SANDIA REPORT

SAND2016-1649R
Unlimited Release
Printed February 2016

CUBIT

Geometry and Mesh Generation Toolkit
15.1 User Documentation

Ted Blacker, Steven J. Owen, Matthew L. Staten, Roshan W. Quadros, Byron Hanks,
Brett Clark, Ray J. Meyers, Corey Ernst, Karl Merkley, Randy Morris, Corey McBride,
Clinton Stimpson, Michael Plooster, Sam Showman

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy's National Nuclear Security Administration under contract DE-AC04-
94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov

Online ordering: http://www.osti.gov/scitech

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov

Online order: http://www.ntis.gov/search

mailto:reports@osti.gov
http://www.osti.gov/scitech
mailto:orders@ntis.gov
http://www.ntis.gov/search

SAND2016-1649R
Unlimited Release
Printed February 2016

CUBIT

GEOMETRY AND MESH GENERATION TOOLKIT
15.1 USER DOCUMENTATION

Ted Blacker, Steven J. Owen, Matthew L. Staten, Roshan W. Quadros, Byron Hanks, Brett Clark
Computational Simulation Infrastructure Department, Org. 1543
Sandia National Laboratories
P.O. Box 5800
Albuquerque, New Mexico 87185-MS0897

Ray J. Meyers, Corey Ernst, Karl Merkley, Randy Morris, Corey McBride, Clinton Stimpson,
Michael Plooster
Elemental Technologies Inc.
17 N Merchant St.
American Fork, Utah

Sam Showman
Caterpillar, Inc., Peoria, IL

Abstract

CUBIT is a full-featured software toolkit for robust generation of two- and three-
dimensional finite element meshes (grids) and geometry preparation. Its main goal is
to reduce the time to generate meshes, particularly large hex meshes of complicated,
interlocking assemblies. It is a solid-modeler based preprocessor that meshes volumes
and surfaces for finite element analysis. Mesh generation algorithms include
quadrilateral and triangular paving, 2D and 3D mapping, hex sweeping and multi-
sweeping, tetrahedral meshing, and various special purpose primitives. CUBIT
contains many algorithms for controlling and automating much of the meshing
process, such as automatic scheme selection, interval matching, sweep grouping, and
also includes state-of-the-art smoothing algorithms

This report serves as the user’s documentation for the CUBIT software and provides
an overview of capabilities, instruction for software execution with a variety of
examples.

Table of Contents

CUBIT 15.1 USer DOCUMENTALIONoveiviiieiiisiieiieieie ettt sttt 1
10T [N ot AT] o PSPPSRI 3
INEFOTUCTION ...t bbbttt e bbbt bbbt ne e e 3
CUBIT MaIING LISES ...ttt ettt st et sb et ne e nre e enes 3
Hardware REQUITEMENTS.ccuviieiieiieeie et te ettt e et eteese e s taeaeeneesreenaeaneenneens 4
HOW t0 USE ThiS MANUALcceiiiiiiiee e et 4
KBY FRATUIES ...ttt ettt e e s st e e s ab e e e nbb e e e bb e e e bb e e e bneeentnee s 5
Geometry Creation, Modification, and Healing...........ccoccovvviiiiiiincnieneee e 5
NON-Manifold TOPOIOGYveoiveiiiiieii et ae e nneas 5
GeomEtry DECOMPOSITION.c.eiiieiiriie ittt st sbe e b e enes 5

IMESH GENEIALION ...ttt bbbttt 5
Boundary CONGITIONS.ccuiiiiiiiieicee ettt nneas 5
o] T=T O A Y/ 0TSSR 6
Graphics Display Capabilitiescouiiiiiii s 6
Graphical USer INTEITACEcueivei e 6
Command LiNe INTEITACE.........uoiieiiiie et 6
Licensing and DiStrIDULION.........ccviiiiieie et nne e 6
Problem Reports and ENhancement REQUESTES.coviiiriiiieiieseeiesee e 6
TrademMarK NOTICEoviiiiiiieee ettt bbbt 6
ENVIFONMENT CONTIOL ... ettt nb e neenreas 9
ENVIFONMENT CONIOL ...t bbbt 9
SESSION CONLIOL ...ttt et b b et e st e b e e e enes 9
SESSION CONTIOL... et b ettt 9
Starting and EXiting @ CUBIT SESSION.........ccuiiiiiiiieieeie e 9
Execution Command SYNTAXcccveueiiierieieieese e e e saesae e sre e sneenaeens 10
INIEAHZALION FIIES ... e 14
ENVIronmMent VariableS.........ccoiiiiiiiiicee e 14
COMMEANGA SYNTAX ...ttt ettt b e e b et e e e e beenbeeneenreas 16
Command LiNE HEIP ..o 18
ENVIronment COMMANGSoiiiiiieiieie et ee e 18
Saving and Restoring @ Cubit SESSION.........cccviiieiiee e 21
Interrupting RUNNING TASKS.....c..oiiiiieieiiesieee et 22
Recording and PIAYDACKc.ccuiiieiicic s 23
Command Recording and Playback ..o 23
Journal File Creation and PlaybackK.............cccccveeiiiiiicie e 23
Controlling Playback of Journal FilesS...........ccooeiiiiiiiiiiee e 23
Automatic Journal File Creationccocuoiiiiiiiene i 24

1A1€SS JOUMN@AL FHIES ... e 26
Location Direction SPECITICALIONc.cciueiiieiiiie e nres 27
Location, Direction and AXIS SPECITICAIONovveiiiiiiiiieeie e 27
Drawing a Location, DIreCtion, OF AXISccccveieiieereeiesieseeieeseesieesee e sseesesseesaeens 27
SPECITYING AN AXIS vttt sttt b et eesbe e b e beenbeeneenreas 28
SPECITYING @ DIFECHIONuviiicie ettt e e naennes 29

Table of Contents

SPECITYING @ LOCALION.....cuiiiiiiie et nreas 32
Specifying a LoCation 0N @ CUMNVEccceeieieiiee et sae e enes 36
SPECITYING @ PIANE ... 38
LiSting INFOrMALIONc.veiieiicece et esaaennenneas 44
Listing INFOrMALION.......ccuiiieiiee e 44
LiSt MOdel SUMMAIYooieiiee et nae e 44
IS A CT=To] 01 1=1 1 OSSPSR 45
LISE IMIBSI ... 46
LiSt SPECIAl ENTITIES......coiiiiie et 46
List CUDIT ENVIFONMENTviiiieitiieisie et 47
GUI 49
Graphical USer INTEITACEcveieeiice et 49
CUBIT Application WINGOWcciiiiiieiiniesieenie e nreas 49
CONIOI PANEL ... bbb 53
GraphiCs WINAOW.......couiiiiiiieiie sttt sttt st nbe e nreas 57
THEE WIBW ..ttt bbbttt b e bbb bt bt e e 64
0] o=l Y=o 1 (o] PP 90
Command LiNe WOIKSPACEccueiueeieiiesieeieseesieeie s e sie e e ssee e ae e steeneessaesaaenaesnes 93
JOUMNAL FHIE EAITON ...t 95
TOOIDAIS ...ttt bbbt 97
DIrOP DOWN IMBINUS ...ttt ettt 98
Graphics WINAOW CONLIOL...........oiieiiic ettt 104
Graphics WINAOW CONEIOL.........covoiiiiiiie e 104
Graphics CHPPING PlaN€........ccuiiiiiiee e 105
Colors 107
Drawing, Locating, and Highlighting ENtitiescccoovevviiiii i 110
Drawing Locations, Lines and POIYQONS.c.coceiiiiiiiienie e 113
ENULY LADEIS.....c.oieieceee e 114
(G o] o TSR OF: 4o 1T - WU PRRP 116
(€] o] 0T [0t 1Y [0 [T SRS 118
Graphics WIndow Size and POSITIONcccooiiiiiiieiiiie e 120
HArdCOPY OULPULeeviceie ettt re e snaenneeneenneas 120
Graphics Lighting MOdel ..o 121
MESH ViISUBHZALIONeveiiiieic e 122
Miscellaneous GraphiCs OPLIONS.........cuiiiiiiiieiiee e 123
Mouse Based View Navigation: Zoom, Pan and Rotate...........c.cccceceviveveiiieieeinnnnn, 127
SAVING GraphiCs VIBWScouiiiiiiiiiiieie ettt sttt nne e 130
Updating the DISPIaYccveiiiieieese e 131
Geometry, Mesh, and BC Entity VISiDIlIty ..o, 132
Command Line View Navigation: Zoom, Pan and Rotate............ccccceevverveiveseennnn, 133
Entity Selection and FIlLering ... 134
ENLILY SEIECTION ...t eeenes 134
Command Line Entity SPecifiCationccocviiiiiiiiiie e 134
Extended Command Line Entity Specification...........cccocvevviieiiveie s 137
Selecting Entities With the MOUSEoiiieiiiiiiiei e 140
LCTcTo] 101 (YOO P RO PRUPROPPROTPS 145

Cubit 15.1 User Documentation

GBOIMEBLIY ...tttk h ettt ettt e e bt e et e e b et e mt e e ehe e e abe e ehe e e b e e nrn e e beeereeennee e 145
MOl DEFINITIONS ...ttt bbbt 145
ACIS GEOMELIY KEIMEL ...t 145
MESN-BaSed GEOMELIYcciueiieiiieie e ee st se e ste et ste e et sae e e sneeneenneas 146
CUBIT GEOMELIY FOIMALS......coiuiiiiieiiieeiee ettt n e 149
(C1=To 00 1= 1 O (T 4 o] o PSSR 150
GEOMELIY CIEALION ...ttt sttt ettt ettt et e b e e sbeeneesbeenne e 150
PrIMITIVE GEOMELIY ...eviiieieieee ettt ettt e et e sneenreeeeenes 151
BOttOM UP Creationcc.eoiiieieiie ettt sreas 155
THANSTOIMS ..t b bbbttt bbbt ne e e 179
GEOMELIY TraNSTOIMIS. .. .ot nae e 179
A T | O] .10 4= T USSR 179
(070] 0) @0 14111 F- T [0 FO RSP RP 179
IMOVE COMMANT ...ttt ettt bbbt nns 180
Reflect COMMANG........c.oiiiiee e 181
ROtate COMMEANTcuiiiiiiiiiiee bbb 182
SCalE COMMANG..... oottt reenae e 182
BOOIBANS bbbt b et eas 182
GEOMELIY BOOIBANS ...ttt nae e 182
INEEISECT ...t 183
Subtract183
Unite 183
DECOMPOSITION ...ttt se et e e s e b e et e e seesbeebeenbesbeenbeeneenreas 184
Geometry DECOMPOSITION.cc.eiieiieie e s e e et et e e e e esreeneesreenneens 184
WED CULTING -ttt ettt ettt ettt e e beenbeeneenneas 184
SPHITING GEOMELIY ...eeeeeceee et esre e e sraenneens 190
SECHION COMMANG ...t ettt reenae e 207
Separating Surfaces from BOGIESccevveiiiiiiieie e 207
Separating Multi-Volume BOGIES.........ccuiiiiiiiieiieie e 207
Cleanup and DEefEaLUIINGvcveiieieere ettt e et e et e e sreeneenes 208
Geometry Cleanup and Defeaturing.........cocererierieniiie e 208
TWEAKING GROMEIIY . ..eveeiiciie sttt e e ae e e sraeneeeneenneens 208
RemoVvIiNg GEOMELIC FEATUIEScciueieiiiieie ettt 226
Healing 228
AULO CLBAN ...ttt ettt e st et e e be e b e beenbeeneenreas 231
DebUGUING GEOMELIYeeeiieie et e re e nneas 234
FINdINg SUIface OVEIIADcoveiiiiieee e e e 235
GEOMEIIY ACCUIACY ...eiiuivieieiiie sttt ettt e sttt ettt e e nbb et e e be e s bb e e e bneeannes 237
ReguIarizing GEOMELIYc.couiiiiiieieee et 237
StItChiNG SNEEt BOUIES........civveieiiesiieie ettt nne e 238
Trimming and EXIENdING CUIVEScoiiiiiiieieiie e e 238
Validating GEOMELIYvveieeiece ettt e e e e naeeneenres 240
IMIPEINT IVIBIGE ..ottt sttt b e b et et e e be e s e e s b e et e neenbeeeeenes 241
Geometry Imprinting and MEergingccooveveeieiieeie e 241
Examining Merged ENTITIES..........cooeiiiiiiieice e 241
IMPFINEING GEOMELIYviiieie ettt et raesaeeneenreas 241

Table of Contents

MEIQE TOIBIANCE. ...ttt bttt ettt enbeeneenreas 243
METIGING GEOMELIY ...ecvviieiecieeie ettt e sre e este e e sre e teesaesneessaeneenrens 244
Using Geometry Merging to Verify GEOMELIYcccoeiieiiiiieiieie e 245
(O T4 a =T o] T S PS 246
VITTUBL GROMEBLIY ...ttt sttt b e be e e e reesbe e e e s reenbe e 246
VITTUBL GROMIEBLIY ...ttt ettt et este e teeneesnaesneaneennes 246
(Of0] | =T oSl ©1=To] 44 1=1 1 Y SO P PR P 247
(OF0] 0] To 1S 1 (=N C1=To 01111 Y 2SRRI 251
PartitioNed GEOMELIYeoiuieiiiie ittt sre et s 254
Deleting Virtual GEOMELIYc..oiiee et aa e 259
SIMPITY GEOMELIY ... ettt nae e 260
(€= 1100 (=11 A O 1=] 0] - LU o] o PSS 263
AdJUSEING OFTENTALIONeeiiiiiie ettt sb e nreas 263
LCT (01U o J TP OPRRPPROPPPROP 264
GROMELIY GIOUDS ..veeitietee ettt e etee et etttk et e et e et e e sae e et e e ae e et e e ebeeebeeasneebeennneennes 264
Propagated GrOUPSc.eieerieeieeieseesiesseesteesteeseesreesseaseesseessesseesseesteassesseeseaneesseessennes 265
BaSiC Group OPEIAtIONSeeiuiiiiiieiieiie sttt sttt sae e e sresneenneas 274
(C] 0T TS [] o]] ot USROS 276
QUAITLY GIOUPS ...ttt sttt sttt et b et e e bt e sbeeneesbeenne e 276
ALITTDULES ...ttt bbb bbbttt b ettt et ens 277
GEOMELIY ALLIIDULES ... e ae e 277
PersiSteNt ATITDULEScoviiiiieiicee e 277
ENLILY IDS ..o ettt sttt ettt r e e 279
ENLILY NAMES ..ottt esa e e e eneesreenennes 280
ENTILY MEASUIEIMENT ...ttt ettt sb et sb e b e beeneenneas 283
MEASUIE BEIWEEN ... 283
MEASUIE SIMAIL ...ttt b e nreas 284
MEASUIE ANGIE ...ttt e e ne e reeneenreas 284
IMEASUIE VOIM ...ttt sttt et et re e b e et e nreas 284
IVIBTAOALA. ... bbbt bbb bt 285
Parts, Assemblies, and Metadata...........ccoooveriiiriieiesie e 285
Importing and EXpOrting Metadatacceeveieiieieeiesie e se e 285
Metadata ALIIDULESoiiiiiie e nreas 286
Working With Parts and ASSEMDIIES..........ccviieiiiiiiieecc e 289
GEOMELIY DIBLION........eiieii ettt ettt bttt et et sre e e enes 292
18] 00 o TSRO OPRRUPRPOPRPPS 293
IMPOITING GEOMELIY ...ttt sttt beesbe e e 293
IMPOITING ACIS FIIES ...ttt sae e nnes 293
IMPOITING FACEE FIIES.....eiiiiiieice e 294
IMPOrting FASTQ FIlES......ei e nneas 298
IMPOItiNG Granite FIlESooiiiiiii e 298
IMPOITING IGES FIIES ...t nneas 298
IMPOITING STEP FHIES ... 299
Ly d T PP U PSP P RPPP PP 300
EXPOrtiNg GROMELIY ...ttt sttt st e 300
EXPOrtiNg ACIS FIlES ...ttt 300

Cubit 15.1 User Documentation

EXPOrting FACEE FIlES.....ccueiiiiii e e 301
EXPOrtiNg IGES FIIES ..ottt 301
EXPOrtiNg STEP FIlES ... e e 302
Y o] A Tt aT=T - A o o SR 303
MESN GENEIALION ...ttt sttt e et e b e e st e nbeebeenbesbeebeeneenreas 303
o] O A Y 0SSR 303
MESN GENEIALION PIOCESScuviivieiieiietiesieeiesiee sttt sttt esbe e nreas 303
MESNING the GEOMELIYc.ei ettt ettt et esreeteensessaesreeneenreas 304
Default Scheme and Interval SEIECtioNcoiiiiiiiiiie e 305
Continuing Meshing After a Mesh Failure..........ccccooov e, 305
INEEIVAl ASSIGNMENT ..ottt sb et e bt esreeeeenes 305
INtErval ASSIGNMENToviieieiiee et ra e te e raesaeeneenreas 305
Automatic Specification of Interval SIZe ..., 306
Explicit Specification of INtervals...........ccevv i 308
Explicit Specification of Intervals Using Interval Size..........cccccoooviiiiiiiiiiiienen 308
Additional Interval CONSIIAINTSc.cciveiiiiieiieir e 309
Vertex Sizing and Automatic CUrve BIaSiNgcccocererienieninie e 309
INTEIVAL FINTNINESS ...ttt e te s e s naesaeeneenreas 310
INterval MatChiINGooiiiee e 311
MESN INTEIVAL PIEVIEW......cvieie ettt sae e nneas 312
PeriodiC INTEIVAIS.......coeiiieiee e 312
REIAtIVE INLEIVAIS.......ecieiieee e 312
MESNING SCNBIMES ...ttt sbe e be b e s be e beeneenreas 313
AUtomMatic SChemMe SEIECTION...........ccuiiiee e 313
MESNING SCNEIMES ...t ereas 316
D01 0] [ToF: 4 o] o S SRSS SRR 318
(O00] 11Y7=] £5{ o] 1SR OP PSP 321
TradItIONAl ..o 326
Parallel MESNINGooiiieiee e 373

Free 416
MeSh QUANITY ASSESSIMENT......ceiiiiiiiiieitieie ettt sttt sre et nbesbeesbeeneenreas 420
Mesh QUAlITY ASSESSIMENTecieieee e e e e e eneenrees 420
Automatic Mesh Quality ASSESSIMENTcccueiiiiiriiiie e 421
Coincident NOGE ChECK.........ecuiiieiieie e nne e 422
Controlling Mesh QUAITYoiiiiiiiiiie e 422
Metrics for EAge EIBMENTSoiiie e 423
Metrics for Hexahedral EIBMENtS...........coovoiiiniiei e 424
Mesh Quality EXxample OUIPUL........ccooiiiieecieceee e 425
Mesh Quality Command SYNTAXccceieerieiiriieie e 427
Metrics for Quadrilateral EIEMENTScccveiiiiiieiie e 430
Metrics for Tetrahedral EIBMENtS..........c.ooviiiiiii e 432
Mesh TopPOoIogy ChECKc.eceieceee e 433
Metrics for Triangular EIEMENTSooiiiiiiieiic e 436
MESN MOUITICALION......eeviiie ettt e esreesteesbesraesneeneenreas 437
MESN MOTITICALION ... e ereas 437
MESN SIMOOTNING.......eeiicie e re e nrees 438

Table of Contents

AN MBS ..t nre s 448
Collapsing MeSh EUQESccvveieiieiiee ettt nne e 449
Creating and Merging Mesh EImMentsS ..., 449
o] O 1= T o S SRUSS SRR 452
REMESNING ...ttt r e e s 454
[0 [TV o] o 1] T SR 456
Matching Tetrahedral MESheScov i 457
o] A O T T 1= T 1o o S SRSS SRR 458
MESN REFINEMENT ...t e ereas 459
BIOCK REPOSITIONINGvevieiieie ettt sneeneennees 472
Node and Nodeset REPOSITIONINGccviiieieiieiieie et 472
MESN PHIOWING ..ottt sne e nneas 473
Mesh ColUMN OPEIALIONS........ccuiiieiiiie ettt nreas 475
Scaling the Number of Elements in a Hexahedral Mesh............ccccccvevviiiiiccciieneen, 479
MESN VAIIAILY......eeiieciieiiee et ettt st et ne e b e e beeneenreas 485
Adaptivity and SIZING FUNCHIONS........c.cciiiieiiie et 485
Mesh Adaptivity and Sizing FUNCHIONSc.oovriiiiiiieiceeee e 485
Bias SIZING FUNCLIONooiiie et re e eneas 487
Constant SIZING FUNCHIONoviiiiiieiiiie e 492
Curvature Sizing FUNCHION.........coiiiiee e 493
Exodus I1-based Field FUNCHIONccoiiiiiiii e 494
Geometry Adaptive Sizing Function (Skeleton Sizing)ccccceevveviveveiiinveeie e, 496
INterval SIZING FUNCLIONoiiiiiicce e 501
INVErse SIZING FUNCHION ..o nae e nneas 502
Linear SIZiNG FUNCLIONooiiiiiiiieece e 503
Geometry Adaptive Sizing for TriMesh and TetMesh Schemescccccceeveivenen. 504
MESN DIBTION ...ttt sttt sttt st et e sbesbe e beeneenreas 505
AUtoMAtiC MeSh DEIBLIONcveiiiiiiiieee e 505
FPEE IMIEBSNIES ...ttt sttt s e b e et e e s et ebeenb e b e e beeneenreas 505
Creating @ free MESN ..o 506
Creating Mesh-Based Geometry to fit a Free Mesh.........cccoooiiiiniiiincieee, 506
MErgiNg @ TrE8 MESNiivieieee e reeneenreas 507
Free Mesh Transformation OPerations.............ccooeererieniernniee e 507
SMOOLhING @ TrEE MESN ... 510
Mesh quality 0N @ free MESh........ooiii s 511
Mesh refinement 0n a free MESHooviiiiii e, 511
Cleaning Up @ Tre8 MESNeiiiiie e e 511
Assigning boundary CONAITIONSc.coveiiiiieiieir e 512
SKINNING @ Free MESH ... e 513
Deleting free mesh eleMENtSccvee i 513
BOttom-up element CreAtIONeeiii i 514
EXPOrting fre8 MESNESoiveeiecc e 514
SKINNING @ MESN ..ttt sttt et et r e e e enes 514
TS T 0T T USSP PSRRI 515
IMPOITING @ IMIESH ...t nreas 515
IMPOrting 2D EXOAUS FIIESc.eoiiieie et 515

Vi

Cubit 15.1 User Documentation

IMPOrting ADAQUS FIIES ..o e 516
IMPOrting EXOAUS T FIIES.......oevieiicie e 517
IMPOItING I-DEAS FIIES ... e 525
IMPOrting NaSIFAN FIlES.......ccveiiei e 525
IMPOItING Patran FIlESc..oiiiiiieie e 525
IMPOItING FIUBNT FIIES ...t 526
Finite EIEMEnt MOGEIoouoiee et 527
Finite EIemMent MOGElooiii e 527
EXOTUS. ..ttt ettt R bt R e R et e b be e beeneenreas 527
Element BIOCK SPECITICALIONccveiiiiieiiece e 527
EX0dus 11 File SPECITICAtIONoiieiiiieiieie e 537
EXOdUS T MOE THtIE ..o 538
EXOdUS CoOrdinate Framesc.cooveiiiiiiieii ettt 538
Defining Materials and Media TYPESccveiuveiieiiieie e 539
Exodus Boundary CONAITIONS.coiiiiiiieiiiie et 540
Nodeset and Sideset SPECITICALIONcccverieiieiieiece e 541
INON EXOUUS. ...ttt sttt b et e st e st e et e e st e s bt et e emeenbeebeenbesbeebeeneenreas 548
Cubit Boundary CONItIONS.........c.civerieiieiieiesieseese e see e seesee e aesree e eseesnaesseans 548
CUBIT INitial CoNGITIONSccviiiiiieiiiie e 550
Using CFD Boundary CoNditioNSc.ccvveiiiieiieiesieseese e sie e siaeses e sse e 550
USING CONLACE SUMTACESoveeriiiiie et 551
LU 1 [0 T 0 T U SR 552
Miscellaneous Boundary Condition Commands...........cceevvereerenienenneniie e 555
USING CONSIIAINTS ...c.veeeieiiiesieeie ettt e et e e sreete s e sneeeeeneenreeneennes 556
USING RESIIAINTS ...ttt sttt ettt et sb et e e sbe e e nnes 556
Boundary Condition SEtS..........ccuiiveiiiieiieie e 559
0T o TP PP PP PPPPPPR 560
EXPOrting SIEITA FIlES.....c.veieee et 560
Defining PARAMS fOr NASTRANoiiitiie e 560
Instancing Parts With ABAQUScooiiiieeece e 560
Exporting an EXOAUS T FIlEc.ooiiieiee e e 561
Exporting the Finite Element Modelcccooveiieii i 563
Exporting FIUENt Grid FIlES..........coviiiiiiei e 566
Transforming Mesh COOrdINALES.........uecuveieiiere e 568
Export Mesh and Its Geometry ASSOCIALION.ccoerieiieriiiie e 569
Y] I o) V] (=] I IV (] -SSP 571
StEP-BY-StEP TULOITAIS.ottt et 571
AddItIONAl TULOTTAIS ... 571
Geometry Cleanup ProCess FIOW.........ccoiiiiiiiiiieie e e 573
ITEM575
ITEM TULOTAL ...t 575
ITEM TULOTTAL ..o 576
ITEM TULOTTAL ..o 577
ITEM TULOTTAL ... 579
ITEM TULOTTAL ..ottt nreas 585
ITEM TULOTTAL ... 588

vii

Table of Contents

I =AY B UL (0T - | R 592
I =1 I IV (0T - 597
I =AY B UL (0T - | SRR 598
LI =1 I IV (0T - 602
(01T 0T £ TR 604
POWEr TOOIS GUI TULOTIAL......cuveiiciiii ittt eree e ree e 604
Power TOOIS GUI TULOIIAL.......cociiiiiei e 605
POWEr TOOIS GUI TULOTIAL......cuviiiciiie ittt erre e b 609
Power TOOIS GUI TULOIIAL.......ocoiiiiiii e 613
POWEr TOOIS GUI TULOTIAL......cuviiiciiii ittt erre e b 616
Power TOOIS GUI TULOIIAL.......occiiiiiic e 617
POWEr TOOIS GUI TULOTIAL......cuviiiciiii ittt erre e b 621
Power TOOIS GUI TULOIIAL.......occiiiiiii it 628
POWEr TOOIS GUI TULOTIAL......cuviiiceiii ettt erre e b 633
Power TOOIS GUI TULOIIAL.......o.coiiiiii e 636
POWEr TOOIS GUI TULOTIAL......cuviiiciiii ittt erae e b 638
Power TOOIS GUI TULOIIAL.......occiiiiiic it 647
[=Tot]] o 1o 1571 1 o] SRR PSSR 653
DecompOSItIoN TULOMIAL........ccoiiiiiii e 653
Example 1. Sweeping multiple adjacent VOIUMES...........cccccvvieiiveresieieece e 658
Example 2. INterlocking riNgS ..o s 661
Example 3. Webcutting using the SWeep Optioncccccevviieiveresiie e 663
Example 4. Using the Loft command............ccoooiiiiiiiieice e 665
Example 5. Multiple SWeep dir€CtioNScccocvevveieeieiiese e 667
Example 6. EmpIOYING SYMMELIYooviiiiiiie e 670
Example 7. Using virtual geometry in geometry decomposition............ccccceevvernenne. 683
Example 8. Sweeping volumes with narrow angles and surfaces...........c.ccoccevvenenne. 694
GUI 708
(GO T = T TS (o I (o - 708
(10 I Y T (o IV (0] £ - | PR 710
(GO T =TT (o I (o - 711
(10 I Y T (o IV (0] £ - | O 714
GUI BASIC TULOIAD ..ottt e bree s 715
(10 I Y T (o IV (0] £ - | TR 716
(GO T = T TS (o I (o - 718
(10 I Y T (o IV (0] £ - | PR 721
(GO T = T TS (o I (o - 724
(10 I Y T (o IV (0] £ - | SRR 726
(GO T =TT (o I (o - 728
(10 I Y T (o IV (0] £ - | PR 730
(70 041 aF=Ta [0 I I T T USRI 731
Command Line BasiC TULOMIAlcocviiiiiiiiiiii ettt 731
Command Line BasiC TULOIIAlc.ueviiiiiiiiii it 733
Command Line BasiC TULOMIAlcocviiiiiiiiiiii et 733
Command Line BasiC TULOIIAlc.ueviiiiiiiii it 734
Command Line BasiC TULOMIAlcocviiiiiiiiiiii et 735

viii

Cubit 15.1 User Documentation

Command Line BasiC TULOMAlcccciiiiiiiieiieiiee e 736
Command Line BasiC TULOMAlcceiiiiiii e 737
Command Line BasiC TULOMAlccccviiiiiiiiiieiere e 739
Command Line BasiC TULOMAlc.coeiiiiiii e 740
Command Line BasiC TULOMAlcccceiiiiiiiiiiesiee e 742
Command Line BasiC TULOMAlcoeiiiiiiiii e 747
Command Line BasiC TULOMAlccocuiiiiiiiiiiieiee e 747
ITEM bbb bbbttt bbbt R R bbb bbbt e et 749
Immersive Topology Environment for Meshing (ITEM) ..o 749
Guiding the user through the WOrkflow.cccccoveviiiiiieie e, 749
Providing the user with SMart OPtioNS.ccooeiieiiiie i 750
Automating geometry and meshing tasks.cccevviivereeiesieene e 750
HOW t0 USE the ITEM WIZAIU. ..ot 751
The ITEM WOTKFIOW.......coviiiiiieic e 751
USING aN ITEM PNooiieiie e e e 752
UNCO BULEON <.ttt bbbt 756
MagIC MESH BULTON ...ttt 756
GEIING HEIP ..t e et re e reenne e 756
Setting up the Finite EIeMent MOcooiiiiiieiie e e 757
Defining the GEomMetric MOElccveiiiiiieee e 758
Generating @ Mesh IN TTEM ...oooiiiiii e et 759
ITEM MeShING SUQUESTIONS.......ecveiiieiieeiesiesieese e e see e saeste e e aeenaessaesaeeneesreas 760
Validating the Mesh IN ITEM ... 764
(08 [T 1o 1 o TSP 764
Clean Up the GEOMELIYc.eiiiiieiiee ettt nne e 764
BIENG SUIMACES......uiiiieiiiieee bbb 765
Resolving Problems with Conformal Assemblies...........ccoccvieiieiiiieniece e 766
CONEACE SUIMACESeevieieteste ettt bbbt 770
Geometry DECOMPOSITION.c.iiiiiieiiiie sttt see e 770
FOrced SWEEPADITILYccveiieicic e enes 772
Bad geometry repreSentatioN.........cooioieieeieiie e 773
Determining an Appropriate Merge TOIErancCeccvvveveiveesieeresie e seese e 774
Building a Sweepable TOPOIOQYcccuiiiiiiiiieiieesee e 776
Small details in the MOcoiiiiie e 776
Determining the Small FEature SIZe.........ccocoiviiiiiiiiiece e 780
Recognizing Nearly Sweepable REQIONSccovveiieiieiieie e 782
N o] 01T 010) RSP OPT PR RTROPTRPRS 785
N 0] 017 0L PSSR 785
Alpha785
AIPNA COMMEANUSecviiiiee ettt ra e te e esnaenneeneenres 785
Automatic Detail SUPPIESSION........ccuiiiiiiiieiieiie et 785
Automatic Geometry DeCOMPOSITION......c.cciveiieiieieiiere e see et se e se e 787
CONESIVE EIBMENTS ...ttt sne e 788
Deleting Mesh EIEMENTScc.ooiiiiei e 790
FRALUIESIZE ...ttt sttt b e bt e e nnes 791
IMPOrting ADAQUS FIIESveieeiee et 792

Table of Contents

MBS CULEING .ttt ettt beenbe e nreas 792
MESN Grafting........eceeiieie e re e nres 799
OPLIMIZE JACODIAN ...ttt nae e 802
RANAOIMIZE ... bbb bbbt n e 803
Refine Mesh BOUNAAIYcoouiiiiiieee e e 803
SUPEr SIZING FUNCLION ... ne e 804
TeSt SIZING FUNCLION........ooiiiiiiiee e et sne e 805
TEANSTEION. ...ttt bbbttt 806
Triangle Mesh COAIrSENINGuoiiiieiieiieie ettt nne e 808
AVAIHADIE COIOS ...ttt 810
E1eMENt NUMDEIINGcoviiieiie ettt b e be e nreas 813
oo L= NN T4 o] o1 1 o USRS SRR 814
Side NUMDEIING ..ot e sae e 814
Triangular Shell Element NUMDEIINGcovvieiiiececce e 814
FullHex vs. NodeHexX RepreSentation............ccueeiieiieriiin e 816
APREPRO. ...ttt bbbt bbbt e e 816
APREPRO ...ttt ettt ettt ne et eens 816
Using APREPRO N CUBIT ...c.ooiiiiiiiinieee et 816
APREPRO FUNCLIONSceiiiiiieiiieiieie ettt nneas 818
APREPRO JOUMMNAIING ... oeeieiieciet ettt nnes 827
PYENON ..t bbbt e bt beeneenreas 828
Importing Cubit iNt0 PYINON........coiii e 828
PYLNON INTEITACE ... e 829
CUDITINEEITACE ...ttt bbbt 829
PYODSEIVADIE. ...t 916
YL@ 0 1T=T - SR 917
CUDITFAHTUIEEXCEPLION. ...ttt sae e 918
Body 918
Curve 920
Entity 926
(C1=To] 401 =101 (| YRR 929
INValIAENTIEYEXCEPTION.....cuviiieii e nae e nneas 934
INValIdINPUEEXCEPTION ... et nreas 934
Surface 934
Vertex 939
Volume 940
NaVIgation XML FIIESc.eoiiiieeee e e 943
B A S T ettt bbb Rt b et bbbt bbb et nas 944
Periodic Space FIlling MOdelS (THE)ocveiiiieiieie e 948
INTEIAL SELUD ..ot e e et e e sre e te e s e s seeaeeneenreas 948
Creating NOUESELS.eeiiiie ettt sttt reesbe st e reenae e 948
R0 10101011 T 1o USRS 949
EXAMIPIE .. ae s 949
RETEIENICES ...ttt bbb bbb bbb et nas 950
(OF =T o 1 TP P USRS 955
(O =T [(ST PR PSPPI 955

Cubit 15.1 User Documentation

(@0 T N =] {1 =] ot TSR
QUICK RETEIENCE. ... vei ettt ettt s b e be e sb e et e e s b e e be e sreeesbeesareebee e

Xi

Introduction | Environment | Geohtrv| Meshing | FE Model | ITEM | Tutorials | Appendix

CUBIT 15.1 USER DOCUMENTATION
@Introduction - A quick overview of some of the main features and goals of the CUBIT Mesh
Generation Toolkit, licensing and distribution, hardware requirements, and where to go for help.
@Environment Control - A description of the CUBIT user environment, including using
the graphical user interface, session control, command line syntax, journal files, graphics, entity
picking, saving and restoring etc..
@Geometry - A description of CUBIT's geometry features including building geometry from
scratch, manipulating geometry in CUBIT, importing and exporting geometry formats, etc...
@Mesh Generation - A description of CUBIT's mesh generation capabilities, including how to
mesh geometry, meshing and smoothing schemes, setting sizes and intervals, importing a mesh,
etc...
@Finite Element Model - How to set up the finite element model for analysis,
including defining boundary conditions, material properties, exporting the finite element model,
etc.
@I mmersive Topology Environment for Meshing (ITEM) - A description of Cubit's
interactive meshing wizard including how to use the wizard, and a guide to geometry clean-
up, setting up the finite element model, mesh generation in ITEM, etc.
®Step-By-Step Tutorials
& Appendix
ElCredits
ElQuick Reference
@official CUBIT Web Page

@ Sandia National Laboratories

~U.S. DEPARTMENT OF

I @ lv
ENERGY VA &%

National Nuclear SecuﬂfyAdmfmstra!mn

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

http://cubit.sandia.gov/

CUBIT 15.1 User Documentation

INTRODUCTION
Introduction

o Key Features
e Hardware Requirements

o Licensing and Distribution

e Trademark Notice

o How to Use this Manual

e Cubit Mailing Lists

o Problem Reports and Enhancement Requests

Welcome to CUBIT, the Sandia National Laboratory automated mesh generation toolkit. CUBIT
is a full-featured software toolkit for robust generation of two- and three-dimensional finite
element meshes (grids) and geometry preparation. Its main goal is to reduce the time to generate
meshes, particularly large hex meshes of complicated, interlocking assemblies. It is a solid-
modeler based preprocessor that meshes volumes and surfaces for finite element analysis. Mesh
generation algorithms include quadrilateral and triangular paving, 2D and 3D mapping, hex
sweeping and multi-sweeping, tetrahedral meshing, and various special purpose primitives.
CUBIT contains many algorithms for controlling and automating much of the meshing process,
such as automatic scheme selection, interval matching, sweep grouping, and also includes state-
of-the-art smoothing algorithms

The CUBIT environment is designed to provide the user with a powerful toolkit of meshing
algorithms that require varying degrees of input to produce a complete finite element model.
Many CUBIT users want to experiment with capabilities as soon as possible. Hence, CUBIT
releases often contain algorithms which are not quite ready for production use. These features are
listed in the Appendix, and are accessible to the user by specifying a developer flag.

The overall goal of the CUBIT project is to reduce the time it takes a person to generate an
analysis model. Generating meshes for complex, solid model-based geometries requires a variety
of tools. Many CUBIT tools are completely automatic, while others require user input. Usually,
the automatic choices can be over-ridden by the user if necessary. Most meshing capabilities are
integrated into the common CUBIT framework; there are also stand-alone tools like Verde. The
user is encouraged to become familiar with all of the available tools, so that he can choose the
right one for the job.

CUBIT Mailing Lists

The CUBIT team maintains a couple of mailing lists to help our users.

1) The cubit-announce mailing list is a very low-volume mailing list intended to provide news of
new releases and other items of major importance. To subscribe to this list, send a message to:
majordomo@sandia.gov

with the body of the message being:

subscribe cubit-announce

2) The cubit users mailing list is a medium-volume mailing list intended for our users to
communicate with each other and ask help of the user community. It also contains the same
announcements as the cubit-announce mailing list. To send questions or comments to this list,
send email to:

mailto:majordomo@sandia.gov

Introduction

cubit@sandia.gov

Users can subscribe to the cubit mailing list by emailing majordomo@scico.sandia.gov with a
message body consisting of the single line:

subscribe cubit

An additional mailing list, cubit-help@sandia.gov, has been created for direct communication
with the CUBIT developers. These messages won't reach other users. This list should be used for
topics that are not of general interest to others, including some bugs.

Note: The recommended use of an electronic mailing list to

report bugs and request enhancements is not intended to
@5 discourage face-to-face discussion with CUBIT developers,

but rather to minimize response time. Users are encouraged
to discuss bugs, enhancements or general meshing issues
with the CUBIT production meshing and development teams.

Hardware Requirements
Cubit is available on the following platforms:

e Red Hat6 64 bit (or similar system with at least glibc 2.5 and libstdc++ 4.4)
« Windows Vista/7/8/8.1/10, 64 bit
e Mac 10.7+, 64 bit only

The Graphical User Interface version is available on all platforms.
For best results, local displays supporting OpenGL 1.5 or newer is recommended.

How to Use This Manual

This manual provides specific information about the commands and features of CUBIT. It is
divided into chapters, which roughly follow the process in which a finite element model is
created, from geometry creation to mesh generation to boundary condition application. Examples
are provided in the tutorial chapter. Appendices contain advanced topics, alpha commands,
summary of APREPRO functions, FASTQ reference, a troubleshooting guide, and references.

Integrated in CUBIT are algorithms and tools, which are in a user-

@ beware state. As they are further tested (often with the assistance
of users) and improved, the tool becomes more stable and
production-worthy. Since documentation of the tool is necessary
for actual use, we have included the documentation of all available
tools. However, a "hammer™ icon is placed next to some
capabilities as a warning.

Certain portions of this manual contain information that is
@5 vital for understanding and effectively using CUBIT. These
portions are highlighted with a "key" icon.

mailto:cubit@sandia.gov
mailto:majordomo@scico.sandia.gov
mailto:cubit-help@sandia.gov

Cubit 15.1 User Documentation

Key Features

Geometry Creation, Modification, and Healing

CUBIT usually relies on the ACIS solid modeling kernel for geometry representation; there is
also mesh-based geometry. Other solid model kernels are planned. Geometry is imported or
created within CUBIT. Geometry is created bottom-up or through primitives. CUBIT can also
read STEP, IGES, and FASTQ files and convert them to the ACIS kernel. SolidWorks,
AutoCAD, and some other commercial CAD systems can write SAT files directly.

Once in CUBIT, an ACIS model is modified through Booleans, or tweaking curves and surfaces.
Without changing the geometric definition of the model, the topology of the model may be
changed using virtual geometry. For example, virtual geometry can be used to composite two
surfaces together, erasing the curve dividing them.

Sometimes, an ACIS model is poorly defined. This often happens with translated models. The
model can be healed inside CUBIT.

Non-Manifold Topology

Typical assembly meshes require contiguous mesh across multiple parts in an assembly. CUBIT
accomplishes this by taking the two touching surfaces of neighboring volumes, and merging
them into a single surface. There will be only one mesh of the surface, and both volume meshes
will share that surface mesh. (In contrast, some meshing packages keep two surfaces, and take
steps to ensure their mesh connectivity and positions match.)

These shared surfaces are called non-manifold topology. Geometric models are usually imported
into CUBIT as manifold (non-shared) models; then, surfaces which pass a geometric and
topological comparison are "merged". A similar technique is used to merge model edges and
vertices across parts. These comparisons are performed automatically, and can optionally be
restricted to subsets of the model (to allow representations of such features as slide lines).
Geometry Decomposition

Solid models often require decomposition to make them amenable to hexahedral meshing.
CUBIT contains a wide variety of tools for interactive geometry decomposition, and a capability
for performing automatic geometry decomposition is also under development.

Mesh Generation

CUBIT contains a variety of tools for generating meshes in one, two and three dimensions.
While the primary focus of CUBIT is on generating unstructured quadrilateral and hexahedral
meshes, algorithms are also available for structured mesh generation and triangle/tetrahedral
mesh generation. Several algorithms for generating mixed hex-tet meshes are also being
developed.

Boundary Conditions

CUBIT uses different boundary conditions for EXODUS-I11 format and Non-Exodus formats
such as ABAQUS, for importing and exporting mesh data. EXODUS represents boundary
conditions on meshes using Element Blocks, Nodesets, and Sidesets. Element Blocks are used to
group elements by material type. Nodesets are used to group nodes. Other analysis programs can
apply nodal boundary conditions to these sets, such as enforced displacement or nodal
temperature values. Sidesets are used to group sides of elements, such as faces of hexes or edges
of quads. Other analysis programs can apply face-based and edge-based boundary conditions to
these sets, for example pressure or heat flux.

Using Element Blocks, Nodesets and Sidesets, a mesh and boundary conditions can be specified
in an analysis-independent manner. Typically this specification is combined with an additional

Introduction

data file which designates the specific type of boundary condition (temperature, displacement,
pressure, etc.), along with boundary condition values.

Non-Exodus export formats such as Abaqus support more specific boundary condition sets.
These sets may include displacements, temperatures, forces, heatflux, pressure, or contact pairs.
Element Types

CUBIT supports a wide variety of element types, including 1d, 2d, and 3d elements of various
orders. Each block has a unique element type. The element type is specified after the block is
created, and after mesh generation (recommended). Higher order nodes are generated when the
element type is specified. Higher order nodes are projected to curved geometry, depending on the
user-settable node constraint flag.

Graphics Display Capabilities

CUBIT uses the VTK package for its graphics and rendering engine. CUBIT can display
geometric and mesh entities in several modes, including hidden line, shaded, transparent or
wireframe modes. CUBIT supports screen picking of geometric and mesh entities, as well as
mouse-controlled view transformations like rotate, pan, and zoom. VTK takes advantage of
hardware acceleration on most supported platforms. Image files of any displayed image can also
be generated. CUBIT can also be run without graphics, to allow execution in batch mode or over
slow network connections.

Graphical User Interface

A full graphical user interface (GUI) with the standard look and feel consistent with major
platforms is available on all supported Cubit platforms. The GUI version can improve
productivity, making new users aware of the wide range of CUBIT capabilities, and freeing new
and experienced users from having to remember esoteric syntax. The GUI and non-GUI versions
create and play back identical journal files, making it easier to switch from one environment to
the other.

Command Line Interface

In the command line interface, commands are specified by text rather than mouse clicks.
Commands can be entered interactively or in batch mode by playing back a journal file. The
command line interface is available in the GUI through a window. The non-GUI version
supports graphical picking and echoing to the command line, and also mouse-driven view
transformations, but no menus and dialog boxes. The command line and GUI dialog boxes
support the APREPRO preprocessor, which allows parameterization of input. The non-GUI
version is available on all platforms, including Windows.

Licensing and Distribution
Please refer to https://cubit.sandia.gov/public/licensing.html for information on licensing and
distribution.

Problem Reports and Enhancement Requests

CUBIT bugs, problem reports and enhancement requests should be sent to cubit-
help@sandia.gov or cubit-dev@sandia.gov. The CUBIT production meshing team or
development team will review the email quickly. Users should expect some type of response
within two days. Bugs are usually entered by a developer into CUBIT's bug tracking system.

Trademark Notice
ACIS™ s a proprietary format developed by Spatial Corporation.
Granite™ is a proprietary format developed by Parametric Technology Corporation

https://cubit.sandia.gov/public/licensing.html
mailto:cubit@sandia.gov
mailto:cubit@sandia.gov
mailto:cubit-dev@sandia.gov
http://www.spatial.com/

Cubit 15.1 User Documentation

All other trademarks are the property of their respective owners.

ENVIRONMENT CONTROL
Environment Control

e Session Control

o Graphical User Interface

o Command Recording and Playback

e Graphics Window Control

o Entity Selection and Filtering

o Location, Direction, and Axis Specification
o Listing Information

The CUBIT user interface is designed to fill multiple meshing needs throughout the design to
analysis process. The user interface options include a full graphical user interface, a modern
command line interface as well as no-graphics and batch mode operation. This chapter covers the
interface options as well as the use of journal files, control of the graphics, a description of
methods for obtaining model information, and an overview of the help facility.

Session Control
Session Control

o Starting and Exiting a CUBIT Session
e Execution Command Syntax

o Initialization Files

o Environment Variables

e« Command Syntax

e« Command Line Help

e Environment Commands

e Saving and Restoring a CUBIT Session
e Interrupting Running Tasks

This section provides an overview to session control in CUBIT. This includes information on
starting and exiting a CUBIT session, running CUBIT in batch mode, initialization files, how to
enter commands, file manipulation, changing the working directory, memory manipulation and
more. Much of your ability to use CUBIT effectively depends on mastery of concepts in this
section. Even experienced users will find it useful to review this section periodically.

Starting and Exiting a CUBIT Session

The following commands are used to control CUBIT execution.

Starting the Session

The command line version of CUBIT can be started on UNIX machines by typing
"cubit" at the command prompt from within the CUBIT directory. If you have not yet
installed CUBIT, instructions for doing so can be found in Licensing, Distribution and
Installation. A CUBIT console window will appear which tells the user which CUBIT
version is being run and the most recent revision date. A graphics window will also
appear unless you are running with the -nographics option. For a complete list of

Environment Control

startup options see the Execution Command Syntax section of this document. CUBIT
can also be run with initialization files or in batch mode.

Windows File Association

Windows users have the option to associate .cub, .sat, and .jou files with CUBIT. This means
that double-clicking on one of these files will open it automatically in CUBIT. This option is
available during the installation process

Exiting the Session

The CUBIT session can be discontinued with either of the following commands

Exit
Quit
Resetting the Session
A reset of CUBIT will clear the CUBIT database of the current geometry and mesh model,

allowing the user to begin a new session without exiting CUBIT. This is accomplished with the
command

Reset [Genesis | Block | Nodeset | Sideset | QA _Records]

A subset of portions of the CUBIT database to be reset can be designated using the qualifiers
listed. Advanced options controlled with the Set command are not reset.

QA Records are stored in exodus, genesis, or cub files. If your file contains an excessive amount
of ga records and you don't need them, it is beneficial to reset them for faster file 1/O.

You can also reset the number of errors in the current Cubit session, using the command

Reset Errors <value>

which will set the error count to the specified value, or zero if the value is left blank.

Abort Handling

In the event of a crash, Cubit will attempt to save the current mesh as "crashbackup.cub™ in the
current working directory just before it exits.

To disable saving of the crashbackup.cub file set an environment
variable CUBIT_NO_CRASHSAVE equal to true. Or, use the following command:

Set Crash Save [On|Off]

This command will turn on or off crashbackup.cub creation during a crash on a per-instance
basis. To minimize the effects of unexpected aborts, use Cubit's automatic journaling feature,
and remember to save your model often.

Execution Command Syntax
To run CUBIT from the command line:

cubit [options and args] [journalFile(s)]
claro [options and args] [journalFile(s)|python historyFile(s)]

Claro is the GUI version of CUBIT, which includes a python interpreter. To run a python script
in CUBIT from the command line, run claro instead of cubit.
Command options for the command line are:

cubit
-help (Print this summary)

10

Cubit 15.1 User Documentation

-Include <$val> (Specify a journal file)

-workingdir <$val> (Directory to use as working directory)
-input $val (Playback commands in file $val)

-solidmodel <$val> (Read .sat or .cub from file $val)

-fastq <$val> (Read FASTQ file $val)

-initfile <$val> (Read $val as initialization file instead

of SHOME/.cubit)

-batch (Batch Mode - No Interactive Command Input)
-nographics (Do not display graphics windows)

-nogui (Do not display graphical user interface)

-noinitfile (Do not read .cubit file)

-noecho (Do not echo commands to console)

-nojournal (Do not write journal file)

-nodeletions (Do not allow file deletions)

-journalfile <$val> (Name of journal file, will be overwritten)
-restore [$val] (Name of restore file (default = cubit_geom.save.sat))
-maxjournal [$val] (Maximum number of journal files to write)
-warning [$val] (Warning Messages On/Off)

-information [$val] (Informational Messages On/Off)

-debug <$val> (Set specified flags on, e.g. 1,3,7-9

enables 1,3,7,8,9))

-display <$val> (Specify display to be used for

graphics window)

-driver <$val> (Specify the type of driver to be used for
graphics display)

-nooverwritecheck (Do not perform file export overwrite check)
-nobanner (Suppress printing of startup information)

-version (Prints version information)

-log <$val> (Copy all output to specified file)

APREPRO variable pair (Quoted name value pair)

Each of these is optional. If specified, the quantities in square brackets, [$val], are optional and
the quantities in angle brackets, <$val>, are required.
Options are summarized in more detail below:

-help

Print a short usage summary of the
command syntax to the terminal and exit.

-workingdir Set the working directory to be used at

startup. Journal files will be written to this
directory.

-initfile <$val> Use the file specified by <$val> as the

initialization file instead of the default set of
initialization files. See Initialization Files

-noinitfile Do not read any initialization file. This

11

overrides the default behavior described

-solidmodel <$val>

-batch

-nographics

-nogui

-display

-driver <type>

-nojournal

-journalfile <file>

-maxjournal <$val>

-nodeletions

-nooverwritecheck

Environment Control

in Initialization Files

Read the ACIS solid model geometry or
.cub file information from the file specified
by <$val> prior to prompting for interactive
input.

Specify that there will be no interactive
input in this execution of CUBIT. CUBIT
will terminate after reading the initialization
file, the geometry file, and the
input_file_list.

Run CUBIT without graphics. This is
generally used with the -batch option or
when running CUBIT over a line terminal.

Run CUBIT without the graphical user
interface.

Sets the location where the CUBIT graphics
system will be displayed, analogous to the -
display environment variable for the X
Windows system. Unix only.

Sets the <type> of graphics display driver to
be used. Available drivers depend on
platform, hardware, and system installation.
Typical drivers include X11 and OpenGL.

Do not create a journal file for this
execution of CUBIT. This option performs
the same function as the Journal Off
command. The default behavior is to create
a new journal file for every execution of
CUBIT.

Write the journal entries to <file>. The file
will be overwritten if it already exists.

Only create a maximum of <$val> default

journal files. Default journal files are of the
form cubit#.jou where # is a number in the

range 01 to 999.

Turn off the ability to delete files with
the delete file '<filename>' command.

Turn off the file overwrite check flag. Files
that are written may then overwrite (erase)
old files with the same name with no
warning. This is typically useful when re-

12

Cubit 15.1 User Documentation

-restore

-noecho

-debug=<$val>

-information={on|off}
-warning={on|off}
-Include=<path>

-fastg=<file>

<input_file_list>

-log=<file>
<variable=value>

13

running journal files, in order to overwrite
existing output files. See the set File
Overwrite Check [ON|off] command.

Restore the specified filename (or
"cubit_geom™) mesh and ACIS files, e.g.
cubit_geom.save.g and cubit_geom.save.sat.

Do not echo commands to the console. This
option performs the same function as the
Echo Off command. The default behavior is
to echo commands to the console.

Set to "on" the debug message flags
indicated by <$val>, where <$val> is a
comma-separated list of integers or ranges
of integers, e.g. 1,3,8-10.

Turn {on|off} the printing of information
messages from CUBIT to the console.

Turn {on|off} the printing of warning
messages from CUBIT to the console.

Allows the user to specify a journal file
from the command line.

Read the mesh and geometry definition data
in the FASTQ file <file> and interpret the
data as FASTQ commands. See T. D.
Blacker, FASTQ Users Manual Version 1.2,
SAND88-1326, Sandia National
Laboratories, (1988). for a description of the
FASTQ file format.

Input files to be read and executed by
CUBIT. Files are processed in the order
listed, and afterwards interactive command
input can be entered (unless the -batch
option is used.)

Copies all output to the specified file.

APREPRO variable-value pairs to be used
in the CUBIT session. Values can be either
doubles or character type (character values
must be surrounded by double quotes.).
Command options can also be specified
using the CUBIT_OPT environment
variable. (See Environment Variables .)

Environment Control

Passing Variables into a CUBIT Session
To pass an aprepro variable into a CUBIT Session, start cubit with the variable defined in quotes
i.e. cubit "'some_var=2.3"

Initialization Files

CUBIT can execute commands on startup, before interactive command input, through
initialization files. This is useful if the user frequently uses the same settings.

On Unix or Windows, the following files are played back in order, if they exist, at startup:
<$CUBIT_DIR/.cubit.install

$HOMEDRIVE$SHOMEPATHY/.cubit

$HOME/.cubit

$(current working directory)/.cubit

Where $(current working directory) is determined by the program itself and words starting
with '$' are environment variables.

If the -initfile <filename> option is used on the command that starts cubit, then the other init
files are skipped and only the specified filename is played back.

The $CUBIT_DIR file is installation specific. The SHOME file is user specific. The $PWD file
is run-specific, read when starting up cubit from a particular meshing problem'’s subdirectory.
These files are typically used to perform initialization commands that do not change from one
execution to the next, such as turning off journal file output, specifying default mouse buttons,
setting geometric and mesh entity colors, and setting the size of the graphics window.

Environment Variables

CUBIT can interpret the following environment variables. These settings are only applicable to
the Command Line Version of CUBIT and do not apply to the Graphical User Interface. See also
the CUBIT_STEP_PATH and CUBIT_IGES_PATH environment variables. See also

the CUBIT_DIR, HOMEDRIVE and HOMEPATH settings.

DISPLAY The graphics window or GUI will pop-up on the
specified X-Window display. This is useful for
running CUBIT across a network, or on a machine
with more than one monitor. Unix only.

CUBIT_OPT Execution command line parameter options. Any
option that is valid from the command line may be
used in this environment variable. See Execution
Command Syntax.

CUBIT Journal |Specifies path and name to use for journal file. The
specified path may contain the following %-escape
sequences:

%a - abbreviated weekday name
%A - full weekday name

%b - abbreviated month name
%B - full month name

%d - date of the month [01,31]
%H - hour (24-hour clock) [00,23]

14

Cubit 15.1 User Documentation

15

%I - hour (12-hour clock) [01,12]

%j - day of the year [1,366]

%m - month number [1,12]

%M - minute [00,59]

%n - replaced with the next available number between
01 and 999.

%p - "a.m." or "p.m."

%S - seconds [00,61]

%u - weekday [1,7], 1 is Monday

%U - week of year [00,53]

%w - weekday [0,6], 0 is Sunday

%y - year without century [00,99]

%Y - year with century (e.g. 1999)

%% - a "%’ character

The default value is "cubit%n.jou". This creates journal
files in the current directory named "cubit00.jou",
"cubit01.jou", "cubit02.jou", etc. To keep the same
naming scheme but create the files the /tmp directory,
set CUBIT_JOURNAL to "/tmp/cubit%n.jou"

To create journal files in directories according to the day
of the week, first create directories named "Mon",
"Tues", etc. CUBIT will not create them for you. Next
set CUBIT_JOURNAL to

"%al%n.jou". This will create journal files named
"01.jou" through "999.jou™ in the appropriate directory
for the current day of the week.

Environment Control

Command Syntax

The execution of CUBIT is controlled either by entering commands from the command line or
by reading them in from a journal file. Throughout this document, each function or process will
have a description of the corresponding CUBIT command; in this section, general conventions
for command syntax will be described. The user can obtain a quick guide to proper command
format by issuing the <keyword> help command; see Command Line Help for details.

CUBIT commands are described in this manual and in the help output using the following
conventions. An example of a typical CUBIT command is:

Volume <range> Scheme Sweep [Source [Surface] <range>] [Target
[Surface] <range>] [Rotate {on | OFF}]

The commands recognized by CUBIT are free-format and abide by the following syntax
conventions.

1. Case is not significant.

2. The "#" character in any command line begins a comment. The "#" and any characters
following it on the same line are ignored. Although note that the "#" character can also be
used to start an Aprepro statement. See the Aprepro documentation for more information.

16

Cubit 15.1 User Documentation

3.

4.

Commands may be abbreviated as long as enough characters are used to distinguish it
from other commands.

The meaning and type of command parameters depend on the keyword. Some parameters
used in CUBIT commands are:

Numeric: A numeric parameter may be a real number or an integer. A real number may
be in any legal C or FORTRAN numeric format (for example, 1, 0.2, -1e-2). An integer
parameter may be in any legal decimal integer format (for example, 1, 100, 1000, but not
1.5, 1.0, OX1F).

String: A string parameter is a literal character string contained within single or double
quotes. For example, 'This is a string'.

Filename: When a command requires a filename, the filename must be enclosed in single
or double quotes. If no path is specified, the file is understood to be in the current
working directory. After entering a portion of a filename, typing a 2" will complete the
filename, or as much of the filename as possible if there is more than one possible match.
A filename parameter must specify a legal filename on the system on which CUBIT is
running. The filename may be specified using either a relative path (../cubit/mesh.jou), a
fully-qualified path (/home/jdoe/cubit/mesh.jou), or no path; in the latter case, the file
must be in the working directory (See Environment Commands for details.) Environment
variables and aliases may also be used in the filename specification; for example, the C-
Shell shorthand of referring to a file relative to the user's login directory
(~jdoe/cubit/mesh.jou) is valid.

Toggle: Some commands require a "toggle” keyword to enable or disable a setting or
option. Valid toggle keywords are "on", "yes", and "true" to enable the option; and "off",
"no", and "false" to disable the option.

Each command typically has either:

* an action keyword or "verb" followed by a variable number of parameters. For
example:

Mesh Volume 1

Here Mesh is the verb and Volume 1 is the parameter.
* or a selector keyword or "noun™ followed by a name and value of an attribute of the
entity indicated. For example:

VVolume 1 Scheme Sweep Source 1 Target 2

Here Volume 1 is the noun, Scheme is the attribute, and the remaining data are
parameters to the Scheme keyword.

The notation conventions used in the command descriptions in this document are:

17

The command will be shown in a format that looks like this:

A word enclosed in angle brackets (<parameter>) signifies a user-specified parameter.
The value can be an integer, a range of integers, a real number, a string, or a string
denoting a filename or toggle. The valid value types should be evident from the
command or the command description.

Environment Control

o A series of words delimited by a vertical bar (choicel | choice2 | choice3) signifies a
choice between the parameters listed.

o Atoggle parameter listed in ALL CAPS signifies the default setting.

e A word that is not enclosed in any brackets, or is enclosed in curly brackets ({required}
) signifies required input.

o A word enclosed in square brackets ([optional]) signifies optional input which can be
entered to modify the default behavior of the command.

o A curly bracket that is inside a square bracket (e.g. [Rotate {on|OFF}]) is only required
if that optional modifier is used.

Command Line Help

In addition to the documentation you are currently viewing, CUBIT can give help on command
syntax from the command line. For help on a particular command or keyword, the user can
simply type help <keyword>. In addition, if the user has typed part of a command and is
uncertain of the syntax of the remainder of the command, they can type a question mark ? and
help will be printed for the sequence of keywords currently entered. It is important to note that if
the user has typed the keywords out of order, then no help will be found. If the user is not sure of
the correct order of the keywords, the ampersand & key will search on all occurrences of
whatever keywords are entered, regardless of the order. The results of this type of command are
shown in the following listing.

CUBIT> volume 3 label ?

Completing commands starting with: volume, label.

Help not found for the specified word order.

CUBIT> volume 3 label &

Help for words: volume & label

Label Volume [on | off | name [onlylid] | id | interval | size | scheme | merge | firmness]
CUBIT> label volume 3 ?

Completing commands starting with: label, volume.

Label Volume [on|offlname [only|ids]|ids|interval|size|scheme|merge|firmness]

Environment Commands

Working Directory
File Manipulation
CPU Time
Comment

History

Error Logging
Determining the CUBIT Version

Echoing Commands
Digits Displayed

Working Directory
The working directory is the current directory where journal files are saved. To list the current
directory type

18

Cubit 15.1 User Documentation

pwd

The current path will be echoed to the screen. By default, the current directory is the directory
from which CUBIT was launched. The command to change the current directory is

cd "<new_path>"

The new path may be an absolute reference, or relative to the current directory. The <TAB>
key will complete unique file references.

File Manipulation

A helpful addition is the ability to do a directory listing of a directory. The command for this is

Is ['<file_name>']
or
dir ['<file_name>']

Note also that you can delete files from the command line. The command for this is
Delete File ['<file_name>']

The file name may include the wildcard character *, but not the wildcard character ?, since the ?
is used for command completion. File deletion from the command line can also be disabled. If
deletions are set to off files cannot be deleted from the cubit command line.

Set Deletions [ON|Off]
The mkdir command is used to create a new directory. The syntax for this command is:
Mkdir ""<directory_name>"'

This creates a new directory with the specified name and path. The command accepts an absolute
path, a relative path, or no path. If a relative path is specified, it is relative to the current working
directory, which can be seen by typing '‘pwd' at the cubit command prompt. If no path is
specified, the new directory is created in the current working directory.

The command succeeds if the specified directory was successfully created, or if the specified
directory already exists. The command fails if the new directory's immediate parent directory
does not exist or is not a directory.

CPU Time

At times it is important to see how much cpu time is being used by a command. One function
available to do this is the timer command. The syntax for this command is:

Timer [Start|Stop]

The start option will start a CPU timer that will continue until the stop command is issued. The
elapsed time will be printed out on the command line. If no arguments are given, the command
will act like a toggle.

Comment

This keyword allows you to add comments without affecting the behavior of CUBIT.

Comment ['<text_to_print>'] [<aprepro_var>] [<numeric_value>]

The comment command can take multiple arguments. If an argument is an unquoted word, it is
treated as an aprepro variable and its value is printed out. Quoted strings are printed verbatim,
and numbers are printed as they would be in a journal string. For example:

CUBIT> #{x=5}

CUBIT> #{s=""my string"'}

19

Environment Control

CUBIT> comment "'x is" x "and s is"" s
User Comment: x is 5 and s is my string

Journaled Command: comment ""x is"" x "and s is"" s

History
This command allows you to display a listing of your previous commands.

History <number_of _lines>

For example, if you type history 10, the most recent 10 commands will be echoed to the input
window.
Error Logging

[set] Logging Errors {Off | On File '<filename>'[Resume]}

This setting will allow users to echo error messages to a separate log file. The resume option will
allow output to be appended to existing files instead of overwriting them. For more information
on CUBIT environment settings see List Cubit Environment.

Determining the CUBIT Version

To determine information on version numbers, enter the command Version. This command
reports the CUBIT version number, the date and time the executable was compiled, and the
version numbers of the ACIS solid modeler and the VTK library linked into the executable. This
information is useful when discussing available capabilities or software problems with CUBIT
developers.

Echoing Commands

By default, commands entered by the user will be echoed to the terminal. The echo of commands
is controlled with the command:

[Set] Echo {On | Off}

Digits Displayed

CUBIT uses all available precision internally, but by default will only print out a certain number
of digits in order for columns to line up nicely. The user can override that with the "set digits"
command:

Set Digits [<num_to_list=-1>]

If the digits are set to -1, then the default number of digits for pretty formatting are used. If the
digits are set to a specific number, such as 15, more digits of accuracy can be displayed. This
may be useful when checking the exact position and size of geometric features.
The number of digits used for listing positions, vectors and lengths can be listed using the
following command:

List Digits
Examples:
CUBIT> set digits 6
Coordinates and lengths will be listed with up to 6 digits.
CUBIT> set digits 20
For this platform, max digits = 15. Coordinates and lengths will be listed with up to 15 digits.
CUBIT> set digits -1

20

Cubit 15.1 User Documentation

To reset digits to default, use 'set digits -1'
The number of coordinate and length digits listed will vary depending on the context.

Saving and Restoring a Cubit Session

There are currently two ways to save/restore a model in CUBIT. A file can be saved with either
the Exodus or CUBIT File method. The method of choice is determined by a set command. The
CUBIT method is the default.

Set Save [exodus|CUBIT] [Backups <number>]
CUBIT File Method

P
=

e

o

en
av
m
X

D

o
—

r
r

o o o o o
wm

m
o
—

The CUBIT file is a binary cross-platform compatible file for the storage of a Cubit model that is
compact in size and efficient to access. It includes both the geometry and the associated mesh,
groups, blocks, sidesets, and nodesets. Mesh and geometry are restored from the Cubit file in
exactly the same state as when saved. For example, element faces and edges are persistent, as
well as mesh and geometry ids. The Graphical User Interface version of CUBIT also provides a
toolbar with direct access to file operations using the CUBIT File method described here.

New

Creates a new blank model with default name, closing the current model. The
New command essentially acts like the reset command.

Open '<filename>'
Opens an existing *.cub file, closing the current model.

Save

A default file name is assigned when CUBIT is started (in very much the same
way the journal files are assigned on startup) in the form cubitO1.cub, for
example. The current model filename is displayed on the title bar of the CUBIT
window. Typing save at any time during your session will save the current model
to the assigned *.cub file. The *.cub file includes the *.sat file and the mesh.
Groups, blocks, sidesets and nodesets are also saved within the *.cub file. To
change the name of the current model, or to save the model's current geometry to
a different file, use the save as command. Note that 'save <file.cub>"is NOT a
valid command.

Save
Save As ‘filename.cub’ [Overwrite]

21

Environment Control

The set file overwrite command can be toggled on and off to allow overwriting
when using the save as command. The command is defaulted to not allow
overwriting.

Set File Overwrite [On|OFF]

A backup file is created by default, allowing access to previous states of the
model. The backup files are named *.cub.1, *.cub.2... The user can set the total
number of backups created per model with the following command (the default
number of backups is 99,999):

Set Save Backups <number>

As soon as the number of model backups reaches the maximum, the lowest
numbered backup file will be removed upon subsequent backup creation.
To check on the status of a 'set' command, type in the command in question
without any options. For example, to check which save method is currently
toggled, type:

Set Save

Import
Appends a *.cub file to an existing model.

Import Cubit *filename.cub® [merge globally]

Export

In addition to saving an entire model, one can use the export command to save
only a portion of a model. The geometry and associated mesh, groups, blocks,
sidesets and nodesets are exported. Only bodies or free surfaces, curves or
vertices can be exported to a Cubit file.

Export Cubit *filename.cub® entity-list

Interrupting Running Tasks

Many operations in the command line version of CUBIT can be interrupted using <Control>-C.
Pressing <Control>-C will attempt to interrupt the running process as soon as feasible, returning
the user back to the command line. Not all operations may be interrupted, and many can only be
interrupted at certain stages. Any current tasks are canceled as soon as it is feasible to do so,
including playback of journal files. The playback of a journal file is always stopped, even if the
current running task cannot be interrupted. The journal file will stop at the next opportunity,
when the current task is completed. Interrupted journal files may be resumed at the next
command. See the section titled Controlling Playback of Journal Files for more information on
controlling playback of journal files.

The GUI has a cancel button that can be used to interrupt the current command. The cancel
button will turn red when a command can be interrupted. The cancel button has an 'x' on it, and is
located on the status bar, which is at the bottom of the application.

22

Cubit 15.1 User Documentation

Recording and Playback

Command Recording and Playback

Sequences of CUBIT commands can be recorded and used as a means to control CUBIT from
ASCII text files. Command or "journal™ files can be created within CUBIT, or can be created and
edited directly by the user outside CUBIT.

o Journal File Creation & Playback

o Controlling Playback of Journal Files
o Automatic Journal File Creation

o IDless Journal Files

Journal File Creation and Playback

Recording a Session

Command sequences can be written to a text file, either directly from CUBIT or using a text
editor. CUBIT commands can be read directly from a file at any time during CUBIT execution,
or can be used to run CUBIT in batch mode. To begin and end writing commands to a file from
within CUBIT, use the command

Record '<filename>"
Record Stop

Once initiated, all commands are copied to this file after their successful execution in CUBIT.
Replaying a Session
To replay a journal file, issue the command

Playback '<filename>’

Journal files are most commonly created by recording commands from an interactive CUBIT
session, but can also be created using automatic journaling or even by editing an ASCII text file.
Commands being read from a file can represent either the entire set of commands for a particular
session, or can represent a subset of commands the user wishes to execute repeatedly.

Two other commands are useful for controlling playback of CUBIT commands from journal
files. Playback from a journal file can be terminated by placing the Stop command after the last
command to be executed; this causes CUBIT to stop reading commands from the current journal
file. Playback can be paused using the Pause command; the user is prompted to hit a key, after
which playback is resumed.

Journal files are most useful for running CUBIT in batch mode, often in combination with the
parameterization available through the APREPRO capability in CUBIT. Journal files are also
useful when a new finite element model is being built, by saving a set of initialization commands
then iteratively testing different meshing strategies after playing that initialization file.

Controlling Playback of Journal Files
The following commands control the playback of Journal Files:

Stop

Pause

Sleep <duration_in_seconds>
Resume [<n>]

Where

23

Environment Control

Next [<n>]

The playback of a journal file can be interrupted in three ways. Pressing ctrl-c while the journal
file is playing will halt playback of the journal file. (This only works in the command line
version of CUBIT. See Interrupting Running Tasks for more information). Alternately, if the
stop or pause commands are encountered in the journal file and CUBIT is reading commands
from a terminal (as opposed to a redirected file), playback of the journal file will halt after that
command.

The sleep command pauses execution for the specified number of seconds. It can be used to
build a delay into journal files during presentations.

In the command line version of CUBIT you can resume playback of a journal file with the
resume command. If playback was interrupted because ctrl-c was pressed, it will resume at the
next command after the one that was interrupted. If playback stopped because of a stop or pause
command in the journal file, it will resume at the next line after the stop or pause command. If
the file was paused because of a sleep command in the file, it will resume automatically after the
specified duration.

If journal files that are playing back contain playback commands themselves, there may be
multiple current journal files. The where lists all current journal files and where the journal files
have paused. Each line contains the stack position (a number), the filename and the current line
in the file. Unless CUBIT is running in batch mode, the first line is always <stdin>. This just
means that CUBIT will return to the command prompt after the top-most journal file has
completed.

The remaining portion of any active journal file may be skipped by specifying the stack position
(first number on each line of the output from the where command) of the file where you want to
resume. Any remaining commands in active journal files with lower stack positions will be
skipped.

The next command steps through interrupted journal files line-by-line. The argument to the next
command is the number of lines to read before halting playback again. If no number is specified,
the command will advance one line.

Journal playback can also be set to stop automatically when it encounters an error during
playback. The command syntax is:

Set Stop Error {On|OFF}

Setting the stop error to "on" will cause the file to halt for each error. The setting is turned off by
default.

Automatic Journal File Creation

Controlling Automatic Journal File Creation

By default, CUBIT automatically creates a journal file each time it is executed. The file is
created in the current directory, and its name begins with the word "cubit " or "history",
depending on the version of CUBIT, followed by a number starting with cubit01.jou and
continuing up to a maximum of cubit999.jou. It is recommended that the user keep no more than
around 100 journal files in any directory, to avoid using up disk space and causing confusion. To
that end, when the journal name increments to more than cubit99.jou, a warning will be given on
startup telling the user that there are at least 99 journal files, and to please clean out unused files.
If the user has up through cubit999.jou, then the user is warned that there are too many journal
files in the current directory, and cubit999.jou will be re-used, destroying the previous contents.

24

Cubit 15.1 User Documentation

When starting cubit, the choice of journal file name to be used depends on whether it is creating
a historyXX_.jou file, or a cubitXX.jou file. For historyXX.jou files, it will look for the highest
used number in the current directory and increment it by one. For example, if there are already
journal files with names history01.jou, history02.jou, and history04.jou, Cubit will use
history05.jou as the current journal file. For cubitXX.jou files, Cubit will fill in gaps, starting
with the lowest number. For example, if there are already journal files with names cubit01.jou,
cubit02, jou, and cubitO4.jou, then Cubit will use cubit03.jou as the current journal file.

Journal file names end with a ".jou™ extension, though this is not strictly required for user-
generated journal files. If no journaling is desired, the user may start CUBIT with the -nojournal
command line option or use the command :

[Set] Journal {Off | On}

Turning journaling back on resumes writing commands to the same journal file.

Most CUBIT commands entered during a session are journaled; the exceptions are commands
that require interactive input (such as Zoom Cursor), some graphics related commands, and the
Playback command.

Recording Graphics Commands

All graphics related commands may be enabled or disabled with the command:

Journal Graphics {On | Off}

The default is Journal Graphics Off .

Recording Entity IDs and Names

When an entity is specified in a command using its name, the command may be journaled using
the entity name, or by using the corresponding entity type and id. The method used to journal
commands using names is determined with the command:

Journal Names {On | Off}

The default is Journal Names On .

If an entity is referred to using its entity type and id, the command will be journaled with the
entity type and id, even if the entity has been named.

Recording APREPRO Commands

APREPRO commands may be echoed to the journal file using the following command

[set] Journal [Graphics|Names|Aprepro|Errors] [on|off]

See APREPRO Journaling for more information.

Recording Errors

The default mode for CUBIT is to not journal any command that does not execute successfully.
To turn this mode off and echo all commands to the journal file, regardless of the success status,
use the following command:

Journal Errors {On|OFF}

If a command did not execute successfully and the journal errors status is ON, then the
unsuccessful command will be written as a comment to the file. For example an unsuccessful
command might look like the following in the journal file

create brick x 10 x 10z 10

25

Environment Control

Since CUBIT recognizes this as erroneous syntax, it will issue an error when the command is
issued, but will still write the command to the journal file as a comment, prefixing the command
with "##".

This option may be useful when tracking or documenting program errors.

Idless Journal Files

Journal files can also be created without reference to entity IDs. The purpose of this command is
to enable journal files created in earlier versions of CUBIT to be played back in newer versions
of CUBIT. Using the "IDless" method, commands entered with an entity ID will be journaled
with an alternative way of referring to the entity. Changes in CUBIT or ACIS often lead to
changes in entity IDs. For example, a webcut may result in volume 3 on the left and volume 4 on
the right. In another version of CUBIT, those entity IDs may be swapped (4 on the left and 3 on
the right). Playing an IDless journal file makes the actual ID of an entity irrelevant. The syntax
for this command is:

[set] Journal IDless {on|off|reverse}

The on option will enable idless journaling, and commands will be journaled without entity IDs.
For example, "mesh volume 1" may be journaled as "mesh volume at 3.42 5.66 6.32 ordinal 2".
Selecting the off option will cause commands to be journaled in the traditional manner (i.e., as
they are entered).

The reverse option allows you to convert idless journal files back into an ID-based journal file
where the new journal file will reflect current numbering standards for IDs.

If you issue the command Journal IDless without any additional options, then the current status
of ID journaling is printed. At startup, this should be "off".

The most likely scenario for converting older journal is to use the record command during
playback. The following is an example.

jJjournal idless on

record "my_ idless.jou"

playback '"my journal.jou"

record stop

jJjournal idless off

To record an idless journal file back into an id-based journal file you might use the following
sequence.

jJjournal idless reverse

record "new_id_based.jou"

playback "my idless.jou"

record stop

jJjournal idless off

Note: IDless conversions of APREPRO expressions are partially supported.

When IDless mode is set to ON, APREPRO functions such as Vx(id), that take an ID as an
argument, are converted to use (X, y, z, ord) as arguments such as Vx(x, y, z, ord), where (X, v, z)
is the center point coordinates and ord is the ordinal value. The ordinal values, 1..n, identifies
each entity in a set of n entities that have a common center point. An entity's ordinal value is
based on its creation order with respect to the other entities within the same set.

When IDless mode is set to REVERSE (using the above example) Vx(x, vy, z, ord) will be
converted to Vx(id). Outside these APREPRO functions, APREPRO expressions are not
modified when converting a journal file to or from its IDless form. Hence, expressions reduced
to an entity ID, such as in the command "volume {x} size 10," are not modified. Therefore,

26

Cubit 15.1 User Documentation

when moving a journal file from one version of CUBIT to another, it may be necessary to
manually update IDs in APREPRO expressions.

Location Direction Specification
Location, Direction and Axis Specification

o Specifying a Location

o Specifying a Location on a Curve

o Specifying a Direction

e Specifying an Axis

o Specifying a Plane

o Drawing a Location, Direction, or Axis

Many commands require that a location or a direction be specified. Although entering the three
floating point numbers required to uniquely define a vector is perfectly acceptable, it may be
more convenient to specify the direction or location with respect to existing entities in the model.

For example, the following commands might be used for creating straight curves using location
and direction specification described here:

Create Curve [From] Location {options} Location {options}
Create Curve [From] Location {options} Direction {options} Length <val>

Drawing a Location, Direction, or Axis
Some commands require you to specify a location on a curve (i.e., webcutting with a plane
normal to a curve). This location can be previewed with the following options:

1. A fraction along the curve from the start of the curve, or optionally, from a specified
vertex on the curve.

2. Addistance along the curve from the start of the curve, or optionally, from a specified
vertex on the curve.

3. An xyz position that is moved to the closest point on the given curve.

4. The position of a vertex that is moved to the closest point on the given curve.

Draw Location On Curve <curve id> {Fraction <f> | Distance <d> | Position
<xval><yval><zval> | Close_To Vertex <vertex_id>} [[From] Vertex
<vertex_id> (optional for 'Fraction' & 'Distance")]

Some commands require a specified axis (such as webcut with a cylinder) and it is sometimes
advantageous to view an axis before modifying geometry. To draw a preview of an axis use the
following command:

Draw Axis {options}

Some commands require a specified location or point (such as create curve spline) and it is
sometimes advantages to view a location before modifying or creating geometry. To draw a
preview of a location use the following command:

Draw Location {options} [color <color_name>][no_flush]

27

Environment Control

Similar commands for drawing lines and polygons may also be useful.

Specifying an Axis

Some commands require a specified axis (such as webcut with a cylinder) and it is sometimes
advantageous to view an axis before modifying geometry. An axis is simply a vector with a
specified origin. The following options determine an axis specification:

e Last
o Specify a direction and a location
e Revolve an axis about an axis

Last
Last

The last option recalls the last axis used in an axis command. The last axis does not carry over
from CUBIT session to CUBIT session.
Specify an origin and a vector

{Direction {options} [Origin [Location] {options}] [Length <val>] [Angle
<val>]}

To specify an axis simply specify a vector (a direction) and an origin (a location). Notice that the
command requires the axis direction first because the origin defaults to 0 0 0 when not specified.
An example of specifying an axis to draw a location using the swing command is as follows:

draw location 1 0 0 swing about axis direction z ang 45

(final)

,000)

(1,00

Figure 1 - Swinging a point about the z-axis
The location 1 0 0 was swung 45 degrees about an axis defined by a vector in the z direction and
anoriginat 00 0.
Revolve an axis about an axis

[Axis {options} Revolve [About] Axis {options} Angle <val>]

To revolve one axis around another use the revolve keyword. The following example revolves
the first axis (defined by the y-axis and origin) around the second axis (defined by the z-axis and
origin) by 45 degrees and draws the result.

28

Cubit 15.1 User Documentation

draw axis direction y revolve axis direction z angle 45

is"
¥

fina

axis ¥
Z(0,0,0)

Figure 2 - Revolving an axis about another axis
Previewing an Axis
Sometimes it is helpful to preview an axis before using it in a command. An axis may be
previewed using the Draw command. The options for previewing an axis are the same as the
ones described above.

Draw Axis {options}

Specifying a Direction
Some commands require a specified a direction or vector for the command. A direction is
basically a xyz vector in the model. The following options determine a direction specification:

o [Vector] <xval yval zval>

o Last

e X|Y|Z|Nx|Ny|Nz

e [On] | [Tangent] [At] Curve <id> {location on curve options}

e [On]|[Normal] [At] Surface <id> [Location {options}]

o [From] { Location {options} | {Node|Vertex} <id> }Project] {Location {options} |
[Entity] {Node|Vertex|Curve|Surface} <id> 1}

o [Rotate {options}]

e [Cross [With] Direction {options}]

[Reverse]

Vector (XY Z values)
[Vector] <xval yval zval>

The most basic way to specify a direction is to just give the vector x-y-z components of the
direction. The given vector need not be a unit vector. The following three commands simply
draw a direction in the x-direction (1, 0, 0) as the Vector keyword is optional and unit vectors are
not required:

draw direction vector 100
draw direction100
draw direction 1000

29

Environment Control

Last Direction Used
Last

The last option recalls the last direction used in a command. For example, if the following
command is entered after the above vector commands a direction location would be drawn in the
x-direction (1, 0, 0).

draw direction last

Last directions do not carry over from CUBIT session to CUBIT session. The last direction
defaults to (1, 0, 0) if no direction has been used during the session.
Positive or Negative X,Y,Z Direction Vectors

X|Y|Z|Nx|Ny|Nz

The x|y|z|nx|ny|nz options assign the x direction, y direction, z direction, negative x direction,
negative y direction and negative z direction respectively.
On Curve Tangent

[On] | [Tangent] [At] Curve <id> {location on curve options}

The curve option simply finds a tangent vector on a curve. Note that the on, tangent and at
keywords are optional, as well as the location on the curve. If no location is specified, the tangent
at the start vertex of the curve is found. See the section above, Specifying a Location on a Curve,
for details on how to specify where along the curve the tangent vector is found.

draw direction curve 1

draw direction on curve 1

draw direction tangent at curve 1

draw direction tangent at curve 1 distance 3

draw direction tangent at curve 1 fraction .5

draw direction tangent at curve 1 distance 2 reverse

Figure 1 - Tangents to a Curve
On Surface Normal

[On] | [Normal] [At] Surface <id> [Location {options}]

The surface option simply finds a normal vector on a surface. Note that the "on", "normal’ and
"at" keywords are optional, as well as the location on the surface. If no location is specified, the
normal vector at the center of the surface is found. If a location is specified, the location is
projected to the surface, then the normal vector is found.

draw direction on surface 1
draw direction on surface 1 location 12 0

30

Cubit 15.1 User Documentation

From Location

[From] {Location {options} | Node|Vertex <id>} [Project] {Location {options}
| [Entity]
{Node|Vertex|Curve|Surface} <id>}

The from location option finds a direction that is from one location to another or from a location
to an entity. If the second specification is an entity, the first location is projected to the entity to
find the direction.

draw direction from vertex 1 vertex 2
draw direction from location on curve 1 fraction .5 surface 3

Note that when using an entity for the second specification, the Project and Entity keywords are
generally optional. However, it is sometimes necessary to remove ambiguity from the previous
location specification. For example, the following will not parse correctly:

draw direction location on curve 1 distance 2 surface 3

In this case, the location on the curve is parsed as a distance 2.0 from surface 3. Instead, the
desired behavior is to find the location on curve 1 as a distance of 2.0 along the curve from the
start of the curve, and project it to surface 3 to find the direction. The following commands (all
equivalent) achieve this behavior:

draw direction location on curve 1 distance 2 project surface 3
draw direction location on curve 1 distance 2 entity surface 3
draw direction location on curve 1 distance 2 project entity surface 3

Rotate
[Rotate {options}]

The rotate option allows you to rotate the direction about another vector. You can string together
as many rotations as necessary. For example:

draw direction 1 0 0 rotate about z 135 rotate about curve 1 angle 50
Options that can be used with rotate are as follows:

{Ax|X|Ay|Y|Az|Z [Angle] <angle>} | { {[About] | Towards} Direction
{options} Angle <val> } [Rotate (options)] [Origin (location)]

Ax, Ay, Az (or X,Y,Z) angles can be entered in any order. The optional specification of another
rotate keyword in the options indicated that multiple nested rotations are permitted.
Cross

[Cross [With] Direction {options}]

The cross option allows you to find the vector cross product of the direction with another
direction.
Reverse

[Reverse]
This keyword simply reverses the direction specification.

31

Environment Control

Previewing a Direction

Sometimes it is helpful to preview a direction before using it in a command. A direction may be
previewed using the Draw command. The direction options are described above. See Specifying
a Location for a list of location options.

Draw Direction {direction _options} [Location (location options)]

Specifying a Location

Some commands require a specified location or point (such as create curve spline) for the
command. A location is basically an x-y-z position in the model. The following options
determine a location specification:

o [Position] <xval yval zval>

o Last

o [At] {Node|Vertex} <id list>

e [On] Curve <id_list> [location on curve options]

e [On] Surface <id_list> [Close _To | At Location {options} | CENTER]

e [On] Plane <options> [Close_To | At Location {options}]

e Center Curve <id_list>

o Extrema {Curve|Surface|VVolume|Body|Group} <range> [Direction] {options} [Direction
{options}] [Direction {options}]

o Fire Ray Location {options} Direction {options} At
{Body|Volume|Surface|Curve|Vertex} <ids> [Maximum Hits <val>] [Ray Radius <val>]

o Between { Location <options> Location <options>} | { Location <options> Project
{Curve|Surface} <id> } [Stop] [Fraction <val>] }

o [Move [all] {<xval yval zval> | {Dx|X|Dy|Y|Dz|Z} <val> | Direction {options} Distance
<val>}]

e [Swing [all] [About] Axis {options} Angle <ang>]

o Multiple Location Specification

Position (XYZ values)
[Position] <xval yval zval>

The most basic way to specify a location is to just give the xyz values of the location. In this case
the following two commands both draw a location at the coordinates (1, 2, 3), as the Position
keyword is optional:

draw location position 12 3
draw location 12 3

Last Location Used in a Command
Last

The last option recalls the last location used in a command. For example, if the following
command is entered after the above position commands a location would be drawn at the
position (1, 2, 3).

draw location last

32

Cubit 15.1 User Documentation

Last locations do not carry over from CUBIT session to CUBIT session. The last location
defaults to (0, 0, 0) if no location has been used during the session.
Node or Vertex

[At] {Node|Vertex} <id_list>

Referring to a node or vertex simply returns the coordinates of that node or vertex. The
command can also handle multiple locations where multiple locations are needed to complete the
command string. The following draws a location at the coordinates of Vertex 5:

draw location vertex 5

On a Curve

Various options are available to specify a location on a curve. See the section Specifying a
Location On a Curve for details.

On a Surface

[On] Surface <id_list> [Close_To | At Location {options} | CENTER]

If a surface is used to specify a location without other options, the geometrical center of the
surface is found (the center keyword is optional - the default). Otherwise, you can specify
another general location and that location is projected to the surface. For example, the following
command will draw the location that is position (5,0,0) projected to surface 1:

draw location on surface 1 location 500

Any valid location options listed on this page can be used to specify the location that is projected
to the surface.
On a Plane

[On] Plane <options> [Close_To | At Location {options}]

A location can be defined at the closest point on a plane to a location. See Specifying a Plane for
plane options.
Center

Center Curve <id_list>

Finds the center of an arc - an error is returned if the curve is not an arc.
Extrema

Extrema {Curve|Surface|Volume|Body|Group} <range> [Direction] {options}
[Direction {options}] [Direction {options}]

The extrema option returns the location of the maximum value, on the specified entity or group,
in the specified direction. For example, the following places a vertex on a surface at the point of
maximum y-axis value.

create vertex location extrema surf 1 direction y

Fire Ray

The fire ray command allows a user to identify a location, or set of locations, on an object by
firing a ray at the object and determining the intersections. A ray can be fired at a list of bodies,
volumes, surfaces, curves, or vertices. The fire ray command is:

33

Environment Control

Fire Ray Location {options} Direction {options} At
{Body|Volume|Surface|Curve|Vertex} <ids> [Maximum Hits <val>] [Ray
Radius <val>]

The location options are described on this page. The direction options are described

under Specifying a Direction. The user can specify the maximum number of hits that he wishes
to receive back from the command. If this value is omitted, the command will return all
intersections found. When firing a ray at a curve, a ray radius must be used. The ray radius is the
distance from the curve the ray must be to be considered a "hit." If no ray radius is used, the
geometry engine default is used.

Between

Between {Location <options> Location <options> } | {Location <options>
Project {Curve|Surface} <range>} [Stop] [Fraction <val>]}

The between option finds a location that is between two locations or a location and an entity. An
optional fraction can be given to specify the fractional distance from the first location to the
second location or entity. For example, the following will draw a location at (5, 0, 0):

draw location between location 0 0 0 location 1000

The following will draw a location at (2.5, 0, 0) - 25% of the distance from (0, 0, 0) to (10, 0, 0):
draw location between location 0 0 0 location 10 0 0 fraction .25

The second item can be an entity:

draw location between location 0 0 0 vertex 2
draw location between location 0 0 0 surface 1

In the second case, location (0, 0, 0) is projected to surface 1, then the location that is between (0,
0, 0) and the projected location is found.

Of course, any valid location can be used in the command. In the following example a location at
the top center of the brick is found:

brick x 10
draw location between location bet vert 3 vert 2
location bet vert 8 vert 5

The first location is between vertices 3 and 2, and the second location is between vertices 8 and
5.

Note: you can "swing" a location about an axis, "rotate" a direction about another direction,
"revolve™ an axis about another axis and "spin™ a plane about an axis. The only reason Cubit
needs to use different keywords for each entity type is because the Cubit command language
does not support expressions (as in using parentheses). The keyword stop is also used in the
location/direction/axis/plane parsing as a partial workaround to this limitation. Using this stop
keyword will aid in parsing out extended location specifications. Insert a stop after the first
location to let the parser know that where the specifications begin and end.

Move

Move [All] { <xval yval zval> | {Dx|X|Dy|Y|Dz|Z} <val> | Direction {options}
Distance <val>}

34

Cubit 15.1 User Documentation

Any location can be optionally moved either a xyz distance or a certain distance in a given
direction. As many moves as desired can be strung together. For example, the following will
return a location at (5, 0, 0):

draw location 00 0 move 500

These examples add another move that basically moves the location (5, 0, 0) in a direction 45
degrees up and to the right a distance of 10 (all three commands are equivalent - see sections on
directions and rotations):

draw location 0 0 0 move 5 0 0 move {10*sind(45)} {10*sind(45)} 0

draw location 0 0 0 move 5 0 0 move direction 1 1 0 distance 10

draw location 0 0 0 move 5 0 0 move direction 1 0 O rotate about 0 0 1 angle
45 dist 10

Swing
Swing [All] [About] Axis {options} Angle <ang>
Any location can be "swung" (rotated) about an axis by a certain angle. (See the section
on specifying an axis for the axis syntax). As with moves, multiple swings can be strung
together. The following example rotates the location (2.5, 5, 5) thirty degrees about an axis

defined by Curve 11. Note that the right-hand rule is used to determine the direction of the swing
about the axis.

draw location 2.5 5 5 swing about axis curve 11 angle 30

Axis = Curve 11

. (star) (25,5, 5

Figure 1 - Swinging a Location
Multiple Location Specification

Location {options} Location {options}...

Multiple location specifications can be used in a single command. For example, the following
command uses several locations to create a spline curve at points (0,0,0), (1,2,3), (4,5,6), and
(7,8,9).

create curve spline location 0 0 0 location 1 2 3 location 4 5 6 location 7 8 9
Previewing a Location
Sometimes it is advantageous to preview a location before using it in a command. A location can
be previewed with the Draw command. All of the options that can be used to specify locations in

a command can be used to preview locations as well. See above for a description of these
options. The command syntax is:

35

Environment Control

Draw Location {options}

Specifying a Location on a Curve

Some commands require you to specify a location on a curve (i.e., webcutting with a plane
normal to a curve). The following are the options for specifying a location (or locations in the
case of the segment option) on a curve:

« {MIDPOINT|Start|End}

o Arc Center

o Fraction <val 0.0 to 1.0> [From Vertex <id> | Start|End]

o Distance <val> [From {Vertex|Curve|Surface} <id> | Start | End]

o« {{Close To|At} Location {options} | Position <xval><yval><zval> | {Node|Vertex}
<id>}

o Extrema [Direction] {options} [Direction {options}] [Direction {options}]

« Segment <num seqs>

e Crossing {Curve|Surface} <id_list> [Bounded|Near]}

e Previewing a Location

Arc Center
arc_center
The arc center option helps in identifying the location at the center of a given arc. Example:
create vertex location on curve 3 arc_center
Start, Midpoint, or End

{ MIDPOINT | Start | End |

These options simply specify the location that is the midpoint, start or end point of a curve. By
default, the midpoint is the understood location unless another location is specified.
Fraction

Fraction <val 0.0 to 1.0> [From Vertex <id> | Start|End] |

The fraction option simply finds the location that is a fractional distance along the curve. By
default, the fraction references the start of the curve; however, you can optionally specify which
vertex to reference from.

Distance

Distance <d> [From {Vertex|Curve|Surface} <id> | Start | End] |

The distance option not only can find a location that is a certain distance along the curve from
the start or end of the curve, but can also find a location (or locations if there is more than one
solution) on a curve that is a specified distance from another curve or a surface. If the From
Curve option is used both curves must lie in the same plane.

draw location on curve 13 distance 7 from curve 2

36

Cubit 15.1 User Documentation

Churve 2

Cure 13
Distance = 7.0 ¢

¥ Resultant

Location

Figure 1 - Location on a Curve a Distance from Another Curve
{Close_To|At} Location

{{Close_To|At} Location {options} | Position <xval><yval><zval>
[{Node|Vertex} <id>} |

These options take a location closest to the location on the curve.
Extrema

Extrema [Direction] {options} [Direction {options}] [Direction {options}]

The extrema option finds the maximum value location along a curve in a specified direction. For
example:

create vertex location on curve 1 extrema ny

Creates a vertex on curve 1 at the location where the y axis value of the curve is at a minimum.
Segment

Segment <num_segs>

The segment option finds locations spaced evenly along the curve such as to break the curve into
equal length "segments™ (of course the curve is not modified). You must specify a minimum of
two segments (if two segments were specified a location would be found at the center of the
curve). The following example results in 4 locations:

draw location on curve 1 segment 5
create vertex on curve 1 segment 5

Figure 2 - Five Segments on a Curve
Crossing

Crossing {Curve|Surface} <id_list> [Bounded|Near]}

The crossing option finds locations at the intersection of the curve and another curve or surface.
By default, the curve(s) and surface are extended to infinity and the intersections are calculated,

37

Environment Control

if the bounded option is specified only intersections that lie on the bounded entities will be
returned. The near option is valid only for two linear curves. If near is specified the nearest
location between the two linear curves will be returned.

Previewing a Location on a Curve

A location on a curve can be previewed with the Draw command. All of the options that can be
used for specifying a location on a curve can be used to preview a location on a curve. See above
for a description of these options. The command syntax is:

Draw Location On Curve <curve id> {options}

Specifying a Plane
Some commands require a specified plane (such as sweep curve target) for the command. The
following options determine a plane specification:

o {Location|Vertex|Node} <origin> Direction <normal>

o {Location|Vertex|Node} <origin> Direction <vec on plane> Direction <vec on plane>
o {Location|Vertex|Node} <2 locations> Direction <vector on the plane>
o {Location|Vertex|Node} <3 locations>

o Surface <id> [at location <loc>]

e [Normal To] Curve <id> [loc on curve options]

o Direction <Normal> Coefficient <val>

e Arc Curve <id>

e Linear Curve <id> <id>

o X|Xplane|Yz|Zy|Y|Yplane|Zx|Xz|Z|Zplane|Xy[Y X

. Last

The following options apply to all of the plane specifications listed above:

o [Offset <val>]

o [Move { <xval yval zval> | {Dx|X|Dy|Y|Dz|Z} <val> | Direction {options} [Distance
<val>]]

e [[To] Location {options}]

e [Spin [About] Axis {options} Angle <ang>]]

Location and Normal Vector
{Location|Vertex|Node} <origin> Direction <normal>
The first way to specify a plane is to specify a starting point and a direction vector:

draw plane location 1 2 3 direction011
draw plane vertex 1 direction tangent at curve 1

38

Cubit 15.1 User Documentation

Figure 1. Specifying a plane with a location and surface normal

To see the options for location specification, see Specifying a Location. Direction options can be
found at Specifying a Direction.

Location and Two Vectors on the Plane

{Location|Vertex|Node} <origin> Direction <vec on plane> Direction <vec on
plane>

It is also possible to select an origin point and 2 direction vectors on the plane.

Figure 2. Specifying a plane with a point and 2 in-plane vectors
Two Locations and Vector on the Plane

{Location|Vertex|Node} <2 locations> Direction <vector on the plane>
You can also specify 2 locations and 1 direction on the plane to define the plane.
draw plane vertex 1 2 direction 011

39

Environment Control

Figure 3. Specifying 2 locations and 1 direction on the plane
Three Points on the Plane

{Location|Vertex|Node} <3 locations>

A plane can be defined by three locations, vertices, or nodes. The locations are specified
using Location Specification.

draw plane vertex 1 2 3
draw plane vertex 1 2 location 34 5

Figure 4. A plane specified by three points
Plane defined by a Surface

Surface <id> [At Location <loc>]

The surface option uses and existing surface to define the plane. If it is not a planar surface, the
optional location specifier can be used to find the tangent plane of a specific point on the surface.

draw plane surface 1 at location 400

40

Cubit 15.1 User Documentation

Figure 5. Specifying a Tangent plane to a Surface
Plane Normal to a Curve

[Normal To] Curve <id> [loc on curve options]

The Normal to Curve option allows you to define a plane by using an existing curve. The
direction of the curve will define the surface normal of the new plane. The optional location
argument specifies which point to use on the curve if it is not a straight curve. If no location is
specified the plane will originate at the midpoint of the curve. See Specifying a Location on a
Curve for more information on location options.

brick x 10

cylinder radius 3z 12

subtract body 2 from 1
webcut body 1 xplane

draw plane normal to curve 30

41

Environment Control

Figure 6. Draw Plane Normal to Curve
Plane Defined by a Non-linear curve

Arc Curve <id>

A plane can be defined by a single curve, provided that curve is not linear.
cylinder height 12 radius 3

draw plane arc curve 2

Plane Defined by a two linear curves

Linear Curve <id> <id>

A plane can be defined by a two linear curves, provided that the curves are not co-linear.
brick x 10

draw plane linear curve 2 3

Normal Vector and Coefficient

Direction <Normal> Coefficient <val>

The direction and coefficient option allows you to specify a plane based on a vector and an offset
from the origin. The Coefficient argument specifies how far to offset the plane from the origin

draw plane direction 1 2 3 coefficient 3
Coordinate Plane
X|Xplane|Yz|Zy|Y|Yplane|Zx|Xz|Z|Zplane|Xy|Y X

A plane can be defined from any coordinate plane or combination thereof. The coordinate planes
will pass through the origin unless optional specifiers are included.

draw plane xplane
webcut volume 1 plane xz

Last Location Used
Last

42

Cubit 15.1 User Documentation

The last option will return the plane most recently used in a command. Last locations do not
carry over from CUBIT session to CUBIT session. The last location defaults to (0, 0, 0) if no
location has been used during the session.

The following options apply to all of the plane specification methods described above.

o [Offset <val>]

e [Move {<xval yval zval>| {Dx|X|Dy|Y|Dz|Z} <val> | Direction {options}
[Distance <val>]]

e [[To] Location {options}]

e [Spin [About] Axis {options} Angle <ang>]]

A offset value will offset the plane in the direction of the surface normal.

The move option will displace the plane in the specified directions by the specified distance. The
direction options are outlined on Specifying a Direction.

The location option will move the plane to a specified location without rotating it.

See Specifying a Location for location options.

The spin option will rotate the plane around an axis. See Specifying an Axis for axis options.
Previewing a Plane

The ability to preview a plane prior to creating the plane or using it in a command is possible
with the following commands:

Draw Plane (options) [Graphics | {[Intersecting] {Body|Volume} <id_range>] [[Extended]
{Percentage|Absolute} <val>]}] [Color 'color_name’]

The options for specifying a plane are described above in the section on Plane Specification. By
default, the commands draw the plane just large enough to intersect the bounding box of the
entire model with minimum surface area. Optionally, you can give a list of bodies to intersect for
this calculation. You can also extend the size of the surface by either a percentage distance or an
absolute distance of the minimum area size. The default color is blue, but you can specify a
different one. See the Appendix of the CUBIT Users Guide for available colors in CUBIT.
Preview a Cylindrical Plane

The ability to preview a cylindrical plane is possible with the following command:

Draw Cylinder Radius <val> Axis {x|y|z|Vertex <id_1> Vertex <id_2> | <xyz values>}
[Center <x_val> <y _val> <z_val>] [[Intersecting] Body <id_range>] [Extended
Percentage|Absolute <val>] [Color *color_name’]

The cylinder is defined by a radius and the cylinder axis. The axis is specified as a line
corresponding to a coordinate axis, the normal to a specified surface, two arbitrary points, or an
arbitrary point and the origin. The center point through which the cylinder axis passes can also
be specified.

By default, the commands draw the cylinder just large enough to just intersect the bounding box
of the entire model. Optionally, you can give a list of bodies to intersect for this calculation. You
can also extend the length of the cylinder by either a percentage distance or an absolute distance
of the cylinder length. The default color is blue, but you can specify a different one. See the
Appendix of the CUBIT Users Guide for available colors in CUBIT.

43

Environment Control

Listing Information

Listing Information

The List commands print information about the current model and session. There are five
general areas: Model Summary, Geometry, Mesh, Special Entities, and CUBIT Environment. The
descriptions of these areas includes example output based on the model generated by a journal
file listed below. The model consists of a 1x2x3 brick meshed with element size 0.1.

List Model Summary
List Geometry

List Mesh

List Special Entities

List CUBIT Environment

Journal File Used for List Examples
brickx1y2z3

body 1 size 0.1

mesh volume 1

block 1 volume 1

nodeset 1 surface 1

sideset 1 surface 2

group "my_surfaces" add surface 1to 3
surface 2 name "BackSurface"

surface 3 name "BottomSurface"
surface 1 name "FrontSurface"
surface 4 name "LeftSurface"

surface 5 name "RightSurface”
surface 6 name "TopSurface"

List Model Summary
The following commands print identical summaries of the model: the number of entities of each
geometric, mesh, and special type

List Model
List Totals

The following output is generated from the list model command.
CUBIT> list model
Model Entity Totals:
Geometric Entities:
0 assemblies
0 parts
2 groups
1 bodies
1 volumes
6 surfaces
12 curves
8 vertices
Mesh Entities:

44

Cubit 15.1 User Documentation

6000 hexes
0 pyramids
0 tets
7876 faces
0 tris
9854 edges
7161 nodes
Special Entities:
1 element blocks
1 sidesets
1 nodesets
Journaled Command: list model

List Geometry
The following commands list information about the geometry of the model.

List Names [Group|Body|Volume|Surface|Curve|Vertex|All]

List {Group|Body|Volume|Surface|Curve|Vertex} <range> [Ids]
List {geom_list} [Geometry|Mesh [Detail]]

List {Group|Body|Volume|Surface|Curve|Vertex} <range> {X|Y|Z}

The first command lists the names in use, and the entity type and id corresponding to each name.
Specifying all lists names for all types; other options list names for a specific entity type. The
names for an individual entity can be obtained by listing just that entity. Sample output from the
list names surface command is shown below. This output shows that, for example, Surface 2 has
the name * BackSurface ".

Name __Type__ I1d _Propagated_
BackSurface Surface 2 No
BottomSurface Surface 3 No
FrontSurface Surface 1 No
LeftSurface Surface 4 No
RightSurface Surface 5 No
TopSurface Surface 6 No

List Names Example
The second command provides information on the number of entities in the model and their
identification numbers. If a range is given then detailed information is given on each entity in
that range, unless the ids option is also given. If the ids option is used, just a list of ids is printed.
This list can be very useful for large models in which several geometry decomposition operations
have performed. Sample output from the list surface command is shown below.
CUBIT> list surface ids
The 6 surface ids are 1 to 6.
CUBIT> list surf ids
The 108 surface ids are 192 to 266, 268 to 271, 273 to 301.

List Surface [range] Ids' Examples

The <range> can be very general using the general entity parsing syntax. Using a <range> gives
a brief synopsis of the local connectivity of the model, e.g. one can list the ids of the surfaces
containing vertex 2; as shown in the listing below.. An intermediately detailed synopsis can be
obtained by placing the range of entities in a group, then listing the group.

45

Environment Control

CUBIT> list surface in vertex 2 ids
The 3 entity ids are 1, 5, 6.
CUBIT> group "v2_surfs" equals surface in vertex 2
CUBIT> list v2_surfs Group Entity 'v2_surfs' (Id = 3)
It owns/encloses 3 entities: 3 surfaces.
Owned Entities: Mesh Scheme Interval: Edge
Name Type Id +is meshed Count Size

FrontSurface Surface 1 map+ 1H 0.1

TopSurface Surface 6 map+ 1H 0.1
RightSurface Surface 5 map+ 1H 0.1

Using "List' for Querying Connectivity.

The third command provides detailed information for each of the specific entities. This
information includes the entity's name and id, its meshing scheme and how that scheme was
selected, whether it is meshed and other meshing parameters such as smooth scheme, interval
size and count. The entity's connectivity is summarized by a table of the entity's subentities and a
list of the entity's superentities. Also, the nodesets, sidesets, blocks, and groups containing the
entity are listed.
Specifying geometry will additionally list the extent of the entity's geometric bounding box, the
geometric size of the entity, and depending on entity type, other information such as surface
normal. See also the list {entities} x command below. If multiple volumes, surfaces, or curves
are selected, it will list the total volume, area, or length of all entities, and the total geometric
bounding box. If multiple volumes are selected, the centroid listed will be the composite centroid
of the all of the volumes.
Specifying mesh will additionally list the number of mesh entities of each type interior to the
entity and on bounding subentities. Mesh detail will list the ids of the mesh entities as well,
following the format of the list ids command above.
The fourth command lists the entities sorted by either the X, y, or z coordinate of their geometric
center. For example, in a large, basically cylindrical model centered around z-axis, it is useful to
list the surfaces of a volume sorted by z to identify the source and target sweeping surfaces.

List Mesh
The following commands list mesh entity information.

List {Hex|Face|Edge|Node} <id_range>

List {Hex|Face|Edge|Node} <id_range> IDs
For both of these commands, the range can be very general, following the general entity parsing
syntax. The first command provides detailed information. For an entity, the information includes
its id, owning geometry, subentities and superentities. For a hex, the Exodus Id is also listed. For

a node, its coordinates are listed. The second command just lists the entity ids, and is usually
used in conjunction with complex ranges.

List Special Entities
List {special_type} <range>

Special entities include (element) blocks, sidesets and nodesets (representing boundary
conditions). Like the list geometry and list mesh commands, if no range is specified then the

46

Cubit 15.1 User Documentation

number of entities of the given type is summarized. Otherwise, listing a special entity prints the
mesh and geometry it contains.

(Some special entities are of interest mainly to developers and are not described here, e.g.
whisker sheets, and whisker hexes.)

List Cubit Environment

The user may list information about the current CUBIT environment such as message output
settings, memory usage, and graphics settings.

Message Output Settings

There are several major categories of CUBIT messages.

o Info (Information) messages tell the user about normal events, such as the id of a newly
created body, or the completion of a meshing algorithm.

« Warning messages signal unusual events that are potential problems.

e Error messages signal either user error, such as syntax errors, or the failure of some
operation, such as the failure to mesh a surface.

o Echo messages tell the user what was journaled.

o Debug messages tell developers about algorithm progress. There are many types of
Debug messages, each one concentrating on a different aspect of CUBIT.

By default, Info, Warning, Error, and Echo messages are printed, and Debug messages are not
printed. Information, Warning and Debug message printing can be turned on or off (or toggled)
with a set command; error messages are always printed. Debugging output can be redirected to a
file. Current message printing settings can be listed.

List {Echo|Info|Errors|Warning|Debug }
Set {Echo|Info|Warning} [On|Off]

[Set] Debug <index> [On|Off]

[Set] Debug <index> File <'filename'>
[Set] Debug <index> Terminal

Message flags can also be set using command line options, e.g. -warning={on|off} and -
information={on|off}. Debug flags can be set on with -debug=<setting>, where <setting> is a
comma-separated list of integers or ranges of integers denoting which flags to turn on. E.g. to set
debug flags 1, 3, and 8 to 10 on, the syntax is -debug=1,3,8-10.

In addition to the major categories, there are some special purpose output settings.

[Set] Logging {Off|On File <'filename'> [Resume]}
List Logging

If logging is enabled, all echo, info, warning, and error messages will be output both to the
terminal and to the logging file. The resume option will append to the logfile, if it exists, instead
of writing over it. If the logfile doesn't already exist, it will be created.

List Journal Title "'<title_string>"

The List Journal command lists which types of CUBIT commands will be journaled and the file
to which the journaled commands are being written.

List Title

47

Environment Control

The List Title command will list the title to be written to the Exodus file. To assign a title to an
exodus file, use the Title command.

List Default Block
Set Default Block {ON|off}

The List Default Block command lists which type of geometric entities for which blocks will
automatically be generated at export if no other blocks have been specified. The Set Default
Block command will toggle whether these default blocks are written, or not, during the export
operation when no other blocks have been specified.

List Settings

The List Settings command lists the value of all the message flags, journal file and echo settings,
as well as additional information. The first section lists a short description of each debug flag and
its current setting. Next come the other message settings, followed by some flags affecting
algorithm behavior.

Sample output

CUBIT> list settings
Debug Flag Settings (flag number, setting, output to, description):

1 OFF terminal Debug Graphics toggle for some debug options.
2 OFF terminal Whisker weaving information

3 OFF terminal Timing information for 3D Meshing routines.
4 OFF terminal Graphics Debugging (DrawingTool)

5 OFF terminal FastQ debugging

6 OFF terminal Submapping graphics debugging

7 OFF terminal Knife progress whisker weaving information
8 OFF terminal Mapping Face debug / Linear Programming debug
9 OFF terminal Paver Debugging

echo = 0n

info = On

jJournal = On

journal graphics = Off

jJjournal names = On

jJjournal aprepro = On

jJjournal File = "cubitll.jou"

warning = On

logging = Off

recording = Off

keep invalid mesh = Off

default names = Off

default block = Volumes

catch interrupt = On

name replacement character = *_", suffix character = "Q@°

Matching Intervals is fast, TRUE;

multiple curves will be fixed per iteration.

Note in rare cases "slow", FALSE, may produce better meshes.
Match Intervals rounding is FALSE;

intervals will be rounded towards the user-specified intervals.

Graphical Display Information
List View

48

Cubit 15.1 User Documentation

List view prints the current graphics view and mode parameters; See Graphics Window .
Memory Usage Information

Users are encouraged to use Unix commands such as "top' to check total CUBIT memory use.
Developers may check internal memory usage with the following command:

List Memory [<object type>']
Without an object type, the command prints memory use for all types of objects.

GUI
Graphical User Interface

« CUBIT Application Window
o Control Panel

e Graphics Window

e Tree View

o Property Editor

e« Command Line Workspace

o Journal File Editor

e Toolbars

o Drop-Down Menus

The graphical user interface (GUI) can improve user productivity. It provides an easy way to
control CUBIT without learning command syntax. Many geometry commands are faster and
easier with the GUI. The underlying GUI components are constructed using a cross-platform
development environment. As such, the GUI will behave similarly across all platforms supported
by Cubit, yet each GUI will make use of platform specific widgets.

The GUI is built on top of the CUBIT command line. This means that GUI actions are translated
to a CUBIT command-line string and journaled. Users familiar with command-line syntax can
enter the same text in the GUI command-line window. Journal files can be created and played
back in both environments with the same results. Although many things are faster and easier in
the GUI, experienced users often use a combination of command line text and GUI button
operations.

The discussion of the Graphical User Interface and its features is based on the basic windows
contained within the CUBIT GUI Application Window. These are outlined in the subtopics listed
above.

A full graphical user interface (GUI) with the standard look and feel consistent with major
platforms is available on all supported Cubit platforms. The GUI version can improve
productivity, making new users aware of the wide range of CUBIT capabilities, and freeing new
and experienced users from having to remember esoteric syntax. The GUI and non-GUI versions
create and play back identical journal files, making it easier to switch from one environment to
the other.

CUBIT Application Window
The default CUBIT Application Window is shown in the following image.

49

Environment Control

_~ Drop Down Menus

DR MNEMHIN Per@ 9000 IR S $ERDIDIT

Il D= | @ AEAELS » +~n At B5ld 9 e s -
Povser Tapks L w#w o
RS NEWE Toolbarsﬂ et

e — [@ ﬂﬁ E]

B Bssenbiber

R L SEEe
IE..I\;::im'-.n;rer Tools | s —"— —I—Il—
. . Graphics Window

Hssembies Y |ﬂl |:|| 2 ﬂ ﬁll_

LJL L

Selentt Sur

At b
dako Factor

v
Fire

Properties Page ,)

Currerdt Seee §.080723
& %] Check For Orverlapping Surfeoss
[|

[#en |
Command Panels

Command Lire

deleting LID0 sdges from
coadeleting LI31 nedes from
Dafsult CUBIT modsl fila iz
S\CUBIT &}

dat araee £
Aat abaia. ..

"C:yFrogram Fils ";.
IyqubitOl, sub’ =]

Command Line

cuzTe | -
_Commard f\ Erer f Heaory |

‘Working Dwedtany: O Progran FlssOUEIT 10.2

Figure 1. The CUBIT Application Window
Graphics Window- The current model will be displayed here. Graphical picking and view
transformations are done here.
Power Tools - Geometry tree hierarchy view, geometry analysis and repair tool, meshing tool,
meshing quality tool, and ITEM Wizard.
Property Editor - The Property Editor lists attributes of the current entity selection. Some of
these properties can be edited from the window.
Command Panel - Most Cubit commands are available through the command panels. The
panels are arranged topologically, by mode.
Command Line Workspace - The command line workspace contains both the cubit command
and error windows. The command window is used to enter cubit commands and view the output.
The error window is used to view cubit errors.
Drop Down Menus - Standard file operations, Cubit setup and defaults, display modes, and
other functionality is available in the pull-down menus.
Toolbars - The most commonly used features are available by clicking toolbar icons.
Context Sensitive Help in the GUI
The Graphical User Interface has a context-sensitive help system. To obtain help using a specific
window or control panel, press F1 when the focus is in the desired window. It may be necessary
to click inside a text box to switch focus to a particular window. If no context specific help is
available, it will open the cubit help documentation where you can search for a particular topic.

=)

50

Cubit 15.1 User Documentation

Customizing the Application Window
All windows in the CUBIT Application can be Floated or Docked. In the default
configuration, all windows are docked. When a window is docked the user can click on

the area indicated below.

CUBIT= |

4—— Click and drag from here

% Command & Enor A History f

Figure 2. A docked window. Click and drag to float.
By dragging with the left mouse button held down, the window will be un-docked from the
Application Window. Dragging the window to another location on the Application Window and
releasing the mouse button will cause it to dock again in a new location. The bounding box of the
window will automatically change to fit the dimensions of the window as it is dragged. Releasing
the mouse button while the window is not near an edge will cause the window to Float. To stop
the window from automatically docking, hold the CONTROL key down while dragging.

51

Environment Control

o By 30 (E 88 ol

Command Panel
Maode - Geometry

L B

- Molure

<

- Create

Jd
&

Brick Dirensions
% (widkh) | 10

¥ (height)

Z (depth)

Presview Apply

Floating Window

Figure 3. A Floating Window

When a window is floating, as shown in Figure 3, it is possible to dock it by clicking the

title bar of the window and dragging it to its new docked location.

52

Cubit 15.1 User Documentation

Note: Double clicking on the title bar of an floating window will cause the window to
redock in its last docked position.

Control Panel

Command Panel Functionality

The Command Panel is arranged first by mode on the top row of buttons. Modes are arranged by
task. All of the geometry related tasks, for instance, can be found under the Geometry mode.
When a mode is selected, a second row of buttons becomes available. The second row of buttons
shown depends on the selected mode. For example, if Geometry, Meshing, or Materials and BCs
is selected, the second button row will show entity types. Entities are those specific to the mode.

o Geometry panel entity level buttons include VVolumes, Surfaces, Curves, Vertices, and
Groups.

e Meshing panel entity level buttons include VVolumes, Surfaces, Curves, Vertices, Groups,
Hexes, Tets, Quads, Tris, Bars, and Nodes.

« Materials and BCs entity level buttons include Exodus Nodesets, Exodus Sidesets,
Exodus Blocks, Create Boundary Conditions, Modify Boundary Conditions, List
Boundary Conditions, Draw Boundary Conditions, Make a Boundary Condition current,
and Delete Boundary Conditions.

The second row of buttons for Analysis Setup and Post Processing are not arranged by entity.
Rather, the buttons show specific capabilities.

The third row of buttons contains Actions, such as Create, Delete, Modify, and so forth. The
following shows an example of Geometry/VVolume actions.

Control Panel e El

tode - Geometmy

EX: B

E ity

Ble x|

Selecting an Action will display a command panel. The Geometry/Volume/Create command
panel is shown below.

53

Environment Control

Control Panel B

tode - Geometmy

394D

Entity - Wolume

B o ||

Action - Create

NGRS
= @
| Brick -]

Brick Dimensions
¥ [width] |10
Y [height) |

Z [depth] |

z

Apply

All command panels are constructed similarly. Each abstracts a set of Cubit commands. Options
are selected using checkboxes, radio buttons, combo boxes, edit fields, and other standard GUI
widgets. Each command panel includes an Apply button. Pressing the Apply button will generate
a command to Cubit. Nothing happens until and unless the Apply button is pressed.

Note: The edit fields are free form, which means the user may enter any valid
string into the fields. Any string that is valid for the command line is valid
for the command panel edit fields.

Where possible, default values are placed into edit fields. At any time, with the cursor placed
over a blank portion of the command panel, the user may right-click to select Reset Data which
will clear all fields and replace default values.

ID Input Entry Methods

The ID Input Fields provide a location where Geometric 1Ds, required for the current command,
can be entered. IDs can be entered in several ways:

Simple Keyboard entry

ID numbers can be entered directly in the field. Each ID must be separated with a space. Select
the field first before typing.

Graphical selection

IDs can be entered automatically by selecting entities directly in the Graphics Window. The
current entity available for selection is based on the current entity selection mode. In some cases,
not all entities of the current entity selection mode will be available for picking. The program
may automatically filter the applicable entities based on the context of the current command
Geometry Tree selection

54

Cubit 15.1 User Documentation

IDs may be entered by selecting the corresponding geometric entity from the geometry tree. To
select multiple entities use the <ctrl> key.

Ranges

A range of IDs may be typed into the field. For example:

1tod

will automatically enter all IDs from 1 to 5 inclusive in the field. Keywords such as all and
except can also be used. Any range that can be entered directly on a CUBIT command line can
also be used in the ID input field. See Command Line Entity Specification for a description of
the syntax.

As Part of Other Entities

Syntax can be entered in the ID Input field that will specify an entity based upon its topological
relationship to other entities For example, if a Vertex Selection Type Button was highlighted,
entering

insurfl

will automatically enter all vertices in surface 1 into the Input Field. CUBIT has a rich set of
syntax rules for specifying entities based upon topology relationships. See Command Line Entity
Specification for a description.

In Groups

Entities that are part of groups may be specified in the ID Input Field. For example, if the Vertex
Selection Type Button is highlighted, entering:

in picked

will automatically enter all vertices in the picked group into the active ID Input Field.
Dragged and Dropped
Entities can be dragged and dropped into the ID Input Field from the Tree View window.

Right-Click Context Menu for ID Input Fields

When the right mouse button is selected while in an ID Input Field, the following menu options
will appear:

o Done Selecting - Enters current selection and removes cursor from selection window

o Select Other - Displays selection dialog

o Select All - Selects all available entities and puts "select all" in input window

« Highlight - Highlight the current selection

e« Zoom To - Zooms to current entity in the selection field within the graphics window

« Rotate About - Change center of rotation to the center of selected entity

o Draw - Draws the entities listed in the input field within the graphics window

e Isolate - Turns visibility off for all entities other than the selected entities. Similar to
draw command, but entities remain hidden with a graphics refresh. Select All Visible in
the graphics window to turn visibility back on.

e Visibility Off - Removes the current entity from the input window and hides it on the
graphics screen

e Mesh - Mesh the listed entities using either an assigned scheme or a default scheme
where none is assigned

e Delete Mesh - Deletes mesh on all entities listed in the input window

55

Environment Control

o Reset Entity - rehighlights the entities listed in the input field within the graphics
window

e List Info - Displays a sub menu of choices including basic, geometry, and mesh.
Selecting the basic option will list schemes, visibility, and interval assignments. The
geometry option will add information about the geometry and geometry engine. The
mesh option will list information about mesh entities.

e Delete - Deletes the current geometric object in the input window.

Value Fields

Integer and real values pertinent to the command are entered in this window. Input placed in
parenthesis { } will be evaluated when the command is executed. For example:

{10*0.02}
is valid input. Additionally, any APREPRO syntax is valid in the Value Field, including

mathematical functions and boolean operations. See the section, APREPRO for a description of
syntax.

Advancing Pickwidgets

Some command panels have several id input fields such as the Mesh>Hex>Create panel. A
convenience feature implemented for such panels is an advancing pickwidget feature. Pressing
the middle mouse button after selecting an entity will advance to the next id input field.

Command Panels

The Command Panels provide a graphical means of accessing almost all of the CUBIT
functionality. The main CUBIT Command Panel is divided into six modes. Each of these modes
pertains to a major component of the CUBIT application. To view information about each of the
tools in the Control Panel select the help icon on each panel to access context specific help.

56

Cubit 15.1 User Documentation

Meshing
Access to boundary
Arcess to mesh o A :

; nalysis Setu .
creation and EOnGion commands e E;'; to mesh P Post Pracessing
modification | eeort cortral Aooess to external
commands K post-processing

softweare

Geometry
Access to geametry
related commancs

Figure 1. The CUBIT Control Panel
A brief description of the functionality of the Control Panel window follows.

Control Panel Functionality

Graphics Window

Viewing Curve Valence

To view your model based on a color-coded curve valence scale, click on the curve valence
button on the Display Toolbar. Curve valence refers to the number of surfaces attached to each
curve. Curves with exactly two surfaces attached are shown in blue. Curves with exactly one
surface are shown in red. Curves with more than two attached surfaces are shown in white.
This tool is useful for quickly visualizing merged/unmerged topology. Merged curves will
usually have a valence > 2, while unmerged curves typically have a valence of 2. Curves with a
valence of 1 may indicate a floating surface.

57

Environment Control

Graphics Window

File [EdE Wew Duplyy Tools FHelp
Y NEEN Pr@9909093a9E 2 fi&.-ﬂ-uﬂ*)v
Lo | 8 AHAED % » + - O A 2 I Hd o9 eam s o
Popesme Loy [oo Pared #x
I (& @ |2 |« owmhry
gt Vs Pl Troe W |& g ﬁi m B
Pdares D Properhies
T fssembbes -
. .g:fcu-:r-m . la{} ~ | “
g e Graphics
c , Window (@] =] %) = Je=| %]
Eenpembies . EEE
Froqerties Fage & = Brick e
LPHERE ® oo,
Propert L] T [cepi)
v Lires [; II
ol .ﬁl&.‘_mu,’]
Whorking Derectory: CFrogram FlespCUBIT 11.2 J

Figure 1. Graphics Window
The graphics window is used to view and select entities. Select one of the options
below:

e View Navigation

o Selecting Entities

o Key Press Commands

¢ Right Click Commands for the GUI Graphics Window
e Viewing Curve Valence

Key Press Commands for the GUI
Several commands have a key press shortcut. These commands will be executed with
respect to the currently selected entities; see the following table:

Shortcut

Command
Key

| List information about the current entity to the output
window.

58

Cubit 15.1 User Documentation

Toggle the visibility of the selected entity (make invisible or

visible).
e Echo entity id to command line.
Tab Select the next entity.

[@shirt [Tab | |Select the previous entity.
Toggle picking of vertices.

Toggle picking of curves.
Toggle picking of surfaces.
Toggle picking of volumes.
Toggle picking of groups.

| fisift | 0 |Toggle picking of mesh nodes

1 |Toggle picking of mesh edges.
2 |Toggle picking of mesh faces.

3 Toggle picking of mesh hexes.

F5 Refresh graphics window

3 Activate/inactivate graphics clipping plane

AW DN O

Right Click Commands for the GUI Graphics Window
Clicking the Right mouse button in the graphics window will bring up a menu. One of two
menus will appear, depending on whether an entity is currently selected.

With Entity Selected

Select Other- Brings up a dialog with alternate entity selections

Zoom To - Zoom to the selected entity

Rotate About - Changes the center of rotation to the centroid of this entity
Draw - Draw the selected entity

Isolate - Turn all but the selected entities invisible

existing boundary condition, group, or part.

Add to BC/Group/Part - Opens a dialog box where you can add the selected entity to an

e Remove from BC/Group/Part - Opens a dialog box where you can remove the selected

entity from an existing boundary condition, group, or part.

Add to Picked Group - Add this entity to the picked group.

Remove from Picked Group - Remove this entity from the picked group
Visibility Off - Turn selected entities invisible

Mesh - Mesh the selected entities

Measure - Measures between two entities, or two vertices on a curve,

59

Environment Control

e Delete Mesh - Delete the mesh on selected entities (but not interval or scheme
information)

o Reset Entity - Reset selected entities by deleting mesh and interval information

o List Info - Show the menu of additional list commands

e Delete - Delete selected entities

Without Entity Selected

o Reset Zoom - Reset zoom to original configuration

o Refresh- Refresh the graphics display

o All Visible - Make all entities visible

o Display Options - Opens Options Menu to display options

Selecting Entities in the GUI

Geometry, mesh entities, and boundary conditions can be selected with the left mouse button
directly in the graphics window. Before selecting any entity, however, the correct selection mode
must be chosen. This dictates which entity types will be available for selection in the graphics
window. The Select Toolbars, which are located above the graphics window by default, are used
to change the entity selection modes.

Toggle
Selact Selected Togule
Groups Encloseds Bebween
of Select Geometry Select Mesh Extended Polygon!

En}ities/ Entities ~. - Enfities —____ \ Elu}{SeIect
@ﬁrﬁiuﬂ/o—%uﬁ,&&l B g

<
‘Bodies Uemces Quad Select
H-Ra
Volurmes CURES Element Elements Elements i
Modes orFaces Tot
Suraces Element Triangle Elerments
Edges Elerments
or Faces

Figure 1. The Selection Toolbar for Geometry and Mesh Entities

Select Select Select
Select Select Select Inlet Wass Inlet Fairfield Select_
Forces Heatfluxes Temperatures Fluu}llrs “elocities Pressures Symmetries

Dp=s 2 AEHAE RSN D
/ / | \ AN \

Select _ Select Select Select Select Select
Pressures Displacements Convections Inlet Ciutlet Perindics
Pressures Pressures

Figure 2. The Selection Toolbar for Boundary Conditions

60

Cubit 15.1 User Documentation

Figures 1 and 2 shows the selection toolbars. Selecting one of the entity selection modes will
only permit selection of that particular entity type within the graphics window. These selections
will not override a Pick Widget in the command panel.

If both volume and surface entities are picked on the select toolbar, a single click will select the
surface while a double click will select the volume. More detailed information on selecting and
specifying entities can be found in Entity Selection and Filtering .

Pre-Selection

When the mouse cursor is over an entity type that has been selected from the Pick toolbar, that
entity will become highlighted. This is called pre-selection and is used as a graphical guide to
show which entity will be picked when the mouse button is clicked.

Graphics pre-selection may slow down your graphics speed for large models. You can disable
pre-selection from the Tools->Options dialog box.

Polygon and Box Select

The polygon/box selection feature allows you to select entities by drawing a box or polygon on
the screen. To draw box on the screen press and hold the <CTRL> button* while clicking and
dragging the left mouse button. Release the left mouse to complete the box select. To create a
polygon selection, press and hold the <CTRL>* button while clicking and dragging the left
mouse button. Click the left mouse button to create another side for the polygon. Press either of
the other buttons to close the polygon and complete the selection. Only entities that are in active
selection mode will be selected. To change between the polygon or box method, press the Toggle
Between Polygon/Box Select button on the Select Toolbar. Clicking the Toggle Selected
Enclosed/Extended button will toggle between Enclosed Selection and Extended Selection.
Enclosed selection will only select entities that are fully enclosed within the bounding box or
polygon. Extended selection will select entities that are either fully OR partially enclosed within
the bounding box. Toggling the the Select X-Ray will select entities that are hidden behind other
entities. X-ray selection will only apply to smoothshade and hiddenline graphics modes.

*Note: For Mac computers use the command (or apple) button for polygon or box select.

View Navigation in the GUI

There are two different default paradigms for view navigation: Cubit command line and Cubit
GUI. The user is allowed to customize the mouse settings as desired. Mouse settings in the GUI
are modified by accessing the Tools pull-down menu, then select Options. The Mouse Settings
dialog is shown below (See Mouse-Based Navigation for the command line version).

61

Environment Control

& Options
".EI,'IStm e Mousze Bulton Function
- 'Dlspla','
-~ enaral Laft Buttar Salect
i~ Geomety Defauks Left Bution + Control Multiple Select
7 History Middle: Button Tab Oif Pickes
S Right Butkon Conbest Menu
Label Defaults
- Lapout Leit Button + Drag | Rotate =
=~ Cudit Layout Fiddle Butkon + Dirag | Zoom _vJ
-~ Mech Detaults
- CETES o Buton +Dizg [Fan o]
~ Post Processor | MNote: Usze Zoom + Control to select 4 zoom bosx |
= Cuabty Defauls

| MNote: Mac users subshibute "Command” for "Control”, |

Emrdate Command Line Sethngs

Figure 1. Mouse Settings Dialog

Rotations

Where the cursor is in the graphics window will dictate how the view will be rotated. If the
cursor is outside of an imaginary circle, shown in Figure 2, the view will be rotated in 2d, around
an axis normal to the screen. If it is inside the circle, as in Figure 3, the rotations will be in 3d,
about the current view spin center. The spin center can be changed to any x-y-z location. The
most common way is by zooming to an entity, which changes the spin center to the centroid of
that entity. The "view at" command will change the spin center without zooming:

View at vertex 3

62

Cubit 15.1 User Documentation

P

| .

Figure 2. With the mouse pointer outside the circle the view is rotated about an axis normal
to the screen

iy Reuiimi
Figure 3. With the mouse pointer inside the circle the view is rotated about the current spin
center

Zooming
To zoom, press the appropriate buttons or keys and move the cursor vertically, as shown in
Figure 4. The wheel on a wheel mouse will also zoom.

63

=1

b e |

Environment Control

Figure 4. Move the mouse pointer vertically to zoom in and out

Panning

To pan, press the appropriate buttons or keys and move the cursor horizontally or vertically, as

shown in Figure 5.

& s |

Figure 5. Move the mouse pointer horizontally or vertically to pan the view

Tree View
Power Tools

The power tools contain useful tools to help users through the mesh generation process.
The Immersive Topology Environment for Meshing, also known as ITEM. This panel contains a

wizard-like environment which guides the user through the mesh generation process through a
series of panels and diagnostics. The geometry tree tab contains a hierarchy of all the entities in
the model. It includes assemblies, boundary conditions, groups, and geometry entities. The
geometry tool allows users to create new boundary conditions/assemblies/groups, add entities to
existing boundary conditions/assemblies/groups, make entities visible/invisible, and rename
entities. The geometry repair and analysis tools contains diagnostics and tools for analyzing and

64

Cubit 15.1 User Documentation

repairing geometry, although many of these can now be found in the ITEM environment as well.
The mesh quality and meshing power tools aid in mesh generation and verification.

The geometry and mesh comparison tool identifies correlation between existing geometry and
mesh. The defeaturing tool assists users with defeaturing geometry in a more automated fashion.

Geometry tesh
Fepair Meshing Gluality |T_EM
Toal Taal Tool Wizard

Geometry |Power Tools (-4
Tree Q) 3 =] Q <
Current Yiew |Full Tree w

MName 1D Properties
P2 Assemblies

#82 Boundary .
+ L Groups

i Materials
£ Volumes

Figure 1. Power Tools Window

o Geometry Tree

o Geometry Analysis and Repair Tools

e Meshing Tools

e Mesh Quality Tools

o Immersive Topology Environment for Meshing (ITEM)
o Defeaturing Tool

To familiarize yourself with the power tools environment (excluding ITEM), we recommend that
you try the power tools tutorial.

To familiarize yourself with ITEM wizard, we recommend that you try the ITEM tutorial.

65

Environment Control

Geometry Tree

The geometry tree provides a complete graphical hierarchical representation of the parent child
relationship of all geometric entities. The tree is populated as the model is constructed by Cubit.
In addition to showing a hierarchy of geometric entities, the tree also shows Assembly Data,
active Groups, and active Boundary Condition entities.

The tree works directly with the graphics window and picking. Selecting an entity in the tree will
select the same entity in the graphics window. Selecting an entity in the graphics window will
highlight the tree entry if that entry is currently visible. If an entity's visibility is turned off, the
icon next to that entity in the geometry tree will disappear.

If the tree entry is not visible the user may press the Find button located at the bottom of the tree.
The first occurrence of the selected entity will be shown on the tree.

Virtual entities have a small (v) after the name to indicate that they are virtual entities.

66

Cubit 15.1 User Documentation

Power Tools

Current Yigw |Fu|| Tree b |

Mame D Properties

@2 Assemblies
= BB Boundary Conditions
&5 crp
= =4 FEA
T Blocks
EH side Sets
53 Node Sets
é Faorces
E Pressures
H Tempuratures
&g Displacements
@ Caonvections
5> Heat Fluxes
[=] 55 aroups
B piCkEd 1
= 4} Materials
4 Material 1
= i@ Volumes
£ Yolurme 1 (v) 1
£ Yolume 2 z
£ Yolume 3 3
£ Yolume 4 (v) 4
£ Yolume 5 5
£ Yolume & &
5§ Yolume 7 7
£ Volume 13 (v} 13
£ Yolurme 14 14
£ Yolurme 15 15
£ Volume 16 (v} 16
£ Yolume 17 17
£ Yolurme 15 15
£ Yolume 19 19
£ Yolurme 20 20
& Yolume 21 21
£ Yolume 24 24
£ Yolume 25 25
£ Yolume 26 26 ~

Material

Figure 1. Geometry Tree Window

Drag and Drop

The Tree View window supports drag and drop of geometric entities into existing boundary
condition sets. To create boundary conditions, see the Materials and Properties menu on the main
control panel, or right-click on one of the boundary condition labels and select the "Create New"

67

Environment Control

option from the context menu. Geometric entities or groups can be added to blocks, nodesets, or
sidesets by dragging and dropping inside the tree view window. Assembly data may also be
organized in the geometry tree window through drag and drop.

Picked Group

The current selections in the graphics window can be added to a "picked group™ by selecting the
"Add to Picked Group™ from the Right click menu. Selections can also be added to the picked
group by dragging and dropping onto the group from the geometry tree window. The picked
group can be substituted into any commands that use groups. To remove an item from the picked
group, use the "Remove from Group™ option in the right click menu in the geometry tree or from
the graphics window.

e @2y

Full Tree
Mame | 0] | Froperties ﬂ
T T EETOCEE (O]
E; MHodesets (0
B Sidesets (0]
= Gnoups
=i picked H
|]:| Surface 1 1
|]j Surface 2 2
|]i| Surface 3 3
~l Surface 4 4
-1 Volumes j
Surface & E

Figure 2. Picked Group

Right-Click Menu Functions

The geometry tree's context menu is sensitive to the type of item and the number of items
selected. Functions that apply to the item type and number of selected items are available
from the context menu. These include the following:

Zoom To - Available for all geometric entities

Rotate About - Change the center of rotation to the centroid of the entity without
zooming

Fly-In - Animated zoom feature

Locate - Labels the selected entity in the graphics window

Draw - Draw this entity by itself.

Isolate - Similar to Draw command, but the display will not be refreshed with a graphics
reset. To redisplay the model, select All Visible from the graphics window right-click
menu.

Transparency On/Off - Toggles transparency mode

Visibility On/Off - Toggles visibility

68

Cubit 15.1 User Documentation

69

Rename - Allows you to rename entities from the tree. Clicking on a highlighted entity
in the tree will do the same thing. This will also work for boundary condition entities
(blocks, nodesets and sidesets)

Mesh - Mesh selected entity at current settings.

Delete Mesh - Available for meshed entities

Reset Entity - Deletes mesh, and returns all settings to default values.

Delete - Available when Volumes and Groups are selected.

Create New Assembly/Sub-assembly/Part - You must specify the absolute path to
create a new assembly, sub-assembly or part (e.g. /al/pl). It may also be necessary to
refresh the full tree before viewing changes.

Add Selected to Part- Add the selected volume in the graphics window to the selected
part on the geometry tree.

Remove from Metadata - Deletes the selected part or assembly metadata information.
An assembly must be empty to remove it

View Metadata - List metadata in the command line workspace

Rename Metadata - Allows you to rename a part or assembly

Clean Metadata - Removes all parts and assemblies that are not associated with any
geometric entities.

List Volumes Without Parts - Lists all volumes that are not associated with a part in the
output window

Show Part Name/Description -Toggles the display of the part name/description in the
tree.

Goto Part - Finds the associated metadata part when a volume is selected.

Measure - Available when two entities are selected or 1 curve is selected

Refresh Full Tree - Used to return to main tree

Collapse Tree - Available when entities are selected.

View Descendants/Ancestors - Show this entity's individual hierarchy. Use the Refresh
Full Tree option to return to main tree view.

View Neighbors View adjacent entities. Use the Refresh Full Tree option to return to the
main tree view.

Create New Volume - Available when the user right-clicks over the VVolumes (parent)
label. Opens the geometry-volume-create panel

Import Geometry - Available when the user right-clicks over the Volumes (parent)
label. Opens import dialog.

Create New Group - Available when the user right-clicks over the Groups (parent) label.
Clean Out Group - Available when groups are selected. Removes all entities from
group.

Remove from Group - Available when groups are selected. Removes selected entity
from the group.

Add Selected to Block/Nodeset/Sideset - Add the selected entity in the graphics window
to the chosen block, nodeset, or sideset in the geometry tree.

Delete Selected from Block/Nodeset/Sideset - Delete the selected entity in the graphics
window from the chosen block, nodeset, or sideset in the geometry tree.

Create New Block/Sideset/Nodeset - Available when the user right-clicks over the
respective Boundary Conditions (parent) label.

Environment Control

« Create New <boundary condition> - Available when highlighting desired boundary
condition in the tree including CFD and FEA boundary conditions.

o Draw Block/Sideset/Nodeset - Draws the selected block/nodeset/sideset on top of
existing entities

o Draw Sideset/Nodeset Only - Draws the selected nodeset/sideset independent of other
entities

o Delete Selected Boundary Condition - Deletes any selected boundary conditions

o Draw Selected Boundary Condition - Draws selected boundary condition by itself

e Draw Selected Boundary Condition (Add) - Draws multiple boundary conditions

o List Selected Boundary Condition - Lists information about selected boundary
conditions in the command line window

o Remove from Block/Sideset/Nodeset - Removes selected entity from the specified
block, sideset or nodeset

e Cleanup (Tets) - Issues cleanup command for selected block. Only applicable for blocks
composed of tet elements

e Remesh (Tets) - Issues remesh command for selected block. Only applicable for blocks
composed of tet elements

o List Info - List information about selected entity in the output window.

Meshing Tools
The meshing power tool provides a tool for determining whether a geometry can be meshed
using autoscheme, or if it requires its scheme to be set explicitly. This tool is designed to help
guide users through geometry decomposition process by providing a convenient way to see
which geometries need further modification or decomposition prior to meshing.

Figure 1. Meshing Power Tools
Entity Specification- The meshing power tool works for volumes or surfaces.
Options Button - Opens the Tools>Options dialog to change the visualization colors of surface
schemes for the meshing tool
Analyze Button - The Analyze button issues the autoscheme command for all selected volumes
and surfaces.
Output Tree - The output from the meshing tool is displayed in tree format. Geometry is
divided into "Scheme Set" and "Scheme Not Set" divisions. The geometry is listed under these
nodes. If autoscheme was successful, its assigned scheme is also displayed.
Toggle Visibility Button - The meshing tool displays entities as red or green in the graphics
window. Green means that they are currently meshable using the autoscheme. Red means that
they require their scheme to be set explicitly. Turning this capability off will return the volumes
and surfaces to their original colors.
Meshing Tools Buttons - Several meshing tools are available to the user from this window.
Depending on the entity selected, these are also available from the right-click context menu, and
they are described below.

Right Click Context Menu

e Zoom To - Zoom in on this element in the graphics window
o Draw - Draw this entity by itself in the graphics window

70

Cubit 15.1 User Documentation

Locate - Locates and labels entity in the graphics window

Rotate About - Issues Rotate about command for selected entity

Visibility On/Off - Toggle visibility

Reset Graphics- Reset graphics display

Set Size - Opens the Mesh/Entity/Interval panel on the control panel where you can

set interval sizes for the selected geometry

Set Scheme - Opens the Mesh/Entity/Mesh panel on the control panel where you can set
a scheme for the selected entities

Set Vertex Type - Available when surfaces are selected. Opens the Mesh/Surface/Mesh
panel to set vertex types.

Imprint/Merge- Opens the Geometry/Entity/Merge panel on the control panel. If you
have entities selected in the tree window it will input them to the imprint/merge
command.

Webcut - Opens the Geometry/VVolume/Webcut panel on the control panel. If a volume is
selected in the meshing tool window it will input it in the webcut panel.

Color Surfaces - Color surfaces based on their schemes. You can change the default
colors by selecting the Options button.

Restore Colors - Restores colors on selected entity or entity type

Mesh - Meshes the selected entities (bypassing control panel)

Delete Mesh - Deletes the mesh on selected entities

Unmerge - Unmerges selected entities

View Descendants - Opens a list of child entities and their meshing schemes. Press
Analyze to return.

View Ancestors- Opens a list of parent entities and their meshing schemes. Press
Analyze to return.

View Neighbors- Opens a list of bordering entities and their meshing schemes. Press
Analyze to return.

Mesh Quality Tools

The mesh quality tool is located in the entity tree window under the quality tab. The Mesh
Quiality Tool works on meshed entities to analyze mesh quality based on selected metrics. Output
from the mesh quality analysis can be visualized using color-coded scales. The mesh quality tool
also contains tools to improve mesh quality including smoothing, refinement, node merging,
mesh validation, deleting mesh elements, and repositioning nodes.

71

Environment Control

& @ 2|y
&@ | Volume w| fall

@ Elptinns| WizLal | Analyze |

Paoor Elements

R esults | (uality |

25hape
Mo bad elements found

QEO”OEE}’O
| | R

Figure 1. Mesh Quality Tools
Entity Type - The mesh quality tools can only be applied to mesh entities including volumes,
surfaces, hexahedra, quadrilaterals, triangles, or tetrahedra.
Help Button - Opens context specific help for this topic.
Options Button - Clicking on this button will show the Tools>Option menu dialog that allows
users to manually enter metric range settings. The settings are persistent between sessions. For
description of quality metrics and default ranges click on one of the following links:

o Metrics for Hexahedral Elements
e Metrics for Quadrilateral Elements
e Metrics for Tetrahedral Elements
e Metrics for Triangular Elements

Visual Button - Clicking on this button will open the Mesh/Entity/Quality command panel
specific to the entity selected. To visualize elements in the graphics window based on a color-
coded quality scale, you must select the entities to visualize and check the "Display Graphical
Summary" check box. Once that box is selected, you must also make sure the "Draw Mesh
Elements™ option is selected. Then press the Apply button

a

Analyze Button - This button starts the quality processing based on the metrics/filters selected.

Output Window/Tree - The failed elements are shown in the tree under the heading "Poor
Elements". For each metric/filter the output will be listed in a tree format with the following
nodes.

1. The top node on the tree is the name of the metric.

72

Cubit 15.1 User Documentation

2. The next node under is the owning volume or surface when volumes or surfaces are
analyzed.
3. The next node will be categories or groups of elements. Possible categories are:
o All Above Threshold - represents all mesh elements above the quality threshold
upper range
o All Below Threshold - represents all mesh elements below the quality threshold
lower range
o Top "n" - This will expand into a list, up to 50 elements long, of the worst
offending elements above the upper threshold range.
o Bottom "n" - This will expand into a list, up to 50 elements long, of the worst
offending elements below the lower threshold range.

4. At the lowest level of the tree are mesh elements.

The mesh elements can be sorted by quality or by numeric order. To change the way items are
sorted, click on the headings. The right-click or context menu will show various remedies
depending on what is selected. Performing an operation on a parent node will perform the same
operation on all of the child nodes.

Mesh Quality Tool Buttons

The buttons on the bottom of the mesh quality tool window are some of the tools you may use to
improve mesh quality and include.

e Smooth Button - Opens the Mesh>Entity>Smooth panel

o Refine Button - Opens the Mesh>Entity>Refine panel

e Move Node - Opens the Mesh>Node>Move Node panel

e Merge Node - Opens the Mesh>Node>Merge Node panel

o Delete Mesh Element - Deletes selected mesh entity

o Validate Mesh - Issues the validate mesh command

e Check Coincident Nodes - Issues the check coincident nodes command.
o Refresh Graphics

Right-Click Context Menu Items

e Draw - issues a draw command for any tree node below the metric name.

e Color Code - Issues a 'quality draw mesh' command for any tree node below the
metric name

o Locate - Issues Locate for volume/surface/hex/quad/tet/tri. The locate command will
draw and label selected entities in the graphics window.

e Fly-In - Issues Fly-in for volume/surface/hex/quad/tet/tri. The fly-in command is an
animated zoom feature.

e Zoom to - Issues Zoom command for volume/surface/hex/quad/tet/tri

o Rotate About - Issues Rotate About command for volume/surface/hex/quad/tet/tri

e Vis on/off - Issues visibility on/off for volume/surface

e Smooth - Issues generic smooth command for volume/surface/hex/tet

e Smooth Surface Parent - issues a smooth surface command for the surface parents of
selected quads and tris.

73

Environment Control

e Delete Mesh - issues delete mesh propagate command for vol/surf

o Delete Elements - issues delete element command for mesh entities in all categories
except ‘all’

o Validate mesh - validates selected volume or surface

e Check Coincident Nodes - checks for coincident nodes on volume or surface

e Smooth Panel - brings up the correct smooth panel depending on what's selected

e Smooth Surface Panel - bring up the smooth surface panel with correct surface ids for
selected quads and tris

e Merge Node Panel - brings up the panel to merge nodes

e Move Node Panel - brings up the panel to move nodes

e Reset Graphics - resets the display

Geometry Power Tools

The geometry power tools are located on the Tree View window under the blue geometry tab. In
many cases, a model will fail to mesh because of problems with the geometry. Since the range of
geometry problems is so wide, and because these problems can be hard to diagnose, the
Geometry Power Tool has several built-in tools designed to analyze and repair these problems.
The Geometry Repair Tool analyzes geometry for small angles, overlap, small features, bad
geometry definition, blend surfaces, close loops, or mergeable entities that may affect meshing
capability. It also contains a powerful toolkit of geometry modification methods to fix these
problems. All of the common geometry clean-up tools are now in one place on the GUI menu. In
addition, there is a window that lists results from geometry analysis in a tree format, making it
easier to find, diagnose, and solve geometry problems. And Cubit will save your settings, so you
can run the same diagnostic tests each time you use the geometry power tools.

74

Cubit 15.1 User Documentation

3 & |@|2|¥
6@ Volume ID(z) |all

Shortest Edge Length |1
| Show Options

ﬂ Analyze

Entity ID | Entity Data

asme 2
EiR E

r| € |

Figure 1. Geometry Power Tools

Geometry Analysis Tools

The geometry power tools contain an array of tests that can be run on geometry to diagnose
potential problems for mesh generation. To display a list of tests, click on the Show Options
check box. By default all tests are selected and run on geometry. Some tests may not apply to
specific geometry, or may only need to be run once per geometry (i.e. bad geometry definition
test). Clicking on the box by each test will deselect it.

The geometry analysis inputs and tests are summarized below:

Shortest Edge Length -The shortest edge length is a value that is input by the user. It
determines the minimum allowable threshold for small features. It is used as an input to test for
small curves, small surfaces, small volumes and close loops. The default value for this is 1. This
value should be changed relative to the size of the model. In a very broad sense, it represents a
desired mesh edge length. Curves and surfaces which are smaller than this size, and which may
be troublesome to mesh with the desired granularity, will be flagged and they can be removed or
modified.

Bad Angle Upper/Lower Bounds - The bad angle upper/lower bounds are tolerances set by the
user to determine the definition of small or large angles. The default values are set at 350 degrees
for the large angle and 10 degrees for the small angle. These values are used to test for angles
between curves, surfaces, and at tangential intersections.

75

Environment Control

Bad Angle Check - The bad angle check will test for small angles between curves, surfaces, and
at tangential intersections. The test will only look for curves or surfaces that are adjacent.

Tangential Intersection - A tangential intersection is formed when two parallel
surfaces share an edge and have a 180 degree angle between them. The tangential
intersection test is looking for the condition where two surfaces that meet
tangentially share a common edge, and each of the surfaces has another edge
which resides on a third face and forms a small angle as shown in the following
example. Surface 1 and Surface 2 are tangential to each other and share a
common edge. Both Surface 1 and 2 have another edge which resides on Surface
3 and forms a small angle at the vertex common to all three surfaces.

Figure 2. Tangential Intersection
Mergeable Entities Check - As it suggests, this test is looking for entities that overlap and that
can be merged. Pressing the "Merge all" button on the Power Tools will automatically merge all
entities flagged by the merge test.
Overlap Check - The overlap tests look for geometry that are either overlapping or coincident
(exactly on top of each other). Keep in mind that some of these problems may disappear with
imprinting and merging.
Small Features Check - Small features may be necessary and desirable in a model, but many
times they are the result of poor geometry translation or import, or they may just not be
important to the analysis. The small features tests look for small curves, small surfaces, and
small volumes. These tests rely on the user-defined short edge length parameter. Small curves,
including zero-length curves such as hardpoints, are compared directly against the defined
parameter, and flagged if they less than or equal to the given parameter. Small surfaces and
volumes, on the other hand, are compared against their hydraulic radius. For surfaces the
hydraulic radius is 4*surface_area/perimeter. For volumes the hydraulic radius
is 6*volume/surface_area.

76

Cubit 15.1 User Documentation

Bad Geometry Definition Check - Cubit uses third party libraries, such as ACIS from Spatial,
Inc. for much of its geometric modeling capabilities. The bad geometry definition check calls
internal validation routines in these libraries, when available, to check for errors in geometry
definition. If the third party library does not provide validation capabilities, this check will not
return anything. Note: ACIS is a trademark of Spatial.

Blend Surface Check - A blend surface is a transition surface between two orthogonal planes,
such as a fillet. The blend surface check identifies the surfaces which meet this criterion. Many
times these surfaces are candidates for the split surface command or the remove surface
command. The split surface command allows you to split these blend surfaces into two surfaces,
making it easier to mesh the volume. The remove surface command removes the surface and
extends the adjoining surfaces until they intersect.

Close Loops Check - Close loops (pronounced KLOS, not KLOZ) are two loops on a single
surface for which the shortest distance between loops is less than a user specified tolerance. The
tolerance for close loops is the square of the shortest edge length parameter. Close loops are
common around holes and fillets, and are usually found where one loop is entirely within the
other loop. These surfaces are often candidates for removal, or tweaking.

Geometry Repair Tools

Note: Pressing most of the geometry tool buttons on the panel will only bring up applicable
command panels on the Control Panel. You must press the Apply button on the Control Panel to
execute the command.

!Split Surface Button

The split surface tool is used to split a surface into two surfaces. This is useful for blend surfaces,
for example, where splitting a surface may facilitate sweeping. To select a surface for splitting,
click on the surface in the tree view. To select multiple surfaces in the window, hold the CTRL
key* while selecting surfaces (surfaces must be attached to each other). Then press the split
surface button to bring up the Control Panel window with the ids of selected surfaces in the text
input window. The split surface menu is located on the Control Panel under Geometry-Surface-
Modify. You must press the Apply button for the command to be executed. You can also bring
up the Split Surface menu by selecting surfaces in the tree view and selecting Split from the right
click menu.

*Note: For Mac computers, use the command key (or apple key) to select multiple entities

¢
Heal Button

The healing function in Cubit is used to improve ACIS geometry that has been corrupted during
file import due to differences in tolerances, or inherent limitations in the parent system. These
errors may include: geometric errors in entities, gaps between entities, and the absence of
connectivity information (topology). To heal a volume, select the volume in the geometry repair
tree view. Then press the heal button. You may also press the heal button without a geometry
selected in the window, and enter it later. The Control Panel window will come up under the
Geometry-Volume-Modify option with the selected volume id highlighted. If no entity is
selected, or if another entity type is selected, the input window will be blank. You can also open
the healing control panel by selecting Heal from the right click menu in the geometry power
tools window.

iz

Tweak Button

77

Environment Control

The tweak command is used to eliminate gaps between entities or simplify geometry. The
tweaking commands modify geometry by offsetting, replacing, or removing surfaces, and
extending attached surfaces to fill in the gaps. Tweaking can be applied to surfaces, and it can be
applied to curves with a valence no more than 2 at each vertex. It can also be applied to some
vertices. To tweak a surface, select the surface in the tree view. The Geometry-Surface-Modify
control panel will appear with the selected surface id in the input window.

Tweaking is available for curves. Tweaking a curve creates a blended or chamfered edge
between two orthogonal surfaces. The curve option is located on the Geometry-Curve-Modify
panel under the Blend/Chamfer pull-down option.

Tweaking is also available for some vertices. Tweaking a vertex creates a chamfered or filleted
corner between three orthogonal surfaces. The vertex option is located on the Geometry-Vertex-
Modify panel under the Tweak pull-down menu.

Note: Only curves with valence 2 or less at each vertex are candidates for tweaking. Any
other curve will cause the Geometry-Surface-Modify menu to appear.

@Merge Button

The merge command is used to merge coincident surfaces, curves, and vertices into a single
entity to ensure that mesh topology is identical at intersections. Unlike other buttons on the
geometry repair panel, the merge button acts as an "Apply" button itself. All geometry that is
listed under "mergeable entities” will be merged.

| %|Remove Button

The remove button is used to simplify geometry by removing unnecessary features. To use the
remove feature, click on the surface(s) in the Tree View. Right click and select the Remove
Option, or click the Remove icon on the toolbar. The Control Geometry-Surface-Modify control
panel will appear, with the surface ids in the input window. The Remove control panel can also
be accessed from the right-click menu in the Geometry Power Tools window. Select options and

press apply.

5’ Regularize Entity Button
The reqularize button is used to remove unnecessary topology. Regularizing an entity will
essentially undo an imprint command.

ﬁlRemove Slivers

The remove slivers button is used to remove surfaces with less than a specified surface area.
When ACIS removes a surface it extends the adjoining surfaces to fill the gap. If it is not
possible to extend the surfaces or if the geometry is bad the command will fail.

B’ Auto Clean Geometry

The auto clean button is used to perform automatic cleanup operations on selected geometry.
These automatic cleanup operations include forcing sweepable configurations, automatically
removing small curves, automatically removing small surfaces, and automatically splitting
surfaces.

o
- Composite Button
The composite button is used to combine adjacent surfaces or curves together using virtual
geometry . Virtual geometry is a geometry module built on top of the ACIS representation.
Surfaces may be composited to simplify geometry in order to facilitate sweeping and mapping

78

Cubit 15.1 User Documentation

algorithms by removing constraints on node placement. It is important to note that solid model
operations such as webcut, imprint, or booleans, cannot be applied to models that have virtual
geometry. Both curves and surfaces may be composited.

‘ﬂCollapse Angle Button

The collapse angle button uses virtual geometry to collapse small angles. This is accomplished
by partitioning and compositing surfaces in a way so that the small angle gets merged into a
larger angle. Pressing the collapse button on the geometry power tools will open the collapse
menu under Geometry-Vertex-Modify control panel. This panel can also be opened by
selecting Collapse from the right click menu in the Geometry Tools window.

ﬁ|Collapse Surface Button

Pressing this button will open the collapse surface panel on the main control panel. The collapse
surface function uses virtual geometry to eliminate small surfaces on the model to improve mesh
quality. It is most useful for blend surfaces.

@lCOIIapse Curve Button

Pressing this button will open the collapse curve panel on the main control panel. The collapse
curve command is used to eliminate small curves using virtual geometry.

(i

_“ Reset Graphics Button

The reset graphics button will refresh the graphics window display.

Right Click Menu

The following right click menu is available from the geometry power tools. Specific options
depend on the type of entity selected.

e Zoom To- Zoom to selected entity in the graphics window

e Reset Zoom - Reset graphics window zoom

e Fly-in - Animated zoom

o Locate - Labels the selected entities in the graphics window. Refresh screen to hide.

o Draw - Displays only selected entities by themselves.

« Highlight - Highlights selected entities.

o Draw with Neighbors - Displays only selected entities with all attached neighbors

o Clear Highlights - Clears all highlighted entities and reset graphics

o Reset Graphics - Reset graphics window

e Tweak - Opens the tweak menu in the main control panel

e Remove - Opens the remove menu in the main control panel

e Remove Slivers - Opens the remove sliver menu in the main control panel

o Remove all - Available when the clicking on an item in the "small surfaces"” list. Opens
the remove menu in the main control panel with all surfaces in the category as inputs.
The individual option will be selected on the panel by default.

e Split - Opens the split surface or split curve menu in the main control panel, depending
on the type of entity selected.

e Auto Clean - Opens the auto clean menu in the main control panel.

e Regularize - Issues the regularize command on selected entity.

e Merge Selected - Merge selected entity from mergeable entities list

79

Environment Control

o Merge All - Merge all entities listed in the mergeable entities list

e (Virtual) Composite - Opens the composite menu in the main control panel

e (Virtual) Collapse - Opens the collapse angle menu the main control panel

o Collapse Surface (Virtual) - Opens the collapse surface menu on the main control panel

The following right click options are available when category headings are selected.

e Analyze Geometry - Similar to pushing the Analyze button.
o Highlight All - Highlight all members of this category.

« Draw All - Display only members of this category.

o Locate All - Label all members of this category.

Defeature Tool

The Defeature Tool is capable of removing small irrelevant curves and surfaces. These small
curves and surfaces are one of the main sources of low quality elements and meshing
failures. Sliver surfaces and curves generally exist at fillets, chamfers, and sliver surfaces at
misalignments in imprinted assembly models.

Defeaturing small curves and surfaces involves three main steps:

1. Analyze the model to automatically detect small curves and surfaces.
2. Manually deselect, if needed, detected small curves and surfaces.
3. Execute the defeature tool to remove small curves and surfaces.

Step 1 requires specifying volume ids (e.g. all) and a tolerance (e.g. 0.6) as shown in Figure

1. Clicking “Analyze” button will automatically find small curves and surfaces in the volumes
specified. Figure 2 shows the highlighted small curves and surfaces with the label

information. Figure 3 shows a zoom view of a small surface.

In Step 2 the user is allowed to deselect entities by unchecking entities from the list “Entities to
be Defeatured”. Users can also use “Highlight”, “Draw”, and “Locate” buttons to examine the
automatically detected entities (see Figure 2).

In Step 3 actual defeaturing is performed by clicking the “Execute” button (see Figure 5). Figure
4 shows the zoom view of a defeatured volume. Defeatured volumes are created in a new user
specified group (by default in “defeature_group”) as shown in Figure 6. Only the volumes that
have small curves and surfaces will be defeatured. Also, by default old original volumes are
deleted and new defeatured volumes (child entities) will use the corresponding old ids. Please
use the option “Keep Originals” if you want to have both old original and new defeatured
volumes.

NOTE:

1. The new defeatured volumes are in MBG format. That is defeatured volumes are facet
based instead of NURBS based ACIS volumes. Therefore, it is highly recommended to
perform NURBS based operations such as webcut and imprint before calling defeature.

Command Syntax:
Set tolerant mesh mbg only

80

Cubit 15.1 User Documentation

This command forces the mesh to associate with new defeatured volume. Currently, this
command must be called before calling the defeature command below.
Defeature curve_length <value> [Curve <ids>] [Curve <ids>] surface_prox2d
<value> [Surface <ids>] [group <id>] [keep]
curve_length <value>: Curves with length less than or equal to <value> are automatically
detected as candidate for defeaturing if auto_identify is specified. Otherwise, [Curve <ids>]
must be specified.
surface_prox2d <value>: Surfaces with narrow region between opposing bounding curves are
automatically detected as candidate for defeaturing if auto_identify is specified. The 2d
proximity <value> specified in detecting surfaces containing narrow regions. If auto_identify is
not specified, then [Surface <ids>] must be specified.
group <id>: Defeatured volumes are added to the group id specified.
keep: If keep argument is specified original entities are kept along with new defeatured
volumes. If keep argument is not specified, then original entities are deleted and new defeatured
volumes and its subentities (surfaces, curves, and vertices) will use the ids of original volumes.

Preserving Critical Geometric Entities

Before defeaturing the geometry, the user may wish to specify geometry that will be preserved
during defeaturing. The below given "Fix" keyword is used to preserve any entity. The user may
specify a volume, surface, curve, or vertex to fix.

Mesh Tolerant Fix [Volume|Surface|Curve|Vertex] <range>

To reverse the effects of fixing a geometric entity, the user may "free" an entity using the
following syntax

Mesh Tolerant Free [Volume|Surface|Curve|Vertex] <range>

Example for fixing geometric entities:

reset

brick x 10

brick x .1

move vol 2 x 5

unite all

mesh tolerant fix surf all

mesh tolerant fix curve all

Defeature curve_length .2 curve 31 29 27 26 24 32 13 30 17 28 22 25

surface_prox2d .2 surface 13 14 15 16 12

Sample Journal File:

Even though the defeature tool is mainly intended to driven by the GUI, it can be used via
command line. Without the GUI, it will be harder to provide the list of small curves and surfaces
to the defeature command. Here is a sample journal file:

import simple assembly

import acis 'assemblylla.sat’

perform any ACIS based operations such as webcutting and imprinting first

imprint all

merge all

enable the developer only command

set developer on

81

Environment Control

force the mesh to associate with defeatured MBG volumes

set tolerant mesh mbg only

create a new group to store defeatured volumes

group 'defeatured_vols' add volume all

perform actual defeaturing by specifying the volume ids, tolerance, and small curve/surf ids.
defeatured volumes will be placed in the user specified group id and original entities can be

kept along with new defetured volume using “keep” option.

defeature volume all curve_length 0.3 curve 107 103 102 100 88 8582809 6 4 2 214 212 211
210203 200 199 197 188 187 185 183 170 167 164 162 234 232 227 225 254 253 252 251 249
248 243 242 272 271 270 269 265 264 259 258 288 287 286 285 281 280 275 274 304 303 302
301 297 296 291 290 312 311 307 306 surface_prox2d 0.3 surface 47 48 5051 41434042241
3111112118120 121 122 124 126 128 129 130 132 134 135 136 138 140 141 142 144 81 82
8384 88 89 90 91 94 95 96 97 100 101 102 103 group 2 keep

del any old original volumes if you don’t want it anymore

delete vol 1 to 11

enable visibility of only defeatured vols

vol all vis off

vol all in group 2 vis on

set scheme to tetmesh

vol all in group 2 scheme tetmesh

set mesh size

vol all in group 2 size 1

mesh defeatured vols

mesh vol all in group 2

disable developer only command

set dev off

Figures

82

Cubit 15.1 User Documentation

i Cubin 1216 =R EoR

Eile Edit Miew Display Jools Help

DNE NENEN Pr 999000921 ELQQ¢EH - -

[*3 [& ™ (@]]

volume D{s) all

Toleranoe .6

Analyze

Entities to be Defeatured

Item Size

Deteatisred Group Rame
deleatune_group

Kiep Originsis

Aprieprs Eddar L

CUBTT> import aois “C:CUBIM cubf_best' defestura’ assambly] 1a.5at" sttributes_on separate_bodies
Geomabry anging sat to: ACTS Werson 21.0.1.0
1 Rebd 11 ACES Enntses fnom the input fite

fanable Mam: Current Value

Congbrocted 11 Violurses: Lo 13
Journaked Cormmbnd: impert pad "CHCUBIT cubkt_test defeabare’ assmblyl Lacsal™ aitnbubes_on separate_bodies

Current antity is Volume §1.

CUBIT= -
|\ command Y Eer ﬂl]_l":,l'
Working Directory: CACUBIT build/claro/main o

Figure 1: Specify Volume ID and Tolerance before clicking “Analyze”

83

Environment Control

0 Cubit 1216 == Fo= ™
Eile Edit Miew Display Tools Help

DYE NEEHN Pr @399090RF2LELQLIE -

Bowetr Tools 8
8.8 = (@[]
velume Dis) B Curve 210
Toleranoe .6
. P
Entities to be Defeatured Curve 15?
Item Size w - N

Small Curv.. Length e 'GUNE- 144
4 Namow Su. Area

o Surfa.. 02500000

| Surfa.. 012500000 -

) i 2
ghigh | Drew | | Locate || Citer |

Dalentiered Group Rame
dﬁeame_group

Kieep Originals

Aprapro Edbor & x
Geomatry enging sel to: ACIS Versen 21,0.1.0

Jariable Nami Cugrent Value Read 11 ACES Entities: from the input fike

- Corratnoeted 11 Welumes: 1 o 11
Journaled Command: impart acs “C:CUBITcubit_test|defeabure’ sssemblyl Lacsat™ attributes_on separate_bodies

CUBIT >
Commanid Errar

Working Directory: CACUBIT burld/clarafmain
Figure 2: Use “Highlight”, “Draw”, and “Locate” to visualize small curves and surfaces

a

84

Cubit 15.1 User Documentation

¥ Cubit 1210 [o
Eile Edit View Display Jools Help

LY NEEn Pr 999909 2E LM -
Power Tools X
(.8 = L@ [

volume D{s) il

Tolerance .46
Analyze

Entities to be Defeatured

Item Size

Small Curv.. Length
4 Namow Su... Area Curvec?14
o Surfa,.. OL2500000 o
| Surfa.,. 012500000 -

q i ¥
(ighigh| | Drem | [Locate | | Gieae |
Defiatisrid Group Mame
MEG[LI’!_Q:W#

Keep Originals
Exeoufte

Perform Action

e ? NS ®

“

Aprepre Bdtor & i
Rend 11 ACES Enbties fram the input file "
fanable Nam: Current Value

1 Conebrocted 11 Violurrss: Lo 13
Journaked Commbnd: imgsrt bas "COCUBIT cubkt_testdefeabore’ adsemblyl Lacsal™ altnbubes_on separata_bodies

Current gntity is Surface 1046,
CUBTT = Al
_Command /N Emer _Hesoey [

Working Directory; CCUBIT build/clare/main
Figure 3: Zoom view of a small curve and surface

85

Environment Control

0 Cubit 1218

Eile Edit- View Display Tools Help
CRNE NEEND Pr@9999Rh92E 26 oH -
Powver Tools 8 =

(e8] = (@[]
volume D{s) Bl

Toleranoe .6
Analyze

Entithes to be Defeatured

Item Size

Small Curv.. Length
4 Namow Su.. Area
o Surfa... 012500000
| Surfa., 0127500000 -

) i ¥
(ighigh | Drem | Locate | | Cieae |
Dafiaatisringd Group Hame
dr!eau.re_g:wa

Keep Originals
Expoufte

Perform Action

e ? NS z

“

Comemand Ling
Aprepro Edeor L
-

Jariable Nami Curvent Value e mesh-based geometry creabed: Wolume 11, Vobone §, Volume 1
Journaled Command: defesture curve_length 0.6 core 107 103 102 100 85 85 82 80 96 4 2 214 212 211 210 203 200 199 157 1

1 BB 157 185 153 170 167 164 167 suface_proodd 0.6 surface 47 48 50 51 41 43 40 42 24 1 3 81 82 83 B4 B8 &9 90 91 94 95 96
ST 100 101 102 103 group 2

CUBTT> draw vol o
CUBIT> i
_Command /N Emer [\ Hestoey [

Waorlking Directory, C/CUBIT/busld/clanomain

Figure 4: Zoom view of defeatured volume

86

Cubit 15.1 User Documentation

i Cubit 1216 = N
File Edit View Display Jools Help

DNE NN Pr 399993 FELLE - -

Power Toolks [
N8 " @[]
volume D{s) Bl

Toleranoe .6

Analyze

Entithes to be Defeatured

Item Size

Small Curv.. Length
Wamow Su.. Area

ighigh | Drew | Locate| | ciear |

defeabure_group

Keep Origarisls *_.-hv
Execute -

Comenand Line &5 %
Defeatane the candidate entities |
CUBRIT > Defenture curve_bength .6 cunve 107 103 102 100 &6 A5 82 80 9 6.4 7 214 X12 211 210 203 200 199 197 184 187 185 18 1
3170 167 164 162 surface_proshd 6 surface 47 48 50 51 41 4340 42 24 1 381 A2 &3 B4 28 80 5091 54 95 94 97 100 101 102
103 group 2
Crepting defestured volumes from Wolumse 11, Voleme 1, Volumse &
Ui defestunng toleranoes:
Fesfure Sge = 0LODDDO0
Aprepro Edtor & % Curve Length = 0, 500000
Curve Curvatre Radivg = 0000000
Surface Curvabure Radms = 0.0005500
20 Proossmity = L GO0000

lanable Nam: Current Value

Kew mesh-based geometry created: Volume 11, Voleme 1, Volumse &

Journaked Command: defesture curve_length 0.6 e 107 103 102 100 83 B5 82 B0 954 7 214 212 211 210 203 200 199 197 1
BE 18T 185 183 170 167 164 162 sufaoe_picodd 0.6 sumface 47 48 50 51 41 434042 24 1 DB B2 A B4 BRI B2 D0 91 04 9506 |
4 100 101 102 163 group 2 T

CUBIT > il
Command \Ervar

Working Directory. CACUBIT build/clanemain i

Figure 5: Click Execute button to Defeature automatically/manually selected entities

87

Environment Control

0 Cubit 1316 [o | = e
Eile Edit Miew Diplay Jools Help
DY@ YNEEN P 9990900024 FE2Q9H
Porweer Tools [-
g . Bl
i e A @]
Current View | Full Tres -
.
Hame [} Prope
6 Assemiblies
B Boundary Cond...
Q Materials
4 5 Grougs
£ picked 1
A5 defeature_gro.. 2
& Yolume 1 1
& Volume 6 6
@ Volume 11 11
A6 Volumes
@ Volume 1 1
& Voleme 2 2
@ Volume 1 3
& Volume 4 @
@ Volume 5 5
@ Volume & 6
& Volume 7 7
@ Volume & 8
& Volume 9]
& Volume 10 10
@ Volume 11 11
Comamand Line -
-
CUBIT> Defabare curve_length 6 curve 107 103 J0F 100 £8 85 52 80 96 4 2 214 20Z 211 210 203 200 199 197 188 167 185 18
3170 167 U4 162 surface_prosdd .6 surfede 47 8 50 51 41 434042 24 1 381 62 &3 B4 8% 69 9091 54 95 96 57 100 101 102
103 group 2
4 L] ¥ || | Cresting defeatured volumes from Yolums 11, Violume &, Solumse 1
— sy dafeaiunng folaranoes:
dufeature_group) Feature Sire = L0000
Curve Length = 0600000
Aprapre Edenr & % | Curve Convature Rads = QLO00000
Surface Cureabure Rades = 0000000
20 Procamity = 0600000
fanable Name Current Value il y =0
1
lebw mesh-based geometry creabed: Wolume 11, Volene §, Volume 1 |
Journaked Command: defesture curve_liength 0.8 conve 107 103 102 100 55 85 52 50 9 6 4 2 214 212 211 210 203 200 199 157 1| ©
BA 157 185 153 170 167 164 167 swface_preocd 0U6 surface 47 48 50 51 41 434042 74 1 3 81 B2 B3 54 B8 59 00 91 D4 95 06
97 100 104 102 103 group 2
CUBIT> dra wol 2l
Current entity is Surface 106, -
\ Command Y _Eer 1\ m:.l'
Working Directory: C/CUBIT build/clarefmain i |

Figure 6: New defeature_group contains defeatured volumes in MBG format
Geometry/Mesh Comparison Tool
The Geometry/Mesh Comparison Tool tries to find geometry and mesh that do not correspond.
The typical use is to import a geometry file and then import a mesh file that is associated with
the geometry. The comparison tool will locate mesh that does not correspond to the geometry.
The tool will also show geometry that does map to any mesh.

88

Cubit 15.1 User Documentation

@ Blocks) Hexes
i Tets i) Hexes/Tets

] Tolerance 1=

[[__I Draw in Context

Compare Results

i
|
i
i
I
|
|
|
|
‘ Block ID{=) &l
|
|
|
|
[
|
|

UUnassociated Entities

E i
Violume ID(s) all
Compare Against. . .

Clean Up

The user selects the volumes for the comparison, then selects the mesh entities for the
comparison. A default comparison tolerance value of 1e-6 will be used unless otherwise
specified. No additional setup is required. Select the "Compare" button to generate results.
Unassociated entities will be displayed in one of two categories:
1) Mesh elements not associated with any volume
2) Partially meshed volumes
Clicking on the labels in the tree will cause the entities to be drawn in the graphics window. If
"Draw Without Refreshing" is selected, the draws will be additive. If "Draw Without
Refreshing™ is not selected, the previous draw will be removed when the current drawn entities
are shown.
The underlying Cubit command for the tool is the following:
Compare volume <id range> {block <id range> | hex <id range> | tet <id range>
[tolerance <value>]
The command will create three types of groups that contain non-corresponding mesh and/or
geometry. The group named "mesh_with_no_volume" contains hexes or tets that cannot be

89

Environment Control

associated with any volume. The groups named "No_meshed_Volume_*" contain the curves of
a volume (for display purposes) that is completely void of any hexes or tets. Lastly, the groups
named "Partially_meshed_Volume_*" contain hexes or tets, faces or tris, and curves of
volumes that could only be partially associated with mesh. The group is created with these
entities so that the user can see the partially meshed regions of the volume.

Property Editor

The Property Editor is a window that lists properties about the current entity selection. Some of
the properties, like CUBIT ID, entity type, or geometry engine, are listed for reference only.
Other attributes, like name, or mesh intervals, color, mesh scheme, or smooth scheme can be
edited from the window. The Property Editor is located on the left panel in the GUI. The
highlighted entity/entities in the graphics window are listed in the property editor window. The
Property Editor also lists information about selected mesh entities, boundary conditions, and
assemblies. Selecting an object from the Tree View will also open the object in the property
editor.

View Duplay Toks Melp

DY NEMEN FPrPIIPIIAIRSLAQAGQENDD
L m

b= i AEAEDY » + -~ ase DEE eaap s -
Puwe Tooks x Comnand Ferd L
i k& @ & o Mok - Mtaeg
Current Vit [Ful Toew - E]E
N L Fropwie e
T T
. ENEEEEEEE o] [+
3= REnmmmmmmS (- [:[]-[
S kaka
e R
crties Pag® ~ SESSEEEEEE (5 /z)n(y
= e
5) Sadlert Sl e
SEE=IE | -
Frogeity e o A -
[ok | i
Coker [| e Fre 0 Cows
— IH::::. ¢ Conreard Lins: @ 3| Cument Sirec LTI
[T " Bl
aners e ———
Ts Mashenc - ':lp:u.:u L (Yalums 1} mssbing coapleted miing scheas
P jomraled Gomend: mesh voivms L [th]
— - = Currsaas sacity ir Voluss I,
-t — CUBETR -
Mestes) iams , 3 et P
Werking Dinsctory: - Program FlefCLEIT 11.2 [b]

Figure 1. Property Editor Window
The row of buttons on the top of the editor are shortcuts to common commands. These
include:

>
ii Meshes the selected entity/entities at their current interval
2] and scheme settings

[Smooth selected entity using the current smoothing scheme

Preview mesh intervals on selected entity

i] Delete mesh on specified entity (do not propagate to lower
HEL order entities)

90

Cubit 15.1 User Documentation

=z

Reset entity to default settings and delete mesh
Calculates volumes and surface areas

ﬁ Delete current entity

Editing Entity Attributes from the Property Editor

The Property Editor provides a convenient way to change attributes on entities. . Some of the
fields cannot be changed, some can be edited from an input field, and others are edited by
selecting from a list, or by opening the corresponding window from the Control Panel.

If multiple entities are selected, the attributes that are similar to both entities will be shown.
Changing an attribute from the property editor will change that attribute on both entities. If
multiple entities are selected the total volume, surface area, and length of all entities will be

shown.

Below is a summary of properties listed for each attribute type.

General Attributes

Entity ID - CUBIT ID for geometry or boundary condition element

Entity Type - Geometric type such as Volume, Surface, Curve, Vertex

Name - Name by which the entity can be referred to from within CUBIT instead of using
its ID. The entity name can be edited from this window.

Color - Opens a dialog box with available colors. A color name can also be input directly
into the text field. See Appendix for a list of available colors.

Geometry Attributes

Is Merged - Returns "Yes" if this entity is merged

Is Virtual - Returns "Yes" if this entity is a virtual entity

Location - Returns the location of specified vertex.

Geometry Engine - ACIS or Mesh-Based Geometry

Volume - The volume of the specified body

Surface Area - Surface area of selected surface

Analytic Type - Returns the analytic type of entity (such as cone, sphere, etc)
Length - Length of selected curve

Meshing Attributes

91

Is Meshed - Returns "Yes" if the entity is already meshed

Number of Elements - Similar to "List Totals" command

Intervals - Number of mesh intervals on element. This can be edited from this window.
The number must be an integer

Interval Size - Interval size for element. Clicking on box will open the interval
specification panel on the control panel. The interval size can also be entered manually in
the text box.

Meshed Volume - The meshed volume may be slightly different than the actual element
volume due to the mesh approximation on curved surfaces.

Environment Control

Meshed Area - The meshed area may be slightly different than the actual surface area
due to mesh approximation on curved edges.

Length of Meshed Edges - Combined total of mesh edge lengths on curve

Mesh Scheme - The mesh scheme for this entity. This can be changed from the property
editor by selecting from the drop-down list.

Smooth Scheme - The smooth scheme for this entity. This can be changed from the
property editor by selecting from the drop-down list.

Boundary Condition Attributes

1D - Boundary condition ID. This is an arbitrary user-defined ID that is exported with the
finite element model. This value can be edited from the property editor

Name - A user-defined name that is included in the metadata for that object. This value
can be edited from the property editor.

Description - A user-defined description that is included in the metadata for that object.
This value can be edited from the property editor.

Color - Opens a dialog box with available colors. A color name can also be input directly
into the text field. See Appendix for a list of available colors.

Element Type - The finite element type for this block, nodeset, or sideset.

Element Count - The total number of elements for this block or sideset

Node Count - Total number of nodes (available for nodesets only)

Attribute Count and Attributes- The attributes represent material specification data that
is associated with the element block. These values can be changed in the property editor.
You can specify up to 10 attributes per block.

Metadata Attributes

Type - The metadata type: Assembly, Sub-Assembly or Part

Name - The name for the assembly or part. This can be edited from the property window.
Instance - The numeric value associated with the part or assembly

Path - The absolute path of the part or assembly.

Description - The description of the part or assembly. This can be edited from the
property editor

Material Description - The name or description of the material of which this part is
composed. Applies only to parts. This can be edited from the property window.
Material Specification - The formal specification number of the material of which this
part is composed. This can be edited from the property window.

File Format - The name of the file system containing the original version of this entity.
This can be edited from the property editor

Units - The unit system of this part or assembly. This can be edited from the property
editor

The part name, description and material description are available when the associated volume is
selected, and not just when the part is selected.

92

Cubit 15.1 User Documentation

Command Line Workspace

Command Line Workspace E
CUBIT+ br = 10 ﬂ

Saccessfully created brick wolume 1
Journaled Command: brick x 10

CUEIT= z‘

Y Command A 4, Emor A History

The Command Line Workspace is the interface for command interaction between the user and
the CUBIT application. The user can enter commands into this window as if they were using
the command line version of CUBIT. Journaled commands will be echoed to this screen, even if
they were not typed in manually. Thus, if the user wants to know what the command sequence
for a particular action on the GUI is, they can watch for the "Journaled Command:" line to
appear. In addition, this screen will contain important informational and error messages. The
command window has the following four tabs:

Command
Error
History
Script

Eal NS

The Script window is hidden by default. To turn it on open the Tools-Options dialog and check
the "Show Script Tab under Layout/Cubit Layout.

Command Window

The command line workspace emulates the environment in the command line version of Cubit.
Commands can be entered directly by typing at the CUBIT> prompt. This window also prints
out error messages, informational messages, and journaled commands.

Entering Commands

To enter commands in the command line workspace, the command window must be active.
Activate the command window by clicking anywhere inside the window. Commands are typed in
at the CUBIT> prompt. If you do not remember the specific command sequence you can

type help and the name of the command phrase. The input window will show all of the
commands that contain that word or phrase. Alternatively, if you know how a command starts,
but do not remember all of the options, you can type ? at the end of the command to show all
possible command completions. See Command Syntax for an explanation of command syntax
rules.

Repeating Commands

Use the Up and Down arrow keys on the keyboard to recall previously executed commands.
Commands can be repeated in other ways as well.

« Hitting the enter key while the cursor is on a previous command line will copy that

command to the current prompt.
e The command window supports copy and paste for repeating commands.

93

Environment Control

Focus Follows Cursor

Beginning with version 13.0, Cubit includes a "focus follows cursor' option for the command
window. The option can be enabled and disabled from the Tools/Options/General options panel.
The setting is persistent between sessions and is disabled by default.

Please note, the focus follows cursor behavior is available only in the command window. All
other windows or widgets require the user to click the mouse in order to grab focus.

Error Window

The error window is located in the Command Line Workspace under the Error tab. If there are
errors, a warning icon will appear on the tab. The icon will disappear when you open the window
to view errors. The error window only displays the error output, which can make it easier to find
and read the error output. The command that caused the error will be printed along with the error
information. If the command was from a journal file, the file name and number will be printed
next to the command.

History Window

The history window lists the last 100 commands. The number of commands listed can be
configured in the options dialog on the History page. You can re-run the commands in the
history window using the context menu. You can also clear the history using the context menu.
Script Window

CUBIT boasts a robust Python interpreter built right into the graphical user interface. To create a
Python script using the Script tab, start typing at the "%>" prompt. At the end of each line,

hit Enter to move to the next line . To execute the script, press Enter at a blank line. Scripts may
also be written in the Journal File Editor.

The Claro Python interpreter works as though you were entering lines from the Python command
prompt. This means that a blank line is interpreted as the end of a block. If you want to add
whitespace for clarity you have to add a # mark for a comment on any white line that is in a loop
or aclass.

One possible solution to this problem is to create two Python files. The first file can contain the
complex set of Python instructions(program.py) including blank lines. The second file will read
and execute the first file. An example syntax for the second file is given below.

f = file("program.py™)
commandText = f.read()
exec(commandText)

You can then execute the second program within Cubit.

The interface between cubit and python is the "cubit™ object. This object has a method

called cmd which takes as an argument a command string. Thus, the following command in the
script window:

cubit.cmd(**create brick x 10™)

will create a cube with sides 10 units long. The following script is a simple example that
illustrates using loops, strings, and integers in Python.
%>for i in range(4):
.. X=1*3
.. for j in range(4):
y=j*3
for k in range(4):

94

Cubit 15.1 User Documentation

z=k*3
mystr=""create vertex x ""+str(x)+" y "+str(y)+" z ""+str(z)
cubit.cmd(mystr)

This simple script will create a grid of vertices four wide. Scripts can be more advanced, even
creating customized windows and toolbars. For a complete list of python/cubit interface
commands see the Appendix.

Docking and Undocking the Input Window

The command window can be undocked by clicking and dragging the left edge. If it is floating it
can be redocked by double-clicking the solid blue bar. By default, it will always be redocked in
the bottom of the application window. To change the size of the floating window, click and drag
the edge of the window. To change the height of the docked window, click and drag the top edge
or right edge.

Journal File Editor
The Journal File Editor is a built-in, multi-document text editor that can read, edit, play, and

translate CUBIT journal files and Python Scripts. To open the journal file editor, select the E
icon on the File Tools toolbar, or from the Tools Menu.

J}"‘ Journal Editor b : ;IEIEI
File Edit Tools
%Jﬁm% PRKED| > RW

Untitled: |

&

Figure 1. The Journal File Editor
The Journal File Editor can be used to create a new Python or Cubit command script. By default,
a new journal file will be in Cubit command syntax. You can change the default in the options
dialog. On the "General" options page, under the Journal Editor heading, you can select the
default syntax. You can change the new journal file's syntax using the translation buttons as well.
When you have the correct syntax selected, enter the commands in the order you want them
executed. You can play the commands all at once using the play button on the toolbar. You can
also play a few commands at a time. Select the commands you want to play. Then, right click
and select the "Play Selected” menu item.

95

Environment Control

The Journal File Editor can also be used to edit an existing journal file. Use the File > Open
menu item to open the file you want to edit. You still have all the command play options with an
existing journal file.

You can import commands entered in the Command Line Workspace. The File > Import menu
item contains a list of available imports. Select the tab you want to import from. Only the current
commands will be imported from the command line. Some of the commands you previously
entered might not show up if you have the recommended text trimming turned on. Text trimming
improves the application's performance for speed and memory. It will trim off the oldest text in
the window when a size limit is reached. To get all the command from your current session,
make sure that command journaling is turned on.

The Journal File Editor can be used to edit Python or Cubit command scripts. It can also translate
between the two forms. Translating from Python to Cubit commands can cause commands to be
lost. The Journal File Editor will warn you when doing so.

The Journal File editor can be used to edit multiple files at the same time. Each document is
displayed in its own tab. The tab shows the journal file's syntax and name. If you close the
Journal File Editor with unsaved data, it will prompt you to save changes for each of the
modified journal files you have open.

Journal Editor Toolbar

The Journal Editor's Toolbar provides quick access to several important functions.

NNE XD B > e

o New - Creates a new journal file. The new journal file is placed in a new tab.

e Open - Used to select a journal file to open.

e Save - Saves the current journal file.

e Undo - Undo the last text change.

« Redo - Redo the last text change, after Undo.

o Cut - Standard text cut operation

o Copy - Standard text copy operation

o Paste - Standard text paste operation

e Play Journal File - Plays the entire journal file

e Translate to Python - Translates the current Cubit commands in the journal file to
Python scripts.

e Translate to Cubit - Translates the current Python script in the journal file to Cubit
commands.

Other Functionality Available in the Journal Editor
The context (‘right-click’) menu in the journal editor includes several additional functions,
including:

« Comment Selected Lines - Highlight any text, select ‘comment selected lines', and the
highlighted lines will be commented.

e Uncomment Selected Lines - Highlight any text, select 'uncomment selected lines', and
the highlighted lines will be uncommented.

e Clear - select this menu item to clear the contents of the journal file.

96

Cubit 15.1 User Documentation

e Find - Selecting 'find' from the context menu, or from the edit menu, will bring up a
dialog enabling the user to find text in the journal file. Options are available to do case-
sensitive searches, change search direction, and so forth.

Toolbars

The CUBIT toolbars provide an effective way for accessing frequently used commands.

Below is a brief description of each of the available toolbars. To view a description of the
function of each tool, hold the mouse over the tool in the CUBIT Application to display tool tips.
File

Provides CUBIT (*.cub) file operations. This toolbar also includes Journal File operations.

Save - Store Play Journal

current model File - Choose a
Mew - Delete and settings to CUBIT journal
S el a CUBIT (cub) file to play Fause Journal
and S‘tar‘t over datahaﬁe ﬂlE FIlE - PEUSE

execution of a

\ \ currentl_j,r running
“E % E E E iix’ﬁgﬁlﬂnumal
/|

Open - Head a7 Jaurnal Editar - Play ID-less
CUBIT |:.|:L||:|:| Bring up interactive Journal File -
database file text editar for Choose an

running and editing 10-less CUBIT
CUBIT journal files journal file to play

Figure 1. File Toolbar
Display
Controls the display mode, checkpoint undo, zoom, perspective clipping plane, and curve
valence display options in the Graphics Window.

) Showy

IUndo Last Togale Perspectve Curve

Tumn oy CREration Display Made Valence
“hetkpoint / Display ~ Geomelry Zoom L1
: U dp Mnde Entities Digplay I Loom Clipping
e J,r Mesh \\ Out F'Iane

P @@@90&@%@@&@@5 299
Wweframe/ Transparent / \ N

Togole
Moot Made Show Rediaw Janie; Clipping
Dotted Composites the Blans
Hidden Dizplay . .
Line Hidden Solid Smooth ngglle hanipulation
Maode Line Shading cale
hode Mode

Figure 2. Display Toolbar

97

Environment Control

Select
Controls the Entity Selection Mode for picking or selecting entities. Also controls options
for box/polygon selection.

Togole
Select Selected Togole
Groups Enclogeds Between
of Select Geametry Select Mesh Extended Folygon/

En}itieg// EntitiES\ _— Entities ~—___ \\ Elnfu_}iae_lfct
eﬁﬁﬁiuﬂ/ O+HH;£3€§% >-,;:z:s='a

-
‘Bodies Uemces Guad Eelect
“-Ra
YVolumes CURES Elerment), ElEments Elementa W
Modes orFaces Tet
Surfaces Elerment Triangle Elements
Edges Elements
orFaces
Select Select Select
Select Select Select Inlet Mass Inlet Fairfield Select

Forces Heatfluxes Temperaturas Fluu}llrs “elocities Pressures Symmetries

Ops [R AN ER S D
/ / | y NN

Select _ Select Select Select Select Select
Fressures Displacements Convections Inlet Ciutlet Perindics
Fressures Pressures

Figure 3. Select Toolbars

Drop Down Menus

Drop Down Menus

The Cubit Drop-Down Menus, located at the top of the Cubit Application Window provide
access to capabilities such as file management, checkpoints, display manipulation, journaling,
system setup, component management, window management, and help.

Cubit (Mac Only)

This menu contains the Preferences dialog box, also called the Options dialog box on other
platforms. It also contains the About Cubit menu and the Quit Cubit option. It is only available
on Mac computers.

File

This menu provides common file operations, including importing and exporting of geometry and
meshimport and export. A list of recently saved or imported files is also provided, allowing a
quick way to import current or recent work. Non-Mac users can also exit and reset the program
from this menu (These options are found under the Cubit tab for Mac Users).

98

Cubit 15.1 User Documentation

Edit
This menu only provides a way to enable the Undo feature of the system. If Undo is enabled, one
level of Undo is available to the user.

View

The View Menu lists all available toolbars and windows in the current CUBIT session.
Selecting a toolbar or window will make it visible. Deselecting a toolbar or window will
hide it. You can also hide an undocked window or toolbar by clicking on the small "x" in
the upper right corner. For more information on docking and undocking toolbars,

see CUBIT Application Window.

Display
The Display Menu controls display options for the graphics window. These options are
explained below:

« View Point - Controls the camera view point. Choices are front, back, top, bottom, right,
left and isometric views.

o Render Mode - Controls visibility modes, including: wireframe, true hidden, hidden line,
transparent, and shaded.

o Geometry - Controls geometry visibility

e Mesh - Controls mesh visibility

Graphics Composite - Controls the visibility of composited entities in the graphics

window.

Refresh - Updates the graphics display

Background - Changes the background color

Zoom In - Enlarges the model in graphics window

Zoom Out -Shrinks the model in graphics window

Zoom To Fit - Enlarges or shrinks model in the graphics window so it fills the whole

screen

e Toggle Perspective - When this option is selected, the entities in the graphics display
window are drawn in perspective mode.

e Toggle Scale - Turns on or off a graphical scale that can be drawn in the graphics
window to obtain a bearing on model or part sizes.

e Toggle Clipping Plane - Turns on or off the graphics clipping plane

e Toggle Clipping Plane Manipulation - Turns on or off manipulation of the graphics

clipping plane
« Show Curve Valence - Turns on or off the curve valence highlighting

Tools

The Tools Menu contains access to GUI-specific tools and options. These options are explained
below.

« Journal Editor - Opens journal file editor. The Journal Editor is used to write, edit, play,

and save journal files. It can also be used to create and edit Python scripts. A built-in
translator will convert between the two files types.

99

Environment Control

Play Journal File - Plays a specified journal file. You can browse through files and
folders on your computer to select the journal file to play.

Options - Opens the Option dialog box. This dialog box controls all of the preferences
for the GUI including display colors and widths, mouse settings, journal file

options, mesh and geometry defaults, and general layout preferences. MAC users can
find this menu under the Cubit tab.

Components - Opens the Components dialog box. This window is used to load and
unload external and internal components.

Tip of the Day - Open the tip of the day box.

Cubit Tutorials - Opens a menu of step-by-step tutorials for Cubit.

Cubit Manual - Menu to bring up on-line searchable documentation (this document).
About - Menu to show the current version number and trademark information. Mac users
can find the version number under the About Cubit menu in the Cubit drop-down.

Creating Custom Toolbar Buttons

If you have a string of commands that you use frequently, it can be beneficial to make a custom
toolbar button. To create a custom toolbar button open the Tools->Options menu. You can
create up to 10 custom buttons. See Figure 1 for an example toolbar button.

& Options

i Custorn Toolz

Buttan 2

Display Button Two
i General
- Geometry Defaults v Enabled
+-History Tool Tip |Create a perforated brick and mesh
i Label Default:
+- Layaut Fizrnap (F% ||:|efault image Browsze ..
Mesh Defaults Cubit Cornrnatids brick = 10

Mouze - .

Pist P cylinder radiuz 3212
[rost Frocessor subtract wolurme 2 from volume 1
e Cuality Defaults mesh vol 1

Save Cloze

Figure 1. Making a custom toolbar button to create and mesh a perforated brick
The button can have Python or Cubit commands. These commands will be executed in

consecutive order when the button is pushed. You must click the Enabled check box to activate

your custom button.

100

Cubit 15.1 User Documentation

You can assign a pixmap to your custom buttons or use the default. You can also assign a tool
tip.

The buttons are persistent from each run of cubit. To remove a button, uncheck the Enabled
button.

Options Menu
To change program preferences in the Graphical User Interface select: Tools > Options . The
options menu includes:

e Custom Tools

o Display
e General

e Geometry Defaults

e History and Cubit Journalling
o Label Defaults

o Layout

e Mesh Defaults

o Mouse Settings

e Post Processor

e Quality Defaults

Note: Mac users reach this dialog box by selecting the Cubit > Preferences menu.

Custom Tools
This menu controls the creation of Custom Toolbar buttons.

Display Preferences
This menu controls entity display features for the graphics window which include the following:

o Display Triad in Graphics Window
e Enable Pre-Selection

e Background Color

o Perspective Angle

e Line Width
e Highlight Line Width
e TextSize

o« Ambient Intensity
e Ambient Color

e Light Intensity

o Light Color
General Preferences

This menu controls general program options including the following:

101

Environment Control

e Prompt for Unsaved Application Data - When this is checked and the user opens a new
.cub file or exits the application with unsaved changes, a dialog box will pop up asking if
they want to save changes first. The user can uncheck this option to prevent that dialog
box from appearing. This is checked by default.

e Prompt for Unsaved Journal Data - When this button is checked and the user closes
the journal file editor with unsaved changes the program will prompt to save the changes.
The user can uncheck this button to prevent the dialog box from appearing. It is checked
by default.

e Change to Script Directory for Playback - When this option is checked, Claro will
change the working directory to the directory the script is in when the script/journal file is
run. When the script is finished, Claro will change the directory back to the previous one.
This is useful when using relative paths in a journal file. When the option is unchecked,
Claro won't change the directory when a journal file is run in which case the user may
have to manually change the working directory when their journal file has relative paths.

e Prompt When Translating from Python - When checked, if the user translates a python
script to a cubit journal file, the journal editor will warn them that commands may be lost.
When unchecked, the journal editor will not issue the warning. There is a checkbox on
the warning dialog that sets this option as well.

o Default Syntax - Sets the default syntax to use when creating a new journal file in the
editor. The Cubit option is only available when the cubit component is loaded.

e Show Startup Splash Screen - Option to hide the startup splash screen on opening
Claro.

Geometry Defaults
This menu controls the geometry defaults.

o Vertex Size
e Use Silhouette on Geometry
o Silhouette pattern

The user can also change the default geometry engine to one of the following:

« ACIS
» Facets

The faceting tolerance can also be controlled from this menu to change the way facets are drawn
in the graphics window.

History Preferences
This menu controls the input window history and journal file options. These include:

e Maximum Number of Commands - The max number of commands kept in the current
command history.

e Comment Line Filtering - Whether to count comments in command history.

e Maximum Number of Lines - Maximum number of lines in input window.

102

Cubit 15.1 User Documentation

e Journal Command History - Whether to use a journal file to save command history.
Default is to use a journal file.

e Journal File Directory - Where the journal file will be saved. Default is the starting
directory.

e Journal File Name - The name of the journal file. A name will be given by default if
one is not specified. The default name for the GUI version of cubit is historyxx.jou with
xX as the highest used number between 01 and 999 incremented by 1.

Cubit History Preferences

e Use Cubit Journaling - When this option is checked, Cubit journaling will be used. By
default it is checked.

e Output Log - When this option is checked, you can save error log to a separate output
file.

Label Defaults
This menu controls the geometry and mesh entity labels in the graphics window.

o Text Size
o Label Geometry and Mesh Entities Toggles- Choose label visibility for each type of
geometry or mesh entity

Layout Preferences
This menu option controls input window formatting and control panel docking options.

e Font for command line workspace
e Font size for command line workspace
e Reset Window Layout Button - Used to reset GUI windows to their default positions

Also included in the layout preferences is a list of available windows with a checkbox to
show/hide each window.

Cubit Layout Settings
This menu controls the layout of Cubit specific buttons and tabs on the GUI.

e Show script tab - Shows the script tab on the command line window
e Use Labels on Buttons- Option to apply a label to each button on the control panel
o Preferred Location (currently under construction)

Mesh Defaults

o Node Size

e Element Shrink

e Mesh Line Color - The same as "Color Lines" command.
o Default Element Type - Tet/Tri or Hex/Quad

103

Environment Control

e Surface Scheme Coloring (used in Meshing Power Tool) - This option allows you to
select different colors for surface schemes when visualized using the meshing power
tools.

Mouse Settings

This menu controls mouse button controls. Pressing the Emulate Command Line Settings
button will cause all of the settings to simulate mouse controls in the command line version of
CUBIT. For a detailed description of mouse settings see the View Navigation-GUI page.

Post Processor Settings

Post Processor Executable Directory - Option to browse for post processor executable
directory.

Quality Defaults

This menu controls quality defaults for different quality metrics. For a description of the
different quality metrics see the respective pages:

o Hexahedral metrics
e Quadrilateral metrics
e Tetrahedral metrics
e Triangular metrics

@Undo Button

Cubit has an undo capability. To enable the Undo feature click on the "Enable Undo™ button on
the Toolbar.

¢ Enable Undo Button

Alternatively to turn undo on and off, the following command may be used in the command line:

undo {on|off}
The Undo capability is implemented for geometry commands including webcutting, geometry
creation, transformations, and booleans. Multiple undos are also allowed. The commands will be
undone in reverse order of their execution.

Limitations

e The undo button is not currently enabled for most meshing commands

Graphics Window Control

Graphics Window Control

The graphics display windows present a graphical representation of the geometry and/or the
mesh. The quality and speed of rendering the graphics, the visibility, location and orientation of

104

Cubit 15.1 User Documentation

objects in the window, and the labeling of entities, among other things, can all be controlled by
the user.

Unless the -nographics option was entered on the command line, a graphics window with a
black background and an axis triad will appear when CUBIT is first launched. The geometry and
mesh will appear in this window, and can be viewed from various camera positions and drawn in
various modes (wire frame, hidden line, smooth shade, etc.). This section will discuss methods
for manipulating the graphics with the mouse and for controlling the appearance of entities
drawn in the graphics window.

Graphics in CUBIT operates on the principle of a "display list", which keeps track of various
entities known to the graphics. All geometry and mesh objects created in CUBIT are put into the
display list automatically. The visibility and various other attributes of entities in the display list
can be controlled individually. In addition, CUBIT can also optionally display entities in a
temporary mode, independent of their visibility in the display list. Drawing of items in temporary
mode can be combined with the display list to customize the appearance. The overall display is
controlled by various attributes like graphics mode, camera position, and lighting, to further
enhance the graphics functionality.

The following items discuss the various graphics capabilities available in CUBIT:

Command Line View Navigation: Rotate Zoom and Pan
Mouse Based View Navigation: Rotate Zoom and Pan
Updating the Display

Graphics Modes

Drawing and Highlighting Entities

Drawing Locations, Lines and Polygons

Mesh Visualization

Graphics Clipping Plane

Entity Labels

Colors

Geometry and Mesh Entity Visibility

Graphics Camera

Graphics Lighting Model

Graphics Window Size and Position

Saving Graphics Views

Hardcopy Output

Miscellaneous Graphics Options

Graphics Clipping Plane
The graphics clipping plane feature allows the user to temporarily cut parts of the model away to
help visualize the interior of a geometry or mesh. The command syntax is:

Graphics Clip {On|Off} [Location <location>] [Direction <direction>]
Graphics Clip Manipulation {On|Off}

The GUI tool bar buttons to enable and manipulate the Graphics Clipping Plane are shown
below:

105

Environment Control

The first command activates the graphics clip manipulation tools in the graphics window. The
keyboard shortcut "Shift-S" while the graphics window is active will also activate the clipping
plane. The manipulation of the clipping plane is controlled as follows:

Red Line - Clicking and dragging the left mouse on plane bounded by a red tube moves
the plane along the arrow

Center Ball - Clicking and dragging the left mouse on the center ball moves the origin of
the rotation plane

Arrow - Clicking and dragging the left mouse button on the arrow head or tail changes
the direction on which the plane moves

Right Mouse Button - Clicking and dragging the right mouse button on any part of the
window resizes it

Middle Mouse Button - Clicking and dragging the middle mouse button on the red plane
moves both the center of rotation and the cutting plane

White Bounding Border - Clicking and dragging the left mouse on the white bounding
border moves the whole widget

Figure 1. Graphics Clipping Plane
The second command turns on/off the visibility of manipulation widget in the graphics window.
The clipping plane is still active, but the controls are hidden. The normal mouse-based view

navigation controls apply.

Examples

brick x 10

sphere rad 1

graphics clip on location -20 0

106

Cubit 15.1 User Documentation

rotate -45 about y

#shows the sphere inside the brick

brick x 10

cylinder rad 2z 12

subtract 2 from 1

mesh vol 1

quality vol 1 draw mesh

graphics clip on

#shows the mesh quality on interior elements

IIILUU

0.240

U.aall

0.417

0,757
Figure 2. Viewing mesh quality of interior elements

Colors
Specifying Colors in Commands
There are five ways to refer to a color in a command. They are

<Color_Name>
User ""name™
ID <id>
Default
Highlight

oL E

The first option uses the name of a pre-defined color as listed in the Available Colors Appendix.
This option may not be used for user-defined colors. An example of a pre-defined color
assignment is given below:

color volume 1 lightblue

The second option is used with user-defined colors only. Include the name of the user-defined
color in quotes. Pre-defined colors will not work with this command.

107

Environment Control

color volume 1 user ""mycolor™

The third option allows you to identify a pre-defined color by its ID. The color IDs are also listed
in the Available Colors appendix. This option is rarely used.

color volume 1id 5

The default option is used to set an entity's color to its default value. The default color may also
be specified in drawing commands, but the command's behavior will be the same as if the color
option had not been included at all.

color volume 1 default
The fifth option refers to the current highlight color.
draw curve 1 tangent color highlight

User-Defined Colors

CUBIT has a palette of 85 pre-defined colors, listed in the Appendix under Available Colors.
Users may also define their own colors in addition to those defined by CUBIT. Each color is
defined by a name and by its RGB components, which range from 0 to 1.

To define an additional color, use either of the commands

Color Define ""<name>" RGB <r g b>
Color Define ""<name>"" R <r> G <g> B .

A maximum of 15 user-defined colors may be stored at one time, so it may be necessary to clear
a color definition. This is done with the command

Color Release "<color_name>"
Color names can be listed with the command
Help Color

They are also listed in the appendix of this manual, along with their RGB definitions. To view a
chart of color names and IDs, including those for user-defined colors, use the command

Draw Colortable

Assigning Colors
Colors may be assigned to all geometric entities, and to some other objects as well. To assign a
color to an entity or other object, use one of the following commands.

Color Axis Labels {<color_name>| id <color_id>}

Color Background {<color_name>| id <color_id>} [<color_name2>|id
<color_id2>]

Color Block <block_id_range>{<color_name> | id <color_id>}

Color Body <body_id_range> [Geometry|Mesh] {<color_name>| id
<color_id> | Default}

Color Curve <curve_id_range> [Geometry|Mesh] {<color_name>| id
<color_id> | Default}

Color Group <group_id_range> [Geometry|Mesh] {<color_name>| id
<color_id> | Default}

Color Highlight {<color_name>| id <color_id>}

Color Lines <color_name>

Color NodeSet <id_range> { <color_name> | id <color_id> | Default }

108

Cubit 15.1 User Documentation

Color SideSet <id_range>{ <color_name> | id <color_id> | Default }
Color Surface <surface_id_range> [Geometry|Mesh]
{<color_name>|Default}

Color Title {<color_name>|id <color_id>}

Color Volume <volume_id_range> [Geometry|Mesh] {<color_name>| id
<color_id> | Default}

Including the Mesh keyword will change the color of the mesh belonging to the specified entity,
without changing the color of the entity geometry itself. Conversely, including the Geometry
keyword will change the geometry color without changing the mesh color. Including both
keywords is identical to including neither keyword.

Colors are inherited by child entities. If you explicitly set the color for a volume, for example, all
of its surfaces will also be drawn in that color. Once you assign a color to an entity, however, it
will remain that color and will no longer follow color changes to parent entities. To make an
entity follow the color of its parent after having explicitly set another color, use Default as the
color name in the color command.

Colors can also be assigned to nodesets, sidesets, and element blocks. These colors do not take
effect, however, unless the nodeset, sideset, or element block is drawn with a Draw command.
The background color and the color used to draw highlighted entities can be changed to any
color.

By default, the axes are labeled with a white X, Y, and Z, indicating the three primary coordinate
directions. If the background is changed to white, these labels are impossible to read; the color
used to draw axis labels can be changed to any color. Changing the axis label color will change
the text color for both the model axis and the triad (corner axis).

When several entity types are labeled, it can become difficult to determine which labels apply to
which entities. To help distinguish which entities are being referred to by the labels, you may
want to change the color of labels for specific entity types.

When a meshed surface is drawn in a shaded graphics mode, the mesh edges are not drawn in the
same color as the surface. This is to prevent confusion between mesh edges and geometric
curves, and to make the mesh edges more visible. The color used to draw mesh edges in this
situation is known as the line color, and is gray by default; this color can be changed to any
color.

Assigning Global Colors

Colors may be assigned globally also. To assign a global color, use one of the following
commands. Global color assignment is useful if one desires all entities to appear the same.

Color Global {<color_name>| id <color_id> | default}

Color Global Surface {<color_name>| id <color_id> | default} Curve
{<color_name>| id <color_id> | default} Vertex {<color_name>| id <color_id>
| default}

The first command assigns the desired color to all geometry entities. The color may be enter by
color name or color id. The default option resets colors to the default value.

The second command assigns the desired colors to surfaces, curves and vertices. All three value
must be entered. For example, users my select global colors for surface and vertex and specify
that curves have default colors.

109

Environment Control

Drawing, Locating, and Highlighting Entities
In order to effectively visualize the model, it is often necessary to draw an entity by itself, or
several entities as a group. This is easily done with the command

Draw {Entity specification} [Color <color_spec>] [Zoom] [Add]

where Entity specification is an entity list as described in Command Line Entity Specification.
This command clears the display before drawing the specified entity or entities. Specification of
a color will draw those entities in that color. This will not permanently change the color of the
entity. The zoom option will zoom in on the selected entities after drawing them in the graphics
window. If the add option is specified, the display is not cleared, and the given entity is added to
what is already drawn on the screen. The entities specified in this command are drawn regardless
of their visibility setting (see Geometry and Mesh Entity Visibility for more details about
visibility).

Entities may also be drawn by selecting them with the mouse and then typing Ctrl-D while the
mouse is in the graphics window. This will clear the screen and then draw only those entities that
are currently selected.

Entities can be highlighted using the command

Highlight {Entity specification}
This command highlights the specified entities in the current display with the current highlight
color. Highlighting can be removed using the command

Graphics Clear Highlight

To return to the normal display of the entire model, type Display.
The Locate command will label and point to the specified entity or location in the graphics
window. The command syntax is:

Locate <entity_list>
Locate <location options>

For example, suppose you have an idless reference to a curve of:
Curve (at550ordinal 1)

You can find the curve with the following command:
locate location 550

Additionally, the visibility of individual entities, or sets of entities, can be controlled with the
following visibility commands.

{Vertex|Curve|Surface|VVolume|Body|Group} <range> [Geometry|Mesh]
Visibility {on|off}

Edge [Visibility] {on|off}

{Mesh|Geometry} [Visibility]{on|off}

Drawing Other Objects

In addition to the common geometry, mesh and genesis entities, other objects may be drawn with
variations of the Draw command. As with the other Draw commands, typing Display after
drawing these objects will restore the scene to its normal display.

Displaying Entity Orientation

110

Cubit 15.1 User Documentation

The normal to one or more surfaces, mesh faces, or mesh triangles may be drawn with the
command

Draw {Surface | Face | Tri} <id_range> Normal [Length <length>] [Face |
Tri] Color <color> [Add]

Surface normal command colors the surfaces using two different colors. The surface exposed to
the positive half space (i.e, along the direction of normal), will always be colored black. The
surace exposed to the negative half space will be colored using the specified <color>.

If the Face or Tri qualifier is included in the Draw Normal command, the normals for all faces or
tris that belong to the specified surface are drawn.

Arrow representing the normal will be displayed if "Length" is specified

XK/////'
7777
7777

[[[]]

I

[/
[[]

= [
R"‘“ﬁ__
E‘M
H“‘“\x
T
]
T

[
[

[/

The forward, or tangent, direction of a curve can be drawn with the command:
Draw Curve <id_range> Tangent [Length <length>][Color <color_spec>]
If a color is not specified, the tangent is drawn in the same color as the curve.

Volume Sources and Targets

Once the source and target surfaces have been set on a volume that will be meshed with the
sweep algorithm, the source and target may be visually identified with the command

111

Environment Control

Draw Volume <volume_id_range> [Source][Target] [Length <size>]

If the Source keyword is included, the normal of the source surface or surfaces will be drawn in
green into the specified volume. If the Target keyword is included, the normal of the target
surface or surfaces will be drawn in red into the specified volume.

Model Axis
The model axis may be drawn with the command

Draw Axis [Length <length>]

The axis is drawn as three lines beginning at the model origin, one line in each of the three
coordinate directions. The length of those lines is determined by the length parameter, which
defaults to 1.

Surface Isoparameter Lines
Isoparameter lines may be drawn on surfaces in the model using the command

Draw Surface <surface_id_range> Isoparametric [Number <number>| [u
<number>] [v <number>]]

If you specify the Number of lines, then the number of u- and v-parameter lines will be equal.
You may specify instead a number of lines for each of the u and v parameters. The u-parameter
lines will be drawn in red and the v-parameter lines will be drawn in blue.

Surface Overlap
The overlapping regions between two surfaces may be drawn with the command

Draw Surface <id> <id>Overlap [Add]

This command will draw the curves of each of the surfaces in green, and the portion of the
surfaces that overlap in red. The Add keyword will draw the overlapping surfaces on top of the
current graphics display. Without the Add keyword, the display will only show the specified
surfaces and their overlapping regions.

Volume Overlap

The overlapping region between two volumes may be drawn with the command

Draw Volume <id> <id> Overlap [Add]
This command will draw the input volumes in transparent mode and draw the volume(s) of
intersection as red, shaded solids. The Add keyword will draw the results on top of the current
graphics display. Without the Add keyword, the display will only show the specified volumes
along with the intersection volume(s).

Geometry Preview

Several options are available for previewing geometry without actually generating it. This is
typically used in conjunction with webcutting and surface creation. The following Draw
commands can be used for previewing geometry:

Draw Location On Curve

Draw Location

Draw Direction

112

Cubit 15.1 User Documentation

Draw Line
Draw Polygon
Draw Axis
Draw Plane

Draw Cylinder

Drawing Locations, Lines and Polygons

In some cases it may be useful to simply draw a location, line or polygon to the screen to help
visualize some aspect of the model. Locations, Lines and polygons are not geometry or mesh
entities and are only visible until a refresh or display command is issued.

Drawing Locations

Draw Location {options}... [color <color_name>][no_flush]

A single point or series of points may be drawn to the graphics window using this command.
Any number of locations may be specified that will be drawn to the graphics window as single
points. Options for specifying a location are described in the section Specifying a Location. The
optional color argument allows for a custom color to be used. The available color definitions are
located in the appendix. Other options for drawing locations and directions are also available
dscribed in the section Drawing a Location, Direction, or Axis.

Drawing Lines

Draw Line Location {options} Location {options} ... [color
<color_name>][no_flush]

A straight line or series of segments may be drawn to the graphics window using this command.
Any number of locations may be specified that will be connected with a line. Options for
specifying a location are described in the section Specifying a Location. The optional color
argument allows for a custom color to be used. The available color definitions are located in

the appendix.
Drawing Polygons

Draw Polygon Location {options} Location {options} Location {options} ...
[color <color_name>][no_flush]

A filled polygon may be drawn to the graphics window using this command. Any number of
locations may be specified as vertices. At least three locations must be specified. Locations for
vertices can be described using any of the standard location options described in Specifying a
Location. The optional color argument allows for a custom color to be used for the fill. The
available color definitions are located in the appendix.

Buffered Drawing

The optional no_flush argument for both the draw location, draw line and draw polygon
commands may also be used when many simultaneous draw commands are being issued. This
prevents the graphics from being drawn after each command is issued, which can be very
inefficient. Instead the draw commands are buffered and sent all at once to be drawn. The
following command:

graphics flush

can be used to force a draw following a series of commands that use the no_flush option.
Example
The following is a simple example that will draw the figure below using cubit commands

113

Environment Control

draw polygon location pos -1 -1 0 location pos 1 -1 0 location pos 11 0
location pos -1 1 0 color yellow no_flush

draw line location pos -1 0 0 location pos 1 0 0 color blue no_flush
draw line location pos 0 -1 0 location pos 0 1 0 color blue no_flush
draw location pos 0 0 0 color red no_flush

graphics flush

Entity Labels

Most entities may be labeled with text that is drawn at the centroid of the entity.

Mesh entities can be labeled with their ID number or their Element ID. Element ID labels
are only valid after putting the mesh entities into a block.

Geometric entities can be labeled with their ID number or with other information.

Labels for groups of entity types can be turned on or off.

The following commands will accomplish this.

Label [On|Off|[Name [Only|ID]|ID|Interval|Size|Merge|Firmness]

Label All [On|Off|[Name [Only|ID]|ID|Interval|Size|Merge|Firmness]
Label Body [On|Off| Name [Only|ID] |ID|Interval|Size| Merge |Firmness]
Label Curve [On|Off|[Name [Only|ID] |ID| Interval| Size| Merge| Firmness]
Label {Hex|Tet|Face|Tri|Edge} [On|Off|[Elementid]

114

Cubit 15.1 User Documentation

Label Element [On|Off]

Label Geometry [On|Off|[Name [Only|ID] |ID| Interval| Size| Merge|
Firmness]

Label Mesh [On|Off]

Label Node [On|Off|Elementld|Sphereld]

Label Surface [On|Off|[Name [Only|ID] [ID| Interval| Scheme| Size| Merge|
Firmness]

Label Vertex [On|Off[Name [Only|ID] |ID|Interval| Size| Merge| Firmness]
Label Volume [On|Off|[Name [Only|ID] |ID |Interval| Size |Scheme |Merge
|Firmness]

The meaning of each of each label type is listed below. Note that some label types don't
make sense for every entity type.

On - The same as IDs.

Name - Name of the entity, if the entity has been named. Default name
otherwise.

Name Only - If the entity has been named, use the name as the label.
Otherwise, don't use a label.

Name IDs - If the entity has been named, use the name as the label.
Otherwise, use the ID as the label.

Interval - The number of intervals set on the entity.

Firmness - Same as interval, but followed by a letter indicating the
firmness of the interval setting (see the Mesh Generation chapter for
description of firmness settings.)

Merge - Whether or not the entity is mergeable. Note that this is
sometimes not clear, because, for example, a curve may show that it isn't
mergeable because one of its owning surfaces may be unmergeable,
while another owning surface may be mergeable.

Size - The mesh size set on this entity.

Elementld - The Global Element Id of each element. Will only be labeled
for hexes, tets, tris, etc. which are in a block.

Sphereld - The id of the sphere element associated with this node, if there
is one. A sphere element is only associated with a node if the node (or it's
geometry owner) is put into a block.

Note: Three dimensional entity types such as body will have their labels displayed in
the center of the entity. Thus, in the smooth shade and hidden line graphics modes
the labels will be hidden

The GUI includes command panels to manipulate the labels settings for any given entity type.
The command panel for the Volumes labels settings is shown below as an example:

115

Environment Control

Command Panel B X
Mode - Geometry

30
3

Action - Preferences

a|m s
E @&

[Label -

LJ

Volume Label Type

@ Mone () Interval
F) ID () Firmness
(71 Mesh Size (71 Mergeable
(") Mesh Scheme () Mame Only
i) Mame

71 Mame ID

Graphics Camera

One way to change what is visible in the graphics window is to manipulate the camera used to
generate the scene. A scene camera has attributes described below, and depicted graphically in
Figure 1. The values of these camera attributes determine how the scene appears in the graphics
window.

These view settings may be accessed in the GUI via the Display/View Point menu.

Position (From) - The location of the camera in model coordinates.

View Direction (At) - The focal point of the camera in model coordinates.

Up Direction (Up) - The point indicating the direction to which the top of the camera is
pointing. The Up point determines how the camera is rotated about its line of sight.

Projection - Determines how the three-dimensional model is mapped to the two-dimensional
graphics window.

Perspective Angle - Twice the angle between the line of sight and the edge of the visible portion
of the scene.

116

Cubit 15.1 User Documentation

A View Up
|-
Perspectve Angle
Wiew From, - Wiew AL .

Figure 1: Schematic of From, At, Up, and Perspective Angle
At any time, the camera can be moved back to its original position and view using the command

View Reset
To see the current settings of these attributes, use the command
List View

The current value of the view attributes will be printed to the terminal window, along with other
useful view information such as the current graphics mode and the width of the current scene in
model coordinates.

Camera Attributes can be changed using the Rotate, Zoom and Pan commands, or directly as
follows.

Changing Camera Attributes Directly

Camera attributes are most easily modified using interactive mouse manipulation (see Mouse-
Based View Navigation) or using the rotate, pan and zoom commands. However, the camera
attributes can also be modified directly with the following commands:

From <xy z>

At<xy z>

At
{Body|Volume|Surface|Curve|Vertex|Hex|Tet|Wedge|Tri|Face|Node}<id_list>
Up <xy z>

Graphics Perspective <On|Off>

Graphics Perspective Angle <degrees>

If graphics perspective is on, a perspective projection is used; if graphics perspective is off, an
orthographic projection is used. With a perspective projection, the scene is drawn as it would
look to a real camera. This gives a three-dimensional sense of depth, but causes most parallel
lines to be drawn non-parallel to each other. If an orthographic projection is used, no sense of
depth is given, but parallel lines are always drawn parallel to each other.

In a perspective view, changing the perspective angle changes the field of view by changing the
angle from the line of sight to the edge of the visible scene. The effect is similar to a telephoto
zoom with a camera. A smaller perspective angle results in a larger zoom. This command has no
effect when graphics perspective is off.

The GUI tool bar button for changing the graphics perspective mode is as follows:

117

Environment Control

Graphics Modes

By default, the scene is viewed as a smoothshaded model. That is, only curves and edges are
drawn, and surfaces are transparent. Surfaces can be drawn differently by changing the graphics
mode:

Graphics Mode {Wireframe | Hiddenline | Smoothshade | Transparent }
[Geometry | Mesh]

The GUI tool bar buttons for manipulating the graphics modes are as follows:

- RarReike I(w]

Examples and a brief description of each mode are shown below

WireFrame - Surfaces are invisible. (This
mode can also be accessed by
! typing 'wireframe' at the command prompt.)

HiddenLine - Surfaces are not drawn, but they
obscure what is behind them, giving a more
realistic representation of the view. (This

{ mode can also be accessed by

typing 'hiddenline' at the command prompt.)

SmoothShade - Surfaces are filled and
shaded. Shaded colors are interpolated
across the entire surface using the

graphics lighting model. This produces the
most realistic results. (This mode can also be
accessed by typing 'shaded' at the command
prompt.)

Transparent - Renders surfaces as semi-
transparent shaded images, allowing objects
to shine-through from behind. Is not
supported on all platforms, and generally
requires advanced graphics hardware. (This
mode can also be accessed by

typing 'transparent’ at the command prompt.)

This determines what pattern is used to draw lines behind surfaces (e.g. dotted, dashed, etc.; click
here for a list of valid line patterns).

118

Cubit 15.1 User Documentation

Displaying Using the Element Facets
There is another option that is similar to a graphics mode, set with the command

Graphics Use Facets [On|Off]

This command determines how shaded and filled surfaces are drawn when they are meshed. If
Graphics Use Facets is on, the mesh facets (element faces) are used to render the model. This is
particularly helpful for curved surfaces which may cut through some of the mesh faces. A
comparison of graphics facets on and off is shown below.

Y ar

Figure 1. A meshed cylinder shown with graphics facets off (left) and graphics facets on (right);
note how geometry facets on the curved surface obscure mesh edges when facets are off.

Displaying Composite Surface Lines

Composite surfaces are surfaces that have been joined together using virtual geometry. By

default, the underlying surfaces are marked with dashed lines. To toggle this setting so that
underlying surfaces are not shown, use the following command:

Graphics Composite {On|Off}

(a) (b)

Figure 2. A part shown with (a) composite surfaces displayed (b) composite surfaces not
displayed
The GUI tool bar button for toggling the display of graphics composites is as follows:

119

Environment Control

Graphics Window Size and Position

By default in the command line version, CUBIT will create a single graphics window when it
starts up (to run CUBIT without a graphics window, include -nographics on the command line
when launching CUBIT.) The graphics window position and size is most easily adjusted using
the mouse, like any other window on an X-windows screen. However, the size of the graphics
window can also be controlled using the following commands:

Graphics WindowsSize <width_in_pixels> <height_in_pixels>
Graphics WindowSize Maximum
Graphics WindowSize Minimum

After using the Graphics WindowSize Maximum and Graphics WindowSize Minimum
commands, the previous window size can be restored by using the command

Graphics WindowSize Restore

The position of the graphics window can also be controlled using the Graphics
WindowLocation command.

Graphics WindowLocation <x> <y>

The <x> and <y> coordinates refer to the distance in pixels from the upper left hand corner of
the monitor.

In addition, on Unix workstations, the graphics window size and position can be controlled by
placing the following line in the user's .Xdefaults file:

cubit.graphics.geometry XxY+Xxpos+ypos

where the X and Y are window width and height in pixels, respectively, and xpos and ypos are
the offsets from the upper left hand corner.

Using Multiple Windows

You can use up to ten graphics windows simultaneously, each with its own camera and view.
Each window has an ID, from 1 to 10, shown in the title bar of the window. Commands that
control camera attributes apply to only one window at a time, the active window. Currently, the
display lists of all windows are identical.

The following commands are used to create, delete, and make active additional graphics
windows. These commands are also valid in the GUI (by typing at the command line prompt.)

Graphics Window Create [ID]
Graphics Window Delete <ID>
Graphics Window Active <ID>

Hardcopy Output

CUBIT's Graphical User Interface provides the capability to print the contents of the graphics
window directly to a printer. Use File/Export/Screen Shot to access this functionality.

In addition, a command line option is provided for dumping the contents of the graphics window
to postscript or image files.

The command for generating hardcopy output files is:

Hardcopy '<filename>* {jpg | gif | bmp | pnm | tiff | eps} [Window
<window_id>]

120

Cubit 15.1 User Documentation

Each of these options saves the view in the specified window (or the current window), to the
specified file, in the format indicated. The file can then be sent to a printer or inserted into
another document.

Screen Capture Programs

It should also be noted that many commercial applications are available for capturing screen
images. In many cases, these applications may be more convenient for interactively capturing
and saving a portion of the screen than the Hardcopy command discussed above. On UNIX
platforms, the XV utility written by John Bradley is a good choice. In some cases this utility or
its equivalent may be included with your system software. For Windows users, the Print Screen
button will send a copy of the screen to the clipboard which can then be pasted into a paint
program.

Graphics Lighting Model

For shaded graphics display modes, the lighting model controls the intensity of the highlights
and shadows for objects displayed in the graphics window. CUBIT offers two commands for
controlling the lighting model.

Graphics Ambient Intensity {<intensity> | <r g b>}
Graphics Light Intensity {<intensity> | <r g b>}

The ambient intensity is the light available in the environment. There is no particular direction
to the light source. In contrast, the light intensity is the effect of a simulated light source placed
at the viewer's line of sight. The light intensity affects the intensity of the highlights and
shadows, while the ambient intensity affects the brightness of the objects in the overall scene.
An intensity value from 0 to 1 can be used, where 0 represents no light and 1 represents
maximum. Alternatively r g b color components can be used. This changes the color of the
directional or ambient light source, affecting the resulting color of the objects in the model.
The GUI Options panel for manipulating these settings is found under Tools/Options and is
shown below:

121

http://www.trilon.com/

Environment Control

il ™

Command Panels Graphics Window
Custom Tools Display Triad
Display Enable Pre-Selection
General Highlight Surfaces when Highlighting Volume
Geometry Defaults Perspective Angle 0 =

» History Line Width 1 [=
Label Defaults Highlight Line Width 3 |2

> Layout Text Size 1 =
Mezh Defaults -
Mouse Background Color
Post Processor |i| STEELL

> Quality Defaults |:| Screen Bottom

Lighting
Ambient Intensity i

|i| Ambient Color

Light Intensity 4

|:| Light Color
Graphics Axis
) Axis

4|k

4|k

() Origin
@ Mone

Reset All Graphics Options

[Save] [Close]

Mesh Visualization

A volume mesh can be viewed one layer at a time using a visualization tool known as mesh
slicing. This tool divides the elements of one or more volumes into axis-aligned layers, and then
allows the mesh to be displayed one layer at a time. Mesh slicing is especially useful to view the
quality of swept meshes that are axis aligned.

Notes on Mesh Slicing

Mesh slicing is only intended to be a rough visualization tool. Because the average mesh edge
length is used to determine the thickness of each layer, a layer may be more than one element
deep. Unstructured meshes, meshes with large variations in edge length, and non-axis-aligned
meshes will be more difficult to visualize with this tool.

Mesh Slicing Command

Mesh slicing can be started either by entering a keypress in the graphics window, which slices
the mesh of the entire model, or by entering the command

122

Cubit 15.1 User Documentation

Graphics Slice {Body | Volume} <id_range> Axis {X | Y | Z}

which slices only the bodies or volumes indicated, with a plane along the axis specified.
Key presses in the graphics window which control mesh slicing are summarized in the following
table.

Key Action
X,Y or Z |Initiate mesh slicing using the X, Y or Z plane
K Move the slicing plane in the positive coordinate direction
J Move the slicing plane in the negative coordinate direction
S Toggles drawing single or multiple slice layers in the view

Q Exit from mesh slicing mode

See Graphics Clipping Plane for instructions on clipping the graphics using the GUI clipping
plane.

Miscellaneous Graphics Options

In addition to the commands discussed above, there are several other graphics system options in
Cubit that can be controlled by the user.

They include:

Silhouette Lines

Line Width

Highlight Line Width
Text Size

Point Size

Graphics Status
Graphics Scale
Model Axis

Corner Axis
Resetting the Graphics
Shrink

Facet Tolerance

Silhouette Lines

Some shapes, such as cylinders, are drawn with silhouette lines; these lines don't represent true
geometric curves, but help visualize the shape of a surface. Silhouette lines can be turned on or
off with the command

Graphics Silhouette [On|Off]
The pattern used to draw silhouette lines can be set using the command

123

Environment Control

Graphics Silhouette Pattern [Solid | Dashdot | Dashed | Dotted | Dash_2dot |
Dash_3dot | Long_dash | Phantom]

Line Width

This option controls the width of the lines used in

the wireframe, shaded, transparent, hiddenline and truehiddenline displays. The default is 1
pixel wide. The command to set the line width is

Graphics LineWidth <width_in_pixels>

Highlight Line Width

This option controls the width of the lines used when highlighting an entity. Setting this to a
width greater than the global line width often makes it easier to locate highlighted entities. If this
setting has not been changed, the line width set in the command above is used. After using this
command, it is necessary to refresh the graphics by either typing "display"” or clicking the
Refresh Graphics button. The command to set the highlighting line width is

Highlight LineWidth <width_in_pixels>

Text Size

This option controls the size of text drawn in the graphics window. The size given in this
command is the desired size relative to the default size. After using this command, it is necessary
to refresh the graphics by either typing "display” or clicking the Refresh Graphics button. The
command to set the text size is

Graphics Text Size <size>

Point Size

This option controls the size of points drawn in the graphics window, such as vertices or heads of
vectors; alternatively, the size of points representing nodes or vertices can be set independently
of the global point size. The commands to set the point sizes are

Graphics Point Size <size>
Graphics [Node|Vertex] Point Size <size>

Graphics Status
All graphics commands can be disabled or re-enabled with the command

Graphics {On|Off}

While graphics are off, changes in the model will not appear in the graphics window, and all
graphics commands will be ignored. When graphics are again turned on, the scene will be
updated to reflect the current state of the model.

Graphics Scale

A graphical scale can be drawn in the graphics window within the viewing area to obtain a
bearing on model or part sizes. The command to turn the graphical scale on and off is:

Graphics Scale [On|Off]

Model Axis
The model axis may be drawn in the scene at the model origin. The axis is controlled with the
command

Graphics Axis [Type <AXIS | Origin>] [On|Off]

124

Cubit 15.1 User Documentation

The command is used to specify whether the model axis is visible, and to determine how the axis
is drawn. If you include Type Axis , the axis will be drawn as three orthogonal lines; if you
include Type Origin, the axis will be drawn as a circle at the model origin.

Corner Axis (Triad)

By default, an axis appears in the corner of the graphics window. This corner axis, also called the
triad, can be disabled or re-enabled with the command

Graphics Triad [On | Off]

Resetting the Graphics
Many of the graphic options can be reset back to default values with the command:

Graphics Reset
The graphic options set to defaults are:

« ambient and spot light intensity
e background color

e textsize

e graphics mode

e silhouetting

e pointsize

e view type (Perspective)

In addition, this command also:

« centers the view on all visible entities (Zoom Reset)

o turns all labeling off

o turns vertex visibility off

e turns mesh and geometry visibility on

e moves the graphics camera back to its original position (View Reset)

Shrink

The shrink graphics attribute allows you to view the elements shrunken about their centroid. This
is useful for viewing 3D meshes, permitting viewing of interior elements. It may also be useful
for visually inspecting the mesh for missing elements. To use the shrink option use:

graphics shrink <value>
draw hex <range>

draw tet <range>

etc...

where value is a number between 0 and 1. One (1) will shrink the elements to a point, while zero
(0) will not shrink the elements. The following figures illustrate the effect of element shrink on a
hex mesh.

125

Environment Control

Figure 1. Top: shrink=0.2, Bottom: shrink=0.5

Facet Tolerance
The graphics tolerance commands change the way that facets are drawn in the graphics window.

It does not affect the underlying geometry, just the graphics display. It can be useful to change
the facet tolerance on large models if the refresh speed is slow.

Graphics Tolerance [[ANGLE|Distance] <val>|Default]

Specifying an angle will change the maximum allowable angle between neighboring facets.
The distance option will set a maximum distance between adjacent facets. Increasing either of
these numbers will result in coarser facets. The default option will return values to their default

settings.

126

Cubit 15.1 User Documentation

The GUI Options panel for manipulating these settings is found under Tools/Options and is
shown below:

i N
fiil Options . ‘ &Iﬂj

Command Panels Graphics Window
Custom Tools Display Triad
Display Enable Pre-Selection
General Highlight Surfaces when Highlighting Volume
Geometry Defaults Perspective Angle 0 =
+ History Line Width 1 2
Label Defaults Highlight Line Width 3 s
» Layout i =
Mezh Defaults Text Size 1=
Mouse Background Color
Post Processor |i| Sereen Top
+ Quality Defaults |:| Screen Bottom
Lighting
Ambient Intensity 0 =
|i| Ambient Color
Light Intensity 4 |5
|:| Light Color
Graphics Axis
() Axis
() Origin
@ Mone

Reset All Graphics Options

[Save] [Close]

Mouse Based View Navigation: Zoom, Pan and Rotate

The mouse can be used to navigate through the scene using various view transformations. These
transformations are accomplished by clicking a mouse button in the graphics window and
dragging, sometimes while holding a modifier key such as Shift or Control. When run with
graphics on, CUBIT is always in mouse mode; that is, mouse-based transformations are always
available, without needing to enter a CUBIT command.

Mouse-based view transformations are accomplished by placing the pointer in the graphics
window and then either holding down a mouse button and dragging, or by clicking on a location
in the graphics window. Some functions also require one or more modifier keys to be held down;

the modifier keys used in CUBIT are Shift and Control . Each of the available view
transformations has a default binding to a mouse button-modifier key combination. This binding

127

Environment Control

can be changed by the user if desired. Transformations and button mappings are summarized in
the following table.

Note: These settings are applicable only to the UNIX command line version of CUBIT. For a
description of the Graphical User Interface Mouse Operations see GUI View Navigation.

The bindings are based on the following mouse button definitions:

B2 B3

B1

Figure 1. Default Mouse Function Mappings for the Command Line

Table 1. Mouse Function Bindings for Zoom, Pan, and Rotate
Function Description Binding

Rotates the scene about the camera axis.
Dragging the mouse near the center of the
graphics window will rotate the camera's X-
or Y-axis; dragging near the edge of the
window will rotate about the Z-axis (i.e.
about the camera'’s line of sight). Type a u in
the graphics window to see the dividing line
between the two types of rotation.

Zooms the scene in or out by clicking the
mouse in the graphics window and dragging
up or down. If the mouse has a wheel, the
wheel will also zoom.

Rotate

Zoom
B2

Pan "Drags" the scene around with the mouse B3

Navigational |[Zooms the scene by moving both the
Zoom camera and its focal point forward. BZ

Telephoto | Zooms the scene by decreasing the field of | |f&shift]
Zoom view. B2

Pan Cursor Click on new center of view BB

Changing the View Transformation Button Bindings

The default mapping of functions to mouse buttons, described in the Default Mouse Function
Mappings table above, can be modified. There are two ways to assign a function to a
button/modifier combination.

First, you can use the command

Mouse Function <function_id> Button <1|2|3> [Shift][Control]

128

Cubit 15.1 User Documentation

Type Help Mouse Function to see a list of function IDs that may be used in this command.
Second, you can assign functions interactively. To do so, first put the pointer into a graphics

window and then hit the F key. On-screen instructions will lead you through the rest of the

process.

The GUI Options panel for managing the mouse bindings can be found at

Tools/Options/Mouse, and is as follows:

fiil Options

Cormmand Panels
Custom Tools
Display
General
Geometry Defaults
» History
Label Defaults
» Layout
Mezh Defaults
Mousze
Post Processor

» Quality Defaults

Mouse Button

Left Button

Left Button + Control
Middle Button

Right Button

Left Button + Drag
Middle Button + Drag

Right Button + Drag

Function

Select

Multiple Select
Tab Off Picker
Context Menu

|Rotate

[Zaam

[F‘an

Mote: Use Zoom + Control to select a zoom box.

Mote: Mac users substitute "Command”™ for "Control®,

Emulate Command Line Settings

[Save

Close

Saving and Restoring Views
After performing view transformations, it may be useful to return to a previous view. A view is
restored by setting the graphics camera attributes to a given set of values. The following keys,
pressed while the pointer is in the graphics window, provide this capability:

V - Restores the view as it was the last time Display was entered.

129

Environment Control

F1 to F12 - These function keys represent 12 saved views. To save a view, hold
down the Control key while pressing the function key. To restore that view later,
press the same function key without the Control key.

Note: In the Graphical User Interface version the F1, F2 and F3 keys are used as an alternate
form of dynamic viewing, therefore the ability to save views is not currently supported in the
GUL.

You can also save a view by entering the command

View Save [Position <1-12>] [Window <window_id>]

The current view parameters will be stored in the specified position. If no position is specified,
the view can be restored by pressing V in the graphics window. If a position is specified, the
view can be restored with the command

View Restore Position <1-12> [Window <window_id>]

These commands are useful in as entries in a .cubit startup file. For example, to always have F1
refer to a front view of the model, the following commands could be entered into a .cubit file:

FromO01

At0

Up010

Graphics Autocenter On
View Save Position 1

The first three commands set the orientation of the camera. The fourth command ensures that the
model will be centered each time the view is restored. The final command saves the view
parameters in position 1. The view can be restored by pressing F1 while the cursor is in a
graphics window.

Additionally, you can change the 'gain' on the mouse movements by changing the mouse gain
setting, via the command:

Mouse Gain <value>

where a value of 3 would be 3X as sensitive to mouse movements, and a value of 0.5 would be
half as sensitive.

Set ReverseZoom {on|off}

Another user preference, the direction of 'zooming' obtained by using the mouse can be "flipped,
by toggling the reversezoom setting.

Saving Graphics Views
The current graphics view can be saved and restored using the following commands:

View Save Position <n>
View Restore Position <n>

When you save a view, you save the camera settings in effect at the time the command is issued.
When you restore the view, the camera is returned to the saved position, orientation, and field of
view.

If autocenter is on at the time you save the view, then restoring the view will automatically adjust
the camera settings to center on the entire model and fit the entire model on the screen, a lot like
""zoom reset.” You turn autocenter on by typing "graphics autocenter on."

130

Cubit 15.1 User Documentation

Example of how to save a top view:

at0

from010

up10

graphics autocenter on
view save position 3

Use this command to restore that view:
view restore position 3

The view will then be looking down the y-axis, with the x-axis to the top and the z-axis to the
right. The model will be centered in the view and zoomed so that everything just fits into the
graphics window. This is true even if the model is not centered on the origin.

If autocenter is off when the "view save™ command is issued, the camera is not adjusted to fit the
scene into the graphics window. Instead, it is placed exactly where it was at the time the "save"
command was issued.

Note that many graphics commands, such as "at", "from", and "up", do not change what appears
in the graphics window until a "display" command is issued. They do, however, take immediate
effect internally, and they do affect what is saved by the "view save" command.

In the command line version of CUBIT, you can save a view by holding down the shift key and
pressing one of the function keys (F1-F12). Each function key corresponds to a different saved
view. A total of 12 views can be saved. A view can be restored at a later time by pressing the
appropriate function key WITHOUT holding down the shift key.

It may be useful to save views in your cubit file so that they are available every time you run
CUBIT. Use CUBIT to save front, top, and side views in positions 1, 2, and 3. If views are saved
in your cubit file, it is convenient to add a "view reset” command after the views have been
saved. Then the graphics will initially appear as they would if the view commands had not been
included in your cubit file.

Updating the Display
Among the most common graphics-related commands is:

Display

This command clears all highlighting and temporary drawing, and then redraws the model
according to the current graphics settings. The GUI tool bar button for executing this command

is:
Two related commands are:

Graphics Flush
Graphics Clear

Graphics Flush redraws the graphics without clearing highlighting or temporary

drawing. Graphics Flush is useful when a previously executed command modified the graphics
and didn't update the screen and the user wishes to update the display. The Graphics Clear
command clears the graphics window without redrawing the scene, leaving the window blank.

131

Environment Control

NOTE: Although most changes to the model are immediately reflected in the graphics display,
some are not (for graphics efficiency). Typing Display will update the display after such
commands. Ctrl-R will also update the display as long as the mouse is in the graphics window.
Prevent Graphics From Updating

For especially large models, it may take excessively long to update the display after an action has
been performed. To prevent the graphics from automatically updating, use the following
command:

Graphics Pause

This command prevents the graphics window from being updated until the next time the Display
command is issued.

NOTE: The Plot command is synonymous to the Display command, and either can be used with
identical results.

Geometry, Mesh, and BC Entity Visibility

The visibility of geometry, mesh, BC and Genesis entities can be turned on or off, either
individually or globally. After visibility is turned off, the associated entities will remain invisible
until visibility is turned on again.

The command to control global visibility is:
{Mesh|Geometry|BC} { [Visibility] [on|off] }

This command sets the global visibility on or off for all mesh, geometry, or BC entities,
respectively. Turning off BC visibility also affects Genesis entities such as blocks, sidesets, and
nodesets. Global visibility settings take precedence over the visibility set on individual entities.
By default, Mesh and Geometry visibility is on, and BC visibility is off.

Global visibility of geometry, mesh, and BC entities can also be controlled from these tool bar
buttons in the GUI (from left to right):

& 9 =

The command to control the individual visibility of geometry entities is:

{{Body|Curve|Surface|Volume|Vertex} <range> } [Mesh][Geometry]
Visibility [On|Off]

If the Mesh keyword is included, only the visibility of the mesh belonging to the specified
geometric entity is affected. Similarly, if the Geometry keyword is included, only the visibility
of the geometry is affected. If neither keyword is included, the command is identical to including
both keywords.

Invisibility of geometry is inherited; visibility is not. For example, if a volume is invisible, its
surfaces are also invisible unless they also belong to some other visible volume. As another case,
if the volume is visible, but a surface is set to invisible, the surface will not follow its parent's
visibility setting, but will remain invisible.

If vertex visibility is turned on, the vertices of the geometry become visible. The default for
vertex visibility is off. The default for all other geometry entities is on.

The commands to control visibility of edges and nodes are:

132

Cubit 15.1 User Documentation

Edge [Visibility] [On|Off]
Node [Visibility] [On|Off]

These commands set the global visibility on or off for all edges or nodes, respectively. If edge

visibility is off, mesh edges will not be drawn when mesh faces are drawn. Edge visibility is on
by default; node visibility is off by default. Face visibility is always on when mesh visibility is

on.

The command to control the individual visibility of genesis entities is:
{Block|Nodeset|Sideset} <range> visibility [{on|off}]

Genesis entities and boundary conditions are best viewed with geometry and mesh visibility off

and BC visibility on.

Entity visibility for individual geometry and Genesis entities can also be controlled via context
(right-click) menus in the Tree and in the graphics window.

Entities that are not visible can still be drawn temporarily using the "draw" command to display
one or more specific entities.

Command Line View Navigation: Zoom, Pan and Rotate

Commands used to affect camera position or other functions are listed below. All rotation,
panning, and zooming operations can include the Animation Steps qualifier, makes the image
pass smoothly through the total transformation. Animation also allows the user to see how a
transformation command arrives at its destination by showing the intermediate positions.
Rotation

Rotate <degrees> About [Screen | Camera | World] {X | Y | Z} [Animation
Steps <number_steps>]

Rotate <degrees> About Curve <curve> [Animation Steps <number_steps>]
Rotate <degrees> About Vertex <vertex_1> Vertex <vertex_ 2> [Animation
Steps <number_steps>]

Rotation of the view can be specified by an angle about an axis in model coordinates, about the
camera's "At" point, or about the camera itself. Additionally rotations can be specified about any
general axis by specifying start and end points to define the general vector. The right hand rule is
used in all rotations.

Plain degree rotations are in the Screen coordinate system by default, which is centered on the
camera's At point. The Camera keyword causes the camera to rotate about itself (the camera'’s
From point). The World keyword causes the rotation to occur about the model's coordinate
system. Rotations can also be performed about the line joining the two end vertices of a curve in
the model, or a line connecting two vertices in the model.

Panning

Pan [{Left|Right} <factor1>] [{Up|Down} <factor2>] [Screen | World]
[Animation Steps <number_steps>]

Panning causes the camera to be moved up, down, left, or right. In terms of camera attributes, the
From point and At point are translated equal distances and directions, while the perspective
angle and up vector remain unchanged. The scene can also be panned by a factor of the graphics
window size.

133

Environment Control

Screen and World indicate which coordinate system <factor> is in. If Screen is indicated (the
default), <factor> is in screen coordinates, in which the width of the screen is one unit. If World
is indicated, <factor> is expressed in the model units.

Zooming

Zoom Screen <factor> [Animation Steps <number_steps>]

Zoom <x_min><y_min> <x_max> <y_max> [Animation Steps
<number_steps>]

Zoom {Group | Body | Volume | Surface | Curve | Vertex | Hex | Tet | Face |
Tri | Edge | Node} <id_range> [Animation Steps <number_steps>] [Direction
{options}]

Zoom cursor [click|drag][animation steps <number>]

Zoom Reset

Zoom Screen will move the camera <factor> times closer to its focal point. The result is that
objects on the focal plane will appear <factor> times larger.

Zooming on a specific portion of the screen is accomplished by specifying the zoom area in
screen coordinates; for example, Zoom 0 .25 .25 will zoom in on the bottom left quarter of the
screen.

Zooming on a particular entity in the model is accomplished by specifying the entity type and ID
after entering Zoom. The image will be adjusted to fit bounding box of the specified entity into
the graphics window, and the specified entity will be highlighted. You can specify a final
direction to look at when zooming by using the direction option.

To center the view on all visible entities, use the Zoom Reset command.

The GUI tool bar buttons for controlling zoom in, zoom out, and zoom reset are as follows:

Qe

Entity Selection and Filtering
Entity Selection

¢ Command Line Entity Specification
o Extended Command Line Entity Specification
e Selecting Entities With the Mouse

CUBIT Entity specification is a means of selecting objects or groups of objects. Entities can be
selected from the command line using entity specification parameters, or directly in the graphics
window using the mouse. This chapter describes these methods of entity selection.

Command Line Entity Specification

CUBIT identifies objects in the geometry, mesh, and elsewhere using ID numbers and
sometimes names. IDs and names are used in most commands to specify which objects on which
the command is to operate.

These objects can be specified in CUBIT commands in a variety of ways, which are best
introduced with the following examples (the portion of each command which specifies a list of
entities is shown in blue):

General ranges: Surface 1 2 4 to 6 by 2 34 5 Scheme Pave

Combined geometry, mesh, and genesis entities: Draw Sideset 1 Curve 3 Hex 24 6

134

Cubit 15.1 User Documentation

Geometric topology traversal: Vertex in VVolume 2 Size 0.3

Mesh topology traversal: Draw Edge in Hex 32

All keyword: ListBlock all

Expand keyword: my_curve_group expand Scheme Bias Factor 1.5

Except keyword: List Curve 1 to 50 except 2 4 6

In addition to the examples above, there is an extended parsing capability that allows entities to
be specified by a general set of criteria. See Extended Entity Specification for details. The
following is a simple example of an extended entity specification:

By Criteria: Draw Curve With Length > 3

Types of Entity Range Input

The types of entity range input available in CUBIT can be classified in 4 groups:

1. General range parsing

Entity IDs can be entered individually (volume 1), in lists (volume 1 2 3), in ranges
(volume 3 to 7), and in stepped ranges (volume 3 to 7 step 2). The word all may also be
used to specify all entities of a given type.

An ID range has the form <start_id> to <end_id>. It represents each ID between start_id
and end_id, inclusive.

A stepped ID range has the form <start_id> To <end_id> {Step|By} <step>. It
represents the set of IDs between start_id and end_id, inclusive, which can be obtained
by adding some integer multiple of step to start_id. For example, 3 to 8 step 2 is
equivalentto 35 7.

The various methods of specifying IDs can be used together. For example:

draw surface 1 2 4 to 6 vertex all

2. Topological traversal

Topological traversal is indicated using the "in" and "common_to" identifiers, can span
multiple levels in a hierarchy, and can go either up or down the topology tree. For
example, the following entity lists are all valid:

vertex in volume 3

volume in vertex 24 6

surface common_to volume 2 3

curve common_to surface 2 3

curve 1to 3in body 4 to 8 by 2

If ranges of entities are given on both sides of the "in" identifier, the intersection of the
two sets results. For example, in the last command above, the curves that have ids of 1, 2
or 3 and are also in bodies 4, 6 and 8 are used in the command.

Topology traversal is also valid between entity types. Therefore, the following commands
would also be valid:

draw node in surface 3

draw surface in edge 362

draw hex in face in surface 2

draw node in hex in face in surface 2

draw edge in node in surface 2

135

Environment Control

draw face common_to volume 1 2
3. Exclusion

Entity lists can be entered then filtered using the "except” identifier. This identifier and
the ids following it apply only to the immediately preceding entity list, and are taken to
be the same entity type. For example, the following entity lists are valid:

curve all except 246

curve 1251050 except234

curve all except 2 3 4 in surface 2 to 10

curve in surface 3 except 2 (produces empty entity list!)

Entity names can also be used to specify the exclusion list. For example:

curve all except pivot_1

When using mulitple names to specify the exclusion list it is necessary to use the "in"
keyword with parentheses. For example:

curve all except curve in (pivot_1 top_left)

In the above example, all curves are in the entity list except the curve named "pivot_1"
and the curve named "top_left".

4. Group expansion

Groups in CUBIT can consist of any number of geometry entities, and the entities can be
of different type (vertex, curve, etc.). Operations on groups can be classified as
operations on the group itself or operations on all entities in the group. If a group
identifier in a command is followed immediately by the “expand' qualifier, the contents of
the group(s) are substituted in place of the group identifier(s); otherwise the command is
interpreted as an operation on the group as a whole. If a group preceding the “expand'
qualifier includes other groups, all groups are expanded in a recursive fashion.
For example, consider group 1, which consists of surfaces 1, 2 and curve 1. Surfaces 1
and 2 are bounded by curves 2, 3, 4 and 5. The commands in Table 1, illustrate the
behavior of the “expand' qualifier.
Table 1. Parsing of group commands; Group 1 consists of Surfaces 1-2 and Curve 1;
Surfaces 1 and 2 are bounded by Curves 2-5.

Command Entity list produced
Curve in Group 1 Curve 1
Curve in group 1 expand Curves 1, 2, 3,4,5

The “expand' qualifier can be used anywhere a group command is used in an entity list; of
course, commands which apply only to groups will be meaningless if the group id is followed by
the “expand' qualifier.

Precedence of "Except™ and ""In"

Several keywords take precedence over others, much the same as some operators have greater
precedence in coding languages. In the current implementation, the keyword "Except™ takes
precedence over other keywords, and serves to separate the identifier list into two sections. Any
identifiers following the "Except" keyword apply to the list of entities excluded from the entities
preceding the "Except". Table 2 shows the entity lists resulting from selected commands.

136

Cubit 15.1 User Documentation

Table 2. Precedence of ""Except™ and "In"" keywords; Group 1 consists of Surfaces 1-2 and
Curve 1.

Command Entity list produced
Curve all except 1 in Group 1 (All curves except curve 1)
Curve all except 2 3 4 in Surf 2 to 10 (All curves except 2, 3, 4)

In the first command, the entities to be excluded are the contents of the list "[Curve] 1 in Group
1", that is the intersection of the lists "Curve 1" and "Curve in Group 1"; since the only curve in
Group 1 is Curve 1, the excluded list consists of only Curve 1. The remaining list, after removing
the excluded list, is all curves except Curve 1.

In the second command, the excluded list consists of the intersection of the lists "Curve 2 3 4"
and "Curve in Surf 2 to 10"; this intersection turns out to be just Curves 2, 3 and 4. The
remaining list is all curves except those in the excluded list.

Placement in CUBIT Commands

In general, anywhere a range of entities is allowed, the new parsing capability can be used.
However, there can be exceptions to this general rule, because of ambiguities this syntax would
produce. Currently, the only exception to this rule is the command used to define a sideset for a
surface with respect to an owning volume.

Extended Command Line Entity Specification

In addition to basic entity specification, entities may be specified using an extended expression.
An extended expression identifies one or more entities using a set of entity criteria. These criteria
describe properties of the entities one wishes to operate upon.

Extended Parsing Syntax

The most common type of extended parsing expression is in the following format:

{Entity_Type} With {Criteria}

Entity_Type is the name of any type of entity that can be used in a command, such as Curve,
Hex, or SideSet. Criteria is a combination of entity properties (such as Length), operators (such
as >=), keywords (such as Not), and values (such as 5.3) that can be evaluated to true or false for
a given entity. Here are some examples:

curve with length <1
surface with is_meshed = false
node with x_coord > 10 And y_coord >0

Keywords
These are the keyword defined by extended parsing
Keyword Description

These keywords are used the same way as in basic entity

specification. For example:
All, To, Step, By, draw surface all

Except, In, draw surface 1 to 5 step 2 curve 1 to 3 in body 4 to 8 by
Common_To, 2
Expand draw hex in face in surface 2

draw face common_to volume 1 2
draw node in hex in face in surface 2 curve 1 2 5 to 50

137

Not

Of

And, Or

<I><=>==<>

+ - *
()
Functions

Environment Control

except234

Not flips the logical sense of an expression - it changes true
to false and false to true. For example:
draw surface with not is_meshed

The "of" operator is used to get an attribute value for a
single entity, such as "length of curve 5". Only attributes
that return a single numeric value may be used in an "of"
expression. There must be only one entity specified after
the "of" operator, but it can be identified using any valid
entity expression. An example of a complete command
which includes the "of" operator is:

list curve with length < length of curve 5 ids

These logic operators determine how multiple criteria are
combined.
draw surface with length > 3 or with is_meshed = false

These relational operators compare two expressions. You
may use = or == for "equals". <> means "not equal”. For
example:

draw surface with x_max <=3

draw volume with z_max <>12.3

These arithmetic operators work in the traditional manner.
draw surface with length * 3+ 1.2 > 10

Parentheses are used to group expressions and to override
precedence. When in doubt about precedence, use
parentheses.

draw surface with length > 3 and (with is_meshed =
false or x_min>1)

The following functions are defined. Not all functions apply to all entities. If a function does not
apply to a given entity, the function returns 0 or false.

Keyword
ID
Length
Area

Exterior_Angle

Is_Meshed

Is_Spline

Description

the ID of an entity

The length of a curve or edge
The area of a surface.

Works for curves with an exterior angle greater than (>),
less than (<), or equal to (=) a given angle in degrees. This
is used if you want to do some operation, such as
refinement, on all the reentrant curves or curves with
surfaces that form a certain angle.

Whether a geometric entity has been meshed or not

Whether a geometric entity is defined using a NURBS
representation. Otherwise the entity has an analytic

138

Cubit 15.1 User Documentation

Is_Plane

Is_Periodic

Is_Sheetbody

Element_Count

Dimension

X_Coord,

Y _Coord, Z Coord

X_Min, Y_Min,
Z Min

X_Max, Y_Max,
Z_Max

Is_Merged

Is_Virtual

Has_Virtual

Is_Real

Num_Parents

Block_Assigned

Has_ Scheme

139

representation.
Whether a geometric surface is planar.

Whether a geometric surface is periodic, such as a sphere
or torus.

A geometric entity is a sheetbody if it is a collection of
surfaces that do not form a solid.

The number of elements owned by this geometric entity.
Only elements of the same dimension as the entity are
counted (number of hexes in a volume, number of faces on
a surface, etc.)

The topological dimension of an entity (3 for volumes, 2
for surfaces, etc.).

The X, y, or z coordinate of the point at the center of the
entity's bounding box.

The X, y, or z coordinate of the minimum extent of the
entity's bounding box

The X, y, or z coordinate of the maximum extent of the
entity's bounding box

Whether a geometry entity has a merge flag on. All
geometric entities have one set by default.

A flag that specifies whether an entity is virtual geometry.
An entity is virtual if it has at least one virtual
(partition/composite) topology bridge.

An entity "has_virtual” if it is virtual itself, or has at least
one child virtual entity

An entity "is_real™ if it has at least one real (non-virtual)
topology bridge.

Used to specify geometry entities with a specified number
of parent entities. May be used to find "free curves" where
num_parents=0 or non-manifold curves where
num_parents>2.

Used to specify elements which have been assigned to a
block. This is also useful to find elements NOT assigned to
a block by using "not block_assigned".

Used to specify geometry entities which have been
assigned a specified scheme. The scheme name is specified
with the keyword string used when setting the scheme.
Wildcards can also be used when specifying the scheme
name. For example, draw surface with has_scheme
"*map" will draw surfaces with scheme map or submap.

Environment Control

Precedence

For complicated expressions, which entities are referred to is influenced by the order in which
portions of the expression are evaluated. This order is determined by precedence. Operators with
high precedence are evaluated before operators with low precedence. You may always include
parentheses to determine which sub-expressions are evaluated first. Here all operators and
keywords listed from high to low precedence. Items listed together have the same precedence
and are evaluated from left to right.

(,) Expand Not *, / +, - <, >, <=, >= <> = And, Or Except In Of With
Because of precedence, the following two expressions are identical:

curve with length + 2 * 2 > 10 and length <= 20 in my_group
expand(curve with (((length + (2*2)) > 10)and(length <=20))) in (
my_group expand)

Selecting Entities with the Mouse

The following discussion is applicable only to the command line version of CUBIT. See GUI
Entity Selection for a description of interactive entity selection with the Graphical User Interface.
Many of the commands in CUBIT require the specification of an entity on which the command
operates. These entities are usually specified using an object type and ID (see Entity
Specification) or a name. The ID of a particular entity can be found by turning labels on in the
graphics and redisplaying; however, this can be cumbersome for complicated models. CUBIT
provides the capability to select with the mouse individual geometry or mesh entities. After
being selected, the ID of the entity is reported and the entity is highlighted in the scene. After
selecting the entities, other actions can be performed on the selection. The various options for
selecting entities in CUBIT are described below, and are summarized in Table 1:

Table 1. Picking and key press operations on the picked entities

Key Action
ctrl + . . .
B1 Pick entity of the current picking type.
shift + : : . .
ctrl + Adc_j plpked entity of the current picking type to current picked
B1 entity list.
tab Query-pick; pick entity of current picking type that is below

the last-picked entity.
n |Lists what entities are currently selected.

Lists basic information about each selected entity. This is
similar to entering a List command for each selected entity.

Lists geometric information about the selection. As if the List
g |Geometry command were issued for each entity. If there are
multiple entities selected, a geometric summary of all

140

Cubit 15.1 User Documentation

ctrl +

ctrl +

m

d

ctrl +
d

selected entities is printed at the end, including information
such as the total bounding box of the selection.

Makes the current selection invisible. This only affects entities
that can be made invisible from the command line (i.e.
geometric and genesis entities.)

Draws a graphical scale showing model size in the three
coordinate axes. This is a toggle action, so pressing the 's'
key again in the graphics window will turn the scale off.

Zoom in on the current selection.

Echo the ID of the selection to the command line.

Add the current selection to the picked group. Only geometry
will be added to the group (not mesh entities). If a selected
entity is already in the picked group, it will not be added a
second time.

Remove the current selection from the picked group. If a
selected entity was not found in the picked group, this
command will have no effect.

Redisplays the model.

Clear the picked group. The picked group will be empty after
this command.

Lists what entities are currently in the picked group.

Display and select the entities in the picked group.

Draws the entity that is selected.

Details of selecting entities with a mouse are outlined in the following items:

Entity

Entity Selection

Query Selection

Multiple Selected Entities
Information about the Selection

Picked Group
Substituting the Selection into Commands

Selection

Selecting entities typically involves two steps:
1. Specifying the type of entity to select

141

Environment Control

Clicking on the scene can be interpreted in more than one way. For example, clicking
on a curve could be intended to select the curve or a mesh edge owned by that curve.
The type of entity the user intends to select is called the picking type. In order for CUBIT
to correctly interpret mouse clicks, the picking type must be indicated. This can be done
in one of two ways. The easiest way to change the picking type is to place the pointer in
the graphics window and enter the dimension of the desired picking type and an
optional modifier key. The dimension usually corresponds to the dimension of the
objects being picked:

Table 2. Picking Modes in Graphics Window

Number Default pick Number +shift pick
0 vertices nodes

1 curves edges

2 surfaces all 2D elements

3 volumes all 3D elements

4 bodies

If a Shift modifier key is held while typing the dimension, the picking type is set to the
mesh entity of corresponding dimension, otherwise the geometry entity of that
dimension is set as the picking type. For example, typing 2 while the pointer is in the
graphics window sets the picking type so that geometric surfaces are picked; typing
Shift-1 sets the picking type so that mesh edges are picked. To differentiate between
picking "tris" or "quads" use "pick face" or "pick tri"

The picking type can also be set using the command

Pick <entity_type>

where entity_type is one of the following: Body , Volume , Surface , Curve , Vertex , Hex
, Tet, Face, Tri, Edge , Node , or DicerSheet .

2. Selecting the entities

To select an object, hold down the control key and click on the entity (this command can
be mapped to a different button and modifiers, as described in the section on Mouse-
Based View Navigation). Clicking on an entity in this manner will first de-select any
previously selected entities, and will then select the entity of the correct type closest to
the point clicked. The new selection will be highlighted and its name will be printed in
the command window.

Query Selection

If the highlighted entity is not the object you intended to selected, press the Tab key to move to
the next closest entity. You can continue to press tab to loop through all possible selections that
are reasonably close to the point where you clicked. Shift-Tab will loop backwards through the
same entities.

Multiple Selected Entities

To select an additional entity, without first clearing the current selection, hold down the shift and
control keys while clicking on an object. You can select as many objects as you would like. By
changing the picking type between selections, more than one type of entity may be selected at a
time. When picking multiple entities, each pick action acts as a toggle; if the entity is already
picked, it is "unpicked", or taken out of the picked entities list.

142

Cubit 15.1 User Documentation

Information About the Selection

When an entity is selected, its name, entity type, and ID are printed in the command window.
There are several other actions which can then be performed on the picked entity list. These
actions are initiated by pressing a key while the pointer is in the graphics window. Table 1
summarizes the actions which operate on the selected entities.

Picked Group

There is a special group whose contents can be altered using picking. This group is named
picked , and is automatically created by CUBIT. Other than its relationship to interactive
picking, it is identical to other groups and can be operated on from the command line. Like other
groups, both geometric and mesh entities can be held in the picked group. Table 1 lists the
graphics window key presses used with the picked group.

Note: It is important to distinguish between the current selection and the picked group
contents. Clicking on a new entity will select that entity, but will not add it to the picked
group. De-selecting an entity will not remove an entity from the picked group.
Substituting Selection into Other Commands

There are three ways to use mouse-based selection to specify entities in commands.

1. The Selection Keyword

You may refer to all currently selected entities by using the word selection in a command; the
picked type and ID numbers of all selected entities will be substituted directly for selection . For
example, if Volume 1 and Curve 5 are currently selected, typing

Color selection Blue
is identical to typing
Color Volume 1 Curve 5 Blue

Note that the selection keyword is case sensitive, and must be entered as all lowercase letters.

2. Echoing the ID of the Selection

Typing an e into a graphics window will cause the 1D of each selected entity to be added to the
command line at the current insertion point. This is a convenient way to use entities of which you
don't already know the name or ID.

As an added convenience, the picking type can be set based on the last word on the command
line using the ~ key. Note that this is not the apostrophe key, but rather the left tick mark, usually
found at the upper-left corner of the keyboard on the same key as the tilde (~). For example, a
convenient way to set the meshing scheme of a cylinder to sweep would be as follows:

Volume (hit °, select cylinder, hit) Scheme Sweep Source Surface (hit °,
select endcap, hit e) Target (select other endcap, hit e)

The result will be something similar to
Volume 1 Scheme Sweep Source Surface 1 Target 2

Notice that you must use the word Surface in the command, or ~ will not select the correct
picking type.

3. Using the Picked Group in Commands

Like other groups, the picked group may be used in commands by referring to it by name. The
name of the picked group is picked. For example, if the contents of the picked group are Volume
1 and Volume 2, the command

Draw picked

143

Environment Control
is identical to

Draw Volume 1 Volume 2
Note that picked is case sensitive, and must be entered as all lowercase letters.

144

GEOMETRY
Geometry

CUBIT Geometry Formats
Geometry Creation

Geometry Transforms

Geometry Booleans

Geometry Decomposition
Geometry Cleanup and Defeaturing
Geometry Imprinting and Merging
Virtual Geometry

Geometry Orientation

Geometry Groups

Geometry Attributes

Entity Measurement

Parts, Assemblies, and Metadata
Geometry Deletion

CUBIT usually relies on the ACIS solid modeling kernel for geometry representation; there is
also mesh-based geometry. Other solid model kernels are planned. Geometry is imported

or created within CUBIT. Geometry is created bottom-up or through primitives. CUBIT imports
ACIS SAT files. CUBIT can also read STEP, IGES, and FASTQ files and convert them to the
ACIS kernel. SolidWorks, AutoCAD, and some other commercial CAD systems can write SAT
files directly.

Once in CUBIT, an ACIS model is modified through booleans. Without changing the geometric
definition of the model, the topology of the model may be changed using virtual geometry. For
example, virtual geometry can be used to composite two surfaces together, erasing the curve
dividing them.

Sometimes, an ACIS model is poorly defined. This often happens with translated models. The
model can be healed inside CUBIT.

Model Definitions

ACIS Geometry Kernel

ACIS is a proprietary format developed by Spatial Technologies. CUBIT incorporates the ACIS
third party libraries directly within the program. The ACIS third party libraries are used
extensively within CUBIT to import, export and maintain the underlying geometric
representations of the solid model for geometry decomposition and meshing. There are many
ways to get geometry into the ACIS format. ACIS files can be exported directly from several
commercial CAD packages, including SolidWorks, AutoCAD, and HP PE/SolidDesigner. Third
party ACIS translators are also available for converting from native formats such as Pro
Engineer. CUBIT also uses the ACIS libraries for importing IGES and STEP format files.
Importing and creating geometry using the ACIS geometric modeling kernel currently provides
the widest set of capabilities within CUBIT. All geometry creation and modification tools have
been designed to work directly on the ACIS representation of the model.

145

http://www.spatial.com/

Geometry

Mesh-Based Geometry

In contrast to the ACIS format, Mesh-Based Geometry (MBG) is not a third party library and has
been developed specifically for use with CUBIT. Most of CUBIT's mesh generation tools require
an underlying geometric representation. In many cases, only the finite element model is
available. If this is the case, CUBIT provides the capability to import the finite element mesh and
build a complete boundary representation solid model from the mesh. The solid model can then
be used to make further enhancement to the mesh. While the underlying ACIS geometry
representation is typically non-uniform rational b-splines (NURBS), Mesh-Based Geometry uses
a facetted representation. Mesh-Based Geometry can be generated by importing either an Exodus
Il format file or a facet file.

e Creating Mesh-Based Geometry Models

o Improving Mesh-Based Geometry Models for Meshing
e Meshing Mesh-Based Models

o Exporting Mesh-Based Geometry

Many of the same operations that can be done with traditional CAD geometry can also be done
with mesh-based geometry. While all mesh generation operations are available, only some of the
geometry operations can be used. For example, the following can be done with geometric entities
that are mesh-based:

o Geometry Transformations

e Merging
e Virtual Geometry Operations

Some operations that are not yet available with mesh-based geometry include:

e Booleans
e Geometry Decomposition
e Geometry Clean-Up

Creating Mesh-Based Geometry Models
Mesh based geometry models can be created in one of two ways

o Importing Exodus Il files
o Importing facet files

While both of these methods create geometry suitable for meshing, there are some significant
differences:

Exodus Il files

Exodus Il contains a mesh representation that may include 3D elements, 2D elements, 1D
elements and even 0D elements. It may also contain deformation information as well as
boundary condition information. The import mesh geometry command is designed to decipher
this information and create a complete solid model, using the mesh faces as the basis for the
surface representations. Exodus Il is most often used when a solid model that has previously
been meshed requires modification or remeshing. Importing an Exodus I1 file will generate both

146

Cubit 15.1 User Documentation

geometry and mesh entities, assigning appropriate ownership of the mesh entities to their
geometry owners. Deleting the mesh and remeshing, refining or smoothing are common
operations performed with an Exodus Il model.

Facet files

The facet file formats supported by CUBIT are most often generated from processes such as
medical imaging, geotechnical data, graphics facets, or any process that might generate discrete
data. Importing a facet file will generate a surface representation only defined by triangles. If the
triangles in the facet file form a complete closed volume, then a volume suitable for meshing
may be generated. In cases where the volume may not completely close or may not be of
sufficient quality, a limited set of tools has been provided. In addition to the standard meshing
tools provided in CUBIT, it is also possible to use the triangle facets themselves as the basis for
an FEA mesh.

Improving Mesh-Based Geometry Models for Meshing

In many cases, the triangulated representations that are provided from typical imaging processes
are not of sufficient quality to use as geometry representations for mesh generation. As a result,
CUBIT provides a limited number of tools to assist in cleaning up or repairing triangulated
representations.

1. Using tolerance on STL files

Stereolithography (STL) files, in particular, can be problematic. The import mechanism for STL
provides a tolerance option to merge near-coincident vertices.

2. Using the stitch option on AVS and facet files

The stitch option on the import facets|avs command provides a way to join triangles that
otherwise share near-coincident vertices and edges. This is useful for combining facet-based
surfaces to generate a water-tight model.

3. Using the improve option on facet files.

The improve option on the import facets command will collapse short edges on the boundary of
the triangulation. This option improves the quality of the boundary triangles.

4. Smoothing faceted surfaces.

Individual triangles in a faceted surface representation may be poorly shaped. Just like mesh
elements may be smoothed, facets may also be smoothed in CUBIT using the following
command

Smooth <surface_list> Facets [Iterations <value>] [Free] [Swap]

To use this command, the surface cannot be meshed. Facet smoothing consists of a

simple Laplacian smoothing algorithm which has additional logic to make sure it does not turn
any of the triangles in-side out. It also determines a local surface tangent plane and projects the
triangle vertices to this plane to ensure the volume will not "shrink". The iterations option can
be used to specify the number of Laplacian smoothing operations to perform on each facet vertex
(The default is 1).

The free option can be used to ignore the tangent plane projection. Used too much, the free
option can collapse the model to a point. One of two iterations of this option may be enough to
clean up the triangles enough to be used for a finite element mesh.

The swap option can be used to perform local edge swap operations on the triangulation. The
quality of each triangle is assessed and edges are swapped if the minimum quality of the triangles
will improve.

5. Creating a thin offset volume

147

Geometry

Offset surfaces may be generated from an existing facet-based surface. This would be used in
cases where a thin membrane-like volume might be required where only a single surface of
triangles is provided. This command may be accomplished by using the standard create body
offset command

The result of this command is a single body with an inside and outside surface separated by a
small distance which is generally suitable for tet meshing. This command is currently only useful
for small offsets where self-intersections of the resulting surface would be minimal. It is most
useful for bodies that may be initially composed of a single water-tight surface.

6. Creating volumes from surfaces

A mesh-based geometry volume can be created from a set of closed surfaces. This can be
accomplished in the same manner as the standard create body surface command

Create Body Surface <surface_id_range>

This command is limited to surfaces that match triangles edges and vertices at their boundary.
The command will internally merge the triangles to create a water-tight model that would
generally be suitable for tet meshing.

Meshing Mesh-Based Models

Mesh-Based models may be meshed just like any other geometry in CUBIT by first setting a
scheme, defining a size and using the mesh command. This standard method of mesh generation
can be somewhat time consuming and error prone for complex facet models with thousands of
triangles. CUBIT also provides the option of using the facets themselves as a surface triangle
mesh, or as the input to a tetrahedral mesher. This may be accomplished with one of two options:

Mesh <entity_list> From Facets

This command will generate triangular finite elements for each facet on the surface. If

the entity_list is composed of one or more volumes, then the tetrahedral mesh will automatically
fill the interior. This method is useful when further cleanup and smoothing operations are needed
on the triangles after import.

Import Facets <filename> Make_elements

The make_elements on the import facets command will generate the triangular finite elements on
the surface at the time the facets are read and created. This option is useful if no further
modifications to the facets are necessary.

Creating triangular finite elements in this manner can greatly speed up the mesh generation
process, however it is limited to non-manifold topology. If the triangular elements are to be used
for tetrahedral meshing (i.e. all edges of the triangulation should be connected to no more than
two triangles)

Exporting Mesh-Based Geometry

Mesh-Based geometry models and their mesh may be exported by one of the following methods:

e Exporting to an Exodus Il File
o Exporting to a facet file

Exodus Il
Exporting to an Exodus Il file saves the finite element mesh along with any boundary conditions
placed on the model. It will not save the individual facets that comprise the mesh-based

148

Cubit 15.1 User Documentation

geometry surface representation. Importing an Exodus 11 file saved in this manner will regenerate
the surfaces only to the resolution of the saved mesh.

Facet files

CUBIT also provides the option to save just the surface representation to a facet or STL file. The
following commands can be used for saving facet or STL files:

Export Facets ‘filename" <entity_list> [Overwrite]
Export STL [ASCII|Binary] 'filename’ <entity_list> [Overwrite]

These commands provide the option of saving specific surfaces or volumes to the facet file. If no
entities are provided in the command, then all surfaces in the model will be exported to the file.
The overwrite option forces a file to overwrite any file of the same name in the current working

directory.

CUBIT Geometry Formats

e ACIS
¢ Mesh-Based Geometry

Setting the Geometry Kernel
The geometry kernel can be switched between ACIS and Mesh-Based Geometry from the
command line using the following command:

Set Geometry Engine {Acis|Facet}

The geometry engine will automatically be set when importing a model.

Terms

Before describing the functionality in CUBIT for viewing and modifying solid geometry, it is
useful to give a precise definition of terms used to describe geometry in CUBIT. In this manual,
the terms topology and geometry are both used to describe parts of the geometric model. The
definitions of these terms are:

Topology: the manner in which geometric entities are connected within a solid model;
topological entities in CUBIT include vertices, curves, surfaces, volumes and bodies.
Geometry: the definition of where a topological entity lies in space. For example, a curve may
be represented by a straight line, a quadratic curve, or a b-spline. Thus, an element of topology
(vertex, curve, etc.) can have one of several different geometric representations.

Topology

Within CUBIT, the topological entities consist of vertices, curves, surfaces, volumes, and bodies.
Each topological entity has a corresponding dimension, representing the number of free
parameters required to define that piece of topology. Each topological entity is bounded by one
or more topological entities of lower dimension. For example, a surface is bounded by one or
more curves, each of which is bounded by one or two vertices.

Bodies and Volumes

A CUBIT Body is defined as a collection of other pieces of topology, including curves, surfaces
and volumes. The use of Body is not required, and is in fact deprecated in favor of using
Volume. Bodies may still be used for grouping volumes, but it is suggested to use Groups
instead.

149

Geometry

Although a Body may contain groups of Surfaces or Volumes, for most practical purposes within
the CUBIT environment, a single Volume or Surface will belong to a single Body. For typical
three-dimensional models, this means that there should be one Body for every Volume in the
model, where the default Body ID is the same as the Volume ID. For this reason, in many
instances the term VVolume and Body are used interchangeably, although it is more consistent to
always refer to Volumes and VVolume IDs, and only use Bodies when absolutely necessary.

Non-Manifold Topology

In many applications, the geometry consists of an assembly of individual parts, which together
represent a functioning component. These parts often have mating surfaces, and for typical
analyses these surfaces should be joined into a single surface. This results in a mesh on that
surface which is shared by the volume meshes on either side of the shared surface. This
configuration of geometry is loosely referred to as non-manifold topology.

Bounding Box Calculations

Bounding box calculations are used for many routines and subroutines in Cubit. These
calculations are done using a faceted representation by default. To use the default modeling
engine for more accurate (and longer) calculations change the Facet Bbox setting.

Set Facet BBox [ON|Off]

There are also various settings to control the accuracy of bounding box calculations based on
point lists.

Set Tight [[Bounding] [Box] [{Surface|Curve|Vertex} {on|off}]]

If surfaces are used, surface facet points will be included in the point list used to calculate the
tight bounding box. This will include vertices and points on the curves. This is the default
implementation.

If curves are used, curve tesselation points will be included in the point list used to calculate the
tight bounding box. This includes the vertices on the ends of the curves. One use for this is to
find a more accurate tight bounding box, since curve tessellations are typically more fine than
surface tessellations. However, in practice, it is recommended to just use surface tessellations.
One special case is if the user sends in a list of curves as the criteria for the tight bounding box,
the curve tessellations are always used, even if this parameter is false.

If vertices are used, vertex points will be included in the point list used to calculate the tight
bounding box. In extremely large models, it could be advantageous to just use vertices. So the
user would turn off both the surface and curve flags. One special case is if the user sends in a list
of curves as the criteria for the tight bounding box, the curve tessellations are always used, even
if the curve parameter is false and this parameter is true.

Geometry Creation

Geometry Creation

There are three primary ways of creating geometry for meshing in CUBIT. First, CUBIT
provides many geometry primitives for creating common shapes (spheres, bricks, etc.) which can
then be modified and combined to build complex models. Secondly, geometry can be imported
into CUBIT. Finally, geometry can be defined by building it from the "bottom up", creating
vertices, then curves from those vertices, etc. Two of these three methods for creating geometry
in CUBIT will be described in detail in this section.

150

Cubit 15.1 User Documentation

All of these geometry creation commands have been expressed in the GUI's command panels. To
navigate to the volume creation command panels, for example, select "Mode-Geometry", then
"Entity-Volume", then "Action-Create", as shown below. Other geometry creation command
panels are available for each geometry type.

Command Panel g X
Mode - Geometry

29O

Entity - Volume

& @ | |k (@

Action - Create

a| = | S
B @ &
| Brick - |

Brick Dimensions

X {width) 10
¥ (height)
7 (depth)

o Bottom-Up Geometry Creation
o Geometric Primitives

Primitive Geometry
Geometric Primitives
The geometric primitives supported within CUBIT are pre-defined templates of three-
dimensional geometric shapes. Users can create specific instances of these shapes by providing
values to the parameters associated with the chosen primitive. Primitives available in CUBIT
include the brick, cylinder, torus, prism, frustum, pyramid, and sphere. Each primitive, along
with the command used to generate it and the parameters associated with it, are described next.
For some primitives, several options can be used to generate them, and are described as well.
The following Primitives can be generated with CUBIT:

Brick

151

Geometry

Cylinder

Frustum

Pyramid

Sphere

152

Cubit 15.1 User Documentation

Torus

General Notes

« Primitives are created and given an 1D equal to one plus the current highest body ID in
the model.

o Primitive solids are created with their centroid at the origin or the world coordinate
system.

« For primitives with a Height or Z parameter, the axis going through these primitives will
be aligned with the Z axis.

o For primitives with a Major Radius and a Minor Radius, the Major Radius will be along
the X axis, the Minor Radius along the Y axis.

e For primitives with a Top Radius, this radius will be that along the X axis; the Y axis
radius will be computed using the Major, Minor and Top Radii given.

Creating Bricks
The brick is a rectangular parallelepiped.
Command

[Create] Brick {Width|X} <width> [{Depth|Y} <depth>] [{Height|Z}
<height>] [Bounding Box {entity_type} <id_range>] [Tight] [[Extended]
{Percentage| Absolute} <val>]]

Notes

e A cubical brick is created by specifying only the width or x dimension.

e A brick can be specified to occupy the bounding box of one or more entities, specified on
the command line.

o If the Tight option is specified with Bounding Box, the result is the smallest brick that
can contain the entities specified, which is the default behavior of the Bounding Box
option.

« If the Extended option is specified with Bounding Box, the result is a brick that is
extended from a "tight" brick by the input percentage or absolute value.

e If abounding box specification is used in conjunction with any of the other parameters
(X, Y or Z), the parameters specified override the bounding box results for that or those
dimensions.

Creating Frustums
A frustum is a general elliptical right frustum, which can also be thought of as a portion of a right
elliptical cone.

153

Command

[Create] Frustum [Height|Z] <z-height> Radius <x-radius> [Top
<top_radius>]

[Create] Frustum [Height|Z] <z-height> Major Radius <radius> Minor
Radius <radius> [Top <top_radius>]

Notes

o If used, Major Radius defines the x-radius and Minor Radius the y-radius.
o If used, Top Radius defines the x-radius at the top of the frustum; the top y radius is
calculated based on the ratio of the major and minor radii.

Creating Pyramids
A pyramid is a general n-sided prism.
Command

[Create] Pyramid [Height|Z] <z-height> Sides <nsides> Radius <radius>
[Top <top-x-radius>]

[Create] Pyramid [Height|Z] <z-height> Sides <nsides> [Major [Radius] <x-
radius> Minor [Radius] <y-radius>] [Top <top-x-radius>]

Creating Toruses

The torus command generates a simple torus
Command

[Create] Torus Major [Radius] <major-radius> Minor [Radius] <minor-
radius>

Notes

e Minor Radius is the radius of the cross-section of the torus; Major Radius is the radius

of the spine of the torus.
e The minor radius must be less than the major radius.

Creating Cylinders

The cylinder is a constant radius tube with right circular ends.
Command

[Create] Cylinder [Height|Z] <val> Radius <val>
[Create] Cylinder [Height|Z] <val> Major Radius <val> Minor Radius <val>

Notes

o Acylinder may also be created using the frustum command with all radii set to the same

value.

154

Cubit 15.1 User Documentation

e Specifying major and minor radii can produce a cylinder with an oval cross section.

Creating Prisms
The prism is an n-sided, constant radius tube with n-sided planar faces on the ends of the tube.
Command

[Create] Prism [Height|Z] <z-val> Sides <nsides> Radius <radius>
Notes

e The radius defines the circumradius of the n-sided polygon on the end caps.

o If amajor and minor radius are used, the end caps are bounded by a circum-ellipse
instead of a circumcircle.

e The number of sides of a prism must be greater than or equal to three. A prism may also
be created using the pyramid command with all radii set to the same value.

o If the Extended option is specified with Bounding Box, the result is a brick that is
extended from a "tight" brick by the input percentage or absolute value.

« If a bounding box specification is used in conjunction with any of the other parameters
(X, Y or Z), the parameters specified override the bounding box results for that or those
dimensions.

Creating Spheres

The sphere command generates a simple sphere, or, optionally, a portion of a sphere or an
annular sphere.

Command

[Create] Sphere Radius <radius> [Xpositive]|[Xnegative]
[Ypositive]|[Ynegative] [Zpositive]|[Znegative] [Delete] [Inner [Radius]
<radius>]

Notes

o If Xpositive/Xnegative, Ypositive/Ynegative, and/or Zpositive/Znegative are used, a
sphere which occupies that side of the coordinate plane only is generated, or, if the delete
keyword is used, the sphere will occupy the other side of the coordinate plane(s)
specified. These options are used to generate hemisphere, quarter sphere or a sphere
octant (eighth sphere).

o If the inner radius is specified, a hollow sphere will be created with a void whose radius
is the specified inner radius.

Bottom Up Creation

Bottom-Up Geometry Creation

CUBIT supports the ability to create geometry from a collection of lower order entities. This is
accomplished by first creating vertices, connecting vertices with curves and connecting curves
into surfaces. Currently only ACIS bodies or volumes may not be constructed by stitching a set
of surfaces together, and only in a certain number of cases; however surfaces may also be swept

155

or rotated to create bodies or volumes. Existing geometry may be combined with new geometry
to create higher order entities. For example, a new surface can be created using a combination of
new curves and curves already extant in the model. Commands and details for creating each type
of geometry entity are given below.

The following describes each of the basic entities that can be generated with CUBIT using the
bottom-up approach

Creating Vertices
Creating Curves
Creating Surfaces
Creating Bodies

Creating Volumes
Currently, CUBIT can create volumes:

NogakowhE

from surfaces by sweeping a single surface into a 3D solid,
by offsetting an existing volume,

by extending one or more surfaces or sheet bodies

by sweeping a curve around an axis,

by stitching together surfaces that can form a closed volume,
by lofting from one surface to another surface, or

by thickening a surface body.

Sweeping of planar surfaces, belonging either to two- or three-dimensional bodies, is allowed,
and some non-planar faces can be swept successfully, although not all are supported at this time.
The following methods for generating volumes are described:

Sweep Surface Along Vector
Sweep Surface About AXis
Sweep Surface Along Curve
Sweep Surface Perpendicular
Sweep Surface to a Volume
Offset

Sheet extended from surface
Sweep Curve About Axis
Stitch Surfaces Together
Loft Surfaces Together
Thicken Surfaces

Sweep Surface

Sweep Surface along Direction
Sweep Surface along Helix

There are five forms of the sweep command; the syntax and details for each are given below.
Common options for first four forms are:

156

Cubit 15.1 User Documentation

draft_angle: This parameter specifies the angle at which the lateral faces of the
swept solid will be inclined to the sweep direction. It can also be described as the
angle at which the profile expands or contracts as it is swept. The default value is
0.0.

draft_type: This parameter is an ACIS-related parameter and specifies what
should be done to the corners of the swept solid when a non-zero draft angle is
specified. A value of 0 is the default value and implies an extended treatment of
the corners. A value of 1 is also valid and implies a rounded (blended) treatment
of the corners.

anchor_entity: The default behavior for the sweep command is to move the
source surface along a path to create a new 3D solid. The anchor_entity option
instructs the sweep to leave the source surface in its original location.
include_mesh: This option will sweep the source surface and existing mesh into a
meshed 3D solid. The mesh size is automatically computed using the Default auto
interval specification.

The sweep operations have been designed to produce valid solids of positive volume, even
though the underlying solid modeling kernel library that actually executes the operation, ACIS,
allows the generation of solids of negative volume (i.e., voids) using a sweep.

1. Sweep Surface Along Vector: Sweeps a surface a specified distance along a specified vector.
Specifying the distance of the sweep is optional; if this parameter is not provided, the face is
swept a distance equal to the length of the specified vector. The include_mesh option will create
a volumetric mesh if the surface is already meshed as shown below. The keep option will keep
the original surface while creating the volume.

Sweep Surface {<surface_id_range>} Vector <x_vector y_vector z_vector> [Distance
<distance_value>] [switchside] [Draft_angle <degrees>] [Draft_type
<0|1>][rigid][anchor_entity][include_mesh] [keep] [merge]

Surface mesh swept along a vector
2. Sweep Surface About Axis: Sweeps a surface about a specified vector or axis through a
specified angle. The axis of revolution is specified using either a starting point and a vector, or
by a coordinate axis. This axis must lie in the plane of the surfaces being swept. The steps
parameter defaults to a value of 0 which creates a circular sweep path. If a positive, non-zero
value (say, n) is specified, then the sweep path consists of a series of n linear segments, each
subtending an angle of [(sweep_angle) / (steps-1)] at the axis of revolution. The include_mesh
option will create a volumetric mesh if the surface is already meshed as shown below. The keep
option will keep the original surface while creating the volume.

Sweep Surface {<surface_id_range>} Axis {<xpoint ypoint zpoint xvector
yvector zvector>|Xaxis|Yaxis|Zaxis} Angle <degrees> [switchside] [Steps

157

<number_of_sweep_steps>] [Draft_angle <degrees>] [Draft_type
<0|1>][rigid][anchor_entity][include_mesh] [keep] [merge]

o

Surface swept around an axis of 50 degree angle

i Specifying multiple surfaces that belong to the same body will not work as expected, as
ACIS performs the sweep operation in place. Hence, if a range of surfaces is provided, they
ought to each belong to different bodies.

3. Sweep Surface Along Curve: This command allows the user to sweep a planar surface along
a curve:

Sweep Surface <surface_id_range> Along Curve <curve_id> [Draft_angle
<degrees>] [Draft_type <0 | 1 | 2>][rigid][anchor_entity][include_mesh]
[keep] [individual] [merge]

One of the ends of the curve must fall in the plane of the surface and the curve cannot be
tangential to the surface. Sweep along curve also supports an additional draft type "2" which
implies a "natural” extension of the corners from their curves.

The include_mesh option will create a volumetric mesh if the surface is already meshed as
shown below. The keep option will keep the original surface while creating the volume.

Volume generated by sweeping a surface along a reference curve
4. Sweep Surface Perpendicular: This command allows the user to sweep a planar surface
perpendicular to the surface:

158

Cubit 15.1 User Documentation

Sweep Surface <surface_id_range> Perpendicular Distance <distance>
[Switchside] [Draft_angle <degrees>] [Draft_type
<integer>][anchor_entity][include_mesh] [keep] [merge]

The sweeping plane must be planar in order to determine the sweep direction. The switchside
option will reverse the direction of the sweep.

The original surface is retained with the 'keep' option. A new volume is created by
sweeping the surface along the surface normal.
The include_mesh option will create a volumetric mesh if the surface is already meshed as
shown below. The keep option will keep the original surface while creating the volume.
5. Sweep Surface to a Volume: This command allows users to sweep a surface to a volume.

Sweep Surface <surface_id_range> Target {Volume|Body} <id> [Direction
{options}] [Plane {options}]

The direction keyword can be used to control the direction of sweep. Without it, Cubit will
determine the sweep direction (usually normal to the sweeping surface). The plane option can be
used to define a stopping plane.

6. Offset: The following command creates a body offset from another body or set of surfaces at
the specified distance. The new surfaces are extended or trimmed appropriately. A positive
distance results in a larger body; a negative distance in a smaller body.

Create Body Offset [From] Body <id_range> Distance <value>
Create Sheet Offset From Surface <id_list> Offset <val> [Surface <id_list>
Offset <val>] [Surface <id_list> Offset <val> ...] [Preview]

Using the second form of the command, the sheet body can be created from a list of surfaces, and
the surfaces may offset by different distances. This command currently requires the original
surfaces to be on solid bodies.

This option is also available for limited cases for facet-based surfaces.

7. Sheet Extended from Surface: The following command creates a body offset from another
body or set of surfaces at the specified distance. The new surfaces are extended or trimmed
appropriately. A positive distance results in a larger body; a negative distance in a smaller body.

Create Sheet Extended From Surface <id_list> [Intersecting <entity_list>]
[Extended {Percentage|Absolute} <val>] [Preview]

This command allows multiple surfaces to be extended at the same time. Optionally, you can
give a list of bodies to intersect for this calculation. You can also extend the size of the surface

159

by either a percentage distance or an absolute distance of the minimum area size. The plane can
be previewed with the preview option. Figure 1 shows a set of surfaces being created using the
extended absolute option.

Figure 1. Sheet created from extending multiple surfaces
8. Sweep Curve About Axis: Sweeps a curve or set of curves about a given axis through a
specified angle. The axis is specified the same as in the Sweep Surface About Axis command.
The steps, draft_angle, and draft_type options are the same as are described above. To create the
solid, the make_solid option must be specified, otherwise a surface will be created, rather than a
solid. If the rigid option is specified, then the curve or set of curves will remain oriented as
originally oriented, rather than rotating about the axis.

Sweep Curve <curve_id_range> {Axis <xpoint ypoint zpoint xvector yvector
zvector>|Xaxis|Yaxis|Zaxis} Angle <degrees> [Steps

<Number_of sweep_steps>] [Draft_angle <degrees>] [Draft_type <integer>]
[Make_solid] [Rigid]

9. Stitch Surfaces Together: A body can be created from various surfaces that form a closed
volume with command below. The geometry must be ACIS-type geometry (i.e. imported from
IGES, STEP or fastq files) This option is also available for limited cases for facet-based surfaces.

Create {Body|Volume} Surface <surface_id_range> [HEAL|Noheal] [Keep]
[Sheet]

The heal option will attempt to close small gaps in the surface; the noheal option disables this
behavior. The keep option preserves the original surfaces.

All of the surfaces must form a closed water-tight volume for this command to succeed unless
the sheet option is specified.

160

Cubit 15.1 User Documentation

The sheet option allows for the creation of an open body. If the set of surfaces form a closed
volume a sheet body is created instead of a volume.

In situations where the boundaries are not exactly within tolerance, the following command may
be more effective:

Stitch {Body]|Volume} <id_range>

[tolerance <value>] [no_tighten_gaps]

10. Loft Surfaces Together: A body can be "lofted" between two surfaces to form a
new body. Surfaces from solid bodies and sheet bodies may be used to create a loft
body. In order to create the loft body, two surfaces coincident to the input surfaces are
created. The loft body is extruded along the shortest path between the corresponding
vertices that define the shapes of the two copied surfaces. This new body is solid. The
surfaces used to create the loft body are unchanged.

Create {Body|Volume} Loft Surface <ids> [guide curve <id_list>
[global_guides]] [Takeoff factors <one value per surface in order>=.001]
[Takeoff_vector Surface <id> {direction options}] [match vertex <ids>]
[closed] [preview] [show_matching_curves]

Note:Source surface ids must be specified in lofting order.

Go to Location, Direction, and Axis Specification to see the direction command
description.

The following options are available for lofting:

e Guide curve: Multiple curves may be specified to guide the loft. The curves must touch
each source surface. If the global_guides option is specified the guides curves are applied
in a global nature.

o Takeoff_factors: Takeoff factors control how strongly the loft follows the takeoff
vectors. When specifying takeoff factors one value must be specified for each source
surface.

o Takeoff vector: The takeoff vector controls the direction of the loft for each surface.
The default takeoff vector for each surface is the normal at the surface centroid. One
takeoff vector may be specified for each surface.

e Match vertex: This option guides the loft in how to match the vertices of the source
surfaces. Multiple match vertex sets may be specified. When specifying match vertices,
one vertex id from each source surface must be specified. The match vertices must be
specified in loft order.

o Closed: This option atempts to create a toroidal solid. The last source surface is lofted to
the first source surface.

e Preview: This option will preview the linking curves of the final solid.

e Show_matching_curves: This option will preview how the vertices of the source
surfaces will be matched.

161

Lofting can be used to split a body in order to create a more structured mesh. Figure 2 below
shows a single volume swept from a large paved surface. Figure 3 shows this same volume after
surfaces defined on the source and target surfaces have been used to create a loft body. This
original body was chopped with the loft body. The resulting two bodies were merged. The
yellow volume was swept as the volume in Figure 2 was but the purple volume was submapped,
producing a much more structured mesh overall.

i

|

O
HT

N
1
mry
IREEni

]
I

Figure 2. Mesh before loft. Single swept volume with a large paved face.

Figure 3. Mesh after loft. The yellow volume is paved and the purple volume is submapped.
11. Thicken Surfaces: A surface body can be thickened to create a volume body. The surface
can be thickened in both directions using the "both™ keyword, thickened in the direction of
surface normal using a positive depth, or thickened in the opposite direction using a negative
depth. To thicken multiple surfaces, all surface normals must be consistent.

Thicken [Volume|BODY] <id> Depth <depth> [Both]

12. Sweeping a Surface to a Plane: Sweeps a surface normal to a plane and towards the plane
until the swept surface reaches the plane. See plane options for ways to describe a plane.
Sweep surface <id> target plane <options>
13. Sweep Surface along a Direction: Sweep a surface along a direction to create a volume.
See direction options for ways to specify a direction.
Sweep Surface <surface_id_range> Direction (options) [switchside] [draft_angle
<degrees>] [draft_type <integer>] [rigid] [anchor_entity] [include_mesh] [keep]
[merge]

162

Cubit 15.1 User Documentation

Surface extruded along -X direction without ‘include_mesh' option
14. Sweep Surface along Helix: Sweep a surface along a helix, where the helix is defined by an
axis, thread_distance (distance between turns in axis direction), axis, and handedness
(right_handed or left_handed.
Sweep {Surface|Curve} <id_range> Helix {axis <xpoint ypoint zpoint xvector
yvector zvector> | xaxis | yaxis | zaxis} thread_distance <val> angle
<val> [RIGHT_HANDED|left_handed] [anchor_entity] [include_mesh] [keep]
[merge]
*** Specifying multiple Surfaces that belong to the same Body can cause the creation of
invalid Bodies and is discouraged. ***
axis = axis about which to create the sweep
thread_distance = distance between each 360 degree segment of the helix
angle = number of degrees in rotation of the helix
handedness = right-handed or left- handed threads

Helical Sweep

Creating Curves

Curves are created by specifying the bounding lower-order topology (i.e. the vertices) and the
geometry (shape) of the curve (along with any parameters necessary for that geometry). There
are several forms of this command:

o Straight
o Parabolic, Circular, Ellipse

163

e Spline

o Copy
e Arc Three

e Arc End Vertices and Radius
o Arc Center Vertex

o Arc Center Angle

e From Vertex Onto Curve

o Offset
e From Mesh Edges
e Close To

o Surface Intersection
e Projecting onto Surface
e Helix

1. Straight: The first form of the command creates a straight line or a line lying on the specified
surface. If a surface is used, the curve will lie on that surface but will not be associated with the
surface's topology.

Create Curve [Vertex] <vertex_id> [Vertex] <vertex_id>[On Surface
<surface_id>]

Straight curves can be created using an axis. The syntax is as follows:
Create Curve Axis {options}

The length of the axis must be specified. Go to Location, Direction, and Axis Specification to see
the axis command description.

Additionally, several connected straight curves can be created with a single command. The
syntax for the polyline command is as follows:

Create Curve Polyline Location {options} Location {options} ...

Notice that two or more locations are used to define a polyline. See Location, Direction, and
Axis Specification for the location command description.
2. Parabolic, Circular, Ellipse: The parabolic option creates a parabolic arc which goes through
the three vertices. The circular and ellipse options create circular and elliptical curves
respectively that go through the first and last vertices.
Create Curve [Vertex <vertex_id> [Vertex] <vertex_id> [[Vertex] <vertex_id>
[Parabolic|Circular|ELLIPSE [first angle <val=0> last angle <val=90>]]]
If "ellipse" is specified, Cubit will create an ellipse assuming the vectors between vertices (1 and
3) and (2 and 3) are orthogonal. v1-v3 and v2-v3 define the major and minor axes of the ellipse
and v3 defines the center point. These vectors should be at 90 degrees. If not, Cubit will issue a
warning indicating the vertices are not sufficient to create an ellipse and will then default to
creating a spiral.
The angle options will specify what portion of the ellipse to create. If none are specified, first
angle will default to 0 and last angle to 90 and the ellipse will go from vertex 1 to vertex 2; if
the vertices are free vertices they will be consumed in the ellipse creation. First angle tells Cubit
where to start the ellipse -- the angle from the first axis (v1 - v3) specified. Last angle tells
Cubit where to end the ellipse -- the angle from the first axis. The angle follows the right-hand
rule about the normal defined by (v1 - v3) X (v2 - v3).

164

Cubit 15.1 User Documentation

3. Spline: The spline form of the command creates a spline curve that goes through all the input
vertices or locations. To create a curve from a list of vertices use the syntax shown below. The
delete option will remove all of the intermediate vertices used to create the spline leaving only
the end vertices.

Create Curve [Vertex] <vertex_id_list> [Spline] [Delete]

Additionally, spline curves can be created by inputting a list of locations. Where the spline will
pass through all of the specified locations. The syntax is shown below:

Create Curve Spline {List of locations}

See Location, Direction, and Axis Specification to view the location specification syntax.
4. Copy: This command actually copies the geometric definition in the specified curve to the
newly created curve. The new curve is free floating.

Create Curve From Curve <curve_id>

5. Combine Existing Curves: This command creates a new curve from a connected chain of
existing ACIS curves.

Create Curve combine curve <id_list> [delete]

6. Arc Three: The following command creates an arc either through 3 vertices or tangent to 3
curves. The Full qualifier will cause a complete circle to be created.

Create Curve Arc Three {Vertex|Curve} <id_list> [Full]

7. Arc End Vertices and Radius: The following command creates an arc using two vertices, the
radius and a normal direction. The Full qualifier will cause a complete circle to be created.

Create Curve Arc Vertex <id_list>
Radius <value> Normal {<x> <y> <z> | {direction options} [Full]

Go to Location, Direction, and Axis Specification to see the direction command description.

8. Arc Center Vertex: The next form of the command creates an arc using the center of the arc
and 2 points on the arc. The arc will always have a radius at a distance from the center to the first
point, unless the Radius value is given. Again, the Full qualifier will cause a complete circle to
be created.

Create Curve Arc Center Vertex <center_id> <endl id> <end2_id>
[Radius <value>] [Full]
[Normal {<x> <y> <z> | {direction options}]

Go to Location, Direction, and Axis Specification to see the direction command description.
Note: Requires 3 Vertices - first is the center, the other two are the end points of the arc. A
normal direction is required when the three points are colinear. Otherwise a normal direction is
optional.

9. Arc Center Angle: This form of the command creates an arc using the center position of the
arc, the radius, the normal direction and the sweep angle.

Create Curve Arc Center {<x=0> <y=0> <z=0> | {location options}
Radius <value>

165

Normal {<x> <y> <z> | {direction options}
Start Angle <value=0> Stop Angle <value=360>

Go to Location, Direction, and Axis Specification to see the location and direction command
descriptions.

10. From Vertex Onto Curve: The following command will create a curve from a vertex onto a
specified position along a curve. If none of the optional parameters are given, the location on the
curve is calculated as using the shortest distance from the start vertex to the curve (i.e., the new
curve will be normal to the existing curve).

Create Curve From Vertex <vertex_id> Onto Curve <curve_id> [Fraction
<f> | Distance <d> | Position <xval><yval><zval> | Close_To Vertex
<vertex_id> [[From] Vertex <vertex_id> (optional for "Fraction’ &
‘Distance'’)]] [On Surface <surface_id>]

Note: Default = Normal to the Curve

11. Offset: The next command creates curves offset at a specified distance from a planar chain
of curves. The direction vector is only needed if a single straight curve is given. The offset
curves are trimmed or extended so that no overlaps or gaps exist between them. If the curves
need to be extended the extension type can be Rounded like arcs, Extended tangentially (the
default -straight lines are extended as straight lines and arcs are extended as arcs), or extended
naturally.

Create Curve Offset Curve <id_list> Distance <val> [Direction <x> <y> <z>]
[Rounded|EXTENDED|Natural]

Note: Direction is optional for offsets of individual straight curves only

In all cases, the specified vertices are not used directly but rather their positions are used to
create new vertices.

12. From Mesh Edges: This commands creates a curve from an existing mesh given a starting
node and an adjacent edge.

Create Curve From Mesh Node <id> Edge <id> [Length <val>]

The adjacent edge indicates which direction to propagate the curve.

The curve will be composed of mesh edges up to the specified length.

If no length is specified the curve will propagate as far as the boundary of the mesh. Figure 1
shows a example of a curve generated from the mesh.

166

Cubit 15.1 User Documentation

T T
] hg__—-‘ = -a#
B P oy
SRt [
<{1] [Tt
Sy
- *-il'l|.~ <]
[, Ihﬁﬁbﬁ.‘-q
pletye.
BT
"'1% x"ﬁb

Figure 1. Example of curve created from mesh
The underlying geometry kernel used for this command is Mesh-Based geometry. The new curve
will also be meshed with the edges it was propagated through. A related command for assigning
mesh edges directly to a mesh block is the Rebar command. See Element Block Specification for
more details.
Note: Full hexes or full tets must be used to propagate the curves through the interior of volume.
13. Close_To This option takes two geometric entities and creates the shortest possible curve
between the two entities at the location where the two entities are the closest. The two entities

may NOT intersect. If two vertices are given, the command will create a straight line between the
two vertices.

Create Curve Close_To {Vertex|Curve|Surface|Volume|Body} <id_1>
{Vertex|Curve|Surface|Volume|Body} <id_2>

14. Surface Intersection The following command creates curves at surface
intersections. Multiple curves can be created from a single command.

Create Curve Intersecting Surface <id_list>

15. Projecting onto a Surface The project command allows you to make an imprint of a surface
or set of curves onto another surface. The command syntax is as follows:

Project Curve <id_list> Onto Surface <surface_id> [Imprint [Keepcurve]
[Keepbody]] [Trim]

Project Surface <id_list> Onto Surface <surface_id> [Imprint [Keepcurve]
[Keepbody]]

The command takes a list of curves or surfaces, and a projection surface. If a list of curves is
given, the result will be the creation of a set of free curves on top of the projection surface. If a
list of surfaces is given, the result will be the same as selecting the curves that bound the surface
(i.e. a group of free curves on the projecting surface).

The imprint option will imprint the resulting projected curves onto the projection surface. If this
option is NOT given, the new curves will lie coincident to the surface, but will not be part of the
surface. Imprinting changes the topology of the projection surface. Keepcurve option retains the
new curves as both free curves, and curves in the projection surface. The keepbody option retains
the original body under the new imprinted body. When projecting curves, the trim option will
cause the curve to be trimmed to the target surface.

167

16. Creating a Helix: This command will create a helical curve. The command syntax is as

follows:
Create Curve Helix { axis <xpoint ypoint zpoint xvector yvector zvector> | xaxis |
yaxis | zaxis } location (options) thread_distance <value> angle <value>
[RIGHT_HANDED | left_handed]

axis = axis about which to create the helix

location (options) = starting point of the helix

thread_distance = distance between each 360 degree segment of the helix

angle = number of degrees in rotation of the helix

handedness = right-handed or left- handed threads

Creating Surfaces

There are two major ways to create surfaces in CUBIT. First, surfaces can be created in CUBIT
by fitting an analytic or spline surface over a set of bounding curves. In this case, the curves must
form a closed loop, and only one loop of curves may be supplied. The second method, is by
sweeping a curve about an axis, along a vector, or along another curve. The result of these
surface creation commands is a "sheet body" or a body that has zero measurable volume (it does
however have a volume entity). This body may be decomposed with booleans and special
webcutting commands or it may be used as a tool to decompose other bodies. Booleans can be
used to cut holes out of these surfaces.

The following options may be used for creating a surface in CUBIT.

e Bounding Curves

o Bounding Vertices or Nodes
. @Qy

o Extended Surface

o Planar Surface

o Net Surface

o Offset
e Skinning

o Sweeping of Curves
o Midsurface

« Weld Profile

o Meshed Entities

o Circular Surface

o Parallelogram

o Ellipse
e Rectangle

1. Bounding Curves: The first form of this command produces an analytic or spline surface fit
to cover the bounding curves.

Create Surface Curve <curve_id_1> <curve_id_2> <curve_id_3>...

Another version of this command creates a surface from a set of bounding curves that all lie on
one surface. If the curves are selected they must lie on the surface, and they must create a closed
loop. The On Surface option forces the surface to match the geometry of the underlying surface
exactly.

168

Cubit 15.1 User Documentation

Create Surface Curve <id_list> On Surface <surface_id>

2. Bounding Vertices or Nodes: The second form of this command uses vertices to fit an
analytic spline surface. The On Surface option creates the surface from a set of nodes and
vertices that all lie on one surface and restrains the surface to match the geometry of the
underlying surface. The project option will project the nodes or vertices to the specified surface.

Create Surface [Node|Vertex| <id_list> [On Surface <surface_id> {Project}]

3. Copy: The next form creates a surface using the same geometric description of the specified
surface. The new surface will be a stand-alone sheet body that is geometrically identical to the
user supplied surface.

Create Surface From Surface <surface_id>

4. Extended Surface: The fourth form of the command creates a surface that is extended from a
given surface or list of surfaces. The specified surface's geometry is examined and extended out
"infinitely” relative to the current model in CUBIT (i.e. extended to just beyond the bounding
box of the entire model). The given surfaces are extended as shown in the table.

Create Surface Extended From Surface <surface_id>
Table 1. Surface Extension Results

Surface Type Resulting Extended Surface

Spherical Shell of Full Sphere

Planar Plane of infinite size relative to model

Toroidal Shell of Full Torus

Conical, cone, Shell of outside conic axially aligned with given
cylinder... conic of infinite height relative to model

Spline Surface is extended to extents of the spline

definition. This may not be any further than the
surface itself, so caution should be used here.

Multiple surfaces can be offset at the same time to form a sheet body, by using the Create Sheet
Extended from Surface command.

5. Planar Surface: The following commands create planar surfaces. The first passes a plane
through 3 vertices, the second uses an existing plane, the third creates a plane normal to one of
the global axes, and the fourth creates a plane normal to the tangent of a curve at a location along
the curve. By default, the commands create the surface just large enough to intersect the
bounding box of the entire model with minimum surface area. Optionally, you can give a list of
bodies to intersect for this calculation. You can also extend the size of the surface by either a
percentage distance or an absolute distance of the minimum area size. The plane can be
previewed with the command Draw Plane [with]... (where the rest of the command is the same as
that to create the surface).

169

Create Planar Surface [With] Plane Vertex <v1_id> [Vertex] <v2_id>
[Vertex] <v3_id> [Intersecting] Body <id_range>] [Extended
Percentage|Absolute <val>]

Create Planar Surface [With] Plane Surface <surface_id> [Intersecting]
Body <id_range>] [Extended Percentage|Absolute <val>]

Create Planar Surface [With] Plane {Xplane|Y plane|Zplane} [Offset <val>]
[Intersecting] Body <id_range>] [Extended Percentage|Absolute <val>]
Create Planar Surface [With] Plane Normal To Curve <curve_id>{Fraction
<f>| Distance <d> | Position <xval><yval><zval> | Close_to vertex
<vertex_id>} [[From] Vertex <vertex_id> (optional for ‘fraction’ &
‘distance’)] [Intersecting] Body <id_range>] [Extended Percentage|Absolute
<val>]

6. Net Surface: Net surfaces can be created with two different commands. A net surface passes
through a set of curves in the u-direction and a set of curves in the v-direction (these u and v
curves would looked like a mapped mesh). The first form of the command uses curves to create
the net surface. The curves must pass within tolerance of each other to work. The second form
uses a mapped mesh to create the surface. The mapped mesh can be of a single surface or a
collection of mapped or submapped surfaces that form a logical rectangle. By default net
surfaces are healed to take advantage of any possible internal simplification.

Create Surface Net U Curve <id_list>V Curve <id_list> [Tolerance <value>]
[HEAL|Noheal]

Create Surface Net [From] [Mapped] Surface <id_list> [Tolerance <value>]
[HEAL|Noheal]

A suggested geometry cleanup method is to use a virtual composite surface to map mesh a set of
complicated surfaces then create a net surface from this mesh. Then the original surfaces can be
removed with the noextend option and the new net surface combined back onto the body.

7. Offset: The following command creates surfaces offset from existing surfaces at the specified
distances.

Create Surface Offset [From] Surface <id_list> Distance <val>

The surface offset command will only translate the existing surfaces, without extending or
trimming them. An alternate form of the command for sheet bodies will maintain connections
between surface by extending or trimming as they are offset, shown in Figure 1. On the left, the
surfaces are offset using the surface offset command. On the left, the surface is created by using
the "sheet™ version of the command.

170

Cubit 15.1 User Documentation

.

-

Figure 1. Offsetting surfaces to form individual surfaces or sheet bodies

8. Skinning: The following command creates a skin surface from a list of curves. An example of
a skin surface is to create a surface through a set of parallel lines.

Create Surface Skin Curve <id_list>

9. Sweeping of Curves: A curve or a set of curves can be swept along a path to create new
surfaces. The path may be specified as an axis and angle, a vector and distance, by indicating
another curve or set of contiguous curves, or by specifying a target plane. The following
commands show the options available:

Sweep Curve <curve_id_range> { Axis <xpoint ypoint zpoint xvector yvector
zvector> | Xaxis | Yaxis | Zaxis } Angle <degrees> [Steps
<Number_of_sweep_steps>] [Draft_angle <degrees>] [Draft_type <integer>]
[Make_solid] [Include_mesh] [Keep][Rigid]

Sweep Curve <curve_id_range> Vector <xvector yvector zvector> [Distance
<distance>] [Draft_angle <degrees>] [Draft_type <integer>] [Include_mesh]
[Keep] [Rigid]

Sweep Curve <curve_id_range> Along Curve <refcurve_id_range>
[Draft_angle <degrees>] [Draft_type <integer>] [Include_mesh] [Keep]
[Rigid]

Sweep Curve <curve_id_range> Target Plane <options>

Sweep Curve <curve_id_range> Target {\VVolume|Body} <id> Direction
{options} [Plane <options>] [Unite]

In the first command, the steps options provides a way of faceting the sweep, so instead of a
smooth round sweep, there are facets to the surface. The make_solid option closes the newly-
created surface to the axis, so that a solid is created instead of a surface.

In the above commands, the include_mesh option will create a surface mesh if the curve is
already meshed (see figure below). The keep option will keep the original curve while creating
the surface.

171

The sweep curve target plane command sweeps a curve until it hits a target plane. The options
for the target plane are described under Specifying a Plane.

The last command sweeps a curve to a target volume or body and can only be used on sheet
bodies. Use the direction keyword to specify the sweep direction and the plane keyword to
specify a stopping plane. The unite keyword will unite the sheet bodies after sweeping

The other options are as follows:

draft_angle: determines how much drafting in of the surface is desired

draft_type:

0 => extended (draws two straight tangent lines from the ends of each segment until they
intersect)

1 =>rounded (create rounded corner between segments)

2 => natural (extends the shapes along their natural curve) ***

rigid: normally the curve will rotate to maintain its original orientation to the sweep path. The
rigid option disallows this rotation.

10. Midsurface: Multisurfaces may be created midway between pairs of surfaces using the
following command:

Create Midsurface {Body|Volume} <id> Surface <id11> <id12> ... <idN1>
<idN2>

where N denotes the number of pairs of surfaces. An even number of surfaces must be specified,
and the command will group them by pairs in the order in which they are provided. The resulting
surface will be trimmed by the specified body or volume <id>. This replaces the Create
Midplane command in previous versions of CUBIT.

172

Cubit 15.1 User Documentation

Figure 2. Multisurface created with the Create Midsurface command

173

Figure 3. Midsurface created from 2 pairs of cylindrical surfaces
Midsufaces can also be extracted without surface pair specification if the resulting surface is a
single sheet of surfaces (no T intersections). The following is the command syntax for automatic
midsurface extraction:

Create Midsurface {Body|Volume} <id_range> Auto [Delete] [Transparent]
[Thickness] [Limit <lower_bound> <upper_bound>] [Preview]

Figure 4 shows a simple auto midsurface example. The command for the example is:
create midsurface volume 1 auto delete

174

Cubit 15.1 User Documentation

Figure 4. Midsurface created from a volume
The command option descriptions are listed below.
Auto enables the automatic mid-surface algorithm. Turning Auto off requires the user to specify
a single surface pair to create a mid-surface.
Transparent shows the successfully midsurfaced volumes as transparent in the graphics display
Thickness applies a 2D property to the created mid-surface geometry.
Limit search range gives the algorithm a range to find surface pairs within.
11. Weld Profile: Surfaces may be created by specifying a weld profile using the following
command:

Create Surface Weld [Root] Location {options} Weld Surface <id_list>
Length <val> [<val2>]

Weld surfaces can be used to create a simulated welded joint by sweeping the surface along the
root curve and uniting the new body to the model. An example of the command is illustrated
below. For a detailed description of the location specifier see Location Direction, and Axis

Specification.
create surface weld root location vertex 25 weld surface 13 14 length 2

175

Weld Surface

Foot Location
""\."'IEI'TE}{ 25 Length 2

Figure 5. Weld Profile surface with length and root specifications
12. Creating A Surface From Mesh Entities: Surfaces may be created from the boundaries of
meshed volumes, surfaces, and/or from individual quadrilateral mesh elements. The individual
option makes it so you can enter multiple surfaces at once, and not have them merged together
into a larger surface, but instead retain their own original boundaries. The optional tolerance
value allows the user to specify a tolerance to which the resulting surface should be fit. The
default value is 0.001. If surface creation fails, increasing the tolerance value can help.

Create Acis [From] {Surface <id_range> | Volume <id_range> | Face <
id_range> [Individual]} [Tolerance <value>]

Figure 6. Acis Surface created from a Set of Quadrilaterals
13. Creating a Circular Surface: This command creates a 2D circular surface. The surface will
be centered at the origin and on the z-plane if a plane option is not specified.

create surface circle radius <value> {xplane]yplane|ZPLANE}

176

Cubit 15.1 User Documentation

This command creates a 2D circular surface by specifying three vertices; the first vertex will be
the center of the surface, the second vertex will be used to define the radius of the surface, and
the third vertex will assist in defining the plane that the surface will lie in.

create surface circle center vertex <vl id> <v2_id> <v3_id>
This command creates a 2D circular surface by forming a circular curve through three points.

create surface circle vertex <vl_id> <v2_id> <v3 id>

14. Creating a Parallelogram: This command creates a 2D parallelogram surface, centered at
the origin, by specifying three corner vertices. These vertices will form three consecutive
corners of the parallelogram surface.

create surface parallelogram vertex <vl id> v2 <id> <v3_id>
15. Creating an Ellipse: This command creates a 2D elliptical surface, centered at the origin, by
specifying at least a major radius. On an x-y plane this radius will be the radius along the x-
direction. The minor radius will be the radius along the y-direction. By default, the surface will
lie in the z-plane.
Create Surface Ellipse major radius <value> [minor radius <value>]
[xplanelyplane|ZPLANE]
This command creates a 2D elliptical surface using three vertices. The first two vertices define
the major and minor radii of the ellipse surface. The third point defines the center of the
ellipse. It is important to note that a line from v1_id to v3_id must be orthogonal to a line from
v2_id to v3_id, otherwise the command will fail.
Create Surface Ellipse vertex <v1_id> <v2_id> <v3_id>
16. Creating a Rectangle: This command creates a rectangular surface centered at the origin. If
only a width value is specified, the surface will be a square. On an x-y plane, the width value is
the x-direction and the height is the y-direction. By default, the surface will lie in the z-plane.
Create Surface rectangle width <value> [height <value>] [xplane|yplane|ZPLANE]

Creating Vertices
The basic commands available for creating new vertices directly in CUBIT are:

e XYZ location

e On Curve - Fraction
e On Curve - General
e From Vertex

e AtArc

o At Intersection

1. XYZ location: The simplest form of this command is to specify the XYZ location of the
vertex. It can also be created lying on a curve or surface in the geometric model by specifying
the curve or surface id; the position of the vertex will be the point on the specified entity which is
closest to the position specified on the command. With all of these commands, the user is able to
specify the color of the vertex.

Create Vertex <x><y><z> [On [Curve | Surface] <id>] [Color <color_name>]

177

2. On Curve - Fraction: A vertex can be positioned a certain fraction of the arc length along a
curve using the second form of the command.

Create Vertex On Curve <id> Fraction <0.0 to 1.0> [Color <color_name>]
Vertex 3 in the following example was created with this command:
create vertex on curve 1 fraction 0.25 from vertex 1

Figure 1. Create Vertex a Fraction of the length of a Curve
3. On Curve - General: A more general purpose form of the command is also available for
creating vertices on curves:

Create Vertex On Curve <id_list> { MIDPOINT | Start | End | Fraction <val
0.0 to 1.0> [From Vertex <id> | Start|End] | Distance <val> [From
{Vertex|Curve|Surface} <id> | Start|End] | {{Close_To|At} Location {options}
| Position <xval><yval><zval>|{Node|Vertex} <id>} | Extrema [Direction]
{options} [Direction {options}] [Direction {options}] | Segment <num_segs> |
Crossing {Curve|Surface} <id_list> [Bounded|Near] } [Color <color_name>]

It allows the vertex to be created at a fractional distance along the curve, at an actual distance
from one of the curves ends, at the closest location to an xyz position or another vertex, or at a
specified distance from a vertex, curve or surface. You can also preview the location first with
the command Draw Location On Curve (where the rest of the command is identical to the Create
Vertex form).

4. From Vertex: Create a vertex from an existing vertex.

Create Vertex from Vertex <id_list> [On {Curve|Surface} <id>] [Color
<color_name>]

If 'on curvelsurface’ option is used, the vertex is positioned on that curve or surface. When the 'on
curvelsurface' is not used, the new vertex is positioned on the existing vertex.
5. At Arc: Another form simply creates vertices at arc or circle centers.

Create Vertex Center Curve <id_list> [Color <color_name>]

6: At Intersection: The last form creates vertices at the intersection of two curves. If the
bounded qualifier is used, the vertices are limited to lie on the curves, otherwise the extensions of
the curves are also used to calculate the intersections. The near option is only valid for straight
lines, where the closest point on each curve is created if they do not actually intersect (resulting
in two new vertices).

Create Vertex Atlntersection Curve <id1> <id2> [Bounded] [Near] [Color
<color_name>]

178

Cubit 15.1 User Documentation

Transforms
Geometry Transforms

o Align

« Copy

o Move
o Scale

o Rotate
o Reflect

Bodies can be modified in CUBIT using transform operations, which include align, copy, move,
reflect, restore, rotate, and scale. With the exception of the copy operation, transform operations
in CUBIT do not create new topology, rather they modify the geometry of the specified

bodies. ACIS, Mesh Based Geometry and Virtual Geometry representations may be transformed.
If the geometric entity has been meshed, the nodes of the mesh will be transformed along with
the geometry. To transform the nodes of a mesh as they are written to the Exodus Il mesh file
without modifying their location within CUBIT, see Transforming Mesh Coordinates.

Align Command

The align command is a combination of the rotate and move commands.

The first align command below will transform the specified volumes by computing a
transformation that would align the first surface with the second surface such that the surface
centroids are coincident and the normals are pointing either in the same or opposite direction
(depending on their initial alignment). The first surface need not be in the specified volumes.
The second form of the align command either aligns a face of a volume or two vertices (forming
a direction) with the xy, yz, and xz planes or the X, y, and z axes. If the [reverse] option is
specified, the resulting alignment is flipped 180 degrees.

The third form of the command is a rotational alignment, where the specified entities are rotated
about the specified axis, where the angle of rotation is the angle between the first and second
locations with respect to the axis.

The syntax of the align commands are:

Align Volume <id_range> Surface <surface_id> with Surface <surface_id>
[reverse] [include_merged] [preview]

Align Volume <id_range> {Surface <surface_id>| Vertex <vertex_id>}
{X|Y|Z Axis}H{XY|XZ|YZ plane}} [reverse] [include_merged] [preview]
Align Volume <id_range> Location {options} with Location {options} about
Axis {options} [include_merged] [preview]

This transformation is useful for aligning surfaces in preparation for geometry decomposition
and aligning models for axis-symmetric analysis. If the [include_merged] option is used, all
entities that are merged with the specified volume will be included in the align transformation
also.

Copy Command

The copy command copies an existing entity to a new entity without modifying the existing
entity. A copy can be made of several entities at once, and the resulting new entities can be
translated or rotated at the same time. The commands for copying entities are:

179

Vertex <range> Copy [Move [X <dx>] [Y <dy>] [Z <dz>]] [Preview]

Vertex <range> Copy [Move <direction_options> [Distance <val>]] [Preview]
{Body|Volume|Surface|Curve|Vertex|Group} <range> Copy Move [X <dx>]
[Y <dy>] [Z <dz>] [Nomesh] [Repeat <value>] [Preview]
{Body|Volume|Surface|Curve|Vertex|Group} <range> Copy Move

<direction _options> [Distance <val>] [Nomesh] [Repeat <value>] [Preview]
{Body|Volume|Surface|Curve|Vertex|Group} <range> Copy Reflect {X|Y|Z}
[Nomesh] [Preview]

{Body|Volume|Surface|Curve|Vertex|Group} <range> Copy Reflect [Vertex
<vl id> [Vertex] <v2_id] [Nomesh] [Preview]

{Body|Volume|Surface|Curve} <range> Copy Reflect <x> <y> <z>[Nomesh]
[Preview]

{Body|Volume|Surface|Curve} <range> Copy Rotate <angle> About {X|Y|Z}
[Repeat <value>] [Nomesh] [Preview]

{Body|Volume|Surface|Curve} <range> Copy Rotate <angle> About <x> <y>
<z> [Nomesh] [Repeat <value>] [Repeat <value>] [Preview]
{Body|Volume|Surface|Curve} <range> Copy Scale <scale> | X <val>Y <val>
Z <val> [About Vertex <id>] [Nomesh] [Repeat <value>] [Preview]

If the copy command is used to generate new entities, a copy of the original mesh generated in
the original entity will also be copied directly onto the new entity unless the nomesh option is
used.

Several of the commands include the Repeat token. If that token is used the command will
repeat itself value times.

This is currently limited to copies that do not interact with adjacent geometry through non-
manifold topology. For details on mesh copies, see the Mesh Duplication documentation.

Move Command
The move command moves a body, volume, free surface, free curve or free vertex by a specified
offset. The command syntax is:

Vertex <id_range> [Move [X <dx>] [Y <dy>] [Z <dz>]] [Copy] [Preview]
Vertex <id_range> Move <direction _options< [Distance <val>] [Copy]
[Preview]

{Body|Volume|Surface|Curve|Vertex|Group} <id_range> [Move [X <dx>] [Y
<dy>] [Z <dz>]] [Copy [Nomesh]] [Preview]
{Body|Volume|Surface|Curve|Vertex|Group} <id_range> Move

<direction _options> [Distance <val>] [Copy [Nomesh]] [Preview]

where <dx> <dy> <dz> and <distance> represent relative offsets in the major axis directions. If
the copy option is specified, a copy is made and the copy is moved by the specified offset. The
nomesh option will copy and move only the geometry.

These forms of the Move command will only work on free surfaces and free curves. To move a
curve or surface that is part of a higher-order entity, the Move {entity} ... command is used.
Moving Other Geometric Entities

It is also possible to move bodies by specifying one of its child entities. For example, a body can
by moved by specifying one of its curves. However, if a lower-order entity is moved, the parent
body and all related entities will also be moved. The commands for moving bodies using a child

180

Cubit 15.1 User Documentation

entity are given below. Alternatively, the tweak command can be used to move curves and
surfaces without moving the parent body.

Move {Vertex|Curve|Surface|Volume|Body|Group} <id_range> [Midpoint]
Location <x> [<y> [<z>]] [Include_Merged] [Preview]

Move {Vertex|Curve|Surface|Volume|Body|Group} <id_range> Location
[Midpoint] [X <val>] [Y <val>] [Z <val>] [Except [X] [Y] [Z]]
[Include_Merged] [Preview]

Move {Vertex|Curve|Surface|Volume|Body|Group} <id_range> Normal to
Surface <id> Distance <val> [Include_Merged] [Preview]

Move {Vertex|Curve|Surface|Volume|Body|Group} <id_range> [Midpoint]
General Location <location _options> [Except [X] [Y] [Z]] [Include_Merged]
[Preview]

The first form of the command will move the entity to an absolute location. If moving a group,
the centroid of the group is moved to that location. The second form will move the entity by a
relative distance in any of the xyz axis directions. "Except" is used to preserve the X, y, or z plane
in which the center of the entity lies. The third form of the command will move the body along
an axis defined by the outward-facing surface normal of another surface. The fourth form of the
command uses general location parsing to move the entity.

Moving Bodies Relative to Other Geometric Entities

It is also possible to move bodies relative to other geometric entities in the model. The following
command takes as arguments two geometric entities. The first entity is the one to move. The
second entity is where it will be moved. In both cases, the midpoints of the specified entity are
used to determine the distance and direction of the move. In the case of groups, centroids are
used. "Except" is used to preserve the X, y, or z plane in which the center of the entity lies.

Move {Vertex|Curve|Surface|Volume|Body|Group} <id_range> [Midpoint]
Location {Vertex|Curve|Surface|Volume|Body|Group} <id> [Midpoint]
[Except [X] [Y] [Z]] [Include_Merged] [Preview]

Moving Merged Entities

The easiest way to move merged entities is by adding the include_merged keyword to the
command. All entities that are merged with the specified entities will move together.

The only other way that merged entities can be moved is by including each of the merged entities
in the entity list.

Move Undo

The Undo option allows a user to reverse the most recent move. This command will only work
for the Move {entity} commands, and not the {Entity} Move commands. The syntax is:

Move Undo

Reflect Command
The reflect command mirrors the body about a plane normal to the vector supplied. The reflect
command will destroy the existing body and replace it with the new reflected body, unless the
copy option is used.

{Body|Volume|Surface|Curve|Vertex|Group} <range> [Copy] Reflect <x-
comp> <y-comp> <z-comp>

181

{Body|Volume|Surface|Curve|Vertex|Group} <range> [Copy] Reflect
{XIy|z}

Rotate Command

The rotate command rotates a body about a given axis without adding any new geometry. If the

Angle or any Components are not specified they are defaulted to be zero. The commands to
rotate a body or bodies are:

Body <range> [Copy] Rotate <angle> About {X|Y|Z} [Preview]

Body <range> [Copy] Rotate <angle> About <x-comp> <y-comp> <z-comp>
[Preview]

Rotate {Body|Volume|Surface|Curve|Vertex|Group} <id_range> about
{X|Y|Z|<xval> <yval> <zval>} Angle <val> [Include_Merged] [Preview]
Rotate {Body|Volume|Surface|Curve|Vertex|Group} <id_range> About
Vertex <id> Vertex <id> Angle <val> [Include_Merged] [Preview]

Rotate {Body|Volume|Surface|Curve|Vertex|Group} <id_range> About
Normal of Surface <id> Angle <val> [Include_Merged] [Preview]

Rotate {Body|Volume|Surface|Curve|Vertex|Group} <id_range> About
Origin <xval> <yval> <zval> Direction <xval> <yval> <zval> Angle <val>
[Include_Merged] [Preview]

If the copy option is specified, a copy is made and rotated the specified amount.

Rotating Merged Entities

The easiest way to rotate merged entities is by adding the include_merged keyword to the
command. All entities that are merged with the specified entities will rotate together.

The only other way that merged entities can be rotated is by including each of the merged
entities in the entity list.

Scale Command

The scale command resizes an entity (body, volume, surface, or curve) by a scaling factor. The

scaling factor may be a constant, or may differ in the x, y, and z directions. The entity chosen

will be scaled about the point or vertex indicated. If no point or vertex is entered, it will be scaled
about the origin. Any mesh on the object will be scaled too, unless the nomesh keyword is used.

The command to scale entities is:

{Body|Volume|Surface|Curve} <id_range> Scale {<scale> | x <val>y <val> z
<val>} [About {<x> <y> <z> | Vertex <id>}] [Nomesh] [Copy [Repeat
<value>] [Group_Results]] [Preview]

If the copy option is specified, a copy of the entity is made and scaled the specified amount. Use

the repeat option to create multiple copies.

Booleans
Geometry Booleans

o Intersect
e Subtract

182

Cubit 15.1 User Documentation

¢ Unite

CUBIT supports boolean operations of intersect, subtract, and unite for bodies.
An automatic function associated with webcutting operations is regularizing geometry which can
be turned off or back on with the following command:

Set Boolean Regularize [ON | off]

Intersect

The intersect command generates a new body composed of the space that is shared by the two
bodies being intersected. Both of the original bodies will be deleted and the new body will be
given the next highest body ID available. The command is:

Intersect {Volume|[Body]} <range> [With {VVolume|[Body]} <range>] [Keep]
[Preview]

The keep option results in the original bodies used in the intersect being kept.

If the Preview option is included in the command, the input bodies will not be modified. The
computed intersection volume will be drawn as a red, shaded solid. For best results change the
graphics mode to transparent or hidden line so the intersection is visible. Otherwise the
intersection volume will be hidden by the volumes being intersected.

Subtract

The subtract operation subtracts one body or set of bodies from another body or set of bodies.
The order of subtraction is significant - the body or bodies specified before the From keyword
is/are subtracted from bodies specified after From. The new body retains the original body's id.
If any additional bodies are created, they will be given the next highest available ids. The keep
option simply retains all of the original bodies. The command is:

Subtract [Volume|BODY] <range> From [Volume|BODY] <range>
[Imprint] [Keep]

The imprint option imprints the subtracted bodies onto the resultant body.

Unite

The unite operation combines two or more bodies into a single body. The original bodies are
deleted and the new body is given the next highest body ID available, unless the keep option is
used. The commands are:

Unite [Volume|BODY] <range> [With [Volume|BODY] <range>] [Keep]
Unite Body {<range> | All} [Keep]
Unite Body {<range> | All} [Include_mesh]

The second form of the command unites multiple bodies in a single operation. If the all option is
used, all bodies in the model are united into a single body. If the bodies that are united do not
overlap or touch, the two bodies are combined into a single body with multiple volumes.

The unite command allows sheet bodies to be united with solid bodies. To disable this capability
you can turn the following setting off:

Set Unite Mixed {ON|Off}

183

Decomposition

Geometry Decomposition

Geometry decomposition is often required to generate an all-hexahedral mesh for three-
dimensional solids, as fully automatic all-hex mesh generation of arbitrary solids is not yet
possible in CUBIT. While geometry booleans can be used for decomposition (and are the basis
of the underlying implementation of advanced decomposition tools described here), CUBIT has
a webcut capability specially tuned for decomposition. It is also useful to split periodic surfaces
to facilitate quad and hex meshing.

e Web Cutting

o Splitting Geometry

e Section Command

e Separating Multi-Volume Bodies
o Separating Surfaces From Bodies

Web Cutting

Web Cutting

The term "web cutting" refers to the act of cutting an existing body or bodies, referred to as the
"blank™, into two or more pieces through the use of some form of cutting tool, or "tool”. The two
primary types of cutting tools available in CUBIT are surfaces (either pre-existing surfaces in the
model or infinite or semi-infinite surfaces defined for web cutting), or pre-existing bodies.

The various forms of the web cut command can be classified by the type of tool used for cutting.
These forms are described below, starting with the simplest type of tool and progressing to more
complex types.

e Web Cutting Using the Chop Command

o Web Cutting Using Planar or Cylindrical Surface
o Web Cutting with Arbitrary Surface

o Web Cutting Using Tool or Sheet Body

o Web Cutting by Sweeping Curves or Surfaces

e Web Cutting Options

General Notes

The primary purpose of web cutting is to make an existing model meshable with the hex meshing
algorithms available in CUBIT. While web cutting can also be used to build the initial geometric
model, the implementation and command interface to web cutting have been designed to serve
its primary purpose. Several important things to remember about web cutting are as follows:

o The geometric model should be checked for integrity (using imprinting and merging)
before starting the decomposition process. This makes the checking process easier, since
there are fewer bodies and surfaces to check. Once the model passes that initial integrity
check, it is rare that decompositions using web cut will result in a model that does not
also pass the same checks.

e The use of the Imprint option can in cases save execution time, since it limits the scope of
the imprint operations and thereby works faster. The alternative is performing and

184

Cubit 15.1 User Documentation

Imprint All on the pieces of the model after all decompositions have been completed; this
operation has been made much faster in more current releases of CUBIT, but will still
take a noticeable amount of time for complicated models.

e While the web cut commands make it very simple to cut your model into very many
pieces, we recommend that the user restrict the decomposition they perform to only that
necessary for meshability or for obtaining an acceptable mesh. Having more volumes in
the model may simplify individual volumes, but may not always result in a higher quality
mesh; it will always increase the run time and complexity of the meshing task.

e When the web cut command is executed the associated geometry will be regularized.
This behavior can be changed, see geometry booleans.

e Web cutting volumes will automatically separate parent bodies as well. This behavior can
also be changed, see Separating Multi-Volume Bodies.

o If a geometric entity got split after the webcut operation, then the notesets/sidesets/blocks
applied on that initial geometric entity will be carried over to the split entities.

The Decomposition Tutorials and the Power Tools Tutorial contain some examples that
demonstrate the use of web cutting operations.

Web Cutting with an Arbitrary Surface
An arbitrary "sheet" surface can also be used to web cut a body. This sheet need not be planar,
and can be bounded or infinite. The following commands are used:

Webcut {blank} with sheet {body|surface} <id> [webcut options]
Webcut {blank} with sheet extended [from] surface <id> [webcut _options]

In its first form, the command uses a sheet body, either one that is pre-existing or one formed
from a specified surface. Note that in this latter case the (bounded) surface should completely cut
the body into two pieces. Sheet bodies can be formed from a single surface, but can also be the
combination of many surfaces; this form of web cut can be used with quite complicated cutting
surfaces.

Extended sheet surfaces can also be used; in this case, the specified surface will be extended in
all directions possible. Note that some spline surfaces are limited in extent, and so these surfaces
may or may not completely cut the blank.

Chop Command

The chop command works similarly to a web cut command, but is faster. Given two bodies, the
command will find the intersection of the two bodies, and divide the main body into a body that
lies outside the intersection, and a body that lies inside the intersection. The tool body will be
deleted, unless the keep option is specified. The syntax of the command is:

Chop [Volume|BODY] <id> with [Volume|BODY] <id> [keep] [nonreg]
The nonreg option results in the bodies being non-reqularized.

Web Cutting with a Planar or Cylindrical Surface
The commands used to web cut with a planar or cylindrical surface in CUBIT are:

e Coordinate Plane
e Planar Surface

185

e Plane from 3 Points

o Plane Normal to Curve

o General Plane Specification
e Cylindrical Surface

o Cone Surface

Coordinate Plane

In the command's simplest form, a coordinate plane can be used to cut the model, and can
optionally be offset a positive or negative distance from its position at the origin.

Webcut {Volume|Body|Group} <id_range> [With] Plane
{xplane|yplane|zplane} [Offset <val>] [rotate <theta> about x|y|z <xval>
<yval> <zval> [center <xval> <yval> <zval>]] webcut _options

The cutting plane can be rotated about a user-specified axis using the rotate option. The center
of rotation can be moved by using the center option.

Planar Surface

An existing planar surface can also be used to cut the model; in this case, the surface is identified
by its ID as the cutting tool.

Webcut {VVolume|Body|Group} <id_range> [With] Plane Surface
<surface_id> webcut _options

Plane from 3 Points

Any arbitrary planar surface can be used by specifying three vertices that define the plane, and
can optionally be offset a positive or negative distance from this plane.

Webcut {Volume|Body|Group} <id_range> [With] Plane Vertex <vertex_ 1>
[Vertex] <vertex_ 2> [Vertex] <vertex_3> [Offset <value>] webcut options

The plane to be used for the web cut can be previewed with the preview option in the general
webcut options.

Plane Normal to Curve

The next command allows a user to specify an infinite cutting plane by specifying a location on a
curve. The cutting plane is created such that it is normal to the curve tangent at the specified
location.

Webcut {Volume|Body|Group} <id_range> [With] Plane Normal To Curve
<curve_id>

{Position <xval><yval><zval> | Close_To Vertex

<vertex_id>} webcut_options

Webcut {VVolume|Body|Group} <id_range> [With] Plane Normal To Curve
<curve_id>

{Fraction <f> | Distance <d>} [[From] Vertex <vertex_id>] webcut _options

The position on the curve can be specified as:

186

Cubit 15.1 User Documentation

1. A fraction along the curve from the start of the curve, or optionally, from a specified
vertex on the curve.

2. A distance along the curve from the start of the curve, or optionally, from a specified
vertex on the curve.

3. An xyz position that is moved to the closest point on the given curve.

4. The position of a vertex that is moved to the closest point on the given curve.

The point on the curve can be previewed with the Draw Location On Curve command and the
plane to be used for the web cut can be previewed with the preview option in the general webcut
options.

General Plane Specification
A webcut plane can be defined using the general plane specification options in the Specifying a
Plane section of the documentation.

Webcut {Volume|Body|Group} <id_range> [With] General Plane
{options} webcut_options

Cylindrical Surface

Finally, a semi-infinite cylindrical surface can be used by specifying the cylinder radius, and the
cylinder axis. The axis is specified as a line corresponding to a coordinate axis, the normal to a
specified surface, two arbitrary points, or an arbitrary point and the origin. The "center"” point
through which the cylinder axis passes can also be specified.

Webcut {Volume|Body|Group} <range> [With] Cylinder Radius <val> Axis
{xly|z|normal of surface <id>| vertex <id_1> vertex <id_2>| <x_val> <y val>
<z_val>>} [center <x_val> <y val> <z_val>] webcut_options

Cone Surface

A semi-infinite cone surface can be used by specifying the cone outer radius, and the cone inner
radius. The axis is specified as a location first of where the outer radius is applied and the second
location of where the inner radius is applied.
Webcut {Volume|Body|Group} <ids> [With] cone radius <val> <val> location
{options} location {options} [Imprint] [Merge] [group_results] [preview]

Web Cutting by Sweeping Curves or Surfaces
Webcutting with sweeping creates a swept tool body in the same step as the web cut operation.
There are 4 general ways to web cut with sweeping:

« Web Cutting by Sweeping a Surface Along a Trajectory
e Web Cutting by Sweeping a Surface About an Axis

o Web Cutting by Sweeping a Curve(s) Along a Trajectory
o Web Cutting by Sweeping a Curve(s) About an Axis

Web Cutting by Sweeping a Surface Along a Trajectory

187

This command allows one or more surfaces to be swept, creating a volume that is used for the
web cut. If more than one surface is specified, the surfaces must contain coincident curves. The
surfaces are swept along a direction and some distance or perpendicular and some distance or
along a curve. For best results the curve to sweep the surface along should intersect one of the
surfaces. The through_all option will sweep the surfaces along the trajectory far enough so as to
intersect all input bodies. The stop surface <id> option is used to identify a surface at which the
sweep will stop. If using this option when sweeping along a curve, the sweep will stop at the first
place possible. The up_to_next option indicates that the user wants to web cut with only the first
water tight volume that forms as a result of the intersection between sweep and union of all blank

bodies. The [Outward|Inward] options specify a sweeping direction that is either INTO the
volume or OUT from the volume.

Webcut {Volume|Body|Group} <range> Sweep Surface <id_range> {Vector
<x> <y> <z> [Distance <distance>] | Along Curve <id>} [Through_all | Stop
Surface <id> | Up_to_next] [webcut _options]

Webcut {VVolume|Body|Group} <id> Sweep Surface <id_range>
Perpendicular {Distance <distance> | Through_all | Stop Surface <id>}
[OUTWARD|Inward] [webcut options]

sweeping a surface in a direction resultant web cut

along a curve to a stop surface resultant web cut
Figure 1. Examples of web cutting with swept surfaces

Web Cutting by Sweeping a Surface About an Axis

188

Cubit 15.1 User Documentation

This command allows a one or more surfaces to be swept, creating a volume that is used for the
web cut. If more than one surface is specified, the surfaces must contain coincident curves. The
surface is swept about a user-defined axis or about one of the x y z coordinate axes and a
specified angle. The stop surface <id> option is used to identify a surface at which the sweep
will stop. The up_to_next option indicates that the user wants to web cut with only the first
water tight volume that forms as a result of the intersection between sweep and union of all blank
bodies. For these 2 options to work correctly the user must specify an angle large enough for the
rotation to traverse the stop surface or the up_to_next surface.

Webcut {VVolume|Body|Group} <id> Sweep Surface <id_range> {Axis
<xpoint ypoint zpoint xvector yvector zvector> | Xaxis | Yaxis | Zaxis } Angle
<degrees> [Stop Surface <id> | Up_to_next] [webcut options]

Web Cutting by Sweeping a Curve(s) Along a Trajectory

This command allows a curve(s) to be swept, creating a surface that is used for the web cut. If
multiple curves are specified, they must share vertices and form a continuous path. The curve(s)
is swept along a direction and some distance or along another curve. If sweeping a curve(s) along
another curve, for best results the curve(s)-to-swept and the curve to sweep along should
intersect at some point. The stop surface <id> option is used to identify a surface at which the
sweep will stop. If using this option when sweeping along a curve, the sweep will stop at the first
place possible. The through_all option will sweep the curve(s) along the trajectory far enough
so as to intersect all input bodies. For the web cut to be successful, the swept curve(s) must
completely traverse a portion of a blank body(s), cutting off a complete piece of the blank
body(s). Option through_all should not be used when defining the web cut with a vector and a
distance or along a curve.

Webcut {VVolume|Body|Group} <id> Sweep Curve <id_range> {Vector <x>
<y> <z> [Distance <distance>| Along curve <id>] } [Through_all | Stop
Surface <id>] [webcut _options]

Web Cutting by Sweeping a Curve(s) About an Axis

This command allows a curve to be swept, creating a surface that is used for the web cut. If
multiple curves are specified, they must share vertices and form a continuous path. The curve(s)
is swept about a user-defined axis or about one of the X y z coordinate axes and a specified angle.
For the web cut to be successful, the swept curve(s) must completely traverse a portion of a
blank body(s), cutting off a complete piece of the blank body(s). The stop surface <id> option is
used to identify a surface at which the sweep will stop. For this option to work correctly the user
must specify an angle large enough for the rotation to traverse the stop surface.

Webcut {VVolume|Body|Group} <id> Sweep Curve <id_range> {Axis <xpoint
ypoint zpoint xvector yvector zvector> | Xaxis | Yaxis | Zaxis } Angle
<degrees> [Stop Surface <id>] [webcut _options]

Web Cutting using a Tool or Sheet Body
Any existing body in the geometric model can be used to cut other bodies; the command to do
this is:

Webcut {blank} tool [body] <id> [webcut options]

189

This simply uses the specified tool body in a set of boolean operations to split the blank into two
or more pieces.

Another form of the command cuts the body list with a temporary sheet body formed from the
curve loop. This is the same sheet as would be created from the command Create Surface Curve
<id_list>.

Webcut {Body|Group} <id_range> [With] Loop [Curve] <id_range>
NOIMPRINT|Imprint] [NOMERGE|Merge] [group_results]

Webcut {Volume|Body|Group} <id_range> [With] Bounding Box
{Body|Volume|Surface|Curve|Vertex <id_range>} [Tight] [[Extended]
{Percentage|Absolute} <val>] [{X|Width} <val>] [{Y|Height} <val>]
[{Z|Depth} <val>]] NOIMPRINT|Imprint] [NOMERGE|Merge]
[group_results]

The final form of this command cuts a body with the bounding box of another entity. This
bounding box may be tight or extended.

Figure 1. Cylinder cut with bounding box of prism.

Web Cutting Options

The following options can be used with all web cut commands:

[NOIMPRINT|Imprint [include_neighbors]]: In its default implementation, web cutting
results in the pieces not being imprinted on one another; this option forces the code to imprint the
pieces after web cutting. The include_neighbors option will also imprint adjacent bodies.
[NOMERGE|Merge]: By default, the pieces resulting from an imprint are manifold; specifying
this option results in a merge check for all surfaces in the pieces resulting from the web cut.
[Group_results]: The various pieces resulting from the previous command are placed into a
group named “webcut_group".

[Preview]: This option will preview the web cutting plane without executing the command.

Splitting Geometry

Splitting Geometry

The Split command divides curves or surfaces into multiple entities. The command results are
similar to imprinting. However, vertex and/or curve creation is not necessary for the split
command.

190

Cubit 15.1 User Documentation

e Split Curve

e Split Surface
o Split Periodic Surfaces

Split Curve
The Split Curve command will split a curve without the need for geometry creation
(unlike imprinting). The syntax is shown below.

Split Curve <id> [location on curve options] [Merge] [Preview]

To split a curve, simply specify a location or a location on curve (see location specification).
Using the Preview keyword will draw the splitting location on the curve. The Merge keyword
will merge any topology that contains the newly created vertex.

Split Periodic Surfaces

Solids which contain periodic surfaces include cylinders, torii and spheres. Splitting periodic
surfaces can in some cases simplify meshing, and will result in curves and surfaces being added
to the volume. The command used to split periodic surfaces is:

Split Periodic Body <id_range|all>
This command splits all periodic surfaces in a body or bodies.

Split Surface

The Split Surface command divides one or more surfaces into multiple surfaces. The command
results are similar to imprint with curve. However, curve creation is not necessary for splitting
surfaces. Three primary forms of the command are available.

e Split Across
e Split Extend
o Split (Automatically)

e Split Skew

The first form splits a single surface using locations while the second splits by extending a
surface hard-line until it hits a surface boundary. The split automatic splits either a single surface
or a chain of surfaces in an automatic fashion.

Split Across
Two forms of Split Across are available:

Split Surface <id> Across [Pair] Location <options multiple locs> [Preview
[Create]]

Split Surface <id> Across Location <multiple locs> Onto Curve <id>
[Preview] Create]]

This command splits a surface with a spline projection through multiple locations on the surface.
See Location, Direction, and Axis Specification for a detailed description of the location
specifier. Figure 1 shows a simple example of splitting a single surface into two surfaces. A
temporary spline was created through the three specified locations (Vertex 5 6 7), and this curve
was used to split the surface.

191

split surface 1 across location vertex 56 7
Vertex 7

Vertex 6
Surface 1 u Surface 2 Surface 3

Wertex 5
-

Figure 1 - Splitting Across with Multiple Locations
The Pair keyword will pair locations to create multiple surface splitting curves (each defined
with two locations). An even number of input locations is required. Figure 2 shows an example:

split surface 1 across pair vertex57 6 8

YVertex T Vertex 8
- — = o

Surface 1 |:> Surface 2| Surface 3 | Surface 4

YWerfex S Verlex B
L g . L L

Figure 2 - Splitting Across with Pair Option
The Preview keyword will show a graphics preview of the splitting curve. If the Create
keyword is also specified, a free curve (or curves) will be created - these are the internal curves
that are used to imprint the surfaces.
The Onto Curve format of the command takes one or more locations on one side of the surface
and projects them onto a single curve on the other side of the surface. Figure 3 shows an
example:

split surface 1 across vertex 5 6 onto curve 4

Verfex &5 Vertex 6
= = L 5

Surface 1 |:> Surface 2 | Surface 3 | Surface 4

Curve 4

- -
Figure 3 - Splitting Across with Onto Curve

Split Extend

192

Cubit 15.1 User Documentation

The Split Extend function can be called with the following command:
Split Surface <id_list> Extend [Vertex <id_list> | AUTO] [Preview [Create]]
With the following settings:

Set Split Surface Extend Normal {on|OFF}
Set Split Surface Extend Gap Threshold <val>
Set Split Surface Extend Tolerance<val>

This command splits a surface by extending a surface hard-line until it hits a surface boundary.
Figure 4 shows a simple example of extending a curve. The hard-line curve was extended from
the specified vertex until it hit the surface boundary.

split surface 1 extend vertex 2

Surface 1 Surface 1
—
Veartex 1 Vertex 2 Vartex 1 Vertex 2

Figure 4 - Splitting by Extending Hard-line
The auto keyword will search for all hard-lines and extend them according to the Split Surface
Extend settings. Figure 5 shows an example:
split surface 1 extend auto

Surface 1 Surface 2
/_ﬂ_,,—f""
Vertex 1 Vertex 2 : 1 Vertex 2
Vertex 1
Surface 3

Figure 5 - Splitting by Extending with Auto Option
The preview keyword will show a graphics preview of the splitting curve. If the create keyword
is also specified, a free curve (or curves) will be created - these are the internal curves that are
used to imprint the surfaces.
The normal setting can be turned on or off. When it is on, Cubit will attempt to extend the hard-
line so that it is normal to the curve it will intersect. An example of this is in Figure 6:
set split surface normal on
split surface 1 extend vertex 2

193

Surface 1 Surface 1

. B

Vertex 1 Vertex 2 Vertex 1 Vertex 2

Figure 6 - Splitting by Extending a Hard Line with Normal Setting ON
Cubit uses the gap threshold to decide whether or not to extend a hard-line when the user
specifies auto. If the distance between a vertex on a hard-line and the curve it will hit is greater
than the gap threshold, then Cubit will not extend that hard-line. The default value is INFINITY,
and can be set to any value. To reset the value back to INFINITY, set the gap threshold to -
1.0. Note: This setting only applies when using the keyword auto. An example of using the
gap threshold is shown in Figure 7:

set split surface gap threshold 2.0
split surface 1 extend auto

!

T Vertex2 |© o Vertex2 | O

< Vertex 1 % g Vertex 1 =

O RS) ﬁ
Surface 1 Surface 1

Vertex 1is = 2.0 from Curve 1
Wartex 2 is < 2.0 from Curve 2
Figure 7 - Extending Hard-lines with Gap Threshold = 2.0.
(Notice Vertex 1 was not extended because it exceeded the gap threshold)
The tolerance setting can be used to avoid creating short curves on the surface boundary. If
Cubit tries to extend a hard-line that comes within tolerance of a vertex, it will instead snap the
extension to the existing vertex. An example of this is shown in Figure 8:

set split surface tolerance 1.0
split surface 1 extend vertex 2

194

Cubit 15.1 User Documentation

Vertex 3 Vertex 3
A Projected =
.// intersection —
Vertex 1 Vertex 2 Is 0.8 from Vertex 1 Vertex 2
Verex 3
Surface 1 :> Surface 1

Figure 8 - Extending Hard-lines with Tolerance
(Notice the extension snapped to Vertex 3)

Split (Automatically)

This form of the command splits a single surface or a chain of surfaces in an automatic
fashion. It is most convenient for splitting a fillet or set of fillets down the middle - oftentimes
necessary to prepare for mesh sweeping. These surfaces cannot have multiple curve loops.

Split Surface <id_list> [Corner Vertex <id_list>] [Direction Curve <id>]
[Segment|Fraction|Distance <val> [From Curve <id>]] [Through Vertex
<id_list>] [Parametric <on|OFF>] [Tolerance <val>] [Preview [Create]]

e Logical Rectangle

o Split Orientation

o Corner Vertex <id_list>

« Direction Curve <id>

o Segment|Fraction|Distance <val> [From Curve <id>]
e Through Vertex <id_list>

o Parametric <on|OFF>

e Tolerance <val>

e Preview [Create]

o Settings (Tolerance, Parametric, Triangle)

The volume shown in Figure 9 was quickly prepared for sweeping by splitting the fillets and

specifying sweep sources as shown (with the sweep target underneath the volume). The surface
splits are shown in blue.

195

Surface Split Source Surfaces

66

Figure 9 - Splitting Fillets to Facilitate Sweeping
Each surface is always split with a single curve along the length of the surface (or multiple single
curves if the Segment option is used). The splitting curve will either be a spline, arc or straight
line.
Logical Rectangle
The Split Surface command analyzes the selected surface or surface chain to find a logical
rectangle, containing four logical sides and four logical corners; each side can be composed of
zero, one or multiple curves. If a single surface is selected (with no options), the logical corners
will be those closest to 90 and oriented such that the surface will be split parallel to the longest
aspect ratio of the surface. If a chain of surfaces is selected, the logical corners will include the
two corners closest to 90 on the starting surface of the chain and the two corners closest to 90 on
the ending surface of the chain (the split will always occur along the chain).
In Figure 10, the logical corners selected by the algorithm are Vertices 1-2-5-6. Between these
corner vertices the logical sides are defined; these sides are described in Table 1. The default
split occurs from the center of Side 1 to the center of Side 3 (parallel to the longest aspect ratio of
the surface), and is shown in blue.

b 5 5
3 Logical Carners |3 |:>

/)

Figure 10 - Split Surface Logical Properties

1.

196

Cubit 15.1 User Documentation

Table 1. Listing of Logical Sides for Figure 10

Logical Side Corner Vertices Curve Groups

1 1-2 1
2 2-5 2,34
3 5-6 5
4 6-1 6

Figure 11 shows a surface along with 2 possibilities for its logical rectangle and the resultant
splits.

1n 10

Logical Rectangle

= i
— =D .

Corners 1-2-5-B

10

17 SR
T =) .

Corners 2-3-4-5

- 7
Figure 11 - Different Possible Logical Rectangles for Same Surface
Table 2 shows various surfaces and the resultant split based on the automatically detected or
selected logical rectangle. Note that surfaces are always traversed in a counterclockwise
direction.
Table 2 - Sample Surfaces and Logical Rectangles

Surface(s) (Resultant Split in Ordered Corners (to form
Blue) the Logical Rectangle)

197

1-2-3-4

(using aspect ratio)

4-1-2-3

(user selected)

1-2-5-6

2-5-6-1

1-2-3-4
(split is always along the chain)

1-2-3-4
(notice triangular surfaces along the
chain)

198

Cubit 15.1 User Documentation

1-1-2-3
(note side 1 of the logical rectangle is
collapsed; side 3 is from vertex 2 to 3)

1 2
3
1-2-2-3
(note side 2 of the logical rectangle is
collapsed)
1 2
1w
) 1-2-3-4
2]
1m
4 1-2-4-4
Zm
! i 1-1-2-2
1-1-2-2

(selected automatically)

Split Orientation

If a chain of surfaces are split, the surfaces will always be split along the chain. The command
will not allow disconnected surfaces.

For a single surface, the split direction logic is a bit more complicated. If no options are
specified, the surface aspect ratio determines the split direction - the surface will be split parallel
to the longest aspect ratio side through the midpoint of each curve. This behavior can be
overridden by the order the Corner vertices are selected (the split always starts on the side

199

between the first two corners selected), the Direction option, the From Curve option, or

the Through Vertex list.

Table 3 shows examples of the various split orientation methods. These options are explained in
more detail in the sections below.

Table 3 - Split Orientation Methods

Surface Example Split Orientation Method

Multiple surfaces are always split
along the chain

Parallel to longest surface aspect ratio
(default)

Corner Vertex4123
(split always starts on side 1 of the logical
rectangle)

curve 1
Direction Curve 1

Curwe 1 .
From Curve 1 Fraction .75

or
From Curve 1 Distance 7.5

+— Length =100 ——»

200

Cubit 15.1 User Documentation

Wertex &

“erter 5
Through Vertex 5 6
\ g

Corner Specification

The Corner option allows you to specify corners that form logical rectangle the algorithm uses
to orient the split on the surface. When analyzing a surface to be split, the software automatically
selects the corners that are closest to 90. The Preview option displays the automatically selected
corners in red. Sometimes incorrect corners are chosen, so you must specify the desired corners
yourself. The split always starts on the side between the first two corners selected and finishes on
the side between the last two corners selected. Figure 12 shows a situation where the user had to
select corners to get the desired split.

2 1 P |

Corners 1-2-3-4 Corners 1-2-4-5
N k\ y
G 14 l4

Automatic Corners User Specified Corners
Figure 12 - Selecting the Desired Corners

The split can be directed to the tip of a triangular shaped surface by selecting that corner vertex
twice (at the start or end of the corner list) when specifying corners, creating a zero-length side
on the logical rectangle. A shortcut exists whereas if you specify only 3 corner vertices, the zero-
length side will be directed to the first corner selected. If you specify only 2 corner vertices, a
zero-length side will be directed to both the first and second corner you select. Table 4 shows
these examples. Note the software will automatically detect triangle corners based on angle
criteria - the corner selection methods for zero-length sides explained in this section need only be
applied if the angles are outside of the thresholds specified in the Set Split Surface Auto Detect

Triangle settings.
Table 4 - Selecting Corners to Split to Triangle Tips

Surface Corner Specification
1
T 1-2-4-4- or 4-4-1-2
4 or
zl 4-1-2 (shortcut method)

201

1-1-2-2 or 2-2-1-1
1 2 or
1-2 or 2-1 (shortcut method)
Direction

The Direction option allows you to conveniently override the default split direction on a single
surface. Simply specify a curve from the logical rectangle that is parallel to the desired split
direction. If Corners are also specified, the Direction option will override the split orientation
that would result from the specified corner order. The Direction option is not valid on a chain of
surfaces. Figure 13 shows an example.

Split With

Split Without it W
pDire.;;ti.;.n & Direction

N

) Direction Curve 1 C

4m L

Figure 13 - Direction Specification Overrides Corner Order
Segment|Fraction|Distance
The Segment option allows you to split a surface into 2 or more segments that are equally
spaced across the surface. The Fraction option allows you to override the default 0.5 fractional
split location. The Distance option allows you to specify the split location as an absolute
distance rather than a fraction. By specifying a From Curve, you can indicate which side of
the logical rectangle to base the segment, fraction or distance from (versus a random result).
Table 5 gives examples of these options.
Table 5 - Segment, Fraction, Distance Examples

Surface Command Options

_—__/ﬂ\q_—_
Segment 6 From Curve 1

202

Cubit 15.1 User Documentation

I N

Fraction .3 From Curve 1

Curve 1

J'— Distance = 3.0 Distance 3 From Curve 1

T Curve 1

Through Vertex

The Through Vertex option forces the split through vertices on surface boundaries
perpendicular to the split direction. Use this option if the desired fraction is not constant from
one end of the surface to another or if a split would otherwise pass very close to an existing
curve end resulting in a short curve. Through vertices can be used in conjunction with

the Fraction option - the split will linearly adjust to pass exactly through the specified vertices. It
is not valid with the Segment option. The maximum number of Through Vertices that can be
specified is equal to the number of surfaces being split plus one. The selected vertices can be
free, but must lie on the perpendicular curves. Table 6 gives several examples.

Table 6 - Through Vertex Examples

Surface(s) Command Options

Fraction .3 From Curve 1 Through
Vertex 9

Curve 1

Through Vertex56 7 8

Parametric

203

By default, split locations are calculated in 3D space and projected to the surface. As an
alternative, split locations can be calculated directly in the surface parametric space. In rare
instances, this can result in a smoother or more desirable split. The command option Parametric
{on|Off} can be used to split the given surfaces in parametric space. Alternatively, the default
can be overridden with the Set Split Surface Parametric {on|OFF} command.

Tolerance

A single absolute tolerance value is used to determine the accuracy of the split curves. A smaller
tolerance will force more points to be interpolated. The tolerance is also used when detecting an
analytical curve (e.g., an arc or straight line) versus a spline. A looser tolerance will result in
more analytical curves. The default tolerance is 1.0. The command option Tolerance <val> can
be used to split the given surfaces using the given tolerance. Alternatively, the default tolerance
can be overridden with the Set Split Surface Tolerance <val> command.

It is recommended to use the largest tolerance possible to increase the number of analytical
curves and reduce the number of points on splines, resulting in better performance and smaller
file sizes. The Preview option displays the interpolated curve points. Table 7 shows the effect of
the tolerance for a simple example.

Table 7 - Effect of Tolerance on Split Curve

Surface Tolerance

2.0

1.0

0.5

204

Cubit 15.1 User Documentation

0.01

Preview

The Preview keyword will show a graphics preview (in blue) of the splitting curve (or curves)
and the corner vertices (in red) selected for the logical rectangle. The curve preview includes the
interpolated point locations that define spline curves. Note that if no points are shown on the
interior of the curve, it means that the curve is an analytical curve (line or arc). If the Create
keyword is also specified, a free curve (or curves) will be created - these are the internal curves
that are used to imprint the surfaces. Table 8 shows some examples.

Table 8 - Graphics Preview

Surface Curve Type

Spline

Arc (no preview points shown on
interior of curve)

Settings

This section describes the settings that are available for the automatic split surface command. To
see the current values, you can enter the command Set Split Surface, optionally followed by the
setting of interest (without specifying a value).

Set Split Surface Tolerance <val>

This sets the default tolerance for the accuracy of the split curves. See the Tolerance section for
more information.

Set Split Surface Parametric {on|OFF}

This sets the default for whether surfaces are split in 3D (default) or in parametric space. See
the Parametric section for more information.

Set Split Surface Auto Detect Triangle {ON|off}
Set Split Surface Point Angle Threshold <val>
Set Split Surface Side Angle Threshold <val>

205

The split surface command automatically detects triangular shaped surfaces as explained in the
section on Corners. This behavior can be turned off with the setting above. Two thresholds are
used when detecting triangles - the Point Angle threshold and the Side Angle threshold,
specified in degrees. Corners with an angle below the Point Angle threshold are considered for
the tip of a triangle (or the collapsed side of the logical rectangle). Corners within the Side Angle
threshold of 180 are considered for removal from the logical rectangle. In order for a triangle to
actually be detected, corners for both the point and side criteria must be met. The default Point
Angle threshold is 45, and the default Side Angle threshold is 27. Figure 14 provides an
illustration.

3 .’
= 160°
.
within Side Angle Threshold of 27 ° of 180°
4 (remowe cormer)
40°
below Point Angle Threshold of 457
(collapse to this point)
al
Without Triangle Detection With Triangle Detection

Figure 14 - Triangle Detection Settings

Split Skew
The Split Skew function can be called with the following command:
Split Surface <id_list> Skew [Preview] [Create]

This command will split a surface or list of surfaces in a logical way to reduce the amount of
skew in a quadrilateral mesh. This function uses the control skew algorithm to determine where
to make these logical splits. Users should note that Split Skew can only be utilized effectively on
surfaces that lend themselves to a structured meshing scheme. These surfaces cannot have
multiple curve loops. Figure 15 shows a simple example of a surface being split.

split surface 1 skew

206

Cubit 15.1 User Documentation

Figure 15. Split Skew applied to an L-shaped surface
The Preview keyword will show a graphics preview of the splitting curves. If the Create
keyword is also specified, free curves will be created.

Section Command
This command will cut a body or group of bodies with a plane, keeping geometry on one side of
the plane and discarding the rest. The syntax for this command is:

Section {Body|Group} <id_range> [With] {Xplane|Yplane|Zplane} [Offset
<value>] [NORMAL|Reverse] [Keep]

Section {Body|Group} <id_range> With Surface <id> [NORMAL|Reverse]
[Keep]

In the first form, the specified coordinate plane is used to cut the specified bodies. The offset
option is used to specify an offset from the coordinate plane. In the second form, an existing
(planar) surface is used to section the model. In either case, the reverse keyword results in
discarding the positive side of the specified plane or surface instead of the other side. The keep
option results in keeping both sides; the section command used with this option is equivalent to
webcutting with a plane.

Separating Surfaces from Bodies
The separate surface command is used to separate a surface from a sheet body or a solid body.
The command is:

Separate Surface <range>

Separating a surface from a solid body will create a "hole™ in the solid body. Thus the solid body
will become a sheet body. The newly separated surface will be also sheet body, but it will have a
different id. Multiple surfaces can be separated from a body at the same time, but each separated
surface will result in a distinct sheet body, as if the command had been performed on each
surface individually.

Separating Multi-Volume Bodies

The separate and split commands are used to separate a body with multiple volumes into a
multiple bodies with single volumes. The commands are:

207

and

Separate {Body|Volume} <id_rangelall>

Split {Body|Volume} <id_rangelall>

Only very rarely will either of these commands be needed. They are provided for the occasional

instance that a multi-volume body is found. These commands are interchangeable.

Another related command allows the user to control the separation of bodies after webcutting. In

most instances the user will want to separate bodies after webcutting. One reason to possibly

have this option turned off is to be able to keep track of all the volumes during a webcut. Setting

this option to "off" keeps all volumes in the same body. But the more common approach is to

name the original body and allow naming to keep track of volumes. This setting is on by default.
The syntax is:

Set Separate After Webcut [ON|Off]

Cleanup and Defeaturing
Geometry Cleanup and Defeaturing

Frequently, models imported from various CAD platforms either provide too much detail for

mesh generation and analysis, or the geometric representation is deficient. These deficiencies can
often be overcome with small changes to the model. Several tools are provided in CUBIT for
this purpose.

The following describes the features available in CUBIT for clean up and defeaturing

Healing
Tweaking Geometry

Removing Geometric Features
Automatic Geometry Clean-up
Regularizing Geometry

Finding Surface Overlap
Validating Geometry

Debugging Geometry

Geometry Accuracy

Trimming and Extending Curves
Stitching Sheet Bodies
Defeaturing Tool

Tweaking Geometry
Tweaking Geometry

Tweaking Vertices
Tweaking Curves
Tweaking Surfaces
Tweak Remove Topology
Tweak Volume Bend

208

Cubit 15.1 User Documentation

The tweaking commands modify models by moving, offsetting or replacing surfaces, curves, or
volumes while extending the adjoining surfaces to fill the resulting gaps. This is useful for
eliminating gaps between components, simplifying geometry or changing the dimensions of an
object.

Tweaking Curves
The following options of the Tweak Curve command are available. Command syntax and
description follow below.

Create a Chamfer or Fillet

Tweaking a Curve Using an Offset Distance

Removing a Curve

Tweaking a Curve Using a Target Surface, Curve, or Plane
Tweaking a Pair of Curves to a Corner

Create a Chamfer or Fillet

The Tweak Curve Chamfer or Fillet command is used to fillet or chamfer a curve. The radius
value is the radius of the fillet arc or chamfer cut distance. The command syntax is:

Tweak Curve <id_range> {Fillet|Chamfer} Radius <value> [Keep] [Preview]

In addition to creating chamfers of a single cut distance, the chamfer can be specified be two
values. The syntax is:

Tweak Curve <id_list> Chamfer Radius <vall> [<val2>] [Keep] [Preview]

Figure 1 shows a brick ('br x 10") chamfered with two different cut distances (‘Tweak Curve 1 2
Chamfer Radius 2 4").

Figure 1 Chamfer with two different distances
Individual curves can also be filleted with different start and finish radius values. The syntax is:

Tweak Curve <id> Fillet Radius <vall> [<val2>] [Keep] [Preview]

Figure 2 shows a brick ('br x 10") filleted with different start and end radius values (‘“Tweak
Curve 1 2 Chamfer Radius 2 47).

209

Figure 2. Fillet with two different radii
For all Tweak Fillet and Tweak Chamfer variations, the keep option prevents the destruction of
the original geometry after the operation and the preview option temporarily displays the new
geometry configuration without actually changing the geometry.

Tweaking a Curve Using an Offset Distance

Tweak Curve <id_list> Offset <val> [Curve <id_list> Offset <val>] [Curve
<id_list> Offset <val> ...] [Keep] [Preview]

Tweaking curves a specified distance offsets the existing curves and extends the attached
surfaces to meet them. A positive offset value will enlarge the surface while a negative value will
decrease the area of the attached surface. Different offset values can be specified for each curve.
The keep option prevents the destruction of the original geometry after the operation. The
preview option temporarily displays the new geometry configuration without actually changing
the geometry. Figure 3 shows an example of offsetting a curve a specified distance.

Figufe 3 Offsetting a set of curves a specified distance

210

Cubit 15.1 User Documentation

Removing a Curve
Tweak Curve <id_list> Remove [Keep] [Preview]

Similar to the Tweak Curve Remove command, the tweak curve remove function removes a

specified curve from a sheet body. Figure 4 shows a simple example of removing a curve from a
sheet body.

Figure 4. Removing a curve from a sheet body
The keep option prevents the destruction of the original geometry after the operation. The

preview option temporarily displays the new geometry configuration without actually changing
the geometry.

Tweaking a Curve Using Target Surfaces, Curves, or Plane

Use Tweak Curve Target to offset a curve to a specified surface, plane or curve. Figure 5 shows
an example of tweaking a curve to several surfaces.

Figure 5 Tweaking a curve to multiple target surfaces

Similarly, a target plane can be specified using the Plane specification syntax. The Tweak Curve
syntax is:

Tweak Curve <id_list> Target {Surface >id_list> [Limit Plane (options)]
[EXTEND|Noextend] | Plane (options)} [Max_area_increase <val>] [Keep]
[Preview]

Tweak Curve <id_list> Target Curve <id_list > [EXTEND|Noextend]
[Max_area_increase <val>] [Keep] [Preview]

211

If a target surface is supplied, the user can also use a limit plane if he wishes. A limit plane is a
plane that the tweak will stop at if the tweaked curve does not completely intersect the target
surface. The limit plane must be used with the extend option. See the help for Specifying a Plane
for the options available to define a plane.

It should be noted that if the source and target surfaces are from the same body the resulting
geometry will be automatically stitched. Single target surfaces are automatically extended so that
the tweaked body will fully intersect the target. Unfortunately, extending multiple target surfaces
can sometimes result in an invalid target, so the option is given to tweak to non-extended targets
with the noextend option. In this case, the tweaked body must fully intersect the existing targets
for success. If you experience a failure when tweaking to multiple targets or the results are
unexpected, it is recommended to try the noextend option (NOTE: Tweaking to multiple targets
is only implemented in the ACIS geometry engine). If a value for

the max_area_increasekeyword is given, Cubit will not perform the tweak if the resulting
surface area increases by more than the specified amount. The keyword expects a percentage to
be entered (i.e. '50' for 50%). It is recommended to always preview before using the tweak target
commands.

For all tweak target variations, the keep option prevents the destruction of the original geometry
after the operation and the preview option temporarily displays the new geometry configuration
without actually changing the geometry.

Although it may not be intuitive curves can also serve as the target geometry. Figure 6 shows an
example of extending a curve to another curve.

Target curvea

Figure 6 Tweaking a curve to a target curve
Notice that the source curve actually extends to the target curve as if the target were a surface.

Tweaking a Pair of Curves to a Corner

212

Cubit 15.1 User Documentation

When creating mid-surface geometry it is often useful to extend surfaces to form a corner. To
handle this specific but common case use the tweak corner command.

Tweak Curve <id> <id> Corner [Preview]

Figure 7 shows a typical tweak corner example. Notice that surfaces are extended/trimmed to
intersect at a corner.

Figure 7. Tweaking two curves to a corner
The preview option temporarily displays the new geometry configuration without actually
changing the geometry.

Tweak Remove Topology

The Tweak Remove Topology command removes curves and surface from a model and
replaces them with new topology. The reconstruction of the new topology and the stitching of it
into the model is done using real solid modeling kernel operations. This command is intended to
be used on small curves and surfaces in the model. The command tries to find small
curves/surfaces neighboring the specified topology and includes these neighbors in the removal
process. Thus, the command can often be used to remove networks of small features just by
specifying a single curve or surface.

Tweak Remove_Topology {Surface <id_range> | Curve <id_range> | Surface
<id_range> Curve <id_range>} Small_curve_size <val> Backoff_distance
<val>

The small_curve_size is input by the user, and is used to calculate the small curves and surfaces.
The backoff_distance value specifies how far away from the original topology cuts are made to
cut out the old topology and stitch in the new topology. The removed topology is replaced by
simplified topology where possible often resulting in a dimension reduction of the original
topology. Extraneous curves that are introduced during the cutting and stitching process are
regularized out if possible using the solid modeling kernel regularize functionality or are
composited out using virtual geometry if the regularization is not possible.

Note: This command is currently only implemented for ACIS and Catia models.

Example

213

reset

set attribute on

import acis ""test10.sat""

separate body all

set attribute off

Auto_clean Volume 1 Split_narrow_regions Narrow_size 2.2
tweak remove_topology curve 19 small_curve_size .21 backoff 1.5

214

Cubit 15.1 User Documentation

215

Fi
Lt
i

Figure 1. Tweak Remove Topology command

Tweaking Surfaces
The following options of the Tweak Surface command are available. Command syntax and
examples follow below.

Tweaking a Surface Using an Offset
Tweaking a Surface by Moving

Tweaking Surfaces to Target Surfaces
Removing a Surface

Tweaking a Conical Surface

Tweaking Doublers to Target Surface
Removing Holes and Slots from Sheet Bodies
Removing Fillets from Sheet Bodies

Tweaking a Surface Using an Offset

Tweak Surface <id_list> Offset <val> [Surface <id_list> Offset <val>]
[Surface <id_list> Offset <val> ...] [Keep] [Preview]

The Tweak Offset form of the command offsets an existing set of surfaces and extends the
attached surfaces to meet them. A positive offset value will offset the surface in the positive
surface normal direction while a negative value will go the other way. Different offsets may be
specified for each surface. Figure 1 shows a simple example of offsetting. Note that you can also

216

Cubit 15.1 User Documentation

offset whole groups of surfaces at once. The keep option will retain the original surfaces and
curves.

Offset in

FPuositive
Direction
x ?‘f, I:D
-+ Offset in
¥ Mepative
Direction

Figure 1. Tweak Offset

Tweaking a Surface by Moving

The Tweak move form of the command simply moves the given surfaces along a vector
direction. The direction can be specified either absolutely or relative to other geometry entities in
the model (from entity centroid to location). Note that when moving a surface for tweak, the
surface is moved and the surface and the adjoining surfaces are extended or trimmed to match up
again. So, for example, moving a vertically oriented planar surface in the vertical direction will
have no effect. In this example, if you move the surface 10 in the x and 5 in the y the effect will
be to move it simply 10 in the x. You can also use this form of the command to move a
protrusion around - just be sure to specify all of the surfaces on the protrusion for moving. The
last form of the command can be used to move a surface along another surface's normal.

Tweak Surface <id_range> Move {Vertex|Curve|Surface|Volume|Body} <id>
Location {Vertex|Curve|Surface|Volume|Body} <id> [Except [X][Y][Z]]
[Keep] [Preview]

Tweak Surface <id_range> Move {Vertex|Curve|Surface|Volume|Body} <id>
Location <x_val> <y_val> <z_val> [Except [X][Y][Z]] [Keep][Preview]
Tweak Surface <id_range> Move <dx_val> <dy_val> <dz_val> [Keep]

[Preview]
Tweak Surface <id_range> Move Direction <options> Distance <val> [Keep]
[Preview]

Tweak Surface <id_range> Move Normal To Surface <id> Distance <val>
[Except [X][Y]1[Z]] [Keep][Preview]

Tweaking Surfaces to Target Surfaces

The Tweak target form of the command actually replaces the given surfaces with a copy of the
new surfaces, then extends and trims surfaces to match up. This can be useful for closing gaps
between components or performing more complicated modifications to models. The command
syntax is:

217

Tweak {Curve|Surface} <id_list> Target {Surface <id_list> [Limit Plane
(options)] [EXTEND|noextend] | Plane (options)} [keep] [preview]
Tweak Surface <id_list> Replace [With] Surface <id_list> [Keep] [Preview]

The plane option allows a plane to be specified instead of target surface(s). If a target surface is
supplied, the user can also use a limit plane if he wishes. A limit plane is a plane that the tweak
will stop at if the tweaked surface does not completely intersect the target surface. The limit
plane must be used with the extend option. See the help for Specifying a Plane for the options
available to define a plane.

Single target surfaces are automatically extended so that the tweaked body will fully intersect the
target. Unfortunately, extending multiple target surfaces can sometimes result in an invalid
target, so the option is given to tweak to unextended targets with the noextend option. In this
case, the tweaked body must fully intersect the existing targets for success. If you experience a
failure when tweaking to multiple targets or the results are unexpected, it is recommended to try
the noextend option (NOTE: Tweaking to multiple targets is only implemented in the ACIS
geometry engine). It is recommended to always preview before using the tweak target
commands.

Figure 2 shows a simple example.

Replace this
surface. .

-

With this one

Figure 2. Tweak Surface Target (Viewed directly from the side)

Removing a Surface

The Tweak remove command allows you to remove surfaces from a model by extending the
adjacent surfaces to fill in the resulting gaps. It is identical to the Remove Surface command.
See Removing Surfaces for a description of the command options.

Tweak Surface <id_list> Remove [EXTEND|Noextend] [Keepsurface]
[Keep][Preview]

Tweaking a Conical Surface

The Tweak cone form of the command is used to replace a conical projection with a flat circular
surface. This command is useful for simplifying bolt holes. The command syntax is.

Tweak Surface <id_range> Cone [Preview]
The following is a simple example illustrating the use of the tweak surface cone command.

218

Cubit 15.1 User Documentation

Figure 3. Conical bolt hole before and after tweaking

Tweaking Doublers to Target Surfaces

The Tweak Doubler form of the command takes a specified surface and creates drop-down
surfaces either normal to the doubler surface or by a user specified vector to a target surface.
This can be helpful in creating surfaces for weld elements between midsurfaced geometry. The
resulting surfaces do not create a bounding volume, and do not imprint themselves onto the
target surface. The command syntax is:

Tweak Surface <id_list> Doubler Surface <id_list> {[Limit Plane (options)]
[EXTEND|noextend]} [Internal] [Direction (options)] [Thickness] [Preview]

219

The plane option allows a plane to be specified instead of target surface(s). If a target surface is
supplied, the user can also use a limit plane if he wishes. A limit plane is a plane that the tweak
will stop at if the tweaked surface does not completely intersect the target surface. The limit
plane must be used with the extend option. See the help for Specifying a Plane for the options
available to define a plane.

Single target surfaces are automatically extended so that the tweaked body will fully intersect the
target. Unfortunately, extending multiple target surfaces can sometimes result in an invalid
target, so the option is given to tweak to unextended targets with the noextend option. In this
case, the tweaked body must fully intersect the existing targets for success. If you experience a
failure when tweaking to multiple targets or the results are unexpected, trying the noextend
option is recommended.

If the doubler surface has a thickness property value, you can propagate that thickness value to
the newly created drop-down surfaces by using the thickness flag.

It is recommended to always preview before using the tweak doubler commands.

NOTE: This function only works for ACIS geometry.

Duuh’

Target

Geometry Output
Figure 3. Extending a doubler surface to target
The internal option will also include internal curves when the surface is extended (see Figure
4c). The direction option will create a skewed surface along the given direction (see Figure 4d).

220

Cubit 15.1 User Documentation

(c) (d)

Figure 4. Explanation of tweak doubler options (a) Original surfaces (b) No option flags
used (c) Internal option used - notice internal curves dropped down (d) Direction flag -
notice skew

Removing Holes and Slots from Sheet Bodies

The Tweak Hole/Slot Idealize command takes a specified sheet body(s) and searches for either
holes or slots (or both) which meet the user's input parameters. This can be helpful in removing

small holes or slots quickly and efficiently from midsurfaced bodies where such level of detail
isn't required. The command syntax is:

Tweak Surface <id_list> Idealize {[Hole Radius <val>] [Slot Radius <val>
Length <val>]} [Exclude Curve <id_list>] [Preview]

Below is a diagram showing the different parameters available for input by the user.

\?ad ius

—

./

Figure 5. Input parameters for tweak surface idealize command
#Hole Removal Example

tweak surface 13 idealize hole radius 6

221

Figure 6. Example of hole removal using tweak surface idealize command
The exclude option allows the user to specify individual curves that should not be deleted, even
if they meet the search criteria for removal. Figure 7 shows another hole removal example where
several curves were excluded.

Figure 7. Example of hole removal using exclude option
Note: This feature is for ACIS geometry
It is recommended to always preview before using the tweak command. Preview will highlight
all curves slated to be removed if the command is executed.

Removing Fillets from Sheet Bodies

The Tweak Fillet Idealize command takes a specified sheet body(s) and searches for either
internal or external fillets (or both) which meet the users' radius parameter. This can be helpful in
removing fillets quickly and efficiently from midsurfaced bodies where such level of detail isn't
required. The command syntax is:

Tweak Surface <id_list> Idealize Fillet Radius <val> {[Internal] [External]}
[Exclude Curve <id_list>] [Preview]

#Fillet Removal Example
tweak surface 13 idealize fillet radius 6 internal

222

Cubit 15.1 User Documentation

Figure 8. Example of fillet removal using tweak surface idealize command
Note: This feature is for ACIS geometry
It is recommended to always preview before using the tweak command. Preview will show the
result if the command is executed.

Figure 9. Preview of the tweak surface idealize command
Tweaking Vertices
The Tweak Vertex command can be used to do the following:
o Tweaking a Vertex With a Chamfer

o Tweaking a Vertex With a Non-Equal Chamfer
o« Tweaking a Vertex With a Fillet Radius

Tweaking a Vertex With a Chamfer
Tweak Vertex <id_range> Chamfer Radius <value>[Keep] [Preview]

This form of the command creates a chamfered corner at the specified vertex. Can be use on
volumes or free surfaces. The 'keep' option creates another volume on which the tweak is
applied; the original volume remains unmodified.

223

Figure 1. Tweak Vertex Chamfer

Tweaking a Vertex With a Non-Equal Chamfer

Tweak Vertex <id_range> Chamfer Radius <value> [Curve <id> Radius
<value> Curve <id> Radius <value> Curve <id>] [Keep] [Preview]

This next form of the command creates a non-equal chamfered corner at the specified vertex.
Can only be used on vertices of volumes. The 'keep' option creates another volume on which the
tweak is applied; the original volume remains unmodified.

Tweaking a Vertex With a Fillet Radius
Tweak Vertex <id_range> Fillet Radius <value> [Keep] [Preview]

This command replaces a vertex with a filleted radius. The command can only be used on free
surfaces. The 'keep' option creates another volume on which the tweak is applied; the original
free surface remains unmodified.

224

Cubit 15.1 User Documentation

Figure 2. Tweak Vertex Fillet

Tweak Volume Bend

Entity bending bends a solid model around a given axis. In any bending operation, some material
is stretched while other material is compressed, but the topology of the model is maintained. The
command syntax is:

Tweak {Volume|Body} <id_list> Bend Root <location _options> Axis
<direction_vector> Direction <direction_vector> Radius <val> angle <val>
[Preview] [Keep] [Center_bend] [Location <options>]

Root and axis determine location for the bend. Direction determines direction of the

bend. Radius and angle determine how much to bend. Center_bend will bend both sides of the
volume around the bend location instead of one side. Location can be used to select only
specific parts of a volume to bend.

225

Bending Axis

. . . Transformed
Fixed Portion W Partion

Berit Portion

Figure 1. Bending a volume
#Ex: Bend parts of a body specified by the location option
create brick width 11 height 1
create brick width 1 depth 10 height 10
create brick width 1 depth 10 height 10
create brick width 1 depth 10 height 10
move body 2 general location position-350
move body 3 general location position 050
move body 4 general location position 350
subtract body 2 from body 1
subtract body 3 from body 1
subtract body 4 from body 1
tweak volume 1 bend root 0 0 0 axis 1 0 0 direction 0 0 -1 radius 1 angle 3.14 location vertex
3947

Removing Geometric Features
Removing Geometric Features

¢ Vertex Removal
o Surface Removal

The Remove will remove surfaces or vertices from bodies. Adjacent surfaces or curves will be
extended, where possible, to fill in remaining gaps. The remove command is useful for replacing
filleted edges with sharp corners.

Removing Surfaces

« Remove Sliver Surfaces

The remove surface command removes surfaces from bodies. By default, it attempts to extend
the adjoining surfaces to fill the resultant gap. This is a useful way to remove fillets and rounds

226

Cubit 15.1 User Documentation

and other features such as bosses not needed for analysis. See Figure 1 for an example of this
process. The syntax for this command is:

Remove Surface <id_range> [EXTEND|Noextend] [Keepsurface] [Keep]
[Individual]

The noextend qualifier prevents the adjoining surfaces from being extended, leaving a gap in the
body. This is sometimes useful for repairing bad geometry - the surface can be rebuilt with
surface from curves or a net surface, etc.., then combined back onto the body.

The keep option will retain the original body and put the results of the remove surface in a new
body. The keepsurface option will retain the surface which was removed.

The individual option will remove surfaces one-by-one instead of as a group. If one removal

fails, the rest are still attempted. Without the individual option, no surface is removed unless
they are all able to be removed.

This command is identical to the Tweak Surface Remove command.

— Fermowve L
',-—--4.”# fillet=sfrounds rl—-—--“’.
. Rermove . '
_,r'r:‘- v protrusions and e

S s Aholes o \7
N - ; .-";"f J
F '-'_'.‘.‘_::‘_f_%fr—---f,' e % |

i -_— —_——— _.'(z'
Ly T
Y Remove | i
}

v individual !
L__surfaces 4

— 4 T /

Figure 1. Remove Surface Example
Remove Sliver Surface

This command uses the ACIS remove surface capability on surfaces that have area less than a
specified area limit. When ACIS removes a surface it extends the adjoining surfaces and

intersects them to fill the gap. If it is not possible to extend the surfaces or if the geometry is bad
the command will fail. The syntax for this command is:

Remove Slivers Body <id_range> [EXTEND|Noextend] [Keepsurface] [Keep]
[Arealimit [<double>]]

Default Arealimit=0.1

The noextend, keepsurface and keep options operate as for the remove surface command. The
arealimit option allows the user to set the area below which surfaces will be removed.

Removing Vertices

At times you may find that you have an extraneous vertex in your model. This would be a vertex
connected to two and only two edges. This stray vertex can cause unwanted mesh artifacts, due
to the fact that a mesh node MUST lie on this vertex, thereby disallowing the possibility of
movement for better quality. Fortunately there is a relatively easy way of getting rid of this stray
vertex using the tweak surface command.

Tweak Surface <id> Replace With Surface <same_id>

227

Note that you are replacing a surface with itself. In doing so, the geometry engine will do an
intersection check on that surface, and should realize that the vertex doesn't need to be there.

Healing

Healing

Healing is an optional module that detects and fixes ACIS models.

It is possible to create ACIS models that are not accurate enough for ACIS to process. This most
often happens when geometry is created in some other modeling system and translated into an
ACIS model. Such models may be imprecise due to the inherent numerical limitations of their
parent systems, or due to limitations of data transfer through neutral file formats. This
imprecision can also result when an ACIS model is created at a different tolerance from the
current tolerance settings. This imprecision leads to problems such as geometric errors in
entities, gaps between entities, and the absence of connectivity information (topology). Since
ACIS is a high precision modeler, it expects all entities to satisfy stringent data integrity checks
for the proper functioning of its algorithms. Therefore, if such imprecise models must be
processed by an ACIS based system, "healing" of such models is necessary to establish the
desired precision and accuracy.

The following sections describe how to use the Healing capability in ACIS and CUBIT to
analyze and heal defective ACIS geometry.

e Analyzing Geometry

o Healing Attributes

o Auto Healing

e Spline Removal

o What if Healing is Unsuccessful?

Analyzing Geometry
The following command analyzes the ACIS geometry and will indicate problems detected:

Healer Analyze Body <id_range> [Logfile ['filename’] [Display]]

The logfile option writes the analysis results to the filename specified, or to 'healanalysis.log' by
default. In the GUI version of CUBIT, the display option will write the results in a dialog
window.

The outputs include an estimate of the percentage of good geometry in each body. The optional
logfile will include detailed information about the geometry analysis. By default CUBIT will
also highlight the bad geometry in the graphics and give a printed summary indicating which
entities are "bad". Sample output from this command is shown below:

Percentage good geometry in Body 9: 98%
HEALER ANALYSIS SUMMARY:

Analyzed 1 Body: 9

Found 2 bad Vertices: 51, 52

Found 3 bad Curves: 76, 77, 80

Found 2 bad CoEdges. The Curves are: 76
Found 1 Bodies with problems: 9
Journaled Command: healer analyze body 9

228

Cubit 15.1 User Documentation

Note that it is not necessary to analyze the geometry before healing; however, it can be useful to
analyze first rather than healing unnecessarily. Also note that healer analysis can take a bit of
time, depending on the complexity of the geometry and how bad the geometry is.

The validate geometry commands work independently of the healer and give more detailed
information.

Healer Settings
You can control the outputs from the healer with the following commands:

Healer Set OnShow {Highlight|Draw|None}

Healer Set OnShow {Badvertices|Badcurves|Badcoedges|Badbodies|All}
{On|Off}

Healer Set OnShow Summary {On|Off}

These settings allow you to highlight, draw or ignore the bad entities in the graphics. You can
control which entity types to display, as well as whether or not to show the printed summary at
the end of analysis.

After you have analyzed the geometry (which can take some time), you can show the bad
geometry again with the "show" command. This command simply uses cached data (healing
attributes - see the next section) from the previous analysis.

Healer Show Body <id_list>

Auto Healing
Healing is an extremely complex process. The general steps to healing are:

e Preprocess - trim overhanging surfaces and clean topology (remove small curves and
surfaces).

Simplify - converts splines to analytic representations, if possible.

Stitch - geometry cleanup and stitching loose surfaces together to form bodies.
Geometry Build - repairing and building geometry to correct gaps in the model.
Post-Process - calculating pcurves and further repairing bad geometry.

Make Tolerant Curves & Vertices - a last optional step that allows special handling of
unhealed entities for booleans - allowing inaccurate geometry to be tolerated.

Autohealing makes these steps automatic with the following command:

Healer Autoheal Body <id_range> [Rebuild] [Keep] [Maketolerant] [Logfile
['logfilename'] [Display]]

The rebuild option unhooks each surface, heals it individually, then stitches all the surfaces
back together and heals again. In some cases this can more effectively fix up the body, although
it is much more computationally intensive and is not recommended unless normal healing is
unsuccessful.

The keep option will retain the original body, putting the resulting healed body in a new body.
The maketolerant option will make the edges tolerant if ACIS is unable to heal them. This can
result in successful booleans even if the body cannot be fully healed - ACIS can then sometimes
"tolerate" the bad geometry. Note that the healer analyze command will still show these curves

229

as "bad", even though they are tolerant. The validate geometry commands however take this into
consideration.

The output from the autoheal command can be written to a file using the logfile option; the
default file name is autoheal.log. The display option works as before, displaying the results in a
window in the GUI version of CUBIT.

Healing Attributes

Once the geometry is analyzed, the results are stored as attributes on the solid model - this allows
you to use the "show" command to quickly display the bad geometry again. The results attributes
are automatically removed when the geometry is exported or any boolean operations are
performed. They can also be explicitly removed with the command

Healer CleanAtt Body <id_range>

You can force the results to be removed immediately after each analyze operation with the
"CleanAtt" setting (this can save a little memory):

Healer Set CleanAtt {On|Off}

Spline Removal
If healing fails to convert spline surfaces to analytic ones fails, the simplification tolerance can
be modified and healing re-run:

healer default simplifytol .1
healer autoheal body 1

Spline surfaces can also be forced into an analytic form (use this command with caution):
Healer Force {Plane|Cylinder|Cone|Sphere|Torus} Surface <id_list> [Keep]

The Keep option will retain the original body and generate a new body containing analytic
surfaces. Note: Spline curves can be found using entity filters:

Execute Filter Curve Geometry_type Spline

What if Healing is Unsuccessful?

The ACIS healing module is under continued development and is improving with every release.
However, there will often be situations where healing is unable to fully correct the geometry.
This might be okay, as meshing is rarely affected by the small inaccuracies healing addresses.
However, boolean operations on the geometry can fail if the bad geometry must be processed by
the operation (i.e., a webcut must cut through a bad curve or vertex).

Here are some possible methods to fix this bad geometry:

e Return to the source of the geometry (i.e., Pro/ENGINEER) and increase the accuracy.
Re-export the geometry.

o Heal again using the rebuild option.

o Heal again using the make tolerant option.

o Remove the offending surface from the body (using the remove surface command), then
construct new surfaces from existing curves and combine the body back together.

o Composite the surfaces over the bad area, mesh and create a net surface from the
composite, remove the bad surfaces and combine.

230

Cubit 15.1 User Documentation

o Export the geometry as IGES, import the IGES file into a new model and look for double
surfaces or surfaces that show up at odd angles using the find overlap commands. Delete
and recreate surfaces as needed and combine the surfaces back together into a body.

Contact the development team (cubit-dev@sandia.gov) if you need further help with fixing bad
geometry.

Auto Clean

Automatic Geometry Clean-up

The automated geometry clean-up commands are used to automatically clean up geometry in
preparation for meshing. These commands are built in to the ITEM interface, but they can also
be used on their own. They include:

e Automatic Forced Sweepability

o Automatic Small Curve Removal
e Automatic Small Surface Removal
e Automatic Surface Split

Automatic Forced Sweepability

In some cases, a volume can be "forced" into a sweepable configuration by compositing surfaces
on the linking surfaces. The automatic forced sweep command will attempt to automatically
composite linking surfaces together to create a sweepable topology. This command can be useful
in cases where there are many linking surfaces that prohibit sweepability and are not needed to
define the mesh. It is assumed that the user has assigned the source and target surfaces for the
sweep prior to calling this function. CUBIT will try to composite linking surfaces together to get
rid of problems such as 1) non-submappable linking surfaces, 2) interior angles between curves
of a surface that deviate far from multiples of 90 degrees, and 3) surfaces with curves smaller
than the small curve size, if a small curve size is specified. This command is incorporated into
the ITEM GUI, but is also available from the command line using the following command
syntax.

Auto_clean Volume <id_range> Force_sweepability [Small_curve_size
<val>]

The small_curve_size qualifier is an optional argument. If a curve size is specified, the
command will try to remove surfaces with curves smaller than this size by compositing the
surface with adjacent surfaces.

Example

The following cylinder has been webcut and had surface splits so that it is not sweepable. The
split surface command has also introduced 3 small curves on the surfaces. After the source and
target surfaces are set, the force sweepability command is issued to automatically composite
neighboring surfaces to make the volume sweepable and remove the small curves. The results
are shown in the image below.

auto_clean volume 1 force_sweepability small_curve_size .7

231

Figure 1. Linking surfaces are composited to force a sweepable volume topology

Automatic Surface Split

This auto clean command will attempt to automatically split narrow regions of surfaces. In this
context, any surface that contains a portion that narrows down to a small angle is considered a
narrow region. The command will use the split command from the underlying solid modeling
kernel. The user specifies a size that defines what it narrow. This command also propagates the
splits to neighboring narrow surfaces. This command is usually used as a preprocessor to the
"tweak remove_topology" command but can also be used on its own.

Auto_clean Volume <id_range> Split_narrow_regions Narrow_size <val>

Example

The model has a surface that necks down to a narrow region. This surface also has some
neighboring narrow surfaces to which the splits are propagated.

Figure 1. Automatic small and narrow surface removal on a cylinder

Automatic Small Curve Removal
The automatic small curve removal command uses composites and collapse curves commands to
automatically remove small curves from a volume. This is useful for removing small or

232

Cubit 15.1 User Documentation

unnecessary details from a model to facilitate meshing algorithms. The user enters a small curve
size. Any curve smaller than this specified size will be removed. This command is issued from
the ITEM toolbar. More information can be found by reading the section entitled Small Details
in the Model in the ITEM documentation. This command can also be called from the command
line. The syntax of this command is:

Auto_clean Volume <id_range> Small_curves Small_curve_size <val>

Note: The automatic curve removal should be used with caution, as the user has little control
over how curves are removed.

Example:

The cylindrical model has 3 small curves just less than 0.7. The remove small curves command
will remove two of the small curves by compositing two neighboring surfaces and the third using
the collapse curve functionality.

auto_clean volume 1 small_curves small_curve_size .7

Figure 1. Automatic small curve removal on a cylinder

Automatic Small Surface Removal

This auto clean command will attempt to remove small and narrow surfaces from the model by
compositing them with neighboring surfaces. The user specifies a small curve size value. This
value is used in two different ways. First, a small area is calculated as the small curve size
squared. This value is used to compare against when looking for small surfaces. The small curve
size is also used to identify surfaces that are narrower than the small curve size.

Auto_clean Volume <id_range> Small_surfaces Small_curve_size <val>

Example
The cylindrical model has 2 small surfaces and a few narrow surfaces. The surfaces are
composited to remove these.

233

f v

Figure 1. Automatic small and narrow surface removal on a cylinder

Debugging Geometry
The following command checks for inconsistencies in the CUBIT topological model, by
checking the specified entities and all child topology and/or comparing to solid model topology:

Geomdebug Validate [compare] <entity_list>

This command checks for:

Consistent CoFace senses

Loops are closed/complete

Consistent CoEdge senses

Correct vertex order on curves w.r.t. parameterization
Correct tangent direction of curves w.r.t. parameterization

Related Commands:

Geomdebug Vertex <vertex_id>

Geomdebug Curve <curve_id>

Geomdebug Surface <surface_id>

Geomdebug body <body_id>

Geomdebug Containment {Curve | Surface} <id> {Location (options) | Node
<id_list>}

The following command prints info about GeometryEntities owned by specified entity:

Geomdebug Geometry <entity _list> [interval <n>] [index <n>] [TEXT]
[GRAPHIC] [attributes]

The following command lists (TopologyBridge) topology for specified entity:

Geomdebug solidmodel <entity_list> [index <n>]
[depth<n>|up<n>|down<n>]

The following command lists GroupingEntities.

Geomdebug GPE <entity _list>

234

Cubit 15.1 User Documentation

Finding Surface Overlap

The surface overlap capability finds surfaces that overlap each other, with the capability to
specify a distance and angle range between them. This is useful for debugging geometry
imprinting and merging problems, as well as for finding gaps in large assembly models. Finding
overlapping geometry is done using the command:

Find [Surface] Overlap [{Body|Surface|Volume} <id_list> [Filter_Sliver]

If a list of entities is not specified, all bodies in the model are checked. By default the command
does not check the surfaces within a given body against each other; rather, it only checks
surfaces between bodies. This can be overridden by inputting a surface list (i.e. find overlap
surface all), or with a setting (see below).

The filter_sliver option will remove false positives from the list by weeding out sliver surfaces
that have a merged curve between them. The following pictures is an example of a sliver surface.

Figure 1. Example of a sliver surface
If curves 27 and 29 are merged before you run the find overlapping surface checkthe user will
get the two surfaces in the picture as an overlapping surface pair. However, if the filter_sliver
keyword is used, Cubit will not find the two surfaces to be overlapping.
Facetted Representation
This command works entirely off of the facetted surface representation of the model (the facetted
representation is what you see in a shaded view in the graphics). There are inherent advantages
and disadvantages with this method. The biggest advantage is avoidance of closest-point
calculations with NURBS based geometry, which tends to be slow. This method also eliminates
possible problems with unhealed ACIS geometry. The disadvantage is working with a less
accurate (i.e., facetted) representation of the geometry. To circumvent problems with this
facetted geometry, various settings can be used to control the algorithm. For example, you might
consider using a more accurate facetted representation of the model - see below.

235

Find Overlap Settings
Various settings are used to control the precision and handling of overlaps during the find
overlap process. A listing of the settings that find overlap uses is printed using the command:

Find [Surface] Overlap Settings

These settings, and the commands used to control them, are described below.

Facet - Absolute/Angle - The angular tolerance indicates the maximum angle between normals
of adjacent surface facets. The default angular tolerance is 15 - consider using a value of 5. This
will generate a more accurate facetted representation of the geometry for overlap detection. This
can be particularly useful if the overlap command is not finding surface pairs as you would
expect, particularly in "curvy" regions. Note however that the algorithm will run slower with
more facets. The distance tolerance means the maximum actual distance between the generated
facets and the surface. This value is by default ignored by the facetter - consider specifying a
reasonable value here for more accurate results.

Set Overlap [Facet] {Angle|Absolute} <value>

Gap - Minimum/Maximum - the algorithm will search for surfaces that are within a distance
from the minimum to maximum specified. The default range is 0 to 0.01. Testing has shown this
to be about right when searching for coincident surfaces. Gaps can be found by using a range
such as 3.95 to 5.05.

Set Overlap {Minimum|Maximum} Gap <value>

Angle - Minimum/Maximum - the algorithm will search for surfaces that are within this angle
range of each other. The default range is 0.0 to 5.0 degrees. Testing has shown that this range
works well for most models. It is usually necessary to have a range up to 5.0 degrees even if you
are looking for coincident surfaces because of the different types of faceting that can occur on
curvy type surfaces. For example, for the case of a shaft in a hole, the facets of the shaft usually
won't be coincident with the facets of the hole, but may be offset by a certain distance
circumferentially with each other. The 5 degree max angle range will account for this. If you find
that the algorithm is not finding coincident surfaces when it should, you can increase the upper
range of this value. Note that this parameter is useful also for finding plates coming together at
an angle.

Set Overlap {Minimum|Maximum} Angle <value>

Normal - this setting determines whether to search for surfaces whose normals point in the same
direction as each other (same), away from each other (opposite) or either (any). The default is
ANY, but it may be useful to limit this search to opposite, as this would be the usual case for
most finds.

Set Overlap Normal {ANY |opposite|same}

Tolerance - two individual facets must overlap by more than this area for a match to be found.
Consider the two cylindrical curves at the interface of the shaft and the block in Figure 2. Note
that some of the facets actually overlap, even though the curves will analytically be coincident.
You can filter out false matches by increasing the overlap tolerance area. The default value for
this setting is 0.001.

Set Overlap Tolerance <value>

236

Cubit 15.1 User Documentation

e Facet

BElock - e
- \\.Qr’/ Cverlap

[o=

Figure 2. Possible false find due to overlap (tolerance will prevent finding match)
Group - the surface pairs found can optionally be placed into a group. The name of the group
defaults to "overlap_surfaces".

Set Overlap Group {on|OFF}

List - by default the command lists out each overlapping pair - this can be turned off using the
command:

Set Overlap List {ON|off}

Display - by default the command clears the graphics and displays each overlapping pair - this
can be turned off using the command:

Set Overlap Display {ON|off}

Body - by default the command will not search for overlapping pairs within bodies - only
between different bodies. Turn this setting on to search for pairs within bodies. Note however
that this will slow the algorithm down.

Set Overlap [Within] {Body|Volume} {on|OFF}

Imprint - If on, Cubit will imprint the overlapping surfaces that it finds together. This will often
force imprints that just imprinting bodies together will miss. For each pair of overlapping
surfaces, the containing body of one surface is imprinted with the individual curves of the other
surface, until the resulting surfaces no longer overlap.

Set Imprint {on|OFF}

Geometry Accuracy
The accuracy setting of the ACIS solid model geometry can be controlled using the following
command:

[set] Geometry Accuracy <value = 1e-6>

Some operations like imprinting can be more successful with a lower accuracy setting (i.e., 0.1 to
le-5). However, it is not recommended to change this value. Be sure to set it back to 1e-6 before
exporting the model or doing other operations as a higher setting can corrupt your geometry.

Regularizing Geometry

The regularize command removes unnecessary topology, which in effect reverses the imprint
operation. This can help clean up the model from extra features that are unnecessary for the
geometric definition of the model. The following command regularizes the model:

Regularize Body|Group|Volume|Surface|Curve|Vertex <range>

237

If you are frequently using web-cutting or other boolean operations to decompose your
geometry, it may be convenient to always generate regularized geometry. To set creation of
regularized geometry during boolean operations use the following command:

Set Boolean Regularize [ON | off]

Stitching Sheet Bodies

The stitch command stitches together the specified sheet bodies into either a larger sheet body or
a solid volume(s). The tolerance value can be used when these sheet bodies don't line up exactly
along the edges. This is common for IGES and STEP models. Only manifold stitching is
performed, i.e., edges will be shared with no more than two surfaces.

Stitch {Body|Volume} <id_range> [Tolerance <value>] [No_tighten_gaps]
This command has three stages to it:

1. Stitch the surfaces together along overlapping edges Normally IGES and some STEP

files do not contain topological information that links surfaces together to share bounding

curves. Stitching is an operation that builds up this topological information.

Simplify geometry The command replaces splines with analytics where possible.

3. Tighten up gaps (inaccuracies) between the sheet bodies The command will build the
geometry necessary to tighten the gaps in the model.

no

When the stitch operation completes, a print statement lets the user know if the resulting body is
not a closed, solid body.

If the no_tighten_gaps option is included, the third step of the stitching process is excluded.
This may be necessary in very large or complex models, where the regular approach fails.

Trimming and Extending Curves
Curves can be trimmed or extended with the following command:

Trim Curve <id> AtlIntersection {Curve|Vertex <id>} Keepside Vertex <id>
[near]

Curves can be trimmed or extended where they intersect with another curve or at a vertex
location. When trimming to another curve, the curves must physically intersect unless they both
are straight lines in which case the near option is available. With the near option the closest
intersection point is used to the other line - so it is possible to trim to a curve that lies in a
different plane. When trimming to a vertex, if the vertex does not lie on the curve, it is projected
to the closest location on the curve or an extension of the curve if possible.

The Keepside vertex is needed to determine which side of the curve to keep and which side to
throw away. This vertex need not be one of the curve's vertices, nor does it need to lie on the
curve. However, if it is not on the curve it will be projected to the curve and that location will
determine which side of the curve to keep.

If the curve is part of a body or surface, it is simply copied first before trimming/extending. If it
is a free curve a new curve is created and the old curve is removed. The figures below show
several examples of trimming/extending curves.

238

Cubit 15.1 User Documentation

Trimming a Curve

Trim to
Curve

Heepside vertex

£
\ \

Figure 1. Trimming a Curve to an Intersecting Curve

Trim to
Curve

Keepmde Yertex
Figure 2. Trimming a Curve to a Non-Intersecting Curve Using the Near Option

Trim to
Wettex

Heep3|de Wertex

Figure 3. Trimming a Curve to a Vertex

239

Extending a Curve

Tritm to
Curye

Keepside vertex

4
\

Figure 4. Extending a Curve to An Intersecting Curve

Trim to
Vertex

Keepzside Yertex

/

Figure 5. Extending a Curve to a Non-Intersecting Vertex Using the Near Option

Validating Geometry
Detailed checks of geometry and topology can be performed using the validate command:

Validate {Body|Volume|Surface|Curve|Vertex|Group} <id_range>
Validate {VVolume|Surface|Curve|Vertex} <range> Mesh

The Validate {...} mesh command performs a connectivity check of the mesh elements to
determine the validity of the mesh.

More rigorous checking can be accomplished with the validate geometry commands by
specifying a higher check level. Use the following command to accomplish this:

set AcisOption Integer ‘check_level' <integer>
where integer is one of the following:

10 = Fast error checks

20 = Level 10 checks plus slower error checks (default)

30 = Level 20 checks plus D-Cubed curve and surface checks

40 = Level 30 checks plus fast warning checks

50 = Level 40 checks plus slower warning checks

60 = Level 50 checks plus slow edge convexity change point checks
70 = Level 60 checks plus face/face intersection checks

You can also get more detailed output from the validate command with (the default is off):
set AcisOption Integer ‘check_output’ on

240

Cubit 15.1 User Documentation

Note that some of the ids listed in the output of the validate command are currently meaningless,
e.g. those for coedges.

The validate command can also check for consistent surface normals and return a list of
offending surfaces. The syntax for the command is as follows:

Validate [Body] <body_id> Normal [Reference [Surface] <surface_id>]
[Reverse]

Using the "reference™ keyword, a reference surface is compared to the normal consistency of all
other specified surfaces. Inconsistent surfaces can be reversed using the "reverse™ keyword.

Imprint Merge
Geometry Imprinting and Merging

e Imprinting Geometry

o Merging Geometry

o Examining Merged Entities
o Merge Tolerance

e Unmerging
e Using Geometry Merqging to Verify Geometry

Geometry is created and imported in a manifold state. The process of converting manifold

to non-manifold geometry is referred to as "geometry merging", since it involves merging
multiple geometric entities into single ones. When importing mesh-based geometry, the merging
step can be automatic. Imprinting is a necessary step in the merging process, which ensures that
entities to be merged have identical topology.

Examining Merged Entities

There are several mechanisms for examining which entities have been merged. The most useful
mechanism is assigning all merged or unmerged entities of a specified type to a group, and
examining that group graphically. This process can be used to examine the outer shell of an
assembly of volumes, for example to verify if all interior surfaces have been merged. To put all
the merged entities of a given type into a specified group, use the command:

Group {<’name'>|<id>} add [Surface | Curve | Vertex] with Is_merged
To put all the unmerged entities of a given type into a specified group, use the command:
Group {<’name’>|<id>} add [Surface | Curve | Vertex] with Is_merged=0

Entities can also be labeled in the graphics according to the state of their merge flag. See
the Preventing geometry from merging section for information on controlling the merge flag. To
turn merge labeling on for a specified entity type, use the command

Label {Vertex | Curve | Surface} Merge

Imprinting Geometry

To produce a non-manifold geometry model from a manifold geometry, coincident surfaces must
be merged together (See Geometry Merging); this merge can only take place if the surfaces to be
merged have like topology and geometry. While various parts of an assembly will typically have

241

surfaces, which coincide geometrically, an imprint is necessary to make the surfaces have like
topology. There are three types of imprinting:

e Reqular Imprinting
e Tolerant Imprinting
e Mesh-Based Imprinting

To preview which surfaces can or should be imprinted, or to force imprints that the regular
imprint command misses, the Find Overlap command can be used.

Regular Imprinting

The commands used to imprint bodies together are:

Imprint [Volume|BODY] <range> [with [Volume|BODY] <range>] [Keep]

A body can also be imprinted with curves, vertices or positions, and surfaces can be imprinted
with curves. It is useful to imprint bodies or surfaces with curves to eliminate mesh skew,
generate more favorable surfaces for meshing, or create hard lines for paving. Imprinting with a
vertex or position can be useful to split curves for better control of the mesh or to create hard
points for paving.

Imprint Body <body_id_range> [with] Curve <curve_id_range> [Keep]
Imprint Body <body_id_range> [with] Vertex <vertex_id_range> [Keep]
Imprint {Volume|Body} [with] Position <coords> [position <coords> ...]
Imprint Surface <surface_id_range> [with] Curve <curve_id_range> [Keep]

An Imprint All will imprint all bodies in the model pairwise; bounding boxes are used to filter
out imprint calls for bodies which clearly don't intersect.

Imprint [Body] All

Tolerant Imprinting

Normal imprinting may be ineffective for some assembly models that have tolerance problems,
generating unwanted sliver entities or missing imprints altogether. Tolerant imprinting is useful
for dealing with these tolerance challenged assemblies. To determine coincident and overlap
entities, tolerant imprinting uses the merge tolerance. The commands also include an optional
tolerance value that will be used for the purposes of the single command. Specifying an optional
tolerance value will not change the default, system tolerance value.

A limitation of tolerant imprinting is that it cannot imprint intersecting surfaces onto one another,
as normal imprinting can. Tolerant imprinting imprints only overlapping entities onto one other.

Imprint Tolerant {Body|Volume} <range> [tolerance <value>]

Tolerant imprinting can also be used to imprint curves onto surfaces, provided that the tolerance
between surface and curve(s) falls within the merge tolerance. The 'merge’ option will merge the
owning volume of the specified surface with all other volumes that share any curves with this
surface.

Imprint Tolerant Surface <id> with Curve <id_range> [merge] [tolerance
<value>]

Imprint Tolerant Surface <id> <id> with Curve <id_range>

[merge] [tolerance <value>]

Imprint Tolerant Surface <id> <id> [tolerance <value>]

242

Cubit 15.1 User Documentation

The second form of the command imprints the specified bounding curves of one surface onto
another surface and vice versa. Any specified curves that are not bounding either of the two
specified surfaces will not be imprinted. The 'merge’ option will merge all the volumes sharing
any curve of these two surfaces, after the imprint.

It is recommended that normal imprinting be used when possible and tolerant imprinting be used
only when normal imprinting fails.

Mesh-Based Imprinting

Another form of the imprint command,

Imprint Mesh {Body | Volume} <id_list>

uses coincident mesh entities and virtual geometry to create imprints. See the Partitioned
Geometry section for more information on this command.

Imprint Settings

After imprint operations, an effort is made to remove sliver entities: sliver curves and surfaces.
Previously, all curves in participating bodies less than 0.001 were removed. Newer versions of
Cubit changed this because there might be times when the user wants sliver curves/surfaces to be
generated during an imprint operation. In order to give the user more control over the cleanup of
these sliver entities after imprint operations, a command was implemented so that the user can
set an 'imprint sliver cleanup tolerance'. The default tolerance for curves is the merge tolerance
0.0005. The default tolerance for surfaces is a suitable tolerance chosen internally based on the
bounding box of the entity. Sliver surfaces are removed whose maximum gap distance among
the long edges is smaller than the tolerance and who have at most three long edges. A long edge
is an edge whose length is greater than the specified tolerance.

Set {Curve|Surface} Imprint Cleanup Tolerance <value>

Merge Tolerance

Geometric correspondence between entities is judged according to a specified absolute numerical
tolerance. The particular kind of spatial check depends on the type of entity. Vertices are
compared by comparing their spatial position; curves are tested geometrically by testing points
1/3 and 2/3 down the curve in terms of parameter value; surfaces are tested at several pre-
determined points on the surface. In all cases, spatial checks are done comparing a given position
on one entity with the closest point on the other entity. This allows merging of entities which
correspond spatially but which have different parameterizations.

The default absolute merge tolerance used in CUBIT is 5.0e-4. This means that points which are
at least this close will pass the geometric correspondence test used for merging. The user may
change this value using the following command:

Merge Tolerance <val>

If the user does not enter a value, the current merge tolerance value will be printed to the screen.
There is no upper bound to the merge tolerance, although in experience there are few cases
where the merge tolerance has needed to be adjusted upward. The lower bound on the tolerance,
which is tied to the accuracy of the solid modeling engine in CUBIT, is 1e-6.

Finding Nearly Coincident Entities

These commands find vertex-vertex, vertex-curve and vertex-surface pairs whose separation is
within the specified tolerance range. If a tolerance range isn't specified the default will be from
merge tolerance to 10*merge tolerance. It is useful for determining if you need to expand merge
tolerance to accomodate sloppy geometry.

243

Find Near Coincident Vertex Vertex {Body|Volume} <id_range> [low_tol
<value>] [high_tol <value>]

Find Near Coincident Vertex Curve {Body|Volume} <id_range> [low_tol
<value>] [high_tol <value>]

Find Near Coincident Vertex Surface {Body|Volume} <id_range> [low_tol
<value>] [high_tol <value>]

Merging Geometry
The steps of the geometry merging algorithm used in CUBIT are outlined below:

Check lower order geometry, merge if possible

Check topology of current entities

Check geometry of current entities

If both entities are meshed, check topology of meshes.

If geometric topology, geometry, and mesh topology are alike, merge.

SAEN A

Thus, in order for two entities to merge, the entities must correspond geometrically and
topologically, and if both are meshed must have topologically equivalent meshes. The geometric
correspondence usually comes from constructing the model that way. The topological
correspondence can come from that process as well, but also can be accomplished in CUBIT
using Imprinting.

If both entities are meshed, they can only be merged if the meshes are topologically identical.
This means that the entities must have the same number of each kind of mesh entity, and those
mesh entities must be connected in the same way. The mesh on each entity need not have nodes
in identical positions. If the node positions are not identical, the position of the nodes on the
entity with the lowest ID will be used in the resulting merged mesh.

There are several options for merging geometry in CUBIT.

Merge geometry automatically

Merge All [Group|Body|Surface|Curve|Vertex] [group_results][tolerance
<value>]

All topological entities in the model or in the specified bodies are examined for geometric and
topological correspondence, and are merged if they pass the test.

If a specific entity type is specified with the Merge all, only complete entities of that type are
merged. For example, if Merge all surface is entered, only vertices which are part of
corresponding surfaces being merged; vertices which correspond but which are not part of
corresponding surfaces will not be merged. This command can be used to speed up the merging
process for large models, but should be used with caution as it can hide problems with the
geometry.

Test for merging in a specified group of geometry

Merge {Group|Body|Surface|Curve|Vertex} <id_range>[With
{Group|Body|Surface|Curve|Vertex} <id_range>] [group_results] [force]
[tolerance<value>]

All topological entities in the specified entity list, as well as lower order topology belonging to
those entities, are examined for merging. This command can be used to prevent merging of
entities which correspond and would otherwise be merged, e.qg. slide surfaces.

244

Cubit 15.1 User Documentation

Force merge specified geometry entities

Merge Vertex <id> with Vertex <id> Force
Merge Curve <id> with Curve <id> Force
Merge Surface <id> with Surface <id> Force

This command results in the specified entities being merged, whether they pass the geometric
correspondence test or not. This command should only be used with caution and when merging
otherwise fails; instances where this is required should be reported to the CUBIT development
team.

Preventing geometry from merging

Body <id_range> Merge [On | Off]
Volume <id_range> Merge [On | Off]
Surface <id_range> Merge [On | Off]
Curve <id_range> Merge [On | Off]
Vertex <id_range> Merge [On | Off]

These commands provide a method for preventing entities from merging. If merging is set to off
for an entity, merging commands (e.g. "merge all) will not merge that entity with any other.
Other Merge Commands

Set Merge Test BBox {on|OFF}

This is an additional test for merging to see if a pair of surfaces should merge. First, it creates a
bounding box for each surface by summing individual bounding boxes of each of the surface's
curves. A comparison is then made to see if these two bounding boxes are within tolerance. This
can help to weed out any potential incorrect merges that can result from non-tight bounding
boxes.

Set Merge Test InternalSurf {on|OFF|spline}

This is an extra check when merging surfaces. A point on one surface, closest to its centroid is
found. Another point, closest to this point is found on the other surface. If these two points are
not within merge tolerance, the two surfaces will not be merged. If set to on, all surface types
will be included in this check. If set with the spline option, then splines are only checked this
way; analytic surfaces are excluded. This is another check to prevent incorrect merges from
occurring.

Using Geometry Merging to Verify Geometry

Geometry merging is often used to verify the correctness of an assembly of volumes. For
example, groups of unmerged surfaces can be used to verify the outer shell of the assembly
(see Examining Merged Entities.) There is other information that comes from the Merge all
command that is useful for verifying geometry.

In typical geometric models, vertices and curves which get merged will usually be part of
surfaces containing them which get merged. So, if a Merge all command is used and the
command reports that vertices and curves have been merged, this is usually an indication of a
problem with geometry. In particular, it is often a sign that there are overlapping bodies in the
model. The second most common problem indicated by merging curves and vertices is that the
merge tolerance is set too high for a given model. In any event, merged vertices and curves
should be examined closely.

245

Unmerging
The unmerge command is used to reverse the merging operation. This is often in cases where
further geometry decomposition must be done.

Unmerge {all|<entity_list> [only]}

Un-merging an entity means that the specified geometric entity and all lower-order (or child)
entities will no longer share non-manifold topology with any other entities. For example, if a
body is unmerged, that body will no longer share any surfaces, curves, or vertices with any other
body.

[Set] Unmerge Duplicate_mesh {On|OFF}

If any meshed geometry is unmerged, the mesh is kept as necessary to keep the mesh of higher-
order entities valid. For example, if a surface shared by two volumes is to be unmerged and only
one of the volumes is meshed, the surface mesh will remain with whichever surface is part of the
meshed volume.

When unmerging meshed entities, the default behavior of the code is that the placement if the
mesh is determined by the following rules:

« If neither entity has meshed parent entities, the mesh is kept on one of the two entities.
« If one entity has a meshed parent entity, the mesh is kept on

that entity.
« If both entities have meshed parents, the mesh is kept on one

and copied on the other.

If unmerge duplicate_mesh is turned on, the rules described above are overwritten and
whenever a meshed entity is unmerged the mesh is always copied such that both entities remain
meshed.

To get back to the default behavior, turn unmerge duplicate_mesh off.

Virtual Geometry
Virtual Geometry

o Composite Geometry

o Partitioned Geometry

o Collapsing Geometry

o Simplify Geometry

o Deleting Virtual Geometry

The Virtual Geometry module in CUBIT provides a way to modify the topology of the model
without affecting the underlying ACIS geometry representation and without making changes to
the actual solid model. Virtual Geometry includes the capability to composite or partition
geometry as well as creates new virtual geometric entities. Virtual Geometry operations are most
often used as a tool for adjusting the geometry to allow mapping, sub-mapping or sweeping mesh
generation schemes to be applied.

The advantage to using Virtual Geometry is that all operations are reversible. With standard
geometry modification commands, changes are made to the underlying geometry representation
and cannot be changed once effected. With virtual geometry, the original solid model topology
can be easily restored. This is useful when geometry modifications are made in order to apply a

246

Cubit 15.1 User Documentation

particular meshing scheme. Virtual geometry can be applied and later removed once the part has
been meshed.

Collapse Geometry

Collapse Geometry

The collapse geometry commands use virtual geometry to tweak small angles and curves to
improve meshability of geometry models. The following options for collapsing geometry are
available:

e Collapse Angle
o Collapse Curve
e Collapse Surface

Collapse Angle
The collapse command allows the user to collapse small angles using virtual geometry. The
command syntax is:

Collapse Angle at Vertex <id> Curve <id1> [Arc_length <length>] Curve
<id2> [Arc_length <length> | Same_size | Perpendicular | Tangent]
[Composite_vertex <angle>] [Preview]

The collapse angle command is used to eliminate small angles at vertices, where curves meet at a
tangential point. The command will split each curve at a specified distance (61 and 62) as shown
in Figure 1, and create two new vertices along those curves. The remaining small angle will be
composited into its neighboring surface using virtual geometry. The options of the command
allow you to specify where to split each curve. You must input a distance for the first curve (d1),
but the second location can be determined based on the length and direction of the first curve.

Figure 1. Collapse angle syntax
The arclength option will split each curve at a specified distance 81 and 62, (See Figure 1)
measured from the vertex. You must input at least one arclength for each of the options listed
below.
The same_size option will split curve 2 so that the two resulting curves, d1 and 62, are the same
length as shown in Figure 2.

247

Figure 2. Collapse angle using the same_size option
The perpendicular option will split curve 2 so it is perpendicular to the split location on curve 1,
as shown in Figure 3.

Figure 3. Collapse angle using the perpendicular option
The tangent option will split curve 2 where a line tangent to curve 1 at the split location
intersects curve 2, as shown in Figure 4.

Figure 4. Collapse angle using the tangent option
The composite_vertex option automatically composites resulting surfaces if there are only two
curves left at the vertex, and the angle is less than a specified tolerance.
The preview option will preview composited surface before applying changes.

248

Cubit 15.1 User Documentation

Figure 5. An example of a meshed surface that is generated after using the collapse angle
command.

Collapse Curve

The collapse curve command allows the user to collapse small curves using virtual geometry. It
is intended to be used in cases where removing a small curve to simplify topology will facilitate
meshing. The operation can be thought of as reconnecting curves from one vertex on the small
curve to the other vertex. If the user doesn’t specify which vertex to keep during the operation
CUBIT will choose one of the vertices. The operation is performed using virtual partitions and
composites on the curves and surfaces surrounding the small curve. The command syntax is:

Collapse Curve <id> [Vertex <id>] [Ignore] [Real_split]

The vertex keyword allows the user to specify which vertex on the small curve to keep during
the operation or in other words which vertex to "collapse to". Depending on the surrounding
topological configuration some vertices cannot currently be chosen so if the user specifies a
vertex to collapse to that results in a complex topological configuration that CUBIT can’t
currently handle the user will be notified and encouraged to pick a different vertex. If the user
doesn’t specify a vertex CUBIT will attempt to choose the “best” vertex to keep based on
surrounding topology and geometry. Currently, the collapse curve command only handles curves
where the vertex that is NOT retained has a valence of 3 or 4.

The ignore keyword allows the user to specify whether or not small portions of surfaces that are
partitioned off of one surface and composited with a neighboring surface during the collapse
curve operation are considered when evaluating the new composite surface. By specifying

the ignore option the user tells CUBIT that these small surfaces will be ignored in future
evaluations of the composite surface. This can be beneficial in cases where the small surface
makes a sharp angle with the neighboring surface it is being composited with. These first
derivative discontinuities of composite surfaces can make it difficult for the meshing algorithms
to proceed and ignoring the small surfaces during evaluation can help remedy this problem. By
default the small surfaces will not be ignored.

The real_split option tells CUBIT to use the solid modeling kernel's (ACIS) split surface
functionality to do the splitting rather than using virtual partitioning. The result is that you only
have virtual composites at the end and no virtual partitions. The main advantage of using this
option is that the solid modeling kernel's split operation is often more reliable than the virtual
partition.

249

Figure 1 shows a typical example where the collapse curve command should be used to simplify
the topology for meshing.

Figure 1. Example where the collapse curve operation is needed.

Figure 2 shows the above example after collapsing the small curve

Figure 2. Above example after collapsing the small curve.

Collapse Surface
The collapse surface command allows the user to remove surface boundaries from the model.

This is accomplished by splitting the surface at two given locations and combining it into two
adjacent surfaces using virtual geometry operations. The command syntax is:

Collapse Surface <id> Across Locationl Location 2 With Surface <id_list>
[Preview]

The locations option can use any of the general Cubit location commands. However, the vertex
and curve options are among the most useful location options. For example, the command

250

Cubit 15.1 User Documentation

collapse surface 15 across vertex 128 curve 40 with surface 26 117

would split surface 15 by the line that is formed between vertex 128 and the midpoint of curve
40. It would then composite the two parts of surface 15 that are adjacent to surfaces 26 and 117.
The result is that three surfaces have been reduced to two.

The collapse surface command is most useful in removing blended surfaces (i.e. fillets and
chamfers) from a model. For example, Figure 1 below shows a set of highlighted surfaces on a
bracket. By collapsing all these surfaces the model shown in Figure 2 is created. Collapsing the
surfaces for this model simplifies the model and allows for the creation of a higher quality mesh.

Figure 2. Bracket after highlighted edges have been collapsed

Composite Geometry
Composite Geometry

e Composite Curves
e Composite Surfaces

251

The virtual geometry module has the capability to combine a set of connected curves into a
single composite curve, or a set of connected surfaces into a single surface. The general purpose
IS to suppress or remove the child geometry common to those entities being composited. For
example, compositing a set of curves suppresses the vertices common to those curves, thus
removing the constraint that a node must be placed at that vertex location.

The basic form of the command to create composites is:

Composite Create {Surface|Curve} <id_list>

This command will composite as many surfaces (or curves) as possible, in many cases creating
multiple composites.

The entities combined to create the composite must either all be unmeshed or all be meshed. A
meshed composite surface can not be removed unless the mesh is first deleted.

Care should be taken when compositing over large C* discontinuities as it may cause problems
for the meshing algorithms and may result in poor quality elements. C* discontinuities are
corners or abrupt changes in the surface normal.

The command to remove a composite is:

Composite Delete {Surface|Curve} <id>

Composite Curves
The full command for the creation of composite curves is:

Composite Create Curve <id_range> [Keep Vertex <id_list>] [Angle
<degrees>]

The additional arguments provide two methods to prevent vertices from being removed from the
model or composited over. The first method, keep vertex explicitly specifies vertices which are
not to be removed. This option can also be used to control which vertex is kept when
compositing a set of curves results in a closed curve.

The angle option specifies vertices to keep by the angle between the tangents of the curves at
that vertex. A value less than zero will result in no composite curves being created. A value of
180 or greater will result in all possible composites being created. The default behavior is an
empty list of vertices to keep, and an angle of 180 degrees.

Composite Surfaces
The general command for composite surface creation is:

Composite Create Surface <id_range> [Angle <degrees>] [Nocurves] [Keep
[Angle <degrees>] [Vertex <id_list>]]

Related Commands
Graphics Composite {on|off}

The angle argument prevents curves from being removed from the model or composited over.
Composites will not be generated where the angle between surface normals adjacent to the curve
is greater than the specified angle.

When a composite surface is created, the default behavior is to also to composite curves on the
boundary of the new composite surface.

252

Cubit 15.1 User Documentation

Curves are automatically composited if the angle between tangents at the common vertex is less
than 15 degrees. The nocurves option can be used to prevent any composite curves from being
created.

The keep keyword can be used to change the default choice of which curves to composite. The
arguments following the keep keyword behave the same as for explicit composite curve creation.
The nocurves and keep arguments are mutually exclusive.

Controlling the Surface Evaluation Method for Composite Surfaces

It typically takes longer to mesh a single composite surface than to mesh the surfaces used in the
creation of the composite. To improve speed, composite surfaces use an approximation method
to evaluate the closest point to a trimmed surface. However, this evaluation method may give
poor results for composites of highly convoluted surfaces.

The virtual geometry module provides a way to change the way surfaces are evaluated using the
following command:

Composite Closest_pt Surface <id> {Gme|Emulate}

The default behavior is to use the emulate method, as it is typically considerably faster.
Specifying the gme option will force the specified composite surface to use the exact calculation
of the closest point to a trimmed surface, as provided by the solid modeler. The gme option,
however, can be considerably slower.

Composite Determination

The composite create surface command is non-deterministic in some circumstances. When
three or more adjacent surfaces are to be composited, all the surfaces may not be able to be
composited into a single surface as illustrated in Figure 1. In this case different subsets of the
surfaces may be composited and the command will choose arbitrary subsets to composite. As an
example, there are three surfaces A, B, and C, all adjacent to each other. The common curve
between A and B is AB, the common curve between B and C is BC, and the common curve
between A and C is CA. If the curve BC cannot be removed, either due to the angle specified in
the composite command, or because there is a fourth surface, D, also using that curve, the
command will arbitrarily choose to either composite A and B or A and C.

253

Figure 1. In some cases, the program will make a determination of which surfaces to
composite.

Partitioned Geometry

Partitioned Geometry

Partitioning provides a method to introduce additional topology into the model, to better
constrain meshing algorithms. This is accomplished by splitting, or partitioning, existing curves
or surfaces.

o Partitioned Curves

o Partitioned Surfaces

o Partitioned Volumes

e Using Mesh Intersections to Partition Surfaces
e Removing Partitions

Removing Partitions
There are two commands used to remove partitions:

Partition Merge {Curve|Surface|Volume} <id_list>

The command combines existing partitions where possible. This command is similar to

the composite create command. The difference is that this command is special-cased for
partitions, and will result in more efficient geometric evaluations. If all the partitions of a real
solid model entity are merged, such that there is only one partition remaining, the virtual
geometry will be removed, and the original solid model geometry will be restored to the model.

254

Cubit 15.1 User Documentation

The CUBIT delete command can also be used for removing partitions. See Deleting Virtual
Geometry for a description of its use.

Using Mesh Intersections to Partition Surfaces
To assist in various mesh editing tasks such as joining, a mesh-based imprinting capability is
provided. The command

Imprint Mesh {Body | Volume} <id_list>

determines imprint locations using the mesh on the surfaces of the specified bodies or volumes.
Regions of coincidence between the surfaces is determined by searching for coincident nodes in
the mesh of the surfaces. Virtual geometry is then used to partition the surfaces and curves at the
boundary of these regions of coincident mesh.

The imprint mesh functionality differs from a normal geometric imprint in the following ways:

The location of the imprint is determined from coincidence of mesh nodes.

The mesh remains intact through the imprint operation.

Virtual geometry is used to create the imprint.

The imprinting can be done on all types of geometry (including mesh-based geometry,
merged geometry, and virtual geometry.)

The following is a trivial example of this capability. The following commands create two
meshed blocks:

brick width 10
brick width 6
body 2 move x 8
volume 12size 1
mesh volume 1 2

Figure 1 shows the results of these commands.

Figure 1. Two adjacent meshed volumes. The coincident meshes will form the basis of the
Imprint operation.
The mesh of the blocks can be joined by first doing a mesh-based imprint and then merging:

255

imprint mesh body 1 2
merge body 1 2

Figure 2. shows the results of the imprint operation. A meshed surface is created at the interface
between the two meshed volumes. The nodes on the new surface are shared by the neighboring
hexahedra of both volumes.

Figure 2. The imprinted surface. Adjacent volume meshes joined at the interface surface.

Partitioned Curves
There are four methods for specifying locations at which to partition curves:

Partition Create Curve <curve_id> {Fraction <fraction_list> | Position
<Xp0s> <ypos> <zpos> | [with] <vertex_list> | <node_list>}

The first two forms of the command create additional vertices and use those vertices to split a
curve. The third form of the command uses existing vertices to split the curve. The fourth form
of the command uses existing nodes to split the curve.

Using the fraction option, vertices are created at the specified fractions along the curve (in the
range [0,1].) Subsequently, the curve is split at each vertex, resulting in n+1 new curves, where n
is the number of fraction values specified.

Using the position option, vertices are created at the closest location along the curve to each of
the specified position. Subsequently, the curve is split at each vertex, resulting in n+1 new
curves, where n is the number of positions specified.

If the node option is used, meshed curves may be partitioned. The specified nodes must lie on
the curve to be partitioned. The curve is split at each node specified, and any other mesh entities
are divided appropriately amongst the curve partitions.

Partitioned Surfaces
There are several forms of the command to partition a surface. A surface may be partitioned
using hard points, curves, polylines, mesh edges, mesh faces or mesh triangles.

o Partitioning with Vertices or Nodes
o Partitioning with Curves
e Partitioning with Mesh Edges

256

Cubit 15.1 User Documentation

o Partitioning with Mesh Faces or Triangles

Partitioning with Vertices and Nodes

Partitioning with Hard Points

There are two methods of partitioning a surface using vertices and nodes. The first method is to
create a set of hard points using nodes, vertices, or coordinates that constrain the mesh to
particular points on the surface. The syntax is:

Partition Create Surface <id> Vertex <id_list> [Individual]
Partition Create Surface <id> Node <id_list> [Individual]

Partitioning with Polylines

The second method is to define a polyline using a set of vertices or coordinates. This method
splits the surface using a polyline defined by the a list of positions specified as either coordinate
triples, or existing vertices. The polyline is projected to the surface to define the curve for
splitting the surface. If only one position is specified a zero-length curve with a single vertex will
be created The syntax is identical to above WITHOUT the individual option.

Partition Create Surface <id> Vertex <id_list>
Partition Create Surface <id> Position <x> <y> <z> [[Position] <x> <y> <z>

]

In the following simple example, the surface is partitioned using both methods. On the left half
of the object, the surface is partitioned using the individual option (vertices 11 12 15 13). On the
right half, a polyline is used (vertices 9 10 16 14). All of the free vertices can then be deleted,
leaving the virtual curves shown in the second picture. Vertices 19 20 21 and 22 are all zero-
length curves. The small 'v' in parentheses is to indicate that it is virtual geometry. The resulting
mesh is shown in the third picture. Notice that the polyline constrains the entire curve to the
mesh, while the hardpoints constrain only that individual point.

257

)
Figure 1. Partitioning a Surface Using Vertices

Partitioning with Curves

This form of the command splits the existing surface into several surfaces by creating curves that
approximate the projection of the specified existing curves onto the surface. The syntax is:

Partition Create Surface <id> Curve <id_list>

Partitioning with Mesh Edges

Meshed surfaces may be partitioned with mesh edges. The specified mesh edges must be owned
by the surface to be partitioned. The shape of the curve(s) used to split the surface is specified by
a set of mesh edges.

If the split location is specified by a series of mesh edges, and the specified mesh edges form a
closed loop, the node option may be used to control which node the vertex is created at.

Partition Create Surface <id> Edge <id_list> [Node <node_id>]

Partitioning with Faces or Triangles

Surfaces may also be partitioned by specifying a list of triangles or faces (quads). The boundary
of the list will automatically be detected and new curves and vertices created at the appropriate
locations. Curves are created from the mesh edges and used to split the surface. The surface
mesh is split and assigned to the appropriate surface partitions.

Partition Create Surface <id> Face|Tri <id_list>

Partitioned Volumes
To partition a volume by giving a center and radius:

Partition Create Volume <id> Center [Location] {options} Radius <val>

This command splits the existing volume into two volumes. All volume elements that lie within
the specified radius of the specified center location are identified, and the exterior faces of these
elements are used to create a surface and partition the volume. The center can be specified with
any of the location options.

258

Cubit 15.1 User Documentation

Figure 1 shows an example of a partitioned volume. A cube that has been map meshed is
partitioned using a center at one of its vertices. The result is two distinct volumes with a surface
separating the two. The interface surface is composed of the faces of the interior hex elements.

i.
Figure 1. A partitioned volume

This command may be useful for separating small regions of a meshed volume so that remeshing
or mesh improvement may be performed locally.

Deleting Virtual Geometry
Removing Virtual Geometry
The following command removes all lower-order virtual geometry from the specified entities.

Virtual Remove <entity _list>

Examples:
virtual remove surface 5

Removes all composite and partition curves from surface 5.
virtual remove body all

Remove all virtual geometry from all bodies.
For removing individual virtual entities, see the sections of the documentation for each type of
virtual entity:

e Composite curves

o Composite surfaces
o Partition curves

o Partition surfaces

259

Using The Delete Command With Composites

If the general delete command is invoked for a composite surface, the composite surface will be
removed, and the original surfaces used to define the composite will be restored to the model.
The defining surfaces are NOT also deleted. As with any other non-virtual surfaces, the delete
command will fail if the composite has a parent volume.

To delete composite surfaces with a parent volume, the composite delete command can be used.
The behavior is analogous for composite curves.

If the delete command is used on a volume containing a composite surface or curve, or on a
surface containing a composite curve, the entire volume or surface will be deleted, including the
original entities used to define the composite, as those entities are also children of the entity
being deleted.

Using the Delete Command With Partitions

It is recommended that the delete command not be used with partitions, as it may break
subsequent usage of the merge and delete forms of the partition command for other partitions of
the same real geometry entity. However, if the delete command is used for partitions, the
behavior is to delete the specified partition, and when the last partition of the real geometry is
deleted, to restore the original geometry.

The delete command can also be used on parents of partitions. For example, a volume containing
partitioned surfaces, or a surface containing partitioned curves can be deleted. In this case, the
specified entity will be deleted along with all of its children, including the partition entities, and
the original entities that were partitioned.

Simplify Geometry

Simplifying topology by compositing individually selected surfaces is often a tedious and time-
consuming task. The simplify command addresses the tedium by automatically compositing
surfaces and curves based on selected criteria between neighboring entities. Figure 1 shows a
typical example of simplify command usage (‘simplify volume 1 angle 15°).

260

Cubit 15.1 User Documentation

Figure 1. Typical Simplify command usage
The command syntax and discussion items are shown below.

Simplify {Volume|Surface|Curve} <range> [Angle< value >] [Respect
{Surface <id_range> | Curve <id_range> | Vertex <id_range>| Imprint |
Fillet}] [Local_Normals] [Preview]

Feature Angle

Feature angle is defined as the angle between the average facet normals of two neighboring
surfaces. If the angle is less than the specified angle then the two surfaces are composited
together (assuming any other specified criteria are met). Feature angle is always used as criteria
and if an angle is not specified the value is set to 15 degrees.

261

Automatically Compositing Curves

The simplify command can also be used to automatically composite curves using an angle
tolerance. Curves will be composited together only if they are explicitly specified in this
command, and not as the result of two surfaces being composited.

Respecting Vertices, Curves and Surfaces

Surfaces, curves, and vertices can be specified to prevent geometry features from automatically
being composited. Figure 2 show an example of respecting a surface (‘simplify vol 1 angle 15
respect surf 289).

\J

Figure 2 Respecting a surface
For complex geometries, it is often useful to preview the simplify command and then add any
respected geometry to the command respect lists.
Respecting Imprints
Curves created by imprints can automatically be respected by the simplify command. Figure 3
shows an example of geometry with split fillets.

\ 77

Figure 3 Respecting imprint geometry
Notice that in the split curves are respected by the Simplify command (‘simplify vol 1 angle 40
respect imprint’).
Using Local Normals
By default the command will compare the average normal of two adjacent surfaces to determine
whether they should be composited. By issuing the local_normal option, the test will be modifed
slightly. The modified test will compare the maximum difference between normals along the
shared curve(s) for the two surfaces.

262

Cubit 15.1 User Documentation

Figure 4. Comparison of surface normals using the average surface normal method (on the
left) and local normal method (on the right).

Other Options

The preview option shows what curves are respected without compositing any surfaces. It should

also be pointed out that multiple respect specifications can be chained together. For example:

Simplify volume 1 angle 15 respect curve 1 respect imprint respect fillet
preview

Geometry Orientation

The orientation of surface and curve geometry is the direction of the normal and tangent vectors
respectively.

Each surface has a forward (or top) side. The evaluation of the surface normal at any point on the
surface will return a vector at that point, orthogonal to the surface and directed towards the
forward side of the surface. The mesh faces generated on each surface will have the same normal
direction as their owning surface.

Each curve has a forward direction and a corresponding start and end vertex. The direction of the
curve is from start to end vertex. The evaluation of the tangent vector of the curve at any point
along the curve will result in a vector that is both tangent to the curve and pointing in the forward
direction of the curve (towards the end vertex along the path of the curve.) The mesh edges
created on each curve will be oriented in the same direction as their owning curve. The exported
nodes and edges of a curve mesh will be written in the order they occur along the path of the
curve.

Higher-dimension geometry has uses lower-dimension geometry with an associated sense
(forward or reversed) for each lower-dimension entity. For example, a volume as a sense for
each surface used to bound the volume. If t