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Overview

This Final Technical Report constitutes the completion of Deliverable “xxx“ for the XPRESS
supported by the Department of Energy under Award Number(s) DE-SC0008809 initiated in
September 2012.

Introduction

The innovative system software stack of XPRESS is poised to enable practical and useful
exascale computing by directly addressing the critical computing challenges of efficiency,
scalability, and programmability through introspective dynamic adaptive resource management
and task scheduling.
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Figure1: XPRESS System Architecture

Features. Specific components of the XPRESS System Architecture include:

ParalleX: Indiana University - Cross-cutting execution model of system co-design

LXK — Lightweight eXtreme-scale Kernel (Kitten): Sandia National Laboratories - Fourth-
generation scalable compute node operating system

HPX runtime system software: Louisiana State University, Indiana University - Supports
introspection for guided computing through dynamic adaptivity

Autonomic Performance Environment for Exascale (APEX), Resource Centric Reflection
(RCR) — application introspection: University of Oregon, RENCI - A derivative of TAU
instrumentation and monitoring software system, integration of low-level system data
acquisition

DOE applications: LBL, ORNL, SNL - Drives co-design and performance studies relevant to
DOE

RIOS: Interface between the operating system and the runtime system

Conventional Programming Interfaces for legacy codes and skill sets: University of Houston,
Stony Brook - MPI, OpenMP
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* XPI: User programming syntax and source-to-source compiler target for high-level programming
languages

Activities and Findings
ParalleX Execution Model

ParalleX is a cross-cutting many-tasking execution model that supports message driven
computation and uses dynamics adaptive methods to manage asynchrony and enable
scalable operation on large systems. It is an evolving parallel execution model derived to
exploit the opportunities and address the challenges of emerging technology trends. It aims to
ensure effective performance gain into the Exascale era of the next decade by addressing the
challenges of starvation, latency, overhead, waiting, energy and reliability (SLOWER).
Starvation reflects an insufficiency of concurrent work to keep all the critical sources engaged.
Latency quantifies the response time distance for remove access and service requests.
Overhead distinguishes the work needed to manage parallel resources and task scheduling
which does not contribute to the useful computational work itself. Delay is due to waiting time
incurred due to resource access conflicts. Energy and its rate of consumption is a key
parameter in the raw sequential performance potentially affecting both logic voltage and clock
rate. Reliability impacts availability of the system and therefore the percentage of time the
system can be employed for useful work.

The primary semantic components of ParalleX includes:

* Locality — an encapsulation of resources in a synchronous domain that guarantees
bounded access and service request time as well as compound atomic sequence of
operations

* Global Name Space — provides the semantic means of accessing any first class objects
in a physically distributed applications

* ParalleX Processes — an abstraction of distributed context hierarchy integrating data
objects, actions, task data, and mapping data

* Compute Complexes — a generalization of thread complex

* Local Control Objects (LCOs) — provides synchronization, management of parallelism,
and migration of continuations

* Parcels — message driven computing that combines data transfer and event based
information using a variant of active messages to permit the management of distributed
flow control in a context of asynchrony

At the core of the ParalleX strategy is a new framework to replace static methods with
dynamic adaptive techniques. This method exploits runtime information and employs unused
resources. It benefits from locality while managing distributed asynchrony. ParalleX is a
crosscutting model to facilitate co-design and interoperability among system component layers
from hardware architecture to programming interfaces. ParalleX addresses starvation by
increasing the amount of parallelism available and facilitating work distribution, by
incorporating coarse, medium and fine grain parallelism semantics. ParalleX processes
(Coarse-grained parallelism), can span multiple localities, share nodes with other processes

~

rjr>rr| I uku OAK Sandia
=8 i Len ¥R M EE Y@@ O

nal Labo
2




@ENERGY - XPRESS: eXascale PRogramming

NS .
Environment and Sys tem Software

and migrate if necessary. ParalleX organizes the actual work it performs as medium grain
compute complexes, which often are performed as threads and permit context switching for
non-blocking of physical resources. LCOs provide declarative constraint based
synchronization and scheduling to increase parallelism by control relationship and dynamic
adaptivity. With LCOs, ParalleX largely eliminates over constraining global barriers, enabling
overlap of successive phases of an evolving computation and exposing additional form of
parallelism. Fine grain parallelism is given in terms of static data flow control semantics within
the context of a compute complex.
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Figure 2: This diagram illustrates many of the key semantic constructs and
mechanisms of the ParalleX model of computation

ParalleX addresses latency through both mechanisms to reduce its magnitude and hiding its
effects. The context switching permits a thread that is waiting for a long latency request to be
replaced by a pending task ready to do work, overlapping computation with communication.
Multithreading of work trades parallelism for latency hiding. Parcels move work to the data,
not always requiring data to be gathered to a fixed location of control. Latency of the data
accesses is reduced through the reduction of number and size of global messages. The use
of LCOs provides event-driven control simultaneously addressing latency of action at a
distance and managing the uncertainty of asynchrony of long latency operations.

ParalleX reduces overhead through LCOs that support event driven computation control to
minimize wasted work and avoid overly constraining semantics. The global barrier is
eliminated through ParalleX. ParalleX uses lightweight user threads in lieu of heavy weight OS
threads (e.g., pthreads) that reduce the overhead of context switching time.

ParalleX supports dynamic adaptive means by which, the runtime can allocate a different

available resource with similar capabilities (e.g., rerouting of network traffic where multiple
paths exists, distribution of synchronization elements, multiple physical threads for task
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execution). The event driven distributed flow control eliminates polling and reduces the
number of sources of synchronization delays.

Experimental Results

Simulations were conducted to look into the effects of overhead on the performance of an
abstract machine running a program with a particular instruction mix. The results of the
simulation are illustrated in Figure 3. The graph presented shows the performance impact when
lightweight user level threads are multiplexed on OS threads to provide a significant
performance advantage in hiding network latency.

. . Non-Blocking Model Performance over Blocking Model Performance
Performance Gain of Non-Blocking Programs over Blocking Programs Performance Gain of Non-Blocking Programs Over With Constant Network Latency of 1024 Reg-ops Assumed
with Varying Core Counts (Memory Contention) and Overheads Blocking Programs, Varying Number of Cores (Contention) and
Available Tasks (Parallelism)
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Figure 3: Performance impact of lightweight user level threads multiplexed on OS threads

Formal Semantics for ParalleX

Exascale execution models are large complex specifications defining the delicate interrelations
of their component layers and governing their interoperability. Defining execution models is error
prone, which may leave undetected inconsistencies and may be incomplete. Furthermore,
execution models are hard to communicate effectively to programmers, and researchers. This
problem is addressed through the means of formal analysis. Formal semantics is a rigorous,
mathematically defined, precise description of the execution model. A formal semantics helps to
detect the design mistakes early and ensure the completeness of the specified behavior. It
helps to communicate the model effectively and opens the possibility of proving programs
correct.

Recent Results

We have developed an operational semantics for a core fragment of ParalleX. Such a core
fragment covers the main interesting computational means of ParalleX and is large enough for
allowing writing meaningful computation. The overall semantics maps programs to automata
whose states are run-time configurations of a ParalleX system. These automata are defined by
means of conditional rules, such as the one shown in the figure below just as an example.
Without going into details, conditional rules specify a precise relation among the mathematical
abstractions that we use for memories, buffers, network and the various components that
ParalleX employs for carrying out synchronous and asynchronous computation.

Not only such a semantics can be the subject of proofs, it also can be loaded into specialized
tools for advanced formal analysis, such as theorem provers, model checkers and specification
systems that support automatic tests. We have a preliminary implementation of the formal
semantics, which is executable and can also be injected into a theorem prover. Carrying out

~

A .
5;} M ﬁ OAK ﬁan_dla :
‘ ﬁ]_\ Ls U #RIDGE m laat}g;g?mies O

National Laboratory




@ENERGY - XPRESS: eXascale PRogramming
NYSH :
Environment and System Software

advanced formal analysis on the semantics of ParalleX is part of our future work. Furthermore,
we have devised a type system for ParalleX that rules out data races.

M = S(memory), M(a) = ¢ Data flow Locals Data flow Locals
if % ¢ z+y € c(control) @ » a 13 a 13
c(locals)(z) = ny » - b 20 b 20
c(locals)(y) = n, e o > LN x 33
then S+—— §’ o, L
N L
where : :

S’ = S{memory — M{a > c'}}
¢ = {control — c(control) — {z + z + y},locals — L'}
L' = c(locals){z — n, +n,}

Figure 4: Excerpt from the operational semantics

The shift to eXascale computing promises a high impact on science and industry. Formal
Semantics will place eXascale computing on a firm foundation, enabling a more rapid and
confident shift to eXascale built upon a reliable and robust infrastructure.

— Operational semantics for a core fragment of ParalleX

— Proposal type system for ruling out data-races

— Executable prototype implementation of formal semantics

HPX-5 Runtime System

HPX-5 [1] is a state-of-the-art runtime system for extreme-scale computing. Version 4.1.0 of the
HPX-5 runtime system, which was released on May 9, 2017, represents a significant maturation
of the sequence of HPX-5 releases to date for efficient scalable general purpose high
performance computing. It incorporates new optimization for performance, features associated
with the ParalleX execution model, and programmer services including C++ bindings and
collectives.

HPX-5 is a realization of the ParalleX execution model, which establishes the runtime's roles
and responsibilities with respect to other interoperating system layers, and explicitly includes a
performance model that provides an analytic framework for performance and optimization. As
an Asynchronous Multi-Tasking (AMT) software system, HPX-5 is event-driven, enabling the
migration of continuations and the movement of work to data, when appropriate, based on
sophisticated local control synchronization objects (e.g., futures, dataflow) and active
messages. ParalleX compute complexes, embodied as lightweight, first-class threads, can
block, perform global mutable side effects, employ non-strict firing rules, and serve as
continuations. HPX-5 employs an active global address space in which virtually addressed
objects can migrate across the physical system without changing address. First-class named
processes can span and share nodes.

HPX-5 is an evolving runtime system used both to enable dynamic adaptive parallel applications
and to conduct path-finding experimentation to quantify effects of latency, overhead, contention,
and parallelism of its integral mechanisms. These performance parameters determine a trade-
off space within which dynamic control is performed for best performance. It is an area of active
research driven by complex applications and advances in HPC architecture. HPX-5 employs
dynamic and adaptive resource management and task scheduling to achieve the significant
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improvements in efficiency and scalability necessary to deploy many classes of parallel
applications.

HPX-5 is ported to a diverse set of systems is reliable and programmable, scales across multi-
core and multi-node systems, and delivers efficiency improvements for irregular, time-varying
problems.

HPX-5 is used for a broad range of scientific applications, helping scientists and developers
write code that shows better performance on irregular applications and at scale when compared
to more conventional programming models such as MPI. For the application developer, it
provides dynamic adaptive resource management and task scheduling to reach otherwise
unachievable efficiencies in time and energy and scalability. HPX-5 supports such applications
with implementation of features like Active Global Address Space (AGAS), ParalleX Processes,
Complexes (ParalleX Threads and Thread Management), Parcel Transport and Parcel
Management, Local Control Objects (LCOs) and Localities. Fine-grained computation is
expressed using actions. Computation is logically grouped into processes to provide quiescence
and termination detection. LCOs are synchronization objects that manage local and distributed
control flow and have a global address. The heart of HPX-5 is a lightweight thread scheduler
that directly schedules lightweight actions by multiplexing them on a set of heavyweight
scheduler threads.
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Figure 5: Synopsis of the HPX-5 runtime system.

Features of HPX-5

Fine-grained execution through blockable lightweight threads and unified access to a
global address space.

High-performance PGAS implementation which supports low-level one-sided operations
and two-sided active messages with continuations, and an experimental AGAS option
with active load balancing that allows the binding of global to physical addresses to vary

dynamically.
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* Makes concurrency manageable with globally allocated lightweight control
objects (LCOs) based synchronization (futures, gates, reductions, dataflow) allowing
thread execution or parcel instantiation to wait for events without execution resource
consumption.

* Higher level abstractions including asynchronous remote-procedure-call options, data
parallel loop constructs, and system abstractions like timers.

* Implementation of distributed processes providing programmers with flexible
termination detection and virtualized collectives.

* Photon networking library synthesizing RDMA-with-remote-completion directly on top
of uGNI, IB verbs, or libfabric. For portability and legacy support, HPX-5 emulates
RDMA-with-remote-completion using MPI point-to-point messaging.

* Programmer services including C++ bindings and collectives (prototype non-blocking
network collectives for hierarchical process collective operation).

* Leverages distributed GPU and co-processors (Intel Xeon Phi) through
experimental OpenCL support.

* PAPI support for profiling.

* Integration with APEX policy engine (Autonomic Performance Environment for
eXascale) support for runtime adaption, RCR and LXK OS.

* Migration of legacy applications through easy interoperability and co-existence with
traditional runtimes like MPIl. HPX-5 4.1.0 is also released along with several
applications: LULESH, Wavelet AMR, HPCG, CoMD and the ParalleX Graph Library.

Localities

A locality is a distinct virtual address space in which an instance of the HPX-5 runtime exists.
On a clustered system, each physical node usually has a single locality, though this is
determined at runtime by the application launcher—oversubscription caused by the launcher
may result in one locality per NUMA domain, or one locality per subset of cores. It is quite
possible to write HPX-5 programs without explicitly referencing localities, but it sometimes
helps to know they exist (for example when using the “PGAS” model for global memory, or
when initializing C/C++ per-process global data).

Global Memory
An HPX-5 applications has three distinct regions of memory.

Local memory is the memory that is normally returned by an allocator like malloc(). Local
virtual addresses can be shared between lightweight threads within a locality, e.g., for
parallel for operations, however local virtual addresses cannot be passed across localities.
Local addresses are also used in the global memget/memput API for asynchronous data
transfer.

Global memory is memory allocated via the HPX-5 runtime and that has an address that
can be shared among the entire HPX-5 applications. All global virtual addresses have a
local virtual alias somewhere in the system, however a global virtual address does not
necessarily have a mapping at the current locality. Global memory can be accessed
through an untyped, asynchronous, memput-memget API. Alternately, when a parcel
targets a global address, its thread will preferentially run at the locality at which the
address is mapped in which case an application can pin the memory and interact directly
with the data through its local aliases.
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* Registered memory, allocated through the hpx_malloc_registered interface, is local
memory that is optimized for use as the local address for the memget/memput operations.
Lightweight thread stacks, and pinned local aliases, are implicitly registered.

HPX-5 supports several different memory implementations. These are largly transparent to
the user allowing most code to run unmodified on a number of different archictures which is
key to programmability and performance portability in HPX-5.

* Under the SMP implementation, which is only available when HPX-5 is running on a
single node, global memory is effectively the same as local memory, except that the
memory has a global address the same as it would in one of the normal HPX-5 memory
models.

* Under the PGAS (Partitioned Global Address Space) implementation, global memory is
allocated and managed similarly to how UPC does so. Memory can be allocated at the
current locality or can be allocated cyclically over a number of localities.

* Under the AGAS (Active Global Address Space) implementation, global memory is
allocated similarly to how it is allocated under the PGAS model, but it is not necessarily
located at a fixed locality; it may be moved to other localities to balance system memory
load or workload.

AGAS
Translation
Cache

| Parcel/GAS Transport

PGAS/
AGAS

Figure 6: Coexisting AGAS and PGAS protocol stacks in HPX-5. AGAS implementation
requires additional address translation component compared to PGAS; minimization of
translation overhead is critical to obtaining high level of performance.

Within a locality applications may specify a soft core affinity for global addresses using
the hpx_gas_set_affinity() interface. Threads generated from parcels targeting a global
address with soft-core affinity will be preferentially scheduled on the requested core. Soft GAS
affinity provides support for deep memory hierarchy while supporting high performance load
balancing through workstealing.

» Soft affinity is of most use for well-balanced applications with long-running threads.

* Soft affinity is not a guaranteed affinity and programmers should make no assumptions

about where threads will actually run.

The current libhpx implementation ships with three implementations of GAS affinity, which can
be selected at runtime using the --hpx-gas-affinity option.
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* The default --hpx-gas-affinity=none implementation ignores the affinity hint entirely. We
intend this default to change in the future.

* The --hpx-gas-affinity=urcu implementation uses the userspace read-copy-update library
and associated hash table to manage soft affinity bindings.

* The --hpx-gas-affinity=cuckoo implementation uses a libcuckoo hash table to manage soft
affinity bindings.

The userspace read-copy-update implementation is the preferred option due to its low
overhead for readers, but is currently not buildable for Darwin platforms, which can
use libcuckoo instead.

Lightweight Threads & Actions

Actions are globally callable functions and are the thread entry points for HPX-5 lightweight
threads (and tasks and interrupts). They are invoked through the use of an active-message
parcel or through one of the higher-level remote procedure call interfaces. Actions are
executed by HPX-5 lightweight thread and are usually bound to execute local to a
specific global addresses; this is used by the HPX-5 runtime to schedule the action in the
physical location that will be most efficient. HPX-5 threads are scheduled cooperatively and
may block waiting for lightweight synchronization objects (LCOs).

LCOs

Synchronization and  data-driven = communication  between threads is done
via LCOs (Lightweight Control Objects). There are a variety of LCOs, and some have rather
different characteristics but all LCOs may be waited on by threads and parcels until some
condition is true or until the LCO has been set with a value (either by another action, or
possibly by some other means). Many LCOs will have a value that can be retrieved
by get actions.

The most commonly used kind of LCO is a future. A future can be waited on by one or more
thread until it is set (it may be set with a value, or not). Many asynchronous functions in the
HPX-5 API take a future as a parameter, and will signal completion via the future.

Another commonly used LCO is the and LCO. When an “and” LCO is created, it requires a
parameter specifying how many times it may be set. Then multiple actions may set it one or
more times, and a thread waiting on it will be released when it has been set as many times as
was specified. and LCOs are often used in parallel loops.

Performance of HPX-5

Performance optimization of the HPX runtime system is one of the primary foci of the
development effort. Introduction of new features as well as solutions intended to reduce the
existing overheads are constantly gaged against the performance data collection integrated with
Jenkins continuous integration tool. This is done to assess the viability of the implemented
solutions, detection of compilation errors on multiple architectures, and regression testing.
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MicroBenchmarks

The scalability of HPX-5 at relatively modest scales is highlighted through the speedup that was
achieved for the applications that were ported to use HPX-5: DASHMM, LULESH, WAMR,
HPCG and SSSP (ParalleX Graph Library, or libPXGL). However, to quantify the execution
overheads involved in a distributed runtime system like HPX-5, a set of shared and distributed-
memory micro-benchmarks, synthetic benchmarks and other performance tests have been run.
Shared-memory performance should be comparable to leading shared-memory systems and
distributed-memory performance should be comparable to leading distributed-memory
implementations (e.g., MPI).

fib(37)

Time taken (s)

Cores

—e— HPX 5 Open MP (Tasks)
-= Qthreads —+— TBB (Tasks)

Figure 7: On-node Scheduler performance

To measure shared memory load balanced performance, we used a Fibonacci benchmark to
assess the overhead of task creation and synchronization overheads in task-parallel runtime
systems. Performance results comparing HPX to other systems are displayed in Figure 7.
HPX-5 demonstrates similar speedup on multiple cores to the other systems. Performance
measurements were performed on the IU Cutter cluster featuring 16-nodes, each equipped with
32GB memory and dual 8-core E5-2670 Intel processors (by far the most common 64-bit
general-purpose processor currently deployed in supercomputing systems) clocked at 2.6GHz.

Photon RDMA Network Library

Photon provides consistent remote direct memory access (RDMA) semantics over multiple
interconnect technologies such as InfiniBand and Cray’s Aries and Gemini fabrics. Its goal is to
minimize latency and maximize throughput for high-performance applications and runtime
systems that can benefit from distributed, direct memory operations over a network. Memory
management and asynchronous progress are exposed at a fine granularity, decoupling data
transfers from the notification path. Importantly, a photon implements a pattern named “put-with-
completion” (PWC) that optimizes for a general completion identifier mechanism in support of
active message style computation.
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Applications / Runtimes
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Photon

1BV uGNI J { libfabric | © v =9 { shmem J

! ! !

Network Fabric

- Figure 8: The diagram shows the high-level layering of HPX and Photon, with PWC
being the primary, default network in HPX-5.

Features

PUT and GET with completion ID (CID)

» Variable length identifiers encode actions to execute on completed data operations
* “Packed” mode for small messages

« Switch to “2-PUT” mode at configurable threshold, using the Photon ledger
One-sided and rendezvous interface

* Explicit control of completion ID probing suitable for AMTs such as HPX-5
Thread safety for one-sided operations

* libsync concurrent data structures (HPX-5)

* Moving to native library atomics

Request queuing with flow control

» Completion progress is queried while processing any outstanding requests
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Figure 9: Performance of Photon - 8 byte CIDs (16 byte PWC overhead, 28 byte overhead for
packed), 128 byte packed message threshold

Currently there are two implementations of Photon collectives
= libNBC based (NBC) — Non Blocking Collective library for asynchronous collectives
= Photon Native (PWC) — Experimental/highly optimized (Photon-specific optimizations) using

completion path notifications
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Figure 10: Experimental results on Cutter (Mellanox Connect X-3 HCA/16 nodes) with small
message performance beginning to improve upon OMPI

Path Forward

= Continued performance optimizations as part of HPX+ efforts
* More efficient parallelized probing and progress
» Better control of task/thread affinity and placement (KNL systems)
+ Ability to form partitioned communication domains
* Atomics and vectored operations

= Additional Photon backends being developed
» Zero-copy shared memory
* Native GPU support (e.g. GPUDirect)
* Adapting to evolving libfabric interface (OmniPath and KNL optimizations)
+ Optimize caching and buffer management at scale

» Continued work on network-assisted address translation
*+  NetFPGAs

Photon in HPX-5 demonstrates improved performance for application with a modular design to
support future generation networks
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Dynamic Load balancing of FMM in HPX-5

AGAS in HPX-5 enables asynchronous load balancing in FMM through active migration of
nodes in the global spatial decomposition tree. N-body like problems appear in many scientific
applications. The naive solution has O(N?) complexity, whereas the Fast Multipole
Method(FMM) reduces this to O(N) complexity up to any prescribed accuracy requirement.
During the load-balancing phase, the optimal data distribution is determined by performing
edge-cut recursive partitioning of the aggregated communication graph.

* In HPX-5, load balancing naturally takes the form of global data relocation

+ Lightweight online recording of global block statistics.

+ Edge-cut, multi-level recursive partitioning of the block graph.

* Blocks remapped/moved across localities concurrently.

Global Data
| 1 [ | [ [ [
[ [ [ T . L T T 1
vf\_!- L e —
Data . AN
dependency
Task DAG
0 : 1 : 2 : 3
EEEE  on
| mmmm . Global Data

J”@E “:: *’O‘:_g Task DAG

0 ' 1 ' 2 13
\-=-= I-I l II- --
. Emm. gul- Global Data

J»O' ”2: *’O: xx Task DAG

Figure 11: Dynamic Load Balancing in AGAS - Lightweight tasks operating in parallel on global
data distributed across different nodes and work balancing (through stealing or sharing)
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M2L

Figure 12: DAG representing the fusion of two spatial partitions with source ensemble, target
ensemble and bipartite graphs connecting the two

no rebalancing ——
rebalancing —e—
rebalance time —»¢—

Expansion Time (s
N
S

1
128 256 512 1024 2048
Cores

Figure 13: Performance results on Cori NERSC - Cray XC40 supercomputer with two 16-cores
Intel "Haswell" processor at 2.3 GHz and Cray Aries with Dragonfly topology.

LULESH

Proxy applications representing kernels of scientific computation toolkits have been created
and implemented in multiple programming models by the Department of Energy's co-design
centers, in part, to directly compare performance characteristics and to explore and quantify
their benefits. One of these proxy applications is LULESH (Livermore Unstructured
Lagrangian Explicit Shock Hydrodynamics) [2], which has already played a key role in
comparing and contrasting programmability and performance among key programming
models. In Karlin et al.[3], a comparison of LULESH among OpenMP, MPI, MPI+OpenMP,
CUDA, Chapel, Charm++, Liszt, and Loci was presented with a focus on programmer
productivity, performance, and ease of optimizations. HPX-5 has also implemented LULESH
help further comparisons between these programming models.

The LULESH algorithm simulates the Sedov blast wave problem in three dimensions. The
problem solution is spherically- symmetric and the code solves the problem in a parallelepiped
region. The LULESH algorithm is implemented as a hexahedral mesh-based code with two
centerings. Element centering stores thermodynamic variables such as energy and pressure.
Nodal centering stores kinematics values such as positions and velocities. The simulation is run
via time integration using a Lagrange leapfrog algorithm. There are three main computational
phases within each time step: advance node quantities, advance element quantities, and

~

A .
reeceee] il A OAK Sandia
- L ! 'I' N I
‘ i LSL) < RIDGE laat}gg?ﬂfies% O

. National Laboratory

1A



Office of

@ENERGY o XPRESS: eXascale PRogramming
NIYSH :
Rt Environment and System Software

calculate time constraints. There are three communication patterns, each regular, static, and
uniform: face adjacent, 26 neighbor, and 13 neighbor communications, illustrated below:

As a regular, uniform, and static mini-application, LULESH is well suited for a programming
model like MPI, showing very few inefficiencies in computational phase diagrams such as the
following, obtained using vampirtrace:

10.050 s 10.075 s 10.100 s 10.125s 10.150 s 10.175 s 10.200 s 10.225 s
Process 8 TN SO T W SES—
Process 40 N I — . I
Process 72 1IN | I
Process 104 1IN W S V—
Process 136 TN || ]
Process 168 1 N | I

Process 200 NI NG MPI_Allreduce MPI_Wait | [
Process 232 | N & ——
Process 264 I I | MPI_Waitall [ W

MPI_Alireduce

Process 424

process 456 1IN
Process 488 TN

I —
Process 392 |
T — T — —

Figure 14: In this figure, white phases indicate waiting for communication while red phases
indicate computation. LULESH computational phases are dominated by computation.

The HPX-5 version of LULESH comes in two flavors. The first, known as the parcels
implementation, does not take advantage of parallel for loop opportunities and is more directly
comparable to the MPI only implementation of LULESH. The other flavor, known as the omp
parcels version, does take advantage of parallel for loops and is more comparable to the MPI-
OpenMP implementation of LULESH. Both use command line arguments to control the behavior
of the mini-application. The number of domains, controlled by the -n option, controls how many
domains of local grids will be simulated. This number must be a perfect cube. The -x option
indicates the number of points cubed in each domain. The omp parcels version is intended to be
run where there is only one domain per locality, thereby necessitating that the local grid size be
scaled appropriately by the number of cores per locality. More specific instructions can be found
by invoking help on the application executable.

-~

AN )
r:'—r>| M ﬁ OAK ﬁandla :
‘ E]\ Lsu RIDGE m laal}:)org?mies O

National Laboratory




@EneReY I XPRESS: eXascale PRogramming

NISE .
Environment and Sys tem Software

o
I
3

0.2

0.15 /

0.1 °

L
%

o

“-MPI =HPX2.0 —HPX2.1

Time Per iteration (s)

~~MPI  —*"HPX-5

Time per iteration (s)
=
G

0 0
(SMP) 8 27 64 125 216 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Cores Cores Thousands
Figure 15: Large core count, weak scaling tests of LULESH conducted on Cray XC30 including
MPI and two HPX-5 implementations featuring different communication mechanisms.

Weak scaling simulations of the HPX-5 implementation of LULESH were conducted across a
wide range of core counts and results were compared with the reference MPI implementation
(Figure 15). Simulations were performed on NERSC’s Edison, a Cray XC30 platform using the
Aries interconnect and Intel Xeon processors. LULESH was run for 500 iterations with a local
problem size of 48° on each core. For each data point in the weak scaling tests, results were
averaged over five runs.

As the results show, the best HPX-5 LULESH performance is still slower than the reference MPI
implementation. One of the reasons is that LULESH is a regular, static, and uniform code that
is naturally portable to MPI model of computation. Secondly, the HPX-5 port does not introduce
significant changes to the LULESH algorithm implemented by the MPI variant, opting to emulate
the original message patterns using point-to-point communication mode rather than native,
asynchronous, one-sided messages. The additional inefficiencies introduced by the emulation
layer become dominant when the benchmark scale grows sufficiently. Finally, modern MPI
libraries provide highly optimized implementations of collective calls, featuring tens of possible
code paths and algorithms that are dynamically selected based on network status, topology of
communication, and application layout. Replicating this knowledge in a different communication
environment over limited time is extremely challenging and presents one of the critical targets
for future HPX development.

DASHMM

The Dynamic Adaptive System for Hierarchical Multipole Methods [4] is an easy-to-use,
extensible library implementing multipole methods. DASHMM uses a dynamic adaptive
runtime system (HPX-5) to improve the efficiency and scalability of multipole method
calculations. DASHMM is extendable through user-defined methods and expansions allowing
a domain scientist to implement the details of their particular problem, while allowing the
library to handle the effective parallelization of the computation.

The current version of DASHMM (1.2.0) operates on both shared and distributed memory
architectures. It includes implementations of three multipole methods: Barnes-Hut, classical
Fast Multipole Method (FMM), a variant of FMM that uses exponential expansions (referred to
as FMM97), and permits easy extension to other multipole or multipole-like methods. It
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provides built-in Laplace, Yukawa and Helmholtz kernels, covering a wide range of application
use-cases. DASHMM also comes with three demonstration codes that exercise the basic
interface, demonstrates how DASHMM can be used in a time-stepping scheme, and how a
user might register their own expansion with the library.

Shown below is a strong scaling test on the Cori supercomputer. The library was tested for all
three kernels using the FMM97 method (Laplace in blue, Yukawa in yellow, and Helmholtz in
red) for two different source and target distributions (inside the volume of a cube with square
marks, and on the surface of a sphere with circular marks).

Figure 16: The left panel shows the absolute time for the evaluation and the right panel shows
the speedup relative to one node.

libPXGL

Following the philosophy of design of Standard Template Library (STL) and the trail of evolution
of Parallel Boost graph library (PBGL), libPXGL is the beginning of an endeavor to develop a
next-generation graph library based on HPX-5.
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Our first effort is invested in implementing graph algorithms for solving the Single Source
Shortest Path (SSSP) problem as SSSP is a good representative of a class of irregular graph
problems. Given a graph and a source, the SSSP problem asks to find out the shortest possible
distances from the source to all other vertices in the graph. For example, the graph in the figure
(a) has five vertices s, t, X, y, and z. The distances between adjacent vertices are shown on the
directed edges. Let us choose vertex s as the source. Figure(b) shows the shortest path from s
to all other vertices.

Figure: (a) A weighted, directed graph
(b) Shortest path tree rooted at s

Four graph algorithms are implemented in HPX. In particular, we have implemented chaotic,
Delta-stepping, Distributed control and k-level asynchronous algorithms. In what follows, we
give a brief description of how each algorithm works.

In the chaotic algorithm, the distances from the source are updated asynchronously without
imposing any order. There is no barrier requirement for algorithm progress and the distances
are guaranteed to reach the minimum value at the end of the algorithm. In the Delta-stepping
algorithm, the distance space is divided into several intervals. Each interval is treated as a
bucket. The algorithm proceeds by processing all vertices in each bucket without imposing any
order. Once processing is done for the current bucket, the algorithm can progress to the next
bucket. Between each bucket processing, there is an explicit barrier on which all localities need
to wait before proceeding to the next bucket. The following figure is a high level schematic of the
delta-stepping algorithm.
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Distributed Control is an approach to achieve optimistic parallelism by removing any
requirement for synchronization. In doing so, it also thrives for local ordering based on thread-
local priority queues on each locality to minimize redundant work done. The following figure is a
high level schematic of distributed control algorithm.
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u — ]J

The fourth algorithm is based on the k-level asynchronous paradigm. In this approach, the
algorithm progresses k-level wise. Within each k-level, the algorithm can progress
asynchronously. For example if k=2, then in the first step, the algorithm will process all the

vertices within the reach of the source by at most 2 steps without imposing any order. The next
step will process all the vertices reachable with atmost 4 steps and so on.

The algorithms for SSSP can be run with the 9th DIMACS challenge input graphs and problem
specification files. The DIMACS distribution contains the generators and the makefiles
necessary for generating all the DIMACS input files. Additionally, the algorithms can also be run
with Graph 500 input graphs. There is an implementation of Graph 500 specification-based
graph generator included in HPX-5 to generate the graphs at different scale as well as the
problem instances.
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Delta-stepping Algorihm With Graph500 Input

and PWC transport
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Figure 17: Performance of Delta-Stepping algorithm for Single-Source Shortest Paths (SSSP)
executed on Graph500 benchmark inputs with and without coalescing

HPX-5 provides efficient intra-node and inter-node parallelism with load balancing and overlap
of computation and communications. Furthermore, HPX-5 is getting more efficient at this task
with every version, in part due to careful co-design with graph analytics applications such as
single-source shortest paths (SSSP) as shown in the figure. We have been investigating how to
attune the HPX-5 runtime to the needs and patterns of irregular applications. Traditional
applications have some global flow control that relies on globally synchronized data structures.
However, data-driven problems can rely on local flow control, but such approach requires
careful consideration of the runtime scheduler, which can greatly degrade the performance of
such data-driven applications. Data-driven graph-like applications are an important and
emerging class of problems. HPX-5 is particularly well suited for execution of such problems at
exascale.

Wavelet Adaptive Multiresolution Representation (Wavelet AMR)

While the wavelet transformation has historically figured prominently in compression algorithms,
it has become a crucial tool in solving partial differential equations. Hierarchical adaptive
wavelet is well suited for solving partial differential equations where localized structures develop
intermittently in the computational domain. The advantage of using wavelets in this is that it
requires far fewer collocation points than other comparable algorithms while the wavelet
amplitude provide a direct measure of the local approximation error at each point, thereby
providing a built-in refinement criterion. The HPX-5 implementation of the Wavelet-AMR spawn
threads for each collocation point while managing the sparse grid of collocation points inside the
global address space. There are three systems of equations implemented in Wavelet-AMR: The
Einstein Equations, the relativistic magneto hydrodynamics equations, and the Euler equations.
Its communication patterns are irregular, dynamic, and non uniform. This application comes in
three flavors: serial, cilk, and HPX-5.

To appreciate the sparse grid of collocation points used for the RMHD point blast wave
evolution, the collocation points at one timestep are shown below:
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Figure 18: Distributed strong scaling adaptive simulation on Edison.
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Figure 19: Asynchronous Multi- Tasklng (AMT) models the on-node multlthreadlng performance
of the Wavelet AMR code
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Blast wave on cutter, 6 levels of refinement
~4k points/iteration, strong scaling test
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Figure 20: Explores the impact of simple movement policies for AGAS.
High Performance Conjugate Gradients (HPCG)

The HPX-5 HPCG is a comprehensive port of the MPI-OpenMP HPCG reference
implementation. It closely follows the MPI-OpenMP implementation but using active messages
and HPX-5 semantics. High Performance Conjugate Gradients (HPCG) is a benchmark project
aimed to create a more relevant metric for ranking HPC systems. Alterations to sparse matrix-
vector multiply include RDMA based put and get approaches have been added. Also added is a
new demonstration of an HPX+MPI legacy support modality where HPX and MPI coexist. In this
modality, some kernels use HPX whilst others use MPI in order to demonstrate a path forward
for porting large legacy applications.

Its communication patterns are regular, static, and nonuniform. Includes:
» Sparse matrix-vector multiplication

» Sparse triangular solve

* Global dot products

» Multigrid preconditioned conjugate gradient

In the performance plots below Plot1 shows the performance of SpMV on small cluster with 16
cores/node. In this plot, higher the Gflops, better the results are. Two modalities are explored:
one computational domain per core and over decomposition. When using one computational
domain per core, both the reference MPI and parcels versions of SpMV have very similar
performance. In the over decomposed modality, while both the parcels and reference MPI
versions show improved performance, the parcels version substantially outperforms the
reference MPI implementation.

Plot2: The results on the large scale machine show similar outcomes to that found on the small
scale cluster. The parcels version without over decomposition closely tracks the reference MPI
implementation performance. But by applying a simple over decomposition factor of 8, the
performance of the parcels version nearly doubles. A more careful application of the same
series of simulations to address NUMA concerns leads to another significant performance
improvement for SpMV.
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Plot3: The results on the large scale machine show similar outcomes to that found on the small
scale cluster. The parcels version without over decomposition closely tracks the reference MPI
implementation performance. But by applying a simple over decomposition factor of 8, the
performance of the parcels version nearly doubles. A more careful application of the same
series of simulations to address NUMA concerns leads to another significant performance
improvement for SpMV.
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Figure 21: Performance of SpMV

A complete picture of the average GFlops achieved with spmv for the parcels and memget
strategies on the large-scale machine with 32 cores/node. In this series of experiments,
different algorithms have different colors. Triangles indicate 32 threads, squares indicate 16
threads, and circles indicate 2 threads. Memget experiments came in two varieties: 1x means
the number of chunks in the parallel for loops matches the number of threads while 2x means
that there are twice as many chunks of data in the parallel for loops as number of threads.
The parcels strategy with over decomposition performs the best.
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Figure 22: RDMA with asynchronous multitasking runtime (AMT) systems open up a series of
different SpMV strategies with some strategies resulting in vastly superior performance
depending on the AMT runtime system overhead.

Human Brain Simulation (BlueBrain Project @ EPFL) — HPX-5 for Asynchronous
simulation of detailed neural networks

The goal of the Blue Brain project [5] is to build biologically detailed digital reconstructions and
simulations of the rodent, and ultimately the human brain. It offers a radically new approach for
understanding the multilevel structure and function of the brain. It exploits interdependencies in
the experimental data to obtain dense maps of the brain, without measuring every detail of its
multiple levels of organization (molecules, cells, micro-circuits, brain regions, the whole brain).
Supercomputer-based simulation of their behavior turns understanding the brain into a tractable
problem, providing a new tool to study the complex interactions within different levels of brain
organization and to investigate the cross-level links leading from genes to cognition.

Dynamically adaptive software to allow simulation at different scales:
— Point neuron level simulation (thousands/millions of neurons per node)
— Compartmental level simulation (few neurons per node)
— Biomolecular level simulation (one neuron across several nodes)
* Multirate and variable time-step solvers (based on each different mechanism) reflect better
the neuronal networks behavior, contrarily to fixed time-step solvers
— This requires a totally asynchronous programming paradigm as provided by HPX
* Hide communication and threading complexity
— Developer only focus on writing the logic; HPX-5 handles parallelization
. Transparent load balancing
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— Task stealing queue allows balancing of work across threads
— Global Address Space allows memory to move to different localities to balance work
across nodes
* Removal of collective communication and computation calls:
— Simulation should be a free system where computation of objects is independent
— Suitable for simulation of objects with unpredictable execution times

'}

Figure 23: General use of neural network and multi-scale simulation

We use HPX-5 futures for a tree-based parallelism of a sparse-tridiagonal matrix representing
the branching between neurons. No benchmark results available.
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Figure 24: A scanned neuron model, a compartment-based model and its matrix representation

We use HPX-5 and-gates for graph-based parallelism of biological phenomena. Read/write
dependencies are collected from parsing the DSL language specifying the
equations. Benchmark results presented at the end.
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Figure 25: Graph-parallelism to a neuron driven by 22 mechanisms

We use HPX-5 to investigate new stepping policies: a) synchronous barrier for fixed
communication barrier, b) asynchronous all-reduce for sliding time window and c) conditional
barriers for time-dependencies based on the synaptic delay between pairs of neurons.
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Figure 26: Schematic behavior of the three algorithms

We present benchmarks for the three aforementioned stepping algorithms. Results are
presented with and without mechanisms graph-parallelism.

Intel Sandy Bridge E5-2670 (16 cores @ 2.6GHz), 1 compute node, gcc 4.9.3 compiler
=
§ 102 | total number of neurons 3 10 50 100 200 500 1000 2000
g —— Reference Solution 4.05 461 10.27 16.08 28.26 58.53 112.54 220.73
'ﬁ &— Asynchronous All-Reduce 2.40 3.67 6.63 11.78 21.64 52.57 103.87 208.23
',—g - - - Async. All-Reduce + Mechs-graph 1.79 284 730 15.05 27.07 66.70 132.50 263.87
g 10'F #— Sliding Time Window 2.33 3.62 7.31 13.01 22.82 5291 110.67 218.36
g - - - Sliding Time Window+ Mechs-graph  1.74 290 7.93 15.73 2893 71.12 139.91 271.82
& —+— Time-Dependency LCO 227 227 6.03 11.11 19.84 50.89 105.33 222.58
- - - Time-Dependency + Mechs-graph 171 195 6.15 12.69 23.00 5848 121.40 265.02
Best-case speed-up 237x 2.36x 1.70x 1.48x 1.42x 1.15x 1.08x 1.06x
Intel KNL, Xeon Phi (64 cores, 128 threads @ 1.3GHz), 1 compute node, Intel icc17 compiler
7 102 | 1
§ total number of neurons 3 10 50 100 200 500 1000 2000
g —— Reference Solution 11.38 12.02 12.56 17.35 23.85 42.19 79.74 144.49
"E —&— Asynchronous All-Reduce 7.28 9.56 9.88 1292 1550 22.39 45.46 92.28
3 Async. All-Reduce + Mechs-graph 365 369 462 954 1336 33.35 67.13 93.39
2 N —e— Sliding Time Window 7.08 9.27 1034 13.50 16.75 22.67 46.46  93.39
2 100 F Sliding Time Window-+ Mechs-graph ~ 3.84  3.70 4.68 9.478 13.21 33.38 67.37 136.14
& —— Time-Dependency LCO 703 715 929 1298 14.39 2211 4592 96.60
- - - Time-Dependency + Mechs-graph 3.53 361 460 940 1360 31.36 64.43 133.80
161 102 1(‘)3 Best-case speed-up 3.22x 3.33x  2.73x 1.85x 1.81x 1.88x 1.75x 1.57x
Input size (neurons)
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Intel Sandy Bridge E5-2670 (16 cores @ 2.6GHz), 8 compute nodes, mvapich2 compiler

7 102 total number of neurons 24 80 400 800 1600 4000 8000
8 F number of neurons per compute node 3 10 50 100 200 500 1000
.5 —— Reference Solution 3.06 326 852 1333 24.79 58.80 128.76
E] —=— Asynchronous All-Reduce 242 262 590 11.08 22.52 55.67 124.31
8 10t} - - - Async. All-Reduce + Mechs-graph 145 268 726 14.05 2842 71.83 152.62
) r —e— Sliding Time Window 240 262 6.16 11.72 23.87 58.86 129.31
g - - - Sliding Time Window+ Mechs-graph ~ 1.48  2.70  7.64 14.79 29.17 75.00 153.52
= —o— Time-Dependency LCO 239 264 547 10.98 24.01 67.93 143.21
- - - Time-Dependency + Mechs-graph 145 261 625 1286 27.79 7899 164.12

0L
10 Best-case speed-up 3.22x 3.33x 273x 185x 1.8lx 188 L.75x

Intel Sandy Bridge E5-2670 (16 cores @ 2.6GHz), 16 compute nodes, mvapich2 compiler

B o total number of neurons 48 160 800 1600 3200 8000 16000
2 10%F number of neurons per compute node 3 10 50 100 200 500 1000
.S —— Reference Solution 3.67 412 933 13.81 26.23 64.89 13547
3 —=— Asynchronous All-Reduce 2.62 293 6.01 12.06 23.67 61.47 12831
2 .l - -~ Async. All-Reduce + Mechs-graph 148 319 740 15.07 30.25 7558 157.11
2 10 —e— Sliding Time Window 2.62 293 620 13.03 2530 65.06 136.04
g - - - Sliding Time Window+ Mechs-graph ~ 1.48  3.18 7.53 16.02 31.86 78.34 158.04
= —o— Time-Dependency LCO 261 293 572 1255 27.31 69.89 229.85
. - - - Time-Dependency + Mechs-graph 145 311 6.60 14.65 32.18 80.40 208.46

0 |
10 Best-case speed-up 3.22x 3.33x 273x 185x 18lx 188 1.75x

10*F Intel Sandy Bridge E5-2670 (16 cores @ 2.6GHz), 32 compute nodes, mvapich2 compiler

%? total number of neurons 96 320 1600 3200 6400 16000 31000
z number of neurons per compute node 3 10 50 100 200 500 969

2 102 -
;% 10 —— Reference Solution 469 489 910 17.25 30.88 67.74 137.72
% —=— Asynchronous All-Reduce 295 296 6.18 13.08 24.90 63.00 172.96
z | - -~ Async. All-Reduce + Mechs-graph 291 321 756 15.75 30.61 77.39 188.33
5 —e— Sliding Time Window 295 295 642 13.65 26.12 66.79 179.41
g 100 F - - - Sliding Time Window+ Mechs-graph  2.90  3.11  7.87 16.06 31.97 81.57 195.21
= —o— Time-Dependency LCO 294 294 6.03 13.04 26.70 89.15 650.21
| | Ll - - - Time-Dependency + Mechs-graph 2.86 3.03 6.99 15.08 30.67 9243 662.34
102 103 104 Best-case speed-up 3.22x 3.33x 2.73x 1.85x 1.81x 1.88x 1.75x

Input size (neurons)
Figure 27: Results of stepping algorithms
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