
SANDIA REPORT

SAND2018-2856
Unlimited Release
Printed March 20, 2018

Sierra Toolkit Manual Version 4.48

Sierra Toolkit Development Team

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the

U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone:
Facsimile:
E-Mail:
Online ordering:

(865) 576-8401
(865) 576-5728
reports@adonis.osti.gov
http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone:
Facsimile:
E-Mail:
Online ordering:

(800) 553-6847
(703) 605-6900
orders@ntis.fedworld.gov
http:llwww.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2

SAND2018-2856
Unlimited Release

Printed March 20, 2018

Sierra Toolkit Manual Version 4.48

Sierra Toolkit Development Team

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185

Abstract

This report provides documentation for the SIERRA Toolkit (STK) modules. STK modules are
intended to provide infrastructure that assists the development of computational engineering soft-
ware such as finite-element analysis applications. STK includes modules for unstructured-mesh
data structures, reading/writing mesh files, geometric proximity search, and various utilities. This
document contains a chapter for each module, and each chapter contains overview descriptions and
usage examples. Usage examples are primarily code listings which are generated from working
test programs that are included in the STK code-base. A goal of this approach is to ensure that the
usage examples will not fall out of date.

3

This page intentionally left blank.

Contents

1 STK Mesh

1.1 STK Mesh Terms

17

17

1.1.1 Entity 18

1.1.2 Connectivity 18

1.1.3 Topology 18

1.1.4 Part 19

1.1.5 Field 19

1.1.6 Selector 19

1.1.7 Bucket 20

1.1.8 Ghosting 20

1.1.9 MetaData and BulkData 20

1.1.10 Creating a STK Mesh from an Exodus file 22

1.2 Parallel 22

1.2.1 Shared 23

1.2.2 Ghosted 23

1.2.3 Aura 23

1.2.3.1 How to use automatically generated aura 23

1.3 STK Parallel Mesh Consistency Rules 24

1.3.1 How to enable mesh diagnostics to enforce parallel mesh rules 25

1.3.2 How to enforce Parallel Mesh Rule 1 26

1.3.3 Parallel API 26

5

1.4

1.5

STK Mesh Selector

1.4.1 How to use selectors

STK Mesh Parts

28

29

30

1.5.1 Part Identifiers and Attributes 30

1.5.2 Induced Part Membership 32

1.5.3 How to use ghost parts 33

1.6 Mesh Modification 35

1.6.1 Overview 35

1.6.2 Public Modification Capability 36

1.6.2.1 Add/Delete Entities 36

1.6.2.2 Getting Unused Globally Unique Identifiers 37

1.6.2.3 Creating Nodes that are Shared by Multiple Processors 38

1.6.2.4 Change Entity Part Membership 41

1.6.2.5 Change Connectivity 41

1.6.2.6 Change Entity Ownership 41

1.6.2.7 Change Ghosting 42

1.6.3 Mesh Modification Examples 42

1.6.3.1 Resolving Sharing Of Exodus Sidesets - Special Case 44

1.6.4 Unsafe operations 46

1.6.5 Automatic modification operations in modification_end() 47

1.6.6 How to use generate_new_entities() 47

1.6.7 How to create faces 48

1.6.8 How to create both edges and faces 49

1.6.9 How to create faces on only selected elements 50

1.6.10 Creating faces with layered shells 5 1

1.6.11 Creating faces between hexes, on shells, and on shells between hexes 5 1

6

1.6.12 How to skin a mesh 54

1.6.13 How to create internal block boundaries of a mesh 55

1.6.14 How to destroy elements in list 55

1.7 STK Mesh usage examples 56

1.7.1 How to iterate over nodes 56

1.7.2 How to traverse connectivity 58

1.7.3 How to check side equivalency 59

1.7.4 Understanding node ordering of edges and faces 60

1.7.5 How to sort entities into an arbitrary order 61

2 STK Topology 63

2.1 STK Topology API 63

2.1.1 How to set and get topology 64

2.1.2 STK topology ranks 64

2.1.3 Compile-time STK topology information 66

2.1.4 STK topology for the Particle 66

2.1.5 STK topology for the high order Beam 67

2.1.6 STK topology for the high order triangular Shell 68

2.1.7 STK topology for the linear Hexahedral 69

2.1.8 STK topology equivalent method 71

2.1.9 STK topology's is_positive_polarity method 72

2.1.10 STK topology's lexicographical_smallest_permutation
method 72

2.1.11 STK topology's lexicographical smallest permutation
preserve polarity method 73

2.1.12 STK Topology's sub_topology rnethods 74

2.1.13 STK Topology's sides methods 75

7

2.1.14 STK topology for a SuperElement 75

2.2 Mapping of Sierra topologies 76

3 STK Fields 81

3.1 Example STK fields usage 81

4 STK IO 87

4.1 STK 10: usage examples 87

4.1.1 Reading mesh data to create a STK Mesh 87

4.1.1.1 Face creation for input sidesets 88

4.1.2 Reading mesh data to create a STK Mesh allowing StkMeshloBroker to
go out of scope 94

4.1.3 Reading mesh data to create a STK Mesh, delaying field allocations 95

4.1.4 Outputting STK Mesh 96

4.1.5 Outputting STK Mesh With Internal Sidesets 97

4.1.6 Outputting results data from a STK Mesh 99

4.1.7 Outputting a field with an alternative name to a results file 100

4.1.8 Outputting both results and restart data from a STK Mesh 100

4.1.9 Writing multi-state fields to results output file 102

4.1.10 Writing multiple output files 103

4.1.11 Outputting nodal variables on a subset of the nodes 103

4.1.12 Get number of time steps from a database 105

4.1.13 Reading sequenced fields from a database 105

4.1.14 Reading initial conditions from a field on a mesh database 106

4.1.15 Reading initial conditions from a field on a mesh database — apply to a
specified subset of mesh parts 107

4.1.16 Reading initial conditions from a field on a mesh database — only read once 110

8

4.1.17 Reading initial conditions from a mesh database field at a specified
database time 111

4.1.18 Reading field data from a mesh database — interpolating between database
times 112

4.1.19 Combining restart and interpolation of field data 113

4.1.20 Interpolating field data from a mesh database with only a single database
time 115

4.1.21 Interpolating field data from a mesh database when time is outside database
time interval 116

4.1.22 Error condition — reading initial conditions from a field that does not exist
on a mesh database 117

4.1.23 Interpolation of fields on database with negative times 118

4.1.24 Interpolation of fields on database with non-monotonically increasing times 119

4.1.25 Arbitrary analysis time to database time mapping during field input 120

4.1.26 Error condition — specifying interpolation for an integer field 122

4.1.27 Working with element attributes 123

4.1.28 Create an output mesh with a subset of the mesh parts 124

4.1.29 Writing and reading global variables 125

4.1.30 Writing and reading global parameters 126

4.1.31 Writing global variables automatically 128

4.1.32 Heartbeat output 129

4.1.32.1 Change output precision 130

4.1.32.2 Change field separator 131

4.1.33 Miscellaneous capabilities 131

4.1.33.1 Add contents of a file and/or strings to the information records
of a database 131

4.1.33.2 Tell database to overwrite steps instead of adding new steps . . . 132

4.1.34 How to create and write a nodeset and sideset with fields using STK Mesh 134

9

5 STK Search 137

5.1 STK Search: usage examples 137

5.1.1 Using Boost R-tree bounding volume search 137

5.1.2 Search method options 137

6 STK Util 139

6.1 Using the Diagnostic Timers 139

6.2 Communicating with other MPI processors 143

6.3 Using the STK Scheduler 145

6.4 Parameters — type-safe named storage of any variable type 148

6.5 Filename substitution 151

7 STK Balance 155

7.1 Geometric Balancing 155

7.2 Graph Based Balancing With Parmetis 156

7.3 Graph Based Balancing With Parmetis Using Search 158

7.4 Graph Based Balancing Using A Field For Vertex Weights 158

7.5 STK Balancing Using Multiple Criteria 159

7.5.1 Multiple Criteria Related To Selectors 160

7.5.2 Multiple Criteria Related To Multiple Fields 160

8 STK SIMD 163

8.1 Example STK SIMD usage 163

Bibliography 165

Index 166

10

Listings

1.1 Example of creating an STK Mesh using an Exodus file 22

1.2 Example of how to control automatically generated aura 23

1.3 Example of how to enable mesh diagnostics 25

1.4 Example of how to enforce Parallel Mesh Rule 1 26

1.5 Example of communicating field data from owned to all shared and ghosted enti-
ties 26

1.6 Example of parallel_sum 27

1.7 Example showing parallel use of comm_mesh_counts 27

1.8 Example showing parallel use of comm_mesh_counts with min/max counts 28

1.9 Example of how to use Selectors to avoid getting caught by the "Nothinr selector 29

1.10 Example of how to use Ghost Parts to select aura ghosts and custom ghosts 33

1.11 Example showing how to use destroy_elements_of_topology 36

1.12 Example showing how to use generate_newids 37

1.13 Example showing creation of shared nodes 38

1.14 Example showing creation of independent shared nodes (without connectivity) . . 39

1.15 Example showing that the marking for independent nodes will be removed after
connectivities are attached 40

1.16 Example showing an element being ghosted. 42

1.17 Example of changing processor ownership of an element 43

1.18 Example of internal sideset which results in two faces 45

1.19 Example of how to generate multiple new entities and subsequently set topologies
and nodal relations. 47

1.20 Example of how to create all element faces 48

11

1.21 Example of how to create all element edges and faces 49

1.22 Example of how to create faces on only selected elements 50

1.23 Example showing that faces are created correctly when layered shells are present 51

1.24 Example of how many faces get constructed by CreateFaces between two hexes. . 52

1.25 Example of how many faces get constructed by CreateFaces on a shell. 52

1.26 Example of how many faces get constructed by CreateFaces between hexes and
an internal shell. 53

1.27 Example of how to create all the exposed boundary sides 54

1.28 Example of how to create all the interior block boundary sides 55

1.29 Example of how to destroy elements in a list 56

1.30 Example of iterating over nodes 56

1.31 Example of how to traverse connectivity via accessors on BulkData and via acces-
sors on Bucket 58

1.32 Example of how to check side equivalency. 59

1.33 Understanding edge and face ordering 60

1.34 Example showing how to sort entities by descending identifier. 61

2.1 Example of setting/getting topology 64

2.2 Example showing mapping of STK topologies to ranks 64

2.3 Example using compile-time STK topology information 66

2.4 Example showing STK topology for a zero-dimensional element 66

2.5 Example of STK topology for a one-dimensional element 67

2.6 Example of STK topology for a two-dimensional element 68

2.7 Example of STK topology for a three-dimensional element 69

2.8 Example using of an equivalent method 71

2.9 Example using is_positive_polarity 72

2.10 Example using lexicographical_smallest_permutation 72

12

2.11 Example using
lexicographical_smallest_permutation_preserve_polarity 73

2.12 Example using of sub_t opo 1 ogy 74

2.13 Example for understanding sides in STK topology 75

2.14 Example using a SuperElement with STK topology 76

2.15 Example for understanding various Sierra topologies 76

2.16 Mapping of shards::CellTopologies to stk::topologies provided by
stk::mesh::get_cell_topology0 78

3.1 Examples of constant-size whole-mesh field usage 81

3.2 Example of incorrect vector field declaration 82

3.3 Examples of how to get fields by name 83

3.4 Examples of using fields that are variable-size and defined on only a subset of the
mesh 83

3.5 Examples of multi-state field usage 84

4.1 Reading mesh data to create a STK mesh 87

4.2 Face creation during 10 for one sideset between hexes 89

4.3 Face creation during I0 for shells between hexes with sidesets 91

4.4 Reading mesh data to create a STK mesh using set bulk data 94

4.5 Reading mesh data to create a STK mesh; delay field allocation 95

4.6 Writing a STK Mesh 96

4.7 Writing a STK Mesh 98

4.8 Writing calculated field data to a results database 99

4.9 Outputting a field with an alternative name 100

4.10 Write results and restart 100

4.11 Writing multi-state field to results output 102

4.12 Writing multiple output files 103

4.13 Using a nodeset variable to output nodal fields defined on only a subset of the mesh 104

13

4.14 get num time steps 105

4.15 Reading sequenced fields 105

4.16 Reading initial condition data from a mesh database 106

4.17 Reading initial condition data from a mesh database 107

4.18 Reading initial condition data from a mesh database 108

4.19 Reading initial condition data from a mesh database 109

4.20 Reading initial condition data from a mesh database one time only 110

4.21 Reading initial condition data from a mesh database at a specified time 111

4.22 Linearly interpolating field data from a mesh database 112

4.23 Combining restart and field interpolation 113

4.24 Linearly interpolating field data from a mesh database with only a single step . . 115

4.25 Linearly interpolating field data when the time is outside the database time interval 116

4.26 Specifying initial conditions from a non-existent field 117

4.27 Specifying initial conditions from a non-existent field 118

4.28 Interpolating fields on a database with negative times 119

4.29 Interpolating fields on a database with non-monotonically increasing times 119

4.30 Arbitrary analysis time to database time mapping during field input 121

4.31 Error condition — specifying interpolation of an integer field 123

4.32 Working with element attributes 123

4.33 Creating output mesh containing a subset of the mesh parts 124

4.34 Writing and reading a global variable 125

4.35 Writing and reading parameters as global variables 126

4.36 Automatically writing parameters as global variables 128

4.37 Writing global variables to a Heartbeat file 129

4.38 Writing global variables to a Heartbeat file in CSV format with extended precision 130

4.39 Writing global variables to a Heartbeat file with a user-specified field separator . . 131

14

4.40 Adding the contents of a file to the information records of an output database 131

4.41 Overwriting time steps instead of adding new steps to a database 132

4.42 Example of creating and writing a nodeset with fields. 134

4.43 Example of creating and writing a sideset with fields. 134

5.1 Using the bounding volume search with the Boost R-tree method 137

5.2 Search method options 137

6.1 Diagnostic Timers 139

6.2 Diagnostic Timers in Parallel 141

6.3 Example showing how to communicate with other processors 143

6.4 Example showing how to communicate an arbitrary amount of data with other
processors 144

6.5 Using the scheduler 145

6.6 Parameters: Data for use in the following examples 148

6.7 Parameters: Defining 149

6.8 Parameters: Accessing values 149

6.9 Parameters: Dealing with errors 150

6.10 Parameters: Storing unsupported types 151

6.11 Filename substitution capability 153

7.1 Stk Balance RCB Example 155

7.2 Stk Balance Settings For RCB 155

7.3 Stk Balance API Parmetis Example 156

7.4 Stk Balance Settings For Parmetis 156

7.5 Stk Balance API Parmetis With Search Example 158

7.6 Stk Balance Settings For Parmetis With Search 158

7.7 Stk Balance API Using A Field To Set Vertex Weights Example 158

7.8 Stk Balance Settings For Setting Vertex Weights Using A Field 159

15

7.9 Stk Balance API Using Selectors To Balance A Mesh Example 160

7.10 Stk Balance Settings For Multi-criteria Balancing Using Selectors 160

7.11 Stk Balance API Using Fields To Balance A Mesh Example 160

7.12 Stk Balance Settings For Multi-criteria Balancing Using Fields 161

8.1 Example of simple operations using STK SIMD 163

16

Chapter 1

STK Mesh

At a high level, the Sierra Toolkit (STK) modules support the engineering science application
developer by helping to characterize an unstructured mesh (such as is needed for a Finite Element
or Finite Volume mesh) and provide capabilities to support full end-to-end simulations.

Currently, STK is composed of several modules:

• STK Mesh

• STK Search

• STK Transfer*

• STK Balance

• STK IO

• STK Util

*STK Transfer will not be discussed in this document.

In the first section of this document, we will introduce STK Mesh terminology and concepts,
with the largest effort being towards documenting code usage by using up-to-date examples (that
are also in the code repository). This section provides definitions and descriptions of basic STK
Mesh terms. Throughout, we use the Exodus [1] mesh format for illustration purposes, and it is
recommended that STK Mesh clients be familiar with Exodus.

1.1 STK Mesh Terms

A Mesh is a collection of entities, parts, fields, and field data. The STK Mesh API separates these
collections into MetaData and BulkData.

Each of these terms is defined below.

17

1.1.1 Entity

Entity is a general term for the following types (listed in ascending 'rank' order): node, edge, face,
element, and constraint. Rank is an enumerated type that describes and orders the different kinds
of entities.

1.1.2 Connectivity

In a finite element discretization, entities are connected to other entities. Examples include:
element-to-node connectivity (the nodes connected to a given element), node-to-element connec-
tivity (the elements connected to a given node), and face-to-element connectivity (the elements
connected to a given face). A connection from a higher-rank entity to a lower-rank entity is re-
ferred to as a downward relation. When a downward relation is declared (e.g., between an element
and a node), STK Mesh, by default, creates the corresponding upward relation (e.g., from the node
to the element). Table 1.1 shows the default connectivity of a fully-connected mesh. The term
fully-connected means that the client code has established all downward relations. The term fixed
means that the number of relations is defined by topology; the number of node-relations for a hex-8
element is 8. The term dynamic means that the number of relations is unknown until individual
relations have been established. For example, an element may have 0, 1, or more faces depending
on whether it is on an external boundary. STK mesh provides functions for creating all edges or
faces (see Sections 1.6.7 and 1.6.8). It should be noted that STK Mesh does not support connec-
tivity between entities of the same rank. As an additional note, the term relations and connectivity
are used interchangeably in this document.

Table 1.1: Default connectivity of a fully-connected mesh

From-entity To Node To Edge To Face To Element
Node - dynamic dynamic dynamic
Edge fixed - dynamic dynamic
Face fixed dynamic dynamic

Element fixed dynamic dynamic

1.1.3 Topology

Topology provides an entity's finite element description. This includes several attributes such as
the number and type of lower-rank entities that can exist in that entity's downward relations. For
example, an element with hex8 topology must have 8 nodes and may have up to a maximum of 6
quad4 faces and 12 line2 edges. Quad4, line2, and nodes are also examples of topologies. Topol-
ogy also defines what permutations in downward connectivity are permissible. Unlike downward
connectivity, upward connectivity is determined at run-time and does not imply restrictions on
permutations. See chapter 2 for more detail about the STK Topology component and examples of
using the API.

18

Note that in STK Mesh, entities with entity-rank higher than element-rank generally don't have an
associated topology.

1.1.4 Part

Part is a general term for a subset of entities in a mesh. Parts are a grouping mechanism used to
operate on subsets of the mesh (see Section 1.1.6). STK Mesh automatically creates four parts at
startup: the universal part, the locally-owned part, the globally-shared part, and the aura part.
These parts are important to the basic understanding of ghosting (see Section 1.1.8). For meshes
read from Exodus files, additional Exodus parts are created (blocks, sidesets, and nodesets). Each
entity in the mesh must be a member of one or more parts.

Parts exist for the life of the STK Mesh; parts cannot be deleted without deleting the mesh. STK
Mesh provides methods which allow client code to explicitly change the user-defined part mem-
bership of an entity.

See Section 1.5 for more details on mesh parts.

1.1.5 Field

Fields are data associated with mesh entities. Examples include coordinates, velocity, displace-
ment, and temperature. A field in STK Mesh can hold any data type (e.g., double or int) and any
number of scalars per entity (e.g., nodal velocity field has three doubles per node if the spatial
dimension is 3). A field can be allocated (defined) on the whole mesh (e.g., all nodes) or on a Part
(subset) of the mesh (nodes of a sideset). For example, a material property can be defined on a
specified element block.

1.1.6 Selector

Selectors are used to select entities that belong to a specified expression of parts. Here are some
examples:

• Select all elements that are in either block-1 or block-2 or both. (A set-union expression.)

• Select all nodes that are connected to elements in both block-1 and block-2. (A set-
intersection expression.)

• Select all nodes that are locally-owned but not connected to a rigid-body part. (A set-
difference expression.)

• Select all nodes that have a specified field allocated. Since field allocation is specified in
terms of parts, we allow selectors to be created based on fields.

19

The selector system is explained further in Section 1.4.

1.1.7 Bucket

STK Mesh organizes entities into buckets: the entities in a bucket all have the same rank and topol-
ogy, and they are all members of the same parts. Additionally, the entities in a bucket correspond
to contiguously-allocated blocks of memory in the associated field-data values.

There are two primary reasons for grouping entities into buckets. Firstly, the Selector system
(see section 1.4) allows for the traversal of the mesh in arbitrary user-defined subsets, and these
subsets exist as combinations of buckets. Secondly, the performance of mesh-modification (see
section 1.6) is improved by only moving bucket-sized sections of allocated memory (e.g., when
adding/deleting entities) rather than re-allocating and sliding the memory for the whole mesh.

No entity is ever in more than one bucket at any given time. This grouping is performed internally
by STK Mesh; client code has no explicit control over which entities reside in which buckets. If
an entity's part membership is changed, it is automatically moved to a different bucket.

1.1.8 Ghosting

Ghosting in STK Mesh provides a way to perform operations that involve entities that are nei-
ther locally-owned nor shared on the current processor. STK Mesh automatically provides a one-
element thick ghost layer around each processor, referred to as the aura and is shown in Figures 1.1
and 1.2. Formally, the aura is defined as a ghosting of the upward-relations for shared entities. In
other words, if the aura is on, then shared entities have the same upward-relations on each shar-
ing processor. In addition, STK Mesh client code can also request arbitrary ghosting of entities,
referred to as custom ghosting.

1.1.9 MetaData and BulkData

The MetaData component of a STK Mesh contains the definitions of its parts, the definitions
of its fields, and definitions of relationships among its parts and fields. For example, a subset
relationship can be declared between two parts, and a field definition can be limited to specific
parts. The BulkData component of a STK Mesh contains entities, entity ownership and ghosting
information, connectivity data, and field data. For efficiency, the BulkData API enables data access
via buckets, in addition to data access via entity and rank.

A mesh's MetaData holds a database definition (a schema), and a mesh's BulkData holds the con-
tent of that database. MetaData is replicated (duplicated) on all processors; BulkData is distributed
across processors with each processor having a separate subset of the data, subject to sharing and
ghosting.

20

[900] [800]

[600] [500]

[100] [200]

g hosted

[910]

[610]

[110]

Proc 0

e

[700]

[400]

[300]

k

ghosted

r -
T

[910] [810] [710]

) I

[610] [510] [410]

) I

[110] [210] [310]

O

Proc 1

Ghosted • Locally Owned Locally Owned & Shared

Figure 1.1: Aura ghosting per MPI process

Proc 0

Ghosted

r

L

[910]

c-,

[700]

[610] [400]

[110] [300]

 , k

Proc 1

Shared

[810] [710]

[410]

[310]

• Locally Owned • Locally Owned & Shared • Shared

Figure 1.2: Final auras

This design requires object construction of MetaData and BulkData to be staged. The spatial
dimension of a mesh is usually specified in the call to the MetaData constructor, which also pro-
vides a valid default initialization. The BulkData constructor requires a MetaData object as an
argument. A BulkData object cannot be modified (e.g., entities added) before its MetaData object
has been initialized and then committed using the MetaData: : commit () member function

21

(for example, see Listing 2.1). Once a MetaData object has been committed, it cannot be changed.
Therefore, fields must be put on parts prior to MetaData commit. Non-topology parts can still
be declared after commit, but they will have limited uses because subset relationships cannot be
changed. For clarity, it is recommended that MetaData commit is called prior to BulkData con-
struction. If new is used to create a BulkData object, then that instance must be deleted before its
MetaData object (used to construct it) is destroyed.

The STK Mesh usage examples below and in Section 1.7 illustrate common uses of the MetaData
and BulkData APIs.

1.1.10 Creating a STK Mesh from an Exodus file

Listing 1.1 shows how to create and populate a STK Mesh using the STK I0 module, which is
described in Chapter 4. We provide this example for those who want to quickly get started using
an STK Mesh given an Exodus file. This particular example shows STK 10 populating the STK
Mesh from a generated-in-memory mesh, but the "filename is all that would need to change, to
instead read data from an Exodus file. Further examples will show various uses of the STK Mesh.

Listing 1.1: Example of creating an STK Mesh using an Exodus file
../../../code/stk/stk_doc_tests/stk_meshkreateStkMesh.cpp

TEST(StkMeshHowTo, UseStkIO)

50 {

51 MPI_Comm communicator = MBI_COMM_WORLD;

52 if(stk::parallel_machine_size(communicator) 1)

53 {
54 stk::mesh::MetaData meta;

55 stk::mesh::BulkData bulk(meta, communicator);

56

57 stk::io::StkMeshIoBroker meshReader;

58 meshReader.set_bulk_data(bulk);

59 meshReader.add_mesh_database("generated:8x8x8", stk::io::READ_MESH);

60 meshReader.create_input_mesh();

61 meshReader.add_all_mesh_fields_as_input_fields();

62 meshReader.populate_bulk_data();

63

64 unsigned numElems = stk::mesh::count_selected_entities(meta.universal_part(),

bulk.buckets(stk::topology::ELEM_RANK));

65 EXPECT_EQ(512u, numElems);

66 }

67 }

After these steps, the STK Mesh objects now contain all the data from the Exodus file (e.g., Fields,
Parts, Entities).

1.2 Parallel

STK Mesh maintains a parallel consistent mesh across many MPI processes or subdomains. Most
of the parallel capabilities revolve around communicating information, like field data, for entities

22

on the boundaries of these subdomains. Entities that are communicated between subdomains are
either shared or ghosted.

1.2.1 Shared

Entities that are shared among processors are downward connected from a locally-owned entity,
usually an element. For example, if the side of a hex8 is on a subdomain boundary, the 4 nodes
that touch the boundary are considered shared. If there also exists a face on that side of the hex,
the face would also be shared.

Shared entities have fully symmetric communication information stored on all processors that share
the entity. In other words, every processor that has a shared entity knows about every other pro-
cessor that shares the entity.

1.2.2 Ghosted

Ghosted entities are communicated between subdomains regardless of the connections from
locally-owned entities. This is different from shared entities which are defined by downward con-
nection from locally-owned entities.

Ghosted entities only have communication information about the owner stored on the processor
that the entities are ghosted to. This means that a given processor's BulkData has information
about the processor the ghost came from but not any other processors that the entity may have
been ghosted to.

1.2.3 Aura

The aura is a special ghosting that automatically sends one layer of ghosted elements on the sub-
domain boundaries to the processors that share those boundaries, as seen in Figures 1.1 and 1.2.
The aura can be turned off when the mesh is initially created. See Section 1.2.3.1 for example
usage.

1.2.3.1 How to use automatically generated aura

This section describes how to control whether or not a one-layer ghosting of elements is automati-
cally generated around each processor's mesh.

Listing 1.2: Example of how to control automatically generated aura
../../../code/stk/stk_doc_tests/stk_mesh/howToUseAura.cpp

48 void expectNumElementsInAura(stk::mesh::BulkData::AutomaticAuraOption autoAuraOption,

23

49 unsigned numExpectedElementslnAura)

50 {

51 MPI_Comm communicator = MPI_COMM_WORLD;

52 if (stk::parallel_machine_size(communicator) == 2)

53

54 stk::mesh::MetaData meta;

55 stk::mesh::BulkData bulk(meta, communicator, autoAuraOption);

56 stk::io::fill_mesh("generated:lxlx2", bulk);

57

58 EXPECT_EQ(numExpectedElementsInAura,

59 stk::mesh::count_selected_entities(meta.aura_part(),
bulk.buckets(stk::topology::ELEMENT_RANK)));

60 }

61 }

62 TEST(StkMeshHowTo, useNoAura)

63 {

64 expectNumElementsInAura(stk::mesh::BulkData::NO_AUTO_AURA, 0);

65

66 TEST(StkMeshHowTo, useAutomaticGeneratedAura)

67 {

68 expectNumElementsInAura(stk:Mesh::BulkData::AUTO_AURA, 1);

69 }

70 TEST(StkMeshHowTo, useAuraDefaultBehavior)

71

72 MPI_Comm communicator = MPI_COMM_WORLD;

73 if (stk::parallel_machine_size(communicator) == 2)

74

75 stk::mesh::MetaData meta;

76 stk::mesh::BulkData bulk(meta, communicator);

77 stk::io::fill_mesh("generated:lxlx2", bulk);

78

79 EXPECT_EQ(lu, stk:mesh::count_selected_entities(meta.aura_part(),
bulk.buckets(stk::topology::ELEMENT_RANK)));

80

81 }

1.3 STK Parallel Mesh Consistency Rules

STK Mesh is used by many engineering disciplines such as structural dynamics, solid mechanics,
thermal/fluid mechanics, and mesh refinement. Since the mesh is being used by different applica-
tions, we must ensure that the mesh is consistent. A consistent mesh will always follow certain
rules/guidelines regardless of the application using it. This has a disadvantage in that flexibility to
tune/adjust the mesh for a specific application's needs is reduced, but it also allows easier coupling
between applications and helps reuse of algorithms that use STK Mesh because of these rules.

Much of the work in STK Mesh, during modification cycles, is towards creating a consistent mesh
especially in parallel. The following are some of the ideas behind a parallel consistent mesh:

• For entities with the same identifier (EntityKey), then for all the processors that have the
entity

— the owner is the same

— the application-defined parts that the entity is a member of, are the same

24

— every entity has the same downward relations on all processors

— every entity has the same upward relations on all processors (only if the aura is active)

• For aura'ed/shared entities

— owner of entity knows with which processors the entity is shared with and/or aura'ed
to

— sharer (not owner) of entity knows which other processors share the entity

— processor with aura' ed entity knows the owner of the entity

At first glance, these rules might seem trivial. The STK Mesh API prevents the ability to change
mesh to get it into an inconsistent state at the end of a modification cycle. This concept has proven
to be powerful in that it allows coupling of codes and reuse of algorithms across applications.

1.3.1 How to enable mesh diagnostics to enforce parallel mesh rules

STK Mesh now provides a means by which an application may enable internal mesh diagnostics
to ensure that the mesh is consistent with the three Parallel Mesh Rules (PMR). These rules may
be summarized as:

• Rule 1: Coincident and partially coincident elements must be owned by the same processor
(no split coincident elements)

• Rule 2: Each global id shall be owned by one and only one processor (no duplicate ids)

• Rule 3: Processor that owns a side also owns at least one element to which it is connected.
(each side needs an element i.e no solo faces)

Enabling mesh diagnostics creates a per-processor file
named "mesh_diagnosticsiailures_<procid>.txr which contains the listing of all errors. This
example demonstrates first creating a mesh with a sideset and then checking that there are no solo
faces with attached elements that are remotely owned (PMR-3).

Listing 1.3: Example of how to enable mesh diagnostics
../../../code/stk/stk_dociests/stk_mesh/howToEnableMeshDiagnostics.cpp

TEST(StkMeshHowTo, EnableMeshDiagnostics)

44

45 stk::mesh::MetaData meta;

46 stk::mesh::BulkData bulkData(meta, MPI_COMM_WORLD);

47 stk::io::fill_mesh("generated:4x4x4Isideset:xX", bulkData);
48

49 bulkData.enable_mesh_diagnostic_rule(stk::mesh::RULE_3);

50 EXPECT_EQ(0u, bulkData.get_mesh_diagnostic_error_count());

51 }

25

1.3.2 How to enforce Parallel Mesh Rule 1

STK Mesh now provides a means by which an application may enforce Parallel Mesh Rule 1
(PMR-1) to ensure that coincident and partially-coincident elements must be owned by the same
processor (no split coincident elements).

Listing 1.4: Example of how to enforce Parallel Mesh Rule 1
../../../code/stkistk_balance/doc Aests/howToFixPMRINiolation.cpp

TEST(StkMeshHowTo, FixPMR1Violation)

44 {

45 stk::mesh::MetaData meta;

46 stk::mesh::BulkData bulkData(meta, MPI_COMM_WORLD);

47 stk::io::fill_mesh("generated:4x4x4Isideset:xX", bulkData);

48

49 stk::mesh::EntityIdProcMap elementAndDestProc;

50 EXPECT_NO_THROW(elementAndDestProc =

stk::balance::make_mesh_consistent_with_parallel_mesh_rulel(bulkData));

EXPECT_TRUE(elementAndDestProc.size()==0u); // no elements were migrated

52 }

1.3.3 Parallel API

This section discusses a few API functions for applications using the parallel capabilities of STK
Mesh.

The following code example shows how to communicate field data from owned to all shared and
ghosted entities, overwriting any local modifications.

Listing 1.5: Example of communicating field data from owned to all shared and ghosted entities
../../../code/stk/stk_dociests/stk_meshicommunicateFieldData.cpp

59 TEST_F(ParallelHowTo, communicateFieldDataForSharedAndAura)

60 {

61 auto& field =

get_meta().declare_field<stk::mesh::Field<double>>(stk::topology::NODE_RANK,

"temperature");
62

63 double initialValue = 25.0;

64 stk::mesh::put_field_on_entire_mesh_with_initial_value(field, &initialValue);

65

66 setup_mesh("generated:8x8x8", stk::mesh::BulkData::AUTO_AURA);

67

68 const stk:mesh::BucketVector& notOwnedBuckets =

get_bulk().get_buckets(stk::topology::NODE_RANK,

69

!get_meta().locally_owned_part());

70

71 for(const stk::mesh::Bucket *bucket : notOwnedBuckets)

72 for(stk::mesh::Entity node : *bucket)

73 *stk::mesh::field_data(field, node) = -1.2345;

74

75 stk::mesh::communicate_field_data(get_bulk(), l&field1);
76

77 for(const stk::mesh::Bucket *bucket : notOwnedBuckets)

78 for(stk::mesh::Entity node : *bucket)

79 EXPECT_EQ(initialValue, *stk::mesh::field_data(field, node));

26

80

The parallel_sum, paralleLmin, and paralleLmax functions operate on shared entities.

Listing 1.6: Example of paralleLsum ../../../code/stk/stkAloc_tests/stk_mesh/communicateFielðData.cpp

84 void expect_field_has_value(const stk::mesh::BucketVector& buckets,

85 const stk::mesh::Field<double> &field,

86 double value)

87 {

88 for(const stk::mesh::Bucket *bucket : buckets)

89 for(stk::mesh::Entity node : *bucket)

90 EXPECT_EQ(value, *stk::mesh::field_data(field, node));
91 }

92

93 TEST_F(ParallelHowTo, computeParallelSum)

94 {

95 auto& field =

get_meta().declare_field<stk::mesh::Field<double>>(stk::topology::NODE_RANK,

"temperature");
96

97 double initialvalue = 25.0;

98 stk: :mesh: :put_field_on_entire_mesh_with_initial_value (field, &initialValue);

99

100 setup_mesh("generated:8x8x8", stk::mesh::BulkData::AUTO_AURA);

101

102 const stk::mesh::BucketVector& shared = get_bulk().get_buckets(stk::topology::NODE_RANK,

103

get_meta().globally_shared_part());
104 const stk::mesh::BucketVector& notShared =

get_bulk().get_buckets(stk::topology::NODE_RANK,

105

!get_meta().globally_shared_part());

106 expect_field_has_value(shared, field, initialValue);

107 expect_field_has_value(notShared, field, initialValue);

108

109 stk::mesh::parallel_sum(get_bulk(), i&field1);

110

111 expect_field_has_value(shared, field, 2*initialValue);

112 expect_field_has_value(notShared, field, initialValue);
113 }

The comm_me sh_c ount s function is shown in Listings 1.7-1.8. The purpose of this function is
to count the number of entities of each entity rank across all processors.

Listing 1.7: Example showing parallel use of comm_mesh_counts
../../../code/stk/stk_doc_tests/stk_mesh/UnitTestCommMeshCounts.cpp

75 TEST(CommMeshCounts, Parallel)

76

77 stk::ParallelMachine communicator = MPI_COMM_WORLD;

78 int numprocs = stk::parallel_machine_size(communicator);
79

80 const std::string generatedMeshSpec = getGeneratedMeshString(10,20,2*numprocs);
81 unitTestUtils::exampleMeshes::StkMeshCreator stkMesh(generatedMeshSpec, communicator);

82

83 std::vector<size_t> comm_mesh_counts;

84 stk: :mesh: :comm_mesh_counts(*stkMesh.getBulkData(), comm_mesh_counts);

85

86 size_t goldNumElements = 10*20*2*numprocs;

87 EXPECT_EQ(goldNumElements, comm_mesh_counts[stk::topology::ELEMENT_RANK]);

88 }

27

Listing 1.8: Example showing parallel use of commmesh_counts with min/max counts
../../../code/stk/stk_dociests/stk_mesh/UnitTestCommMeshCounts.cpp

90 TEST(CommMeshCountsWithStats, Parallel)

91

92 stk::ParallelMachine communicator = MPI_COMM_WORLD;

93 int numprocs = stk::parallel_machine_size(communicator);

94

95 const std::string generatedMeshSpec = getGeneratedMeshString(10,20,2*numprocs);

96 unitTestUtils::exampleMeshes::StkMeshCreator stkMesh(generatedMeshSpec, communicator);

97

std::vector<size_t> comm_mesh_counts;

99 std::vector<size_t> min_counts;

100 std::vector<size_t> max_counts;

101

102 stk::mesh::comm_mesh_counts(*stkMesh.getBulkData(), comm_mesh_counts, min_counts,

max_counts);
103

104 size_t goldNumElements = 10*20*2*numprocs;

105 EXPECT_EQ(goldNumElements, comm_mesh_counts[stk::topology::ELEMENT_RANK]);

M6

107 size_t goldMinNumElements = 10*20*2;

108 EXPECT_EQ(goldMinNumElements, min_counts[stk::topology::ELEMENT_RANK]);

109

110 size_t goldMaxNumElements = goldMinNumElements;

111 EXPECT_EQ(goldMaxNumElements, max_counts[stk::topology::ELEMENT_RANK]);

112 }

1.4 STK Mesh Selector

A selector is a set-logical expression that can include intersections, unions, and complements. The
default-constructed selector is empty and therefore selects nothing. See Section 1.4.1 for examples.

A selector is typically used with get_bucket s () for a given entity rank to get a list of buckets
satisfying that selector. get_buckets () evaluates the selector on each bucket of the specified
rank. When the expression evaluation gets down to a part, the selector must determine if that
part is listed as one of the part intersections in the bucket. The worst-case cost of evaluating
get_buckets () is

0 (Nnumber buckets) X 0 (Nnumber selector terms) X 0 (Nnumber bucket parts) (1.1)

where Nnumber buckets is the number of buckets of the Entity rank that was passed
into get_buckets () , Nnumber selector terms is the length of the selector expression, and

Nnumber bucket parts is the average number of parts that each bucket represents.

Since STK Mesh internally caches the results of calls to get_bucket s () , selector performance
often does not have a large impact on overall application runtime. Selectors are implemented to
allow optimization from short-circuiting logic, to allow a positive result from a union to ignore the
rest of the expression, as well as a negative result from an intersection. If selectors are constructed
to take advantage of this type of early termination, the middle term in equation (1.1) is less ex-
pensive in practice. For example, if partA strictly contains partB, then the selector expression
(partA partB) will tend to select more efficiently than (partB I partA) because, in

28

the first case, once it is known that a bucket is selected for partA, that bucket does not need to be
checked against partB.

1.4.1 How to use selectors

These examples demonstrate creating and printing Selectors, as well as performing set intersec-
tion operations. The second example also demonstrates retrieving the buckets associated with a
Selector.

Listing 1.9: Example of how to use Selectors to avoid getting caught by the "Nothing?' selector
../../../codelstk/stk_doc_tests/stk_mesh/howToUseSelectors.cpp

50 TEST(StkMeshHowTo, betterUnderstandSelectorConstruction)

51

52 MPI_Comm communicator = MPI_COMM_WORLD;

53 if (stk::parallel_machine_size(communicator) != 1) { return; }

54 stk::io::StkMeshIoBroker stkMeshIoBroker(communicator);

55 const std::string generatedMeshSpecification = "generated:lx1x1"; // syntax creates a

lx1x1 cube

56 stkMeshloBroker.add_mesh_database(generatedMeshSpecification, stk::io::READ_MESH);

57 stkMeshloBroker.create_input_mesh();

58 stkMeshIoBroker.populate_bulk_data();

59

stk::mesh::BulkData &stkMeshBulkData = stkMeshloBroker.bulk_data();

61

62 stk::mesh::Selector nothingSelector_byDefaultConstruction;

63 size_t expectingZeroBuckets = 0;

EXPECT_EQ(expectingZeroBuckets, stkMeshBulkData.get_buckets(stk::topology::NODE_RANK,

nothingSelector_byDefaultConstruction).size());
65

66 std::ostringstream readableSelectorDescription;

67 readableselectorDescription << nothingselector_byDefaultConstruction;

68 EXPECT_STREQ("NOTHING", readableSelectorDescription.str().c_str());

69

70 stk::mesh::Selector allSelector(!nothingSelector_byDefaultConstruction);

71 size_t number0fAllNodeBuckets = stkMeshBulkData.buckets (stk: :topology: :NODE_RANK) . size () ;

72 EXPECT_EQ(number0fAllNodeBuckets, stkMeshBulkData.get_buckets(stk::topology::NODE_RANK,

allSelector).size());
73

74

75 TEST(StkMeshHowTo, makeSureYouAreNotIntersectingNothingSelector)

76 {

77 MPI_Comm communicator = MPI_COMM_WORLD;

78 if (stk::parallel_machine_size(communicator) != 1) { return; }

79 stk::io: :StkMeshIoBroker stkMeshIoBroker (communicator) ;

80 // syntax creates faces for surface on the positive: 'x-side', 'y-side', and 'z-side'

81 // of a lxlxl cube, these parts are given the names: 'surface_1', 'surface_2', and

'surface_3'

82 // automagically when it is created [create_input_mesh()]
83 const std::string generatedMeshSpecification = "generated:lx1xlIsideset:XYZ";

84 stkMeshIoBroker.add_mesh_database(generatedMeshSpecification, stk::io::READ_MESH);

85 stkMeshloBroker.create_input_mesh();

86 stkMeshloBroker.populate_bulk_data();

87

88 stk: :mesh: :MetaData &stkMeshMetaData = stkMeshIoBroker.meta_data();

89 stk::mesh::Part *surfacelPart = stkMeshMetaData.get_part("surface_1");
stk: :mesh: :Part *surface2Part = stkMeshMetaData.get_part("surface_2");

91 stk::mesh::Part *surface3Part = stkMeshMetaData.get_part("surface_3");
92 stk: :mesh: :PartVector allSurfaces;

93 allSurfaces.push_back(surfacelPart);
94 allSurfaces.push_back(surface2Part);

95 allSurfaces.push_back(surface3Part);

29

96

97 stk::mesh::Selector selectorIntersectingNothing;

98 for (size_t surfaceIndex = 0; surfaceIndex < allSurfaces.size(); ++surfaceIndex)

99

WO stk::mesh::Part &surfacePart = *(allSurfaces[surfaceIndex]);

101 stk::mesh::Selector surfaceSelector(surfacePart);

102 selectorIntersectingNothing &= surfacePart;

103

1W size_t expectedNumberOfBucketsWhenIntersectingNothing = 0;

105 stk::mesh::BulkData &stkMeshBulkData = stkMeshIoBroker.bulk_data();

W6 stk::mesh::Bucketvector selectedBuckets =

stkMeshBulkData.get_buckets(stk::topology::NODE_RANK,

selectorIntersectingNothing);

107 EXPECT_EQ(expectedNumberOfBucketsWhenIntersectingNothing, selectedBuckets.size());

108

109 stk::mesh::Selector preferredBoundaryNodesSelector =

stk::mesh::selectIntersection(allSurfaces);

110 size_t expectedNumberOfNodeBucketsWhenIntersectingAllSurfaces = 1;

I H selectedBuckets = stkMeshBulkData.get_buckets(stk::topology::NODE_RANK,

preferredBoundaryNodesSelector);

112 EXPECT_EQ(expectedNumberOfNodeBucketsWhenIntersectingAllSurfaces, selectedBuckets.size());

113 }

1.5 STK Mesh Parts

A mesh part is a subset of entities of the mesh, and may be used to reflect the physics modeled,
discretization methodology, solution algorithm, meshing artifacts, or other application specific
requirements.

STK Mesh automatically defines several parts during initialization, demonstrated here based on the
serial The universal part includes every entity on the current MPI process (Figure 1.3). The locally-
owned part contains all the entities owned by the current MPI process (Figure 1.4). The globally-
shared part contains all the entities on the current MPI process that are shared with another MPI
process, whether locally-owned or not. Figures 1.5 and 1.6 illustrate the globally shared part. An
entity may be in both the locally-owned and globally-shared parts. By default, a shared entity
is owned by the lowest-numbered sharing MPI process, though client code is allowed to change
entity ownership. Part declarations and part membership are consistent across processor ranks;
part membership for a given entity is maintained on the owning rank. The aura part contains all
the entities which are ghosted due to aura. An additional part is kept up-to-date for each custom
ghosting and examples of usage are in Section 1.5.3.

1.5.1 Part Identifiers and Attributes

A mesh part has an unique text name identifier, specified by the application that creates the part.
This identifier is intended to support text input and output by the application, e.g., parsing, logging,
and error reporting. The text name is not intended for referencing a mesh part within application
computations. As reliance on text-based references will lead to text-based searches within the
application's computations, resulting in unnecessarily degraded performance.

30

(78) (68)

[100]

•

(28) (38)

Proc 0
• Identifier

(68) (58)

[200]

(38) (48)

Proc 1

Figure 1.3: Parallel-decomposed STK Mesh. This figure depicts the universal parts on each pro-
cess.

(78) (68)
 •

[100]

(28) -(3.8)

Proc 0
• Identifier

(58)

[200]

Proc 1

)

Figure 1.4: Locally-owned parts. Nodes 38 and 68 are owned by process 1 and are not in process
2's locally-owned part.

A mesh part also has a unique non-negative integer identifier, its part ordinal, that is internally
generated by the mesh MetaData. Part ordinals are intended to support fast referencing and order-
ing of mesh parts. The part ordinal is also intended to support efficient communication of mesh
part information among distributed memory processes.

An application, for example, may specify a mesh part for an element block (a collection of ele-
ments); in descriptions of part behavior, we use the following notation:

PartA mesh part identified by A

PartJA mesh part intended for mesh entities of rank J and identified by A
(1.2)

Note that all processors have the same part list. Hence, parts must be created synchronously across
all processors to avoid part lists becoming different on any processor.

31

(6•8)

(38)

Proc 0
• Identifier

(60)

Proc 1

Figure 1.5: Globally-shared parts. Nodes 38 and 68 appear in both process's globally-shared part.

Shared
• Identifier

Figure 1.6: Entities in the globally-shared part from each process.

1.5.2 Induced Part Membership

An application can explicitly insert a mesh entity into a mesh part or explicitly remove a mesh
entity from a part. A mesh entity's membership in a part may also be induced through its connec-
tivity to a higher rank mesh entity. Thus, a mesh entity may be an explicit member or an induced
member of a mesh part.

For example, a node will have induced membership in an element block (mesh part) when that
node has connectivity from an element that is in that part. Therefore, the nodes of all the elements
in the element block will be in that part due to induced part membership. This enables client code
to select and iterate over the nodes of the elements in the element block directly and uniquely,
rather than through element connectivity. In general, the explicit part membership of a given entity
automatically induces the same part membership onto any lower-ranking entities that are connected
to it.

When a mesh part has a specified entity rank (PartIA) then only mesh entities of the same entity rank
J may be explicitly added as members to that mesh part. If a mesh entity is an explicit member of
such a mesh part, entity!, E Part,11, and that mesh entity (entityia) is the from-entity of a connectivity,
then the to-entity of that connectivity is an induced member of that mesh part. More formally,

Given a connectivity (entityla , entitylk , x) :J>K and

entity!, E PartJA via explicit membership

then entityf e PartIA via induced membership.

(1.3)

32

Note that induced-part memberships are added (or removed) whenever a connectivity is declared
(or deleted). As a result, declaring or deleting a connectivity can cause an entity to move to a
different bucket.

Induced membership only occurs in the presence of a mesh entity connectivity. This means that
induced membership is not transitive. For example, if a mesh has both element-to-face and face-
to-edge connectivities, but does not have element-to-edge connectivities, then the edges in the
element's closure (via element-to-face-to-edge) are not induced members.

1.5.3 How to use ghost parts

These examples demonstrate how to use the ghost parts to select those entities that are ghosted due
to aura or custom ghosting.

Listing 1.10: Example of how to use Ghost Parts to select aura ghosts and custom ghosts
../../../code/stk/stk_doc_tests/stk_mesh/UnitTestGhostParts.cpp

66 TEST(UnitTestGhostParts, Aura)
67 {

68 stk::ParallelMachine communicator = MPI_COMM_WORLD;

69

M int numProcs = stk::parallel_machine_size(communicator);

71 if (numProcs != 2) {

72 return;

73 }

74

75 stk::io::StkMeshIoBroker stkMeshIoBroker(communicator);

76 const std::string generatedMeshSpecification = "generated:lx1x3";

77 stkMeshIoBroker.add_mesh_database(generatedMeshSpecification, stk::io::READ_MESH);

78 stkMeshloBroker.create_input_mesh();

79 stkMeshIoBroker.populate_bulk_data();

80

81 stk::mesh::MetaData &stkMeshMetaData = stkMeshloBroker.meta_data();

82 stk::mesh::BulkData &stkMeshBulkData = stkMeshloBroker.bulk_data();

83

84 std::cerr<<"about to get aura_part..."<<std::endl;

85 stk::mesh::Part& aura_part = stkMeshMetaData.aura_part();
86 std::cerr<<"...got aura part with name—"<<aura_part.name()<<std::endl;

87 stk::mesh::Selector aura_selector = aura_part;

88

89 stk::mesh::Ghosting& aura_ghosting = stkMeshBulkData.aura_ghosting();

90 EXPECT_EQ(aura_part.mesh_meta_data_ordinal(),

stkMeshBulkData.ghosting_part(aura_ghosting).mesh_meta_data_ordinal());

91

92 stk::mesh::Selector not_owned_nor_shared = (!stkMeshMetaData.locally_owned_part()) &

(!stkMeshMetaData.globally_shared_part());
93

94 const stk::mesh::Bucketvector& not_owned_nor_shared_node_buckets =

stkMeshBulkData.get_buckets(stk::topology::NODE_RANK, not_owned_nor_shared);

95 size_t expected_num_not_owned_nor_shared_node_buckets = 1;

96 EXPECT_EQ(expected_num_not_owned_nor_shared_node_buckets,

not_owned_nor_shared_node_buckets.size());

97

98 const stk::mesh::Bucketvector& aura_node_buckets =

stkMeshBulkData.get_buckets(stk::topology::NODE_RANK, aura_selector);

99

EXPECT_EQ(not_owned_nor_shared_node_buckets.size(), aura_node_buckets.size());

101

102 const size_t expected_num_ghost_nodes = 4;

33

103 size_t counted_nodes = 0;

104 size_t counted_aura_nodes = 0;

105 for(size_t i=0; i<not_owned_nor_shared_node_buckets.size(); ++i)

106

107 counted_nodes += not_owned_nor_shared_node_buckets[i]->size();

108 counted_aura_nodes += aura_node_buckets[i]->size();

109

IN EXPECT_EQ(expected_num_ghost_nodes, counted_nodes);

111 EXPECT_EQ(expected_num_ghost_nodes, counted_aura_nodes);

112 }

113

H4 TEST(UnitTestGhostParts, Customl)

115

116 stk::ParallelMachine communicator = MPI_COMM_WORLD;

117

118 int numProcs = stk::parallel_machine_size(communicator);
119 if (numProcs != 2) {

120 return;

121 }

122

123 stk::io::StkMeshIoBroker stkMeshIoBroker(communicator);

124 const std::string generatedMeshSpecification = "generated:lx1x4";

125 stkMeshIoBroker.add_mesh_database(generatedMeshSpecification, stk::io::READ_MESH);

126 stkMeshloBroker.create_input_mesh();

127 stkMeshloBroker.populate_bulk_data();

128

129 stk::mesh::BulkData &stkMeshBulkData = stkMeshloBroker.bulk_data();

130

131 int myProc = stkMeshBulkData.parallel_rank();

132 int otherProc = (myProc == 0) ? 1 : 0;

133

134 stkMeshBulkData.modification_begin();

135

136 stk::mesh::Ghosting& custom_ghosting = stkMeshBulkData.create_ghosting("CustomGhosting1");

137

138 std::vector<stk::mesh::EntityProc> elems_to_ghost;

139

NO const stk: :mesh: :BucketVector& elem_buckets =

stkMeshBulkData.buckets(stk::topology::ELEM_RANK);

141 for(size_t i=0; i<elem_buckets.size(); ++i) {

142 const stk::mesh::Bucket& bucket = *elem_buckets[i];
143 for (size_t j=0; j<bucket . size () ; ++j) {

144 if (stkMeshBulkData.parallel_owner_rank(bucket[j]) == myProc) 1

145 elems_to_ghost.push_back(std::make_pair(bucket[j], otherProc));

146

147

148 1

149

150 stkMeshBulkData.change_ghosting(custom_ghosting, elems_to_ghost);

151

152 stkMeshBulkData.modification_end();

153

154 //now each processor should have 2 elements that were received as ghosts of elements from

the other proc.

155 const size_t expected_num_elems_for_custom_ghosting = 2;

156

157 stk::mesh::Part& custom_ghost_part = stkMeshBulkData.ghosting_part(custom_ghosting);

158 stk::mesh::Selector custom_ghost_selector = custom_ghost_part;

159

MO const stk::mesh::BucketVector& custom_ghost_elem_buckets =

stkMeshBulkData.get_buckets(stk::topology::ELEM_RANK, custom_ghost_selector);

161 size_t counted_elements = 0;

162 for(size_t i=0; i<custom_ghost_elem_buckets.size(); ++i) {

163 counted_elements += custom_ghost_elem_buckets[i]->size();

164 }

165

166 EXPECT_EQ(expected_num_elems_for_custom_ghosting, counted_elements);

167 }

34

1.6 Mesh Modification

1.6.1 Overview

The following types of mesh modifications are available in STK Mesh:

• Add/delete entities

• Change entities' part membership

• Change connectivity

• Change processors' entity ownership

• Change ghosting

A STK Mesh can be modified only within the context of a modification cycle. A modification cycle
begins with a call to BulkData : :modification_begin () and ends when the next call to
BulkData : :modification_end () returns. This latter function does a pre-determined set
of checks on mesh status and performs MPI communication to ensure a globally-consistent state.

Modification cycles should not be nested; BulkData: :modification_end () terminates all
"enclosine modification cycles. If the application inadvertently nests modification cycles, errors
are likely to be thrown.

Application code between a BulkData: :modification_begin () call and the follow-
ing BulkData : :modification_end () call can use STK Mesh modification functions that
cause the BulkData to become parallel inconsistent. That is, mesh information on different pro-
cessor ranks can disagree. After each modification cycle, a STK mesh is guaranteed to be parallel-
consistent. Failures during mesh modification are not recoverable.

The first time BulkData : :modification_begin () is called, the mesh MetaData is verified
to have been committed and to be parallel-consistent (and the MetaData is committed at that time if
it hasn't already been committed). The function returns true if the mesh successfully transitions
from the guaranteed parallel-consistent state to the MODIFIABLE state, and false if it is already
in this state.

BulkData : :modification_end () performs parallel synchronization of local mesh modi-
fications since the mesh entered the MODIFIABLE state and transitions the mesh back to a guar-
anteed parallel-consistent state. BulkDat a : : modi f i cat ion_end () returns true if it suc-
ceeds and false if it is already in the guaranteed parallel-consistent state. If modification resolu-
tion errors occur then a parallel-consistent exception will be thrown.

Because a modification cycle incurs multiple rounds of communication and traversal over large
portions of the mesh, even a modification cycle with a single modification incurs significant cost.

35

From a performance standpoint it is advantageous to group mesh modifications into as few modi-
fication cycles as possible.

To alleviate the expense of a general modification cycle, other single-purpose API have been in-
troduced, such as for the creation of faces, that take into account knowledge of what has been
modified to improve the performance of a modification cycle. These should be considered before
coding a general modification, especially if it is in a performance-critical part of the code.

Note that MetaData changes (declaring parts and fields) are not part of the mesh modification API
since it's illegal to change MetaData after the MetaData object has been committed.

1.6.2 Public Modification Capability

In this section we describe the modification operations intended to be called from ap-
plication code. As noted above, these functions can only be called between calls to
BulkData : :modification_begin () and BulkData : :modification_end O . We
also describe the modification operations that STK Mesh automatically performs internally as a
result of an application explicitly calling a modification function. Understanding what modifica-
tions can occur automatically is particularly important for code reliability. We note that certain
modification types are applicable only in distributed STK Mesh applications.

1.6.2.1 Add/Delete Entities

The BulkDat a : : declare_entity () function can be used to add an entity to a STK mesh
and assign its entity rank and global identifier. BulkData : : generate_new_ent it ie s ()
can be used to create multiple entities of specified entity ranks and have unique global identifiers
automatically assigned. When entities of EDGE_RANK, FACE_RANK, or ELEMENT_RANK are
created by application code, they must be assigned a topology and have their nodal connectivities
set before BulkData : : modi f i cat ion_end () is called. See section 1.6.6.

BulkData : : destroy_entity () deletes an entity from a STK Mesh. All upward relations
must be deleted before an entity can be destroyed, as a safety measure to ensure that the user is
explicitly aware of any possible inconsistent mesh states that they are creating (e.g. an element
that is missing one or more nodes). Downward relations are deleted automatically.

Adding or deleting an entity can result in automatic changes to part membership, ownership, con-
nectivity, ghosting, and sharing. Changes in part membership(s) can also result in changes to
bucket structure. Any local modifications to an entity will cause ghosted copies of that entity to be
deleted from other processor ranks. The ghosts will be automatically regenerated if they are part
of the aura.

Unless an entity is deleted, it stays valid before, during, and after a modification cycle.

36

Listing 1.11: Example showing optimized destruction of all elements of a specified topology
../../../code/stk/stk_doc_tests/stk_mesh/howToDestroyElementsOffopology.cpp

#include <gtest/gtest.h>

2 #include <stk_mesh/base/BulkData.hpp>

3 #include <stk_mesh/base/GetEntities.hpp>

4 #include <stk_mesh/base/MetaData.hpp>

5 #include <stk_topology/topology.hpp>

6 #include <stk_unit_test_utils/ioUtils.hpp>

7 namespace

8 {

9 TEST(StkMeshHowTo, DestroyElementsOfTopology)

10 {

11 stk::mesh::MetaData metaData;

12 stk::mesh::BulkData bulkData(metaData, MPI_COMM_WORLD);

13 stk::io::fill_mesh("generated:lx1x4", bulkData);

14 EXPECT_GT(stk:mesh::count_selected_entities(metaData.universal_part(),
bulkData.buckets(stk::topology::ELEM_RANK)), Ou);

15 bulkData.destroy_elements_of_topology(stk::topology::HEX_8);

16 EXPECT_EQ(0u, stk::mesh::count_selected_entities(metaData.universal_part(),

bulkData.buckets(stk::topology::ELEM_RANK)));

17

18

1.6.2.2 Getting Unused Globally Unique Identifiers

Code Listing 1.12 shows, by example, how to get globally unique identifiers. The API requires that
a stk topology rank be specified. The ids are then returned in the vector argument. These ids are
unused when this call is made. Hence, care must be taken if these ids are kept on the application
side (client side) and not used until later. This is a collective call (all processors must call this
function). Note, this API is offered in addition to the generate_new_entities () method.
The key difference is that the generate_new_ids () method only obtains identifiers per rank,
and entities are not automatically created.

Listing 1.12: Example showing how to use generate_tiewids
../../../code/stk/stk_dociests/stkimesh/howToUseGenerateNewIds.cpp

76 TEST(StkMeshHowTo, use_generate_new_ids)

77 {

78 MPI_Comm communicator MPI_COMM_WORLD;

79

80 int num_procs = -1;

81 MPI_Comm_size (communicator, &num_procs);

82 std::ostringstream os;

83 os « "generated:lxlx" « num_procs;

84 const std::string generatedMeshSpecification = os.str();

85

86 stk::io::StkMeshIoBroker stkMeshloBroker(communicator);

87 stkMeshIoBroker.add_mesh_database(generatedMeshSpecification, stk::io::READ_MESH);

88 stkMeshloBroker.create_input_mesh();

89 stkMeshloBroker.populate_bulk_data();

90

91 stk::mesh::BulkData &stkMeshBulkData = stkMeshloBroker.bulk_data();

92

93 // Given a mesh, request 10 unique node ids

94

95 std::vector<stk::mesh::EntityId> requestedlds;

96 unsigned numRequested = 10;

97

37

98 stkMeshBulkData.generate_new_ids(stk::topology::NODE_RANK, numRequested, requestedlds);

99

WO test_that_ids_are_unique(stkMeshBulkData, stk::topology::NODE_RANK, requestedlds);

W1

1.6.2.3 Creating Nodes that are Shared by Multiple Processors

When a node entity is created that is intended to be shared by multiple processors (i.e.,
it will be connected to locally-owned entities on multiple MPI processors), the method
BulkData : : add_node_sharing () must be used to inform STK Mesh that the node is
shared and which other processors share it. The add_node_sharing () method must be called
symmetrically, meaning that for a given shared node, each sharing processor must inform STK
Mesh about all the other sharing processors during the same modification cycle. The code listing
1.13 demonstrates the use of add_node_sharing () when creating shared nodes.

Listing 1.13: Example showing creation of shared nodes
../../../code/stk/stk_doc_tests/stk_mesh/createSharedNodes.cpp

73

74

75

76

TEST(stkMeshBowTo, createSharedNodes)

{
const unsigned spatialDimension = 2;

stk::mesh::MetaData metaData(spatialDimension, stk:mesh::entity_rank_names());

77 stk::mesh::Part &triPart = metaData.declare_part_with_topology("tri_part",

stk::topology::TRIANGLE_3_2D);

78 metaData.commit();

79

80 stk::mesh::BulkData bulkData(metaData, MPI_COMM_WORLD);

81 if (bulkData.parallel_size() == 2)

83 bulkData.modification_begin();

84

85 const unsigned nodesPerElem = 3;

86 stk: :mesh: :EntityIdVector elemlds = {1, 2 } ; //one elemld for each proc

87 std::vector<stk:mesh::EntityIdVector> elemNodelds = f {1, 3, 2}, {4, 2, 3} };

88 const int myproc = bulkData.parallel_rank();

89

90 stk: :mesh: :Entity elem = bulkData.declare_element(elemlds[myproc],

stk:mesh::ConstPartVectorf&triPart1);
stk: :mesh: :EntityVector elemNodes(nodesPerElem);

92 elemNodes[0] = bulkData.declare_node(elemNodeIds[myProc][0]);
93 elemNodes[1] = bulkData.declare_node(elemNodeIds[myproc][1]);

94 elemNodes[2] = bulkData.declare_node(elemNodeIds[myproc][2]);

95

96 bulkData.declare_relation(elem, elemNodes[0], 0);

97 bulkData.declare_relation(elem, elemNodes[1], 1);
98 bulkData.declare_relation(elem, elemNodes [2] , 2);

99

WO int otherproc = testUtils::get_other_proc(myproc);

W1 bulkData . add_node_sharinq (elemNodes [1] , otherproc);

102 bulkData.add_node_sharinq(elemNodes[2], otherproc);
103

104 bulkData.modification_end();
105

106 const size_t expectedTotalNumNodes = 4;

107 verify_qlobal_node_count(expectedTotalNumNodes, bulkData);

108 }

109

38

(1)

(2)

element 1

(3)

Proc 0

(2)

(3)

element 2

Proc 1
■ Local Identifier ■ Shared Nodes

(4)

Figure 1.7: Creation of shared nodes for code listing 1.13

STK Mesh also supports the creation of independent shared nodes (nodes without connectiv-
ity) for use in p-refinement. In this case, additional nodes are created for higher order ele-
ments and these are maintained without explicit connectivity information in STK Mesh. Some
of these nodes need to be shared across processor boundaries. This capability is to support the
exploration of p-refinement. Currently, this capability cannot predict which nodes are attached
to which elements when change_ent it y_owne r () is called and therefore rebalance opera-
tions will likely not work as anticipated. This additional feature of a dd_node_s ha ri ng () is
only enabled when the nodes are initially created. The code listing 1.14 demonstrates the use of
add_node_sharing () to create independent shared nodes.

Listing 1.14: Example showing creation of independent shared nodes
../../../code/stk/stk_doc_tests/stk_mesh/createSharedNodes.cpp

113 TEST(stkMeshHowTo, createIndependentSharedNodes)

114 {

115 const unsigned spatialDimension = 2;

116 stk::mesh::MetaData metaData(spatialDimension, stk::mesh::entity_rank_names());

117 metaData.commit();

118

119 stk::mesh::BulkData bulkData(metaData, MPI_COMM_WORLD);

120 if (bulkData.parallel_size() == 2)

121 {

122 bulkData.modification_begin();

U3

U4 const unsigned nodesPerProc = 3;

125 std::vector<stk::mesh::EntityIdVector> nodelds { {1, 3, 2}, {4, 2, 3) };

U6 const int myproc = bulkData.parallel_rank();

127 stk::mesh::EntityVector nodes(nodesPerProc);

128 nodes[0] = bulkData.declare_node(nodeIds[myproc][0]);

129 nodes[1] = bulkData.declare_node(nodeIds[myproc][1]);

130 nodes[2] = bulkData.declare_node(nodeIds[myproc][2]);

131

132 int otherproc = testutils::get_other_proc(myproc);

133 bulkData.add_node_sharing(nodes[1], otherproc);

134 bulkData.add_node_sharing(nodes[2], otherproc);

135

136 bulkData.modification_end();
137

138 const size_t expectedTotalNumNodes = 4;

09 verify_global_node_count(expectedTotalNumNodes, bulkData);

140 }

141

39

(2)
•

(2)
.

(4)
•

(3)

Proc 0 Proc 1
■ Local Identifier ■ Shared Nodes

Figure 1.8: creation of independent shared nodes for code listing 1.14

This special marking to allow unconnected nodes to be shared will be removed if relations are
attached to the node. The example 1.15 is a demonstration of this feature.

Listing 1.15: Example showing independent shared nodes becoming
dependent../../../code/stk/stk_doc_tests/stk_mesh/createSharedNodes.cpp

145 TEST(stkMeshHowTo, createIndependentSharedNodesThenAddDependence)

146 {

147 const unsigned spatialDimension = 2;

148 stk::mesh::MetaData metaData(spatialDimension, stk::mesh::entity_rank_names());

149 stk::mesh::Part &triPart = metaData.declare_part_with_topology("triPart",

stk::topology::TRIANGLE_3_2D);

150 metaData.commit();

151

152 stk::mesh::BulkData bulkData(metaData, MPI_COMM_WORLD);

153 if(bulkData.parallel_size() == 2)

154

155 bulkData.modification_begin();

156

157 const unsigned nodesPerProc = 3;

158 std: :vector<stk: :mesh: :EntityIdVector> nodelds = { {1, 3, 2}, {4, 2, 3}};

159 const int myproc = bulkData.parallel_rank();

mo

161 stk: :mesh: :EntityVector nodes (nodesPerProc) ;

162 nodes[0] = bulkData.declare_node(nodeIds[myproc][0]);

163 nodes[1] = bulkData.declare_node(nodeIds[myproc][1]);

164 nodes[2] = bulkData.declare_node(nodeIds[myproc][2]);

165

166 int otherproc = testutils::get_other_proc(myproc);

167 bulkData.add_node_sharing(nodes[1], otherproc);

168 bulkData.add_node_sharing(nodes[2], otherproc);

169

170 const size_t expectedNumNodesPriorToModEnd = 6;

171 verify_global_node_count(expectedNumNodesPriorToModEnd, bulkData);

172

173 bulkData.modification_end();

174

175 const size_t expectedNumNodesAfterModEnd = 4; // nodes 2 and 3 are shared

176 verify_global_node_count(expectedNumNodesAfterModEnd, bulkData);

177

178 const unsigned elemsPerProc = 1;

179 stk::mesh::Entityld elemIds[][elemsPerProc] = { {1}, {2}};

180

181 bulkData.modification_begin();

182 stk::mesh::Entity elem = bulkData.declare_element(elemIds[myproc][0],

stk:mesh::ConstPartVectorl&triPart1);
183 bulkData.declare_relation(elem, nodes[0], 0);

184 bulkData.declare_relation(elem, nodes[1], 1);
185 bulkData.declare_relation(elem, nodes[2], 2);

186 EXPECT_NO_THROW(bulkData.modification_end());

40

187

188 bulkData.modification_begin();

189 bulkData.destroy_entity(elem);

oo bulkData.modification_end();

191

192 if(myproc == 0)

193 verify_nodes_2_and_3_are_no_longer_shared(bulkData, nodes);

194

195 else // myproc == 1

196 verify_nodes_2_and_3_are_removed(bulkData, nodes);

197 1

198 }

1.6.2.4 Change Entity Part Membership

BulkData: : change_entity_parts () changes which parts an entity belongs to.

Changes in part membership can result in changes to "induced" part membership. (See Section
1.5.2.) Changes in part membership typically cause entities to move to different buckets.

1.6.2.5 Change Connectivity

BulkData::declare_relation() adds connectivity between two
entities. destroy_relation () removes connectivity between two entities. Relations must
be destroyed from the point of view of the higher-ranked entity toward the lower-ranked entity,
although the relation in the other direction will also be removed automatically.

Changes in connectivity can result in changes to induced part membership. (See Section 1.5.2).
Changes in connectivity can also result in changes in sharing and automatic ghosting during
modification_end(). By causing changes in part membership(s), changes in connectivity
can also result in changes to bucket structure.

1.6.2.6 Change Entity Ownership

In a parallel mesh, it can be necessary to change what processor rank owns an entity. The typical
case is when there is a change to parallel decomposition.

The change_entity_owner method is used for this and is called with a vector of pairs that
specify entities and destination processors. It must be called on all processes even if the input
vector is empty on some processors.

Changes in ownership can cause changes in ghosting and sharing, which are changes to part
membership. By causing changes in part membership(s), changes in ownership can also result
in changes to bucket structure.

41

1.6.2.7 Change Ghosting

Aura ghosting is maintained automatically by STK Mesh, but can be optionally disabled. STK al-
lows for application-specificed custom ghosting, through the functions change_ghosting () ,
create_ghosting () , destroy_ghosting () , and destroy_all_ghosting () .
Each of these functions must be called parallel-synchronously.

The method change_ghost ing () is used to add entities to be ghosted, or remove entities from
a current ghosting. The input to the method includes a vector of pairs of entities and destination
processors on which the entities are to be ghosted. To be added to a ghosting in this way, an entity
must be locally-owned on the current processor, and must not already be shared by the destination
processor. It is permissible for an entity to be in multiple different custom ghostings at the same
time.

Any modification, directly applied or automatically called, to an entity in a ghosting will au-
tomatically cause that ghosting to be invalidated. For the aura ghosting, entities will be au-
tomatically regenerated during the next modification_end () call. For custom ghost-
ing, it is not as well-defined what should happen to modified entities. It is possible for
an entity in a ghosting to be invalidated without all of that ghosting being invalidated.
s t k : :mesh: :BulkData : : is_val id (entity) can be used to determine whether a ghost
entity has been invalidated.

1.6.3 Mesh Modification Examples

Listing 1.16 shows how an element on processor 0 in the mesh depicted in Figure 1.9 is ghosted
to processor 1. Note that Element 1 is connected to Node 1. This test shows how a user can use
the identifier of the element, i.e. 1, to get an entity, and ghost it to another processor. This test
also shows that Node 1 is automatically ghosted to processor 1 because it is a downward-relation
of Element 1. In general, when an entity is ghosted, its downward-connected entities come along
with it, but upward-connected entities don't.

[1] [2]

o

Proc 0

[3] [4]

 a

Proc 1

Figure 1.9: Mesh Used in Listings 1.16-1.17

Listing 1.16: Example showing an element being ghosted.
../../../codelstk/stk_dociests/stk_meshkustomGhosting.cpp

95 TEST(StkMeshHowTo, customGhostElem)

96 {

42

97 MPI_Comm communicator = MPI_COMM_WORLD;

98 if (stk::parallel_machine_size(communicator) == 2)

99

WO stk::mesh::MetaData metaData;

tot stk::mesh::BulkData bulkData(metaData, communicator);

W2 stk::io::fill_mesh("generated:lx1x4", bulkData);

W3

104 stk::mesh::Entityld id = 1;

105 stk::mesh::Entity eleml = bulkData.get_entity(stk::topology::ELEM_RANK, id);
W6 stk::mesh::Entity nodel = bulkData.get_entity(stk::topology::NODE_RANK, id);

W7 verify_that_eleml_and_nodel_are_only_valid_on_p0(bulkData, eleml, nodel);
W8

W9 bulkData.modification_begin();

no stk::mesh::Ghosting& ghosting = bulkData.create_ghosting("custom ghost for elem 1");

111 std::vector<std::pair<stk::mesh::Entity, int> > elemProcPairs;

112 if (bulkData.parallel_rank() == 0)

elemProcPairs.push_back(std::make_pair(eleml,

get_other_proc(bulkData.parallel_rank())));

114 bulkData.change_ghosting(ghosting, elemProcPairs);

115 bulkData.modification_end();

116

117 verify_that_eleml_and_downward_connected_entities_are_ghosted_from_p0_to_pl(bulkData,

id);
118

119 }
120

121 TEST(StkMeshHowTo, addElementToGhostingUsingSpecializedModificationForPerformance)

122 {

123 MPI_Comm communicator = MPI_COMM_WORLD;

124 if(stk::parallel_machine_size(communicator) 2)

125

126 stk::mesh::MetaData meta;

127 stk::mesh::BulkData bulk(meta, communicator);

128 stk::io::fill_mesh("generated:lx1x4", bulk);

129

130 stk::mesh::Entityld elementld = 1;

131 stk::mesh::Entity eleml = bulk.get_entity(stk::topology::ELEM_RANK, elementld);

132 verify_eleml_is_valid_only_on_p0(bulk, eleml);

133

134 bulk.modification_begin();

135 stk::mesh::Ghosting& ghosting = bulk.create_ghosting("my custom ghosting");

136 bulk.modification_end();

137

138 stk::mesh::EntityProcVec entityProcPairs;

139 if(bulk.parallel_rank() == 0)

140 entityProcPairs.push_back(stk:mesh::EntityProc(eleml,

get_other_proc(bulk.parallel_rank())));

141

142

143

144

145 }

146

bulk.batch_add_to_ghosting(ghosting, entityProcPairs);

verify_eleml_is_valid_on_both_procs(bulk, elementld);

Listing 1.17 shows how an entity can be moved, or stated alternatively, how to change an
owner of an entity. Note that the change_entity_owner () method must be called by
all processors, and must not be enclosed within calls to modification_begin () and
modification_end() since it is a self-contained modification cycle.

Listing 1.17: Example of changing processor ownership of an element
../../../coðe/stlastkAloc_tests/stk_mesh/changeEntityøwner.cpp

66 TEST(StkMeshHowTo, changeEntityOwner)

67 {

43

68 MPI_Comm communicator = MPI_COMM_WORLD;

69 if (stk::parallel_machine_size(communicator) == 2)

70

71 stk::mesh::MetaData metaData;

72 stk::mesh::BulkData bulkData(metaData, communicator);

73 stk::io::fill_mesh("generated:1x1x4", bulkData);

74

75 stk::mesh::Entityld elem2ld = 2;

76 stk::mesh::Entity elem2 = bulkData.get_entity(stk::topology::ELEM_RANK, elem2ld);

77 verify_elem_is_owned_on_p0_and_valid_as_aura_on_pl(bulkData, elem2);

78

79 std::vector<std::pair<stk::mesh::Entity, int> > elemProcPairs;

80 if (bulkData.parallel_rank() == 0)

81 elemProcPairs.push_back(std::make_pair(elem2,

testUtils::get_other_proc(bulkData.parallel_rank())));

82

83

84

85

86

87

bulkData.change_entity_owner(elemProcPairs);

verify_elem_is_now_owned_on_p1(bulkData, elem2ld);

1.6.3.1 Resolving Sharing Of Exodus Sidesets - Special Case

Figure 1.10 shows a case of an interior Exodus sideset where two sides exist initially across a
processor boundary. Nodes (1, 5, 8, 4) represent the face on the left (red) element on processor
0, and the nodes (1, 4, 8, 5) represent the face on the right (green) element on processor 1. The
algorithm for determining if these two faces are the same shared face will consider the following
two conditions:

1. The nodes on both face entities are the same or a valid permutation of each other

2. The identifiers of both face entities are the same

A boolean flag exists on BulkData, that if set to true, will require that two entities are the same if
both conditions, (1) and (2), must be true for the entity to be marked as shared.

When reading an Exodus file and populating a STK Mesh, the current setting is that both conditions
must be true for the mesh entities to be marked as the same. However, after the mesh has been read
in, only condition (1) is used to resolve sharing of entities across parallel boundaries.

If the user desires one behavior
over another, the set_use_entity_ids_for_resolving_sharing 0 function can be
used before calling modification_end () during a mesh modification cycle. This behavior
is undergoing changes so that the face entities created are consistently connected to elements. As
such, the option discussed here is marked to be deprecated.

Code listing 1.18 shows two tests. The first test shows the option that can be used for resolving
sharing. The second test case reads the mesh in Figure 1.10 and tests that there are two faces.

44

Figure 1.10: Mesh Used in Listing 1.18

Listing 1.18: Example of internal sideset which results in two faces
../../../code/stk/stkintegration_tests/stk_mesh_docantegrationTestBulkData.cpp

79 TBST(BulkData_test, use_entity_ids_for_resolving_sharing)

80 {

81 MPI_Comm communicator MPI_COMM_WORLD;

82

83 const int spatialDim = 3;

84 stk::mesh::MetaData stkMeshMetaData(spatialDim);

85 stk::unit_test_util::BulkDataTester stkMeshBulkData(stkMeshMetaData, communicator);

86

87 if(stkMeshBulkData.parallel_size() == 2)

88

89 std::string exodusFileName = stk::unit_test_util::get_option("-i", "mesh.exo");

90

91

92 stk::io::StkMeshIoBroker exodusFileReader(communicator);

93 exodusFileReader.set_bulk_data(stkMeshBulkData);

94 exodusFileReader.add_mesh_database(exodusFileName, stk::io::READ_MESH);

95 exodusFileReader.create_input_mesh();

96 exodusFileReader.populate_bulk_data();

97 }

98 }

99

100 stkMeshBulkData.set_use_entity_ids_for_resolving_sharing(false);

101 EXPECT_FALSE(stkMeshBulkData.use_entity_ids_for_resolving_sharing());

102

45

W3 stkMeshBulkData.set_use_entity_ids_for_resolving_sharing(true);

IN EXPECT_TRUE(stkMeshBulkData.use_entity_ids_for_resolving_sharing());

105 }

W6

m7 TEST(BulkData_test, testTwoDimProblemForSharing0fDifferentEdgesWithSameNodesFourProc)

W8 {

W9 MPI_Comm communicator = MPI_COMM_WORLD;

HO const int spatialDim = 2;

lll stk::mesh::MetaData stkMeshMetaData(spatialDim);

IU stk::unit_test_util::BulkDataTester stkMeshBulkData(stkMeshMetaData, communicator);

IU

114 if (stkMeshBulkData.parallel_size() == 4)

115

116 std::string exodusFileName = stk::unit_test_util::get_option("-i", "mesh.exo");

IP

118

IN stk::io::StkMeshIoBroker exodusFileReader(communicator);

12() exodusFileReader.set_bulk_data(stkMeshBulkData);

U I exodusFileReader.add_mesh_database(exodusFileName, stk::io::READ_MESH);

U2 exodusFileReader.create_input_mesh();

123 // With in populate_bulk_data, the option

set_use_entity_ids_for_resolving_sharing is set to true

U4 exodusFileReader.populate_bulk_data();

I25 }
U6

U7 std::vector<size_t> globalCounts;

I28 stk::mesh::comm_mesh_counts(stkMeshBulkData, globalCounts);

U9 EXPECT_EQ(15u, globalCounts[stk::topology::EDGE_RANK]);

00

Ul }

1.6.4 Unsafe operations

There are a number of operations that are inherently unsafe to perform when the mesh is in the
middle of a modification cycle. Exceptions will be thrown if the user tries to perform these opera-
tions during modification in a debug build, but not in a release build since the error checking is too
expensive.

The meshindex of an entity (which is a pairing of the entity's bucket and the entity's offset into
that bucket) can be automatically changed by STK Mesh during a modification cycle. Thus, a
meshindex cannot be assumed to be valid during a modifcation cycle or be the same before and
after it. A change in the membership of one or more buckets implies a change in the mesh index
of one or more entities, and vice versa.

Although field data can be accessed during a modification cycle, parallel field operations (e.g.,
parallel sum) must be avoided during a modification cycle because the status of parallel sharing is
not guaranteed to be globally consistent until after BulkData : :modification_end O .

Mesh modification should generally not be done while looping over buckets. The problem is that
mesh modification can cause entities to move from one bucket to another, which can invalidate the
iteration over a particular bucket. Any loop that makes the assumption of Bucket stability, either
the existence/order of a Bucket or the order of entities within the bucket, is not safe if the loop does
mesh modification. Some errors that can result will be checked in debug, but never in release. If

46

you must iterate the mesh and do mesh modification during the iteration, use an entity loop, not a
bucket loop.

1.6.5 Automatic modification operations in modification end()

When the client code is finished with all direct calls to any of the modifications in Section 1.6.2, it
must call modification_end () to close the modification cycle.

BulkData: :modification_end() automatically performs several types of modifications
to the mesh to bring it into a parallel consistent state. These include

• Synchronizing entity membership in parts for shared entities.

• Refreshing the ghost layer around shared entities (referred to as the aura).

• Updating ghost entities in the aura that have changed part membership.

• Sorting buckets' entities for a well-defined ordering.

• Resolve side creation on the subdomain boundaries.

It is important to note that modi f i cat ion_end () used to automatically determine the sharing
of nodes that had been created with the same global identifier on multiple MPI processors. It no
longer does this, and client code is now required to inform STK Mesh of node sharing information.
See section 1.6.2.3 for more details.

Since the sharing of entities is only changed automatically by STK Mesh internally, that function-
ality is not available through the STK Mesh API.

1.6.6 How to use generate new entities()

This example (Listing 1.19) shows how to use BulkData: :generate_new_entities ()
to create new entities. After the entities are created, the ELEMENT_RANK entities are each as-
signed a topology and their nodal relations are set before Bu l kD at a : : modi fication_end ()
is called. FACE_RANK and EDGE_RANK entities have the same requirement, but none
are included in this example. The example also illustrates that it is incorrect to call
BulkD at a : : modi f cat on_end () if the requirement is not met.

Listing 1.19: Example of how to generate multiple new entities and subsequently set topologies and nodal
relations ../../../code/stk/stk_doc_tests/stk_mesh/generateNewEntities.cpp

68 TEST(stkMeshHowTo, generateNewEntities)

69 {

70 const unsigned spatialDimension = 3;

71

72 stk::mesh::MetaData metaData(spatialDimension, stk::mesh::entity_rank_names());

stk::mesh::Part &tetPart = metaData.declare_part_with_topology("tetElementPart",

stk::topology::TET_4);

74 stk::mesh::Part &hexPart = metaData.declare_part_with_topology("hexElementPart",

stk::topology::HEX_8);

75 metaData.commit();

47

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

// Parts vectors handy for setting topology later.

std::vector<stk::mesh::Part *> add_tetPart(1);
add_tetPart[0] = &tetPart;

std::vector<stk::mesh::Part *> add_hexPart(1);
add_hexPart[0] &hexPart;

stk::mesh::BulkData mesh(metaData, MPI_COMM_WORLD);

mesh.modification_begin();

std::vector<size_t> requests(metaData.entity_rank_count(), 0);
const size_t num_nodes_requested = 12;

const size_t num_elems_requested = 2;

requests[stk::topology::NODE_RANK] = num_nodes_requested;

requests[stk::topology::ELEMENT_RANK] = num_elems_requested;

std::vector<stk::mesh::Entity> requested_entities;

mesh.generate_new_entities(requests, requested_entities);

// Set topologies of new entities with rank > stk::topology::NODE_RANK.

stk::mesh::Entity eleml = requested_entities[num_nodes_requested];

mesh.change_entity_parts(eleml, add_tetPart);

stk::mesh::Entity elem2 = requested_entities[num_nodes_requested + 1];

mesh.change_entity_parts(elem2, add_hexPart);

// Set downward relations of entities with rank > stk::topology::NODE_RANK

unsigned node_i = 0;

for(unsigned node_ord =

mesh.declare_relation(

)
for(unsigned node_ord =

mesh.declare_relation(

1
mesh.modification_end();

0 ; node_ord < 4; ++node_ord, ++node_i)

eleml , requested_entities[node_i] , node_ord);

0 ; node_ord < 8; ++node_ord, ++node_i)

elem2 , requested_entities[node_i] , node_ord);

check_connectivities_for_stkMeshHowTo_generateNewEntities(mesh, eleml, elem2,

requested_entities);

// Not setting topologies of new entities with rank > stk::topology::NODE_RANK causes throw

mesh.modification_begin();

std::vector<stk::mesh::Entity> more_requested_entities;

mesh.generate_new_entities(requests, more_requested_entities);

#ifdef NDEBUG

mesh.modification_end();

#else

EXPECT_THROW(mesh.modification_end(), std::logic_error);

#endif

}

1.6.7 How to create faces

STK Mesh provides functions for creating all edges or faces for an existing mesh. This example
demonstrates first creating a mesh of hex elements with nodes, (generated by STK 10), then uses
the create_faces () function to create all faces in the mesh.

Listing 1.20: Example of how to create all element faces
../../../code/stk/stk_doc_tests/stk_mesh/createFacesHex.cpp

49 TEST(StkMeshHowTo, CreateFacesHex)

48

50 {

51 //

52 // INITIALIZATION

53 MPI_Comm communicator = MPI_COMM_WORLD;

if (stk::parallel_machine_size(communicator) != 1) { return; }

55 stk::io::StkMeshIoBroker stkIo(communicator);

56

57 const std::string generatedFileName = "generated:8x8x8";

58 stklo.add_mesh_database(generatedFileName, stk::io::READ_MESH);

59 stklo.create_input_mesh();

60 stklo.populate_bulk_data();

61

62 //

63 //+ EXAMPLE

64 //+ Create the faces..

65 stk::mesh::create_faces(stkIo.bulk_data());

66

67 //

68 // VERIFICATION

69 stk::mesh::Selector allEntities = stkIo.meta_data().universal_part();
70 std::vector<size_t> entityCounts;

71 stk::mesh::count_entities(allEntities, stklo.bulk_data(), entityCounts);

72 EXPECT_EQ(512u, entityCounts[stk::topology::ELEMENT_RANK]);

73 EXPECT_EQ(1728u, entityCounts[stk::topology::FACE_RANK]);

74

75 // Edges are not generated, only faces.

76 EXPECT_EQ(0u, entityCounts[stk::topology::EDGE_RANK]);

77 1

1.6.8 How to create both edges and faces

This example demonstrates create all edges as well as faces for a hex-element mesh. Note that
these functions only create relations to elements and nodes, so the faces will not have relations to
the edges when both create_edges () and create_faces () are called.

Listing 1.21: Example of how to create all element edges and faces
../../../code/stlastk_doc_tests/stk_meshIcreateFacesEdgesilex.cpp

61

62

63

TEST(StkMeshHowTo, CreateFacesEdgesHex)

/ /
64 // INITIALIZATION

65 MPI_Comm communicator = MPI_COMM_WORLD;

66 if (stk::parallel_machine_size(communicator) != 1) { return; }

67 stk::io::StkMeshIoBroker stklo(communicator);

68

69 const std::string generatedFileName = "generated:8x8x8";

70 stklo.add_mesh_database(generatedFileName, stk::io::READ_MESH);

71 stklo.create_input_mesh();

72 stklo.populate_bulk_data();

73

74 //
75 //+ EXAMPLE

76 //+ Create the faces..

77 stk::mesh::create_faces(stkIo.bulk_data());
78

79 //+ Create the edges..

80 stk::mesh::create_edges(stkIo.bulk_data());

81

82 //
83 // VERIFICATION

49

84 stk: :mesh: :Selector allEntities = stkIo.meta_data() .universal_part();

85 std::vector<size_t> entityCounts;

86 stk: :mesh: : count_entities (allEntities, stklo.bulk_data(), entityCounts);

87 EXPECT_EQ(512u, entityCounts[stk::topology::ELEMENT_RANK]);

88 EXPECT_EQ(1728u, entityCounts[stk::topology::FACE_RANK]);

89 EXPECT_EQ (1944u, entityCounts [stk: :topology: :EDGE_RANK]) ;

90 // MAKE SURE FACES ARE HOOKED TO EDGES

91 // this should happen if create_faces is called before create_edges

92 stk::mesh::BucketVector const & face_buckets =

stkIo.bulk_data().buckets(stk::topology::FACE_RANK);

93 for (size_t bucket_count=0, bucket_end=face_buckets.size(); bucket_count < bucket_end;

++bucket_count) {

94 stk::mesh::Bucket & bucket = *face_buckets[bucket_count];

95 const unsigned num_expected_edges = bucket.topology().num_edges();

96 EXPECT_EQ(4u, num_expected_edges);

97 for (size_t face_count=0, face_end=bucket.size(); face_count < face_end; ++face_count)

98 stk::mesh::Entity face = bucket[face_count];

99 EXPECT_EQ(num_expected_edges, stkIo.bulk_data().num_edges(face));

WO }

101

W2 }

1.6.9 How to create faces on only selected elements

This example demonstrates creating faces for a subset of the mesh elements defined by a Selector.
Note that the "generated-mesV syntax specifies that the initial mesh contains not only hex elements
but also shell elements on all 6 sides.

Listing 1.22: Example of how to create faces on only selected elements
../../../code/stkistk_doc_tests/stk_meshicreateSelectedFaces.cpp

52 TEST(StkMeshHowTo, CreateSelectedFacesHex)

53 {

54 //
55 // INITIALIZATION

56 MPI_Comm communicator = MPI_COMM_WORLD;

57 if (stk::parallel_machine_size(communicator) != 1) { return; }

58 stk::io: :StkMeshIoBroker stkIo (communicator) ;

59

60 // Generate a mesh containing 1 hex part and 6 shell parts

61 const std::string generatedFileName = "generated:8x8x8Ishell:xyzXYZ";

62 stklo.add_mesh_database(generatedFileName, stk::io::READ_MESH);

63 stklo.create_input_mesh();

64 stkIo.populate_bulk_data();
65 const stk: :mesh: :PartVector &all_parts = stkIo.meta_data() .get_mesh_parts();

66

67 //

68 //+ EXAMPLE

69 //+ Create a selector containing just the shell parts.

70 stk::mesh::Selector shell_subset;

71 for (size_t i=0; i < all_parts.size(); i++) {

72 const stk::mesh::Part *part = all_parts[i];
73 stk::topology topo = part->topology();

74 if (topo == stk::topology::SHELL_QUAD_4) {

75 shell_subset l= *part;

76 }

77 }

78

79 //+ Create the faces on just the selected shell parts.

80 stk: :mesh: :create_faces(stkIo.bulk_data(), shell subset) ;

81

50

82 //

83 // VERIFICATION

84 stk::mesh::Selector allEntities = stkIo.meta_data().universal_part();

85 std::vector<size_t> entityCounts;

86 stk::mesh::count_entities(allEntities, stkIo.bulk_data(), entityCounts);

87 EXPECT_EQ(896u, entityCounts[stk::topology::ELEMENT_RANK]);

88 EXPECT_EQ(768u, entityCounts[stk::topology::FACE_RANK]);

89

90 // Edges are not generated, only faces.

91 EXPECT_EQ(0u, entityCounts[stk::topology::EDGE_RANK]);

92

93

1.6.10 Creating faces with layered shells

This example shows how many faces will be created when there are layered shells present.

Listing 1.23: Example showing that faces are created correctly when layered shells are present
../../../code/stldstk_doc_tests/stk_mesh/CreateFacesLayeredShellsHex.cpp

49 TEST(StkMeshHowTo, CreateFacesLayeredShellsHex)

50

si //

52 // INITIALIZATION

53 MPI_Comm communicator = MPI_COMM_WORLD;

54 if (stk::parallel_machine_size(communicator) != 1) { return; }

55 stk::io::StkMeshIoBroker stkIo(communicator);

56

57 // Generate a mesh containing 1 hex part and 12 shell parts

58 // Shells are layered 2 deep.

59 const std: :string generatedFileName — "generated : 8x8x8 shell : xxyyzzXYZXYZ" ;

60 stklo.add_mesh_database(generatedFileName, stk::io::READ_MESH);

61 stklo.create_input_mesh();

62 stklo.populate_bulk_data();

63

64 //

65 //+ EXAMPLE

66 //+ Create the faces

67 stk::mesh::create_faces(stkIo.bulk_data());
68

69 //

70 // VERIFICATION

stk::mesh::Selector allEntities = stkIo.meta_data().universal_part();
72 std::vector<size_t> entityCounts;

73 stk: :mesh: : count_entities (allEntities, stklo.bulk_data(), entityCounts);

74 EXPECT_EQ(1280u, entityCounts[stk::topology::ELEMENT_RANK]);

75 //+ The shell faces are the same as the boundary hex faces

76 EXPECT_EQ(2112u, entityCounts[stk::topology::FACE_RANK]);

77

78 // Edges are not generated, only faces.

79 EXPECT_EQ(0u, entityCounts [stk: :topology: :EDGE_RANK]) ;

So 1
81

1.6.11 Creating faces between hexes, on shells, and on shells between hexes

This example shows how many faces are created on interior faces between hexes and shells.

51

Listing 1.24: Example of how many faces get constructed by CreateFaces between two hexes.
../../../code/stk/stk_doc_tests/stk_mesh/CreateFacesHexesShells.cpp

52 TEST(StkMeshHowTo, CreateFacesTwoHexes)

53

54 if (stk::parallel_machine_size(MPI_COMM_WORLD) 1) {

55 //

56 //

57 // IHEX1IHEX21

58 //

59 //

60 stk::io::StkMeshIoBroker stkMeshIoBroker(MPI_COMM_WORLD);

61 stkMeshIoBroker.add_mesh_database("AA.e", stk::io::READ_MESH);

62 stkMeshloBroker.create_input_mesh();

63 stkMeshloBroker.populate_bulk_data();

64 stk::mesh::BulkData &mesh = stkMeshloBroker.bulk_data();

65

66 stk::mesh::create_faces(mesh);

67

68 //

69 // I l A l I

70 // IHEX11<-C->IHEX21 Also external faces!

71 // I I E I I

72 //

73

74 unsigned first_bucket = 0;

75 unsigned first_element_in_bucket = 0;

76 stk::mesh::Entity first_element =

(*mesh.buckets(stk::topology::ELEMENT_RANK)[first_bucket])[first_element_in_bucket];

77 stk::mesh::Entity internal_face = mesh.begin_faces(first_element)[5];

78

79 unsigned num_elements_connected_to_single_face = 2;

80 EXPECT_EQ(num_elements_connected_to_single_face, mesh.num_elements(internal_face));

81

82 unsigned num_expected_external_faces = 10u;

83 unsigned num_expected_internal_faces = lu;

84 unsigned num_expected_faces = num_expected_external_faces +

num_expected_internal_faces;

85 stk::mesh::Selector all_entities = mesh.mesh_meta_data().universal_part();

86 std::vector<size_t> entity_counts;

87 stk::mesh::count_entities(all_entities, mesh, entity_counts);

88 EXPECT_EQ(num_expected_faces, entity_counts[stk::topology::FACE_RANK]);

89 }

90 }

Listing 1.25: Example of how many faces get constructed by CreateFaces on a shell.
../../../code/stldstk_doc_tests/stk_mesh/CreateFacesHexesShells.cpp

N TEST(StkMeshHowTo, CreateFacesSingleShell)

95 {

96 if (stk::parallel_machine_size(MPI_COMM_WORLD) 1) {

97 // S
98 // H

99 // E
100 // L

101 // L
102 stk::io::StkMeshIoBroker stkMeshIoBroker(MPI_COMM_WORLD);

103 stkMeshIoBroker.add_mesh_database("e.e", stk::Jo::READ_MESH);

104 stkMeshloBroker.create_input_mesh();

105 stkMeshloBroker.populate_bulk_data();

106 stk::mesh::BulkData &mesh = stkMeshloBroker.bulk_data();

107

108 stk::mesh::create_faces(mesh);

109

110 // F S F

111 // A H A

52

/ /
/ / I I H I
// IHEX1IEIHEX2I

// I ILI
//

112 // C->E<-C

113 // E L E

114 // 1 L 2

115

116 unsigned first_bucket = 0;

117 unsigned first_element_in_bucket = 0;

118 stk::mesh::Entity first_element =

(*mesh.buckets(stk::topology::ELEMENT_RANK)[first_bucket])[first_element_in_bucket];

119 stk::mesh::Entity face_one = mesh.begin_faces(first_element)[0];

120 unsigned num_elements_connected_to_face_one = 1;

121 EXPECT_EQ(num_elements_connected_to_face_one, mesh.num_elements(face_one));

122

123 stk::mesh::Entity face_two = mesh.begin_faces(first_element)[1];

124 unsigned num_elements_connected_to_face_two = 1;

125 EXPECT_EQ(num_elements_connected_to_face_two, mesh.num_elements(face_two));

126

127 EXPECT_NE(face_one, face_two);

128

129 unsigned num_expected_faces = 2u;

130 stk::mesh::Selector all_entities = mesh.mesh_meta_data().universal_part();

131 std::vector<size_t> entity_counts;

132 stk::mesh::count_entities(all_entities, mesh, entity_counts);

133 EXPECT_EQ(num_expected_faces, entity_counts[stk::topology::FACE_RANK]);

134

135 1

Listing 1.26: Example of how many faces get constructed by CreateFaces between hexes and an internal
shell. ../../../code/stkistk_doc_tests/stk_mesh/CreateFacesHexesShells.cpp

139 TEST(StkMeshHowTo, CreateFacesTwoHexeslnternalShell)

140 {

141 if (stk::parallel_machine_size(MPI_COMM_WORLD) 1) {

142

143

144

145

146

147 stk::io::StkMeshIoBroker stkMeshIoBroker(MPI_COMM_WORLD);

148 stkMeshIoBroker.add_mesh_database("AeA.e", stk::io::READ_MESH);

149 stkMeshloBroker.create_input_mesh();

150 stkMeshloBroker.populate_bulk_data();

151 stk::mesh::BulkData &mesh = stkMeshloBroker.bulk_data();

152

153 stk::mesh::create_faces(mesh);

154

155 // F S F

156 lAHAI
157 // IHEX1I<-C->E<-C->IHEX21 Also external faces!

158 I E L E I
159 // 1 L 2

160

161 unsigned first_bucket = 0;

162 unsigned first_element_in_bucket = 0;

163 stk::mesh::Entity first_element =

(*mesh.buckets(stk::topology::ELEmENT_RANR)[first_bucket])[first_element_in_bucket];

164 stk::mesh::Entity internal_face_one = mesh.begin_faces(first_element)[5];

165 unsigned num_elements_connected_to_face_one = 2;

166 EXPECT_EQ(num_elements_connected_to_face_one, mesh.num_elements(internal_face_one));

167

168 unsigned second_element_in_bucket = 1;

169 stk::mesh::Entity second_element =

(*mesh.buckets(stk::topology::ELEmENT_RANR)[first_bucket])[second_element_in_bucket];

170 stk::mesh::Entity internal_face_two = mesh.begin_faces(second_element)[4];

171 unsigned num_elements_connected_to_face_two = 2;

172 EXPECT_EQ(num_elements_connected_to_face_two, mesh.num_elements(internal_face_two));

173

53

174 EXPECT_NE(internal_face_one, internal_face_two);

175

176 unsigned num_expected_external_faces = 10u;

177 unsigned num_expected_internal_faces = 2u;

178 unsigned num_expected_faces = num_expected_external_faces +

num_expected_internal_faces;

179 stk::mesh::Selector all_entities = mesh.mesh_meta_data().universal_part();

BO std::vector<size_t> entity_counts;

181 stk:mesh::count_entities(all_entities, mesh, entity_counts);
182 EXPECT_EQ(num_expected_faces, entity_counts[stk::topology::FACE_RANK]);

183

184 }

1.6.12 How to skin a mesh

STK Mesh provides functions for skinning an existing mesh and creating appropriate boundary
sides. This example demonstrates first creating a mesh of one hex element with nodes, (generated
by STK I0), then uses the the create_exposed_boundary_sides () function to skin the
mesh.

Listing 1.27: Example of how to create all the exposed boundary sides
../../../code/stk/stli_doc_tests/stk_mesh/howToSkinMesh.cpp

50 TEST(StkMeshHowTo, SkinExposedHex)

51 {

52 //

53 // INITIALIZATION

54 MPI_Comm communicator = MPI_COMM_WORLD;

55 if (stk::parallel_machine_size(communicator) != 1) { return; }

56 stk::io::StkMeshIoBroker stkIo(communicator);

57

58 const std::string generatedFileName = "generated:lx1x1";

59 stklo.add_mesh_database(generatedFileName, stk::io::READ_MESH);

60 stklo.create_input_mesh();

61 stkIo.populate_bulk_data();

62

63 //
64 //+ EXAMPLE

65 //+ Skin the mesh and create the exposed boundary sides..

66 stk::mesh::MetaData &metaData = stkIo.meta_data();

67 stk::mesh::BulkData &bulkData = stkIo.bulk_data();

68 stk::mesh::Selector allEntities = metaData.universal_part();

69 stk::mesh::Part &skinPart = metaData.declare_part("skin", metaData.side_rank());
70 stk::io::put_io_part_attribute(skinPart);

71

72 stk::mesh::create_exposed_block_boundary_sides(bulkData, allEntities, f&skinPartl);

73

74 //

75 // VERIFICATION

76 EXPECT_TRUE(stk::mesh::check_exposed_block_boundary_sides(bulkData, allEntities,

skinPart));

77 stk::mesh::Selector skin(skinPart & metaData.locally_owned_part());
78 unsigned numSkinnedSides = stk::mesh::count_selected_entities(skin,

bulkData.buckets(metaData.side_rank()));

79 EXPECT_EQ(6u, numSkinnedSides) << "in part " << skinPart.name();
80 }

54

1.6.13 How to create internal block boundaries of a mesh

STK Mesh also provides functions for creating the interior block boundary sides of an exist-
ing mesh. This example demonstrates first creating a mesh of two hex element with nodes,
(generated by STK 10), creation of an IOPart into which element 2 is moved, followed by
c r e at e_interior_block_boundary_sides () function to skin the mesh interior.

Listing 1.28: Example of how to create all the interior block boundary sides
../../../code/stk/stk_doc_tests/stk_mesh/howToSkinMesh.cpp

84 TEST(StkMeshHowTo, SkinlnteriorHex)

85 {

86 //

87 // INITIALIZATION

88 MPI_Comm communicator = MPI_COMM_WORLD;

89 if (stk::parallel_machine_size(communicator) != 1) { return; }

90 stk::io: :StkMeshIoBroker stkIo (communicator) ;

91

92 const std::string generatedFileName = "generated:lx1x2";

93 stkIo.add_mesh_database(generatedFileName, stk::io::READ_MESH);

94 stklo.create_input_mesh();

95 stkIo.populate_bulk_data ;

96

97 //

98 //+ EXAMPLE

99 //+ Skin the mesh and create the exposed boundary sides..

100 stk: :mesh: :MetaData &metaData = stkIo.meta_data();

wt stk::mesh::BulkData &bulkData = stklo.bulk_data();

W2 stk: :mesh: :Selector allEntities = metaData.universal_part();

M3 stk::mesh::Part &skinPart = metaData.declare_part("skin", metaData.side_rank());
104 stk::io::put_io_part_attribute(skinPart);

M5

M6 stk::mesh::Entity elem2 = bulkData.get_entity(stk::topology::ELEM_RANK, 2u);

107 stk::mesh::Part *block_1 = metaData.get_part("block_1");

108

W9 bulkData.modification_begin();

110 stk::mesh::Part &block_2 = metaData.declare_part("block_2", stk::topology::ELEM_RANK);

111 stk::io::put_io_part_attribute(block_2);

112 bulkData.change_entity_parts(elem2, stk::mesh::ConstPartVector{&block_2},

stk::mesh::ConstPartVector{block_1});

113 bulkData.modification_end();

114

115 stk::mesh::create_interior_block_boundary_sides(bulkData, allEntities, f&skinPart1);

116

117 //

118 // VERIFICATION

119 EXPECT_TRUE(stk::mesh::check_interior_block_boundary_sides(bulkData, allEntities,

skinPart));
120 stk::mesh::Selector skin(skinPart & metaData.locally_owned_part());

121 unsigned numSkinnedSides = stk::mesh::count_selected_entities(skin,

bulkData.buckets(metaData.side_rank()));

122 EXPECT_EQ(lu, numSkinnedSides) << "in part " << skinPart.name();
123 }

1.6.14 How to destroy elements in list

STK Mesh now provides a means by which an application may destroy all the elements in a list as
well as the downward connected entities in order to ensure that there are no orphaned nodes/faces.

55

Listing 1.29: Example of how to destroy elements in a list
../../../code/stk/stk_doc_tests/stk_mesh/howToDestroyElementsInList.cpp

11 TEST(StkMeshHowTo, DestroyElementslnList)

12 {

13 stk::mesh::MetaData metaData;

14 stk::mesh::BulkData bulkData(metaData, MPI_COMM_WORLD);

15 stk::io::fill_mesh("generated:lx1x4", bulkData);

16 EXPECT_GT(stk::mesh::count_selected_entities(metaData.universal_part(),

bulkData.buckets(stk::topology::ELEM_RANK)), Ou);

17 stk::mesh::EntityVector

elementsToDestroy{bulkData.get_entity(stk::topology::ELEMENT_RANK,1)};

18 stk::mesh::destroy_elements(bulkData, elementsToDestroy);

19

zo stk::mesh::EntityVector orphanedNodes{

21 bulkData.get_entity(stk::topology::NODE_RANR,1),

22 bulkData.get_entity(stk::topology::NODE_RANK,2),

23 bulkData.get_entity(stk::topology::NODE_RANK,3),

za bulkData.get_entity(stk::topology::NODE_RANK,4)

25 };
26

for(stk::mesh::Entity node : orphanedNodes)

28 EXPECT_FALSE(bulkData.is_valid(node));

29 }

1.7 STK Mesh usage examples

This section gives examples of how to access and manipulate a STK Mesh. The examples attempt
to give demonstrations of several common tasks that an application developer may want to perform
using STK Mesh.

1.7.1 How to iterate over nodes

This example shows how to select the nodes for a subset of the mesh (a surface part), then iterate
over those nodes and access the values of a temperature field associated with the nodes.

Listing 1.30: Example of iterating over nodes
../../../code/stk/stk_dociests/stk_mesh/howToIterateEntities.cpp

55 TEST(StkMeshHowTo, iterateSidesetNodesMostEfficientlyForFieldDataAccess)
56 {

57 MPI_Comm communicator = MPI_COMM_WORLD;

58 if (stk::parallel_machine_size(communicator) != 1) { return; }

59 stk::io::StkMeshIoBroker stkMeshIoBroker(communicator);

60 // syntax creates faces for the surface on the positive 'x-side' of the 2x2x2 cube,

61 // this part is given the name 'surface_1' when it is created [create_input_mesh()]

62 const std::string generatedMeshSpecification = "generated:2x2x2Isideset:X";

63 stkMeshIoBroker.add_mesh_database(generatedMeshSpecification, stk::io::READ_MESH);

64 stkMeshloBroker.create_input_mesh();

65

66 stk::mesh::MetaData &stkMeshMetaData = stkMeshIoBroker.meta_data();
67 stk::mesh::Field<double> &temperatureField =

stkMeshMetaData.declare_field<stk::mesh::Field<double>

>(stk::topology::NODE_RANK, "temperature");

68 stk::mesh::put_field_on_entire_mesh(temperatureField);

56

69 stkMeshIoBroker.populate_bulk_dataO;

70

stk: :mesh: :Part &boundaryConditionPart = *stkMeshMetaData.get_part("surface_1");

stk::mesh::Selector boundaryNodesSelector(boundaryConditionPart);
73

74 stk: :mesh: :BulkData &stkMeshBulkData = stkMeshloBroker.bulk_data();

75 const stk::mesh::BucketVector &boundaryNodeBuckets =

stkMeshBulkData.get_buckets(stk::topology::NODE_RANK, boundaryNodesSelector);

76

77 double prescribedTemperatureValue = 2.0;

78 std::set<stk::mesh::EntityId> boundaryNodelds;

79 for (size_t bucketIndex = 0; bucketIndex < boundaryNodeBuckets . size () ; ++bucketlndex)

80

81 stk::mesh::Bucket &nodeBucket = *boundaryNodeBuckets[bucketIndex];

82 double *temperatureValues = stk: :mesh: :field_data(temperatureField, nodeBucket);

83 for (size_t nodelndex = 0; nodelndex < nodeBucket.size(); ++nodelndex)

84 {

Ss stk::mesh::Entity node = nodeBucket[nodelndex];

86 boundaryNodeIds . insert (stkMeshBulkData . identifier (node)) ;

87 temperatureValues[nodeIndex] = prescribedTemperatureValue;

88 1
89 }

90

91 testUtils: :testTemperatureFieldSetCorrectly(temperatureField, prescribedTemperatureValue,

boundaryNodelds);

92 }

93

94 TEST (StkMeshflowTo, iterateSidesetNodesWithFieldDataAccess)

95

96 MPI_Comm communicator = MPI_COMM_WORLD;

97 if (stk: : parallel_machine_size (communicator) != 1) { return;

98 stk::io::StkMeshIoBroker stkMeshIoBroker(communicator);

99 // syntax creates faces for the surface on the positive 'x-side' of the 2x2x2 cube,

100 // this part is given the name 'surface_1' when it is created [create_input_mesh()]

1W const std: :string generatedMeshSpecification = "generated: 2x2x2 sideset : X" ;

W2 stkMeshloBroker.add_mesh_database(generatedMeshSpecification, stk::io::READ_MESH);

103 stkMeshloBroker.create_input_mesh();

IN

105 stk::mesh::MetaData &stkMeshMetaData = stkMeshloBroker.meta_data();

106 stk : :mesh : :Field<double> &temperatureField =

stkMeshMetaData.declare_field<stk::mesh::Field<double>

>(stk::topology::NODE_RANK, "temperature");

W7 stk::mesh::put_field_on_entire_mesh(temperatureField);

108 stkMeshIoBroker.populate_bulk_data();

109

IN stk::mesh::Part &boundaryConditionPart = *stkMeshMetaData.get_part("surface_1");
HI stk::mesh::Selector boundaryNodesSelector(boundaryConditionPart);

IQ

IQ stk::mesh::BulkData &stkMeshBulkData = stkMeshIoBroker.bulk_data();

IN

H5 stk::mesh::EntityVector nodes;

U6 stk: :mesh: :get_selected_entities(boundaryNodesSelector,

stkMeshBulkData.buckets(stk::topology::NODE_RANK), nodes);

117

11.8 double prescribedTemperatureValue = 2.0;

IN std: : set<stk: :mesh: :EntityId> boundaryNodelds;

120

121 for (size_t nodeIndex = 0; nodeIndex < nodes.size(); ++nodeIndex)

122

1z3 boundaryNodeIds.insert(stkMeshBulkData.identifier(nodes[nodeIndex]));

124 double *temperatureValues = stk::mesh::field_data(temperatureField, nodes[nodeIndex]);

125 *temperatureValues = prescribedTemperatureValue;

Q6

Q7

128 testUtils::testTemperatureFieldSetCorrectly(temperatureField, prescribedTemperatureValue,

boundaryNodelds);

129 }

57

1.7.2 How to traverse connectivity

stk : :mesh: :BulkData provides member functions for accessing connectivity data by entity
and rank. The implementations of these BulkData methods must first look up the bucket for
the given entity and rank and the entity's index in that bucket. When iterating through the entities
in a given bucket, it is therefore more efficient to access this connectivity data through a second
connectivity API that STK Mesh provides on the Bucket.

Listing 1.31: Example of how to traverse connectivity via accessors on BulkData and via accessors on
Bucket ../../../code/stk/stk_doc_tests/stk_mesh/howToIterateConnectivity.cpp

TEST(StkMeshHowTo, iterateConnectivityThroughBulkData)

{
MPI_Comm communicator = MPI_COMM_WORLD;

if (stk::parallel_machine_size(communicator) != 1) { return;

stk::io::StkMeshIoBroker stkMeshloBroker(communicator);

// Generate a mesh of hexes with a sideset

const std::string generatedMeshSpecification = "generated:2x2x2Isideset:X";

stkMeshIoBroker.add_mesh_database(generatedMeshSpecification, stk::io::READ_MESH);

stkMeshIoBroker.create_input_mesh();

stkMeshIoBroker.populate_bulk_data();

stk::mesh::MetaData &stkMeshMetaData = stkMeshIoBroker.meta_data();

stk::mesh::BulkData &stkMeshBulkData = stkMeshIoBroker.bulk_data();

const stk::mesh::BucketVector &elementBuckets =

stkMeshBulkData.buckets(stk::topology::ELEMENT_RANK);

typedef stk:mesh::Field<double, stk::mesh::Cartesian> CoordinatesField_t;

CoordinatesField_t const & coord_field =

*dynamic_cast<CoordinatesField_t const *>(stkMeshMetaData.coordinate_field());

const unsigned nodesPerHex = 8;

const unsigned spatialDim = 3;

unsigned count = 0;

double elementNodeCoords[nodesPerHex][spatialDim];

for (size_t bucketlndex = 0; bucketlndex < elementBuckets.size(); ++bucketlndex)

stk::mesh::Bucket &elemBucket = *elementBuckets[bucketIndex];

for (size_t elemIndex = 0; elemIndex < elemBucket.size(); ++elemIndex)

stk::mesh::Entity elem = elemBucket[elemIndex];

unsigned numNodes = stkMeshBulkData.num_nodes(elem);

EXPECT_EQ(numNodes, nodesPerHex);

stk::mesh::Entity const* nodes = stkMeshBulkData.begin_nodes(elem);

for (unsigned inode = 0; inode < numNodes; ++inode)

double *coords = stk::mesh:

elementNodeCoords[inode][0]

elementNodeCoords[inode][1]

elementNodeCoords[inode][2]

EXPECT_NE(elementNodeCoords

EXPECT_NE(elementNodeCoords

EXPECT_NE(elementNodeCoords

++count;

EXPECT_GE(count, lu);

:field_data(coord_field,

= coords[0];
= coords[1];

coords[2];

[inode][0], std::numeric

[inode][1], std::numeric

[inode][2], std::numeric

TEST(StkMeshHowTo, iterateConnectivityThroughBuckets)

{
MPI_Comm communicator = MPI_COMM_WORLD;

if (stk::parallel_machine_size(communicator) != 1) { return;

nodes[inode]);

_limits<double>::max());

_limits<double>::max());

_limits<double>::max());

58

W7 stk::io::StkMeshIoBroker stkMeshIoBroker(communicator);

W8 // Generate a mesh of hexes with a sideset

W9 const std::string generatedMeshSpecification = "generated:2x2x2Isideset:X";

110 stkMeshIoBroker.add_mesh_database(generatedMeshSpecification, stk::io::READ_MESH);

I H stkMeshIoBroker.create_input_mesh();

112 stkMeshIoBroker.populate_bulk_data();

10

IW stk::mesh::MetaData &stkMeshMetaData = stkMeshIoBroker.meta_data();

115 stk::mesh::BulkData &stkMeshBulkData = stkMeshloBroker.bulk_data();

H6 const stk::mesh::BucketVector &elementBuckets =

stkMeshBulkData.buckets(stk::topology::ELEMENT_RANK);

H8

IN typedef stk::mesh::Field<double, stk::mesh::Cartesian> CoordinatesField_t;

120 CoordinatesField_t const & coord_field =

121 *dynamic_cast<CoordinatesField_t const *>(stkMeshMetaData.coordinate_field());

U2

U3 const unsigned nodesPerHex = 8;

U4 const unsigned spatialDim = 3;

U5 unsigned count = 0;

U6 double elementNodeCoords[nodesPerHex][spatialDim];

1z7 for (size_t bucketlndex = 0; bucketlndex < elementBuckets.size(); ++bucketlndex)

U8

U9 stk::mesh::Bucket &elemBucket = *elementBuckets[bucketIndex];

00 for (size_t elemIndex = 0; elemIndex < elemBucket . size () ; ++elemIndex)

131

02 unsigned numNodes = elemBucket.num_nodes(elemIndex);

03 EXPECT_EQ(numNodes, nodesPerHex);

04 stk::mesh::Entity const* nodes = elemBucket.begin_nodes(elemIndex);

135 for (unsigned inode = 0; inode < numNodes; ++inode)

06 {

07 double *coords = stk::mesh::field_data(coord_field, nodes[inode]);

08 elementNodeCoords[inode][0] = coords[0];
09 elementNodeCoords[inode] [1] = coords [1] ;

140 elementNodeCoords[inode][2] = coords[2];
141 EXPECT_NE(elementNodeCoords[inode][0], std::numeric_limits<double>::max());

142 EXPECT_NE(elementNodeCoords[inode][1], std::numeric_limits<double>::max());

143 EXPECT_NE(elementNodeCoords[inode][2], std::numeric_limits<double>::max());

144 ++count;

145

146

147

148 EXPECT_GE (count, lu);

149

1.7.3 How to check side equivalency

Listing 1.32: Example of how to check side equivalency
../../../code/stkistk_doc_tests/stk_mesh/howTouseEquivalent.cpp

19 TEST_F(MeshwithSide, whenCheckingSideEquivalency_returnsCorrectPermutation)

20 {

21 if (stk::parallel_machine_size(get_comm()) == 1) f

22 setup_mesh ("generated: lx1x4 sideset :x", stk: :mesh: :BulkData: :NO_AUTO_AURA) ;

stk: :mesh: :Entity eleml = get_bulk() .get_entity (stk: :topology: :ELEM_RANK, 1);

ASSERT_EQ(1u, get_bulk() .num_faces (eleml)) ;

25 const stk: :mesh: :Entity side = *get_bulk().begin_faces(eleml);

const stk::mesh::Permutation perm = *get_bulk().begin_face_permutations(eleml);

27 const stk::mesh::ConnectivityOrdinal ordinal = *get_bulk().begin_face_ordinals(eleml);

28 const stk::mesh::Entity* sideNodes = get_bulk().begin_nodes(side);

29 unsigned numNodes = get_bulk() .num_nodes (side) ;

30

31 std::pair<bool,unsigned> equivAndPermutation = stk::mesh::side_equivalent(get_bulk(),

eleml, ordinal, sideNodes);

59

32 EXPECT_TRUE (eguivAndPermutation. first) ;

33 EXPECT_EQ(perm, static_cast<stk:mesh::Permutation>(eguivAndPermutation.second));

34

EXPECT_TRUE(stk:mesh::is_side_equivalent(get_bulk(), eleml, ordinal, sideNodes));
36

37 stk: :mesh: :EguivAndPositive result =

stk:mesh::is_side_eguivalent_and_positive(get_bulk(), eleml, ordinal,

sideNodes, numNodes);

38 EXPECT_TRUE(result.is_eguiv);

39 EXPECT_TRUE (result . is_positive) ;

40 }

1.7.4 Understanding node ordering of edges and faces

Listing 1.33 shows the difference between node orderings when using the STK Mesh
create_edges () and create_faces () functions versus STK Topology. Listing 2.10 has
more information regarding the lexicographical smallest permutation which is used to change the
ordering for the two cases.

Listing 1.33: Understanding edge and face ordering
../../../code/stk/stk_doc_tests/stk_mesh/createFacesEdgesilex.cpp

216

217

218

219

220

//+ EXAMPLE

//+ Create the faces..

stk::mesh::create_faces(bulkData);

221 unsigned goldValuesForHexFaceNodesFromStkTopology[6][4] = {

222

223

224

{1, 2, 6, 5}, {2, 3, 7, 6}, {3, 4, 8, 7}, {1, 5, 8, 4}, {1, 4, 3, 2}, {5, 6, 7, 8} };

// Lexicographical smallest permutation per face leads from topology ordering (above) for

face to ordering below

225

226 unsigned goldValuesForHexFaceNodesFromCreateFaces[6][4] =
227 { 1, 2, 6, 5}, {2, 3, 7, 6}, {3, 4, 8, 7}, {1, 4,

228

229 //+ Create the edges..

DO stk: :mesh: :create_edges(bulkData);

231

232 unsigned goldValuesHexEdgeNodesFromstkTopology [12] [2]

233 {1, 2}, {2, 3}, {3, 4}, {4, 1}, {5, 6}, {6, 7}, {7,

{4, 8} };

8, 5}, {1, 2, 3, 4}, {5, 6, 7, 8}

=

8}, {8, 5}, {1, 5}, {2, 6}, {3,

1;

7},

234

235 // Lexicographical smallest permutation per edge leads from topology ordering (above) for

edge to ordering below

236

237 unsigned goldValuesHexEdgeNodesFromCreateEdges [12] [2] =

23s {1, 2}, {2, 3}, {3, 4}, {1, 4}, {5, 6}, {6, 7}, {7, 8}, {5, 8}, {1, 5}, {2, 6}, {3, 7},

{4, 8} };

239

240

60

1.7.5 How to sort entities into an arbitrary order

One possible use case for this is to try and improve cache hit rate when visiting the nodes of an
element.

Listing 1.34: Example showing how to sort entities by descending identifier.
../../../code/stk/stk_dociests/stk_mesh/howToSortEntities.cpp

#include "gtest/gtest.h"

2 #include <stk_mesh/base/BulkData.hpp>

3 #include <stk_unit_test_utils/MeshFixture.hpp>

4

5 namespace 1

6

7 class EntityReverseSorter : public stk::mesh::EntitySorterBase

8

9 public:

to virtual void sort(stk::mesh::BulkData &bulk, stk:mesh::EntityVector& entityVector) const

It

12 std::sort(entityVector.begin(), entityVector.end(),

13 [&bulk](stk::mesh::Entity a, stk::mesh::Entity b) { return

bulk.identifier(a) > bulk.identifier(b); });

14 }

15 };

16

17 class HowToSortEntities : public stk::unit_test_util::MeshFixture

18 1

0 protected:

20 void sort_and_check()
21 {

22 if(stk::parallel_machine_size(get_comm()) == 1)

23

24 setup_mesh("generated:lx1x4", stk::mesh::BulkData::AUTO_AURA);

25 get_bulk().sort_entities(EntityReverseSorter());

26 expect_entities_in_reverse_order();

27

28

29 void expect_entities_in_reverse_order()

30

31 const stk::mesh::BucketVector buckets = get_bulk().buckets(stk::topology::NODE_RANK);

32 ASSERT_EQ(lu, buckets.size());

33 expect_bucket_in_reverse_order(*buckets[0]);

34

35 void expect_bucket_in_reverse_order(const stk::mesh::Bucket &bucket)

36

37 ASSERT_EQ(20u, bucket.size());

38 for(size_t i=1; i<bucket.size(); i++)

39 EXPECT_GT(get_bulk().identifier(bucket[i-1]), get_bulk().identifier(bucket[i]));

40

41 } ;

42 TEST_F(HowToSortEntities, example_reverse)

43

44 sort_and_check();

45

46

47 }

61

This page intentionally left blank.

Chapter 2

STK Topology

As stated in the introductory chapter, Topology provides an entity's finite element description and
this includes a number of attributes such as the number and type of lower-rank entities that can
exist in that entity's downward connectivity (e.g., the number of faces that an element topology
can have, the ordering of nodes attached to particular faces, etc.).

A primary goal of s t k_t opology is to provide fast traversal of sub-topologies, such as the edges
of an element or the nodes of a face, etc. s t k_t opology uses value semantics (e.g., no pointers
to singletons) and can be used on GPUs as well as CPUs. s t k_t op o 1 o gy provides compile-time
access to topology information, as well as run-time. (See Section 2.1.3, Listing 2.3).

2.1 STK Topology API

This section contains several code listings that attempt to aid in the understanding of the stk topol-
ogy API.

Note the following details of the API:

• num_nodes () vs num_vert ices () : For linear topologies, the number of nodes equals
the number of vertices. For higher order topologies, "nodes" include those located at the
corners as well as those located at mide-sides and/or mid-edges; but "vertices" are only
those nodes located at the corners.

• is_shell () : This is a helper to distinguish between "structure' elements (such as shells
and beams), and "continuum" elements.

• Permutations (num_permutations () vs num_positive_permutations ()): Dif-
ferent orderings of a topology's nodes may appear in certain contexts. Positive vs negative
refers to whether a given node ordering represents a different direction "normar for that
topology. Note also that this isn't a true mathematical permutation since not all possible
"permutations" of the nodes are even valid; these permutations are essentially node traver-
sals with the same sequence but different starting points.

• b a s e () : For topologies with polynomial order higher than linear, "base()" provides the
corresponding linear topology.

63

• is_superelement (), create_superelement_topology (): Super-elements
are used for reduced-order modeling in certain application formulations.

2.1.1 How to set and get topology

This example shows how to attach topology to entities (if entities are created "in line" rather than
being created by STK 10). Essentially, topology is attached to entities by declaring the entities
to be members of a Part that has the desired topology. The example also shows how to retrieve
topology from the mesh. More detailed information about STK Topology is provided in Chapter 2.

Listing 2.1: Example of setting/getting topology
../../../code/stk/stk_clociests/stk_mesh/setAndGetTopology.cpp

M TEST(stkMeshHowTo, setAndGetTopology)

62 f

0 const unsigned spatialDimension = 3;

64 stk::mesh::MetaData metaData(spatialDimension, stk::mesh::entity_rank_names());

0 stk::mesh::Part &tetPart = metaData.declare_part_with_topology("tet part",

stk::topology::TET_4);

66

67 stk::mesh::Part &hexPart = metaData.declare_part("existing part with currently unknown

topology");

68 // . . . then later assigned

69 stk::mesh::set_topology(hexPart, stk::topology::HEX_8);

70

71 metaData . commit () ;

72 stk::mesh::BulkData bulkData(metaData, MPI_COMM_WORLD);

73

74 bulkData.modification_begin();

75 stk: :mesh: :EntityId elemlld = 1, elem2ld = 2;

76 stk: :mesh: :Entity eleml = bulkData.declare_element(elemlld,

stk:mesh::ConstPartVectorf&tetPartl);

77 stk::mesh::Entity elem2 = bulkData.declare_element(elem2ld,

stk:mesh::ConstPartVectorf&hexPartl);
78 declare_element_nodes(bulkData, eleml, elem2);

79 bulkData.modification_end();
80

81 stk::topology eleml_topology = bulkData.bucket(elem1).topology();

82 stk::topology elem2_topology = bulkData.bucket(elem2).topology();
83

84 EXPECT_EQ(stk::topology::TET_4, eleml_topology);
85 EXPECT_EQ (stk: :topology: :HEX_8, elem2_topology);

86

2.1.2 STK topology ranks

Listing 2.2 demonstrates the link between various STK topologies and their ranks.

Listing 2.2: Example showing mapping of STK topologies to ranks
../../../coðe/stk/stk_ðociests/stk_topology/map_stk_topologiesio_ranks.cpp

ai TEST(stk_topology_how_to, map_topologies_to_ranks)

42 {

43 stk::topology topology = stk::topology::INVALID_TOPOLOGY;

44 EXPECT_EQ(stk::topology::INVALID_RANN, topology.rank());

64

std::vector<stk::topology> node_rank_topologies;

node_rank_topologies.push_back(stk::topology::NODE);

std::vector<stk::topology> edge_rank_topologies;

edge_rank_topologies.push_back(stk::topology::LINE_2);

edge_rank_topologies.push_back(stk::topology::LINE_3);

std::vector<stk::topology> face_rank_topologies;

face_rank_topologies.push_back(stk::topology::TRI_3);

face_rank_topologies.push_back(stk::topology::TRIANGLE_3);

face_rank_topologies.push_back(stk::topology::TRI_4);

face_rank_topologies.push_back(stk::topology::TRIANGLE_4);

face_rank_topologies.push_back(stk::topology::TRI_6);

face_rank_topologies.push_back(stk::topology::TRIANGLE_6);

face_rank_topologies.push_back(stk::topology::QUAD_4);

face_rank_topologies.push_back(stk::topology::QUADRILATERAL_4);

face_rank_topologies.push_back(stk::topology::QUAD_8);
face_rank_topologies.push_back(stk::topology::QUADRILATERAL_8);

face_rank_topologies.push_back(stk::topology::QUAD_9);

face_rank_topologies.push_back(stk::topology::QUADRILATERAL_9);

std::vector<stk::topology> element_rank_topologies;

element_rank_topologies.push_back(stk::topology::PARTICLE);

element_rank_topologies.push_back(stk::topology::LINE_2_1D);

element_rank_topologies.push_back(stk::topology::LINE_3_1D);

element_rank_topologies.push_back(stk::topology::BEAM_2);

element_rank_topologies.push_back(stk::topology::BEAM_3);

element_rank_topologies.push_back(stk::topology::SHELL_LINE_2);

element_rank_topologies.push_back(stk::topology::SHELL_LINE_3);

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

element_rank_topologies.push_back(stk:

:topology::TRI_3_2D);

:topology::TRIANGLE_3_2D);

:topology::TRI_4_2D);

:topology::TRIANGLE_4_2D);

:topology::TRI_6_2D);

:topology::TRIANGLE_6_2D);

:topology::QUAD_4_2D);

:topology::QUADRILATERAL_4_2D);

:topology::QUAD_8_2D);

:topology::QUADRILATERAL_8_2D);

:topology::QUAD_9_2D);

:topology::QUADRILATERAL_9_2D);

:topology::SHELL_TRI_3);

:topology::SHELL_TRIANGLE_3);

:topology::SHELL_TRI_4);

:topology::SHELL_TRIANGLE_4);

:topology::SHELL_TRI_6);

:topology::SHELL_TRIANGLE_6);

:topology::SHELL_QUAD_4);

:topology::SHELL_QUADRILATERAL_4);

:topology::SHELL_QUAD_8);

:topology::SHELL_QUADRILATERAL_8);

:topology::SHELL_QUAD_9);

:topology::SHELL_QUADRILATERAL_9);

:topology::TET_4);

:topology::TETRAHEDRON_4);

:topology::TET_8);

:topology::TETRAHEDRON_8);

:topology::TET_10);

:topology::TETRAHEDRON_10);

:topology::TET_11);

:topology::TETRAHEDRON_11);

element_rank_topologies.push_back(stk::topology::RYRAMID_5);

65

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

element_rank_topologies.push

element_rank_topologies.push

element_rank_topologies.push

element_rank_topologies.push

element_rank_topologies.push

element_rank_topologies.push

element_rank_topologies.push

_back(stk::topology::PYRAMID_13);

_back(stk::topology::PYRAMID_14);

_back(stk::topology::WEDGE_6);

_back(stk::topology::WEDGE_15);

_back(stk::topology::WEDGE_18);

_back(stk::topology::QUADRITATERAL_9_2D);

_back(stk::topology::QUADRILATERAL_9_2D);

element_rank_topologies.push_back(stk::topology::HEX_8);

element_rank_topologies.push_back(stk::topology::HEXAHEDRON_8);

element_rank_topologies.push_back(stk::topology::EEX_20);
element_rank_topologies.push_back(stk::topology::HEXAHEDRON_20);

element_rank_topologies.push_back(stk::topology::HEX_27);

element_rank_topologies.push_back(stk::topology::HEXAHEDRON_27);

unsigned num_nodes_in_super_element = 10;

element_rank_topologies.

push_back(stk::create_superelement_topology(num_nodes_in_super_element));

2.1.3 Compile-time STK topology information

Listing 2.3 demonstrates how to access compile-time topology information. In this example,
compiletime_num_nodes is a variable that is assigned a constant, compile-time value.
compiletime_hex8 is a type of struct, and num_nodes is a static const member whose
value is defined at compile-time. It thus can be used to allocate space on the stack instead
of on the heap. Other compile-time topology attributes are defined by the members of the
topology: : topology_type struct in the file stk_topology/topology_type.tcc.

Listing 2.3: Example using compile-time STK topology information
../../../code/stk/stk_doc_tests/stk_topology/runtime_vs_compiletime_topology.cpp

39 TEST(stk_topology_how_to, runtime_vs_compiletime_topology)

40 {

41 stk::topology runtime_hex8

42

43

44

45

46

47

48

49

50

51

52 }

stk::topology::HEX_8;

typedef stk::topology::topology_type<stk::topology::HEX_8> compiletime_hex8;

const unsigned compiletime_num_nodes = compiletime_hex8::num_nodes;

EXPECT_EQ(runtime_hex8.num_nodes(), compiletime_num_nodes);

//declare a static array with length given by compile-time num-nodes

double compile_time_sized_array[compiletime_num_nodes];

EXPECT_EQ(sizeof(compile_time_sized_array), sizeof(double)*compiletime_num_nodes);

2.1.4 STK topology for the Particle

Listing 2.4 demonstrates the API for a Particle element.

Listing 2.4: Example showing STK topology for a zero-dimensional element
../../../code/stk/stk_doc_tests/stk_topology/element_topologies.cpp

66

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

TEST(stk_topology_understanding, zero_dim_element)

{
stk::topology sphere = stk::topology::PARTICLE;

EXPECT_TRUE(sphere.is_valid());

EXPECT_FALSE(sphere.has_homogeneous_faces());

EXPECT_FALSE(sphere.is_shell());

EXPECT_TRUE(sphere.rank()

EXPECT_TRUE(sphere.rank()

EXPECT_TRUE(sphere.rank()

EXPECT_TRUE(sphere.rank()

EXPECT_TRUE(sphere.rank()

!= stk::topology::NODE_RANK);

!= stk::topology::EDGE_RANK);

!= stk::topology::FACE_RANK);

!= stk::topology::CONSTRAINT_RANK);

== stk::topology::ELEMENT_RANK);

EXPECT_EQ(sphere.side_rank(), stk::topology::INVALID_RANK);

EXPECT_EQ(sphere.dimension(),1u);

EXPECT_EQ(sphere.num_nodes(),1u);

EXPECT_EQ(sphere.num_vertices(),1u);

EXPECT_EQ(sphere.num_edges(),Ou);

EXPECT_EQ(sphere.num_faces(),Ou);

EXPECT_EQ(sphere.num_sides(),Ou);

EXPECT_EQ(sphere.num_permutations(),111);
EXPECT_EQ(sphere.num_positive_permutations(),1u);

66 EXPECT_FALSE(sphere.defined_on_spatial_dimension(0));

0

68 EXPECT_TRUE(sphere.defined_on_spatial_dimension(1));

69 EXPECT_TRUE(sphere.defined_on_spatial_dimension(2));

70 EXPECT_TRUE(sphere.defined_on_spatial_dimension(3));

71

72 EXPECT_EQ(sphere.base(),stk::topology::PARTICLE);

73

2.1.5 STK topology for the high order Beam

Listing 2.5 demonstrates the API for a higher order Beam element.

Listing 2.5: Example of STK topology for a one-dimensional element
../../../code/stk/stk_dociests/stk_topology/elementlopologies.cpp

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

TEST(stk_topology_understanding, one_dim_higher_order_element)

{
stk::topology secondOrderBeam = stk::topology::BEAM_3;

EXPECT_TRUE(secondOrderBeam.is_valid());

EXPECT_FALSE(secondOrderBeam.has_homogeneous_faces());

EXPECT_FALSE(secondOrderBeam.is_shell());

EXPECT_TRUE(secondOrderBeam.rank() != stk::topology::NODE_RANK);

EXPECT_TRUE(secondOrderBeam.rank() != stk::topology::EDGE_RANK);

EXPECT_TRUE(secondOrderBeam.rank() != stk::topology::FACE_RANK);

EXPECT_TRUE(secondOrderBeam.rank() != stk::topology::CONSTRAINT_RANK);

EXPECT_TRUE(secondOrderBeam.rank() == stk::topology::ELEMENT_RANK);

EXPECT_TRUE(secondOrderBeam.side_rank() == stk::topology::EDGE_RANK);

EXPECT_EQ(2u, secondOrderBeam.dimension());

EXPECT_EQ(3u, secondOrderBeam.num_nodes());

EXPECT_EQ(2u, secondOrderBeam.num_vertices());

EXPECT_EQ(1u, secondOrderBeam.num_edges());

67

178 EXPECT_EQ(0u, secondOrderBeam.num_faces());

179 EXPECT_EQ(1u, secondOrderBeam.num_positive_permutations());

180 EXPECT_EQ(2u, secondOrderBeam.num_permutations());

181

182 ExPECT_FALsE(secondorderBeam.defined_on_spatial_dimension(0));
183 EXPECT_FALSE(secondOrderBeam.defined_on_spatial_dimension(1));

184

185 EXPECT_TRUE(secondOrderBeam.defined_on_spatial_dimension(2));

186 EXPECT_TRUE(secondOrderBeam.defined_on_spatial_dimension(3));

187

188 EXPECT_TRUE(secondOrderBeam.base() == stk::topology::BEAM_2);

189

190 unsigned beamNodes[3] = 10, 20, 14 }; // 10 * * 20

191 // 14

192

193 unsigned expectedNodeOffsets[3] = { 0, 1, 2 };

194 //unit-test checking utility:

195 checkNodeOrderingAndOffsetsForEdges(secondOrderBeam, beamNodes, expectedNodeOffsets);

196

197

198

199 unsigned expectedNodeOffsets[6] = {

200 0, 1, 2,

201 1, 0, 2
202 };
203
204 //unit-test checking utility:

205 checkNodeOrderingAndOffsetsForPermutations(secondOrderBeam, beamNodes,

expectedNodeOffsets);

206

207 }

2.1.6 STK topology for the high order triangular Shell

Listing 2.6 demonstrates the API for a higher order triangular shell element.

Listing 2.6: Example of STK topology for a two-dimensional element
../../../code/stk/stk_doc_tests/stk_topology/element_topologies.cpp

210 TEST(stk_topology_understanding, two_dim_higher_order_element)

211 {

212 stk::topology secondOrderTriShell = stk::topology::SHELL_TRIANGLE_6;

213 EXPECT_TRUE(secondOrderTriShell == stk::topology::SHELL_TRI_6);

214

215 EXPECT_TRUE(secondOrderTriShell.is_valid());

216 EXPECT_TRUE(secondOrderTriShell.has_homogeneous_faces());

217 EXPECT_TRUE(secondOrderTriShell.is_shell());

218

219 EXPECT_TRUE(secondOrderTriShell.rank() != stk::topology::NODE_RANK);

220 EXPECT_TRUE(secondOrderTriShell.rank() != stk::topology::EDGE_RANK);

221 EXPECT_TRUE(secondOrderTriShell.rank() != stk::topology::FACE_RANK);

222 EXPECT_TRUE(secondOrderTriShell.rank() != stk::topology::CONSTRAINT_RANK);

223 EXPECT_TRUE(secondOrderTriShell.rank() == stk::topology::ELEMENT_RANK);

224

225 EXPECT_TRUE(secondOrderTriShell.side_rank() == stk::topology::FACE_RANK);

226

227 EXPECT_EQ(3u, secondOrderTriShell.dimension());

228 EXPECT_EQ(6u, secondOrderTriShell.num_nodes());

229 EXPECT_EQ(3u, secondOrderTriShell.num_vertices());

230 EXPECT_EQ(3u, secondOrderTriShell.num_edges());

231 EXPECT_EQ(2u, secondOrderTriShell.num_faces());

232

68

233 // permutations are the number of ways the number of vertices can be permuted

234 EXPECT_EQ (6u, secondOrderTrishell .num_permutations)
235 // positive permutations are ones that the normal is maintained

236 EXPECT_EQ(3u, secondOrderTrishell.num_positive_permutations());
237

238 EXPECT_FALSE(secondOrderTrishell.defined_on_spatial_dimension(0));

239 EXPECT_FALSE(secondOrderTrishell.defined_on_spatial_dimension(1));

240 EXPECT_FALSE(secondOrderTrishell.defined_on_spatial_dimension(2));

241

242 EXPECT_TRUE(secondOrderTrishell.defined_on_spatial_dimension(3));

243

244 EXPECT_TRUE(secondOrderTrishell.base() == stk::topology::SHELL_TRI_3);

245 EXPECT_TRUE(secondOrderTrishell.base() == stk: :topology: : SHELL_TRIANGLE_3) ;

246

247 unsigned shellNodes[6] { 10, 11, 12, 100, 101, 102 }; // first 3 are vertex nodes

(picture?)

248

249

25o unsigned goldValuesEdgeOffsets[9] = {

251 0, 1, 3,

252 1, 2, 4,

253 2, 0, 5

254 };
255

256 //unit-test checking utility:

257 checkNodeOrderingAndOffsetsForEdges(secondOrderTrishell, shellNodes,

goldValuesEdgeOffsets);
258

259

215{)

261 unsigned goldValuesFaceNodeOffsets [12] =

262 0, 1, 2, 3, 4, 5,

263 0, 2, 1, 5, 4, 3

264 }
265

266 //unit-test checking utility:

267 checkNodeOrderingAndOffsetsForFaces(secondOrderTrishell, shellNodes,

goldValuesFaceNodeOffsets);

268 }

269

27{)

271 unsigned goldValueOffsetsPerm[36] = {

272 0, 1, 2, 3, 4, 5,

273 2, 0, 1, 5, 3, 4,

274 1, 2, 0, 4, 5, 3,

275 0, 2, 1, 5, 4, 3,

276 2, 1, 0, 4, 3, 5,

277 1, 0, 2, 3, 5, 4

278 };

279

280 //unit-test checking utility:

281 checkNodeOrderingAndOffsetsForPermutations(secondOrderTrishell, shellNodes,

goldValueOffsetsPerm);

282 }

283 }

2.1.7 STK topology for the linear Hexahedral

Listing 2.7 demonstrates the API for a linear Hexahedral element.

Listing 2.7: Example of STK topology for a three-dimensional element
../../../code/stkistk_doc_tests/stk_topology/element_topologies.cpp

69

287 TEST(stk_topology_understanding, three_dim_linear_element)

288 {

289 stk::topology hex8 = stk::topology::HEX_8;

290 EXPECT_TRUE(hex8 == stk: :topology: :HEXAHEDRON_8) ;

291

292 EXPECT_TRUE (hex8 . is_valid) ;

293 EXPECT_TRUE(hex8.has_homogeneous_faces());

294 EXPECT_FALSE(hex8.is_shell());

295

296 EXPECT_TRUE (hex8 . rank () != stk: :topology: :NODE_RANK) ;

297 EXPECT_TRUE(hex8.rank() != stk::topology::EDGE_RANK);

298 EXPECT_TRUE (hex8 . rank () != stk: :topology: :FACE_RANK) ;

299 EXPECT_TRUE(hex8.rank() != stk::topology::CONSTRAINT_RANK);

3() EXPECT_TRUE(hex8.rank() == stk::topology::ELEMENT_RANK);

301

302 EXPECT_TRUE(hex8.side_rank() == stk::topology::FACE_RANK);

303

304 EXPECT_EQ(3u, hex8.dimension());

305 EXPECT_EQ (8u, hex8.num_nodes());

306 EXPECT_EQ(8u, hex8.num_vertices());

307 EXPECT_EQ(12u, hex8.num_edges());

308 EXPECT_EQ (6u, hex8.num_faces());

309

310 if (stk: :topology: :topology_type<stk: :topology: :HEX_8>: :num_permutations > 1) {

311 // permutations are the number of ways the number of vertices can be permuted

312 EXPECT_EQ (24u, hex8.num_permutations());

313 // positive permutations are ones that the normal is maintained

314 EXPECT_EQ(24u, hex8.num_positive_permutations());

315 }

316

317 EXPECT_FALSE (hex8 .defined_on_spatial_dimension (0)) ;

318 EXPECT_FALSE(hex8.defined_on_spatial_dimension(1));

319 EXPECT_FALSE (hex8 .defined_on_spatial_dimension (2)) ;

320

321 EXPECT_TRUE (hex8 .defined_on_spatial_dimension (3)) ;

322

323 EXPECT_TRUE(hex8.base() == stk::topology::HEX_8);

324

325 unsigned hex8Nodes[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };

326

327

328 stk: :topology goldEdgeTopology = stk: :topology: :LINE_2;

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346 };
347

348 //unit-test checking utility:

349 checkNodeOrderingAndOffsetsForEdges(hex8, hex8Nodes, goldValuesEdgeOffsets);

350 }

351

352

353 stk::topology goldFaceTopology = stk::topology::QUAD_4;

354 unsigned goldNumNodesPerFace = 4;

EXPECT_EQ(goldEdgeTopology, hex8.edge_topology());

unsigned goldNumNodesPerEdge = 2;

ASSERT_EQ(goldNumNodesPerEdge, hex8.edge_topology().num_nodes());

unsigned goldValuesEdgeOffsets[24] = {

0, 1,

1, 2,

2, 3,

3, 0,

4, 5,

5, 6,

6, 7,

7, 4,

0, 4,

1, 5,

2, 6,

3, 7

70

355 for (unsigned faceIndex=0;faceIndex<hex8.num_faces();faceIndex++)

356

357 EXPECT_EQ(goldFaceTopology, hex8.face_topology(faceIndex));

358 ASSERT_EQ(goldNumNodesPerFace, hex8.face_topology(faceIndex).num_nodes());

359 }

360

361 unsigned goldValuesFaceOffsets [24] {

362 0, 1, 5, 4,

363 1, 2, 6, 5,

364 2, 3, 7, 6,

365 0, 4, 7, 3,

366 0, 3, 2, 1,

367 4, 5, 6, 7

368 };
369

370 //unit-test checking utility:
371 checkNodeOrderingAndOffsetsForFaces(hex8, hex8Nodes, goldValuesFaceOffsets);

372 }
373
374 }

2.1.8 STK topology equivalent method

Listing 2.8 demonstrates the API for checking, given the nodes of topology, if two entities are
equivalent. The support for HEX_8, etc., only includes positive node-permutations, since there is
no current need for negative permutations.

Listing 2.8: Example using of an equivalent method
../../../codelstk/stk_doc_tests/stk_topology/equivalent.cpp

41 TEST(stk_topology_understanding, equivalent_elements)

42 1

43 std::pair<bool, unsigned> areElementsEquivalent;

44

45

46 if (stk::topology::topology_type<stk::topology::HEX_8>::num_permutations > 1) {

47 unsigned hex1[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };

48 unsigned hex2[8] = { 4, 7, 6, 5, 0, 3, 2, 1 };

49 unsigned hex3[8] = { 4, 5, 6, 7, 0, 1, 2, 3 };

50

51 stk::topology hex8 = stk::topology::HEX_8;

52

53 areElementsEquivalent = hex8 . equivalent (hexl , hex2);

54 EXPECT_TRUE (areElementsEquivalent . first) ;

55 areElementsEquivalent = hex8 . equivalent (hexl, hex3);

56 EXPECT_FALSE(areElementsEquivalent.first);

57 1
58 }

59

60

61 unsigned triangle_1[3] = {0, 1, 2};

62 unsigned triangle_2[3] = {0, 2, 1};

63

64 stk::topology triangular_shell = stk::topology::SHELL_TRIANGLE_3;

65

66 areElementsEquivalent = triangular_shell.equivalent(triangle_1, triangle_2);

67

68 EXPECT_TRUE(areElementsEquivalent.first);

69

70 unsigned permutation_index = areElementsEquivalent.second;

71 unsigned goldValue = 3;

71

72 EXPECT_EQ(goldValue, permutation_index); // From previous unit test, this is the 4th

permutation

73 }

74

75 }

2.1.9 STK topology's is_positive_polarity method

Listing 2.9: Example using is_positive_polarity
../../../code/stk/stk_doc_tests/stk_topology/how_to_use_stk_topology.cpp

240 TEST(stk_topology_how_to, check_for_positive_polarity)

241 {

242 stk::topology quad4Topology = stk::topology::QUAD_4;

243

244 ASSERT_EQ(8u, quad4Topology.num_permutations());

245 ASSERT_EQ(4u, quad4Topology.num_positive_permutations());
246

247 EXPECT_TRUE(quad4Topology.is_positive_polarity(0));

248 EXPECT_TRUE(quad4Topology.is_positive_polarity(1));

249 EXPECT_TRUE(quad4Topology.is_positive_polarity(2));

250 EXPECT_TRUE(quad4Topology.is_positive_polarity(3));
251 EXPECT_TRUE(!quad4Topology.is_positive_polarity(4));

252 EXPECT_TRUE(!quad4Topology.is_positive_polarity(5));
253 EXPECT_TRUE(!quad4Topology.is_positive_polarity(6));

254 EXPECT_TRUE(!quad4Topology.is_positive_polarity(7));

255

256 //or, print it and examine the output:

257 stk::verbose_print_topology(std::cout, quad4Topology);

258 }

2.1.10 STK topology's lexicographical_smallest_permutation

method

Listing 2.10 demonstrates the API for obtaining the smallest lexicographical permutation index.
The support for HEX_8, etc., only includes positive node-permutations.

Listing 2.10: Example using lexicographical_smallest_permutation
../../../code/stk/stk_dociests/stkiopology/how_to_use_stk_topology.cpp

56 TEST(stk_topology_understanding, lexicographical_smallest_permutation)

57

58

59 unsigned triangle_node_ids[3] = {10, 8, 12};

60

61 stk::topology triangular_shell = stk::topology::SHELL_TRIANGLE_3;

62

63 unsigned gold_triangle_permutations[18]= f

64 10, 8, 12,

65 12, 10, 8,

66 8, 12, 10, // lexicographical smallest permutation by node

only positive permutations

ids if considering

67 10, 12, 8,

68 12, 8, 10,

69 8, 10, 12 // lexicographical smallest permutation by node ids if considering

all permutations

72

70

71

72

};

verifyPermutationsForTriangle(triangular_shell, triangle_node_ids,

gold_triangle_permutations);
73

74 bool usePositivePermutationsOnly = false;

75 unsigned permutation_index =

triangular_shell.lexicographical_smallest_permutation(triangle_node_ids,

usePositivePermutationsOnly);

76 unsigned gold_lexicographical_smallest_permutation_index = 5;

77 // driven by vertices, NOT mid-edge nodes

78 EXPECT_EQ(gold_lexicographical_smallest_permutation_index, permutation_index);

79

80 usePositivePermutationsOnly = true;

81 permutation_index =

triangular_shell.lexicographical_smallest_permutation(triangle_node_ids,

usePositivePermutationsOnly);

82 gold_lexicographical_smallest_permutation_index = 2;

83 // driven by vertices, NOT mid-edge nodes

84 EXPECT_EQ(gold_lexicographical_smallest_permutation_index, permutation_index);

85

86 }

2.1.11 STK topology's lexicographical smallest permutation

preserve polarity method

Listing 2.11 demonstrates the API for obtaining the smallest lexicographical permutation index
that matches the polarity of the input permutation

Listing 2.11: Example using lexicographical_smallest_permutation_preserve_polarity
../../../code/stkistk_doc_tests/stk_topology/how_to_use_stk_topology.cpp

90 TEST(stk_topology_understanding, lexicographical_smallest_permutation_preserve_polarity)

91 {

92

93 stk::topology triangular_shell = stk::topology::SHELL_TRIANGLE_3;

94 unsigned shell_node_ids[3] = {10, 8, 12};

95 {

96 unsigned triangle_node_ids[3] - {12, 10, 8};

97

98 unsigned permutation_index =

triangular_shell.lexicographical_smallest_permutation_preserve_polarity(triangle_node_ids,

shell_node_ids);
99 unsigned expected_positive_permutation = 2;

100

101 EXPECT_EQ(expected_positive_permutation, permutation_index);

102 EXPECT_LT(expected_positive_permutation,

triangular_shell.num_positive_permutations());

103 }

104

105 unsigned triangle_node_ids[3] = {12, 8, 10};

106

107 unsigned permutation_index =

triangular_shell.lexicographical_smallest_permutation_preserve_polarity(triangle_node_ids,

shell_node_ids);

W8 unsigned expected_negative_permutation = 5;

109

Ho EXPECT_EQ(expected_negative_permutation, permutation_index);

111 EXPECT_GE(expected_negative_permutation,

triangular_shell.num_positive_permutations());

73

112

113

114

H5

H6

117

118

}

TEST(stk_topology_understanding, quad_lexicographical_smallest_permutation_preserve_polarity)

{

H9 stk::topology quad_shell = stk::topology::SHELL_QUAD_4;

1z0 unsigned shell_node_ids[4] = {1, 2, 3, 4};

121

1z2 unsigned quad_node_ids[4] = {1, 2, 3, 4};

123

124 unsigned permutation_index =

quad_shell.lexicographical_smallest_permutation_preserve_polarity(quad_node_ids,

shell_node_ids);

125 unsigned expected_positive_permutation = 0;

126

1z7 EXPECT_EQ(expected_positive_permutation, permutation_index);

128 EXPECT_LT(expected_positive_permutation, quad_shell.num_positive_permutations());

129

130

131

132 unsigned quad_node_ids[4] = {1, 4, 3, 2};

133

134 unsigned permutation_index =

135

136

quad_shell.lexicographical_smallest_permutation_preserve_polarity(quad_node_ids,

shell_node_ids);
unsigned expected_negative_permutation = 4;

137 EXPECT_EQ(expected_negative_permutation, permutation_index);

138 EXPECT_GE(expected_negative_permutation, quad_shell.num_positive_permutations());

139 }

140

141

142 unsigned quad_node_ids[4] = {4, 2, 3, 1};

143

144 unsigned permutation_index =

quad_shell.lexicographical_smallest_permutation_preserve_polarity(quad_node_ids,

shell_node_ids);
145 unsigned expected_invalid_permutation = 8;

146

147 EXPECT_EQ(expected_invalid_permutation, permutation_index);

148 EXPECT_EQ(expected_invalid_permutation, quad_shell.num_permutations());
149

150

151 }

2.1.12 STK Topology's sub topology methods

Listing 2.12 demonstrates the API for obtaining information about a topology's sub-topologies
(sub-topologies define downward-connected entities; e.g., the face-rank sub-topology of HEX_20
is QUADJ3.).

Listing 2.12: Example using of sub_topology
../../../code/stk/stkAloc_tests/stk_topology/how_to_use_stk_topology.cpp

155 TEST(stk_topology_understanding, sub_topology)

156 {

157 stk::topology hex20 = stk::topology::HEX_20;

158 unsigned hex20Nodes[20] = {

159 0, 1, 2, 3,

74

160 4, 5, 6, 7,

MI 8, 9, 10, 11,

162 12, 13, 14, 15,

M3 16, 17, 18, 19

tm };

165

M6 unsigned numFaces = hex20.num_sub_topology(stk::topology::FACE_RANK);

M7 EXPECT_EQ(6u, numFaces);

M8

M9 unsigned facelndex=2;

170 stk::topology top = hex20.sub_topology(stk::topology::FACE_RANK, facelndex);

171 EXPECT_EQ(stk::topology::QUADRILATERAL_8, top);

172

173 unsigned nodeldsFace[8];

174 hex20.sub_topology_nodes(hex20Nodes, stk::topology::FACE_RANK, faceIndex, nodeIdsFace);

175

176 unsigned goldIdsFace[8] = { 2, 3, 7, 6, 10, 15, 18, 14 };

177 for (unsigned i=0;i<hex20.face_topo1ogy(faceIndex).num_nodes();i++)
178
179 EXPECT_EQ(goldldsFace[i], nodeldsFace[i]);

180 }

181

2.1.13 STK Topology's sides methods

Listing 2.13 demonstrates the API for understanding sides in STK topologies. Note that for some
topologies, sides differs in meaning from the Exodus [1] standard. For example, the number of
sides on a shell-4 in Exodus is 6 (two faces, 4 edges) while the SHELL_QUADA in stk_topology
only counts the faces as sides, i.e., num_s i de s () returns 2.

Listing 2.13: Example for understanding sides in STK topology
../../../code/stk/stli_doc_tests/stk_topology/how_to_use_stk_topology.cpp

N4 TEST(stk_topology_understanding, sides)

185 {

B6 stk::topology hex20 = stk::topology::HEX_20;

B7 EXPECT_EQ(6u, hex20.num_sides());
B8

B9 stk: :topology quad8 = stk: :topology: : SHELL_QUADRILATERAL_8;

00 EXPECT_EQ(2u, quad8.num_sides());
NI

N2 stk::topology wedge = stk::topology::WEDGE_15;

N3 EXPECT_EQ (5u, wedge.num_sides());

194 EXPECT_EQ(stk::topology::QUADRILATERAL_8, wedge.side_topology(0));

N5 EXPECT_EQ (stk: :topology: :QUADRILATERAL_8, wedge . side_topology (1)) ;

N6 EXPECT_EQ(stk::topology::QUADRILATERAL_8, wedge.side_topology(2));
07 EXPECT_EQ(stk::topology::TRIANGLE_6, wedge.side_topology(3));

N8 EXPECT_EQ (stk: :topology: :TRIANGLE_6, wedge. side_topology (4)) ;

N9

200 }

2.1.14 STK topology for a SuperElement

Listing 2.14 demonstrates the API for using super elements in STK Topology.

75

Listing 2.14: Example using a SuperElement with STK topology
../../../code/stk/stli_dociests/stkiopology/how_to_use_stkiopology.cpp

203 TEST(stk_topology_understanding, superelements)

204 {

205 unsigned eightNodes=8;

206 stk::topology validSuperElement = stk::create_superelement_topology(eightNodes);

207 EXPECT_TRUE(validSuperElement.is_superelement());
208 EXPECT_TRUE(stk::topology::ELEMENT_RANK == validSuperElement.rank());

209 EXPECT_EQ(eightNodes, validSuperElement.num_nodes());
210 EXPECT_EQ(0u, validSuperElement.num_edges());

211 EXPECT_EQ(0u, validSuperElement.num_faces());
212 EXPECT_EQ(0u, validSuperElement.num_permutations());

213 EXPECT_EQ(0u, validSuperElement.num_sides());
214 EXPECT_EQ(0u, validSuperElement.dimension());

215 EXPECT_EQ(stk::topology::INVALID_TOPOLOGY, validSuperElement.face_topology(0));

216 EXPECT_EQ(stk::topology::INVALID_TOPOLOGY, validSuperElement.edge_topology());

217 EXPECT_EQ(stk::topology::INVALID_TOPOLOGY, validSuperElement.base());

218 ExPECT_FALsE(validsuperElement.has_homogeneous_faces());
219 EXPECT_FALSE(validSuperElement.is_shell());

220

221 unsigned zeroNodes=0;

222 stk::topology invalidSuperElement = stk::create_superelement_topology(zeroNodes);

223 EXPECT_FALSE(invalidsuperElement.is_superelement());

224 EXPECT_TRUE(stk::topology::INVALID_RANK == invalidSuperElement.rank());

225 EXPECT_EQ(zeroNodes, invalidSuperElement.num_nodes());
226 EXPECT_EQ(0u, invalidSuperElement.num_edges());

227 EXPECT_EQ(0u, invalidSuperElement.num_faces());

228 EXPECT_EQ(0u, invalidSuperElement.num_permutations());
229 EXPECT_EQ(0u, invalidSuperElement.num_sides());

230 EXPECT_EQ(0u, invalidSuperElement.dimension());

231 EXPECT_EQ(stk::topology::INVALID_TOPOLOGY, invalidSuperElement.face_topology(0));

232 EXPECT_EQ(stk::topology::INVALID_TOPOLOGY, invalidSuperElement.edge_topology());

233 EXPECT_EQ(stk::topology::INVALID_TOPOLOGY, invalidSuperElement.base());

234 ExPECT_FALsE(invalidsuperElement.has_homogeneous_faces());
235 EXPECT_FALSE(invalidSuperElement.is_shell());

236 }

2.2 Mapping of Sierra topologies

Listing 2.15 compares four topology implementations found in Sierra: the Exodus Topology (de-
fined by the name and number of nodes of the element), Ioss Topology, STK Topology, and the
Cell (Shards) Topology. The test shows how a few elements compare for these implementations.

Listing 2.15: Example for understanding various Sierra topologies
../../../code/stk/stk_doc_tests/stk_topology/understanding_various_topologies.cpp

67

68 void setupMappingsToTest(std::vector<TopologyMapper>& topologyMappings)

69 {

70 std::string exodusName;

71 int exodusNumNodes=-1;

72 std::string iossTopologyName;

73 stk::topology stkTopology;

74 shards::CellTopology shardsTopology;

75

76 exodusName="sphere";

77 exodusNumNodes=1;

78 lossTopologyName="sphere";

79 stkTopology=stk::topology::PARTICLE;

76

80 shardsTopology=shards : :CellTopology (shards : :getCellTopologyData< shards : :Particle >());

St topologyMappings.push_back(TopologyMapper(exodusName, exodusNumNodes, iossTopologyName,

stkTopology, shardsTopology));

82

83 exodusName="BEam";

84 exodusNumNodes=3;

85 lossTopologyName="bar3";

86 stkTopology=stk::topology::BEAM_3;

87 shardsTopology=shards::CellTopology(shards::getCellTopologyData< shards::Beam<3»());

88 topologyMappings.push_back(TopologyMapper(exodusName, exodusNumNodes, iossTopologyName,

stkTopology, shardsTopology));

89

90 exodusName="Tri";

91 exodusNumNodes=3;

92 iossTopologyName="trishell3";

93 stkTopology=stk::topology::SHELL_TRIANGLE_3;

94 shardsTopology=shards::CellTopology(shards::getCellTopologyData< shards::ShellTriangle<3>

>0);
95 topologyMappings.push_back(TopologyMapper(exodusName, exodusNumNodes, iossTopologyName,

stkTopology, shardsTopology));

96

97 exodusName="hex";

98 exodusNumNodes=20;

99 iossTopologyName="hex20";

100 stkTopology=stk::topology::HEXAHEDRON_20;

101 shardsTopology=shards::CellTopology(shards::getCellTopologyData< shards::Hexahedron<20>

>());
102 topologyMappings.push_back(TopologyMapper(exodusName, exodusNumNodes, iossTopologyName,

stkTopology, shardsTopology));

W3

104

105 TEST(Understanding, sierra_topologies)

W6 {

W7 int spatialDim = 3;

108 std::vector<TopologyMapper> topologyMappings;

W9 setUpMappingsToTest(topologyMappings);

m

11 1 size_t numMappings = topologyMappings.size();

112

10 createIossElementRegistryForKnownElementTopologies();

114

115 for (size_t i=0;i<numMappings;i++)

1M

t17 TopologyMapper goldValues = topologyMappings[i];

U8

10 std::string fixedExodusName = Ioss::Utils::fixup_type(topologyMappings[i].exodusName,

topologyMappings[i].exodusNumNodes, spatialDim);

120 Ioss::ElementTopology *iossTopology = Ioss::ElementTopology::factory(fixedExodusName,

true);

ASSERT_TRUE(iossTopology != NULL);

122

123

124

125

126

127

EXPECT_EQ(goldValues.iossTopologyName, iossTopology->name());

stk::topology mappedStkTopologyFromIossTopology =

stk::io::map_ioss_topology_to_stk(iossTopology, spatialDim);

EXPECT_EQ(goldValues.stkTopology, mappedStkTopologyFromIossTopology);

shards::CellTopology mappedShardsTopologyFromStkTopology =

stk::mesh::get_cell_topology(mappedStkTopologyFromIossTopology);

128 EXPECT_EQ(goldValues.shardsTopology, mappedShardsTopologyFromStkTopology);

129

130 stk::topology mappedStkTopologyFromShards =

stk:mesh::get_topology(mappedShardsTopologyFromStkTopology, spatialDim);

131 EXPECT_EQ(goldValues.stkTopology, mappedStkTopologyFromShards);

132 }

133 }

77

Some client applications still heavily use shards topologies with STK Mesh. To maintain sup-
port for this capability, STK Mesh provides a fast mapping between shards and stictopology (see
listing 2.16).

Listing 2.16: Mapping of shards::CellTopologies to stk::topologies provided by
stk::mesh::get_cell_topology0 ../../../code/stk/stk_mesh/stk_mesh/base/MetaData.cpp

996

997

998

999

shards::CellTopology get_cell_topology(stk::topology t)

switch(t())

1000 case stk::topology::NODE:

1001 return shards::CellTopology(shards::getCellTopologyData< shards::Node

> ());
1002 case stk::topology::LINE_2:

1003 return shards::CellTopology(shards: :getCellTopologyData< shards::Line<2>

> ());
1004 case stk::topology::LINE_3:

1005 return shards::CellTopology(shards: :getCellTopologyData< shards::Line<3>

> ());
WM case stk::topology::TRI_3:

1007 return shards::CellTopology(shards: :getCellTopologyData< shards::Triangle<3>

> ());
l008 case stk::topology::TRI_4:

1009 return shards::CellTopology(shards: :getCellTopologyData< shards::Triangle<4>

> ());
low case stk::topology::TRI_6:

1011 return shards::CellTopology(shards: :getCellTopologyData< shards::Triangle<6>

> ()) ;
I012 case stk::topology::QUAD_4:

1013 return shards::CellTopology(shards: :getCellTopologyData< shards::Quadrilateral<4>

> ());
IM4 case stk::topology::QUAD_8:

1015 return shards::CellTopology(shards: :getCellTopologyData< shards::Quadrilateral<8>

> ());
I016 case stk::topology::QUAD_9:

1017 return shards::CellTopology(shards: :getCellTopologyData< shards::Quadrilateral<9>

> ()) ;
I018 case stk::topology::PARTICLE:

1019 return shards::CellTopology(shards: :getCellTopologyData< shards::Particle

> ());
1020 case stk::topology::LINE_2_1D:

1021 return shards::CellTopology(shards: :getCellTopologyData< shards::Line<2>

> ());
1022 case stk::topology::LINE_3_1D:

1023 return shards::CellTopology(shards: :getCellTopologyData< shards::Line<3>

> ());
1024 case stk::topology::BEAM_2:

1025 return shards::CellTopology(shards: :getCellTopologyData< shards::Beam<2>

> ());
1025 case stk::topology::BEAM_3:

1027 return shards::CellTopology(shards::getCellTopologyData< shards::Beam<3>

> ());
1028 case stk::topology::SHELL_LINE_2:

1029 return shards::CellTopology(shards::getCellTopologyData< shards::ShellLine<2>

> ());
low case stk::topology::SHELL_LINE_3:

1031 return shards::CellTopology(shards::getCellTopologyData< shards::ShellLine<3>

> ()) ;
1032 case stk::topology::TRI_3_2D:

1033 return shards::CellTopology(shards::getCellTopologyData< shards::Triangle<3>

> ());
1034 case stk::topology::TRI_4_2D:

1035 return shards::CellTopology(shards::getCellTopologyData< shards::Triangle<4>

> ());
I036 case stk::topology::TRI_6_2D:

78

1037 return shards::CellTopology(shards::getCellTopologyData< shards::Triangle<6>

> ()) ;
1038 case stk::topology::QUAD_4_2D:

1039 return shards::CellTopology(

>());
m40 case stk::topology::QUAD_8_2D:

wat return shards::CellTopology(

>());
1042 case stk::topology::QUAD_9_2D:

1o43 return shards::CellTopology(

>());
1044 case stk::topology::SHELL_TRI_3:

1045 return shards::CellTopology(

>());
1o46 case stk::topology::SHELL_TRI_4:break;

shards::getCellTopologyData<

shards::getCellTopologyData<

shards::getCellTopologyData<

shards::getCellTopologyData<

shards::Quadrilateral<4>

shards::Quadrilateral<8>

shards::Quadrilateral<9>

shards::ShellTriangle<3>

1047 //NOTE: shards does not define a topology for a 4-noded triangular shell

1048 //return shards::CellTopology(shards::getCellTopologyData< shards::ShellTriangle<4>

>());
1049 case stk::topology::SHELL_TRI_6:

100 return shards::CellTopology(shards::getCellTopologyData< shards::ShellTriangle<6>

> ()) ;
1051 case stk::topology::SHELL_QUAD_4:

1052 return shards::CellTopology(shards:

>());
1053 case stk::topology::SHELL_QUAD_8:

1054 return shards::CellTopology(shards:

>());
1055 case stk::topology::SHELL_QUAD_9:

1056 return shards::CellTopology(shards:

>());
1057 case stk::topology::TET_4:

1058 return shards::CellTopology(shards:

>());
1059 case stk::topology::TET_8:

1060 return shards::CellTopology(shards:

>());
1061 case stk::topology::TET_10:

1062 return shards::CellTopology(shards:

>());
M63 case stk::topology::TET_11:

lo64 return shards::CellTopology(shards:

>());
1065 case stk::topology::PYRAMID_5:

1066 return shards::CellTopology(shards:

>());
1067 case stk::topology::PYRAMID_13:

1068 return shards::CellTopology(shards:

>());
1069 case stk::topology::PYRAMID_14:

1070 return shards::CellTopology(shards:

>());
1071 case stk::topology::WEDGE_6:

1072 return shards::CellTopology(shards:

>());
1073 case stk::topology::WEDGE_15:

1074 return shards::CellTopology(shards:

>());
W75 case stk::topology::WEDGE_18:

1076 return shards::CellTopology(shards:

>());
1077 case stk::topology::HEX_8:

1078 return shards::CellTopology(shards:

>());
1079 case stk::topology::HEX_20:

1080 return shards::CellTopology(shards:

>());
W81 case stk::topology::HEX_27:

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

shards::ShellQuadrilateral<4>

shards::ShellQuadrilateral<8>

shards::ShellQuadrilateral<9>

shards::Tetrahedron<4>

shards::Tetrahedron<8>

shards::Tetrahedron<10>

shards::Tetrahedron<11>

shards::Pyramid<5>

shards::Pyramid<13>

shards::Pyramid<14>

shards::Wedge<6>

shards::Wedge<15>

shards::Wedge<18>

shards::Hexahedron<8>

shards::Hexahedron<20>

79

1082 return shards: :CellTopology(shards: :getCellTopologyData< shards: :Hexahedron<27>

> ());
1083 default: break;

mm 1
1085 return shards::CellTopology(NULL);

1086 }

80

Chapter 3

STK Fields

A STK field is a data structure that defines values associated with entities, such as temperatures,
coordinates, or stress. A field can be defined over the whole mesh or a subset of the mesh (typically
defined by a list of parts). STK Mesh currently manages STK field creation, storage, retrieval and
field data memory allocation. Fields are managed by entity rank (node, edge, face, element, etc.).
Fields can have the same name as long as they are defined on different entity ranks.

The following code listings demonstrate some common usage of fields:

• Scalar, vector, and tensor fields

• Fields on nodes or on elements

• Fields allocated for the entire mesh

• Fields allocated for only part of the mesh

• Fields with constant size across the mesh

• Fields with variable size per part

• Multi-state fields

• Communicate field data

In each example, the general flow of execution is as follows:

1. Declare and initialize s t k : :mesh : :Met aD at a: declare fields and parts

2. Declare and initialize st k : :mesh : : BulkD at a: create elements and nodes

3. Initialize, access and/or test field-data.

3.1 Example STK fields usage

Listing 3.1: Examples of constant-size whole-mesh field usage
../../../code/stk/stk_doc_tests/stk_mesh/useSimpleFields.cpp

70 TEST(stkMeshHowTo, useSimpleFields)

71 {

72 stk::mesh::MetaData metaData(SpatialDimension::three, stk::mesh::entity_rank_names());

73

74 typedef stk::mesh::Field<double> ScalarField;

75 typedef stk::mesh::Field<double, stk::mesh::Cartesian3d> VectorField;

81

76 ScalarField& pressureField =

metaData.declare_field<ScalarField>(stk::topology::ELEM_RANK, "pressure");
77 VectorField& displacementsField =

metaData.declare_field<VectorField>(stk::topology::NODE_RANK, "displacements");

78

79 double initialPressureValue = 4.4;

80 stk:mesh::put_field_on_entire_mesh_with_initial_value(pressureField,

&initialPressureValue);

81 stk::mesh::put_field_on_entire_mesh(displacementsField);

82

83 stk::mesh::BulkData mesh(metaData, MPI_COMM_WORLD);

84 create_two_tet_element_mesh(mesh);

85

86 const stk::mesh::BucketVector& nodeBuckets = mesh.buckets(stk::topology::NODE_RANK);

87 EXPECT_TRUE(!nodeBuckets.empty());

88 for(size_t bucketIndex=0; bucketIndex<nodeBuckets.size(); bucketlndex++)

89

90 const stk::mesh::Bucket& bucket = *nodeBuckets[bucketlndex];

91 double* displacementDataForBucket = stk::mesh::field_data(displacementsField, bucket);

92 EXPECT_GT(bucket.size(), 011);

93 for(size_t nodeIndex=0; nodelndex<bucket.size(); nodelndex++)

94

95 unsigned numValuesPerNode =

stk::mesh::field_scalars_per_entity(displacementsField, bucket);

96 EXPECT_EQ(SpatialDimension::three, numValuesPerNode);

97 for(unsigned i=0; i<numValuesPerNode; i++)

98 {

99 EXPECT_EQ(0.0, displacementDataForBucket[nodeIndex*numValuesPerNode + i]);

100 displacementDataForBucket[nodeIndex*numValuesPerNode + i] = 99.9;

wt

W2 }

M3 }

104

105 stk::mesh::Entity eleml = mesh.get_entity(stk::topology::ELEM_RANK, 1);

M6 double* pressureFieldDataForEleml = stk::mesh::field_data(pressureField, eleml);

107 EXPECT_EQ(initialPressureValue, *pressureFieldDataForEleml);

108

109 stk::mesh::Entity elem2 = mesh.get_entity(stk::topology::ELEM_RANK, 2);

HO double* pressureFieldDataForElem2 = stk:mesh::field_data(pressureField, elem2);

HI EXPECT_EQ(initialPressureValue, *pressureFieldDataForElem2);

112

Multidimensional fields (including 'vector' fields) must be declared by passing a second type pa-
rameter into the field's templated parameter list; failure to do so will result in the instantiation of a
scalar field.

Listing 3.2: Example of incorrect vector field declaration
../../../code/stk/stk_dociests/stk_mesh/useSimpleFields.cpp

128 TEST(stkMeshHowTo, declareVectorFields_putFieldLengthwithoutCartesian3dParam)

129 {

130 stk::mesh::MetaData metaData(SpatialDimension::three, stk::mesh::entity_rank_names());

131

132 typedef stk:mesh::Field<double, stk::mesh::Cartesian3d> VectorField;

133 VectorField& velocities = metaData.declare_field<VectorField>(stk::topology::NODE_RANK,

"velocities");
134

135 typedef stk::mesh::Field<double> BadVectorField;

06 BadVectorField& displacements =

metaData.declare_field<BadVectorField>(stk::topology::NODE_RANK,

"displacements");
137

138 unsigned fieldLength = 3;

139 stk::mesh::put_field(velocities, metaData.universal_part(), fieldLength);

140 stk::mesh::put_field(displacements, metaData.universal_part(), fieldLength);

82

141

H2 stk::mesh::BulkData mesh(metaData, MPI_COMM_WORLD);

H3 create_single_tet_element (mesh) ;

144

145 stk::mesh::Entity nodel = mesh.get_entity(stk::topology::NODE_RANK, 1);

H6 EXPECT_EQ(stk::mesh::field_scalars_per_entity(velocities, nodel),

stk:mesh::field_scalars_per_entity(displacements, nodel));

147 }

Listing 3.3: Examples of how to get fields by name
../../../code/sfidstk_doc_tests/stk_mesh/howToGetFields.cpp

47 TEST(stkMeshHowTo, getFields)

48 {

49 stk::mesh::MetaData metaData(SpatialDimension::three);

50

• typedef stk::mesh::Field<double> ScalarField;

52 typedef stk::mesh::Field<double, stk::mesh::Cartesian3d> VectorField;

53

54

55

56

const std::string pressureFieldName = "pressure";

const std::string displacementsFieldName = "displacements";

ScalarField *pressureField =

&metaData.declare_field<ScalarField>(stk::topology::ELEM_RANK,

pressureFieldName);

57 VectorField *displacementsField =

&metaData.declare_field<VectorField>(stk::topology::NODE_RANK,

displacementsFieldName);

58 metaData.commit();

59

60 EXPECT_EQ(pressureField, metaData.get_field<ScalarField>(stk::topology::ELEM_RANK,

pressureFieldName));

EXPECT_EQ(pressureField, metaData.get_field(stk::topology::ELEM_RANK, pressureFieldName));

62

63 EXPECT_EQ(displacementsField, metaData.get_field<VectorField>(stk::topology::NODE_RANK,

displacementsFieldName));

• EXPECT_EQ(displacementsField, metaData.get_field(stk::topology::NODE_RANK,

displacementsFieldName));

65 }

Listing 3.4: Examples of using fields that are variable-size and defined on only a subset of the mesh
../../../code/stldstk_doc_tests/stk_mesh/useAdvancedFields.cpp

50 TEST(stkMeshHowTo, useAdvancedFields)

51

52 const unsigned spatialDimension = 3;

53 stk::mesh::MetaData metaData(spatialDimension, stk:mesh::entity_rank_names());

54

55 typedef stk::mesh::Field<double, stk::mesh::Cartesian> VectorField;

56 typedef stk:mesh::Field<double, stk::mesh::FullTensor36> TensorField;

57 TensorField& tensorField = metaData.declare_field<TensorField>(stk::topology::ELEM_RANK,

"tensor");
58 VectorField& variableSizeField =

metaData.declare_field<VectorField>(stk::topology::ELEM_RANK,

"variableSizeField");

59

60 stk::mesh::Part &tetPart = metaData.declare_part_with_topology("tetElementPart",

stk::topology::TET_4);

• stk::mesh::Part &hexPart = metaData.declare_part_with_topology("hexElementPart",

stk::topology::HEX_8);

62

O double initialTensorValue[] = {1, 2, 3, 4, 5, 6, 7, 8, 9};

• stk::mesh::put_field_on_entire_mesh_with_initial_value(tensorField, initialTensorValue);

65

66 double initialVectorValue[] = {1, 2, 3, 4, 5, 6, 7, 8};

83

67 const unsigned nodesPerTet = 4;

68 stk::mesh::put_field(variableSizeField, tetPart, nodesPerTet, initialVectorValue);
69 const unsigned nodesPerHex = 8;

70 stk::mesh::put_field(variableSizeField, hexPart, nodesPerHex, initialVectorValue);
71

72 metaData.commit();

73 stk::mesh::BulkData mesh(metaData, MPI_COMM_WORLD);

74 mesh.modification_begin();

75 stk::mesh::Entityld tetld = 1;

76 stk::mesh::EntityIdVector tetNodes {1, 2, 3, 4};

77 stk::mesh::Entity tetElem=stk::mesh::declare_element(mesh, tetPart, tetld, tetNodes);

78 stk::mesh::EntityId hexId = 2;

79 stk::mesh::EntityldVector hexNodes {5, 6, 7, 8, 9, 10, 11, 12};

80 stk::mesh::Entity hexElem=stk::mesh::declare_element(mesh, hexPart, hexld, hexNodes);

81 mesh.modification_end();

82

83 const unsigned tensor_scalars_per_hex = stk::mesh::field_scalars_per_entity(tensorField,

hexElem);

84 const unsigned tensor_scalars_per_tet = stk::mesh::field_scalars_per_entity(tensorField,

tetElem);

85

86 EXPECT_EQ(tensor_scalars_per_hex, tensor_scalars_per_tet);

87 const unsigned tensor_enum_size = stk::mesh::FullTensor36::Size;

88 EXPECT_EQ(tensor_scalars_per_hex, tensor_enum_size);

89

90 double* tensorData = stk::mesh::field_data(tensorField, hexElem);

91 for(unsigned i=0; i<tensor_scalars_per_hex; i++)

92

93 EXPECT_EQ(initialTensorValue[i], tensorData[i]);

94 1
95

96 const unsigned scalars_per_tet = stk:mesh::field_scalars_per_entity(variableSizeField,

tetElem);

97 EXPECT_EQ(nodesPerTet, scalars_per_tet);
98

99 const unsigned scalars_per_hex = stk::mesh::field_scalars_per_entity(variableSizeField,

hexElem);

wo EXPECT_EQ(nodesPerHex, scalars_per_hex);

101

102 double* vectorHexData = stk::mesh::field_data(variableSizeField, hexElem);

W3 for(unsigned i=0; i<scalars_per_hex; i++)

104

105 EXPECT_EQ(initialVectorValue[i], vectorHexData[i]);

106 }
107

108 double* vectorTetData = stk:mesh::field_data(variableSizeField, tetElem);

109 for(unsigned i=0; i<scalars_per_tet; i++)

110

1H EXPECT_EQ(initialVectorValue[i], vectorTetData[i]);

112 1
113 }

Some application time-stepping algorithms use multi-state fields to assist with separating and up-
dating the field values for time-step n, n — 1, n 1, etc. STK Mesh supports fields with up to 6
states.

Listing 3.5: Examples of multi-state field usage
../../../code/stk/stk_doc_tests/stk_mesh/useMultistateFields.cpp

49 TEST(stkMeshHowTo, useMultistateField)

50

51 const unsigned spatialDimension = 3;

52 stk::mesh::MetaData metaData(spatialDimension, stk:mesh::entity_rank_names());

53

54 typedef stk::mesh::Field<double> ScalarField;

84

55 const unsigned numStates = 2;

56 ScalarField& temperatureFieldStateNpl =

metaData.declare_field<ScalarField>(stk::topology::NODE_RANK, "temperature",

numStates);
57

58 double initialTemperatureValue = 1.0;

59 stk::mesh::put_field_on_entire_mesh_with_initial_value(temperatureFieldStateNpl,

&initialTemperatureValue);

60

61 metaData.commit();

62 stk::mesh::BulkData mesh(metaData, MPI_COMM_WORLD);

63 mesh.modification_begin();
64 stk::mesh::Entityld nodeld = 1;

65 stk::mesh::Entity node = mesh.declare_node(nodeld);

66 mesh.modification_end();

67

68 EXPECT_EQ(stk::mesh::StateNP1, temperatureFieldStateNpl.state());

69 double* temperatureStateNpl = stk::mesh::field_data(temperatureFieldStateNpl, node);
70 EXPECT_EQ(initialTemperatureValue, *temperatureStateNpl);

double newTemperatureValue = 2.0;

72 *temperaturestateNpl = newTemperatureValue;

73

74 ScalarField& temperatureFieldStateN =

temperatureFieldStateNpl.field_of_state(stk::mesh::StateN);

75 double* temperatureStateN = stk::mesh::field_data(temperatureFieldStateN, node);
76 EXPECT_EQ(initialTemperatureValue, *temperatureStateN);

77

78 mesh.update_field_data_states();

79

80 temperatureStateN = stk:mesh::field_data(temperatureFieldStateN, node);
81 EXPECT_EQ(newTemperatureValue, *temperatureStateN);

82 }

85

This page intentionally left blank.

Chapter 4

STK 10

4.1 STK 10: usage examples

STK 10 is a module available for reading from and writing to Exodus [1] files (and other formats)
into and out of STK Mesh. This section gives examples of how to use STK 10 (referred hereon as
STK Mesh 10 Broker).

4.1.1 Reading mesh data to create a STK Mesh

The first example shows how to read mesh data from a file and create a STK Mesh corresponding
to that mesh data. A STK Part will be created for each element block, nodeset, and sideset on the
input mesh file and the name of the corresponding part will be the same as the name of the block
or set in the mesh file.

Listing 4.1: Reading mesh data to create a STK mesh ../../../code/stk/stk_doc_tests/stkio/readMesh.cpp

73

74

75

76

77

78

/ /
//+ EXAMPLE:

//+ Read mesh data from the specified file.

stk::io::StkMeshIoBroker stkIo(communicator);

stkIo.add_mesh_database(mesh_name, stk::io::READ_MESH);

79 //+ Creates meta data; creates parts

80 stkIo.create_input_mesh();

81

//+ Any modifications to the meta data must be done here.

83 //+ This includes declaring fields.

84

Ss //+ Commit the meta data and create the bulk data.

86 //+ populate the bulk data with data from the mesh file.

87 stkIo.populate_bulk_data();

88

89 //

90 //+ VERIFICATION

91 //+ There should be:

92 //+ 4 parts corresponding to the 1 hex block and 3 shell blocks

93 stk::mesh::MetaData &meta = stkIo.meta_data();

94 stk::mesh::Part *invalid = NULL;

95 EXPECT_NE(invalid, meta.get_part("block_l"));

96 EXPECT_NE(invalid, meta.get_part("block_2"));

97 EXPECT_NE(invalid, meta.get_part("block_3"));
98 EXPECT_NE(invalid, meta.get_part("block_4"));

99

87

MO //+ 3 parts corresponding to the 3 nodesets.

MI EXPECT_NE(invalid, meta.get_part("nodelist_1"));

102 EXPECT_NE(invalid, meta.get_part("nodelist_2"));

M3 EXPECT_NE(invalid, meta.get_part("nodelist_3"));

104

M5 //+ 3 parts corresponding to the 3 sidesets.

106 EXPECT_NE(invalid, meta.get_part("surface_1"));

107 EXPECT_NE(invalid, meta.get_part("surface_2"));

M8 EXPECT_NE(invalid, meta.get_part("surface_3"));

109

110

4.1.1.1 Face creation for input sidesets

Sidesets on volume elements where no shells are involved

Exploded view of input

s

D
E

s

E
T

H EX 2

coincident surfaces

Resulting STK Mesh

HEX1

Part

Figure 4.1: Sideset face creation in STK ICI for 2 hexes.

'face is put into part'

lip 'fa e attached to element'

`element side in sideset'

010 ̀fa c e normal oriented this direction'
Legend

Figure 4.2: Legend for Sideset Face Creation

HEX2

88

The simple case of reading in Exodus files with sidesets on an exposed or interior surfaces of
volume elements (like hexes, tetrahedra, etc.) creates single faces on each surface during mesh read
by StkMeshlOBroker. Additional sidesets on exposed or interior surfaces do not create additional
faces but do add that face into additional STK parts.

When a face is created due to a sideset in Exodus, it is connected to all elements that share those
nodes on a surface. So even if a sideset is present on an interior surface and has only one adjacent
volume element, it will be connected to both volume elements that share that interior surface.

This includes doubly-sided sidesets with sides on the two adjacent interior surfaces on neighboring
volume elements. In this case, only a single face that is connected to the two neighboring volume
elements will be created but it will added to two STK parts. Whichever side of these coincident
sidesets is listed first in the Exodus file will be created first, hence the orientation of that side will
be used to set the orientation of the face. The SEACAS utility ncdump is useful in determining
the ordering of sides and sidesets in Exodus files.

Figure 4.1 shows an example for 2 hexes with a sideset on the leftmost interior surface. Figure 4.2
shows the legend. Listing 4.2 documents the behavior and shows how to check.

Listing 4.2: Face creation during IC) for one sideset between hexes
../../../code/stk/stk_dociests/stk_mesh/10SidesetFaceCreation.cpp

57 bool is_positive_permutation(stk::mesh::BulkData & mesh,

58 stk::mesh::Entity face,

59 stk::mesh::Entity hex,

60 unsigned face_ordinal)

61 {

62 stk::topology faceTopology = mesh.bucket(face).topology();

63 stk::mesh::EntityVector face_nodes(mesh.num_nodes(face));
64 for (unsigned face_node_count=0; face_node_count < mesh.num_nodes(face);

++face_node_count) {

65 face_nodes[face_node_count] = mesh.begin_nodes(face)[face_node_count];

66 }

67 std::pair<bool, unsigned> permutation = stk::mesh::side_equivalent(mesh, hex,

face_ordinal, face_nodes.data());

68

69 bool is_a_valid_permutation = permutation.first;

70 EXPECT_TRUE(is_a_valid_permutation);

71 bool is_positive_permutation = permutation.second <

faceTopology.num_positive_permutations();
72 return is_positive_permutation;

73

74

75 TEST(StkMeshHowTo, StkIO2HexlSidesetBaceCreation)

76 {

77 if (stk::parallel_machine_size(MPI_COMM_WORLD) == 1) {

78 // IS

79 // 1 1 II I 1 1 I IA I 1
80 // IHEX1 5<-ID 4 HEX2I --STK-IO--> IHEX1 5<-1C->4 HEX2I
81 // 1 1 IE 1 1 1 1 IE 1 1
82 // IS

83 // IE face is put into

84 // IT part surface_1

85 // 1---> orientation points outward

86 // from Hexl face5

87

88 stk::io::StkMeshIoBroker stkMeshIoBroker(MPI_COMM_WORLD);

89 stkMeshIoBroker.add_mesh_database("ALA.e", stk::io::READ_MESH);

90 stkMeshloBroker.create_input_mesh();

91 stkMeshloBroker.populate_bulk_data();

89

92

93 stk::mesh::BulkData &mesh = stkMeshloBroker.bulk_data();

94 stk: :mesh: :EntityVector all_faces;

95 stk::mesh::get_entities(mesh, stk::topology::FACE_RANK, all_faces);
96 std: :sort (all_faces . begin () , all_faces . end ()) ;

unsigned expected_num_faces = 1;

98 ASSERT_EQ(expected_num_faces, all_faces.size());

99 size_t face_index = 0;

WO stk::mesh::Entity face = all_faces[face_index];
101 unsigned expected_connected_elements = 2;

W2 ASSERT_EQ(expected_connected_elements, mesh.num_elements(face));

103

104 EXPECT_TRUE (mesh . bucket (face) .member (*mesh .mesh_meta_data () .get_part("surface_1")));

105

106 const stk: :mesh: :Entity * connected_elements = mesh . begin_elements (face) ;

107 const stk::mesh::ConnectivityOrdinal * which_side_of_element =

mesh.begin_element_ordinals(face);

W8

W9

HO int element_count = 0;

I H stk::mesh::Entity hex_2 = connected_elements[element_count];

H2 EXPECT_EQ(2u, mesh.identifier(hex_2));

113 unsigned expected_face_ordinal = 4;

114 EXPECT_EQ(expected_face_ordinal, which_side_of_element[element_count]);

115 EXPECT_FALSE(is_positive_permutation(

116 mesh, face, hex_2, expected_face_ordinal));

IP

IN

QO int element_count = 1;

121 stk::mesh::Entity hex_1 = connected_elements[element_count];

122 EXPECT_EQ(lu, mesh.identifier(hex_1));

123 unsigned expected_face_ordinal = 5;

124 EXPECT_EQ(expected_face_ordinal, which_side_of_element[element_count]);
Q5 EXPECT_TRUE(is_positive_permutation(

Q6 mesh, face, hex_1, expected_face_ordinal));

Q7

128

Q9

00 }

Sidesets on shell elements

Sides in sidesets can be created on either surface of a shell or both surfaces. If a single side is
present in the Exodus file, a single face will be created and connected to the shell on a single sur-
face. If two sides are present, two faces will be created with opposite permutations and individually
connected to single distinct surfaces of the shell.

Figure 4.3 shows an example of two cases on a single shell. Figure 4.2 shows the legend.

Sidesets on stacked shell elements

On coincident shells, a maximum of two faces are ever created with opposite permutations, no
matter how many sidesets are present. Extra sidesets cause parts to be added to the faces. If a
single face is created, it is hooked to the same orientation of every coincident shell. If two faces
are created, they are individually hooked to the same orientation of all coincident shells.

Sidesets on mixed volume and shell elements

90

One
sideset

Two
sidesets

Exploded view of input

Orientation

Resulting STK Mesh

Figure 4.3: Sideset face creation in STK I0 for one shell.

Orientation

Orientation

When shells are adjacent to volume elements, a maximum of two faces can be created (as opposed
to single face with no shells present).

The first side in the first sideset (from the ordering in Exodus as checked by ncdump) determines
the orientation of the face created for this surface on the element. If this side is on a volume
element, it will be hooked to the opposite orientation of any and all coincident shells. If this
side is on a shell element, it will be hooked to the same orientation of all other coincident shells
but the opposite orientation of any adjacent surfaces on volume elements. If additional sides in
sidesets are present in Exodus that would create faces that are already defined, additional parts
will be created but not additional faces. If additional sides in sidesets would create a face on the
opposing orientation of the shell, then it will be created and hooked to all other shell elements on
that orientation and the opposite orientation of any adjacent surfaces on volume elements. Note
that orientations of faces on volume elements are always outward directed.

Figure 4.4 an example of two shells between two hexes with three sidesets, only two faces are
created. Figure 4.2 shows the legend. Listing 4.3 shows relevant code for checking the ordinals,
permutations and parts.

Listing 4.3: Face creation during IO for shells between hexes with sidesets
../../../code/stk/stk_doc_tests/stk_mesh/l0SidesetFaceCreation.cpp

134

135

TEST(StkMeshHowTo, StkIO2Hex2Shell3SidesetFaceCreation)

{

136 if (stk::parallel_machine_size(MPI_COMM_WORLD) 1) {

137 // IS ISI ISI IS IS

138 // I I 1 1 IHI IHI 1 1 1 1 I

139 // IHEX1 5<-ID IEI IE0<-ID ID->4 HEX2 I

140 // 1 1 IE ILI ILI IE IE 1 1 I

141 // IS ILI ILI IS IS

91

HEX

HEX

D

s

T

s

D
E

E
T

Exploded view of input

coincident surfaces

art

Resulting STK Mesh

Orientation

Part /

s

D

T

Orientation

HEX

•
HEX

Figure 4.4: Sideset face creation in STK I0 for a complicated example with stacked shells between
two hex elements and multiple sidesets.

H2

143

144

145

146

147

148

149

150

151

02

153

154

155

156

157

158

159 stk::i0::StkMeshI0Broker stkMeshIoBroker(MPI_COMM_WORLD);

160 stkMeshIoBroker.add_mesh_database("ALefLRA.en, stk::io::READ_MESH);

161 stkMeshIoBroker.create_input_mesh();

M2 stkMeshloBroker.populate_bulk_data();

163

164 stk::mesh::BulkData &mesh = stkMeshIoBroker.bulk_data();
165 stk: :mesh: :EntityVector all_faces;

06 stk:mesh::get_entities(mesh, stk::topology::FACE_RANK, all_faces);
167 std::sort(all_faces.begin(),all_faces.end());

168 unsigned expected_num_faces = 2;

// IE 3 4 IE IE I

// IT IT IT STK

// 10

// I

// V

//

// IF IS1 ISI IF

// 1 I 1A-- 11-11 ->1H1 IA I I

// IHEX1 5<-1C->lEl lEOG IC->4 HEX2I

// 1 I IE ILO< I LI I E I I

// I ILI ILI I

// I 3 4 I

// 1 > orientation I-->orientation
// 1 > in surface_1 part 1-->in surface_2 and

// surface_3 parts

92

169 ASSERT_EQ(expected_num_faces, all_faces . size ()) ;

170

171 size_t face_index = 0;

172

173 stk::mesh::Entity face = all_faces[face_index];

174 unsigned expected_connected_elements = 3;

175 ASSERT_EQ(expected_connected_elements, mesh.num_elements(face));

176

177

EXPECT_TRUE(mesh.bucket(face).member(*mesh.mesh_meta_data().get_part("surface_1")));

178

179 const stk::mesh::Entity * connected_elements = mesh.begin_elements(face);

180 const stk::mesh::ConnectivityOrdinal * which_side_of_element =

mesh.begin_element_ordinals(face);

181

182 {

183 int element_count = 0;

184 stk::mesh::Entity shell_3 = connected_elements[element_count];
185 EXPECT_EQ (3u, mesh. identifier (shell_3)) ;

186 unsigned expected_face_ordinal = 1;

187 EXPECT_EQ(expected_face_ordinal, which_side_of_element[element_count]);

188 EXPECT_PALSE(is_positive_permutation(

189 mesh, face, shell_3, expected_face_ordinal));
190

191

192 int element_count = 1;

193 stk::mesh::Entity shell_4 = connected_elements[element_count];
04 EXPECT_EQ(4u, mesh.identifier(shell_4));

195 unsigned expected_face_ordinal = 1;

196 EXPECT_EQ(expected_face_ordinal, which_side_of_element[element_count]);

197 EXPECT_FALSE(is_positive_permutation(

198 mesh, face, shell_4, expected_face_ordinal));
199

200 {

201 int element_count = 2;

202 stk::mesh::Entity hex_1 = connected_elements[element_count];

203 EXPECT_EQ(1u, mesh.identifier(hex_1));

204 unsigned expected_face_ordinal = 5;

205 EXPECT_EQ(expected_face_ordinal, which_side_of_element[element_count]);
206 EXPECT_TRUE(is_positive_permutation(

207 mesh, face, hex_1, expected_face_ordinal));
208

209 }

210

211 face_index = 1;

212

213 stk: :mesh: :Entity face = all_faces[face_index];

21a unsigned expected_connected_elements = 3;

215 ASSERT_EQ(expected_connected_elements, mesh . num_elements (face)) ;

216

217

EXPECT_TRUE (mesh . bucket (face) .member (*mesh .mesh_meta_data () .get_part("surface_2")));

218

EXPECT_TRUE(mesh.bucket(face).member(*mesh.mesh_meta_data().get_part("surface_3")));

219

220 const stk::mesh::Entity * connected_elements = mesh.begin_elements(face);

221 const stk::mesh::ConnectivityOrdinal * which_side_of_element =

mesh.begin_element_ordinals(face);

222

223

224 int element_count = 0;

225 stk::mesh::Entity shell_3 = connected_elements[element_count];
226 EXPECT_EQ (3u, mesh. identifier (shell_3)) ;

227 unsigned expected_face_ordinal = 0;

228 EXPECT_EQ(expected_face_ordinal, which_side_of_element[element_count]);

229 EXPECT_PALSE(is_positive_permutation(

230 mesh, face, shell_3, expected_face_ordinal));

231

93

232

233 int element_count = 1;

234 stk: :mesh: :Entity shell_4 = connected_elements [element_count];

235 EXPECT_EQ(4u, mesh.identifier(shell_4));

236 unsigned expected_face_ordinal = 0;

237 EXPECT_EQ(expected_face_ordinal, which_side_of_element [element_count]) ;

238 EXPECT_FALSE(is_positive_permutation(

239 mesh, face, shell_4, expected_face_ordinal));

241

242 int element_count = 2;

243 stk::mesh::Entity hex_2 = connected_elements[element_count];

244 EXPECT_EQ(2u, mesh.identifier(hex_2));

245 unsigned expected_face_ordinal = 4;

246 EXPECT_EQ(expected_face_ordinal, which_side_of_element [element_count]) ;

247 EXPECT_TRUE(is_positive_permutation(mesh, face, hex_2,

expected_face_ordinal));

248

249 }

250 }

251 }

STK I0 Classic for Transition

To aid transition, we are documenting and preserving the old STK I0 behavior for now. The old
behavior is that every sideset creates a unique face. These faces are not hooked to other elements.

4.1.2 Reading mesh data to create a STK Mesh allowing StkMeshloBroker

to go out of scope

This example shows how to read mesh data from a file and create a STK Mesh corresponding to
that mesh data while also allowing the StkMeshloBroker to go out of scope without deleting the
STK Mesh.

Listing 4.4: Reading mesh data to create a STK mesh using set bulk
data../../../code/stk/stk_doc_tests/stk_mesh/createStkMeshAltLcpp

53 TEST(StkMeshHowTo, CreateStkMesh)

54 {

55 MPI_Comm communicator = MPI_COMM_WORLD;

56 if (stk::parallel_machine_size(communicator) != 1) { return; }

57 const std::string exodusFileName = nexample.exo";

58

59 create_example_exodus_file (communicator, exodusFileName);

60 // Creation of STK Mesh objects.

61 // MetaData creates the universal_part, locally-owned part, and globally shared part.

62 const int spatialDim = 3;

63 stk::mesh::MetaData stkMeshMetaData(spatialDim);

64 stk::mesh::BulkData stkMeshBulkData(stkMeshMetaData, communicator);

65

66 // STK I0 module will be described in separate chapter.

67 // It is used here to read the mesh data from the Exodus file and populate an STK Mesh.

68 // The order of the following lines in {} are important

69

70 stk::io::StkMeshIoBroker exodusFileReader(communicator);

71

72 // Inform STK I0 which STK Mesh objects to populate later

73 exodusFileReader.set_bulk_data(stkMeshBulkData);

94

74

75 exodusFileReader.add_mesh_database(exodusFileName, stk::io::READ_MESH);

76

77 // Populate the MetaData which has the descriptions of the Parts and Fields.
78 exodusFileReader.create_input_mesh();

79

80 // Populate entities in STK Mesh from Exodus file

81 exodusFileReader.populate_bulk_data();

82

83

84 // Test if the STK Mesh has 512 elements. Other examples will discuss details below.

85 stk::mesh::Selector allEntities = stkMeshMetaData.universal_part();

86 std::vector<size_t> entityCounts;

87 stk:mesh::count_entities(allEntities, stkMeshBulkData, entityCounts);

88 EXPECT_EQ(512u, entityCounts[stk::topology::ELEMENT_RANK]);

89 unlink(exodusFileName.c_str());

90 }

4.1.3 Reading mesh data to create a STK Mesh, delaying field allocations

This example is almost the same as the previous except it delays the allocation of field data so that
the application can modify the mesh. If the field data is allocated prior to the mesh modification,
the reordering and moving of field data memory may be expensive; if the field data allocation is
delayed, no reordering or moving of memory is needed.

The field data memory allocation delay is accomplished by calling populate_mesh ()
and populate_field_data () instead of populate_bulk_data (). Any mesh mod-
ifications, for example, creating mesh edges or mesh faces is performed prior to calling
populate_field_data().

Listing 4.5: Reading mesh data to create a STK mesh; delay field allocation
../../../code/stk/stk_dociests/stk_io/readMeshDelayFieldAllocation.cpp

68

69

70

71

72

73

/ /
//+ EXAMPLE:

//+ Read mesh data from the specified file.

stk::io::StkMeshIoBroker stkIo(communicator);

stklo.add_mesh_database(mesh_name, stk::io::READ_MESH);

74 //+ Creates meta data; creates parts

75 stklo.create_input_mesh();

76

77 //+ Any modifications to the meta data must be done here.

78 //+ This includes declaring fields.

79

80 //+ Commit the meta data and create the bulk data.

81 //+ populate the bulk data with data from the mesh file.

82 stkIo.populate_mesh();

83

84 //+ Application would call mesh modification here.

85 //+ for example, create_edges() or create_faces().

86

87 //+ Mesh modifications complete, allocate field data.

88 stkIo.populate_field_data();
89

90

95

4.1.4 Outputting STK Mesh

isting 4.6: iting a ' v es co e st 7st _i oc_tests st ow o "rite v es .cpp

t #include <unistd.h>

2 #include <gtest/gtest.h>

3 #include <stk_mesh/base/MetaData.hpp>

4 #include <stk_mesh/base/BulkData.hpp>

5 #include <stk_mesh/base/Comm.hpp>

6 #include <stk_io/StkMeshIoBroker.hpp>
7 #include <stk_unit_test_utils/ioUtils.hpp>

8 namespace

9 {

10

11 TEST(StkIoHowTo, WriteMesh)

12 {

13 std::string filename = "output.exo";

14 {
15 stk::mesh::MetaData meta;

stk::mesh::BulkData bulk(meta, MPI_COMM_WORLD);

17 stk::io::fill_mesh("generated:lxlx4", bulk);

18

19 stk::io::StkMeshIoBroker stkIo;

zo stklo.set_bulk_data(bulk);

21 size_t outputFileIndex = stkIo.create_output_mesh(filename, stk::io::WRITE_RESULTS);

zz stklo.write_output_mesh(outputFilelndex);

23 stkIo.write_defined_output_fields(outputFileIndex);

24 1
25

26

stk::mesh::MetaData meta;

28 stk::mesh::BulkData bulk(meta, MPI_COMM_WORLD);

stk::io::fill_mesh(filename, bulk);

30

31 std::vector<size_t> entityCounts;

32 stk::mesh::comm_mesh_counts(bulk, entityCounts);

33 EXPECT_EQ(4u, entityCounts[stk::topology::ELEM_RANK]);

34 }

35

36 unlink(filename.c_str());

37 }

38

39 }

96

4.1.5 Outputting STK Mesh With Internal Sidesets

[ex Block 1

41'

Hex Block 1

Hex Block 2

lar

Hex Block 2

Figure 4.5: Example mesh used for Listing 4.7

EL Option 1— surface part

maps to block 1.
Hex Block 1

1-a

Hex Block 2
Side entity becomes

sideset attached to Hex

block 1

Hex Block 1

EL
ro
rn

EL
ro
ro

Fa

Hex Block 2

Hex Block 2

Option 2 — surface part

maps to block 2.

Side entity becomes

sideset attached to Hex

block 2

Option 3 — surface parts

maps to blocks 1 and 2.

Side entity becomes

sideset attached to Hex

block 1 and 2

Figure 4.4: Options for creating a sideset for Listing 4.7

Listing 4.7: Writing a STK Mesh
../../../code/stkIstk_doc_tests/stkiolhowToWriteMeshWithInternalSidesets.cpp

106

107

108

109

110

111

112

113

114

stc1::vector<const stk::mesh::Part*> blocks;

for(const std::string& blockName : testData.blockNames)

stk::mesh::Part *block = meta.get_part(blockName);

blocks.push_back(block);

meta.set_surface_to_block_mapping(&sidesetpart, blocks);

98

4.1.6 Outputting results data from a STK Mesh

This example shows how an application can output the application's calculated field data to a
results database.

Listing 4.8: Writing calculated field data to a results database
../../../code/stk/stk_doc_tests/stk_io/writeResults.cpp

82

83

84

85

86

87

96

97

98 //+ commit the meta data and create the bulk data.

99 //+ populate the bulk data with data from the mesh file.

too stkIo.populate_bulk_data();

Mt

W2 //

M3 //+ Create results file. By default, all parts created from the input

104 //+ mesh will be written to the results output file.

105 fh = stkIo.create_output_mesh(results_name, stk::io::WRITE_RESULTS);

W6

W7 //+ The field will be output to the results file with the default field name.

108 stkIo.add_field(fh, field);

W9

HO std::vector<stk::mesh::Entity> nodes;

HI stk: :mesh: :get_entities (stkIo.bulk_data () , stk: :topology: :NODE_RANK, nodes);

IU

H3 // Iterate the application's execute loop five times and output

114 // field data each iteration.

115 for (int step=0; step < 5; step++) {

116 double time = step;

118 // Application execution...

to double value = 10.0 * time;

120 for(size_t i=0; i<nodes.size(); i++) {

tzt double *node_data = stk::mesh::field_data(field, nodes[i]);

U2 *node_data = value;

ID

U4

ID //+ Output the field data calculated by the application.

U6 stkIo.begin_output_step(fh, time);

U7 stkIo.write_defined_output_fields(fh);

I28 stklo.end_output_step(fh);

/ /
//+ EXAMPLE:

//+ Read mesh data from the specified file.

stk::io::StkMeshIoBroker stkIo(communicator);

stklo.add_mesh_database(mesh_name, stk::io::READ_MESH);

88 //+ Creates meta data; creates parts

89 stkIo.create_input mesh();

90

//+ Declare a field

92 //+ NOTE: Fields must be declared before "populate bulk data()" is called

93 //+ since it commits the meta data.

94 const std::string fieldName = "disp";

95 stk::mesh::Field<double> &field =

stkIo.meta_data().declare_field<stk::mesh::Field<double>

>(stk::topology::NODE_RANK, fieldName, 1);

stk::mesh::put_field(field, stkIo.meta_data().universal_part());

129 }

130

99

104

105

106

4.1.7 Outputting a field with an alternative name to a results file

The client can specify a field name for results output that is different than the internally used
STK Mesh field name. The results output field name is specified as the second argument to the
add_field () function. The code excerpt shown below replaces line 108 in the previous exam-
ple (Listing 4.8) to cause the name of the field on the output

Listing 4.9: Outputting a field with an alternative name
../../../code/stlastk_doc_tests/stkio/requestedResultsFieldName.cpp

W3 //+ The field 'fieldName' will be output to the results file with the name

'alternateFieldName'

std::string alternateFieldName("displacement");

stklo.add_field(fh, field, alternateFieldName);

4.1.8 Outputting both results and restart data from a STK Mesh

The STK Mesh I0 Broker class can output both results data and restart data. Currently, the only
difference between results data and restart data is that a restart output will automatically output
the multiple states of a multi-state field. If, for example, the application defines a three-state field
named "disp", then outputting this field to a restart database will result in the two newest states
being output. On the restart database the variables will appear as "disp" and "disp.N." Outputting
this field to a results database will only output the data on the newest state as the variable "disp".
When the restart database is read back in, the variables will be restored back to the same states that
were written.

The example below shows how an application can output both a results and restart database. The
example shows both databases being written on each step, but this is not required — each file can
specify its own output frequency.

Listing 4.10: Write results and restart / / /code/stkAtk_doc_tests/stkio/writeResultsAndRestart.cpp

84

85

86

87

88

89

/ /
//+ EXAMPLE:

//+ Read mesh data from the specified file.

stk::io::StkMeshIoBroker stkIo(communicator);

stkIo.add_mesh_database(mesh_name, stk::io::READ_MESH);

90 //+ Creates meta data; creates parts

91 stkIo.create_input_mesh();
92

93 //+ Declare a three-state field

94 //+ NOTE: Fields must be declared before "populate_bulk_data()" is called

95 //+ since it commits the meta data.

96 const std::string fieldName = "disp";

97 stk::mesh::Field<double> &field =

stkIo.meta_data().declare_field<stk::mesh::Field<double>

>(stk::topology::NODE_RANK, fieldName, 3);

98 stk: :mesh: :put_field (field, stkIo.meta_data().universal_part());

99

WO const stk::mesh::Part& block_1 = *stkIo.meta_data().get_part("block_l");

WI //+ create a two-state field

100

102 stk::mesh::Field<double> &fooSubset = stkIo.meta_data().

W3 declare_field<stk:mesh::Field<double> >(stk::topology::NODE_RANK, "fooSubset",

2);

104 stk:mesh::put_field(fooSubset, block_1);
105

W6 //+ commit the meta data and create the bulk data.

W7 //+ populate the bulk data with data from the mesh file.

W8 stkIo.populate_bulk_data();
W9

110 //

111 //+ Create results file. By default, all parts created from the input

H2 //+ mesh will be written to the results output file.

H3 size_t results_fh = stklo.create_output_mesh(results_name, stk: :io::WRITE_RESULTS);

tt4

115 //+ Create restart file. By default, all parts created from the input

11.6 //+ mesh will be written to the results output file.

size_t restart_fh = stklo.create_output_mesh(restart_name, stk::io::WRITE_RESTART);

118

IN //+ The field will be output to the results file with the default field name.

120 //+ Only the newest state will be output.

121 stkIo.add_field(results fh, field);
U2

U3 //+ Output the field to the restart database also.

124 //+ The two newest states will be output.

125 stklo.add_field(restart_fh, field);
126 stklo.add_field(restart_fh, fooSubset);

127

128 std: :vector<stk: :mesh: :Entity> nodes;

129 stk: :mesh: :get_entities (stkIo.bulk_data () , stk: :topology: :NODE_RANK, nodes);

130

131 stk: :mesh: :FieldBase *statedFieldNpl = field. field_state (stk: :mesh: : StateNPl) ;

I32 stk::mesh::FieldBase *statedFieldN = field.field_state(stk::mesh::StateN);

133 stk: :mesh: :FieldBase *statedFieldNml = field. field_state (stk: :mesh: : StateNM1) ;

U4

05 // Iterate the application's execute loop five times and output

136 // field data each iteration.

07 for (int step=0; step < 5; step++) {

138 double time = step;

I39

140 // Application execution...

141 double value = 10.0 * time;

142 for(size_t i=0; i<nodes.size(); i++) {

143 double *npl_data = static_cast<double*>(stk::mesh::field_data(*statedFieldNpl,

nodes[i]));

144 *npl_data = value;

145 double *n_data = static_cast<double*>(stk:mesh::field_data(*statedFieldN,

nodes[i]));

146 *n_data = value + 0.1;

147 double *nml_data = static_cast<double*>(stk::mesh::field_data(*statedFieldNml,

nodes[i]));

N8 *nml_data = value + 0.2;

149 }

150

151 //+ Results output...

U2 stklo.begin_output_step(results_fh, time);

153 stkIo.write_defined_output_fields(results_fh);

154 stklo.end_output_step(results_fh);

155

1s6 //+ Restart output...

157 stklo.begin_output_step(restart_fh, time);

158 stkIo.write_defined_output_fields(restart_fh);

U9 stklo.end_output_step(restart_fh);

160

161

101

4.1.9 Writing multi-state fields to results output file

The previous example showed that a results file will only output the newest state of a multi-state
field. However, it is possible to tell a results file to output multiple states from a multi-state field.
Each state of the field must be registered individually. Since each state will have the same field
name, the a dd_f i eld () call must also specify the name to be used for the variable on the results
database in order to get unique names for each state. The example below shows how to output all
three states of a multi-state field to a results database.

Listing 4.11: Writing multi-state field to results output
../../../code/stk/stk_doc_tests/stkio/usingResults.cpp

70

71

72

73

const std::string fieldName = "disp";

const std::string nplName = fieldName+"NP1";

const std::string nName = fieldName+"N";

const std::string nmlName = fieldName+"Nm1";

74

75 //

76 //+ INITIALIZATION

77 const std::string exodusFileName = "generated:lx1x8";

78 stk::io::StkMeshIoBroker stklo(communicator);

79 size_t index = stklo.add_mesh_database(exodusFileName, stk::io::READ_MESH);

so stklo.set_active_mesh(index);

81 stklo.create_input_mesh();

82

//+ Declare a three-state field

sa //+ NOTE: Fields must be declared before "populate_bulk_data()" is called

85 //+ since it commits the meta data.

86 stk::mesh::Field<double> &field =

stkIo.meta_data().declare_field<stk::mesh::Field<double> >(stk::topology::NODE_RANK,

88 fieldName, 3);

stk::mesh::put_field(field, stkIo.meta_data().universal_part());

90

91 stkIo.populate_bulk_data();

92

93 size_t fh =

94 stklo.create_output_mesh(resultsFilename, stk::io::WRITE_RESULTS);

95

96 //
97 //+ EXAMPLE

98 //+ Output each state of the multi-state field individually to results file

99 stk::mesh::FieldBase *statedFieldNpl = field.field_state(stk:mesh::StateNP1);

WO stk::mesh::FieldBase *statedFieldN = field.field_state(stk::mesh::StateN);

W1 stk::mesh::FieldBase *statedFieldNml = field.field_state(stk:mesh::StateNM1);

102

103 std::vector<stk::mesh::Entity> nodes;

104 stk::mesh::get_entities(stkIo.bulk_data(), stk::topology::NODE_RANK, nodes);

105

106 stklo.add_field(fh, *statedFieldNpl, nplName);

107 stklo.add_field(fh, *statedFieldN, nName);

W8 stklo.add_field(fh, *statedFieldNml, nmlName);

109

HO // Iterate the application's execute loop five times and output

111 // field data each iteration.

112 for (int step=0; step < 5; step++) {

113 double time = step;

114

115 // Application execution...

116 // Generate field data... (details omitted)

117

131 //+ Results output...

132 stklo.begin_output_step(fh, time);

133 stkIo.write_defined_output_fields(fh);

134 stklo.end_output_step(fh);

102

130

4.1.10 Writing multiple output files

The following example shows how to write multiple output files. Although different fields and
global variables are written to each file in the example, the same field or global variable can be
written to multiple files.

Listing 4.12: Writing multiple output files
../../../code/stk/stk_doc_tests/stkio/writingMultipleOutputFiles.cpp

65

66

67

68

69

//

//+ EXAMPLE -- Two results output files

stk:mesh::FieldBase *displacementField =

meta_data.get_field(stk::topology::NODE_RANK, displacementFieldName);

70 //+ For file one, set up results and global variables

71 size_t filelHandle = stklo.create_output_mesh(resultsFilenamel,

72 stk::io::WRITE_RESULTS);

73 stklo.add_field(filelHandle, *displacementField);

74 stkIo.add_global(filelHandle, globalVarNameFilel, Ioss::Field::REAL);

75

76 //+ For file two, set up results and global variables

77 size_t file2Handle = stkIo.create_output_mesh(resultsFilename2,

78 stk::io::WRITE_RESULTS);

79 stkIo.add_field(file2Handle, *displacementField, nameOnOutputFile);

80 stk::mesh::FieldBase *velocityField = meta_data.get_field(stk::topology::NODE_RANK,

velocityFieldName);
81 stkIo.add_field(file2Handle, *velocityField);

82 stkIo.add_global(file2Handle, globalVarNameFile2, Ioss::Field::REAL);

83

84 //+ Write output

85 double time = 0.0;

86 stklo.begin_output_step(filelHandle, time);

87 stkIo.write_defined_output_fields(filelHandle);

88 stkIo.write_global(filelHandle, globalVarNameFilel, globalVarValuel);

89 stklo.end_output_step(filelHandle);

90

91 stkIo.begin_output_step(file2Handle, time);

92 stkIo.write_defined_output_fields(file2Handle);

93 stkIo.write_global(file2Handle, globalVarNameFile2, globalVarValue2);

94 stkIo.end_output_step(file2Handle);

95 1
96

4.1.11 Outputting nodal variables on a subset of the nodes

By default, a nodal variable is assumed to be defined on all nodes of the mesh. If the variable does
not exist on all nodes, then a value of zero will be output for those nodes. If a nodal variable is
only defined on a few of the nodes of the mesh, this can increase the size of the mesh file since it
is storing much more data than is required. There is an option in STK Mesh I0 Broker to handle
this case by creating one or more "nodesets" which consist of the nodes of the part or parts where

103

the nodal variable is defined. The name of the nodeset will be the part name suffixed by "Ji". For
example, if the part is named "firset", the nodeset corresponding to the nodes of this part will be
named "fireset_C.

Listing 4.13: Using a nodeset variable to output nodal fields defined on only a subset of the mesh
../../../code/stk/stk_dociests/stkio/useNodesetDbVarForNodalField.cpp

73

74

75

76

/ /
// INITIALIZATION

std::string s_elems_per_edge = std::to_string(num_elems_per_edge);

77 //+ Create a generated mesh containg hexes and shells.

78 std::string input_filename = s_elems_per_edge + "x" +

79 s_elems_per_edge + "x" +

80 s_elems_per_edge + "Ishell:xyzXYZ";

81

82 stk::io::StkMeshIoBroker stkIo(communicator);

83 stkIo.add_mesh_database(input_filename, "generated",

84 stk::io::READ_MESH);

85 stklo.create_input_mesh();

86

87 stk::mesh::MetaData &meta_data = stkIo.meta_data();

88 stk::mesh::Field<double> &temperature = meta_data.

89 declare_fieldestk:mesh::Field<double> >(stk::topology::NODE_RANK,

90 appFieldName, 1);

91

92 //

93 //+ Put the temperature field on the nodes of the shell parts.

94 const stk::mesh::PartVector &all_parts = meta_data.get_mesh_parts();

95 stk::mesh::Selector shell_subset;

96 for (size_t i=0; i < all_parts.size(); i++) {

97 const stk::mesh::Part *part = all_parts[i];

98 stk::topology topo = part->topology();

99 if (topo == stk::topology::SHELL_QUAD_4) {

wo stk:mesh::put_field(temperature, *part);

101 }

W2 }

103

104 stklo.populate_bulk_data();

105

106 // Create the output...

107 size_t fh = stkIo.create_output_mesh(resultsFilename, stk::io::WRITE_RESULTS);

108

109 //+ The "temperature" field will be output on nodesets consisting

no //+ of the nodes of each part the field is defined on.

111 stkIo.use_nodeset_for_sideset_nodes_fields(fh, true);

112 stkIo.use_nodeset_for_block_nodes_fields(fh, true);

113 stklo.add_field(fh, temperature, dbFieldName);

114

115 std::vector<stk::mesh::Entity> nodes;

116 stk::mesh::get_entities(stkIo.bulk_data(),

117 stk::topology::NODE_RANK, nodes);

H8

119 // Add three steps to the database

120 // For each step, the value of the field is the value 'time'

121 for (size_t i=0; i < 3; i++) {

122 double time = i;

123

124 for(size_t inode=0; inode<nodes.size(); inode++) {

125 double *fieldDataForNode = stk::mesh::field_data(temperature, nodes[inode]);

126 if (fieldDataForNode)
127 *fieldDataForNode = time;

128 }

129

131) stklo.begin_output_step(fh, time);

131 stkIo.write_defined_output_fields(fh);

132 stkIo.end_output_step(fh);

104

133

134

135

1

// Verification omitted...

4.1.12 Get number of time steps from a database

Listing 4.14: get num time steps ../../../code/stk/stk_dociests/stk_io/howToGetNumTimeSteps.cpp

26 TEST_F(ExodusFileWithVariables, gueryingFileWithSingleTimeStep_NumTimeStepsEgualsOne)

27 {

28 create_mesh_with_single_time_step(filename, get_comm());

read_mesh(filename);

30 EXPECT_EQ (1, stkIo.get_num_time_steps) ;
31

32

33 TEST_F(ExodusFileWithVariables, queryingFileWithoutTimeSteps_NumTimeStepsEqualszero)

34 {

35 stk::unit_test_util::create_mesh_without_time_steps(filename, get_comm());

36 read_mesh(filename);
37 EXPECT_EQ(0, stkIo.get_num_time_steps());

38

39

4 TEST_F(ExodusFileWithVariables, readDefinedInputFieldsFromInvalidTimeStep_throws)

41 1

42 create_mesh_with_single_time_step(filename, get_comm());

read_mesh(filename);
44 EXPECT_THROW(stklo.read_defined_input_fields(3), std::exception);

45 }
46

47 TEST_F(ExodusFileWithVariables, readDefinedInputFields_throws)

48 1

49 stk::unit_test_util::create_mesh_without_time_steps(filename, get_comm());

So read_mesh(filename);
EXPECT_THROW (stkIo.read_defined_input_fields (1) , std: :exception) ;

52 }

4.1.13 Reading sequenced fields from a database

Sequenced fields have the same base name and are numbered sequentially starting with one
(field_1, field_2, field_n). They can be read into individual fields or collapsed into a single
multi-dimensioned field.

Listing 4.15: Reading sequenced fields
../../../code/stlastk_doc_tests/stk_io/setOptionToNotCollapseSequencedFields.cpp

17 TEST_F(MultipleNumberedFieldsWithSameBaseName, whenReading_collapseToSingleStkField)

18

19 stk::unit_test_util::create_mesh_with field_1 field_2 field_3(filename, get_comm());

read_mesh (filename) ;
21 EXPECT_EQ (1u, get_meta() .get_fields (stk: :topology: :ELEM_RANK) . size ()) ;

22 }

23

24 TEST_F(MultipleNumberedFieldsWithSameBaseName,

whenReadingWithoutCollapseOption_threeStkFieldsAreRead)

25 {

26 stk::unit_test_util::create_mesh_with field_1 field_2 field_3(filename, get_comm());

stkIo.set_option_to_not_collapse_sequenced_fields();

105

28 read_mesh(filename);

29 EXPECT_EQ(3u, get_meta().get_fields(stk::topology::ELEM_RANK).size());

30

4.1.14 Reading initial conditions from a field on a mesh database

This example shows how to read data from an input mesh database at a specified time and put the
data into a STK Mesh field for use as initial condition data. The name of the field in the database
and the name of the STK Mesh field do not match to illustrate how to specify alternate names. The
initial portion of the example, which is not shown, creates a mesh with timesteps at times 0.0, 1.0,
and 2.0. The database contains a nodal field called "temp" with the same values for each node.
The value is the same as the time (0.0, 1.0, and 2.0) for each time step. The example shows how to
specify the reading of the field data at a specified time step.

Listing 4.16: Reading initial condition data from a mesh database
../../../code/stk/stk_doc_tests/stkio/readInitialCondition.cpp

106

107

108

109

110

111

112

113

114

//
//+ EXAMPLE:

//+ Read the value of the "temp" field at step 2 and populate

//+ the nodal field "temperature" for use as an initial condition

stk::io::StkMeshIoBroker stklo(communicator);

size_t index = stklo.add_mesh_database(ic_name, stk::io::READ_MESH);

stkIo.set_active_mesh(index);

stkIo.create_input_mesh();

m stk::mesh::Fie1d<double> &temperature = stkIo.meta_data().

1m dec1are_fie1d<stk::mesh::Fie1d<double> >(stk::topology::NODE_RANK,"temperature",1);

stk::mesh::put_field(temperature, stkIo.meta_data().universal_part());

118 stkIo.populate_bulk_data();

119

U0 //+ The name of the field on the database is "temp"

121 stkIo.add_input_field(stk::io::MeshField(temperature, "temp"));

U2

ID //+ Read the field values from the database at time 2.0

U4 stkIo.read_defined_input_fields(2.0);

ID

U6 //

U7 //+ VERIFICATION

128 //+ The value of the field at all nodes should be 2.0

U9 std: :vector<stk: :mesh: :Entity> nodes;

130 stk::mesh::get_entities(stkIo.bulk_data(), stk::topology::NODE_RANK,

131 nodes);

132 for(size_t i=0; i<nodes.size(); i++) {
03 double *fieldDataForNode = stk::mesh::field_data(temperature, nodes[i]);

134 EXPECT_DOUBLE_EQ(2.0, *fieldDataForNode);
135

136

106

4.1.15 Reading initial conditions from a field on a mesh database — apply to

a specified subset of mesh parts

This example is similar to the previous except that the field data read from the mesh database is
limited to a subset of the parts in the model. The mesh consists of seven element blocks — one
hex block and six shell blocks. The mesh database contains a single field defined on all blocks. In
the example, the reading of the field is limited to the six shell element blocks; the field on the hex
element block will not be initialized from the data on the mesh database. The add_subset ()
function is where this is specified.

Listing 4.17: Reading initial condition data from a mesh database
../../../code/stk/stk_doc_tests/stkio/readInitialConditionSubsetcpp

62

63

64

std::string dbFieldNameShell = "ElementBlock_1";

std::string appFieldName = "pressure";

65 MPI_Comm communicator = MPI_COMM_WORLD;

66 int numProcs = stk::parallel_machine_size(communicator);

67 if (numProcs != 1) f

68 return;

69 }

70

71 {

72 //

73 // INITIALIZATION

74 //+ Create a generated mesh containg hexes and shells with a

75 //+ single element variable -- ElementBlock_1

76 std::string input_filename = "9x9x9Ishell:xyzxYZIvariables:element,lltimes:1";

77

78 stk::io::StkMeshIoBroker stklo(communicator);

79 stklo.add_mesh_database(input_filename, "generated", stk::io::READ_MESH);

stkIo.create_input_mesh();

81

82 stk::mesh::MetaData &meta_data = stklo.meta_data();

83

84 // Declare the element "pressure" field...

85 stk::mesh::Field<double> &pressure = stklo.meta_data().

86 declare_fieldestk:mesh::Field<double> >(stk::topology::ELEMENT_RANK, appFieldName,1);

87

88 // "ElementBlock_1" is the name of the element field on the input mesh.

89 stk::io::MeshField mf(pressure, dbFieldNameShell);

90

91 const stk::mesh::PartVector &all_parts = meta_data.get_mesh_parts();

92 for (size_t i=0; i < all_parts.size(); i++) f

93 const stk::mesh::Part *part = all parts[i];

94

95 //+ Put the field on all element block parts...

96 stk: :mesh: : put_field (pressure, *part);

97

98 stk::topology topo = part->topology();

99 if (topo == stk::topology::SHELL_QUAD_4)

100

101 //+ But only initialize the "pressure" field from mesh data on the shell parts.

102 mf.add_subset(*part);

103 }

104 }

105

106 stklo.add_input_field(mf);

107 stkIo.populate_bulk_data();

108

109 double time = stkIo.get_input_io_region()->get_state_time(1);

110

107

111

112

113

114

//+ Populate the fields with data from the input mesh.

stkIo.read_defined_input_fields(time);

The previous example specified all of the subset parts on a single Me s hF i e l d. It is also possible
to specify a separate me shFi e ld for each subset part. This is not the most efficient method, but
can be used if other modifications of the me shF i e ld are needed for each or some of the subset
parts.

Listing 4.18: Reading initial condition data from a mesh database
../../../code/stk/ . oc_tests/stkio/readInitialConditionMultiSubset.cpp

72

73

74

75

/ /
// INITIALIZATION

//+ Create a generated mesh

//+ single element variable

containg hexes and shells with a

-- pressure

76 std::string input_filename = "9x9x9ishell:xyzxYZIvariables:element,lltimes:1";

77

78 stk::io::StkMeshIoBroker stklo(communicator);

79 stklo.add_mesh_database(input_filename, "generated", stk::io::READ_MESH);

80 stkIo.create_input_mesh();

81

82 stk::mesh::MetaData &meta_data = stklo.meta_data();

83

84 // Declare the element "pressure" field...

85 stk::mesh::Field<double> &pressure = stkIo.meta_data().

86 declare_field<stk::mesh::Field<double> >(stk::topology::ELEMENT_RANK,appFieldName,1);

87

88 const stk::mesh::PartVector &all_parts = meta_data.get_mesh_parts();

89 for (size_t i=0; i < all_parts.size(); i++) {
90 //+ Put the field on all element block parts...

91 stk::mesh::put_field(pressure, *all_parts[i]);
92 }

93

94 // This commits BulkData and populates the coordinates, connectivity, mesh...

95 stkIo.populate_bulk_data();

96

97 double time = stkIo.get_input_io_region()->get_state_time(1);

98

99 //+ Initialize the "pressure" field from mesh data on the shell parts on demand..

WO for (size_t i=0; i < all_parts.size(); i++)
101 stk::topology topo = all_parts[i]->topology();

102 if (topo == stk::topology::SHELL_QUAD_4)

103

104 stk::io::MeshField mf(pressure, dbFieldNameShell);

105 mf.set_read_time(time);

106 mf.add_subset(*all_parts[i]);

107 stklo.add_input_field(mf);

108 }

109

no

111 //+ Populate any other fields with data from the input mesh.

112 //+ This would *not* know about the MeshFields above since

113 //+ "add_input_field()" was not called...

114 stklo.read_defined_input_fields(time);

115

116

117

The final example in this section shows that the same STK field can be initialized from different
database fields on different parts through the use of multiple me shF i elds with different subsets.

108

In this example, the "pressure field on the shell element blocks is initialized from one database
element variable and the "pressure field on the non-shell element blocks is initialized from a
different database element variable.

Listing 4.19: Reading initial condition data from a mesh database
../../../code/stk/stk_doc_tests/stkio/readInitialConditionTwoFieldSubset.cpp

62

63

64

65

std::string dbFieldNameShell = "ElementBlock_1";

std::string dbFieldNameOther = "ElementBlock_2";

std::string appFieldName = "pressure";

66 MPI_Comm communicator = MPI_COMM_WORLD;

67 int numProcs = stk::parallel_machine_size(communicator);

68 if (numProcs != 1) {

69 return;

70 }

71

72

73 // --

74 // INITIALIZATION

75 //+ Create a generated mesh containg hexes and shells with two

76 //+ element variables -- ElementBlock_1 and ElementBlock_2

77 std::string input_filename = "9x9x9Ishe1l:xyzXYZIvariables:element,21times:1";

78

79 stk::io::StkMeshIoBroker stklo(communicator);

80 stklo.add_mesh_database(input_filename, "generated", stk::io::READ_MESH);

81 stklo.create_input_mesh();

82

83 stk::mesh::MetaData &meta_data = stklo.meta_data();

84

85 // Declare the element "pressure" field...

86 stk::mesh::Field<double> &pressure = stklo.meta_data().

87 declare_field<stk::mesh::Field<double> >(stk::topology::ELEMENT_RANK, appFieldName,1);
88

89 stk::io::MeshField mf_shell(pressure, dbFieldNameShell);

90 stk::io::MeshField mf_other(pressure, dbFieldNameOther);

91

92 const stk::mesh::PartVector &all_parts = meta_data.get_mesh_parts();
93 for (size_t i=0; i < all_parts . size O ; i++)

const stk: :mesh: :Part *part = all_parts[i];
95

96 //+ Put the field on all element block parts...

97 stk::mesh::put_field(pressure, *part);
98

99 stk::topology topo = part->topology();

WO if (topo == stk: :topology: : SHELL_QUAD_4)

101 //+ The shell blocks will have the pressure field initialized

102 //+ from the dbFieldNameShell database variable.

103 mf_shell.add_subset(*part);

104 }

W5 else {

106 //+ The non-shell blocks will have the pressure field initialized

107 //+ from the dbFieldNameOther database variable.

W8 mf_other.add_subset(*part);
W9 }

110 }

111

112 stklo.add_input_field(mf_shell);

113 stklo.add_input_field(mf_other);

114 stklo.populate_bulk_data();

115

116 double time = stkIo.get_input_io_region0->get_state_time(1);

117

118 //+ Populate the fields with data from the input mesh.

119 stklo.read_defined_input_fields(time);

120

121

109

4.1.16 Reading initial conditions from a field on a mesh database — only read

once

This example is the same as the previous example, except that the initial condition field will only be
active for a single read. Once data has been read into the field, it is no longer active for subsequent
reads. This is specified by calling set_read_once (true) on the input field as shown on
line 125.

The read_defined_input_fields () function is called twice and it is verified that the field
data does not change on the second call since the input field is no longer active at that call.

Listing 4.20: Reading initial condition data from a mesh database one time only
../../../code/stk/stk_dociests/stkio/readInitialConditionOnce.cpp

106

107

108

109

110

111

//

//+ EXAMPLE:

//+ Read the value of the "temp" field at step 2 and populate

//+ the nodal field "temperature" for use as an initial condition

//+ The input field should only be active for one 'read_defined_input_fields'

//+ call, so verify this by calling the function again at step 3 and

1U //+ then verify that the field values are still those read from step 2.

113 stk::io::StkMeshIoBroker stkIo(communicator);

114 size_t index = stklo.add_mesh_database(ic_name, stk::io::READ_MESH);

H5 stkIo.set_active_mesh(index);

H6 stkIo.create_input_mesh();

tr

H8 stk::mesh::Field<double> &temperature = stkIo.meta_data().

119 declare_field<stk::mesh::Field<doUble> >(stk::topology::NODE_RANK, "temperature", 1);

12() stk: :mesh: : put_field (temperature, stkIo.meta_data() .universal_part());

Ul stkIo.populate_bulk_data();

U2

U3 //+ The name of the field on the database is "temp"

U4 stk::io::MeshField input_field(temperature, "temp", stk::io::MeshField::CLOSEST);

125 input_field.set_read_once(true);

U6 stklo.add_input_field(input_field);

U7

U8 //+ Read the field values from the database at time 2.0

U9 //+ Pass in a time of 2.2 to verify that the value returned is

BO //+ from the closest step and not interpolated.

ut stkIo.read_defined_input_fields(2.2);

02

03 //

04 //+ VERIFICATION

05 //+ The value of the field at all nodes should be 2.0

06 std: :vector<stk: :mesh: :Entity> nodes;

U7 stk::mesh::get_entities(stkIo.bulk_data(), stk::topology::NODE_RANK,

08 nodes);

09 for(size_t i=0; i<nodes.size(); i++) {

140 double *fieldDataForNode = stk::mesh::field_data(temperature, nodes[i]);

141 EXPECT_DOUBLE_EQ (2 . 0, *fieldDataForNode);

142 }

143

144 //+ Call read_defined_input_fields again and verify that the

145 //+ input field registration is no longer active after the

146 //+ since it was specified to be "only_read_once()"

147 stkIo.read_defined_input_fields(3.0);

148

110

149 //+ The value of the field at all nodes should still be 2.0

150 for(size_t i=0; i<nodes.size(); i++) {
151 double *fieldDataForNode = stk: :mesh: : field_data (temperature, nodes [i]) ;

152 EXPECT_DOUBLE_EQ(2.0, *fieldDataForNode);

153 }

154

155

4.1.17 Reading initial conditions from a mesh database field at a specified

database time

This example is similar to the previous two examples except that the database time at which the
field data is to be read is specified explicitly instead of being equal to the analysis time. This is
specified by calling s et_re a d_t ime () on the input field as shown on line 141.

The read_defined_input_fields () function is called with an analysis time argument of
1 . 0. The "flux" field gets the database field values corresponding to that time, but the "temp" field
gets the database field values at the database time (2.0) time at which it is explicitly specified.

Listing 4.21: Reading initial condition data from a mesh database at a specified time
../../../code/stldstk_doc_tests/stk_io/readInitialConditionSpecifiedTime.cpp

114

115

116

117

118

119

120

121

122

123

124

//
//+ EXAMPLE:

//+ Register the reading of database fields "temp" and "flux" to

//+ populate the stk nodal fields "temperature" and "heat_flux"

//+ for use as initial conditionss.

//+ Specify that the "temp" field should be read from database

//+ time 2.0 no matter what time is specified in the read_defined_input_fields
//+ call.

//+ The "flux" field will be read at the database time corresponding

//+ to the analysis time passed in to read_defined_input_fields.

125 stk::io::StkMeshIoBroker stklo(communicator);

126 size_t index = stklo.add_mesh_database(ic_name, stk::io::READ_MESH);

127 stklo.set_active_mesh(index);

128 stklo.create_input_mesh();

129

130 stk: :mesh: :Field<double> &temperature = stkIo.meta_data() .

131 declare_field<stk::mesh::Field<double> >(stk::topology::NODE_RANK, "temperature", 1);

132 stk::mesh::put_field(temperature, stkIo.meta_data().universal_part());

133

134 stk::mesh::Field<double> &heat_flux = stkIo.meta_data().

135 declare_field<stk: :mesh: :Field<double> > (stk: :topology: :NODE_RANK, "heat_flux", 1);

136 stk::mesh::put_field(heat_flux, stkIo.meta_data().universal_part());
137 stklo.populate_bulk_data();

138

139 // The name of the field on the database is "temp"

140 stk::io::MeshField temp_field(temperature, "temp", stk::io::MeshField::CLOSEST);

141 temp_field.set_read_time(2.0);
142 stklo.add_input_field(temp_field);

143

144 // The name of the field on the database is "flux"

145 stk::io::MeshField flux_field(heat_flux, "flux", stk::io::MeshField::CLOSEST);
146 stklo.add_input_field(flux_field);

147

148 //+ Read the field values from the database at time 1.0

149 //+ The value of "flux" will be the values from database time 1.0

111

150 //+ However, the value of "temp" will be the values from database time 2.0

151 stkIo.read_defined_input_fields(1.0);
152

153 //

154 //+ VERIFICATION

155 std::vector<stk::mesh::Entity> nodes;

156 stk::mesh::get_entities(stkIo.bulk_data(), stk::topology::NODE_RANK,

157 nodes);

158

159 //+ The value of the "temperature" field at all nodes should be 2.0

mo for(size_t i=0; i<nodes.sizeO; i++) {
161 double *fieldDataForNode = stk::mesh::field_data(temperature, nodes[i]);

162 EXPECT_DOUBLE_EQ(2.0, *fieldDataForNode);

163

164

165 //+ The value of the "heat_flux" field at all nodes should be 1.0

166 for(size_t 1=0; i<nodes.sizeO; i++) {

167 double *fieldDataForNode = stk::mesh::field_data(heat_flux, nodes[i]);

168 EXPECT_DOUBLE_EQ(1.0, *fieldDataForNode);

169

170

4.1.18 Reading field data from a mesh database — interpolating between

database times

This example shows how to read data from an input mesh database at multiple times. The database
field values are linearly interpolated if the analysis time does not match an existing database time.
The initial portion of the example, which is not shown, creates a mesh with time steps at times 0.0,
1.0, and 2.0. The database contains a nodal field called "temp" with the same values for each node.
The value is the same as the time (0.0, 1.0, and 2.0) for each time step. The example shows how
to specify the reading of the field data at multiple steps and linearly interpolating the database data
to the specified analysis times. Line 128 shows how to specify that the field data are to be linear
interpolated.

Listing 4.22: Linearly interpolating field data from a mesh database
../../../code/stk/stk_doc_tests/stkio/interpolateNodalField.cpp

106

107

108

109

110

111

112

113

114

115

116

/ /
//+ EXAMPLE:

//+ The input mesh database has 3 timesteps with times 0.0, 1.0, 2.0,

//+ The value of the field "temp" is equal to the time

//+ Read the "temp" value at times 0.0 to 2.0 with an interval

//+ of 0.1 (0.0, 0.1, 0.2, 0.3, ..., 2.0) and verify that

//+ the field contains the correct interpolated value.

stk::io::StkMeshIoBroker stkIo(communicator);

stklo.add_mesh_database(ic_name, stk::lo::READ_MESH);

stkIo.create_input_mesh();

117 stk::mesh::Field<double> &temperature = stkIo.meta_data().

U8 declare_field<stk::mesh::Field<double> >(stk::topology::NODE_RANK,"temperature",1);

119 stk::mesh::put_field(temperature, stkIo.meta_data().universal_part());
120

121 stkIo.populate_bulk_data();

122

123 std::vector<stk::mesh::Entity> nodes;

124 stk::mesh::get_entities(stkIo.bulk_data(), stk::topology::NODE_RANK, nodes);

125

112

126 //+ Specify that the field data are to be linear interpolated.

127 stkIo.add_input_field(stk::io::MeshField(temperature, "temp",

08 stk::io::MeshField::LINEAR_INTERPOLATION));

129

130 //+ If the same stk field (temperature) is added more than once,

131 //+ the first database name and settings will be used. For example,

02 //+ the add_input_field below will be ignored with no error or warning.

03 stkIo. add_input_field (stk: : io: :MeshField (temperature, "temp-again",

04 stk::i0::MeshField::LINEAR_INTERPOLATION));

05

06 for (size_t i=0; i < 21; i++) {
07 double time = i/10.0;

138 //+ Read the field values from the database and verify that they

139 //+ are interpolated correctly.

144) stkIo.read_defined_input_fields(time);

141

142 //

143 //+ VERIFICATION

144 // The value of the "temperature" field at all nodes should be 'time'

145 for(size_t j=0; j<nodes.size(); j++) {

146 double *fieldData = stk::mesh::field_data(temperature, nodes[j]);

147 EXPECT_DOUBLE_EQ (time, *fieldData);

148

149

150

4.1.19 Combining restart and interpolation of field data

This example shows how to specify that an analysis, that is using field interpolation, should be
restarted. This requires two input databases: one that contains the restart data and another that
contains the field data to be interpolated.

The initial portion of the example, which is not shown, creates a restart database with several
nodal and element fields containing three time steps at times 0.0, 1.0, and 2.0. It then also creates
a database containing the field values which will be interpolated. This database contains 10 time
steps (0.0 to 9.0) with the nodal field "temp". The value of the field at each time step is equal to
the database time (0.0 to 9.0).

The add_mesh_database () function is called twice — once for each database. Since there
are multiple mesh databases, the set_active_mesh() function is called to specify which
mesh is active for subsequent calls. The fields that are to be read from each database are spec-
ified using add_all_mesh_fields_as_input_fields () for the restart database and
add_input_field () for the interpolated field database. Note that the file index for the in-
terpolated field database is passed to the add_input_field() since that database is not active
at the time of the call.

The example then "restarts" the analysis by setting the restart database as the active mesh and
reads the restart field data at time 1.0. The active mesh is then switched to the mesh database
containing the "temp" field and the analysis is then continued up to time 9.0 with the values for the
temperature field being interpolated.

113

Listing 4.23: Combining restart and field interpolation
../../../code/stk/stk_dociests/stkio/restartInterpolatedField.cpp

142 //

143 //+ EXAMPLE:

144 //+ The restart mesh database has 3 timesteps with times 0.0, 1.0, 2.0,

145 //+ and several fields.

146 //+

147 //+ The initial condition database has 10 timesteps with times

148 //+ 0.0, 1.0, ..., 9.0 and a nodal variable "temp"

N9 //+ The value of the field "temp" is equal to the time

150 //+

151 //+ The example will read the restart database at time 1.0

B2 //+ and then simulate continuing the analysis at that time

B3 //+ reading the initial condition data from the other database

B4 //+ interpolating this data.

I55 stk::io::StkMeshIoBroker stklo(communicator);

B6 size_t ic = stklo.add_mesh_database(ic_name, stk::io::READ_MESH);

B7 size_t rs = stklo.add_mesh_database(rs_name, stk::io::READ_RESTART);

I58

B9 //+ "Restart" the calculation...

160 double time = 1.0;

161 stkIo.set_active_mesh(rs);

162 stkIo.create_input_mesh();

M3

164 stkIo.add_all_mesh_fields_as_input_fields();

165

M6 stk::mesh::Field<double> &temperature = stkIo.meta_data().

167 declare_field<stk: :mesh: :Field<double> > (stk: :topology: :NODE_RANK, "temperature", 1);

168 stk: :mesh: : put_field (temperature, stkIo.meta_data() .universal_part());

B9

PO // The name of the field on the initial condition database is "temp"

1.71 stklo.add_input_field(ic, stk::io::MeshField(temperature, "temp",

172 stk::io::MeshField::LINEAR_INTERPOLATION));

173 stkIo.populate_bulk_data();

174

175 std::vector<stk::mesh::Entity> nodes;

176 stk::mesh::get_entities(stkIo.bulk_data(), stk::topology::NODE_RANK, nodes);

177

178 //+ Read restart data

179 stklo.read_defined_input_fields(time);

BO

BI //+ Switch active mesh to "initial condition" database

B2 stkIo.set_active_mesh(ic);

183

B4 double delta_time = 1.0 / 4.0;

185 while (time <= 9.0) {

B6 //+ Read the field values from the database and verify that they

B7 //+ are interpolated correctly.

B8 stkIo.read_defined_input_fields(time);

B9

NO //
NI //+ VERIFICATION

02 // The value of the "temperature" field at all nodes should be 'time'

N3 for(size_t i=0; i<nodes.size(); i++) {

N4 double *fieldDataForNode = stk::mesh::field_data(temperature, nodes[i]);
N5 EXPECT_DOUBLE_EQ(time, *fieldDataForNode);

196

N7 time += delta_time;

198

09

114

4.1.20 Interpolating field data from a mesh database with only a single

database time

If an application specifies that the mesh database field data should be linearly interpolated, but the
mesh database only has a single time step, then the field data will not be interpolated and instead,
the values read from that single time will be used.

The initial portion of the example, which is not shown, creates a mesh with a time step at time 1.0.
The database contains a nodal field called "temp" with the same values for each node. The value
is the same as the time (1.0).

The example specifies that the field data should be linearly interpolated and then reads the data at
multiple steps. Since there is only a single step on the mesh database, all field values are equal to
the database values at that step.

Listing 4.24: Linearly interpolating field data from a mesh database with only a single step
../../../code/stk/stk_doc_tests/stk_io/interpolateSingleStep.epp

102

103

104

105

106

107

108

109

110

1 1 1

112

113

114

/ /
//+

//+

//+

//+

//+

//+

//+

//+

stk::io::StkMeshIoBroker stklo(communicator);

stkIo.add_mesh_database(ic_name, stk::io::READ_MESH);

stkIo.create_input_mesh();

EXAMPLE:

The input mesh database has 1 timesteps with time 1.0

The value of the field "temp" is equal to the time

Read the "temp" value at times 0.0 to 2.0 with an interval

of 0.1 (0.0, 0.1, 0.2, 0.3, ..., 2.0) and verify that

the field value does not change since there are not

enough steps to do any interpolation.

115 stk::mesh::Field<double> &temperature = stkIo.meta_data().

tm declare_field<stk::mesh::Field<double> >(stk::topology::NODE_RANK,"temperature",1);

IP stk::mesh::put_field(temperature, stkIo.meta_data().universal_part());

IB

IN // The name of the field on the database is "temp"

12o stkIo.add_input_field(stk::io::MeshEield(temperature, "temp",

121 stk::io::MeshField::LINEAR_INTERPOLATION));

U2

123 stklo.populate_bulk_data();

U4

125 std::vector<stk::mesh::Entity> nodes;

U6 stk::mesh::get_entities(stklo.bulk_data(), stk::topology::NODE_RANK, nodes);

U7

128 for (size_t i=0; i < 21; i++) f

U9 double time = i/10.0;

BO //+ Read the field values from the database and verify that they

131 //+ are interpolated correctly.

B2 stkIo.read_defined_input_fields(time);

B3

B4 //

135 //+ VERIFICATION

136 // The value of the "temperature" field at all nodes should be 1.0

137 for(size_t j=0; j<nodes.size(); j++) {
138 double *fieldData = stk::mesh::field_data(temperature, nodes[j]);

B9 EXPECT_DOUBLE_EQ(1.0, *fieldData);

140

141

142

115

4.1.21 Interpolating field data from a mesh database when time is outside

database time interval

If an application specifies that the mesh database field data should be linearly interpolated, but
requests data at times outside the interval of times present on the mesh database, then the values
at the closest database time will be used instead. In other words, the database values are not
extrapolated.

The initial portion of the example, which is not shown, creates a mesh with two time steps at times
1.0 and 2.0. The database contains a nodal field called "temp" with the same values for each node.
The value is the same as the time (1.0 or 2.0).

The example specifies that the field data should be linearly interpolated and then reads the data at
multiple times from 0.0 to 3.0. Since the database only contains data at times 1.0 and 2.0, the field
values at times 0.0 to 1.0 will be set to the database values at time 1.0 and the field values at times
2.0 to 3.0 will be set to the database values at time 2.0. The field values at times 1.0 to 2.0 will be
linearly interpolated from the database values.

Listing 4.25: Linearly interpolating field data when the time is outside the database time interval
d-hicod • .. • 'o/interpolateOut ' :e.cpp

104

105 //+ EXAMPLE:

/ /

W6 //+ The input mesh database has 2 timesteps with time 1.0 and 2.0

W7 //+ The value of the field "temp" is equal to the time

W8 //+ Read the "temp" value at times 0.0 to 3.0 with an interval

W9 //+ of 0.1 (0.0, 0.1, 0.2, 0.3, ..., 2.0).

10 //+
HI //+ The times 0.0 to 1.0 and 2.0 to 3.0 are outside

11.2 //+ the range of the mesh database so no interpolation

10 //+ or extrapolation will occur -- the field values

114 //+ will be set to the values at the nearest time.

115 //+
1M //+ Verify that the values from times 0.0 to 1.0

tr //+ are equal to 1.0 and that the values from 2.0 to 3.0

U8 //+ are equal to 2.0.

10 //+ The field values from 1.0 to 2.0 will be interpolated

U0 //+
Ul stk::io::StkMeshIoBroker stkIo(communicator);

U2 stkIo.add_mesh_database(ic_name, stk::io::READ_MESH);

U3 stklo.create_input_mesh();

U4

125 stk::mesh::Field<double> &temperature = stkIo.meta_data().

U6 declare_field<stk:mesh::Field<double> >(stk::topology::NODE_RANK,"temperature",1);

127 stk::mesh::put_field(temperature, stkIo.meta_data().universal_part());

U8

U9 stkIo.populate_bulk_data();

130

01 std::vector<stk::mesh::Entity> nodes;

02 stk::mesh::get_entities(stklo.bulk_data(), stk::topology::NODE_RANK, nodes);

03

04 // The name of the field on the database is "temp"

05 stkIo.add_input_field(stk::io::MeshField(temperature, "temp",

06 stk::io::MeshField::LINEAR_INTERPOLATION));

07

08 for (size_t i=0; i < 21; i++) {

09 double time = i/10.0;

140 //+ Read the field values from the database and verify that they

141 //+ are interpolated correctly.

116

142 stkIo. read_defined_input_fields (time) ;

143

144 //

145 //+ VERIFICATION

146

147 double expected_value = time;

148 if (time <= 1.0)

149 expected_value = 1.0;

BO if (time >= 2.0)

151 expected_value = 2.0;

152

153 for(size_t j=0; j<nodes.sizeO; j++) I

154 double *fieldData = stk::mesh::field_data(temperature, nodes[j]);

155 EXPECT_DOUBLE_EQ(expected_value, *fieldData);

156

157 }
158

4.1.22 Error condition - reading initial conditions from a field that does not

exist on a mesh database

This example shows the behavior when the application specifies that initial condition or restart
data should be read from the input database, but one or more of the specified fields do not exist on
the database. The application specifies that the data for the field "displacemenr is to be populated
from the database field "disp", which does not exist. Two scenarios are possible. In the first, the
application passes in a vector which on return from the read_defined_input_fields ()
function will contain a list of all fields that were not found, with one entry for each missing field
state. In the second, the vector is omitted in the call to read_defined_input_fields ();
in this case, the code will print an error message and throw an exception if there are any fields not
found.

Listing 4.26: Specifying initial conditions from a non-existent field
../../../code/stk/stk_dociests/stkio/handleMissingFieldOnRead.cpp

108

109

110

111

112

113

EXAMPLE:

Demonstrate what happens when application requests the

reading of a field that does not exist on the input

mesh database. The nodal field "displacement" is

requested for input from the database field "disp" which

114 //+ does not exist.

115 stk::io::StkMeshIoBroker stklo(communicator);

116 size_t index = stklo.add_mesh_database(ic_name, stk::io::READ_MESH);

117 stklo.set_active_mesh(index);

118 stklo.create_input_mesh();

119

120 stk::mesh::Field<double> &temperature =

121 stkIo.meta_data().declare_field<stk::mesh::Field<double> >(

122 stk::topology::NODE_RANK,"temperature",1);

123 stk: :mesh: : put_field (temperature, stkIo.meta_data() .universal_part());

IN

125 stk: :mesh: :Field<double> &displacement =

126 stkIo.meta_data().declare_field<stk::mesh::Field<double> >(

127 stk::topology::NODE_RANK,"displacement",3);

128 stk::mesh::put_field(displacement, stkIo.meta_data().universal_part());
129 stklo.populate_bulk_dataO;

130

117

01 // The name of the field on the database is "temp"

02 // This field does exist and should be read correctly

03 stkIo.add_input_field(stk::io::MeshField(temperature, "temp"));

04

135 //+ The name of the field on the database is "disp"

136 //+ This field does not exist and will not be found.

137 stkIo.add_input_field(stk::io::MeshField(displacement, "disp"));

08

09

HO //+ Read the field values from the database at time 2.0

141 //+ The 'missing_fields' vector will contain the names of

142 //+ any fields that were not found.

H3 std::vector<stk::io::MeshField> missing_fields;

144 stkIo.read_defined_input_fields(2.0, &missing_fields);

145

146 //

147 //+ VERIFICATION

148 //+ The 'missing' vector should be of size 1 and contain

H9 //+ 'disp'

150 EXPECT_EQ(2u, missing_fields.size());

MI EXPECT_EQ("disp", missing_fields[0].db_name());

152 EXPECT_EQ("displacement", missing_fields[0].field()->name());

M3 EXPECT_EQ("disp", missing_fields[1].db_name());
154 EXPECT_EQ("displacement_STKFS_N", missing_fields[1].field()->name());

M5

M6 // The value of the "temperature" field at all nodes should be 2.0

M7 std::vector<stk::mesh::Entity> nodes;

M8 stk::mesh::get_entities(stkIo.bulk_data(), stk::topology::NODE_RANK,

M9 nodes);

160 for(size_t i=0; i<nodes.size(); i++) {
MI double *fieldDataForNode =

M2 stk::mesh::field_data(temperature, nodes[i]);
M3 EXPECT_DOUBLE_EQ(2.0, *fieldDataForNode);

164 1
165

This example is the same as the previous except that instead of passing in the vector to hold
the missing fields, the application will throw an exception for the missing field. Note that if the
application throws an exception, it will not read any field data even for the fields that do exist.

Listing 4.27: Specifying initial conditions from a non-existent field
../../../code/stk/stk_doc_tests/stkio/handleMissingFieldOnReadThrow.cpp

136

137

138

139

140

141

142

143

//+ If read the fields, but don't pass in the 'missing_fields'

//+ vector, the code will print an error message and throw an

//+ exception if it doesn't find all of the requested fields.

EXPECT_ANY_THROW(stkIo.read_defined_input_fields(2.0));

//+ If code throws due to missing field(s), it will NOT read

//+ even the fields that exist.

4.1.23 Interpolation of fields on database with negative times

Although it is not common, there are occasions when an analysis will use negative times. For
example, an analysis may run from time -3.0 to 0.0 to "preload" a structure and then continue from
time 0.0 onward to analyze the preloaded structure. This example shows that the field interpolation
capability works correctly when the mesh database and the analysis use negative times.

118

Listing 4.28: Interpolating fields on a database with negative times
../../../code/stk/stk_dociests/stk_io/interpolateFieldNegativeTime.cpp

107

108

109

110

111

112

113

114

115

116

117

//

//+ EXAMPLE:

//+ The input mesh database has 3 timesteps with times -2.0, -1.0, 0.0.

//+ The value of the field "temp" is equal to the time

//+ Read the "temp" value at times -2.0 to 0.0 with an interval

//+ of 0.1 (-2.0, -1.9, -1.8, ..., 0.0) and verify that

//+ the field contains the correct interpolated value.

stk::io::StkMeshIoBroker stkIo(communicator);

stklo.add_mesh_database(ic_name, stk::io::READ_MESH);

stkIo.create_input_mesh();

IB stk::mesh::Field<double> &temperature = stkIo.meta_data().

IN declare_field<stk::mesh::Field<double> >(stk::topology::NODE_RANK, "temperature", 1);

120 stk::mesh::put_field(temperature, stkIo.meta_data().universal_part());
121

B2 stklo.populate_bulk_data();

U3

B4 std::vector<stk::mesh::Entity> nodes;

U5 stk::mesh::get_entities(stkIo.bulk_data(), stk::topology::NODE_RANK, nodes);

B6

B7 // The name of the field on the database is "temp"

U8 stkIo.add_input_field(stk::io::MeshField(temperature, "temp",

B9 stk::io::MeshField::LINEAR_INTERPOLATION));

BO

131 for (int i=-20; i <= 0; i++) {

B2 double time = i/10.0;

B3 //+ Read the field values from the database and verify that they

04 //+ are interpolated correctly.

135 stkIo.read_defined_input_fields(time);

B6

B7 //

138 //+ VERIFICATION

09 // The value of the "temperature" field at all nodes should be 'time'

140 for(size_t j=0; j<nodes.size(); j++) {

NI double *fieldData = stk::mesh::field_data(temperature, nodes[j]);

N2 EXPECT_DOUBLE_EQ(time, *fieldData);

143 }

144

145

4.1.24 Interpolation of fields on database with non-monotonically increas-

ing times

In some cases, the database from which the field values are being interpolated may contain non-
monotonically increasing time values. For example, the time steps could contain the values 2.0 at
step 1, 0.0 at step 2, and 1.0 at step 3. The example shows that the field interpolation capability
works correctly in this case.

Listing 4.29: Interpolating fields on a database with non-monotonically increasing times
../../../code/stk/stk_doc_tests/stk_io/interpolateFieldNonMonotonicTime.cpp

M7 //

LOS //+ EXAMPLE:

W9 //+ The input mesh database has 3 timesteps with times 2.0, 0.0, 1.0

HO //+ which are non-monotonically increasing.

HI //+ The value of the field "temp" is equal to the time

119

H2 //+ Read the "temp" value at times 0.0 to 2.0 with an interval

H3 //+ of 0.1 (0.0, 0.1, 0.2, ..., 2.0) and verify that

H4 //+ the field contains the correct interpolated value.

115 stk::io::StkMeshIoBroker stklo(communicator);

116 stkIo.add_mesh_database(ic_name, stk::io::READ_MESH);

117 stkIo.create_input_mesh();

118

H9 stk::mesh::Field<double> &temperature = stkIo.meta_data().

12o declare_fieldestk:mesh::Field<double> >(stk::topology::NODE_RANK, "temperature", 1);

121 stk::mesh::put_field(temperature, stkIo.meta_data().universal_part());

U2

123 stkIo.populate_bulk_data();

124

125 std::vectorestk:mesh::Entity> nodes;

U6 stk::mesh::get_entities(stkIo.bulk_data(), stk::topology::NODE_RANK, nodes);

U7

U8 // The name of the field on the database is "temp"

U9 stkIo.add_input_field(stk::io::MeshField(temperature, "temp",

00 stk::io::MeshField::LINEAR_INTERPOLATION));

131

02 for (int i=0; i < 21; i++) (

03 double time = i/10.0;

D4 //+ Read the field values from the database and verify that they

05 //+ are interpolated correctly.

136 stkIo.read_defined_input_fields(time);

07

138 //

09 //+ VERIFICATION

140 // The value of the "temperature" field at all nodes should be 'time'

141 for(size_t j=0; j<nodes.size(); j++) {
142 double *fieldData = stk::mesh::field_data(temperature, nodes[j]);

143 EXPECT_DOUBLE_EQ(time, *fieldData);
144 1
145

146

4.1.25 Arbitrary analysis time to database time mapping during field input

There are instances in which the analysis times do not exactly correspond to the times on the
mesh database. An example is a mesh database with times in microseconds and the analysis using
seconds for the time units. Another example is when the conditions specified on the mesh database
describe a cyclic loading over a small time period, but the analysis time runs over multiples of this
period.

The InputFile class in STK Mesh I0 Broker module contains several options for mapping the
analysis time to the database time. These include: offset, scale, period, startup, period type, start
time, and stop time.

To describe the mapping from analysis time to database time we will use the following notation:

• a variable of type tx is in units of time.

• tapp is application time.

• tdb is database time, which is the time that will be used to query the database.

• tp„iod isthelengthofthecyclicperiod;itis0.0ifnotcyclic.

120

• scale is the time scaling factor.

• toy„t is the time offset.

• The cyclic behavior can either by specified as CYCLIC or REVERSING. In the cyclic case,
the time would repeat as 1,2,3,1,2,3,...; the reversing case would repeat as 1,2,3,2,1,2,3„....
Both of these have a t-period of length 2.

We now describe the mapping:

• If: tapp < tstart or tapp > tstop Then the field is inactive.

• If: tapp < tstartup Then tdb = tapp•

• Else if cyclic behavior is CYCLIC Then tdb= tstartup + mod (tapp — tstartup)tperiod)•

• Else if cyclic behavior is REVERSING Then

— Let tpm = mod (tapp tstartup, 2 X tperiod)
— If: (tpm < - tperiod) Then tdb = tstartup tpm

— Else: tdb = tstartup (2 X tperiod — tpm).

• Finally: tdb = tdb X scale + toffset.

The example below shows an input mesh database containing a nodal field named "temp". The
database contains 3 steps with times 0.0, 10.0, and 20.0; the value of the field at each time is equal
to the time value (0.0, 10.0, or 20.0).

The analysis wants to use the data on this mesh to provide linearly interpolated values for the
analysis field "temperature. The mesh database values will be defined as REVERS ING cyclic
with a period length of 2.0; in addition, the times will be scaled by 10. This should result in a
mapping of application time (tapp) to database time (tdb) of:

tapp 0 1 2 3 4 5 6 7 8 9 10
tdb 0 10 20 10 0 10 20 10 0 10 20

Listing 4.30: Arbitrary analysis time to database time mapping during field input
../../../code/stk/stk_dociests/stk_io/interpolateFieldCyclic.cpp

W7 //

108 //+ EXAMPLE:

M9

110

//+

//+

The input mesh database has 3 timesteps with times 0.0, 10.0,

The value of the field "temp" is equal to the time

20.0,

HI //+ Read the "temp" value at times 0.0 to 10.0 with an interval

H2 //+ of 0.25 (0.0, 0.25, 0.50, 0.75, ..., 10.0)

//+ The mapping from analysis time (0.0 to 10.0) to database

tw //+ time will be reverse cyclic and scaled.

H5 //+

IM //+ The parameters are:

//+ * period = 2.0

tts //+ * scale = 10.0

IN //+ * offset = 0.0

U0 //+ * cycle type = REVERSING

121 //+
U2 //+ Analysis Time and DB_Time:

121

123 //4- 0 1 2 3 4 5 6 7 8 9 10

124 //+ 0 10 20 10 0 10 20 10 0 10 20

125 //+

126

127 stk::io::StkMeshIoBroker stklo(communicator);

128 size_t idx = stklo.add_mesh_database(ic_name, stk::io::READ_MESH);

129 stklo.create_input_mesh();

130

131 stk::mesh::Field<double> &temperature = stklo.

132 meta_data() .declare_field<stk: :mesh: :Field<double> >

133 (stk: :topology: :NODE_RANK, "temperature", 1);

134 stk: :mesh: : put_field (temperature, stkIo.meta_data() .universal_part());

135

136 stklo.populate_bulk_data();

137

138 std::vector<stk::mesh::Entity> nodes;

139 stk: :mesh: :get_entities (stkIo.bulk_data () , stk: :topology: :NODE_RANK, nodes);

140

141 // The name of the field on the database is "temp"

142 stkIo.add_input_field(stk::io::MeshField(temperature, "temp",

143 stk::io::MeshField::LINEAR_INTERPOLATION));

144

145 //+ Set the periodic parameters on the input mesh...

146 double period_length = 2.0;

147 double startup = 0.0;

148 double scale = 10.0;

149 stkIo.get_mesh_database(idx)

150 .set_periodic_time(period_length, startup, stk: : io: : InputFile : :REVERSING)

151 . set_scale_time (scale)

152 .set_start_time(0.0).set_offset_time(0.0).set_stop_time(999.0); // These are optional

153 double delta_time = 0.25;

154 double time = 0.0;

155 double expected = 0.0;

156 double exp_inc = 10.0 * delta_time;

157

158 while (time <- 10.0) {

159

160 //+ Read the field values from the database and verify that they

161 //+ are interpolated correctly.

162 stkIo . read_defined_input_fields (time) ;

163

164 //

165 //+ VERIFICATION

166 // The value of the "temperature" field at all nodes should be 'expected'

167 for(size_t i=0; i<nodes.size(); i++) {

168 double *fieldData = stk::mesh::field_data(temperature, nodes[i]);
169 EXPECT_DOUBLE_EQ(expected, *fieldData);

170 }

171 time += delta_time;

172 expected += exp_inc;

173 if (expected >= 20.0 ll expected <= 0.0) {
174 exp_inc = -exp_inc;

175

176 }

177

4.1.26 Error condition - specifying interpolation for an integer field

This example shows the behavior when the application specifies that linear interpolation should be
used for an integer field. Although there are a few instances in which this could be valid, it is not
supported and an exception will be thrown when the field is registered.

122

Listing 4.31: Error condition — specifying interpolation of an integer field
../../../code/stk/stk_doc_tests/stkio/interpolateIntegerFieldInyalid.cpp

58

59

60

61

62

63

/ /
//+ EXAMPLE:

//+ Interpolated fields cannot be of type integer.

//+ An exception will be thrown if you try to register an

//+ integer interpolated field.

64 stk::io::StkMeshIoBroker stklo(communicator);

65

66 const std::string generatedFileName = "generated:8x8x8Inodeset:xyz";

67 stklo.add_mesh_database(generatedFileName, stk::io::READ_MESH);

68 stklo.create_input_mesh();

69

70 stk::mesh::Field<int> &integer_field = stkIo.meta_data().

71 declare_field<stk:mesh::Field<int»(stk::topology::NODE_RANK, "int_field", 1);
72 stk::mesh::put_field(integer_field, stkIo.meta_data().universal_part());

73 stklo.populate_bulk_data();

74

75 EXPECT_ANY_THROW(stkIo.add_input_field(stk::io::MeshField(integer_field,

76 "int_field",

77 stk::io::MeshField::LINEAR_INTERPOLATION)));

78

4.1.27 Working with element attributes

Listing . . orki : • ement attributes ../../../code/stk/stk_dociests/stkio/readAttributes.cpp

77 std::vector<double> get_attributes_of_first_element(const stk::mesh::BulkData &bulk, const

stk::mesh::Part *ioPart)
78

79 stk::mesh::FieldVector attributeFields =

get_attribute_fields_for_part(bulk.mesh_meta_data(), ioPart);
80

81 stk::mesh::EntityVector elements;

82 stk::mesh::get_selected_entities(*ioPart, bulk.buckets(stk::topology::ELEM_RANK),

elements);
83

84 std::vector<double> attributes;

85 if(!elements.empty())
86 {

87 for(const stk::mesh::FieldBase *field : attributeFields)

88 {

89 unsigned numAttribute = stk::mesh::field_scalars_per_entity(*field, elements[0]);
90 double *dataForElement = static cast<double*> (stk::mesh::field_data(*field,

elements[0]));

for(unsigned i=0; i<numAttribute; ++i)

92 attributes.push_back(dataForElement[i]);

93 }

94

95 return attributes;

96

97

98 TEST_F(ExodusFilewithAttributes, readAttributes_haveFieldsWithAttributes)

99 {

WO setup_mesh("hex_spider.exo", stk:mesh::BulkData::AUTO_AURA);

WI

W2 const stk::mesh::Part *partBlock2 = get_meta().get_part("block_2");
103 const stk::mesh::Part *partBlock10 = get_meta().get_part("block_10");

104

105 EXPECT_EQ(1u, get_attributes_of_first_element(get_bulk(), partBlock2).size());

W6 EXPECT_EQ(7u, get_attributes_of_first_element(get_bulk(), partBlock10).size());

123

W7 }

W8

109 void mark_field_as_attribute(stk::mesh::FieldBase &field)

HO {

111 stk::io::set_field_role(field, Ioss::Field::ATTRIBUTE);

112

113

114 TEST_F(ExodusFileWithAttributes, addAttribute_haveFieldsWithAttribute)

115 {

116 allocate_bulk(stk::mesh::BulkData::AUTO_AURA);

117

118 stk::io::StkMeshIoBroker stkIo;

119 stkIo.set_bulk_data(get_bulk());

120 stkIo.add_mesh_database("hex_spider.exo", stk::io::READ_MESH);

121 stkIo.create_input_mesh();

122

123 double initialValue = 0.0;

124 auto &newAttrField =

get_meta().declare_field<stk::mesh::Field<double>>(stk::topology::ELEM_RANK,

"newAttr");
125 mark_field_as_attribute(newAttrField);

126

127 const stk::mesh::Part *partBlockl0 = get_meta().get_part("block_l0");

128 stk::mesh::put_field(newAttrField, *partBlockl0, &initialValue);

129

130 stkIo.populate_bulk_data();

131

132 EXPECT_EQ(8u, get_attributes_of_first_element(get_bulk(), partBlockl0).size());

133 }

4.1.28 Create an output mesh with a subset of the mesh parts

If a results file that only contains a portion or subset of the parts existing in the STK Mesh is
wanted, this can be specified by creating a Selector (see Section 1.4) containing the desired
output parts and then calling the set_subset_selector () function with that Selector as
an argument. This is illustrated in the following example.

Listing 4.33: Creating output mesh containing a subset of the mesh parts
../../../code/stlastk_dociests/stk_io/subsettingOutputDB.cpp

65

66

67

68

//

// INITIALIZATION

std::string s_elems_per_edge = std::to_string(num_elems_per_edge);

69 //+ Create a generated mesh containg hexes and shells.

70 std::string input_filename = s_elems_per_edge +

71 s_elems_per_edge +

72 s_elems_per_edge +

73

74 stk::io::StkMeshIoBroker stkIo(communicator);

75 size_t index = stklo.add_mesh_database(input_filename, "generated",

76 stk::io::READ_MESH);

77 stklo.set_active_mesh(index);

78 stklo.create_input_mesh();

79 stkIo.populate_bulk_data();

80

81 stk::mesh::MetaData &meta_data = stkIo.meta_data();

82 const stk::mesh::PartVector &all_parts = meta_data.get_mesh_parts();
83

84 //

85 //+ EXAMPLE

86 //+ Create a selector containing just the shell parts.

"x" +

"x" +

"Ishell:xyzXYZ";

124

87 stk::mesh::Selector shell_subset;

88 for (size_t i=0; i < all_parts.size(); i++) {
89 const stk::mesh::Part *part = all_parts[i];

90 stk::topology topo = part->topology();

91 if (topo == stk::topology::SHELL_QUAD_4) {

92 shell_subset l= *part;

93 }

94 }

95

96 // Create the output...

97 size_t fh = stklo.create_output_mesh(resultsFilename,

98 stk::io::WRITE_RESULTS);

99

100 //+ Specify that only the subset of parts selected by the

101 //+ "shell_subset" selector will be on the output database.

102 stklo.set_subset_selector(fh, shell_subset);

103 stklo.write_output_mesh(fh);

104 // Verification omitted...

105

4.1.29 Writing and reading global variables

The following example shows the use of global variables for a scalar double precision floating
point value, but a similar interface exists for working with vectors of global values. The example
also shows two methods for handling the error condition of accessing a nonexistent global variable.

Listing 4.34: Writing and reading a global variable
../../../code/stk/stk_dociests/stkio/writingAndReadingGlobalVariables.cpp

49 TEST(StkMeshIoBrokerHowTo, writeAndReadGlobalVariables)

50

51 MPI_Comm communicator = MPI_COMM_WORLD;

52 int numProcs = stk::parallel_machine_size(communicator);

53 if (numProcs != 1) { return; }

54

55 const std::string restartFileName = "OneGlobalDouble.restart";

56 const std::string timeStepVarName = "timeStep";

57 const double timeStepSize = le-6;

58 const double currentTime = 1.0;

59

60 //+ Write restart file with time step size as a global variable

61

62

63

stk::io::StkMeshIoBroker stkIo(communicator);

const std::string exodusFileName = "generated:lx1x8";

64 stklo.add_mesh_database(exodusFileName, stk::io::READ_MESH);

65 stkIo.create_input_mesh();

66 stkIo.populate_bulk_data();

67

68 size_t filelndex =

69 stkIo.create_output_mesh(restartFileName, stk::io::WRITE_RESTART);

70 stklo.add_global(filelndex, timeStepVarName, Ioss::Field::REAL);

71 stklo.begin_output_step(filelndex, currentTime);

72 stkIo.write_global(fileIndex, timeStepVarName, timeStepSize);

73 stkIo.end_output_step(fileIndex);

74 }

75

76 //+ Read restart file with time step size as a global variable

77

78 stk::io::StkMeshIoBroker stkIo(communicator);

79 stklo.add_mesh_database(restartFileName, stk::io::READ_RESTART);

80 stkIo.create_input_mesh();

125

81 stkIo.populate_bulk_data();

82 stklo.read_defined_input_fields(currentTime);

83 std: :vector<std: :string> globalNamesOnFile;

84 stkIo.get_global_variable_names(globalNamesOnFile);
85

86 ASSERT_EQ(1u, globalNamesOnFile . size ()) ;

87 EXPECT_STRCASEEQ(timeStepVarName.c_str(),

88 globalNamesOnFile [0] .c_str()) ;

89 double timeStepSizeReadFromFile = 0.0;

90 stkIo.get_global (globalNamesOnFile [0] , timeStepSizeReadFromFile);

91

92 const double epsilon = std::numeric_limits<double>::epsilon();

93 EXPECT_NEAR(timeStepSize, timestepSizeReadFromFile, epsilon);

94

95 //+ If try to get a global that does not exist, will throw

96 //+ an exception by default...

97 double value = 0.0;

98 EXPECT_ANY_THROW(stkIo.get_global("does_not_exist", value));

99

100 //+ If the application wants to handle the error instead (without a try/catch),

101 //+ can pass in an optional boolean:

102 bool abort_if_not_found = false;

103 bool found = stkIo.get_global("does not_exist", value, abort_if_not_found);

104 ASSERT_FALSE (found) ;

W5 }

106

107 unlink(restartFileName.c_str());

108 1

4.1.30 Writing and reading global parameters

The following example shows the use of s t k : : ut i 1: : P aramet er objects for global variable
output and input. The example defines several parameters of type double, integer, vector of dou-
bles, and a vector of integers. The list containing these parameters is iterated and each is defined
to be an output global variable. Then, each variable is written in the time step loop. At the end of
writing, the file is reopened for reading and the parameter values are restored and checked to make
sure the correct values were read.

Listing 4.35: Writing and reading parameters as global variables
../../../code/stk/stk_dociests/stkio/writingAndReadingGlobalParameters.cpp

49 TEST(StkMeshIoBrokerHowTo, writeAndReadGlobalParameters)

50

//

52 //+ INITIALIZATION

53 const std::string file_name = "GlobalParameters.e";

54 MPI_Comm communicator = MPI_COMM_WORLD;

55

56 // Add some parameters to write and read...

57 stk::util::ParameterList params;

58 params.set_param("PI", 3.14159); // Double

59 params . set_param ("Answer" , 42); // Integer

60

61 std::vector<double> my_vector = { 2.78, 5.30, 6.21 };

62 params.set_param("doubles", my_vector); // Vector of doubles...

63

std::vector<int> ages = 55, 49, 21, 191;

65 params . set_param ("Ages" , ages); // Vector of integers...

66

126

67

68 stk::io::StkMeshIoBroker stkIo(communicator);

69 const std::string exodusFileName = "generated:lx1x8";

70 size_t index = stkIo.add_mesh_database(exodusFileName, stk::io::READ_MESH);

71 stklo.set_active_mesh(index);

72 stklo.create_input_mesh();

73 stklo.populate_bulk_data();

74

75 //

76 //+ EXAMPLE

77 //+ Write output file with all parameters in params list...

78 size_t idx = stkIo.create_output_mesh(file_name,

79 stk::i0::WRITE_RESTART);

80

81 stk::util::ParameterMapType::const_iterator i = params.begin();

stk::util::ParameterMapType::const_iterator ie = params.end();

83 for (; i != ie; ++i) {

const std::string parameterName = (*i).first;

85 stk::util::Parameter ¶m = params.get_param(parameterName);

86 stklo.add_global(idx, parameterName, param.value, param.type);

87 1
88

89 stklo.begin_output_step(idx, 0.0);

90

91 for (i = params.begin(); i != ie; ++i) {

92 const std::string parameterName = (*i).first;

stk::util::Parameter ¶m = params.get_param(parameterName);
94 stkIo.write_global(idx, parameterName, param.value, param.type);

95

96

97 stklo.end_output_step(idx);

98

99

100

101 //

102 //+ EXAMPLE

103 //+ Read parameters from file...

104 stk::io::StkMeshIoBroker stkIo(communicator);

105 stkIo.add_mesh_database(file_name, stk::io::READ_MESH);

106 stklo.create_input_mesh();

W7 stklo.populate_bulk_data();

108

W9 stklo.read_defined_input_fields(0.0);

110

111 stk::util::ParameterMapType::const_iterator i = params.begin();

112 stk::util::ParameterMapType::const_iterator ie = params.end();

113 for (; i != ie; ++i) {

I M const std::string parameterName = (*i).first;

stk::util::Parameter ¶m = params.get_param(parameterName);

116 stklo.get_global(parameterName, param.value, param.type);

117

118

119 //
120 //+ VALIDATION

121 stk::util::ParameterList gold_params; // To compare values read

122 gold_params.set_param("PI", 3.14159); // Double

123 gold_params.set_param("Answer", 42); // Integer

IN gold_params.set_param("doubles", my_vector); // Vector of doubles

125 gold_params.set_param("Ages", ages); // Vector of integers...

IM

127 size_t param_count = 0;

128 for (i = params.begin(); != ie; ++i) {

129 param_count++;

BO const std::string parameterName = (*i).first;

131 stk::util::Parameter ¶m = params.get_param(parameterName);

B2 stk::util::Parameter &gold_parameter =

133 gold_params.get_param(parameterName);

134 validate_parameters_equal_value(param, gold_parameter);

127

135

136

137 std::vector<std::string> globalNamesOnFile;

138 stkIo.get_global_variable_names(globalNamesOnFile);
139 ASSERT_EQ(param_count, globalNamesOnFile.size());

(40 1
141 //

142 // CLEAN UP

143 unlink(file_name.c_str());

144 1

145

4.1.31 Writing global variables automatically

This example is similar to the previous one except that in this case, the global variables are writ-
ten automatically without calling write_global () for each value. The only changes to the
previous example are:

• replace the call to add_global () with a call to add_global_ref ().

• pass the address of the value instead of just the value as is shown on line 94, and

• replace the code on lines 89 to 97 of the previous example with the call to
process_output_request () on line 99.

Listing 4.36: Automatically writing parameters as global variables
../../../code/stlastk_ðoc_tests/stkio/writingAndReadingGlobalParametersAuto.cpp

74

75

76

77

78

79

80

81

82

83

// ... Setup is the same as in the previous example

// Write output file with all parameters in params list...

stk::io::StkMeshIoBroker stkIo(communicator);

const std::string exodusFileName = "generated:lx1x8";

size_t input_index = stkIo.add_mesh_database(exodusFileName, stk::io::READ_MESH);

stkIo.set_active_mesh(input_index);

stkIo.create_input_mesh();
stkIo.populate_bulk_data();

Sa size_t idx = stklo.create_output_mesh(file_name,

85

86

87 stk::util::ParameterMapType::const_iterator i = params.begin();

88 stk::util: :ParameterMapType::const_iterator iend = params . end () ;

89 for (; i != iend; ++i) {

90 const std::string paramName = (*i).first;

91 //+ NOTE: Need a reference to the parameter.

92 stk::util::Parameter ¶m = params.get_param(paramName);
93 //+ NOTE: Calling add_global_ref, passing address of value

94 stklo.add_global_ref(idx, paramName, ¶m.value, param.type);

95 }

96

97 //+ A11 writing of the values is handled automatically,

98 //+ do not need to call write_global

99 stklo.process_output_request(idx, 0.0);

WO }

101 // ... Reading is the same as in previous example

102

stk::io::WRITE_RESTART);

128

4.1.32 Heartbeat output

The Heartbeat periodically outputs user-defined data to either a text or binary (exodus) file. The
data are typically defined in st k : : ut i 1 : : P a ramet e r objects, but raw integer, double, or
complex values can also be specified. The format of the heartbeat output is customizable and
consists of an optional "legencr followed by one or more lines containing the current value of the
registered variables at each time step. The data can be scalars, vectors, tensors, or other composite
types consisting of integer, real, or complex values.

The currently defined basic formats for heartbeat output are:

CSV Comma-separated values. The output consists of a header line containing
the names of each variable being output. The names are separated by com-
mas. Each data line consists of comma-separated values.

TS C S v Time-stamped comma-separated values. Similar to the CSV format except
that each line is preceded by a timestamp showing, by default, the time of
day that the line was output in 24-hour format.

TEXT Similar to CSV except that tab characters are used to separate the fields
instead of commas.

TS_TEXT Similar to TEXT except that each line is preceded by a timestamp.
SP YH IS A format that can be plotted by the spyplot graphics program.
BINARY The data will be output to an exodus file as global variables. This is some-

times referred to as a "history" file.

The format is specified as the second argument to the add_heartbeat_output () command
as shown on line 90 in the example below where the TEXT format is selected.

The following example shows the basic usage of the heartbeat capability. In the initialization
section, the parameters and their values are defined. Note that in addition to scalar values, vec-
tors of values are also supported. The values to be output to the heartbeat file are defined in
lines 92 to 103. The values are output at line 111. Note that the application does not have
to individually output each value; the heartbeat system does this automatically. The applica-
tion only has to make sure that the correct value is in the parameter . value prior to calling
process_heartbeat_output ().

Listing 4.37: Writing global variables to a Heartbeat file
../../../code/stk/stk_dociests/stk_io/usingHeartbeat.cpp

60

61

62

63 //

stk::util::ParameterList params;

64 //+ INITIALIZATION...

65 // Add some params to write and read...

66 params.set_param("PI", -3.14159); // Double

67 params.set_param("Answer", 42); // Integer

68

69 std::vector<double> my_vector;

70 my_vector.push_back(2.78);

129

71 my_vector.push_back(5.30);

72 my_vector.push_back(6.21);

73 params.set_param("some_doubles", my_vector); // Vector of doubles

74

75 std::vector<int> ages;

76 ages.push_back(55);

77 ages.push_back(49);
78 ages.push_back(21);

79 ages.push_back(19);
So params . set_param ("Ages " , ages); // Vector of integers

81 }

82

83 {

84 //

85 //+ EXAMPLE USAGE...

86 //+ Begin use of stk io heartbeat file...

87 stk::io: :StkMeshLobroker stkIo (communicator) ;

88

89 //+ Define the heartbeat output to be in TEXT format.

90 size_t hb = stklo.add_heartbeat_output(file_name, stk::io::TEXT);

91

92 stk::util: :ParameterMapType::const_iterator i = params.begin();

93 stk::util::ParameterMapType::const_iterator iend = params.end();

94 for (; i != iend; ++i) {

95 const std::string paramName = (*i).first;

96 //+ NOTE: A reference to the param is needed here.

97 stk::util::Parameter ¶m = params.get_param(paramName);
98

99 //+ Tell heartbeat which variables to output at each step...

WO //+ NOTE: The address of the value to be output is needed since the

101 //+ value is output in the process_heartbeat_output call.

W2 stkIo.add_heartbeat_global(hb,paramName, ¶m.value, param.type);

103

104

105 // Application's "Execution Loop"

106 int timestep_count = 1;

W7 double time = 0.0;

108 for (int step=1; step <= timestep_count; step++) {

W9 //+ Now output the global variables...

no //+ NOTE: A11 registered global values automatically output.

111 stklo.process_heartbeat_output(hb, step, time);

112

113

If the s t k : : io: : TEXT argument to the add_heartbeat_output () function is changed to
stk: : io: :BINARY, then the code will output a binary "history" file instead of a text-based file.
Similarly for the other formats described above.

4.1.32.1 Change output precision

The default precision of the floating point values written by heartbeat to the non-binary formats is
five which gives a number of the form "-1.12345e+O0r. To change the precision, the application
defines the "PRECISION" property prior to creating the heartbeat output. The lines below show
how this is done and also select the CSV format. These lines would replace line 90 in the previous
example.

Listing 4.38: Writing global variables to a Heartbeat file in CSV format with extended precision
../../../code/stk/stk_doc_tests/stkio/usingHeartbeatCSVChangePrecision.cpp

130

92 //+ Output should have 10 digits of precision (1.0123456789e+00)

93 //+ default precision is 5 digits (1.012345e+00)

94 loss: :PropertyManager hb_props;

95 hb_props.add(Ioss::Property("PRECISION", 10));
96

97 //+ Define the heartbeat output and the format (CSV)

98 size_t hb =

99 stklo.add_heartbeat_output(file_name, stk::io::CSV, hb_props);

100

4.1.32.2 Change field separator

Other customizations of the output are also possible. The example below shows the lines that
would be changed in order to use a vertical bar "—" as the field separator in the TEXT format.

Listing 4.39: Writing global variables to a Heartbeat file with a user-specified field separator
../../../code/stk/stk_doc_tests/stkio/usingHeartbeatOverrideSeparator.cpp

92

93

94

95

96

97

//+ Use vertical bar as field separator

Ioss::PropertyManager hb_props;

hb_props.add(Ioss::Property("FIELD_SEPARATOR", " I "));

size_t hb =

stklo.add_heartbeat_output(file_name, stk::io::TEXT, hb_props);

4.1.33 Miscellaneous capabilities

This section describes how to perform some functions that are useful, but don't fit into any of the
previous sections.

4.1.33.1 Add contents of a file and/or strings to the information records of a database

The first example shows how to embed the contents of a file into the information records of a
results or restart output database. This is done on line 93. This is often useful since it then provides
some documentation internal to the database itself showing the commands that were given to the
application that created the database. The example also shows (see line 97) how to add a string as
an additional information record.

In a parallel run in which the file-per-processor output is being used, the information records are
only written to the file on processor O.

Listing 4.40: Adding the contents of a file to the information records of an output database
../../../code/stk/stk_doc_tests/stkio/addFileContentsToOutputDatabase.cpp

60 / /
61 //+ SETUP

62 std::string input_file = "application_input_file.i";

131

63 std::string infol("This is the first line of the input file.");

64 std::string info2("This is the second line of the input file. "

65 "It is longer than 80 characters, so it should be wrapped. ") ;

66 std: : string info3 ("This is the third line of the input file. ") ;

67 std: : string info4 ("This is the fourth and last line of the input file. ") ;

68

69 std::string additional_info_record = "This is an info record added explicitly,"

70 " not from the input file.";

71 {

72 std::ofstream my_file(input_file.c_str());

73 my_file « infol <<"\n" « info2 <<"\n" « info3 <<"\n" « info4 <<"\n";

74

75

76

77 //

78 //+ EXAMPLE

79 stk::io::StkMeshIoBroker stkIo(communicator);

so size_t ifh = stkIo.add_mesh_database("9x9x9Ishell:xyzXYZ", "generated",

81 stk::io::READ_MESH);

82 stklo.set_active_mesh(ifh);

83 stkIo.create_input_mesh();

84 stkIo.populate_bulk_data();

85

86 // Output...

87 size_t fh = stklo.create_output_mesh(filename,

88 stk::io::WRITE_RESULTS);

89 Toss: :Region *io_reg = stkIo.get_output_io_region(fh) . get () ;
90

91 //+ Add the data from the file napplication_input_file.in

92 //+ as information records on this file.

93 io_reg->property_add(Ioss::Property("input_file_name",input_file));

94

95 //+ Add the data from the nadditional_info_record" vector as

96 //+ information records on this file.

97 io_reg->add_information_record(additional_info_record);

98

99 stkIo.write_output_mesh(fh);

100 // ... Verification deleted

101

4.1.33.2 Tell database to overwrite steps instead of adding new steps

The next example shows how to tell an output database (typically restart) to only store a single
time step and overwrite this time step each time that a new step is added to the database. This
is done by setting the cycle count on the database to one as is shown on line 82. The reason an
application would want to do this is to minimize the size of a restart file, but still output restart data
periodically in case the analysis job crashes for some reason.

For more robustness, an application might have two or more restart databases active and cycle
writing to each database in turn. That is, if the application had two restart databases and it was
writing every 0.1 seconds, it would write to the first database at times 0.1, 0.3, 0.5, 0.7; and it
would write to the second database at times 0.2, 0.4. 0.6, 0.8. In this scenario, a crash during the
output of one database would not affect the other database, so there should always be a database
containing valid data.

Listing 4.41: Overwriting time steps instead of adding new steps to a database
../../../code/stk/stk_doc_tests/stkio/singleStepOnRestart.cpp

132

71 // ... Setup deleted

72 //

73 // EXAMPLE USAGE...

74 // Create a restart file,

75 size_t fh = stklo.create_output_mesh(filename,

76 stk::i0::WRITE_RESTART);

77 stkIo.add_field(fh, field);
78

79 //+ Set the cycle count to 1. This will result in a maximum

80 //+ of one step on the output database -- when a new step is

81 //+ added, it will overwrite the existing step.

82 stkIo.get_output_io_region(fh)->get_database()->set_cycle_count(1);

83

84 // Write multiple steps to the restart file.

85 for (size_t step=0; step < 3; step++) {

86 double time = step;

87 stkIo.begin_output_step(fh, time);

Ss stkIo.write_defined_output_fields(fh);

89 stkIo.end_output_step(fh);

90 }

91

92 //+ At this point, there should only be a single state on the

93 //+ restart database. The time of this state should be 2.0.

94 // ... Verification deleted

95

The cycle count can be set to any value. In general, if the "analysis" step is "AS" and the cycle
count is "CYCLE", then the database step is given by "AS mod CYCLF' where "moe is the
remainder when AS is divided by CYCLE.

133

4.1.34 How to create and write a nodeset and sideset with fields using STK
Mesh

Listing 4.42: Example of creating and writing a nodeset with fields.
../../../code/sthistk_doc_tests/stk_io/howToCreateAndWriteNodesetOrSideset.cpp

170 TEST_F(MeshWithNodeset, createAndWriteNodesetWithField)

171 {

172 if (stk::parallel_machine_size(get_comm()) == 1)

173

174 std::string nodesetName("nodelist_1");

175 stk::mesh::Part& nodesetPart = get_meta().declare_part(nodesetName,

stk::topology::NODE_RANK);

176

177 const std::string fieldName = "nodesetField";

178 const unsigned fieldLength = 1;

179 double initialValue[fieldLength];

180 for (unsigned count=0; count<fieldLength; ++count)

181 initialValue[count] = 0.;

182 const int numStates = 1;

183 stk::mesh::Field<double, stk::mesh::Cartesian> &newField =

184 get_meta().declare_field<stk::mesh::Field<double, stk::mesh::Cartesian> >(

185 stk::topology::NODE_RANK, fieldName, numStates);
186

187 stk::mesh::put_field(newField, nodesetPart, fieldLength, initialvalue);
188

189 setup_mesh("generated:lx1x1", stk::mesh::BulkData::AUTO_AURA);

190

191 stk::mesh::Entity nodel = get_bulk().get_entity(stk::topology::NODE_RANK, 1);

192

193 get_bulk().modification_begin();

194 get_bulk().change_entity_parts(nodel, stk::mesh::ConstPartVectorf&nodesetPartl);

195 get_bulk().modification_end();

196

197 stk::io::put_io_part_attribute(nodesetPart);

198

199 verify_field_is_valid(get_meta(), nodel, initialValue, fieldLength, fieldName);
200 verify_nodesetField_in_file(get_bulk(), nodel, nodesetName, fieldName);

201

202 }

Listing 4.43: Example of creating and writing a sideset with fields.
../../../code/stlastk_doc_tests/stkiolhowToCreateAndWriteNodesetOrSideset.cpp

219 TEST_F(MeshWithSideset, createAndWriteSidesetWithField)

220

221 if (stk::parallel_machine_size(get_comm()) == 1)

222

223 std::string sidesetName("surface_1");

224 stk::mesh::Part& sidesetPart = get_meta().declare_part(sidesetName,

get_meta().side_rank());

225

226 const std::string fieldName = "sidesetField";

227 const unsigned fieldLength = 1;

228 double initialValue[fieldLength];

229 for (unsigned count=0; count<fieldLength; ++count)
23o initialValue[count] = 1.;

231 const int numStates = 1;

232 stk::mesh::Field<double, stk::mesh::Cartesian> &newField =

233 get_meta().declare_field<stk:mesh::Field<double, stk:mesh::Cartesian> >(

234 get_meta().side_rank(), fieldName, numStates);

235

236 stk::mesh::put_field(newField, sidesetPart, fieldLength, initialValue);

237

134

238 setup_mesh ("generated: lx1x1", stk: :mesh: :BulkData: :AUTO_AURA) ;

239

240 stk: :mesh: :Entity eleml = get_bulk() .get_entity (stk: :topology: :ELEM_RANK, 1);

241 unsigned sideOrdinal = 0;

242

243 get_bulk().modification_begin();

244 stk::mesh::Entity side = get_bulk().declare_element_side(eleml, sideOrdinal,

stk::mesh::PartVectorf&sidesetPartl);

245 get_bulk().modification_end();
246

247 stk::io::put_io_part_attribute(sidesetpart);
248

249 verify_field_is_valid(get_meta(), side, initialValue, fieldLength, fieldName);

25o verify_sidesetField_in_file(get_bulk(), side, sidesetName, fieldName);
251 }

252 }

135

This page intentionally left blank.

Chapter 5

STK Search

The STK Search module provides a geometric proximity box-box search using various methods as
documented below in Listings 5.1 - 5.2.

5.1 STK Search: usage examples

STK Search takes two lists of bounding volumes and finds intersections between them. It is gen-
erally more efficient to have the first list be larger than the second list.

5.1.1 Using Boost R-tree bounding volurne search

isting 5.1: oun me sea the Boost R-tree method
../../../code/stk/stk_doc_tests/stk_search/boundingBoxSearch3D.cpp

5.1.2 Search rnethod options

The third argument to coarse_search (..) selects the spatial index implementation used in
the local search portion of the search, i.e, after the implementation does any necessary ghosting.

Listing 5.2 shows the list of possible search methods.

Listing 5.2: Search method options ../../../code/stk/stk_search/stk_search/SearchMethod.hpp

BOOST_RTREE,

KDTREE,

MORTON_LINEARIZED_BVH // Coming soon!

The BOOST_RTREE and the KDTREE methods are recommended over OCTREE for perfor-
rnance. BOOST_RTREE uses the boost : :geometry: : index: : rtree spatial index from
the Boost.Geometry library. KDTREE employs a bounding-volume hierarchy (BVH) based on
k — d-trees [3, 4]. The KDTREE implementation is native and only has a Kokkos dependency.
The structure of the BVH corresponds to that of a k — d-tree computed for the centroids of one

137

set of input boxes. Bounding boxes are computed at the nodes of the tree to make it into a BVH.
The KDTREE implementation can take advantage of OpenMP parallelism.1 Performance bene-
fits beyond two threads is quite limited, so far, as threading has not been fully integrated into the
coarse_search implementation.

Currently, the spatial indexing data structures are computed on the fly, but in the future it is possible
that the stk: :search API will be extended to support some form of re-use or incremental
update.

1 Must be built with OpenMP support, and OpenMP threading must be available at runtime.

138

Chapter 6

STK Util

The STK Util module provides many utility capabilities that are used within STK modules and
STK-based applications. The categories of utilities include error-handling, exception handling,
execution tracing, application argument processing, parallel operations, timing, string operations,
etc. These utilities are candidates for future independent STK modules.

6.1 Using the Diagnostic Timers

The following tests show the basic usage of the Diagnostic Timers.

Listing 6.1: Diagnostic Timers ../../../code/stk/stk_doc_tests/stk_util/TimerHowTo.cpp

35 #include <gtest/gtest.h>

36 #include <stk_util/diag/PrintTimer.hpp>

37 #include <stk_util/diag/Timer.hpp>

38 #include <stk_unit_test_utils/comparison/stringAndNumbercomparisons.hpp>

39

40 namespace

41 {

42

43 #if defined(NDEBUG)

44 const double tolerance = 0.10;

45 #else

46 const double tolerance = 0.25;

47 #endif

48

49 void doWork()

50 {

51 ::usleep(le5);

52 }

53

54 TEST(StkDiagTimerHowTo, useTheRootTimer)

55 {

56 stk::diag::TimerSet enabledTimerSet(0);
57 stk::diag::Timer rootTimer = createRootTimer("totalTestRuntimen, enabledTimerSet);

58

59

60 stk::diag::TimeBlock totalTestRuntime(rootTimer);

61 doWork();

62

63 std::ostringstream outputStream;

64 bool printTimingsOnlySinceLastPrint = false;

65 stk::diag::printTimersTable(outputStream, rootTimer, stk::diag::METRICS_ALL,

printTimingsOnlySinceLastPrint);

66

139

67 std::string expectedOutput = " \

68 Timer Count CPU Time Wall Time \

69 \

70 totalTestRuntime 1 SKIP SKIP 0.100 SKIP \

71 \

72 Took 0.0001 seconds to generate the table above. \

73 11;

74 EXPECT_TRUE(unitTestUtils::areStringsEqualWithToleranceForNumbers(expectedOutput,

outputStream.str(), tolerance));
75

76

77 stk::diag::deleteRootTimer(rootTimer);

78

79

80 TEST(StkDiagTimerHowTo, useChildTimers)

81 {

82 enum {CHILDMASK1 = 1, CHILDMASK2 = 2};

83 stk::diag::TimerSet enabledTimerSet(CHILDMASK1 1 CHILDMASK2);

84 stk::diag::Timer rootTimer = createRootTimer("totalTestRuntime", enabledTimerSet);

85 rootTimer.start();
86

87 stk::diag::Timer childTimerl("childTimerl", CHILDMASK1, rootTimer);

88 stk::diag::Timer childTimer2("childTimer2", CHILDMASK2, rootTimer);

89

90

91 stk::diag::TimeBlock timeStuffInThisScope(childTimer1);

92 stk::diag::TimeBlock timeStuffInThisScopeAgain(childTimer2);

93 doWork();

1
95

96 std::ostringstream outputStream;

97 bool printTimingsOnlySinceLastPrint = false;

98 stk::diag::printTimersTable(outputStream, rootTimer, stk::diag::METRICS_ALL,

printTimingsOnlySinceLastPrint);

99

100

101 stk::diag::TimeBlock timeStuffInThisScope(childTimer1);

102 doWork();

W3

104

105

106

stk::diag::printTimersTable(outputStream, rootTimer, stk::diag::METRICS_ALL,

printTimingsOnlySinceLastPrint);

W7 std::string expectedOutput = " \

108 Timer Count CPU Time Wall Time \

109 \

110 totalTestRuntime 1 SKIP SKIP 0.100 SKIP \

111 childTimerl 1 SKIP SKIP 0.100 SKIP \

112 childTimer2 1 SKIP SKIP 0.100 SKIP \

113 \

1W Took 0.0001 seconds to generate the table above. \

115 Timer Count CPU Time Wall Time \

116 \

117 totalTestRuntime 1 SKIP SKIP 0.200 SKIP \

118 childTimerl 2 SKIP SKIP 0.200 SKIP \

119 childTimer2 1 SKIP SKIP 0.100 SKIP \

120 \

121 Took 0.0001 seconds to generate the table above. \

U2 .;

123 EXPECT_TRUE(unitTestUtils::areStringsEgualWithToleranceForNumbers(expectedOutput,

outputStream.str(), tolerance));

U4

125 stk::diag::deleteRootTimer(rootTimer);

126 }

127

128 TEST(StknagTimerHowTO, disableChildTimers)

129 {

130 enum {CHILDMASK1 = 1, CHILDMASK2 = 2};

140

131 stk::diag::TimerSet enabledTimerSet(CHILDMASK2);

132 stk::diag::Timer rootTimer = createRootTimer("totalTestRuntimen, enabledTimerSet);

133 rootTimer. . start () ;

134

135 stk::diag::Timer disabledTimer("disabledTimer", CHILDMASK1, rootTimer);

136 stk: :diag: :Timer enabledTimer("enabledTimer", CHILDMASK2, rootTimer);

137

138

139 stk::diag::TimeBlock timeStuffInThisScope(disabledTimer);

140 stk::diag::TimeBlock timeStuffInThisScopeAgain(enabledTimer);

141 doWork();

142

143

144 std::ostringstream outputStream;

145 bool printTimingsOnlySinceLastPrint = false;

146 stk::diag::printTimersTable(outputStream, rootTimer, stk::diag::METRICS_ALL,

printTimingsOnlySinceLastPrint);

147

148

149 stk::diag::TimeBlock timeStuffInThisScope(disabledTimer);

150 doWork();

151

152

153 stk::diag::printTimersTable(outputStream, rootTimer, stk::diag::METRICS_ALL,

printTimingsOnlySinceLastPrint);

154

155 std::string expectedOutput = " \

156 Timer Count CPU Time Wall Time \

157 \

158 totalTestRuntime 1 SKIP SKIP 0.100 SKIP \

159 enabledTimer 1 SKIP SKIP 0.100 SKIP \

160 \

161 Took 0.0001 seconds to generate the table above. \

162 Timer Count CPU Time Wall Time \

163 \

164 totalTestRuntime 1 SKIP SKIP 0.200 SKIP \

165 enabledTimer 1 SKIP SKIP 0.100 SKIP \

166 \

167 Took 0.0001 seconds to generate the table above. \

168 .;

169 EXPECT_TRUE(unitTestUtils::areStringsEgualWithToleranceForNumbers(expectedOutput,

outputStream.str(), tolerance));

170

171 stk::diag::deleteRootTimer(rootTimer);

172 }

173

174 }

Listing 6.2: Diagnostic Timers in Parallel ../../../code/stk/stk_dociests/stk_util/TimerHowToParallel.cpp

35 #include <gtest/gtest.h>

36 #include <stk_util/diag/PrintTimer.hpp>

37 #include <stk_util/diag/Timer.hpp>

38 #include <stk_unit_test_utils/comparison/stringAndNumberComparisons.hpp>

39

40 namespace

41

42

43 const double tolerance 0.10;

44

45 void doWork()

46 1

47 ::usleep(1e5);

48

49

50 TEST(StkDiagTimerHowTo, useTimersInParallel)

141

51 {

52 MPI_Comm communicator = MPI_COMM_WORLD;

53 int numProcs = -1;

54 MPI_Comm_size(communicator, &numProcS);

55 if(numProcs == 2)

56

57 enum {CHILDMASK1 = 1};

58 stk::diag::TimerSet enabledTimerSet(CHILDMASK1);

59 stk::diag::Timer rootTimer = createRootTimer("totalTestRuntime", enabledTimerSet);

60 rootTimer.start();

61

62 stk::diag::Timer childTimerl("childTimerl", CHILDMASK1, rootTimer);

63

64

65 stk::diag::TimeBlockSynchronized

timerStartSynchronizedAcrossProcessors(childTimerl, communicator);

66 doWork();

67 }

68

69 std::ostringstream outputStream;

70 bool printTimingsOnlySinceLastPrint = false;

71 stk::diag::printTimersTable(outputStream, rootTimer, stk::diag::METRICS_ALL,

printTimingsOnlySinceLastPrint, communicator);

72

73 int procld = -1;

74 MPI_Comm_rank(communicator, &procld);

75 if(procId == 0)

76 {

77 std::string expectedOutput = " \

78 CPU Time CPU Time CPU Time \

79 Wall Time Wall Time Wall Time \

80 Timer Count Sum (% of System) Min (% of System) Max (% of System) \

81 Sum (% of System) Min (% of System) Max (% of System) \

82 SKIP SKIP SKIP SKIP \

83 totalTestRuntime 2 SKIP SKIP SKIP SKIP SKIP SKIP \

84 0.200 SKIP 0.100 SKIP 0.100 SKIP \

85 childTimerl 2 SKIP SKIP SKIP SKIP SKIP SKIP \

86 0.200 SKIP 0.100 SKIP 0.100 SKIP \

87 \

88 Took SKIP seconds to generate the table above. \

89 “;

90 EXPECT_TRUE(unitTestUtils::areStringsEgualWithToleranceForNumbers(expectedOutput,

outputStream.str(), tolerance));

91

92

93

94 }

95

96

97

1

stk::diag::deleteRootTimer(rootTimer);

The line at the end that prints the time to generate the table is not that useful for small or medium
sized runs, but at large numbers of processors, it can take a non-trivial amount of time to gather the
timing data from all processors. Knowing this time can help you understand the overall problem
runtime.

142

6.2 Communicating with other MPI processors

Listing 6.3 shows an example of how to pass a floating point value(double) to all other processors.
Note that there currently is a two phase process for doing this. In phase 1, the data that is to be
sent is used to size the communication buffer which will be sent to that processor. Then at the end
of phase 1, the buffer allocation call is made. Then, in phase 2, the same packing of buffers is
done again, and in this phase, the communicate call is made. Finally, the buffer for each receive is
obtained and unpacked in the order in which it was packed. Here, the assumption is that only one
value is received from each processor.

Note, that the call to allocatelmffers takes a parameter which is usually 1/4 of the total number
of processors. Inside the communicate method, the number of max processors to communicate
with is calculated, and if that number is less than a certain threshold, a sparse communication
method is chosen, otherwise a dense communication method is chosen. The parameter sent to
allocate_buffers is that threshold value.

Listing 6.3: Example showing how to communicate with other processors
../../../code/stlastk_cloc_tests/stk_util/CommSparseHowTo.cpp

45 TEST(ParallelComm, HowToCommunicateOneValue)

46 {

47 MPI_Comm comm = MPI_COMM_WORLD;

48 stk::CommSparse commSparse(comm);

49

50 int myProcId = commSparse.parallel_rank();

51 int numProcs = commSparse.parallel_size();

52

53 double sendSomeNumber = 100-myProcId;

54

55 for(int phase = 0; phase < 2; ++phase)

56

57 for (int proc=0;proc<numProcs;proc++)

58

59 if (proc != myProcId)

60

61 stk::CommBuffer& proc_buff = commSparse.send_buffer(proc);

62 proc_buff.pack<double>(sendSomeNumber);

63 1
64

65 if(phase == 0)

66

67 commSparse.allocate_buffers();

68 1
69 else

70 {

71 commSparse . communicate () ;

72 }

73 1
74

75

76 for (int proc=0;proc<numProcs;proc++)

7

78 if (proc != myProcId)

79

stk::CommBuffer& dataReceived = commSparse.recv_buffer(proc);

81 double val = -1;

82 dataReceived . unpack (val) ;

83 EXPECT_EQ(100-proc, val);

84 }

85 1

143

86

Listing 6.4 shows how to receive an unknown amount of data from a processor.

Listing 6.4: Example showing how to communicate an arbitrary amount of data with other processors
../../../code/stkistk_doc_tests/stk_util/CommSparseHowTo.cpp

89 TEST(ParallelComm, HowToCommunicateAnArbitraryNumberofvalues)

90 {

91 MPI_Comm comm = MPI_COMM_WORLD;

92 stk::CommSparse commSparse(comm);

93

94 int myProcId commSparse.parallel_rank();

95 int numProcs commSparse.parallel_size();

96

97 double sendSomeNumber = 100-myProcId;

98

99 for(int phase = 0; phase < 2; ++phase)

WO

101 for (int proc=0;proc<numProcs;proc++)

W2

103 if (proc != myProcId)

104 {

105 stk::CommBuffer& proc_buff = commSparse.send_buffer(proc);

106 for (int i=0;i<myProcId;i++)

107

W8 proc_buff.pack<double>(sendSomeNumber+1) ;

109

HO

111

112 if(phase == 0)

113 {

114 commSparse.allocate_buffers();

115 }

116 else

117 {

118 commSparse.communicate();

119

120

121

122

123 for (int

procFromWhichDataIsReceived=0;procFromWhichDataIsReceived<numProcs;procFromWhichDataIsReceived++)

124

125 if (procFromWhichDataIsReceived != myProcId)
126

127 stk::CommBuffer& dataReceived =

commSparse.recv_buffer(procFromWhichDataIsReceived);

128 int numItemsReceived = 0;

129 while (dataReceived.remaining())

130

131 double val = -1;

132 dataReceived . unpack (val) ;

133 EXPECT_EQ(100-procFromWhichDataIsReceived+numItemsReceived, val);

134 numItemsReceived++;

135

136 int goldNumItemsReceived = procFromWhichDataIsReceived;

137 EXPECT_EQ(goldNumltemsReceived, numItemsReceived);

138

139

140 }

6.3 Using the STK Scheduler

The STK Scheduler provides a capability for scheduling an operation, for example output, that will
happen at various periods throughout an analysis. The application can create a scheduler and then
set the schedule based on time intervals, explicit times, step intervals, and explicit steps. Multiple
scheduling intervals can be specified with different scheduling in each interval. The application
can then query the scheduler throughout the analysis and determine whether the scheduled activity
should be performed at the current analysis time and step.

This section describes two methods of using the STK Scheduler tool: time-based and step-based
scheduling. Examples of time-based and step-based scheduling are provided below to show the
behavior of the two methods and the combinations thereof. The figures at the end of the section
show differences between time-based and step-based scheduling. One main difference is that with
time-based scheduling, the i s_it_t ime () function will return 'true the first time it is called
per time period, while the step-based scheduling will return "true only if the step number is equal
to a step period.

In addition to time-based and step-based scheduling, the STK Scheduler state can also be modified
via operating system signals and explicit application control; examine the source code to see these
additional capabilities.

Listing 6.5: Using the scheduler ../../../code/stkistk_doc_tests/stk_util/usingScheduler.cpp

36 #include <gtest/gtest.h>

37 #include <stk_util/environment/Scheduler.hpp>

38

39 namespace

40 {

at TEST(StkUtilTestForDocumentation, TimeBasedScheduling)

42 {

43 stk::util::Scheduler scheduler;

44

45 const stk::util::Time startTime = 0.0;

46 const stk::util::Time timelnterval = 1.0;

47 scheduler.add_interval(startTime, timelnterval);

48

49 stk::util::Step timeStep = 0;

50 EXPECT_TRUE(scheduler.is_it_time(0.0, timeStep++));
51 EXPECT_FALSE(scheduler.is_it_time(0.5, timeStep++));

52 EXPECT_TRUE(scheduler.is_it_time(1.0, timeStep++));
53

54

55 TEST(StkUtilTestForDocumentation, TimeBasedSchedulingWithTerminationTime)
56 {

57 stk::util::Scheduler scheduler;

58

59 const stk::util::Time startTime = 2.0;

60 const stk::util::Time timelnterval = 10.0;

61 scheduler.add_interval(startTime, timelnterval);

62

63 const stk::util::Time terminationTime = 8.2;

64 scheduler.set_termination_time(terminationTime);
65

66 stk::util::Step timeStep = 0;

67 EXPECT_FALSE(scheduler.is_it_time(startTime - 1.0, timeStep++));

68 const stk::util::Time firstTimeAfterStartTime = terminationTime-0.1;

69 EXPECT_TRUE(scheduler.is_it_time(firstTimeAfterStartTime, timeStep++));

70 const stk::util::Time firstAfterTermination = terminationTime+0.1;

145

71

72

73 }

74

75

76 {

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97 }

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

EXPECT_TRUE(scheduler.is_it_time(firstAfterTermination, timeStep++));

EXPECT_FALSE(scheduler.is_it_time(terminationTime+0.2, timeStep++));

TEST(StkUtilTestForDocumentation, StepBasedScheduler)

stk::util::Scheduler scheduler;

const stk::util::Step startStep = 0;

const stk::util::Step stepinterval = 4;

scheduler.add_interval(startStep, stepInterval);

const stk::util::Time dt = 0.1;

for (stk::util::Step timeStep=0;timeStep<100;timeStep+=3)

stk::util::Time time = timeStep*dt;

bool check = scheduler.is_it_time(time, timeStep);

if (timeStep % stepinterval == 0)

1
else

1

1

EXPECT_TRUE(check);

EXPECT_FALSE(check);

TEST(StkUtilTestForDocumentation, TimeBasedSchedulerWithTwoTimeIntervals)

stk::util::Scheduler scheduler;

const stk::util::Time startTimel = 0.0;

const stk::util::Time deltal = 0.1;

scheduler.add_interval(startTimel, deltal);

const stk::util::Time startTime2 = 0.9;

const stk::util::Time delta2 = 0.3;

scheduler.add_interval(startTime2, delta2);

stk::util::Step timeStep = 0;

EXPECT_TRUE(scheduler.is_it_time(0

EXPECT_FALSE(scheduler.is_it_time(

EXPECT_TRUE(scheduler.is_it_time(0

EXPECT_TRUE(scheduler.is_it_time(0

EXPECT_TRUE(scheduler.is_it_time(0

EXPECT_FALSE(scheduler.is_it_time(

EXPECT_TRUE(scheduler.is_it_time(0

EXPECT_FALSE(scheduler.is_it_time(

EXPECT_FALSE(scheduler.is_it_time(

EXPECT_FALSE(scheduler.is_it_time(

EXPECT_TRUE(scheduler.is_it_time(1

.0, timeStep++));

0.07, timeStep++));

.14, timeStep++));

.62, timeStep++));

.6999999, timeStep++));

0.77, timeStep++));

.9, timeStep++));
0.97, timeStep++));

1.04, timeStep++));

1.11, timeStep++));

.27, timeStep++));

Delta 1

rjh

1 2

0.0
#1,

Start Time 1

1 3 1 4

Delta 2

11
i
5

i 6 i 7 i
8

I 9 I
10

1
0.
t
9 1.2 1 5

Start Time 2

>

Figure 6.1: Example time-based scheduler: Using two intervals of different sizes. The first interval
spans the time from 0.0 to 0.9 with a time-delta of 0.1; the second interval continues from time 0.9
to the end of the analysis with a time-delta of 0.3.

O True
• False
• True within tolerance

Figure 6.2: Example time-based scheduler: The first call to i s_it_t ime () per interval (within
a tolerance) will return true. The diamond shapes show the sequence of calls and the color of the
diamond signifies whether the function returns true (green or yellow) or false (red). The time-delta
and interval settings are the same as in the previous figure.

Step Increment = 4 Step Increment = 2

0 1

2 t #

4 5 t *

• True
• False

7 8 9 11 13
t t

Start Step 1 Start Step 2

 >

Figure 6.3: Example step-based scheduler: The call to i s_it_t ime () will return true on the
interval boundary aligned with the step increment. The diamond shapes show the sequence of calls
and the color of the diamond signifies whether the function returns true (green) or false (red). This
scheduler has two intervals; the first spans steps 0 to 9 with a step-increment of 4 followed by an
interval with a step-increment of 2.

147

6.4 Parameters — type-safe named storage of any variable type

The Parameter class provides a type-save mechanism for storing any variable. A variable or
vector of variables can be stored in a P a rame t e rL i s t and later retrieved by name. The param-
eters can also be read from and written to mesh and results files as demonstrated in Sections 4.1.30
and 4.1.31.

The supported variable types that can currently be stored in a Parameter object are 32-bit inte-
gers, 64-bit integers, doubles, floats, and std:: strings and vectors of those types. If an additional
type is required, it can be added fairly easily and non-supported types can be stored with reduced
functionality.

The first example sets up some variables of various types for use in the following parameter exam-
ples.

Listing 6.6: Parameters: Data for use in the following examples
../../../code/stk/stk_doc_tests/stk_util/parameters.cpp

51

52

53

54

//+ INITIALIZATION

std::vector<std::string> expected_name;

std::vector<stk::util::ParameterType::Type> expected_type;

55 //+ Scalar values of type double, float, int, int64_t, and string

56 double pi = 3.14159;

57 float e = 2.71828;

58 int answer = 42;

59 int64_t big_answer = 42000000000001;

60 std::string team_name = "STK Transition Team";

61

62 expected_name.push_back("PI");

63 expected_type.push_back(stk::util::ParameterType::DOUBLE);

64 expected_name.push_back("E");

expected_type.push_back(stk::util::ParameterType::FLOAT);

expected_name.push_back("Answer");

expected_type.push_back(stk::util::ParameterType::INTEGER);

expected_name.push_back("Answer_64");

expected_type.push_back(stk::util::ParameterType::INT64);

expected_name.push_back("TeamName");
expected_type.push_back(stk::util::ParameterType::STRING);

65

66

67

68

69

70

71

72

73 //+ vector of doubles

74 std::vector<double> my_double_vector;

75 my_double_vector.push_back(2.78); my_double_vector.push_back(5.30);

76 my_double_vector.push_back(6.21);

7 expected_name.push_back("some_doubles");

78 expected_type.push_back(stk::util::ParameterType::DOUBLEVECTOR);

79

So //+ vector of floats

81 std::vector<float> my_float_vector;

82 my_float_vector.push_back(194.0); my_float_vector.push_back(-194.0);

83 my_float_vector.push_back(47.0); my_float_vector.push_back(92.0);

84 expected_name.push_back("some_floats");

85 expected_type.push_back(stk::util::ParameterType::FLOATVECTOR);

86

87 //+ vector of ints

Sa std::vector<int> ages;

89 ages.push_back(55); ages.push_back(49); ages.push_back(21); ages.push_back(19);

90 expected_name.push_back("Ages");
91 expected_type.push_back(stk::util::ParameterType::INTEGERVECTOR);

92

148

96

97

98

99

100

101

102

103

104

105

93 //+ vector of int64_ts

94 std::vector<int64_t> ages_64;

95 ages_64.push_back(55); ages_64.push_back(49); ages_64.push_back(21);

ages_64.push_back(19);

expected_name.push_back("Ages_64");

expected_type.push_back(stk::util::ParameterType::INT64VECTOR);

//+ vector of strings

std::vector<std::string> names;

names.push_back("greg"); names.push_back("chloe"); names.push_back("tuffy");

names.push_back("liberty"); names.push_back("I have spaces");
expected_name.push_back("Names");

expected_type.push_back(stk::util::ParameterType::STRINGVECTOR);

This example illustrates how to create a ParameterList and add variables to it. Note that a
single ParameterList can store multiple variables of multiple types.

Listing 6.7: Parameters: Defining ../../../code/stkistk_doc_tests/stk_utillparameters.cpp

108

109

110

111

112

113

114

115

116

117

118

119

120

//+ Define parameters...

stk::util::ParameterList params;

params.set_param("PI",

params.set_param("E",

params.set_param("Answer",

params.set_param("Answer_64",

params.set_param("TeamName",

params.set_param("some_doubles",

params.set_param("some_floats",

params.set_param("Ages",

params.set_param("Ages_64",

params.set_param("Names",

pi);

e);

answer);

big_answer);

team_name);

my_double_vector);

my_float_vector);

ages);

ages_64);

names);

Once the parameters have been added to a ParameterList, they can be printed or accessed by
various means as shown in the following example.

Listing 6.8: Parameters: Accessing values ../../../code/stldstk_doc_tests/stk_util/parameters.cpp

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

//+ Write parameters to stdout...

params.write_parameter_list(std::cout);

//+ Access parameters by name...

size_t num_param = expected_name.size();

for (size_t i=0; i < num_param; i++) {

stk::util::Parameter ¶m = params.get_param(expected_name[i]);

EXPECT_EQ(param.type, expected_type[i]);

//+ Extract some parameter values if know type:

std::vector<int> pages = params.get_value<std::vector<int> >("Ages");

for (size_t i=0; i < pages.size(); i++) {
EXPECT_EQ(pages[i], ages[i]);

1

139 double my_pi = params . get_value<double> ("PI ") ;

140 EXPECT_EQ(my_pi, pi);

141

142 //+ Change value of an existing parameter

143 params.set_value ("Answer", 21);

144

145 int new_answer = params.get_value<int>("Answer");

146 EXPECT_EQ(new_answer, 21);

149

147

148

149 //+ Access a variable of unknown type...

150 //+ The parameter uses boost::any to store the actual value.

151 stk::util::Parameter ¶m = params.get_param("Answer");

152 double value_as_double = 0.0;

153 switch (param.type) {
154 case stk::util::ParameterType::DOUBLE:

155 value_as_double = boost::any_cast<double>(param.value);
156 break;

157 case stk::util::ParameterType::FLOAT:

158 value_as_double = static cast<double>(boost::any_cast<float>(param.value));

159 break;

160 case stk::util::ParameterType::INTEGER:

161 value_as_double = static_cast<double>(boost::any_cast<int>(param.value));

162 break;

163 case stk::util::ParameterType::INT64:

164 value_as_double = static_cast<double>(boost::any_cast<int64_t>(param.value));

165 break;

166 default:

167 std::cerr « "ERROR: I can not convert 'Answers' value to a double\n";

168 break;

169 }

170 EXPECT_EQ(static_cast<double>(new_answer), value_as_double);

171

172

173

174 //+ Access a variable of unknown type without using boost::any_cast

175 stk::util::Parameter ¶m = params.get_param("Answer");

176 double value_as_double = 0.0;

177 switch (param.type) f

178 case stk::util::ParameterType::DOUBLE:

179 value_as_double = params.get_value<double>("Answer");

BO break;

181 case stk::util::ParameterType::FLOAT:

B2 value_as_double = static_cast<double>(params.get_value<float>("Answer"));

183 break;

184 case stk::util::ParameterType::INTEGER:

185 value_as_double = static_cast<double>(params.get_value<int>("Answer"));
186 break;

187 case stk::util::ParameterType::INT64:

188 value_as_double = static_cast<double>(params.get_value<int64_t>("Answer"));

189 break;

190 default:

191 std::cerr « "ERROR: I can not convert 'Answers' value to a double\n";

192 break;

193

194 EXPECT_EQ(static_cast<double>(new_answer), value_as_double);
195

196

197

This example shows how the Parameter class deals with errors such as accessing nonexistent
parameters or specifying the incorrect type for a parameter.

Listing 6.9: Parameters: Dealing with errors ../../../code/stk/stk_doc_tests/stk_util/parameters.cpp

200

201

202

203

204

205

//+ If the requested parameter does not exist,

//+ an error message is printed to stderr and an invalid

//+ parameter object is returned

stk::util::Parameter no_exist = params.get_param("DoesNotExist");
EXPECT_EQ(stk::util::ParameterType::INVALID, no_exist.type);

206 //+ In this method of requesting a parameter, no error

207 //+ message is printed if the parameter doesn't exist and

150

208 //+ instead the returned iterator is equal to the end of the

209 //+ parameter list.

210 stk::util::ParameterMapType::iterator it = params.find("DoesNotExist");

211 EXPECT_TRUE(it == params.end());
212

213 //+ If the value of a non-existant parameter is requested,

214 //+ an error message is printed and the value 0 is returned.

215 double invalid_value = params.get_value<double>("DoesNotExist");

216 EXPECT_EQ(0.(), invalid_value);
217

218 //+ If the parameter types do not match, an error message is

219 //+ printed and the value 0 of the requested type is returned.

int invalid = params.get_value<int>("PI");

221 EXPECT_EQ(C), invalid);

222

2D //+ If the parameter types do not match, an error message is

224 //+ printed and an empty vector of the requested type is returned.

2D std::vector<double> pies = params.get_value<std::vector<double> >("PI");
226 EXPECT_EQ(Ou, pies.size());

227

Although it is best to use a ParameterList with the supported variable types, it can also be
used to store types that it does not officially support. The following example shows this capability
by storing a value of s t d : : complex type. Note that although an unsupported type can be stored
and retrieved from a ParameterList, it cannot be read from or written to a mesh or results file
or printed using the Parameter system.

Listing 6.10: Parameters: Storing unsupported types ../../../code/stk/stk_doc_tests/stk_util/parameters.cpp

234

235

236

237

238

//+ Adding a parameter of "unsupported" type...

stk::util::ParameterList more_params;

std::complex<double> phase(3.14,2.718);

more_params.set_param("phase", phase);

239 //+ The print system doesn't know about this type, so will print

240 //+ a warning message about unrecognized type.

241 more_params.write_parameter_list(std::cout);

242

243 //+ However, you can still retrieve the value of the parameter

244 //+ if you know what type it is.

245 std::complex<double> my_phase = more_params.get_value<std::complex<double> >("phase");

246 EXPECT_EQ(my_phase, phase);

247

248 //+ The Parameter class won't help you on determining the type,

249 //+ You must know what it is.

250 EXPECT_EQ(more_params.get_param("phase").type, stk::util::ParameterType::INVALID);

251

252 //+ If the wrong type is specified, an exception will be thrown...

253 EXPECT_ANY_THROW(more_params.get_value<std::complex<int> >("phase"));
254

6.5 Filename substitution

The filename_substitution function in STK Util provides a basic substitution capability. If the
string (typically a filename) passed as an argument to this function contains "special characters",

151

the special characters will be replaced with runtime-calculated values. The currently supported
substitutions are:

• %B For applications which use the command-line-argument parsing facilities provided in
stkaitil/environment/Programoptions .hpp, and which use a command-line
argument called "input-dec1C, then %B will be replaced by the basename of the file named as
that "input-dec1C argument. If there is no "input-decle argument, then the basename "stdin"
will be used. The basename of the file is the portion of the string between the last "r and
the last ".". For example, given the string /pat h/to/t he / f i l e /input . i, the basename
would be input.

• %P will be replaced by the number of processors being used in the current execution.

The example below shows a very simple example of this capability. It is run on 1 processor with
no input file, so the substituted filename should be "stdin-1.C.

152

Listing 6.11: Filename substitution capability
../../../code/stk/stk_dociests/stk_util/filenameSubstitution.cpp

35 #include <gtest/gtest.h> // for AssertHelper, EXPECT_EQ, etc

36 #include <stk_util/environment/EnvData.hpp> // for EnvData

37 #include <stk_util/environment/FileUtils.hpp>

38 #include <stk_util/environment/ProgramOptions.hpp>

39 #include <string> // for string, allocator, etc

4o #include <utility> // for make_pair

at #include "boost/program_options/variables_map.hpp" // for variable_value, etc

42

43 namespace

44 {

45 TEST(StkUtilHOWTO, useFilenameSubstitutionWithNoCommandLineOptions)
46 {

47 const std::string default_base_filename = "stdin";

48 const std::string numProcsString = "1";

49 const std: :string expected_filename = default_base_filename + numProcsString + ".e";

50

std::string file_name = "%B-%P.e";

52 stk::uti1::filename_substitution(file_name);
53 EXPECT_EQ(expected_filename, file_name);

54

55

56 void setFilenameInCommandLineOptions(const std: :string &filename)

57 {

58 boost: :program_options: :variables_map &command_line_options = stk: :get_variables_map();

59 command_line_options.insert(std::make_pair("input-deck",

boost::program_options::variable_value(filename, false)));

stk: :EnvData: :instance() .m_inputFile = filename;

61 }

62 TEST (StkUtilHowTo, useFilenameSubstitutionWithFileComingFromCommandLineOptions)

63 {

64 const std::string base_filename = "myfile";

65 const std::string full_filename = n/path/ta" + base_filename + ".g";

66 setFilenameInCommandLineOptions(full_filename);

67

68 const std::string numProcsString = "1";

69 const std: :string expected_filename = base_filename + "-" + numProcsString + ".e";

70

71 std: :string file_name = "%B-%P.e";

72 stk::util::filename_substitution(file_name);
73

74 EXPECT_EQ(expected_filename, file_name);
75 1

76

153

This page intentionally left blank.

Chapter 7

STK Balance

The STK Balance module provides load balancing capabilities for which many options are con-
figurable by the application teams. STK Balance interfaces with Zoltan2 (need reference) which
provides geometric and graph based decomposition capabilities. STK Balance is scalable and able
to balance very large (billions of elements) meshes.

7.1 Geometric Balancing

The following tests show the basic usage of the STK Balance with the RCB (Recursive Coordinate
Bisection - need reference) method.

Listing 7.1: Stk Balance RCB Example ../../../code/stk/stk_balance/doc_tests/howToUseStkBalance.cpp

67 TEST_F(StkBalanceHowTo, UseRebalanceWithGeometricMethods)

68 {

69 if(stk::parallel_machine_size(get_comm()) == 2)

70

71 setup_mesh("generated:4x4x4Isideset:xX", stk::mesh::BulkData::NO_AUTO_AURA);

72

73 RcbSettings balanceSettings;

74 stk::balance::balanceStkMesh(balanceSettings, get_bulk());

75

76 EXPECT_TRUE(is_mesh_balanced(get_bulk()));

77

78 }

Listing 7.2: Stk Balance Settings For RCB ../../../code/stlastk_balance/doc_tests/howToUseStkBalance.cpp

14 class RcbSettings : public stk::balance::BalanceSettings

15 {

m public:

17 RcbSettings() {}

18 virtual -RcbSettings() {}

19

20 virtual bool islncrementalRebalance() const { return false; }

21 virtual bool areVertexWeightsProvidedViaFields() const { return false; }

22 virtual std::string getDecompMethod() const { return std::string("rcb");

23 virtual std::string getCoordinateFieldName() const { return std::string("coordinates");

24 virtual bool shouldPrintMetrics() const { return true; }

25 ;

155

7,2 Graph Based Balancing With Parmetis

The following tests show the basic usage of the STK Balance with Parmetis (need reference - graph
based decomposition). This allows the application developer to set vertex and edge weights of the
graph. In addition, it provides the flexibility to change what defines an edge between two vertices.
In this context, a vertex is an element, and an edge is a connection between elements.

Listing 7.3: Stk Balance API Parmetis Example
../../../code/stkistk_balance/doc_tests/howToUseStkBalance.cpp

187 TEST_F(StkBalanceHowTo, UseRebalanceWithParmetis)
188 {

189 if(stk::parallel_machine_size(get_comm()) == 2)

190

191

192

193 ParmetisSettings balanceSettings;

194

195

196 EXPECT_TRUE(is_mesh_balanced(get_bulk()));

197

198 }

setup_mesh("generated:4x4x4Isideset:xX", stk::mesh::BulkData::NO_AUTO_AURA);

stk::balance::balanceStkMesh(balanceSettings, get_bulk());

Listing 7.4: Stk Balance Settings For Parmetis
../../../code/stk/stk_balance/dociests/howToUseStkBalance.cpp

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

class ParmetisSettings : public stk::balance::GraphCreationSettings

public:

virtual std::string getDecompMethod() const { return "parmetis";

size_t getNumNodesRequiredForConnection(stk::topology elementlTopology, stk::topology

element2Topology) const

const int noConnection = 1000;

const int s = noConnection;

const static int connectionTable[7][7]

{1, 1, 1, 1, 1, 1, s}, // 0 dim

{1, 1, 1, 1, 1, 1, s}, // 1 dim

{1, 1, 2, 3, 2, 3, s}, // 2 dim linear

{1, 1, 3, 3, 3, 3, s}, // 3 dim linear

{1, 1, 2, 3, 3, 4, s}, // 2 dim higher-order

{1, 1, 3, 3, 4, 4, s}, // 3 dim higher-order

{s, s, s, s, s, s, s} // super element

};

int elementllndex = getConnectionTableIndex(element1Topology);

int element2lndex = getConnectionTableIndex(element2Topology);

return connectionTable[elementlIndex][element2Index];

virtual double getGraphEdgeWeight(stk::topology elementlTopology, stk::topology

element2Topology) const

const double

const double

const double

const double

const double

const double

const double

noConnection = 0;

s = noConnection;

largeWeight = 1000;

L = largeWeight;

twoDimWeight = 5;

q = twoDimWeight;

defaultWeight = 1.0;

156

H7

H8

const double D = defaultWeight;

const static double weightTable[7][7] = I

H9

120

121

U2

U3

U4

125

U6 } ;

IL,

IL,

{L,

{L,

IL,

{L,

{sr

L,

L,

L,

L,

L,

L,

s,

L,

L,

q,

q,

q,

q,

s,

L,

L,

q,

D,

q,

D,

s,

L,

L,

q,
q,

q,
q,

s,

L,

L,

q,
D,

q,
D,

s,

s},

s},

s},

s},

s},

s},

s}

//

//

//

//

//

//

//

0 dim

1 dim

2 dim

3 dim

2 dim

3 dim

super

linear

linear

higher-order

higher-order

element

U7

128 int elementllndex = getConnectionTableIndex(element1Topology);

U9 int element2lndex = getConnectionTableIndex(element2Topology);

130

131 return weightTable[elementlIndex][element2Index];

132

03

134 virtual int getGraphVertexWeight(stk::topology type) const

05

06 switch(type)

07

08 case stk::topology::PARTICLE:

139 case stk::topology::LINE_2:

140 case stk::topology::BEAM_2:

141 return 1;

H2 break;

H3 case stk::topology::SHELL_TRIANGLE_3:

144 return 3;

145 break;

H6 case atk::topology::SHELL_TRIANGLE_61

H7 return 6;

H8 break;

H9 case stk::topology::SHELL_QUADRILATERAL_4:

150 return 6;

151 break;

B2 case stk::topology::SHELL_QUADRILATERAL_8:

B3 return 12;

B4 break;

155 case stk::topology::HEXAHEDRON_8:

156 return 3;

B7 break;

B8 case stk::topology::HEXAHEDRON_20:

B9 return 12;

160 break;

161 case stk::topology::TETRAHEDRON_4:

162 return 1;

163 break;

164 case stk::topology::TETRAHEDRON_10:

165 return 3;

M6 break;

167 case stk::topology::WEDGE_6:

M8 return 2;

169 break;

PO case stk::topology::WEDGE_15:

171 return 12;

P2 break;

P3 default:

174 if (type.is_superelement())

P5

176 return 10;

P7

178 throw("Invalid Element Type In WeightsOfElement");
P9 break;

180

181 return 0;

182

183 1;

157

7.3 Graph Based Balancing With Parmetis Using Search

The following tests show the basic usage of the STK Balance with Parmetis (need reference -
graph based decomposition) where a coarse search is used to insert edges into the graph. The
search settings will override the vertex weights of the graph if defined on the settings.

Listing 7.5: Stk Balance API Parmetis With Search Example
../../../code/stk/stk_balance/doc_tests/howToUseStkBalance.cpp

214 TEST_F(StkBalanceHowTo, UseRebalanceWithParmetisAugmentedWithSearch)

215

216 if(stk::parallel_machine_size(get_comm()) 2)

217

218 setup_mesh("generated:4x4x4Isideset:xX", stk:mesh::BulkData::NO_AUTO_AURA);
219

22o ParmetisWithSearchSettings balanceSettings;

221 stk: :balance: :balanceStkMesh(balanceSettings, get_bulk());

222

223 EXPECT_TRUE(is_mesh_balanced(get_bulk()));

224

225 }

Listing 7.6: Stk Balance Settings For Parmetis With Search
../../../code/stlastk_balance/doc_tests/howToUseStkBalance.cpp

202 class ParmetisWithSearchSettings : public ParmetisSettings

203 {

204 using ParmetisSettings: :getToleranceForFaceSearch;

205 virtual bool includeSearchResultsInGraph() const { return true; }

206 virtual double getToleranceForFaceSearch() const { return 0.0001; 1

207 virtual double getVertexWeightMultiplierForVertexInSearch() const { return 6.0; }

208 virtual double getGraphEdgeWeightForSearch() const { return 1000; 1

209 };

7.4 Graph Based Balancing Using A Field For Vertex Weights

The following tests show the basic usage of the STK Balance where an application specified field
is used to set vertex weights.

Listing 7.7: Stk Balance API Using A Field To Set Vertex Weights Example
../../../code/stk/stk_balance/dociests/howToUseStkBalance.cpp

281 TEST_F(StkBalanceHowTo, UseRebalanceWithFieldSpecifiedVertexWeights)

282

283 if(stk::parallel_machine_size(get_comm()) == 2)

284

289 stk::mesh::Field<double> &weightField =

get_meta().declare_field<stk::mesh::Field<double>>(stk::topology::ELEM_RANK,

nvertex_weights");
286 stk: :mesh: :put_field (weightField, get_meta() .universal_part) ;

287 setup_mesh("generated:4x4x4Isideset:xX", stk:mesh::BulkData::NO_AUTO_AURA);
288 set_vertex_weights (get_bulk , get_meta . locally_owned_part , weightField);

289

290 FieldVertexWeightSettings balanceSettings(weightField);

291 stk::balance::balanceStkMesh(balanceSettings, get_bulk());

158

292

293

294

295

EXPECT_TRUE(is_mesh_balanced_wrt_weight(get_bulk(), weightField));

Listing 7.8: Stk Balance Settings For Setting Vertex Weights Using A Field
../../../code/stkIstk_balance/doc_tests/howToUseStkBalance.cpp

229 class FieldVertexWeightSettings : public stk::balance::GraphCreationSettings

230 {
231 public:

232 FieldVertexWeightSettings(const stk::balance::DoubleFieldType &weightField,

233 const double defaultWeight = 0.0)

234 : m_weightField(weightField),
235 m_defaultWeight(defaultWeight) { }

236 virtual -FieldVertexWeightSettings() = default;

237

238 virtual double getGraphEdgeWeight(stk::topology elementlTopology, stk::topology

element2Topology) const { return 1.0;

239

240 virtual bool areVertexWeightsProvidedInAVector() const { return

!areVertexWeightsProvidedViaFields();

241 virtual bool areVertexWeightsProvidedViaFields() const { return true; 1

242

243 virtual int getGraphVertexWeight(stk::topology type) const f return 1; 1

244 virtual double getlmbalanceTolerance() const { return 1.0001; }

245 virtual std::string getDecompMethod() const { return "rcb";

246

247 virtual double getGraphVertexWeight(stk::mesh::Entity entity, int criteria_index = 0)

const

248

249 const double *weight = stk::mesh::field_data(m_weightField, entity);

25o if(weight) return *weight;

251

252 return m_defaultWeight;

253 1
254

255 protected:

256 FieldVertexWeightSettings() = default;

257 FieldVertexWeightSettings(const FieldVertexWeightSettings&) = delete;

258 FieldVertexWeightSettings& operator=(const FieldVertexWeightSettings&) delete;

259

260 const stk::balance::DoubleFieldType &m_weightField;

261 const double m_defaultWeight;

262 1;

7.5 STK Balancing Using Multiple Criteria

The following tests show the usage of the STK Balance when balancing different grouping of
entities at the same time, e.g., a multi-physics balancing. Currently, multi-criteria rebalancing is
related to balancing a mesh using multiple selectors or fields or both. The next two sections show
the API for selector and field based multi-criteria balancing.

159

7.5.1 Multiple Criteria Related To Selectors

This shows the API for using multiple selectors to balance a mesh, e.g., a multi-physics mesh.

Listing 7.9: Stk Balance API Using Selectors To Balance A Mesh Example
../../../code/stk/stk_balance/dociests/howToUseStkBalance.cpp

364 TEST_F(StkBalanceHowTo, UseRebalanceWithMultipleCriteriaWithSelectors)

365

366

367

368

if(stk::parallel_machine_size(get_comm()) == 2)

stk::mesh::Part &partl = get_meta().declare_part("madeup_part_1",

stk::topology::ELEM_RANK);

369 stk::mesh::Part &part2 = get_meta().declare_part("part_2", stk::topology::ELEM_RANK);

370 setup_mesh("generated:4x4x4Isideset:xx", stk::mesh::BulkData::NO_AUTO_AURA);

371

372 put_elements_in_different_parts(get_bulk(), partl, part2);

373

374 std::vector<stk::mesh::Selector> selectors = { partl, part2 };

375

376 MultipleCriteriaSelectorSettings balanceSettings;

377 stk::balance::balanceStkMesh(balanceSettings, get_bulk(), selectors);

378

379 verify_mesh_balanced_wrt_selectors(get_bulk(), selectors);

380 }

381 }

Listing 7.10: Stk Balance Settings For Multi-criteria Balancing Using Selectors
../../../code/stk/stkibalance/doc_tests/howToUseStkBalance.cpp

316 class MultipleCriteriaSelectorSettings : public ParmetisSettings

317

318 public:

319 MultipleCriteriaSelectorSettings() 1

320 virtual -MultipleCriteriaSelectorSettings() = default;

321

322 virtual bool isMultiCriteriaRebalance() const { return true;}

323 virtual bool areVertexWeightsProvidedViaFields() const { return true; }

324

325 protected:

326 MultipleCriteriaSelectorSettings(const MultipleCriteriaSelectorSettings&) = delete;

327 MultipleCriteriaSelectorSettings& operator=(const MultipleCriteriaSelectorSettings&)

delete;

328 ;

7.5.2 Multiple Criteria Related To Multiple Fields

This shows the API for using multiple fields to balance a mesh, e.g., a multi-physics mesh.

Listing 7.11: Stk Balance API Using Fields To Balance A Mesh Example
../../../code/stlastk_balance/doc_tests/howToUseStkBalance.cpp

473 TEST_F(StkBalanceHowTo, UseRebalanceWithMultipleCriteriaWithFields)

474

475 if(stk::parallel_machine_size(get_comm()) == 2)

476

160

477 stk::mesh::Field<double> &weightFieldl =

get_meta().declare_field<stk:mesh::Field<double>>(stk::topology::ELEM_RANK,

nvertex_weightsl");

478 stk::mesh::put_field(weightFieldl, get_meta().universal_part());

479

48o stk::mesh::Field<double> &weightField2 =

get_meta().declare_field<stk:mesh::Field<double>>(stk::topology::ELEM_RANK,

"vertex_weights2");

481 stk:mesh::put_field(weightField2, get_meta().universal_part());
482

483 setup_mesh("generated:4x4x4Isideset:xX", stk:mesh::BulkData::NO_AUTO_AURA);

484

485 set_vertex_weights_checkerboard(get_bulk(), get_meta().locally_owned_part(),

weightFieldl, weightField2);

486

487 std::vector<stk::mesh::Field<double>*> critFields = { &weightFieldl, &weightField2 };

488 MultipleCriteriaFieldSettings balanceSettings(critFields);

489 stk::balance::balanceStkMesh(balanceSettings, get_bulk());

490

491 verify_mesh_balanced_wrt_fields(get_bulk(), critFields);
492

493 }

Listing 7.12: Stk Balance Settings For Multi-criteria Balancing Using Fields
../../../code/stk/stk_balance/dociests/howToUseStkBalance.cpp

385 class MultipleCriteriaFieldSettings : public ParmetisSettings

386 {

387 public:

388 MultipleCriteriaFieldSettings(const std::vector<stk::mesh::Field<double>*> critFields,

389 const double default_weight = 0.0)

390 : m_critFields(critFields), m_defaultWeight(default_weight)

391 { }
392 virtual "MultipleCriteriaFieldSettings() = default;

393

virtual bool areVertexWeightsProvidedViaFields() const { return true; 1

395 virtual int getNumCriteria() const return m_critFields.size(); 1

396 virtual bool isMultiCriteriaRebalance() const { return true;}

397

398 using ParmetisSettings::getGraphVertexWeight;

399 virtual double getGraphVertexWeight(stk::mesh::Entity entity, int criteria_index) const

400

401 ThrowRequireWithSierraHelpMsg(criteria_index>=0 &&

static_cast<size_t>(criteria_index)<m_critFields.size());

402 const double *weight = stk::mesh::field_data(*m_critFields[criteria_index], entity);
403 if(weight != nullptr)

404 {

405 ThrowRequireWithSierraHelpMsg(*weight >= 0);

406 return *weight;

407

408 else

409

410 return m_defaultWeight;

411 1
412

413

414 protected:

415 MultipleCriteriaFieldSettings() = default;

416 MultipleCriteriaFieldSettings(const MultipleCriteriaFieldSettings&) = delete;

417 MultipleCriteriaFieldSettings& operator=(const MultipleCriteriaFieldSettings&) delete;

418

419 const std::vector<stk::mesh::Field<double>*> m_critFields;

420 const double m_defaultWeight;

421 };

161

This page intentionally left blank.

Chapter 8

STK SIMD

The STK SIMD module provides a computationally efficient way of performing mathematical
operations on vector arrays of double and float types. The key components of this library are

• stk::simd::Doubles

• stk::simd::Floats

These types are actually a packed array of size stk::simd::ndoubles and stk::simd::nfloats, respec-
tively. These vector length sizes can be vary from platform to platform. It is important that the
user of the stk_simd library writes their algorithms so that changing ndoubles (or nfloats) does
not change behavior. Most basic mathematical operations are implemented to work on these simd
types.

8.1 Example STK SIMD usage

This test gives an example of how to apply a simple nonlinear operations on all the entries of an
array using SIMD types, in a way which does not assume a specific vector length. Three essential
steps are necessary to accomplish this

• the data from the input array must be loaded into the SIMD type

• the mathematical operations are applied to the SIMD data and stored temporarily into an
output SIMD type

• the data is stored into the output array

Listing 8.1: Example of simple operations using STK SIMD
/ / /code/stk/stk_doc_tests/stk_simd/simpleStkSimd.cpp

62 TEST(stkMeshHowTo, simdSimdTest)

63 {

M const int N = 512; // this is a multiple of the simd width

65 // if this is not true, the remainder

66 // must be handled appropriately

163

67

68 static_assert(N % stk::simd::ndoubles == 0, "Required to be a multiple of ndoubles");
69

70 std::vector<double, non_std::AlignedAllocator<double,64> > x(N);
71 std::vector<double, non_std::AlignedAllocator<double,64> > y(N);
72 std::vector<double, non_std::AlignedAllocator<double,64> > solution(N);
73

74 for (int n=0; n < N; ++n) f
75 x[n] = (rand()-0.5)/RAND_MAX;
76 y[n] = (rand()-0.5)/RAND_MAX;
77

78

79 for (int n=0; n < N; n+=stk::simd::ndoubles) 1
80 const stk::simd::Double xl = stk::simd::load(&x[n]);
81 const stk::simd::Double yl = stk::simd::load(&y[n]);
82 stk::simd::Double zl = stk::math::abs(xl) * stk::math::exp(y1);
83 stk::simd::store(&solution[n],z1);
84 }

85

86 const double epsilon = std::numeric_limits<double>::epsilon();
87 for (int n=0; n < N; ++n)
88 EXPECT_NEAR(std::abs(x[n]) * std::exp(y[n]), solution[n], epsilon);
89 }

90 }

164

References

[1] Larry A. Schoof and Victor R. Yarberry, "EXODUSII: A Finite Element Data Model,"
SAND92-2137, Sandia National Laboratories, Albuquerque, NM, September, 1994.1

[2] C. Farhat, K. G. Van der Zee, and P. Geuzaine "EXODUSII: A Finite Element Data Model
Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlin-
ear computational aeroelasticity," Computer Methods in Applied Mechanics and Engineering,
2006; 195 (17-18): 1973-2001.

[3] Jon L. Bentley "Multidimensional binary search trees used for associative searching," Com-
munications of the ACM, 1975; 18 (9): 509-517.

[4] Mark de Berg, Mark van Krewald, Mark Overmars, and Otfried Schwarzkopf Computational
Geometry: Algorithms and Applications (2nd, revised edition), Springer-Verlag, 2000.

1This document is very out of date. A new document is being prepared and a draft of the current state is available
at http: / / jal . sandia.gov/SEACAS/Documentation/exodusII-new.pdf.

165

Index

aura, 20, 23
aura part, 19, 30

buckets, 20
bulkdata, 20

connectivity, 18
custom ghosting, 42

downward relation, 18

element block, 31
entity, 18
explicit member, 32

field, 81
fields, 19

ghosted, 23
ghosting, 20
globally-shared part, 19, 30

induced member, 32

locally-owned part, 19, 30

mesh part, 30
metadata, 20, 36

part, 19
part ordinal, 31
parts, 41
permutations, 18

rank, 18
relations, 18

search, 137
selector, 28
selectors, 19
shared, 23
simd, 163

topology, 18, 63

universal part, 30
upward relation, 18

166

DISTRIBUTION:

1 MS 0899 Technical Library, 9536 (electronic copy)

This page intentionally left blank.

v1.40

169

Sandia National Laboratories

170

