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Abstract. A multiscale framework to construct stochastic macroscopic constitutive material
models is proposed. A spectral projection approach, specifically polynomial chaos expansion,
has been used to construct explicit functional relationships between the homogenized proper-
ties and input parameters from finer scales. A homogenization engine embedded in Multiscale
Designer, software for composite materials, has been used for the upscaling process. The frame-
work is demonstrated using non-crimp fabric composite materials by constructing probabilistic
models of the homogenized properties of a non-crimp fabric laminate in terms of the input
parameters together with the homogenized properties from finer scales.
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1 INTRODUCTION

Conventional approaches to perform multiscale designs have been to average over the fluc-
tuations of the material properties throughout the scales. In these approaches it is possible to
deduce the constitutive material properties at the macroscopic scale from information avail-
able at finer scales [1], where the properties are computed by averaging over fluctuations in the
stress response of the material. For instance, to deduce the material properties of continuous
non-crimp fabric (NCF) composite materials, the averaged homogenized properties of a unit
cell of a unidirectional lamina (consisting of a tow surrounded by resin within a bounded vol-
umetric unit), at the so-called meso-scale are required. These meso-scale properties of the tow
are in turn homogenized properties from its constituents at a finer scale, i.e., micro- scale.

Robust designs for such complex systems, where properties across scales matter, require re-
liable accounting of the material features as well as the fluctuations and uncertainties associated
with the description and the performance of the constitutive representations at the various scales
of interest. The main objective of this work is to propose a multiscale framework that is able
to account for uncertainties associated with finer scales explicitly. The multiscale framework
is demonstrated by performing stochastic modeling of an NCF composite material across mul-
tiple scales. Specifically, the uncertainties associated with three hierarchical scales have been
assimilated from available measurements and propagated throughout the scales. A Polynomial
Chaos (PC) spectral projection approach [2] has been used to construct the hierarchical func-
tional relationships throughout the scales. The hierarchy of the scales starts at the scale of the
fibers and resin within the tows and goes upward to construct stochastic constitutive models of a
laminate or a structure composed of composite laminates. A homogenization engine embedded
in Multiscale Designer [3], software for composite materials, has been used for the upscaling
process. The proposed framework (i) is suitable for the modeling and analysis of composite
materials, (ii) can be generalized to account for the behavior of physical systems containing
composite parts, and (iii) can be incorporated in inverse calibration frameworks.

2 DEFINITION OF THE COMPOSITE MATERIALS

The proposed multiscale framework is used to construct probabilistic models of composite
laminates that are up-scaled across multiple scales. The composite laminates consist of eight
laminae made of continuous non-crimp fabric (NCF). That is, each lamina is composed of con-
tinuous unidirectional tows and resin. The carbon fiber tows are made of 12K fibers (T700SC
12000 50C). The laminate is designed to be symmetric such that the laminae are oriented as
[0/45/− 45/90/90/− 45/45/0].

3 DEFINITION OF THE SCALES AND THE RESPECTIVE ASSOCIATED PARAM-
ETERS

The NCF laminate, used in this study, is composed of 8 laminae. Each lamina is composed
of unidirectional tows and resin. The tows are composed of fibers with resin filling the space
between the fibers. Thus, the properties of the fibers and resin are required to predict the consti-
tutive properties of the tows. Then, the properties of the composite tows and those of the resin
again are required to predict the constitutive properties of the NCF unidirectional lamina, which
in turn together with other laminae, being oriented according to a certain layout, are required
to predict the constitutive properties of the eight-layer laminate. The chart depicted in Figure 1
defines the multiple scales involved in the aforementioned upscaling process.
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Figure 1: Schematic definition of the multiple scales.

The input parameters at each scale are grouped as (a) the parameters introduced at the scale
(l) and which are characterized from available data at this scale, and (b) the parameters that are
up-scaled from level (l − 1). The parameters belonging to the first group are denoted by Pl,
where l refers to the respective scale. These groups are specific inputs to each level l; i.e., P0

is a group of inputs at level 0, and so on. The parameters belonging to the second group are
denoted by Ql. The parameters from this group are input parameters at level l that have been
obtained via an upscaling process from level l − 1 to level l. The parameters from both groups
are defined in the following subsections at each level.

3.1 Input parameters associated with level l = 0

The set of input parameters at level l = 0, P0, consists of three groups P0
g, P

0
f ,and P0

m

representing the parameters associated with the geometry of the unit cell, the material properties
of transverse isotropic fibers, and the material properties of isotropic matrix, respectively.

Group Parameter Description
P0
g V F,T

f % Volume fraction of fiber within the tow

P0
f

Ef,A Axial Young’s modulus of fibers
Ef,T Transverse Young’s modulus of fibers
Gf,A Axial shear modulus of fibers
νf,A Axial Poisson’s ratio of fibers
νf,T Transverse Poisson’s ratio of fibers

P0
m

Em Young’s modulus of the matrix
νm Poisson’s ratio of the matrix

Table 1: Input parameters P0 at level l = 0 .

These parameters are modeled by uniform random variables. The volume fraction of fibers
within the tow is denoted by V F,T

f . The subscripts A and T , used with the tow material proper-
ties, denote the axial and transverse properties, respectively.
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3.2 Input parameters associated with level l = 1

The set of input parameters at level l = 1, P1, consists of two groups P1
g and P1

m rep-
resenting the parameters associated with the geometry of the unit cell in a NCF lamina and
the material properties of an isotropic matrix, respectively. These parameters are modeled by
uniform random variables.

Group Parameter Description

P1
m

Em Young’s modulus of the matrix
νm Poisson’s ratio of the matrix

P1
g

Da Major diameter of the tow
da Free distance along the major axis
Db Minor diameter of the tow

Table 2: Input parameters P1 at level l = 1 .

The geometry parameters define the dimensions of the unit cell of a NCF unidirectional
lamina and are listed in Table 2. These are illustrated by the drawing in Figure 2, where Da and
Db refer to the diameters of the tow along the major and minor directions, da and db refer to the
gap between the tows along the major and minor directions, which are filled in by the matrix.
Here, db is assumed to be constant and equal to 0.1 mm. The dimensions of the unit cell are
denoted by Sa = Da + da and Sb = Db + db.

Figure 2: A schematic drawing of a unit cell in a NCF unidirectional lamina.

In addition, another set of input parameters at this scale is Q1, the set of homogenized mate-
rial properties of the tow. These are the outcome of the homogenization H1 associated with the
upscaling process from level l = 0 to level l = 1.

Group Parameter Description

Q1

Et,A Axial Young’s modulus of tow
Et,T Transverse Young’s modulus of tow
Gt,A Axial shear modulus of tow
νt,A Axial Poisson’s ratio of tow
νt,T Transverse Poisson’s ratio of tow

Table 3: Input parameters Q1 at level l = 1 .

The material properties of the homogenized tow, which manifest a transverse isotropic sym-
metry, are denoted by Q1 = (Et,A, Et,T , Gt,A, νt,T , νt,A); where the subscript t refers to the
tow and the subscripts A and T refer to the axial and transverse properties, respectively.
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3.3 Input parameters associated with level l = 2

The input parameters at level l = 2, P2, consists of the geometry layout of the laminae
within the eight-layer laminate, P1

g. The orientation of the unidirectional laminae is defined as
[0/45/− 45/90]s, where the upper and lower laminae are oriented along the 0o axis. The num-
ber of laminae is fixed for the laminate analyzed in this paper. The orientation of each lamina
is also considered constant at this stage.

Moreover, the other set of input parameters at this scale, Q2, is the set of homogenized ma-
terial properties of a unidirectional NCF lamina. These are the outcome of the homogenization
H2 associated with the upscaling process from level l = 1 to level l = 2. The material properties
of the homogenized lamina, which are expected to manifest a transverse isotropic symmetry, are
denoted by Q2 = (El,A, El,T , Gl,A, νl,T , νl,A); where the subscript l refers to the lamina and
the subscripts A and T refer to the local axial and transverse properties, respectively.

Group Parameter Description

Q2

El,A Axial Young’s modulus of NCF lamina
El,T Transverse Young’s modulus of NCF lamina
Gl,A Axial shear modulus of NCF lamina
νl,A Axial Poisson’s ratio of NCF lamina
νl,T Transverse Poisson’s ratio of NCF lamina

Table 4: Input parameters Q2 at level l = 2 .

3.4 Output parameters associated with level 3

The layout of the laminate, [0/45/ − 45/90]s, is designed to have quasi-isotropic material
properties. These are grouped in Q3 and are: (1) Exx = Eyy, (2) Ezz , (3) Gyz = Gxz, (4) Gxy,
(5) νxy = νyx, (6) νxz = νyz, and (7) νzx = νzy.

4 HOMOGENIZATION APPROACH

A homogenization engine embedded in Multiscale Designer, software for composite mate-
rials, has been used for the upscaling process [3]. The multiscale design system enables the
analysis and design of material systems, such as composite materials given their microstruc-
ture. An appropriate unit cell morphology is selected for each of the tow homogenization and
the lamina homogenization, respectively.

5 MULTI-SCALE STOCHASTIC ASSIMILATION USING A SPECTRAL PROJEC-
TION APPROACH

The homogenized properties of the laminate are obtained by upscaling the material and ge-
ometry parameters of the ordered laminae. The material properties of a lamina are obtained
using a homogenization protocol that upscales the material and geometry parameters of a unit
cell representing a lamina and consisting of a unidirectional tow. The homogenized material
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properties of a tow are also obtained using a similar homogenization protocol that upscales the
geometry and material properties of a unit cell of fibers and resin.

This hierarchy of upscaling processes is addressed in this current work by propagating un-
certainties associated with parameters from each scale to construct probabilistic models of the
homogenized material properties of the laminate. It is worth noting that the proposed hier-
archical framework is not confined to the eight-layer laminate addressed in this paper. It is
a general framework that can be applied to other composite materials or any heterogeneous
material where fluctuations observed at coarse scales are influenced by fluctuations present at
multiple finer scales.

The propagation of uncertainties across the scales has been carried out using a Non-Intrusive
Spectral Projection (NISP) approach [4]. The NISP approach enables probabilistic models of
the engineering constants representing the homogenized material properties of a laminate as
well as the homogenized properties at lower levels. In other words, stochastic surrogate models
could be constructed to approximate the functional relationship of the parameters Ql, l denotes
the corresponding level, in terms of the input parameters at the finer scales (lower levels); i.e.,
Q3 can be expressed in terms of P0, P1, and P2 instead of P2 and Q2. This is achieved by
projecting the stochastic properties Ql on a finite-dimensional stochastic space, Θ, through
an orthogonal projection. The dimension of this stochastic space equals the dimension of the
grouped input variables P = {P0, P1, · · · , Pl−1}. To do so, a mapping of Ql to a probability
space, Θ, can be expressed in terms of a truncated polynomial chaos (PC) expansion [2] as,

Ql (ξ) =

Npc∑
j=0

qlj Ψj(ξ), (1)

where, l = 1, 2, or 3 refers to the level of upscaled parameters Ql, and Ψj(ξ) is the PC ba-
sis which consists of a set of normalized multi-dimensional orthogonal polynomials in ξ; ξ is a
vector grouping normalized standard variables. The mapping between ξ and the independently-
assumed random variables Pi, introduced in the previous sections at the finer scales i, is defined
such that Φξ

(
ξ
)

= ΦP
(
P
)
. The parameters qlj are the projection coefficients and Npc + 1 is the

dimension of the PC terms, which can be defined in terms of the PC order q and the stochastic
dimension Nrv denoting the size of vector ξ.

The orthogonality condition can be expressed in terms of the inner product, defined on the
stochastic space Θ, as,

〈Ψi(ξ),Ψj(ξ)〉 = 〈Ψj(ξ),Ψj(ξ)〉 δij, (2)

where,

〈u, v〉 =

∫
Θ

u(ξ) v(ξ) pξ(ξ) dξ, (3)

The projection coefficients qlj at level l can be expressed, given the orthogonality of the basis,
in terms of the following inner products,

qlj =

〈
Ql(ξ),Ψj(ξ)

〉
〈Ψj(ξ),Ψj(ξ)〉

, j = 0, 1, ..., Npc. (4)
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To estimate
〈
Ql(ξ),Ψj(ξ)

〉
, a sparse grid cubatures (SGC) approach could be used [4]. Ac-

cording to this approach, Nsgc sets of ξ realizations and associated weights are generated; ξ(i)

and wi, i = 1, · · · , Nsgc [5]. The dimension of each set Nsgc is a function of the stochastic
dimension Nrv and the level of the sparse grid cubatures L. Thus,

qlj =

Nsgc∑
i=1

wi Q
l(ξ(i)) Ψj(ξ

(i)) , j = 1, · · · , Npc. (5)

The spectral representation defined in eqation 1 is then fully identified in terms of the PC coeffi-
cients. The mean values, Q

l
, and variances, V ar

[
Ql (ξ)

]
, of the projected quantities of interest

can be estimated, given the orthogonality of the basis, respectively, as,

Q
l
= q0

j . (6)

V ar
[
Ql (ξ)

]
=

Npc∑
j=1

qlj
2
. (7)

6 EXAMPLE AND DISCUSSION

As explained in the previous section, it is possible to express the homogenization output at
multiple scales (Ql, Q2, and Q3) using the same set of SGC nodes. First, the quantities of
interest are computed at a set of SGC nodes, each of which consists of a combination of input
parameters reported earlier for each scale. The process is repeated for increasing values of the
SGC level in order to determine the appropriate SGC level. Second, at each of the given SGC
levels, a set of respective polynomial chaos coefficients are estimated using equation 5. The
estimated coefficients of (i) the axial modulus of a homogenized tow, Et,A from level l = 1,
(ii) the axial modulus of a homogenized NCF lamina, El,A from level l = 2, and (iii) the axial
modulus of a homogenized NCF laminate Exx from level l = 3 are plotted in Figures 3 to 5,
respectively. The x-axis represents the index of the terms in the polynomial chaos expansion
while the y-axis represents the value of the coefficients. The axial indices 1 to 11 correspond to
the coefficients of the linear terms in the polynomial chaos representation. The coefficients are
plotted for a set of polynomial chaos orders ranging from 1 to 3.

It is clearly shown that the nodes associated with SGC level 3 are sufficient to identify the
coefficients qlj . It can also be concluded that the contributions of some second order terms and
possibly third order terms in the expansion are important for accurate representation of some
homogenized properties at the different scales. To corroborate this conclusion, the probability
density functions (PDFs) of the homogenized axial moduli at homogenization levels l = 1,
l = 2, and l = 3 are plotted in Figure 6. The Figures show that the axial modulus of the
homogenized tow at level l = 1 could be expressed as a linear combination of some of the input
variables since the PDF curves associated with orders 1 to 3 are converged. However, the PDF
curves of the axial moduli of the lamina, l = 2, and the laminate, l = 3, show that a second
order polynomial chaos representation is appropriate, which indicates that some second order
terms in the expansion contribute to these homogenized properties.
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Figure 3: The PC coefficients q1j for Et,A.
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Figure 4: The PC coefficients q2j for El,A.
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Figure 5: The PC coefficients q3j for Exx = Eyy.
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Figure 6: PDF curves for the axial elastic moduli: (left) EtA ∈ Q1 (middle) ElA = Exx ∈ Q2 (right) Exx ∈ Q3

7 CONCLUSIONS

It is shown that polynomial chaos expansion is able to characterize properties at a coarse
scale in terms of fluctuations associated with properties from one or more finer scales. This
characterization is achieved in terms of an analytical form of functional relationships with the
underlying variables at the finer scales.

It is worth noting that the proposed hierarchical framework is not confined to the eight-
layer laminate addressed in this paper. It is a general framework that can be applied to other
composite materials or any heterogeneous material where fluctuations observed at coarse scales
are influenced by fluctuations present at multiple finer scales.

The proposed framework (i) is suitable for the modeling and analysis of composite materials,
(ii) can be generalized to account for the behavior of physical systems containing composite
parts, (iii) enables analytical forms that can be readily used in sensitivity analyses, and (iv) can
be incorporated in inverse calibration frameworks.
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