified by the user.

barset <barset_id> <block_id>
<inside> <list_of_lines>

The basis for two and three node
element generation is the barset.
The barset id is the identifying
number for the barset. The block
id is the id assigned to all
elements in the barset. The inside
point is a point on the inside of all
lines in the barset. All lines
specified at the end of the
command will be included in the
barset.

interval <interval> <list_of_lines> This sets the number of intervals
on a given line or lines.

factor <factor> <list_of_lines>

This command sets the ratio of
the interval lengths as the
intervals progress towards the
end point of the line. For example,
if a factor of 2 is specified, each
interval will be 2 times longer than
the interval before it. If a factor is
not specified, the default factor is
1.

poinbc <node_bc_id>
<list_of_points>

This command attaches boundary
conditions to the nodes that are
created at point locations.The first
number to be entered is the id of
the flag. After that a list of all
points to be flagged is entered.

linebc <node_bc_id>
<list_of_lines>

This command attaches boundary
conditions to nodes created along
certain lines. The first number
entered is the id of the flag.
Following the id, all lines to be
flagged should be entered.

sidebc <side_bc_id>
<list_of_lines>

This command attaches boundary
conditions to all nodes created on
certain lines. The first number
entered is the id of the flag. All
numbers entered after that point
are the ids of the sidesets
included in the flag.

scheme <region_id> {m|t|b|c|u} The letters after the region id
indicate the meshing scheme.

947

Appendix

Schemes specify a meshing
algorithm for mesh generation is a
regionThe letter 'm' indicates a
general rectangle primitive, 't'
indicates a triangle primitive, 'b'
indicates a transition primitive, 'c'
indicates a semicircle primitive,
and 'u' indicates a pentagon
primitive.

Periodic Space Filling Models (Tile)
This appendix describes commands for producing good-quality meshes of models that tile space,
such as polycrystalline materials models. Such models are often referred to as "periodic", but
since that term already has a different meaning in Cubit, the keyword "tile" is used instead.
Meshes may be smoothed across periodic boundaries. Periodic boundary conditions can be
automatically set up, according to ALEGRA conventions (SAND99-2698).
Tile commands are alpha features and should be used with caution.
Initial setup
First import the model and merge the surfaces. Then mesh it with any method that will create
meshes that match across the tile (periodic) boundary, say with scheme polyhedron or sweep.
Once the mesh is created, specify the "tile vectors", which lets Cubit know that the nodes across
the periodic boundaries are actually the same node:

Tile {x <period> | y <period> | z <period>}
[x <period>] [y <period>] [z <period>]

The 'period' you specify is actually the vector offset from one boundary to its match. Specify one
tile command for each coordinate axis that the model is periodic in. E.g.

Tile x 1
Tile y 1
Tile z 1

You can see which nodes are matched to a given node by some combination of tile vectors with
the following command: Tile Debug Node <id>
If you later need to delete these tile vectors, use the following command:

Tile Off
Creating Nodesets
Once the tile vectors are specified, you can set up periodic boundary conditions that meet
ALEGRA specifications. The command is:

Tile Nodeset <start_id>
This will create a nodeset for all combinations of tile vectors that actually connect nodes. The
nodesets created will be reported to you. The nodesets will be consecutive starting with the given
'start_id', except that if there are no nodes for a particular combination there will be no nodeset
and the id space will have a hole. To delete these nodesets, use the

Tile Off

948

Cubit 15.1 User Documentation

command rather than the usual commands to delete nodesets.
Smoothing
Once a mesh has been created and the tile vectors have been specified, you can smooth the mesh
and keep the periodic boundaries exactly offset by the tile vectors. Only hex meshes are currently
supported. A variety of 3d smoothing schemes are supported, including laplacian, equipotential,
untangle, and condition number.

Smooth Volume <volume_id_range> [Global [Float <dim>]]
Use "Global" if you are smoothing a collection of volumes. Use "float 3" if you want nodes on
surfaces, curves, and vertices to be able to move off of their geometric owner. Use "float 2" if
you want just nodes on curves and vertices to be able to move off of their owner (but stay on an
owning surface). It is often useful to specify that some of the nodes are fixed using the "node
position fixed" command.
Example

make the geometry
#{brick_size=500}
brick wid {brick_size}
brick wid {brick_size}
body 2 move {brick_size} 0 0
brick wid {brick_size}
body 3 move {brick_size} {brick_size} 0
brick wid {brick_size}
body 4 move 0 {brick_size} 0
brick wid {brick_size}
body 5 move 0 0 {brick_size}
brick wid {brick_size}
body 6 move {brick_size} 0 {brick_size}
brick wid {brick_size}
body 7 move {brick_size} {brick_size} {brick_size}
brick wid {brick_size}
body 8 move 0 {brick_size} {brick_size}
merge all
mesh it
vol all int 3
mesh vol all
set the tiling vectors
tile x {brick_size*2}
tile y {brick_size*2}
tile z {brick_size*2}
tile debug node 256
tile debug node 245
set the tiling nodesets
tile nodeset
mess up the mesh quality
volume all smooth scheme randomize
smooth volume all

949

Appendix

surface all smooth scheme randomize
smooth surface all
draw hex all
fix the mesh quality
node in volume all position fixed
node in surface all position free
volume all smooth scheme laplac
volume all smooth scheme untangle beta 0.08
smooth volume all global float 3
draw hex all

References
Attaway, Stephen W.; Mello, Frank J.; Heinstein, Martin W.; Swegle, Jeffrey W.; Ratner, Julie
A.; Zadoks, Rick Ian, "PRONTO3D users' instructions: a transient dynamic code for nonlinear
structural analysis," Sandia Report SAND 98-1361 Sandia National Laboratories, Albuquerque,
NM (1998)
Attaway S. W., unpublished, (1993)
Blacker, T. D., FASTQ Users Manual Version 1.2, SAND88-1326, Sandia National
Laboratories, (1988)
Blacker, Ted D. "An Adaptive Finite Element Technique Using Element Equilibrium and
Paving", American Society of Mechanical Engineers, Annual Meeting Dallas Texas, November
25-30, 1990, ASME, Nov 1990
Blacker, Ted D., "Paving: A New Approach To Automated Quadrilateral Mesh Generation",
International Journal For Numerical Methods in Engineering, John Wiley, Num 32, pp.811-847,
1991
Blacker T.D. and Meyers R.J,."Seams and Wedges in Plastering: A 3D Hexahedral Mesh
Generation Algorithm", Engineering with Computers, Springer Verlag, Vol 2, Num 9, pp.83-93,
1993
Brewer, M., L. Diachin, P. Knupp, T. Leurent, and D. Melander, "The Mesquite Mesh Quality
Improvement Toolkit", Proceedings, 12th International Meshing Roundtable, 2003
Brewer, M., "Geometry-Tolerant Meshing Using Advancing-Front Techniques", SAND Report,
(6-2008)
Butlin, Geoffrey and Clive Stops, "CAD Data Repair", 5th International Meshing Roundtable,
pp.7-12, 1996
Clark Brett W., "Removing Small Features with Real Solid Modeling Operations", Submitted to
16th International Meshing Roundtable, 2007
Cook, W. A. and W. R. Oakes (1982) Mapping methods for generating threedimensional
meshes, Computers In Mechanical Engineering, CIME Research Supplement:67-72, August
1982
Folwell, Nathan T. and Scott A. Mitchell, "Reliable Whisker Weaving via Curve Contraction",
Proceedings, 7th International Meshing Roundtable, Sandia National Lab, pp.365-378, October
1998
Freitag, Lori A. and Patrick M. Knupp , "Tetrahedral Element Shape Optimization via the
Jacobian Determinant and Condition Number", Proceedings, 8th International Meshing
Roundtable, South Lake Tahoe, CA, U.S.A., pp.247-258, October 1999

950

Cubit 15.1 User Documentation

George, P.L., F. Hecht and E. Saltel, "Automatic Mesh Generator with Specified Boundary",
Computer Methods in Applied Mechanics and Engineering, Vol. 92, pp. 269-288, 1991
Hardwick, Mike, "DART System Analysis Presented to Simulation Sciences Seminar", June 28,
2005
Jones, R.E., QMESH: A Self-Organizing Mesh Generation Program, SLA - 73 - 1088, Sandia
National Laboratories, (1974).
Knupp, Patrick M., "Winslow Smoothing On Two-Dimensional Unstructured Meshes",
Proceedings, 7th International Meshing Roundtable, Sandia National Lab, pp.449-457, October
1998
Knupp, Patrick M., "Matrix Norms & The Condition Number: A General Framework to Improve
Mesh Quality Via Node-Movement", Proceedings, 8th International Meshing Roundtable, South
Lake Tahoe, CA, U.S.A., pp.13-22, October 1999
Knupp, P., "Achieving Finite Element Mesh Quality via Optimization of the Jacobian Matrix
Norm and Associated Quantities, Part I", Int. J. Num. Meth. Engr.. 2000
Lovejoy, S. C. and R. G. Whirley, DYNA3D Example Problem Manual, UCRL-MA--105259,
University Of California and Lawrence Livermore National Laboratory, (1990).
Melander, Darryl J., Timothy J. Tautges, Steven E. Benzley "Generation of Multi-Million
Element Meshes for Solid Model-Based Geometries: The Dicer Algorithm" AMD-Vol. 220
Trends in Unstructured Mesh Generation, ASME, pp.131-135, July 1997
Mezentsev, Andrey A., "Methods and Algorithms of Automated CAD Repair For Incremental
Surface Meshing", Proceedings, 8th International Meshing Roundtable, pp.299-309, 1999
Murdoch, Peter and Steven E. Benzley, "The Spatial Twist Continuum", Proceedings, 4th
International Meshing Roundtable, Sandia National Laboratories, pp.243-251, October 1995
Oddy, A., J. Goldak, M. McDill, and M. Bibby "A Distortion Metric for Isoparametric Finite
Elements" Transactions of the Canadian Soc. Mech. Engr., pp213-217, Vol 12, No 4, 1988.
Owen, Steven J. and David R. White, "Mesh-Based Geometry: A Systematic Approach to
Constructing Geometry from the Nodes and Elements of a Finite Element Mesh", 10th
International Meshing Roundtable, Sandia National Laboratories, pp. 83-96, October 2001
Owen, Steven J., Clark, B.W., Melander, D.J., Brewer, M.B., Shepherd, J.F., Merkley, K., Ernst,
C., Morris, R., "An Immersive Topology Environment for Meshing", Accepted to 16th
International Meshing Roundtable, 2007
Parthasarathy V. N. et al, "A comparison of tetrahedron quality measures", Finite Elem. Anal.
Des., Vol 15, 1993, 255-261.
Price, M.A. and C.G. Armstrong, "Hexahedral Mesh Generation by Medial Surface Subdivision:
Part I, Solids With Convex Edges, International Journal for Numerical Methods in Engineering,
Vol. 38, No. 19, pp. 3335-3359, 1995
W. Quadros, V. Vyas, M. Brewer, S. Owen, and K. Shimada, “A Computational Framework for
Generating Sizing Function in Assembly Meshing”, Proceedings, 14 th International Meshing
Roundtable, 2005
W. R. Quadros, K. Shimada, and S. J. Owen, “Skeleton-based computational method for the
generation of a 3D finite element mesh sizing function”, Engineering with Computers, Springer
Verlag, Vol 20, Num 3, pp.249-264, 2004
W. R. Quadros, S. J. Owen, M. Brewer, and K. Shimada, “Finite Element Mesh Sizing for
Surfaces using Skeleton”, Proceedings, 13 th International Meshing Roundtable, 2004
Robinson, J., "CRE method of element testing and Jacobian shape parameters, Eng. Comput.,
Vol. 4 (1987).

951

Appendix

Ruppert, Jim , "A New and Simple Algorithm for Quality 2-Dimensional Mesh Generation".
Technical Report UCB/CSD 92/694, University of California at Berkely, Berkely California
(1992)
Scott, Michael A., Matthew N. Earp, Steven E. Benzley, and Michael B. Stephenson, "Adaptive
Sweeping Techniques," Proceedings of the 14th International Meshing Roundtable, Springer, pp.
417-432, 2005.
Schoof, L. A.and Victor R. Yarberry, "EXODUS II A Finite Element Data Model", SAND92-
2137, Sandia National Laboratories, (1995).
Sheffer, A., "Model simplification for meshing using face clustering", Computer-Aided Design,
Vol. 33, No. 13, pp. 925-934(10), 2001
Staten, Matthew L., Steven J. Owen, Ted D. Blacker, "Unconstrained Paving and Plastering: A
New Idea for All Hexahedral Mesh Generation", Proceedings, 14th International Meshing
Roundtable, pp.399-416, 2005
Staten, Matthew L., Robert A. Kerr, Steven J. Owen, Ted D. Blacker, "Unconstrained Paving
and Plastering: Progress Update", Proceedings, 15th International Meshing Roundtable, pp.469-
486, 2006
Stimpson, CJ, Ernst, CD, Knupp, P, Pebay; P, and Thompson, D. "The Verdict Geometric
Quality Library", Sandia Report SAND2007-175, 2007
Tautges, Timothy J. and Scott A. Mitchell, "Whisker Weaving: Invalid Connectivity Resolution
and Primal Construction Algorithm", Proceedings, 4th International Meshing Roundtable, Sandia
National Laboratories, pp.115-127, October 1995
Tautges, Timothy J., Ted Blacker, Scott A. Mitchell, "The Whisker Weaving Algorithm: A
Connectivity-Based Method for Constructing All-Hexahedral Finite Element Meshes",
International Journal for Numerical Methods in Engineering, Wiley, Vol 39, pp.3327-3349, 1996
Tautges, Timothy J., "The Common Geometry Module (CGM): A Generic, Extensible Geometry
Interface", Proceedings, 9th International Meshing Roundtable, pp. 337-348, 2000
Tautges, Timothy J., "Automatic Detail Reduction for Mesh Generation Applications",
Proceedings, 10th International Meshing Roundtable, pp.407-418, 2001
Taylor, L. M. and D. P. Flanagan, "Pronto 3D--A Three-Dimensional Transient Solid Dynamics
Program", SAND87-1912, Sandia National Laboratories, (1989).
Tipton ,R. E., "Grid Optimization by Equipotential Relaxation", unpublished, Lawrence
Livermore National Laboratory, (1990)
Walton, D. J. and D. S. Meek, "A Triangular G1 Patch from Boundary Curves," Computer-
Aided Design, Vol. 28 No. 2 pp. 113-123 (1996)
Watson, David F. , "Computing the Delaunay Tessellation with Application to Voronoi
Polytopes", The Computer Journal, Vol 24(2) pp.167-172 (1981)
Wellman, Gerald W., "MAPVAR : a computer program to transfer solution data between finite
element meshes", Sandia Report SAND 99-0466 Sandia National Laboratories, Albuquerque,
NM (1999)
White, David R. and Paul Kinney, "Redesign of the Paving Algorithm: Robustness
Enhancements through Element by Element Meshing", Proceedings, 6th International Meshing
Roundtable, Sandia National Laboratories, pp.323-335, October 1997
White, David R. and Sunil Saigal (2002) Improved Imprint and Merge for Conformal Meshing,
Proceedings, 11th International Meshing Roundtable, pp.285-296

952

Cubit 15.1 User Documentation

White, David R. and Timothy J. Tautges, "Automatic Scheme Selection for Toolkit Hex
Meshing", International Journal for Numerical Methods in Engineering, Vol. 49, No. 1, pp. 127-
144, 2000
Whiteley, M., D. White, S. Benzley and T. Blacker, "Two and Three-Quarter Dimensional
Meshing Facilitators", Engineering with Computers, Springer-Verlag, Vol 12, pp.155-167,
December 1996
Yong Lu, Rajit Gadh, and Timothy J. Tautges, "Volume decomposition and feature recognition
for hexahedral mesh generation", Proceedings, 8th International Meshing Roundtable, pp. 269-
280, 1999

953

CREDITS
Credits

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.
Manager

• Ted Blacker, Manager, Computational Simulation Infrastructure Department (Org. 1543),
Sandia National Laboratories

Project Board

• Principal Investigator: Byron Hanks, Org. 1543

Research and Development
Computational Simulation Infrastructure Department, Org. 1543, Sandia National
Laboratories, Albuquerque, NM

• Steven J. Owen
• Matthew L. Staten
• Roshan W. Quadros
• Byron Hanks
• Brett Clark

Elemental Technologies Inc., American Fork, UT

• Ray J. Meyers
• Corey Ernst
• Karl Merkley
• Randy Morris
• Corey McBride
• Clinton Stimpson
• Michael Plooster

Caterpillar, Inc., Peoria, IL

• Sam Showman

Documentation

• Corey McBride, ETI, UT

955

Credits

Administrative Assistant

• Ariana Rossi, 1543, Sandia National Laboratories

956

QUICK REFERENCE
Quick Reference
Geometry | File Import | Meshing | Genesis | Program | Entity Parsing | Groups | Graphics |
Settings
The following is a brief overview of some of the most used command-line CUBIT commands.
GEOMETRY
Primitives
Brick X <> [Y <> Z <>]
Cylinder Radius <> Height <>
Frustum Z <> Radius <> [Top <>]
Frustum Z <> Maj Rad <> Min Rad <>
Prism Z <> Sides <> Rad <> [Maj <> Min <>]
Pyramid Height <> Sides <> Radius <>
Sphere Rad <> [Xpos] [Ypos] [Zpos] [Inn <>]
Torus Major Rad <> Minor Rad <>
Booleans
Unite <> [With <>] [keep]
Subtract <> From <> [keep]
Intersect <> [With <>] [keep]
Transformations
Body <> [Copy] Move <dx> <dy> <dz>
Move {} <> location {} <> [except [x] [y] [z]]
Rotate {} <> About {x| y| z|<> <> <>} Angle <>
Rotate {} <> About Vert <> Vert <> Angle <>
Rotate {} <> About Nor Of Surf <> Angle <> Body <> [Copy] Scale <> Body <> [Copy]
Reflect {x| y| z|< x> <y> <z>}
Decomposition
Webcut {} <> Pla Vert <> [Vert]<> [Vert]<> ()
Webcut {} <> Plane Surf <> ()
Webcut {} <> Plane {xpla| ypla| zpla} [offs <>]
Webcut {} <> Tool [Body] <>
Webcut {} <> With Sheet {Body| Surf} <>
Webcut {} <> With Sheet Ext Fr Surf <>
Webcut {} <> Cyl Rad <> Axis {x| y| z| Vert <> Vert <>| <x><y><z>} [cent]
Options: [Noimprint| Imprint(default)], [Nomerge(default)| Merge], [group_ results] Section {}
<> {{ xpla| ypla| zpla} [offs <>]} | Surf <>} [keep] [normal(default)| reverse]
FILE IMPORT
Import Acis 'filename'
Export Acis 'filename' [Body <>]
Import Mesh Geometry 'filename' (options)
MESHING
Mesh {} <>
Delete Mesh {} <> [Propagate]
Intervals

957

Quick Reference

{} <> Interval {<> | Hard | Soft | Default}
{} <> Size {<> | Auto}
Match Intervals {} <> [Ass Grou [Onl| Infea]] [Seed Cur <>] [Map| Pave]
Mesh schemes
{} <> Scheme ...
Curve: bias, copy, curvature, equal, stretch
Surface: auto, circle, copy, hole, map, mirror, pave, pentagon, qtri, submap, triprimitive, trimap,
trimesh, tripave
Volume: auto, copy, map, sphere, submap, sweep, tetmesh, tetprimitive, thex
Smooth {} <>
{} <> Smooth Scheme ...
Smooth schemes
Curves: laplacian, randomize
Surface: centroid area pull, equipotential, laplacian, condition number, randomize, untangle,
winslow
Volume: equipotential, laplacian, condition number, untangle, randomize
GENESIS
Block <> {Group| Vol| Surf| Curv} <> [Remove]
SideSet <> {Group| Curve} <> [Remove]
NodeSet <> {} <> [Remove]
Export Genesis 'filename'
Block <> Attribute <>
Block <> Element Type <type_>
Curves: bar[| 2| 3]| beam[| 2| 3]| truss[| 2| 3]
Surfaces: quad[| 4| 8| 9]| shell[| 4| 8| 9]| tri[| 3| 6| 7]
Volumes: hex[| 8| 20| 27]| pyr| tetra[| 4| 8| 10| 14] hexshell
SideSet <> Surf <> [Rem|[She][For| Rev| Both]]
SideSet <> Surf <> wrt Volume <>
Reset {Genesis | Nodesets | Sidesets | Blocks}
PROGRAM
Play 'filename'
Record {' filename' | stop}
Logging {off|on file <'filename'> [resume]}
Reset
Reset Genesis
Quit
ENTITY PARSING
Examples
Surface 1 2 3 4 to 6 by 2 ...
Curve all in Volume 2 ...
Draw Edge all in Hex 32
List Curve 1 to 50 except 2 4 6
Draw Sideset 1 2 3 Curve 3 to 5 Hex 2 4 6
GROUPS

958

Cubit 15.1 User Documentation

Group <> {add| equals| remove| xor} {} <>
Group <> {inters| unite} grou <> with grou <>
Group <> subtract group <> from group <>
GRAPHICS
Default mouse buttons (command line)
B1 - rotate; B2 - zoom; B3 - pan
Control-B1: pick entity (In graph win: 0,1,2,3,4 - Pick vert, curv, surf, vol, body)
Shortcuts (focus in Graphics Window)
a Add to selection group
b Toggle Bounding Box on Click
c Clear "picked" Group
d Display 'picked' group, make it the selection
e Echo ID of selection to command line
f Assign function to mouse button
g List geometry of selection
h Print help
i Toggle visibility of selection
j/k Move slicing plane down/up
l List current selection (as if you typed 'list ...')
control-l Give focus to the command prompt
m/n List picked group/selection contents
p Toggle Persistent Wireframe
q Quit Current Mode (Exit slicing if slicing)
r Remove from 'picked' Group
s Toggle save-mesh on slice move
u Toggle mouse circle visibility
v Reset view
w Toggle Wireframe on click
x/y/z Slice along x/y/z-axis
Shift-Z Zoom on current selection
F1 Save view 1 Numbers: set what you're picking.
ESC Cancel current Action
Tab Next possible selection
Shift-Tab Previous possible selection
Shift-SActivates graphics clipping plane controls
SETTINGS
Set AcisOption {string|double|integer} 'OptionName' <value>
Set Attribute <attrib_type> Auto {actuate|update} {on|off}
[Set] Auto Size Default
[Set] Auto Size Function [1|2]
Set AutoUniqueId {on|OFF}
Set Auto Sweep Scheme {Sw|Proj|Trans|Rot}
Set Boolean Regularize [ON|off]
Set Block Mixed Element Output {offset|degenerate|explicit}
Set Block Triangle Offset <value>
Set Block Tetrahedron Offset <value>

959

Quick Reference

Set Block Pyramid Offset <value>
Set Catch Interrupt [on|off]
Set Cleanup Angle <val> (default = 179.0)
Set {curve|surface} Imprint Cleanup Tolerance <value>
Set Continue Meshing [ON|off]
Set Core [on|off]
set {Corner|End} Angle <degrees>
set Corner Weight <value>
Set Crash Save [on|off]
[set] Diagnostic {on|off}
[set] Geometry Version <> (1400, 1500, 1600, 1700, 1800, 1900)
[set] Debug <index> {on|off}
[set] Debug <index> File <'filename'>
[set] Debug <index> Terminal
set Default Blocks {on|off|Volumes|Surfaces}
set Default Names {on|off}
Set Default Element [tri|tet|QUAD|HEX|None]
Set Default Autosize [ON|off]
Set Digits [<number_to_list = -1>]
Set Deletion Off
Set Developer [commands] [on|off]
Set Detail Periodic Fraction <value>
Set Duplicate Block Elements {on|OFF}
[set] Echo [on|off]
Set Exodus Single Precision [on|off]
[Set] [Export Mesh] Nodeset Associativity [on|OFF]
[Set] [Export Mesh] Nodeset Associativity Complete [on|OFF]
[Set] Facet BBox [ON|off]
[Set] Facet_modify [ON|off]
Set Fastq {on|off]
Set File Overwrite [Check] [ON|off]
set FPE {divbyzero|invalid|underflow|overflow|all} [<toggle>]
set Fix Duplicate Names {on|off}
set FullHex [Use] [on|OFF]
[Set] Geometry Accuracy <value>
Set Geometry Engine {acis|catia|facet}
Set Group Edge Visibility [on|OFF]
Set Hex Relative Size Metric <value>
[set] Info {on|off}
set Interval Weight <value>
Set Import Mesh [vertex] [curve] [surface] Tolerance <distance>
[Set] Import Mesh NodeSet Associativity [ON|off]
Set Import Mesh NodeSet Order [On|Off]
Set Imprint Groups {ON|off}
Set Keep Invalid Mesh [on|off]
[set] Journal {on|off}}

960

Cubit 15.1 User Documentation

[set] Journal [Graphics|Names|Aprepro|Errors] [on|off]}
[set] Journal idless [on|off|reverse]}
set Keep Invalid Mesh {on|off}
[Set] Laminate Tolerance <double>
set Large Angle Weight <value>
Set Large Exodus [ON|Off]
Set Exodus NetCDF4 [On|OFF]
[set] Logging {off|on file <'filename'> [resume]}
[Set] Logging Errors {off|on file <'filename'> [resume]}
Set Mapping Constraint [ON|off]
set Match Intervals Rounding {on|off}
set Match Intervals Fast {on|off}
Set Match Intervals Delta <interval_difference = 0.0>
Set Maximum Arc_span {<angle>|default}
Set Maximum Interval <int>
Set Maximum Memory [on|off|value(in MB)]
Set Merge Test BBox {on|OFF}
Set Merge Test InternalSurf {on|OFF|Spline}
Set Merge Base Names [on|off]
Set Measure Small Tolerance <value>
Set Metrics [on|OFF]
Set Mesh Autodelete [ON|off]
[Set] Morph Smooth [ON|off]
Set Multisweep [ON|off]
Set Nastran Exporter Params Add '<param_string>'
Set Nastran Exporter Params Remove '<param_string>'
Set Nastran Exporter Params Clear
Set New Ids [on|off]
Set Node Coincident Tolerance [<value>]
set Node Constraint [ON|off]
Set Overlap [Facet] {Angle|Absolute} <value>
Set Overlap {Minimum|Maximum} {Gap|Angle} <value>
Set Overlap Normal {ANY|opposite|same}
Set Overlap Tolerance <value>
Set Overlap Group {on|OFF}
Set Overlap {List|Display} {ON|off}
Set Overlap [Within] {Body|Volume} {on|OFF}
Set Overlap Imprnt {on|OFF}
Set Parallel Meshing [on|OFF}
[Set] Paver Cleanup {ON|off|extend}
[Set] Paver Diagonal Scale <factor> (default = 0.9)
[Set] Paver Grid Cell <factor> (default = 2.5)
[Set] Paver Size Limits {default|minimum <value>|maximum<value>}
[set] Paver Smooth Method { Default | Smooth Scheme|Old}
[set] Paver Linearsizing {off|on}
Set Persistent Ids {off|ON}

961

Quick Reference

set Patran Export Autogroups [on|OFF]
Set Patran Export Groups {ON|off]
Set Play History {on|OFF}
[set] Project Smooth {on|off}
Set Push Attribs {on|off}
Set Print Quality {WARNING|error|off}
Set QTri Test {angle|diagonal}
Set Qtri Split <2|4> (default = 2)
Set Quad Relative Size Metric <value>
Set Quality Threshold <double> (default = 0.2)
set Replacement character '.|_|@'
Set ReverseZoom [on|off]
Set Save [Exodus|Cubit] [backups <number>]
[set] Scheme Auto Fuzzy [Tolerance] <degrees>
Set Sculpt Refine {on|OFF}[set] Smooth Iterations {default|<value>}
Set Separate After Webcut [ON|off]
[set] Smooth Method {laplacian | isoparametric}
[set] Smooth Tol <value> (Default = 0.05)
set {source|target} surface pattern '<pattern>'
Set Split Surface Tolerance <value>
Set Split Surface Parametric {on|OFF}
Set Split Surface Auto Detect Triange {ON|off}
Set Split Surface Point Angle Threshold <value>
Set Split Surface Side Angle Threshold <value>
Set Split Surface Extend Gap Threshold <value>
Set Split Surface Extend Tolerance <value>
Set Split Surface Extend Normal {on|OFF}
Set Stop Error {on|OFF}
Set Submap CornerPicking {ON|off}
set Suffix character '.|_|@'
Set Tight [[Bounding] [Box] [{Surface|Curve|Vertex} {on|off}]]
[Set] Tridelaunay Point Placement [{asp|gq}] (Advancing Steiner Point,Guaranteed Quality)
[Set] Trimesher Advancing Front
[Set] Tolerant Mesh Feature Size <value>
[Set] Tolerant Mesh MBG {OFF|on|only}
Set Tri Relative Size Metric <value>
Set Tet Relative Size Metric <value>
set Turn Weight <value>
Set Unite Mixed [ON|off]
[Set] Unmerge Duplicate_mesh {on|off}
[Set] Unmerge New Ids [{on|off}]
Set Verbose Errors [on|off]
Set Verbose Mesh [on|off]
[set] Warning {on|off}
Set WorkingDirectory 'directory_path'

962

INDEX

#{abortloop} 816
.
.cub 21
.sab 149
.sat 149
A
abaqus 516, 560
abort management 10
absolute value 818
accuracy 237
acis 145, 293, 300
adaptive 485
adjust boundary 423
advancing front 331, 368
align 179
align mesh 448
alpha commands 785
ambient intensity 121
analyze geometry 74, 228
angle 116

calculate 818
mesh quality 430, 436
perspective 116
vertex type 346

appendix 785
apply button 53
aprepro 816

functions 818
journal file 23
journaling 827
variable 10

arc 163, 177
arc span 306
area 45, 430, 436
aspect ratio 424, 430, 432
assembly 66, 285, 286, 289
associativity 517
attributes 277, 278

block 527
metadata 286

Auto Bias 326
AutoCAD 145
autocenter 127
automatic curve biasing 309

automatic forced sweepability 231
automatic geometry cleanup 231
automatic geometry decomposition 787
automatic scheme selection 313

general notes 314
surfaces 315
vertex types 313
volumes 316

automatic size assignment 306
autosmooth 349
axis 28, 110, 123
B
background color 107
bar 540
batch 10
beam 533, 540
bend 225
bias 326, 422, 459, 485
biasing along curves 309
bitmap 120
blend surfaces 209, 765
block 527

attribute 527
curve 527
element type 527
repositioning 472
surface 527
volume 527

body 156
align 179
auto heal 229
copy 179
cut 787
healer analyze 228
imprint 241
intersect 183
list 45
merge 244
move 179, 180
reflect 181
rotate 179, 182
scale 182
section 207
separate 207
split 184

963

subtract 183
unite 183
webcut 184

boolean 182
intersect 183
subtract 183
unite 183

border 123
boundary condition 548
boundary condition sets 559
boundary conditions 5, 540

feature 5
brick 153
bug reports 6
buttons 103
C
CALCULATED 829
camera 116
cancel 22
cd command 18
ceiling 818
centroid area pull 443
cfd 550
cgm 120
chamfer 209, 223
changing preferences 101
chop 185
circle 327
cleanup 208, 333, 452, 764
clear 131
clip 105
closestpt 252, 792
coarsening 458
cohesive element 788
coincident nodes 422
collapse 247

angle 247
curve 249
mesh edges 449
surface 250

colors 107, 810
Column Deletion 475
Column Groups 475
Column Insertion 475
Column Swapping 475
command 16

command echo 20
command line 16, 18
command syntax 16
command window 93
comment 24
Compare 88
Compare volume 88
component 98
composite 251

curves 252
surfaces 252

condition number 424, 430, 432, 443
conductivity 539
Cone Surface 185
conformal 766
contact set 559
contact surface 551, 770
control skew 422
convection 554
coordinates 818
copy 179

body 179
mesh 318
scale 182
scheme 318

corner 346
cosine 818
create 150

bottom-up 155
brick 153
curve 163
cylinder 154
frustum 153
primitives 151
pyramid 154
sheet 169
sphere 155
surface 168
torus 154
vertex 177
volume 156

credits 955
ctrl-c 22
cubit file 21
cubit file method 21
cubit_geom.save.g 21

964

Cubit 15.1 User Documentation

cubit_geom.save.sat 21
CUBIT_OPT 14
cubit-dev 3
curvature 328, 485

sizing function 493
curve 163

bias 326
block 527
copy mesh 318
create 163
extrude 168
intervals 311
list 45
nodeset 541
partitioning 256
plane normal to 186
sideset 541
split 191
tangent 263
trim or extend 238
type 346
valence 57
vertex on 177

customize 49, 100, 101
cut 787

mesh 792
cylinder 154
D
DART 285, 286, 289
data filters 137
data structure 816
date 818
debug 10
decomposition 770

automatic 787
geometry 770
partitioning 254
split periodic 191
web cutting 184

defeaturing 785
compositing 251
defeature tool 80
detail suppression 785
surface removal 226
tweaking geometry 208

deformations 517

degrees 818
Delaunay 367
delete 292
density 539, 791
detail suppression 785
development requests 6
diagonal ratio 424
dialog 53

command 53
options 101
property editor 90
tree view 64, 66

digits 20
dimension 561
direction 29
displacement 556
display 131
display toolbar 97
distance 283
distortion 424, 430, 432, 436
Distributing 556
distribution 6
distribution factor 546
divergence 272
doubler 219
draw 110

color table 107
cylinder 190
detail 785
drawing, locating, and highlighting 110
edge 134
group 274
histogram 427
location 27
nodeset 134, 541
normal 110
picked 140
plane 43
vertex types 346

Drawing
Locating

and Highlighting Entities 110
Drawing Columns 475
dualbias 326, 422
Duplicate Block Elements 527
duplicating 318

965

E
echo 47
edge collapse 449
edge length 444, 818
elastic modulus 539
element block 527, 540
element numbering 813
element types 6, 303, 540
enclosure 544
end 346
enhancement requests 6
entity 155

curve 163
drawing 110
highlighting 110
labels 114
names 280
picking 140
selecting 60, 140
selection mode 60
specification 134
surface 168
tree 66
vertex 177
virtual 246
visibility 132
volume 156

environment 9
user settings 14

equal 329
equal_to 309
equipotential 444
error count 818
error logging 20
errors 20, 818
examples 571, 653
execute 818
execute button 53
execution 10

command syntax 10
exit 9
exodus file method 537

element numbering 813
exporting 563
file specification 537
importing 517

model title 538
sizing function 494

exodus II 517, 561
exotxt 561
expand 134
export 563, 568
extend 238
extraneous 227
F
facets 118, 301, 524
factor 459
farfield pressure 550
fastq 10, 944

importing 298
feature angle 272, 296, 522
feature size 485, 791
features 5
field function 494
file 14

acis 300
exodus II 537, 538
fastq 298
iges 301
initialization 14
input 10
journal 10, 23, 24

filename 16
step 302

fillet 209, 222, 223
find surface overlap 235
finite element model definition 540
fire ray 33
firmness 310

interval 310
scheme 313
vertex type 346

Fixed_Imprints 349
flatquad 788
flatshade 118
floor 818
fluent 526, 550, 566
flush 131
fly-in 79
fonts 98
force 231, 552, 772
free elements 517

966

Cubit 15.1 User Documentation

free mesh 416, 505, 515, 518
from 116, 127
frustum 153
fullhex 816
fuzzy 313
G
gamma 818
geometric entities 155

curve 163
surface 168
vertex 177
virtual 246
volume 156

geometry 145
analyzing 228
attributes 277
boolean 182
bottom-up creation 155
clean up 208
creation 150
debug 234
decomposition 770
exporting 300
healing 228
importing 293
merging 244
modification 208
primitives 151
transformations 179
validating 240
virtual 246
visibility 132

geometry adaptive 496
geometry associativity 515, 518
geometry deletion 292
geometry groups 274
geometry representation 145
geometry tweaking 208, 209, 216, 223
Geometry/Mesh Comparison 88
grafting 799
graphical user interface 49
graphics 6, 104

camera 116
clipping plane 105
colors 107
display 131

draw 110
hardcopy 120
labels 114
mesh slicing 122
modes 118
no graphics option 10
options 123
selection 140
views 130
window size 120

graphics clip 105
graphics lighting 121
group 264

graphical selection 276
operations 274
picked 143
propagated hex 266
quality 276

groups 264, 354
sweep 354
xor 274

H
hammer icon 4
hard interval 310
hardcopy 120
hardware platforms 4
healing 228

analyzing geometry 228
attributes 230
automatic 229
failure 230

heat flux 554
help 10, 18, 49, 98
hiddenline 118
highlight 110, 123

drawing, locating, and highlighting 110
histogram 425, 427
history command 18
hole 221, 329
htet 321
hypotenuse 818
I
id input field 53
id maps 561
idealize 216
ideas 563

967

i-deas 525
i-deas 563
idless journal file 26
ids 279, 818
iges 238, 298, 301
import 293, 294, 298, 299, 515, 516, 517,

525, 526, 758
imprint 241

mesh 255
improve 297
info 47, 957
initialization file 10, 14
inlet massflow 550
inlet pressure 550
inlet velocity 550
input 568
input file 10
input window 93
inria 358
installation 6
interior mesh elements 105
interrupt 22, 49
intersect 183
interval 305

automatic specification 306
explicit specification 308
firmness 310
matching 311
periodic 312
relative 312

Interval equal_to 309
Interval same 309
isoparameter 110
isoparametric 110
J
jacobian 424, 430, 432
journal file 10

APREPRO 827
automatic creation 24
creation and playback 23
editor 95
playback 23
recording 23

K
key icon 4
key press commands 58

Kinematic 556
L
label 114
laplacian smoothing 445
length 818
license 6, 14
light intensity 121
lighting model 121
limit plane 209, 216
line width 123
listing information 44

environment 47
geometry 45
mesh 46
model summary 44
special entities 46
vertex types 346

load set 559
loads 552
Local refinement 459
locate 79

drawing, locating, and highlighting 110
Locate command 110
location 32
location on curve 36
loft 161
logarithm 818
logging 47
lowercase 818
ls command 18
ls-dyna 563
M
magic mesh 751
mailing lists 3
make solid 156
mapping 330
material 286, 537, 539
mathematical functions 818
mean ratio smoothing 445
measurement 283
memory usage 816
menu 56, 98
merge nodes 524
merge tolerance 242, 774
merging 244

examining merged entities 241

968

Cubit 15.1 User Documentation

tolerance 243
using to verify geometry 245

mesh 303
and BC Entity Visibility 132
collapse element 449
copy 318, 320
creation 303, 790
deletion 790
density 485
import 515
interval 305
mirror 320
modification 437
procedure 304
quality 71, 105, 420, 425, 427
scheme 316
tools 70

mesh based geometry 146
adaptive 318, 485
algorithms 316
deletion 505
export 561
feature 5
import 517
interval assignment 305
meshedit 449
preview 312
process 303
quality 420
remesh 304
sizing function 485
slicing 122
smoothing 438
transform coordinates 568
validity 485
visibility 132

Mesh Column Operations 475
Mesh Scaling 479
mesh topology 433
meshing in item 759
metadata 285
metric 420
metric name 427

algebraic 427
allmetrics 427
robinson 427

traditional 427
middle mouse button 60, 61, 101
midplane 168
min_through_thickness 459
mirror 320
mod 818
model axis 110, 123
morph smooth 318
mouse 61, 127

customization 101
right click 59
selecting entities with 60, 140
view navigation 61, 127

move 179, 180
msc 358, 368
multisweep 349
N
name 280
narrow regions 232
nastran 563
navigation 61, 127
ncdump 561
negative Jacobians 446
Neighbor 485
netcdf 561
new 21
next 23
node 472

coincident 422
fix position 438
nodehex 816
nodeset 541
numbering 813
repositioning 472
selection 140

Node Redistribution 349
nodeset 541

importing 517
repositioning 472
size 123
smoothing 438
visibility 132

nogui 10
non-manifold topology 5, 433
normal 110, 263
NOT_SET 829

969

notation 16
numbering 813
numeric 16
NumInGrp 818
O
offset 156, 166, 168, 210, 216
open 21
openGL 98
optimize jacobian smoothing 802
options 101
orthogonal 440
outlet pressure 550
output 568
output window 93
overlap 235
P
painters 118
pan 61, 127, 133
parallel 459, 561
Parallel Meshing 415
parse 32
part 285, 286, 289
partition 254

curves 256
surfaces 256
volumes 258

patch 543
patran 525, 563
pause 22
pave 331
pentagon 335
periodic 550, 948
perspective 116
pick toolbar 60
picked group 68, 143
picking 140
pict 120
pillow 473
pinpoint 336
planar 137
plane 38
playback 23
point 123
poisson ratio 539
polygonfill 118
polyhedron 337

postscript 120
ppm 120
preselection 60
pressure 553
preview 27, 190, 312

axis 27
direction 27, 32
imported mesh 765
location 27
mesh 312
plane 43

primitive 151
brick 153
cylinder 154
frustum 153
prism 155
pyramid 154
sphere 155
torus 154

print error 818
prism 155
problem reports 6
project 167
propagate curve bias 423
property editor 90
pwd 18
pyramid 154
python 829
Q
QA_Records 9
qtri 322
quality 420

controlling skew 422
groups 276
hexahedral 424
quadrilaterals 430
tetrahedral 432
tools 71
triangles 436

quick reference 957
quit 9
quote 818
R
radialmesh 416
radians 818
radius 818

970

Cubit 15.1 User Documentation

random 818
randomize 803
ray 33
rebar 531
record 23
references 950
refine 459, 803
Refine Mesh Sheet 459
Refine Mesh Volume 459
Refine min_through_thickness 459
Refine Tet_edge 459
reflect 181
regularize 237
relative size 424, 430, 432, 436
remesh 304
removal 216, 226, 227, 230
remove 259, 349
remove topology 213
renumber ids 280
Renumbering Element Blocks 527
Renumbering Nodesets and Sidesets 541
repositioning nodes 472
rescan 816, 818
reset 9
respect tetmesh 358
restart 21
restore 21
restraint 556
restraint set 559
resume 22
reversal 346
Reverse 263
right click options 59
rotate 61, 127, 133, 179, 182
rotation 182
S
same 309
save 21
save as 21
scale 182
Scale Mesh 459
scaled jacobian 424, 430, 432, 436
scheme 316

automatic selection 313
bias 326
circle 327

curvature 328
delaunay 368
dualbias 326
equal 329
featuresize 791
firmness 313
hole 329
htet 321
mapping 330
mirror 320
multisweep 349
parallel 415
pave 331
pentagon 335
pinpoint 336
polyhedron 337
qtri 322
sculpt 373
selection 313
sphere 339
stransition 342
stretch 344
submap 344
sweep 349
tetinria 358
tetmesh 358
tetmsc 358
tetprimitive 366
thex 323
transition 806
triadvance 368
tridelaunay 367
trimap 367
trimesh 368
tripave 372
triprimitive 372

Sculpt 373
Sculpt Application 393
Sculpt Installation 373
Sculpt Parallel Command 373
Sculpt Technical Description 411
section 207
seed 272
selection 60, 134
separate 207
session control 9

971

session id 818
shape 424, 430, 432, 436
shear modulus 539
sheet 156
sheet body 137, 168, 207, 238
shell 540
side 346
sideset 541
Sierra 563
silhouette 123
simplify 213, 260
simulog 358
sine 818
size 123, 459

auto 306
feature 791
interval 308

sizing function 422, 485
bias 487
constant 492
curvature 493
exodus II 494
field 494
interval 501
inverse 502
linear 503
super 804
test 805

skeleton sizing 485, 496
skew 206, 422, 424, 430
skew control 422
skinning 171, 514
sliver surface 227, 242
slot 221
small curves 232, 776
small feature 776, 780
small surfaces 233, 776
smart laplacian 446
Smart_Smooth 349
smoothing 438

centroid area pull 443
edge length 444
equipotential 444
facets 147
laplacian 445
optimize condition number 443

optimize jacobian 802
optimize untangle 446
randomize 803
winslow 448

smoothshade 118
soft interval 310
solid model 10
SolidDesigner 145
SolidWorks 145
sort 279
specific heat 539
sphere 155, 339
spider 533
spline 137, 165
split 190

body 184
curve 191
periodic 191
surface 191

sqrt 818
start_id 521
step 238, 299, 302
stitch 238
stop 22
stransition 342
stray 227
stretch 344, 424, 430
string 16, 818
sub-assembly 285, 289
submap 344
subtract 183
suppression 785
surface 156, 168

creation 168
normal 263
overlap 235
removal 226
vertex type 346

surface area 818
sweep 156, 168, 349
sweep group 354
sweep surface 156
symmetry 550
syntax 16
T
tangent 263

972

Cubit 15.1 User Documentation

taper 424, 430
target 217
temperature 558
Tet_edge 459
tetdice 358
tetinria 358
tetmesh 358
tetmsc 358
tetprimitive 366
text size 123
thex 323
thicken 156
threshold 421
Tie 556
tile 948
title 538
toggle 16
tolerance 237
tolerant imprinting 242
toolbars 97
topology 5
torus 154
tquad 325
transform 568
transformations 179
transition 806
transition map 342
translation 180
translators 563
transparent 118
triad 123
triadvance 368
triangle coarsening 808
triangle visibility 110
tridelaunay 367
trim 238
trimap 367
trimesh 368
tripave 372
triprimitive 372
truehiddenline 118
tutorial 571

gui 708
non-gui 731
power tools 604

tweak 208

curve 209
remove topology 213
surface 216
vertex 223
volume bend 225

U
unite 183
units 818
unmerge 246
untangle 446
up command 116, 127
uppercase 818
usage 10
user environment settings 10, 14
USER_SET 829
users manual 1
V
valence 57
validation 240
variable 10, 816
verify 245
version 20, 300
vertex 177
vertex size 309
Vertex Sizing 309
vertex type 346
view 116, 122, 123, 127
virtual geometry 246

collapse 247
composite 251
deleting 259
partition 254
simplify 260

visibility 132
void 284
volume 156

curve type 346
draw 110
in volume 818
measurement 283
partitioning 258
quality metrics 424, 432

VRML 563
W
warning 10, 47
warning count 818

973

webcut 184
chop 185
options 190
sweep 187
with arbitrary surface 185
with planar or cylindrical surface 185
with tool body 189

where 23
window 49

application 49
command 93
control panel 56
drop-down menu 98
entity tree 66
graphics 58, 104

input 93
journal file editor 95
output 93
property 90
query select 60
toolbar 97

windowlocation 120
winslow smoothing 448
wireframe 118
word count 818
workbook mode 98
working directory 18
Z
zoom 127, 133

974

	CUBIT
	Geometry and Mesh Generation Toolkit
	15.1 User Documentation
	CUBIT 15.1 User Documentation
	Introduction
	Introduction
	CUBIT Mailing Lists
	Hardware Requirements
	How to Use This Manual
	Key Features
	Geometry Creation, Modification, and Healing
	Non-Manifold Topology
	Geometry Decomposition
	Mesh Generation
	Boundary Conditions
	Element Types
	Graphics Display Capabilities
	Graphical User Interface
	Command Line Interface

	Licensing and Distribution
	Problem Reports and Enhancement Requests
	Trademark Notice

	Environment Control
	Environment Control
	Session Control
	Session Control
	Starting and Exiting a CUBIT Session
	Starting the Session
	Windows File Association
	Exiting the Session
	Resetting the Session
	Abort Handling

	Execution Command Syntax
	Passing Variables into a CUBIT Session

	Initialization Files
	Environment Variables
	Command Syntax
	Command Line Help
	Environment Commands
	Working Directory
	File Manipulation
	CPU Time
	Comment
	History
	Error Logging
	Determining the CUBIT Version
	Echoing Commands
	Digits Displayed

	Saving and Restoring a Cubit Session
	CUBIT File Method
	New
	Open '<filename>'
	Save
	Import
	Export

	Interrupting Running Tasks

	Recording and Playback
	Command Recording and Playback
	Journal File Creation and Playback
	Recording a Session
	Replaying a Session

	Controlling Playback of Journal Files
	Automatic Journal File Creation
	Controlling Automatic Journal File Creation
	Recording Graphics Commands
	Recording Entity IDs and Names
	Recording APREPRO Commands
	Recording Errors

	Idless Journal Files

	Location Direction Specification
	Location, Direction and Axis Specification
	Drawing a Location, Direction, or Axis
	Specifying an Axis
	Last
	Specify an origin and a vector
	Revolve an axis about an axis
	Previewing an Axis

	Specifying a Direction
	Vector (XYZ values)
	Last Direction Used
	Positive or Negative X,Y,Z Direction Vectors
	On Curve Tangent
	On Surface Normal
	From Location
	Rotate
	Cross
	Reverse
	Previewing a Direction

	Specifying a Location
	Position (XYZ values)
	Last Location Used in a Command
	Node or Vertex
	On a Curve
	On a Surface
	On a Plane
	Center
	Extrema
	Fire Ray
	Between
	Move
	Swing
	Multiple Location Specification
	Previewing a Location

	Specifying a Location on a Curve
	Arc Center
	Start, Midpoint, or End
	Fraction
	Distance
	{Close_To|At} Location
	Extrema
	Segment
	Crossing
	Previewing a Location on a Curve

	Specifying a Plane
	Location and Normal Vector
	Location and Two Vectors on the Plane
	Two Locations and Vector on the Plane
	Three Points on the Plane
	Plane defined by a Surface
	Plane Normal to a Curve
	Plane Defined by a Non-linear curve
	Plane Defined by a two linear curves
	Normal Vector and Coefficient
	Coordinate Plane
	Last Location Used
	Previewing a Plane
	Preview a Cylindrical Plane

	Listing Information
	Listing Information
	List Model Summary
	List Geometry
	List Mesh
	List Special Entities
	List Cubit Environment
	Message Output Settings
	Graphical Display Information
	Memory Usage Information

	GUI
	Graphical User Interface
	CUBIT Application Window
	Context Sensitive Help in the GUI
	Customizing the Application Window

	Control Panel
	Command Panel Functionality
	ID Input Entry Methods
	Right-Click Context Menu for ID Input Fields
	Value Fields
	Advancing Pickwidgets

	Command Panels

	Graphics Window
	Viewing Curve Valence
	Graphics Window
	Key Press Commands for the GUI
	Right Click Commands for the GUI Graphics Window
	With Entity Selected
	Without Entity Selected

	Selecting Entities in the GUI
	Pre-Selection
	Polygon and Box Select

	View Navigation in the GUI
	Rotations
	Zooming
	Panning

	Tree View
	Power Tools
	Geometry Tree
	Drag and Drop
	Picked Group
	Right-Click Menu Functions

	Meshing Tools
	Right Click Context Menu

	Mesh Quality Tools
	Mesh Quality Tool Buttons
	Right-Click Context Menu Items

	Geometry Power Tools
	Geometry Analysis Tools
	Geometry Repair Tools
	Right Click Menu

	Defeature Tool
	Command Syntax:
	Preserving Critical Geometric Entities
	Sample Journal File:
	Figures

	Geometry/Mesh Comparison Tool

	Property Editor
	Editing Entity Attributes from the Property Editor
	General Attributes
	Geometry Attributes
	Meshing Attributes
	Boundary Condition Attributes
	Metadata Attributes

	Command Line Workspace
	Command Window
	Entering Commands
	Repeating Commands
	Focus Follows Cursor

	Error Window
	History Window
	Script Window
	Docking and Undocking the Input Window

	Journal File Editor
	Journal Editor Toolbar
	Other Functionality Available in the Journal Editor

	Toolbars
	File
	Display
	Select

	Drop Down Menus
	Drop Down Menus
	Cubit (Mac Only)
	File
	Edit
	View
	Display
	Tools
	Help

	Creating Custom Toolbar Buttons
	Options Menu
	Custom Tools
	Display Preferences
	General Preferences
	Geometry Defaults
	History Preferences
	Cubit History Preferences

	Label Defaults
	Layout Preferences
	Cubit Layout Settings

	Mesh Defaults
	Mouse Settings
	Post Processor Settings
	Quality Defaults

	Undo Button
	Limitations

	Graphics Window Control
	Graphics Window Control
	Graphics Clipping Plane
	Examples

	Colors
	Specifying Colors in Commands
	User-Defined Colors
	Assigning Colors
	Assigning Global Colors

	Drawing, Locating, and Highlighting Entities
	Drawing Other Objects
	Displaying Entity Orientation
	Volume Sources and Targets
	Model Axis
	Surface Isoparameter Lines
	Surface Overlap
	Volume Overlap
	Geometry Preview

	Drawing Locations, Lines and Polygons
	Drawing Locations
	Drawing Lines
	Drawing Polygons
	Buffered Drawing
	Example

	Entity Labels
	Graphics Camera
	Changing Camera Attributes Directly

	Graphics Modes
	Displaying Using the Element Facets
	Displaying Composite Surface Lines

	Graphics Window Size and Position
	Using Multiple Windows

	Hardcopy Output
	Screen Capture Programs

	Graphics Lighting Model
	Mesh Visualization
	Notes on Mesh Slicing
	Mesh Slicing Command

	Miscellaneous Graphics Options
	Silhouette Lines
	Line Width
	Highlight Line Width
	Text Size
	Point Size
	Graphics Status
	Graphics Scale
	Model Axis
	Corner Axis (Triad)
	Resetting the Graphics
	Shrink
	Facet Tolerance

	Mouse Based View Navigation: Zoom, Pan and Rotate
	Changing the View Transformation Button Bindings
	Saving and Restoring Views

	Saving Graphics Views
	Updating the Display
	Prevent Graphics From Updating

	Geometry, Mesh, and BC Entity Visibility
	Command Line View Navigation: Zoom, Pan and Rotate
	Rotation
	Panning
	Zooming

	Entity Selection and Filtering
	Entity Selection
	Command Line Entity Specification
	Types of Entity Range Input
	Precedence of "Except" and "In"
	Placement in CUBIT Commands

	Extended Command Line Entity Specification
	Extended Parsing Syntax
	Keywords
	Functions
	Precedence

	Selecting Entities with the Mouse
	Entity Selection
	Query Selection
	Multiple Selected Entities
	Information About the Selection
	Picked Group
	Substituting Selection into Other Commands

	Geometry
	Geometry
	Model Definitions
	ACIS Geometry Kernel
	Mesh-Based Geometry
	Creating Mesh-Based Geometry Models
	Improving Mesh-Based Geometry Models for Meshing
	Meshing Mesh-Based Models
	Exporting Mesh-Based Geometry

	CUBIT Geometry Formats
	Setting the Geometry Kernel
	Terms
	Topology
	Bodies and Volumes
	Non-Manifold Topology

	Bounding Box Calculations

	Geometry Creation
	Geometry Creation
	Primitive Geometry
	Geometric Primitives
	General Notes

	Creating Bricks
	Creating Frustums
	Creating Pyramids
	Creating Toruses
	Creating Cylinders
	Creating Prisms
	Creating Spheres

	Bottom Up Creation
	Bottom-Up Geometry Creation
	Creating Volumes
	Creating Curves
	Creating Surfaces
	Creating Vertices

	Transforms
	Geometry Transforms
	Align Command
	Copy Command
	Move Command
	Moving Other Geometric Entities
	Moving Bodies Relative to Other Geometric Entities
	Moving Merged Entities
	Move Undo

	Reflect Command
	Rotate Command
	Rotating Merged Entities

	Scale Command

	Booleans
	Geometry Booleans
	Intersect
	Subtract
	Unite

	Decomposition
	Geometry Decomposition
	Web Cutting
	Web Cutting
	General Notes

	Web Cutting with an Arbitrary Surface
	Chop Command
	Web Cutting with a Planar or Cylindrical Surface
	Coordinate Plane
	Planar Surface
	Plane from 3 Points
	Plane Normal to Curve
	General Plane Specification
	Cylindrical Surface
	Cone Surface

	Web Cutting by Sweeping Curves or Surfaces
	Web Cutting by Sweeping a Surface Along a Trajectory
	Web Cutting by Sweeping a Surface About an Axis
	Web Cutting by Sweeping a Curve(s) Along a Trajectory
	Web Cutting by Sweeping a Curve(s) About an Axis

	Web Cutting using a Tool or Sheet Body
	Web Cutting Options

	Splitting Geometry
	Splitting Geometry
	Split Curve
	Split Periodic Surfaces
	Split Surface
	Split Across
	Split Extend
	Split (Automatically)
	Split Skew

	Section Command
	Separating Surfaces from Bodies
	Separating Multi-Volume Bodies

	Cleanup and Defeaturing
	Geometry Cleanup and Defeaturing
	Tweaking Geometry
	Tweaking Geometry
	Tweaking Curves
	Create a Chamfer or Fillet
	Tweaking a Curve Using an Offset Distance
	Removing a Curve
	Tweaking a Curve Using Target Surfaces, Curves, or Plane
	Tweaking a Pair of Curves to a Corner

	Tweak Remove Topology
	Example

	Tweaking Surfaces
	Tweaking a Surface Using an Offset
	Tweaking a Surface by Moving
	Tweaking Surfaces to Target Surfaces
	Removing a Surface
	Tweaking a Conical Surface
	Tweaking Doublers to Target Surfaces
	Removing Holes and Slots from Sheet Bodies
	Removing Fillets from Sheet Bodies

	Tweaking Vertices
	Tweaking a Vertex With a Chamfer
	Tweaking a Vertex With a Non-Equal Chamfer
	Tweaking a Vertex With a Fillet Radius

	Tweak Volume Bend

	Removing Geometric Features
	Removing Geometric Features
	Removing Surfaces
	Remove Sliver Surface

	Removing Vertices

	Healing
	Healing
	Analyzing Geometry
	Healer Settings

	Auto Healing
	Healing Attributes
	Spline Removal
	What if Healing is Unsuccessful?

	Auto Clean
	Automatic Geometry Clean-up
	Automatic Forced Sweepability
	Automatic Surface Split
	Automatic Small Curve Removal
	Automatic Small Surface Removal

	Debugging Geometry
	Finding Surface Overlap
	Facetted Representation
	Find Overlap Settings

	Geometry Accuracy
	Regularizing Geometry
	Stitching Sheet Bodies
	Trimming and Extending Curves
	Trimming a Curve
	Extending a Curve

	Validating Geometry

	Imprint Merge
	Geometry Imprinting and Merging
	Examining Merged Entities
	Imprinting Geometry
	Regular Imprinting
	Tolerant Imprinting
	Mesh-Based Imprinting
	Imprint Settings

	Merge Tolerance
	Finding Nearly Coincident Entities

	Merging Geometry
	Merge geometry automatically
	Test for merging in a specified group of geometry
	Force merge specified geometry entities
	Preventing geometry from merging
	Other Merge Commands

	Using Geometry Merging to Verify Geometry
	Unmerging

	Virtual Geometry
	Virtual Geometry
	Collapse Geometry
	Collapse Geometry
	Collapse Angle
	Collapse Curve
	Collapse Surface

	Composite Geometry
	Composite Geometry
	Composite Curves
	Composite Surfaces
	Controlling the Surface Evaluation Method for Composite Surfaces
	Composite Determination

	Partitioned Geometry
	Partitioned Geometry
	Removing Partitions
	Using Mesh Intersections to Partition Surfaces
	Partitioned Curves
	Partitioned Surfaces
	Partitioning with Vertices and Nodes
	Partitioning with Hard Points
	Partitioning with Polylines

	Partitioning with Curves
	Partitioning with Mesh Edges
	Partitioning with Faces or Triangles

	Partitioned Volumes

	Deleting Virtual Geometry
	Removing Virtual Geometry
	Using The Delete Command With Composites
	Using the Delete Command With Partitions

	Simplify Geometry
	Feature Angle
	Automatically Compositing Curves
	Respecting Vertices, Curves and Surfaces
	Respecting Imprints
	Using Local Normals
	Other Options

	Geometry Orientation
	Adjusting Orientation

	Groups
	Geometry Groups
	Propagated Groups
	Propagated Groups
	Naming Convention for Propagated Hex Groups
	Propagated Hex Groups
	Propagated Hex Group Starting on a Surface
	Ending at a Surface
	Number of Times
	Ending at a Surface with Multiple
	Number of Times with Multiple
	Ending at Surface with Direction
	Number of Times with Direction

	Propagated Hex Group Starting on a Face
	Ending at a Surface
	Ending at a Face
	Number of Times
	Ending at a Surface with Multiple
	Ending at a Face with Multiple
	Number of Times with Multiple
	Ending at Face with Direction
	Ending at Surface with Direction
	Number of Times with Direction

	Naming Convention for Propagated Hex Groups

	Seeded Mesh Groups

	Basic Group Operations
	Geometry Groups
	Group Booleans
	Mesh Groups
	Group Copy
	Group Transformations
	Deleting Groups
	Cleaning Out Groups

	Groups in Graphics
	Quality Groups

	Attributes
	Geometry Attributes
	Persistent Attributes
	Persistent Attributes
	Attribute Behavior
	Attribute Commands
	Control By Attribute Type or Geometric Entity

	Attribute Types
	Using CUBIT Attributes

	Entity IDs
	Element Ids
	Gaps in ID space
	Renumbering IDs
	Volume ID

	Entity Names
	Valid and Invalid Names
	Reconciling Duplicate Names
	Automatic Name Creation
	Automatic Name Propagation
	Naming Merged Entities

	Entity Measurement
	Measure Between
	Measure Small
	Measure Angle
	Measure Void

	Metadata
	Parts, Assemblies, and Metadata
	Overview of Parts, Assemblies and Metadata

	Importing and Exporting Metadata
	Importing Metadata
	Exporting Metadata
	Importing and Exporting DART Artifacts

	Metadata Attributes
	Part and Assembly Metadata Attributes
	Viewing Part and Assembly Metadata Attribute Values
	Modifying Metadata Attributes
	Viewing and Modifying Global Metadata

	Working With Parts and Assemblies
	Identifying Parts and Assemblies
	Creating Parts and Assemblies
	Deleting Parts and Assemblies
	Associating Parts with Volumes
	Viewing All Assembly Information at Once
	Metadata in the GUI

	Geometry Deletion
	Import
	Importing Geometry
	Other Formats

	Importing ACIS Files
	Import Options
	Importing ACIS files at startup

	Importing Facet Files
	Facet File Format
	Feature Angle
	Smooth Curves and Surfaces
	Merge
	Make elements
	Stitch
	Improve

	Importing FASTQ Files
	Importing Granite Files
	Importing IGES Files
	Import Options

	Importing STEP Files
	Import Options
	Exporting a STEP file from Pro/Engineer

	Export
	Exporting Geometry
	Exporting ACIS Files
	Exporting Facet Files
	Exporting IGES Files
	Exporting STEP Files

	Mesh Generation
	Mesh Generation
	Element Types
	Mesh Generation Process

	Meshing the Geometry
	Default Scheme and Interval Selection
	Continuing Meshing After a Mesh Failure

	Interval Assignment
	Interval Assignment
	Automatic Specification of Interval Size
	Automatic Interval Size Specification
	Maximum Spanning Angle on Arcs

	Explicit Specification of Intervals
	Explicit Specification of Intervals Using Interval Size
	Additional Interval Constraints
	Vertex Sizing and Automatic Curve Biasing
	Interval Firmness
	Precedence

	Interval Matching
	Mesh Interval Preview
	Periodic Intervals
	Relative Intervals

	Meshing Schemes
	Automatic Scheme Selection
	Default Scheme Selection
	Auto Scheme Selection General Notes
	Scheme Firmness
	Surface Auto Scheme Selection
	Volume Auto Scheme Selection

	Meshing Schemes
	Traditional Meshing Schemes
	Free Meshing Schemes
	Conversional Meshing Schemes
	Duplication Meshing Schemes
	General Meshing Information

	Duplication
	Copying a Mesh
	Mirroring a Mesh

	Conversion
	HTet
	Unstructured
	Structured

	QTri
	THex
	TQuad

	Traditional
	Bias, Dualbias
	Circle
	Curvature
	Equal
	Hole
	Mapping
	Pave
	Element Shape Improvement
	Controlling Flattening of Elements
	Controlling the Grid Search for Intersection Checking
	Controlling the Paver Sizing Function
	Controlling Paver Cleanup

	Pentagon
	Pinpoint
	Polyhedron
	Sphere
	STransition
	Stretch
	Submap
	Surface Vertex Types
	Surface Vertex Commands
	Listing and Drawing Vertex Types
	Triangle Vertex Types
	Adjusting the Automatic Vertex Type Selection Algorithm
	Volume Curve Types

	Sweep
	Multisweep
	 Grouping Sweepable Volumes
	Node Redistribution

	TetMesh
	Discussion
	TetMesh Scheme Options
	Global Tetmesher Options
	Using tets as the basis of an unstructured hexahedral mesh
	Conforming the tetmesh to internal features
	Controling the gradation of the mesh size inside the volume
	Generating a Tetmesh from a Skin of Triangles

	Tetprimitive
	TriAdvance
	TriDelaunay
	TriMap
	TriMesh
	TriMesh Scheme Options
	Global Trimesher Gradation Options

	TriPave
	TriPrimitive

	Parallel Meshing
	Sculpt
	Sculpt
	Preparing to Use Sculpt
	Platforms
	Sculpt Installation
	Setting your Working Directory

	Sculpt Parallel Command
	Sculpt Parallel Path Command
	Sculpt Mesh Quality Control
	Sculpt Examples
	Basic Sculpt
	Size and Bounding Box
	Meshing the Void
	Automatic Sideset Definition
	Running Sculpt Stand-Alone
	Meshing Multiple Materials With Sculpt

	Sculpt Application
	Sculpt System Requirements
	Running Sculpt
	Sculpt Command Documentation
	Help
	Number of Processors
	Input File
	STL File
	Diatom File
	Exodus File
	Volume Fraction File
	Input Volume Fraction File
	Input Microstructure File
	Input Cartesian Exodus File
	Microstructure spn File Input
	Number of Intervals
	Bounding Box Range
	Cell Size
	Stair
	Align
	Smooth
	Curve Smoothing
	Laplacian Iterations
	Maximum Optimization Iterations
	Optimization Threshold
	Maximum Parallel Coloring Iterations
	Parallel Coloring Threshold
	Maximum Degenerate Iterations
	Degenerate (Edge Collapse) Threshold
	Adaptive Refinement Type
	Adaptive Refinement Threshold
	Number of Adaptive Levels
	Mesh Void
	Generate Sidesets
	HTet
	Pillow
	Quality
	Debug Processor
	Export Communication Maps
	Write Geometry
	Expand Microstructure Grid
	Capture Geometry
	Threads per Process
	Version
	Processor Arrangement
	Quiet
	Print Input

	Sculpt Examples
	Example 1
	Example 2

	Sculpt Technical Description
	References

	pCamal
	Exporting a Parallel Mesh for pCAMAL

	Parallel Meshing

	Free
	Radialmesh

	Mesh Quality Assessment
	Mesh Quality Assessment
	Automatic Mesh Quality Assessment
	Coincident Node Check
	Controlling Mesh Quality
	Skew Control
	Propagate Curve Bias
	Adjust Boundary

	Metrics for Edge Elements
	Quality Metric Definitions:
	Comments on Algebraic Quality Measures

	Metrics for Hexahedral Elements
	Hexahedral Quality Definitions
	References for Hexahedral Quality Measures

	Mesh Quality Example Output
	Mesh Quality Command Syntax
	Quality Options
	Scope
	Draw
	List
	Filter

	Metrics for Quadrilateral Elements
	Quadrilateral Quality Definitions
	Comments on Algebraic Quality Measures
	References for Quadrilateral Quality Measures
	Details on Robinson Metrics for Quadrilaterals

	Metrics for Tetrahedral Elements
	Tetrahedral Quality Definitions
	References for Tetrahedral Quality Measures

	Mesh Topology Check
	Metrics for Triangular Elements
	Approximate Triangular Quality Definitions:
	Comments on Algebraic Quality Measures
	References for Triangular Quality Measures

	Mesh Modification
	Mesh Modification
	Mesh Smoothing
	Mesh Smoothing
	Global Smoothing
	Focused Smoothing on Groups of Mesh Entities
	Smooth Tolerance
	Boundary Mesh Smoothing

	Adjust Boundary Orthogonal
	Centroid Area Pull
	Condition Number
	Edge Length
	Equipotential
	Laplacian
	Mean Ratio
	Smart Laplacian
	Untangle
	Winslow

	Align Mesh
	Collapsing Mesh Edges
	Creating and Merging Mesh Elements
	Creating Mesh Elements
	Creating Hex and Tet Elements
	Creating Wedge Elements
	Creating Face and Tri Elements
	Creating Edge Elements
	Creating Nodes

	Merging Nodes

	Mesh Cleanup
	Cleaning Up a Tetrahedral Mesh
	Cleaning Up a Hexahedral Mesh

	Remeshing
	Remeshing a Swept Volume Mesh
	Remeshing Tetrahedra
	Inflating a set of Tets

	Edge Swapping
	Matching Tetrahedral Meshes
	Mesh Coarsening
	Hexahedral Coarsening
	Extracting a Single Hex Sheet
	Extracting multiple sheets along a curve
	Uniform hex coarsening

	Mesh Refinement
	Global Mesh Refinement
	Refining at a Geometric or Mesh Feature
	Hexahedral Refinement Using Sheet Insertion
	Refining at a Geometric Feature
	Refining along a path
	Refining a Hex Sheet
	Directional Refinement
	Hex Sheet Drawing

	Local Refinement of Tets, Triangles, and Edges
	Single Entity Refinement
	'N' Tets Through the Thickness Refinement

	Parallel Refinement

	Block Repositioning
	Node and Nodeset Repositioning
	Mesh Pillowing
	Mesh Column Operations
	Column Insertion
	Column Deletion
	Column Swapping
	Column Groups
	Drawing Columns

	Scaling the Number of Elements in a Hexahedral Mesh

	Mesh Validity
	Adaptivity and Sizing Functions
	Mesh Adaptivity and Sizing Functions
	Adaptive Curve Meshing
	Adaptive Surface Meshing
	Adaptive Volume Meshing

	Bias Sizing Function
	Constant Sizing Function
	Curvature Sizing Function
	Exodus II-based Field Function
	Surface/Curve Meshing with Exodus II - based Field Functions

	Geometry Adaptive Sizing Function (Skeleton Sizing)
	Skeleton Sizing Behaviors
	Command Line Syntax
	Basic Arguments
	Scaling and Accuracy Arguments:

	Advanced Arguments
	Lattice Arguments:
	Source Entity Arguments

	Adding User Specified Sizing Sources
	Skeleton with Other Sizing Controls
	Limitations

	Interval Sizing Function
	Inverse Sizing Function
	Linear Sizing Function
	Geometry Adaptive Sizing for TriMesh and TetMesh Schemes

	Mesh Deletion
	Automatic Mesh Deletion

	Free Meshes
	Creating a free mesh
	Disassociating a mesh from its geometry

	Creating Mesh-Based Geometry to fit a Free Mesh
	Merging a free mesh
	Free Mesh Transformation Operations
	Extruding Mesh Elements
	Offsetting Mesh Elements
	Revolving Mesh Elements

	Smoothing a free mesh
	Mesh quality on a free mesh
	Mesh refinement on a free mesh
	Cleaning up a free mesh
	Assigning boundary conditions
	Skinning a free mesh
	Deleting free mesh elements
	Bottom-up element creation
	Exporting free meshes

	Skinning a Mesh
	Mesh Import
	Importing a Mesh
	Importing 2D Exodus Files
	Importing Abaqus Files
	Importing Exodus II Files
	Importing a Free Mesh Without Geometry
	Importing a Mesh Onto Existing Geometry
	Importing a Mesh with Nodeset Associativity
	Importing a Mesh onto Modified Geometry
	Mesh Import Tolerance
	Specifying a Portion of the Mesh to be Imported
	Unique Genesis IDs and Shell Options
	Nodeset Ordering

	Creating Mesh-Based Geometry on Import
	File Name
	Blocks
	Unique Genesis IDs
	Start ID
	Nodesets/Sidesets
	Feature Angle
	Smooth Curves and Surfaces
	Apply Deformations
	Merge
	Merge Nodes
	Export Facets

	Importing I-DEAS Files
	Importing Nastran Files
	Importing Patran Files
	Importing Fluent Files

	Finite Element Model
	Finite Element Model
	Exodus
	Element Block Specification
	Creating Element Blocks
	Assigning a Name or Description to an Element Block
	Defining the Element Type
	Default Element Blocks
	Duplicate Block Elements
	Assigning Attributes to Blocks
	Displaying Element Blocks
	Deleting Element Blocks
	Renumbering Element Blocks
	Automatically Assigning Mesh Edges to a Block (Rebar)
	Diagonal and Orthogonal Rebar Blocks
	Specifying a set of nodes

	Creating Spider Blocks
	Creating Beam Blocks
	Creating Spring Blocks
	Creating Sphere Blocks
	2D Elements
	Mixed Element Output
	Adding Materials to a Block

	Exodus II File Specification
	Exodus II Manual
	Element Block Definition Examples
	Multiple Element Blocks
	Surface Mesh Only
	Two-dimensional Mesh

	Exodus II Model Title
	Exodus Coordinate Frames
	Defining Materials and Media Types
	Exodus Boundary Conditions
	Element Blocks
	Nodesets
	Sidesets
	Element Types

	Nodeset and Sideset Specification
	Creating Nodesets and Sidesets
	Useful hint:

	Assigning Names and Descriptions to Nodesets and Sidesets
	Grouping Faces on a Surface into a Sideset
	Grouping elements in voids and enclosures

	Deleting Nodesets and Sidesets
	Renumbering Nodesets and Sidesets
	Displaying Nodesets and Sidesets
	Nodeset Associativity Data
	Equation-Controlled Distribution Factors
	Nodesets/Sidesets/Blocks Behavior with Geometric Entity Copy

	Non Exodus
	Cubit Boundary Conditions
	CUBIT Initial Conditions
	Using CFD Boundary Conditions
	Inlet Velocity
	Inlet Pressure
	Inlet Massflow
	Outlet Pressure
	Farfield Pressure
	Symmetry

	Using Contact Surfaces
	The Contact Region
	The Contact Pair
	Auto-Contact Tool

	Using Loads
	Forces
	Using Pressure
	Value
	Pressure and Total Force
	Top and Bottom

	Using Heat Flux
	Top and Bottom Values

	Using Convection
	Surrounding
	Coefficient

	Miscellaneous Boundary Condition Commands
	Delete
	List
	Draw
	Highlight

	Using Constraints
	Using Restraints
	Displacements/Accelerations/Velocities
	Fixed or Free
	Displacement Combinations

	Temperature
	Top, Gradient, Middle, Bottom

	Boundary Condition Sets
	*** ABAQUS Parameters ***
	*** NASTRAN Parameters ***

	Export
	Exporting Sierra Files
	Defining PARAMS for NASTRAN
	Instancing Parts with ABAQUS
	Exporting an Exodus II File
	Element and Node ID Maps
	Exporting a Parallel Mesh for pCAMAL
	Converting an Exodus II file to ASCII
	Controlling Exodus II Output Precision
	Large Exodus Format
	Exodus NetCDF4/HDF5 Format
	Exporting Geometry Association with the Exodus Mesh

	Exporting the Finite Element Model
	Supported element types
	Supported boundary conditions types

	Exporting Fluent Grid Files
	Transforming Mesh Coordinates
	Export Mesh and Its Geometry Association

	Step by Step Tutorials
	Step-By-Step Tutorials
	Additional Tutorials

	Geometry Cleanup Process Flow
	ITEM
	ITEM Tutorial
	Overview

	ITEM Tutorial
	Step 1: Import Geometry

	ITEM Tutorial
	Step 2: Setup The FEA Model

	ITEM Tutorial
	Step 3: Remove Small Features

	ITEM Tutorial
	Step 4: Connect Volumes

	ITEM Tutorial
	Step 5: Build a Meshable Topology

	ITEM Tutorial
	Step 6: Meshing the Geometry

	ITEM Tutorial
	Step 7: Validate Mesh

	ITEM Tutorial
	Step 8: Define Boundary Conditions

	ITEM Tutorial
	Step 9: Export the Exodus Model

	Power Tools
	Power Tools GUI Tutorial
	Overview

	Power Tools GUI Tutorial
	Step 1: Import the Geometry

	Power Tools GUI Tutorial
	Step 2: Analyze the Geometry

	Power Tools GUI Tutorial
	Step 3: Healing the Geometry

	Power Tools GUI Tutorial
	Step 4: Mesh Power Tools

	Power Tools GUI Tutorial
	Step 5: Splitting Filleted Surfaces

	Power Tools GUI Tutorial
	Step 6: Web Cutting

	Power Tools GUI Tutorial
	Step 7: Removing Small Surfaces

	Power Tools GUI Tutorial
	Step 8: Tweaking Surfaces

	Power Tools GUI Tutorial
	Step 9: Imprint/Merge

	Power Tools GUI Tutorial
	Step 10: Compositing Surfaces

	Power Tools GUI Tutorial
	Step 11: Meshing the Model

	Decomposition
	Decomposition Tutorial
	Creating Sweepable Volumes Through Webcutting
	Why use sweeping?
	What makes a volume sweepable?
	Basic Sweep Groups
	Points to consider when determining whether a volume is sweepable
	Basic Sweep Paths

	What are some good strategies for decomposing my model?

	Example 1. Sweeping multiple adjacent volumes
	Suggested webcut
	Final mesh

	Example 2. Interlocking rings
	Suggested webcuts
	Final mesh

	Example 3. Webcutting using the sweep option
	Suggested webcuts
	Final mesh

	Example 4. Using the Loft command
	Suggested webcuts
	Final mesh

	Example 5. Multiple sweep directions
	Suggested webcuts
	Final mesh

	Example 6. Employing Symmetry
	Suggested webcuts
	Final mesh

	Example 7. Using virtual geometry in geometry decomposition
	Suggested webcuts
	Final mesh

	Example 8. Sweeping volumes with narrow angles and surfaces
	Suggested webcuts
	Final mesh

	GUI
	GUI Basic Tutorial
	Overview

	GUI Basic Tutorial
	Step 1: Beginning Execution

	GUI Basic Tutorial
	Step 2: Creating the Brick

	GUI Basic Tutorial
	Step 3: Creating the Cylinder

	GUI Basic Tutorial
	Step 4: Adjusting the Graphics Display

	GUI Basic Tutorial
	Step 5: Forming the Hole

	GUI Basic Tutorial
	Step 6: Setting Interval Sizes

	GUI Basic Tutorial
	Step 7: Surface Meshing

	GUI Basic Tutorial
	Step 8: Volume Meshing

	GUI Basic Tutorial
	Step 9: Inspecting the Model

	GUI Basic Tutorial
	Step 10: Defining Boundary Conditions

	GUI Basic Tutorial
	Step 11: Exporting the Mesh

	Command Line
	Command Line Basic Tutorial
	Overview

	Command Line Basic Tutorial
	Step 1: Beginning Execution

	Command Line Basic Tutorial
	Step 2: Beginning Execution

	Command Line Basic Tutorial
	Step 3: Creating the Cylinder

	Command Line Basic Tutorial
	Step 4: Adjusting the Graphics Display
	Command Line
	Mouse

	Command Line Basic Tutorial
	Step 5: Forming the Hole

	Command Line Basic Tutorial
	Step 6: Setting Interval Sizes

	Command Line Basic Tutorial
	Step 7: Surface Meshing

	Command Line Basic Tutorial
	Step 8: Surface Meshing

	Command Line Basic Tutorial
	Step 9: Inspecting the Model

	Command Line Basic Tutorial
	Step 10: Defining Boundary Conditions

	Command Line Basic Tutorial
	Step 11: Exporting the Mesh

	ITEM
	Immersive Topology Environment for Meshing (ITEM)
	Guiding the user through the workflow.
	Providing the user with smart options.
	Automating geometry and meshing tasks.

	How to Use the ITEM Wizard
	The ITEM Workflow
	Using an ITEM Panel
	Task panels that link to other ITEM panels
	Task Panels that Link to Control Panels
	Set-up Panels
	Diagnostic Panels

	Undo Button
	Magic Mesh Button
	Getting Help

	Setting up the Finite Element Model
	Defining the Geometric Model
	Generating a Mesh in ITEM
	ITEM Meshing Suggestions

	Validating the Mesh in ITEM
	Clean Up
	Clean Up the Geometry
	Blend Surfaces
	Resolving Problems with Conformal Assemblies
	Resolving Misaligned Volumes with Manage Gaps/Overlaps Tool
	Resolving Misaligned Volumes with Near Coincident Vertex Checks
	Correcting Merge Problems

	Contact Surfaces
	Geometry Decomposition
	Forced Sweepability
	Bad geometry representation
	Detecting Invalid Geometry
	Resolving Invalid Geometry

	Determining an Appropriate Merge Tolerance
	Opening the Merge Tolerance Panel
	Estimating Merge Tolerance with Small Feature Size
	Fine Tuning the Merge Tolerance
	Setting the Merge Tolerance

	Building a Sweepable Topology
	Small details in the model
	Small Curves
	Small and Narrow Surfaces

	Determining the Small Feature Size
	Why doesn’t the list include small gaps between volumes?

	Recognizing Nearly Sweepable Regions

	Appendix
	Appendix
	Alpha
	Alpha Commands
	Automatic Detail Suppression
	Example

	Automatic Geometry Decomposition
	Cohesive Elements
	Multiple Curves in FLATQUAD Blocks

	Deleting Mesh Elements
	FeatureSize
	Importing Abaqus Files
	Mesh Cutting
	Coordinate Plane
	Planar Surface
	Plane from 3 points
	Extended Surface
	Meshcut Options
	Meshcutting Scope
	Meshcutting Example

	Mesh Grafting
	Grafting Options
	Grafting Scope

	Optimize Jacobian
	Randomize
	Refine Mesh Boundary
	Super Sizing Function
	Test Sizing Function
	Transition
	Triangle Mesh Coarsening

	Available Colors
	Element Numbering
	Node Numbering
	Side Numbering
	Triangular Shell Element Numbering
	Node Ordering
	Side Set Side Ordering

	FullHex vs. NodeHex Representation
	APREPRO
	APREPRO
	Using APREPRO in CUBIT
	Loops
	Deleting APREPRO Variables
	Other Examples

	APREPRO Functions
	Table 1. Geometry Functions
	Table 2. Mesh Functions
	Table 3. Group, Block, and Assemblyl Metadata Functions
	Table 4. ID Functions
	Table 5. Miscellaneous Functions
	Table 6. Pre-defined Variables

	APREPRO Journaling
	APREPRO Comments
	Significant Figures
	Loops and Journaling
	Multi-line Strings

	Python
	Importing Cubit into Python
	Python Interface
	Functions
	Classes

	CubitInterface
	Class Member Functions
	Class Variables
	Member Function Documentation
	init(argv)
	Parameters

	destroy()
	set_cubit_interrupt(interrupt)
	Parameters

	set_playback_paused_on_error(pause)
	Parameters

	Bool is_playback_paused_on_error()
	Return

	Bool developer_commands_are_enabled()
	Return

	str get_version()
	Return

	str get_revision_date()
	Return

	str get_build_number()
	Return

	str get_acis_version()
	Return

	int get_acis_version_as_int()
	Return

	str get_exodus_version()
	Return

	str get_graphics_version()
	Return

	print_cmd_options()
	Bool is_modified()
	Return

	set_modified()
	Bool is_undo_save_needed()
	Return

	set_undo_saved()
	Bool is_command_echoed()
	Return

	Bool is_volume_meshable(volume_id)
	Parameters
	Return

	journal_commands(state)
	Parameters

	Bool is_command_journaled()
	Return

	str get_current_journal_file()
	Return

	cmd(input_string)
	Example
	Parameters

	silent_cmd(input_string)
	Example
	Parameters

	[int] parse_cubit_list(type, int_list, include_sheet_bodies)
	Parameters
	Return

	print_raw_help(input_line, order_dependent, consecutive_dependent)
	Parameters

	int get_error_count()
	Return

	[str] get_mesh_error_solutions(error_code)
	Parameters
	Return

	float get_view_distance()
	Return

	[float] get_view_at()
	Return

	[float] get_view_from()
	Return

	reset_camera()
	unselect_entity(entity_type, entity_id)
	Example
	Parameters

	Bool is_perspective_on()
	Return

	Bool is_occlusion_on()
	Return

	Bool is_scale_visibility_on()
	Return

	Bool is_select_partial_on()
	Return

	int get_rendering_mode()
	Return

	set_rendering_mode(mode)
	Parameters

	clear_preview()
	str get_pick_type()
	Return

	float get_mesh_edge_length(edge_id)
	Parameters
	Return

	float get_meshed_volume_or_area(geom_type, entity_ids)
	Example
	Parameters
	Return

	int get_mesh_intervals(geom_type, entity_id)
	Example
	Parameters
	Return

	float get_mesh_size(geom_type, entity_id)
	Example
	Parameters
	Return

	float get_auto_size(volume_id_list, size)
	Example
	Parameters
	Return

	float get_quality_value(mesh_type, mesh_id, metric_name)
	Parameters
	Return

	str get_mesh_scheme(geom_type, entity_id)
	Example
	Parameters
	Return

	str get_mesh_scheme_firmness(geom_type, entity_id)
	Example
	Parameters
	Return

	str get_mesh_interval_firmness(geom_type, entity_id)
	Example
	Parameters
	Return

	Bool is_meshed(geom_type, entity_id)
	Example
	Parameters

	Bool is_merged(geom_type, entity_id)
	Example
	Parameters

	str get_smooth_scheme(geom_type, entity_id)
	Example
	Parameters
	Return

	int get_hex_count()
	Return

	int get_pyramid_count()
	Return

	int get_tet_count()
	Return

	int get_quad_count()
	Return

	int get_tri_count()
	Return

	int get_edge_count()
	Return

	int get_node_count()
	Return

	int get_element_count()
	Return

	int get_volume_element_count(volume_id)
	Parameters
	Return

	int get_surface_element_count(surface_id)
	Parameters
	Return

	Bool volume_contains_tets(volume_id)
	Parameters
	Return

	[int] get_hex_sheet(node_id_1, node_id_2)
	Parameters
	Return

	Bool is_visible(geom_type, entity_id)
	Example

	ERROR: EOF in multi-line statement
	Parameters

	Bool is_virtual(geom_type, entity_id)
	Example

	ERROR: EOF in multi-line statement
	Parameters

	Bool contains_virtual(geom_type, entity_id)
	Example

	ERROR: EOF in multi-line statement
	Parameters

	[int] get_source_surfaces(volume_id)
	Parameters
	Return

	[int] get_target_surfaces(volume_id)
	Parameters
	Return

	int get_common_curve_id(surface_1_id, surface_2_id)
	Parameters
	Return

	int get_common_vertex_id(curve_1_id, curve_2_id)
	Parameters
	Return

	str get_merge_setting(geom_type, entity_id)
	Example
	Parameters
	Return

	str get_curve_type(curve_id)
	Parameters
	Return

	str get_surface_type(surface_id)
	Parameters
	Return

	[float] get_surface_normal(surface_id)
	Parameters
	Return

	[float] get_surface_centroid(surface_id)
	Parameters
	Return

	str get_surface_sense(surface_id)
	Parameters
	Return

	[str] get_entity_modeler_engine(geom_type, entity_id)
	Example
	Parameters
	Return

	[float] get_bounding_box(geom_type, entity_id)
	Example
	Parameters
	Return

	[float] get_total_bounding_box(geom_type, entity_list)
	Example
	Parameters
	Return

	float get_total_volume(volume_list)
	Parameters
	Return

	str get_entity_name(geom_type, entity_id)
	Example
	Parameters
	Return

	int get_entity_color_index(entity_type, entity_id)
	Example
	Parameters
	Return

	Bool is_multi_volume(body_id)
	Parameters
	Return

	Bool is_sheet_body(volume_id)
	Parameters
	Return

	Bool is_interval_count_odd(surface_id)
	Parameters
	Return

	Bool is_periodic(geom_type, entity_id)
	Example
	Parameters
	Return

	Bool is_surface_planar(surface_id)
	Example
	Parameters
	Return

	Bool get_undo_enabled()
	int number_undo_commands()
	[str] get_aprepro_vars()
	str get_aprepro_value_as_string(var_name)
	Parameters

	Bool get_node_constraint()
	Return

	str get_vertex_type(surface_id, vertex_id)
	Parameters
	Return

	[int] get_relatives(source_geom_type, source_id, target_geom_type)
	Example
	Parameters
	Return

	[int] get_adjacent_surfaces(geom_type, entity_id)
	Example
	Parameters
	Return

	[int] get_adjacent_volumes(geom_type, entity_id)
	Example
	Parameters
	Return

	[int] get_entities(geom_type, include_sheet_bodies)
	Example
	Parameters
	Return

	[int] get_list_of_free_ref_entities(geom_type)
	Example
	Parameters
	Return

	int get_owning_body(geom_type, entity_id)
	Example
	Parameters
	Return

	int get_owning_volume(geom_type, entity_id)
	Example
	Parameters
	Return

	int get_owning_volume_by_name(entity_name)
	Example
	Parameters
	Return

	float get_curve_length(curve_id)
	Parameters
	Return

	float get_arc_length(curve_id)
	Parameters
	Return

	float get_distance_from_curve_start(x, y, z, curve_id)
	Parameters
	Return

	float get_curve_radius(curve_id)
	Parameters
	Return

	[float] get_curve_center(curve_id)
	Parameters
	Return

	float get_surface_area(surface_id)
	Parameters
	Return

	float get_volume_area(volume_id)
	Parameters
	Return

	float get_hydraulic_radius_surface_area(surface_id)
	Parameters
	Return

	float get_hydraulic_radius_volume_area(volume_id)
	Parameters
	Return

	[float] get_center_point(entity_type, entity_id)
	Example
	Parameters
	Return

	int get_valence(vertex_id)
	Parameters

	float get_distance_between(vertex_id_1, vertex_id_2)
	Parameters

	print_surface_summary_stats()
	print_volume_summary_stats()
	int get_body_count()
	Return

	int get_volume_count()
	Return

	int get_surface_count()
	Return

	int get_vertex_count()
	Return

	int get_curve_count()
	Return

	int get_curve_count(target_volume_ids)
	Parameters
	Return

	Bool is_catia_engine_available()
	Return

	[int] evaluate_exterior_angle(curve_list, test_angle)
	Parameters
	Return

	[int] get_small_curves(target_volume_ids, mesh_size)
	Parameters
	Return

	[int] get_smallest_curves(target_volume_ids, num_to_return)
	Parameters
	Return

	[int] get_small_surfaces(target_volume_ids, mesh_size)
	Parameters
	Return

	[int] get_narrow_surfaces(target_volume_ids, mesh_size)
	Parameters
	Return

	[int] get_small_and_narrow_surfaces(target_ids, small_area, small_curve_size)
	Parameters
	Return

	[int] get_surfs_with_narrow_regions(target_ids, narrow_size)
	Parameters
	Return

	[int] get_small_volumes(target_volume_ids, mesh_size)
	Parameters
	Return

	[int] get_blend_surfaces(target_volume_ids)
	Parameters

	[int] get_small_loops(target_volume_ids, mesh_size)
	Parameters
	Return

	[int] get_tangential_intersections(target_volume_ids, upper_bound, lower_bound)
	Parameters
	Return

	[int] get_coincident_vertices(target_volume_ids, high_tolerance)
	Parameters
	Return

	[[str]] get_solutions_for_near_coincident_vertices(vertex_id1, vertex_id2)
	Parameters
	Return

	[[str]] get_solutions_for_imprint_merge(surface_id1, surface_id2)
	Parameters
	Return

	[[str]] get_solutions_for_small_surfaces(surface_id, small_curve_size, mesh_size)
	Parameters
	Return

	[[str]] get_solutions_for_small_curves(curve_id, small_curve_size, mesh_size)
	Parameters
	Return

	[[str]] get_solutions_for_surfaces_with_narrow_regions(surface_id, small_curve_size, mesh_size)
	Parameters
	Return

	[int] get_overlapping_volumes(target_volume_ids)
	Parameters
	Return

	[[int]] get_mergeable_vertices(target_volume_ids)
	Parameters
	Return

	[[str]] get_solutions_for_blends(surface_id)
	Parameters
	Return

	[[int]] get_blend_chains(surface_id)
	Parameters
	Return

	float get_merge_tolerance()
	Return

	str get_exodus_entity_name(entity_type, entity_id)
	Example
	Parameters
	Return

	str get_exodus_entity_description(entity_type, entity_id)
	Example
	Parameters
	Return

	[float] get_all_exodus_times(filename)
	Parameters
	Return

	int get_block_id(entity_type, entity_id)
	Example
	Parameters
	Return

	[int] get_block_ids(mesh_geom_file_name)
	Parameters
	Return

	[int] get_block_id_list()
	Return

	[int] get_nodeset_id_list()
	Return

	[int] get_sideset_id_list()
	Return

	[int] get_bc_id_list(bc_type_in)
	Parameters
	Return

	str get_bc_name(bc_type_in, bc_id)
	Parameters
	Return

	[int] get_nodeset_id_list_for_bc(bc_type_in, bc_id)
	Parameters
	Return

	[int] get_sideset_id_list_for_bc(bc_type_in, bc_id)
	Parameters
	Return

	int get_next_sideset_id()
	Return

	int get_next_nodeset_id()
	Return

	int get_next_block_id()
	Return

	[int] get_block_volumes(block_id)
	Parameters
	Return

	[int] get_block_surfaces(block_id)
	Parameters
	Return

	[int] get_block_curves(block_id)
	Parameters
	Return

	[int] get_block_vertices(block_id)
	Parameters
	Return

	[int] get_block_nodes(block_id)
	Parameters
	Return

	[int] get_block_edges(block_id)
	Parameters
	Return

	[int] get_block_tris(block_id)
	Parameters
	Return

	[int] get_block_faces(block_id)
	Parameters
	Return

	[int] get_block_pyramids(block_id)
	Parameters
	Return

	[int] get_block_tets(block_id)
	Parameters
	Return

	[int] get_block_hexes(block_id)
	Parameters
	Return

	[int] get_volume_hexes(volume_id)
	Parameters
	Return

	[int] get_volume_tets(volume_id)
	Parameters
	Return

	[int] get_nodeset_volumes(nodeset_id)
	Parameters
	Return

	[int] get_nodeset_surfaces(nodeset_id)
	Parameters
	Return

	[int] get_nodeset_curves(nodeset_id)
	Parameters
	Return

	[int] get_nodeset_vertices(nodeset_id)
	Parameters
	Return

	[int] get_nodeset_nodes(nodeset_id)
	Parameters
	Return

	[int] get_nodeset_nodes_inclusive(nodeset_id)
	Parameters
	Return

	[int] get_sideset_curves(sideset_id)
	Parameters
	Return

	[int] get_curve_edges(curve_id)
	Parameters
	Return

	[int] get_sideset_surfaces(sideset_id)
	Parameters
	Return

	[int] get_sideset_quads(sideset_id)
	Parameters
	Return

	[int] get_surface_quads(surface_id)
	Parameters
	Return

	[int] get_surface_tris(surface_id)
	Parameters
	Return

	str get_entity_sense(source_type, source_id, sideset_id)
	Example
	Parameters
	Return

	str get_wrt_entity(source_type, source_id, sideset_id)
	Example
	Parameters
	Return

	Bool is_using_shells(sideset_id)
	Parameters
	Return

	[str] get_geometric_owner(mesh_entity_type, mesh_entity_list)
	Example
	Parameters
	Return

	[int] get_volume_nodes(vol_id)
	Parameters
	Return

	[int] get_surface_nodes(surf_id)
	Parameters
	Return

	[int] get_curve_nodes(curv_id)
	Parameters
	Return

	int get_vertex_node(vert_id)
	Parameters
	Return

	int get_id_from_name(name)
	Example
	Parameters

	[int] get_group_groups(group_id)
	Parameters

	[int] get_group_bodies(group_id)
	Parameters

	[int] get_group_volumes(group_id)
	Parameters

	[int] get_group_surfaces(group_id)
	Parameters

	[int] get_group_curves(group_id)
	Parameters

	[int] get_group_vertices(group_id)
	Parameters

	[int] get_group_nodes(group_id)
	Parameters

	[int] get_group_edges(group_id)
	Parameters

	[int] get_group_quads(group_id)
	Parameters

	[int] get_group_tris(group_id)
	Parameters

	[int] get_group_tets(group_id)
	Parameters

	[int] get_group_hexes(group_id)
	Parameters

	int get_next_group_id()
	delete_all_groups()
	delete_group(group_id)
	Parameters

	set_max_group_id(max_group_id)
	Parameters

	int create_new_group()
	Return

	remove_entity_from_group(group_id, entity_id, entity_type)
	Example
	Parameters

	add_entity_to_group(group_id, entity_id, entity_type)
	Example
	Parameters

	[int] get_mesh_group_parent_ids(element_type, element_id)
	Example
	Parameters

	Bool is_mesh_element_in_group(element_type, element_id)
	Example
	Parameters

	Bool is_part_of_list(target_id, id_list)
	Parameters
	Return

	int get_last_id(entity_type)
	Example
	Parameters
	Return

	str get_assembly_classification_level()
	Return

	str get_assembly_classification_category()
	Return

	str get_assembly_weapons_category()
	Return

	str get_assembly_metadata(volume_id, data_type)
	Parameters
	Return

	Bool is_assembly_metadata_attached(volume_id)
	Parameters
	Return

	str get_assembly_name(assembly_id)
	Parameters
	Return

	str get_assembly_path(assembly_id)
	Parameters
	Return

	str get_assembly_description(assembly_id)
	Parameters
	Return

	int get_assembly_instance(assembly_id)
	Parameters
	Return

	str get_assembly_file_format(assembly_id)
	Parameters
	Return

	str get_assembly_units(assembly_id)
	Parameters
	Return

	str get_assembly_material_description(assembly_id)
	Parameters
	Return

	str get_assembly_material_specification(assembly_id)
	Parameters
	Return

	int get_exodus_id(entity_type, entity_id)
	Example
	Parameters
	Return

	str get_geometry_owner(entity_type, entity_id)
	Example
	Parameters
	Return

	[int] get_connectivity(entity_type, entity_id)
	Example
	Parameters
	Return

	[int] get_expanded_connectivity(entity_type, entity_id)
	Example
	Parameters
	Return

	[int] get_sub_elements(entity_type, entity_id, dimension)
	Example
	Parameters
	Return

	[float] get_nodal_coordinates(node_id)
	Parameters
	Return

	Bool get_node_position_fixed(node_id)
	Parameters
	Return

	str get_sideset_element_type(sideset_id)
	Parameters
	Return

	str get_block_element_type(block_id)
	Parameters
	Return

	int get_exodus_element_count(entity_id, entity_type)
	Example
	Parameters
	Return

	int get_block_attribute_count(block_id)
	Parameters
	Return

	float get_block_attribute_value(block_id, index)
	Parameters
	Return

	[str] get_valid_block_element_types(block_id)
	Parameters
	Return

	int get_nodeset_node_count(nodeset_id)
	Parameters
	Return

	int get_geometry_node_count(entity_type, entity_id)
	Parameters

	str get_mesh_element_type(entity_type, entity_id)
	Example
	Parameters
	Return

	Bool is_on_thin_shell(bc_type_in, entity_id)
	Parameters

	Bool temperature_is_on_solid(bc_type_in, entity_id)
	Parameters

	Bool convection_is_on_solid(entity_id)
	Parameters

	Bool convection_is_on_shell_area(entity_id, shell_area)
	Parameters

	float get_convection_coefficient(entity_id, cc_type)
	Parameters

	float get_bc_temperature(bc_type, entity_id, temp_type)
	Parameters

	Bool temperature_is_on_shell_area(bc_type, bc_area, entity_id)
	Parameters

	Bool heatflux_is_on_shell_area(bc_area, entity_id)
	Parameters

	float get_heatflux_on_area(bc_area, entity_id)
	Parameters

	int get_cfd_type(entity_id)
	Parameters
	Return

	float get_contact_pair_friction_value(entity_id)
	Parameters

	float get_contact_pair_tolerance_value(entity_id)
	Parameters

	Bool get_contact_pair_tied_state(entity_id)
	Parameters

	Bool get_contact_pair_general_state(entity_id)
	Parameters

	Bool get_contact_pair_exterior_state(entity_id)
	Parameters

	int get_displacement_coord_system(entity_id)
	Parameters

	str get_displacement_combine_type(entity_id)
	Parameters

	float get_pressure_value(entity_id)
	Parameters

	str get_pressure_function(entity_id)
	Parameters

	float get_force_magnitude(entity_id)
	Parameters

	float get_moment_magnitude(entity_id)
	Parameters

	[float] get_force_direction_vector(entity_id)
	Parameters

	[float] get_force_moment_vector(entity_id)
	Parameters

	str get_constraint_type(constraint_id)
	Parameters
	Return

	str get_constraint_reference_point(constraint_id)
	Parameters
	Return

	str get_constraint_dependent_entity_point(constraint_id)
	Parameters
	Return

	float get_material_property(mp, entity_id)
	Parameters

	int get_media_property(entity_id)
	Parameters

	[str] get_material_name_list()
	[str] get_media_name_list()
	set_label_type(entity_type, label_flag)
	Parameters

	int get_label_type(entity_type)
	Parameters

	Body body(id_in)
	Parameters
	Return

	Volume volume(id_in)
	Parameters
	Return

	Surface surface(id_in)
	Parameters
	Return

	Curve curve(id_in)
	Parameters
	Return

	Vertex vertex(id_in)
	Parameters
	Return

	reset()
	Body brick(width, depth, height)
	Parameters
	Return

	Body sphere(radius, x_cut, y_cut, z_cut, inner_radius)
	Parameters
	Return

	Body prism(height, sides, major, minor)
	Parameters
	Return

	Body pyramid(height, sides, major, minor, top)
	Parameters
	Return

	Body cylinder(hi, r1, r2, r3)
	Parameters
	Return

	Body torus(r1, r2)
	Parameters
	Return

	Vertex create_vertex(x, y, z)
	Parameters
	Return

	Curve create_curve(v0, v1)
	Parameters
	Return

	Body create_surface(curves)
	Parameters
	Return

	[Body] sweep_curve(curves, along_curves, draft_angle, draft_type, rigid)
	Parameters
	Return

	Body copy_body(init_body)
	Parameters
	Return

	[Body] tweak_surface_offset(surfaces, distances)
	Parameters
	Return

	[Body] tweak_surface_remove(surfaces, extend_ajoining, keep_old, preview)
	Parameters
	Return

	[Body] tweak_curve_remove(curves, keep_old, preview)
	Parameters
	Return

	[Body] tweak_curve_offset(curves, distances, keep_old, preview)
	Parameters
	Return

	[Body] tweak_vertex_fillet(verts, r0, keep_old, preview)
	Parameters
	Return

	[Body] subtract(tool_in, from_in, imprint_in, keep_old_in)
	Parameters
	Return

	[Body] unite(body_in, keep_old_in)
	Parameters
	Return

	move(entity, vector, preview)
	Parameters

	scale(entity, factor, preview)
	Parameters

	reflect(entity, axis, preview)
	Parameters

	[int] get_volumes_for_node(node_name, node_instance)
	Parameters

	int get_mesh_error_count()

	PyObservable
	Example
	Inheritance
	Class Member Functions
	Member Function Documentation
	notify_observers(event_type)
	Example
	Parameters

	PyObserver
	Class Member Functions
	Member Function Documentation
	register_observable(observable)
	Parameters

	unregister_observable(observable)
	Parameters

	notify_observers(observable, event_type)
	Parameters

	CubitFailureException
	Class Member Functions
	Member Function Documentation
	str what()

	Body
	Inheritance
	Class Member Functions
	Member Function Documentation
	[float] get_mass_props()
	Example
	Return

	int point_containment(loc_in)
	Example
	Parameters
	Return

	float volume()
	Example
	Return

	Bool is_sheet_body()
	Example
	Return

	Curve
	Inheritance
	Class Member Functions
	Member Function Documentation
	color(value)
	Example
	Parameters

	int color()
	Example
	Return

	[float] tangent(point)
	Example
	Parameters
	Return

	[float] curvature(point)
	Example
	Parameters
	Return

	[float] closest_point(point)
	Example
	Parameters
	Return

	[float] closest_point_trimmed(point)
	Example
	Parameters
	Return

	float length()
	Example
	Return

	[float] curve_center()
	Example
	Return

	[float] position_from_fraction(fraction_along_curve)
	Example
	Parameters
	Return

	float start_param()
	Example
	Return

	float end_param()
	Example
	Return

	float u_from_position(position)
	Example
	Parameters
	Return

	[float] position_from_u(u_value)
	Example
	Parameters
	Return

	float u_from_arc_length(root_param, arc_length)
	Example
	Parameters
	Return

	float fraction_from_arc_length(root_vertex, length)
	Example
	Parameters
	Return

	[float] point_from_arc_length(root_param, arc_length)
	Example
	Parameters
	Return

	float length_from_u(parameter1, parameter2)
	Example
	Parameters
	Return

	Bool is_periodic()
	Example
	Return

	Entity
	Inheritance
	Class Member Functions
	Member Function Documentation
	destroy_cubit_entity()
	[float] bounding_box()
	Example
	Return

	[float] center_point()
	Example
	Return

	int id()
	Example
	Return

	is_visible(visibility_flag)
	Example
	Parameters

	int is_visible()
	Example
	Return

	is_transparent(transparency_flag)
	Example
	Parameters

	int is_transparent()
	Example
	Return

	GeomEntity
	Inheritance
	Class Member Functions
	Member Function Documentation
	mesh()
	Example

	Bool is_meshed()
	Example
	Return

	smooth()
	Example

	remove_mesh()
	Example

	str entity_name()
	Example
	Return

	entity_name(name)
	Example
	Parameters

	[str] entity_names()
	Example
	Return

	int num_names()
	Example
	Return

	remove_entity_name(name)
	Example
	Parameters

	remove_entity_names()
	Example

	int dimension()
	Example
	Return

	[Body] bodies()
	Example
	Return

	[Volume] volumes()
	Example
	Return

	[Surface] surfaces()
	Example
	Return

	[Curve] curves()
	Example
	Return

	[Vertex] vertices()
	Example
	Return

	InvalidEntityException
	Class Member Functions
	Member Function Documentation
	str what()

	InvalidInputException
	Class Member Functions
	Member Function Documentation
	str what()

	Surface
	Inheritance
	Class Member Functions
	Member Function Documentation
	color(value)
	Example
	Parameters

	int color()
	Example
	Return

	[[Curve]] ordered_loops()
	Example
	Return

	[float] normal_at(location)
	Example
	Parameters
	Return

	[float] closest_point_trimmed(location)
	Example
	Parameters
	Return

	[float] closest_point_trimmed(location)
	Example
	Parameters
	Return

	int point_containment(point_in)
	Example
	Parameters
	Return

	[float] principal_curvatures(point)
	Example
	Parameters
	Return

	[float] position_from_u_v(u, v)
	Example
	Parameters
	Return

	[float] u_v_from_position(location)
	Example
	Parameters
	Return

	[float] get_param_range_U()
	Example
	Return

	[float] get_param_range_V()
	Example
	Return

	float area()
	Example
	Return

	Bool is_planar()
	Example
	Return

	Bool is_cylindrical()
	Example
	Return

	Vertex
	Inheritance
	Class Member Functions
	Member Function Documentation
	color(value)
	Example
	Parameters

	int color()
	Example
	Return

	[float] coordinates()
	Example
	Return

	Volume
	Inheritance
	Class Member Functions
	Member Function Documentation
	float volume()
	Example
	Return

	color(value)
	Example
	Parameters

	int color()
	Example
	Return

	[float] principal_axes()
	Example
	Return

	[float] principal_moments()
	Example
	Return

	[float] centroid()
	Example
	Return

	Navigation XML Files
	FASTQ
	Periodic Space Filling Models (Tile)
	Initial setup
	Creating Nodesets
	Smoothing
	Example

	References

	Credits
	Credits

	Quick Reference
	Quick Reference

	Index

