SANDIA REPORT

SAND2018-2856
Unlimited Release
Printed March 20, 2018

Sierra Toolkit Manual Version 4.48
Sierra Toolkit Development Team

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the

U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2018-2856
Unlimited Release
Printed March 20, 2018

Sierra Toolkit Manual Version 4.48

Sierra Toolkit Development Team

Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185

Abstract

This report provides documentation for the SIERRA Toolkit (STK) modules. STK modules are
intended to provide infrastructure that assists the development of computational engineering soft-
ware such as finite-element analysis applications. STK includes modules for unstructured-mesh
data structures, reading/writing mesh files, geometric proximity search, and various utilities. This
document contains a chapter for each module, and each chapter contains overview descriptions and
usage examples. Usage examples are primarily code listings which are generated from working
test programs that are included in the STK code-base. A goal of this approach is to ensure that the
usage examples will not fall out of date.

This page intentionally left blank.

Contents

1 STK Mesh 17
LI STK MRl MO e : s s smsns i ansneisiansnsis s Snemsss o 88mss 55 aunus s 17
O O 2 L 18

I.1.2 CONNECHIVILY ..ottt ettt e et e 18

Llsd "TOPOMIET & e v o5 mmmmi o 5 5 soamimis 6 5 6 Smmna s 6 5 Bmaios £ 5 BuBaES S5 5o EEH 8 18
L14 Part ..o 19

LIS WRELL : scomasiinnnisiis ansdsii abenad il hobbaiii saasdsis haufa 19

116 SElECIOT o v v s smmuumsss mammees smounssssnmmamosssmsnmssssnsnns 19

05 Py GO - .~ O P 20

Ll8 CODOBIAE - uccsosrmmmasssammnsissnsmnsss s auRas s sa@Easis LENRS b 20

1.1.9 MetaDataand BulkData 20
1.1.10 Creating a STK Mesh from an Exodusfile 22

LZ Prallel oceuosssnunmssssnsnssssnnunarssonnmnass sanuneissssaniss sannss 22
121 Sharedcoiiiii i e et 23

1.2.2 Ghosted o e 23

Bl I ; ; smman s sumuE s s ERESG i DARERY § 3 REUEAS S SHTREE § 5 RHAGE 23
1.2.3.1 How to use automatically generatedaura 23

1.3 STK Parallel Mesh Consistency RUIES & «. i isnvsiiisnsnasissnnassissnanass 24
1.3.1 How to enable mesh diagnostics to enforce parallel mesh rules 25

1.3.2 How to enforce Parallel MeshRule 1 26

L33 Pamallel AP . . o cnwnu o snmanusssonnnss o susnsis ssannsis baanss 26

1.4 STK Mesh SelectOorottt e e e e e 28

1.5

1.6

LA) HowonseseleeliEs . ox s snmnuiissnnnsirssnenessonamasiispnmns 29
STK Mesh Parts o e e 30
1.5.1 Part Identifiers and Attributes 30
1.5.2 Induced Part Membership 32
195 Howtonse BhOBLDATES . . cusnciseannnsisonasmess smebsis smnsns 33
Mesh Modificationot 35
L.6.1 OVEIVIEW . oottt e e e e e e e e 35
1.6.2 Public Modification Capability, 36
LG2.) ABDESEERNIES. .ox:::cusnsiconsanssssonsnsssnunnss 36
1.6.2.2 Getting Unused Globally Unique Identifiers 37
1.6.2.3 Creating Nodes that are Shared by Multiple Processors. 38
1.6.2.4 Change Entity Part Membership.......................... 41
LAZ2S Chanpe COmsaliviy. . . connciionnonassonnsnssosmanss 41
1.6.2.6 Change Entity Ownership., 41
1.6.2.7 Change Ghosting.uitiiinii i, 42
1.6.3 Mesh Modification Examples 42
1.6.3.1 Resolving Sharing Of Exodus Sidesets - Special Case 44
1.6.4 Unsafe Operationsouuuiueitent i, 46
1.6.5 Automatic modification operations in modification-end() 47
1.6.6 How to use generate new _entities().o v vt ennennnennn.. 47
L67 HowiDOrEalE THOEE - v i wasnssisnnsnsiss snanssssmunsssspsens s 48
1.6.8 How to create both edges and faces 49
1.6.9 How to create faces on only selected elements 50
1.6.10 Creating faces with layered shells 51
1.6.11 Creating faces between hexes, on shells, and on shells between hexes. 51

6

1.6.12 Howtoskinameshttt 54

1.6.13 How to create internal block boundariesof amesh 55
1.6.14 How to destroy elements inlist.............o iiuiininean... 55
17 STE NMesh MSaps SPIER: «cux « « s anmmuss s s anuasss suBes 55 b GaEB 645 LURRE 3 56
1.7.1 How toiterate over nodesouiutnuineninennenenenn... 56
1.7.2 How to traverse CONNECtIVILYvvtvirennennnnennenn. 58
1.7.3 How tochecksideequivalency 59
1.7.4 Understanding node ordering of edges and faces 60
1.7.5 How to sort entities into an arbitraryorder 61
2 STK Topology 63
2.1 STKTopology API e 63
2.1.1 Howtosetand gettopologyuiuiiiiiini i, 64
2.1.2 STKtopology ranks 64
2.1.3 Compile-time STK topology information 66
214 STKtopalegyiartePamisls commaiiovnsasisssnaasisannmnas 66
2.1.5 STK topology for the high order Beam............................. 67
2.1.6 STK topology for the high order triangular Shell 68
2.1.7 STK topology for the linear Hexahedral 69
2.1.8 STK topology equivalent method 71
2.1.9 STK topology’s is positive polaritymethod 12
2.1.10 STK topology’s lexicographical smallest permutation
method. 2
2.1.11 STK topology’s lexicographical smallest permutation
preserve polaritymethod.......... 73
2.1.12 STK Topology’s sub_topology methods 74
2,1.13 STK Tepologys sades Methods . . c scsvsissvncascssvannsispoanns 75

7

2.1.14 STK topology for a SuperElement 75
2.2 Mapping of Sierra topolOZIES vt vttt e 76
3 STK Fields 81
3.1 Example STKfieldsusagec..utiinn et i 81
4 STKIO 87
4.1 STKIO: usage examplesttt e e 87
4.1.1 Readingmeshdatatocreate aSTK Mesh. .. sssvncessovssmossronsss 87
4.1.1.1 Face creation for input sidesets 88
4.1.2 Reading mesh data to create a STK Mesh allowing StkMeshloBroker to
GO OUL Of SCOPE .« v v ettt et e e 94
4.1.3 Reading mesh data to create a STK Mesh, delaying field allocations. 95
414 Outpulting STEMEBD .. . o s suvna s vs snnnasssanmnssssmsmmess samims 96
4.1.5 Outputting STK Mesh With Internal Sidesets. 97
4.1.6 Outputting results data froma STKMesh 99
4.1.7 Outputting a field with an alternative name to aresults file 100
4.1.8 Outputting both results and restart data froma STK Mesh.............. 100
4.1.9 Writing multi-state fields to results outputfile 102
4.1.10 Writing multiple outputfiles i 103
4.1.11 Outputting nodal variables on a subsetof thenodes 103
4.1.12 Get number of time steps fromadatabaseccv0iiiinennn 105
4.1.13 Reading sequenced fields froma database 105
4.1.14 Reading initial conditions from a field on a mesh database 106
4.1.15 Reading initial conditions from a field on a mesh database — apply to a
specified subsetof meshparts 107
4.1.16 Reading initial conditions from a field on a mesh database — only read once 110

8

4.1.17

4.1.18

4.1.19

4.1.20

4.1.21

4.1.22

4.1.23

4.1.24

4.1.25

4.1.26

4.1.27

4.1.28

4.1.29

4.1.30

4.1.31

4.1.32

4.1.33

4.1.34

Reading initial conditions from a mesh database field at a specified
database time oottt 111

Reading field data from a mesh database — interpolating between database
EIMES . oottt ettt e e e 112

Combining restart and interpolation of fielddata 113

Interpolating field data from a mesh database with only a single database
HIME .o 115

Interpolating field data from a mesh database when time is outside database
timeinterval 116

Error condition — reading initial conditions from a field that does not exist
onameshdatabase 117

Interpolation of fields on database with negative times 118

Interpolation of fields on database with non-monotonically increasing times 119

Arbitrary analysis time to database time mapping during field input 120
Error condition — specifying interpolation for an integer field 122
Working with element attributes 123
Create an output mesh with a subset of the meshparts................. 124
Writing and reading global variables 125
Writing and reading global parameters 126
Writing global variables automatically 128
Heartbeat output i e e 129
4.1.32.1 Change output PreCiSionuoueieeneennennennennnnn 130
41322 Cheampe (el SEparslor vsscioconsnsssamanssssannuns 131
Miscellaneous capabilitiesotiitiinennnnenn.n. 131

4.1.33.1 Add contents of a file and/or strings to the information records
ofadatabase e 131

4.1.33.2 Tell database to overwrite steps instead of adding new steps 132

How to create and write a nodeset and sideset with fields using STK Mesh 134

9

5 STK Search

5.1 STK Search: usage examples

5.1.1 Using Boost R-tree bounding volume search

5.1.2 Search method options

6 STK Util

6.1 Using the Diagnostic Timers

6.2 Communicating with other MPI processors.,

6.3 Usingthe STK Scheduler. i,

6.4 Parameters — type-safe named storage of any variable type

6.5 Filename SubStitution oottt e e e

7 STK Balance

7.1 Geometric Balancingttt e

7.2 Graph Based Balancing With

Parmetis .

7.3 Graph Based Balancing With Parmetis Using Search

7.4 Graph Based Balancing Using A Field For Vertex Weights

7.5 STK Balancing Using Multiple Criteria

7.5.1 Multiple Criteria Related To Selectorso,

7.5.2 Multiple Criteria Related To Multiple Fields

8 STKSIMD

8.1 Example STK SIMD USag€ot vttt e e e

Bibliography

Index

10

137
137
137

137

139
139
143
145
148

151

155
155
156
158
158
159
160

160

163

163

165

166

Listings

1.1

1.2

1.3

1.4

1.5

1.6

1%

1.8

1.9

1.10

|

113

1.14

L.13

1.16

1.17

1.18

1.19

1.20

Example of creating an STK Mesh using an Exodusfile 22
Example of how to control automatically generated aura 23
Example of how to enable mesh diagnostics 25
Example of how to enforce Parallel MeshRule 1 26
Example of communicating field data from owned to all shared and ghosted enti-

BBE « o cocwmnss s cmumas v nmbmms i s GRoNEks i SANG I § S NREREF§ SABEES §F EDEDR 5 26
Example of parallel sum e 27
Example showing parallel use of comm_mesh counts 27
Example showing parallel use of comm_mesh_counts with min/max counts 28

Example of how to use Selectors to avoid getting caught by the "Nothing” selector 29

Example of how to use Ghost Parts to select aura ghosts and custom ghosts 33
Example showing how to use destroy_elements_of topology 36
Example showing how to use generate new_ids 37
Example shiogving ereation of Shared MOdSE . . vosxve s s sspsus s ssmonsrs s snmums 38
Example showing creation of independent shared nodes (without connectivity) ... 39
Example showing that the marking for independent nodes will be removed after

connectivities are attached L 40
Example showing an element being ghosted. 42
Example of changing processor ownership of anelement 43
Example of internal sideset which results in twofaces 45
Example of how to generate multiple new entities and subsequently set topologies

and nodal relationS.ottt 47

Exartiple of how to create all element TAGES . . cvsvv i vsvssnssssvanssssnvenss 48

11

1,21

1.22

1.23

1.24

1.25

1.26

127

1.28

1.29

1.30

1.31

1.32

1.33

1.34

21

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

Example of how to create all element edges and faces 49
Example of how to create faces on only selected elements 50
Example showing that faces are created correctly when layered shells are present 51
Example of how many faces get constructed by CreateFaces between two hexes. . 52
Example of how many faces get constructed by CreateFaces on a shell. 52
Example of how many faces get constructed by CreateFaces between hexes and

gt TEIREl BRIl - onw o mmanuissnmsnasisnnana s nnEREs s s EMREE S B EE S 53
Example of how to create all the exposed boundary sides 54
Example of how to create all the interior block boundary sides 55
Example of how to destroy elementsinalist 56
Exatple of MCraling OVEr HOABE, . cxonc:csonspssscananmessssaassss nonmss 56
Example of how to traverse connectivity via accessors on BulkData and via acces-

sorson Bucket 58
Example of how to-check side equivaleney. . .ccssvsionvnscsssunsisssvonss 39
Understandmg sllse and Toee Ordeting ..o oo s wwxmw s smpsms s s pmensrs s suouss 60
Example showing how to sort entities by descending identifier. 61
Example of setting/getting topology i 64
Example showing mapping of STK topologies toranks 64
Example using compile-time STK topology information 66
Example showing STK topology for a zero-dimensional element 66
Example of STK topology for a one-dimensional element 67
Example of STK topology for a two-dimensional element 68
Example of STK topology for a three-dimensional element 69
Example using of an equivalent method 71
Example using is positive polarityo, 72
Example using lexicographical_smallest _permutation 72

12

211

2.12

13

2.14

2.15

2.16

3.1

e &

2.5

3.4

3.5

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

Example using
lexicographical_smallest permutation preserve polarity ... 73
Example using of sub_topology .« ove it 74
Example for understanding sides in STK topologycccsiiarsnasissonnss 75
Example using a SuperElement with STK topology 76
Example for understanding various Sierra topologies 76

Mapping of shards::CellTopologies to stk::topologies provided by
stlesrneslinioel Gl TOPOIBEYTY - < - s sawss s smnuma s soupuns s s ununs s s pumEm s 78
Examples of constant-size whole-mesh fieldusage 81
Example of incorrect vector field declaration 82
Examples of how to get felds DY BATHE covvceiimnnnsisrmmsmiss nonnms 83
Examples of using fields that are variable-size and defined on only a subset of the

BRI oo o 5 5 s mi s 6 5 5 BN T F B EESS R MEE A RS RASA SN FARAESE D R EEE 83
Examples of multi-state field usage i 84
Reading mesh data to oreate a STEK 88 s snsnccssnssnsssssnsnsssannuns 87
Face creation during IO for one sideset between hexes 89
Face creation during IO for shells between hexes with sidesets 91
Reading mesh data to create a STK mesh using setbulkdata 94
Reading mesh data to create a STK mesh; delay field allocation 95
WG A STK VBB . comuscisnumsasss ansusis s oNsas s o s@ausss umung 96
Writinga STK Mesh o e e 98
Writing calculated field data to a results database 99
Outputting a field with an alternative namecouvuitene... 100
Write results and restart e 100
Writing multi-state field to results output 102
Writing multiple output files i 103

Using a nodeset variable to output nodal fields defined on only a subset of the mesh 104

13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

GELNUM LIME SEPS & v v vt vttt et ettt e et e e e e et e e e 105
Reading seueneel BEldE . .0 5o sumno o sumnsisommensss smanssssammpns 105
Reading initial condition data from a mesh database 106
Reading initial condition data from a mesh database 107
Reading initial condition data from a mesh database 108
Reading initial condition data from a mesh database 109
Reading initial condition data from a mesh database one timeonly 110
Reading initial condition data from a mesh database at a specified time 111
Linearly interpolating field data from a mesh database 112
Combining restart and field inferpolationcc vovsomsiiomsnsssrsvanns 113
Linearly interpolating field data from a mesh database with only a single step ... 115

Linearly interpolating field data when the time is outside the database time interval 116

Specifying initial conditions from a non-existent field 117
Specifying initial conditions from a non-existent field 118
Interpolating fields on a database with negative times 119
Interpolating fields on a database with non-monotonically increasing times 119
Arbitrary analysis time to database time mapping during field input 121
Error condition — specifying interpolation of an integer field 123
Working with element attributes ittt 123
Creating output mesh containing a subset of the mesh parts 124
Writing and reading a global variable 125
Writing and reading parameters as global variables 126
Automatically writing parameters as global variables 128
Writing global variables to a Heartbeat file 129

Writing global variables to a Heartbeat file in CSV format with extended precision 130

Writing global variables to a Heartbeat file with a user-specified field separator .. 131

14

4.40
4.41
4.42
4.43
5.1
52
6.1
6.2
6.3

6.4

6.5
6.6
6.7
6.8
6.9
6.10
6:11
|
T2
dedh
7.4
7.5
7.6
7.7

7.8

Adding the contents of a file to the information records of an output database 131
Overwriting time steps instead of adding new steps to a database 132
Example of creating and writing a nodeset with fields. 134
Example of creating and writing a sideset with fields. 134
Using the bounding volume search with the Boost R-tree method 137
Search method Optionsot e e 137
Diagnostic TIMETrsttt e 139
Dhiagnostic Timersan Patallelcocc . iimimne i ivnmnisssnmssscs nnnmms 141
Example showing how to communicate with other processors 143
Example showing how to communicate an arbitrary amount of data with other
PIOCESSOTS . v v ot e et e et e et e et e et e et e et e e e e e e e e 144
LIRS EEREIIIET . o o vwvici s 6 5 donmiid bk R a R S 6 AR BB § 5 RbEEEk§ b s b 145
Parameters: Data for use in the following examples 148
Parmmeresss IDEIMIME . . « cocsos o5 anmes i 56 bhais i6 bbbads 85 nba@dssshbamii 149
Parameters: Accessing valuesiiiiiii e 149
Patameters: Dealing With 808 : : cavcs s i snsasissnnmassisosadissbamadi 150
Parameters: Storing unsupported typest e 151
Filename substitation GapBBility . «cosuiissnsinissnsnis s ansansss i namas s 153
Stk Balance RCB Example 155
Stk Balance Settings FarREB .. . csssscisomnssvissomsnsissmnnasisnonmas 155
Stk Balance API Parmetis Example 156
Stk Balance Settings For PAICHS : . cecxscsoamnssisiansassisomsssisasnss 156
Stk Balance API Parmetis With Search Example 158
Stk Balance Settings For Parmetis WithSearch 158
Stk Balance API Using A Field To Set Vertex Weights Example 158
Stk Balance Settings For Setting Vertex Weights Using AField 159

15

7.9

7.10

41

112

8.1

Stk Balance API Using Selectors To Balance A Mesh Example 160

Stk Balance Settings For Multi-criteria Balancing Using Selectors 160
Stk Balance API Using Fields To Balance A Mesh Example 160
Stk Balance Settings For Multi-criteria Balancing Using Fields 161
Example of simple operations using STK SIMD 163

16

Chapter 1

STK Mesh

At a high level, the Sierra Toolkit (STK) modules support the engineering science application
developer by helping to characterize an unstructured mesh (such as is needed for a Finite Element
or Finite Volume mesh) and provide capabilities to support full end-to-end simulations.

Currently, STK is composed of several modules:

STK Mesh

STK Search

STK Transfer*

STK Balance

STK 10

STK Util

*STK Transfer will not be discussed in this document.

In the first section of this document, we will introduce STK Mesh terminology and concepts,
with the largest effort being towards documenting code usage by using up-to-date examples (that
are also in the code repository). This section provides definitions and descriptions of basic STK
Mesh terms. Throughout, we use the Exodus [1] mesh format for illustration purposes, and it is
recommended that STK Mesh clients be familiar with Exodus.

1.1 STK Mesh Terms

A Mesh is a collection of entities, parts, fields, and field data. The STK Mesh API separates these
collections into MetaData and BulkData.

Each of these terms is defined below.

17

1.1.1 Entity

Entity is a general term for the following types (listed in ascending ‘rank’ order): node, edge, face,
element, and constraint. Rank is an enumerated type that describes and orders the different kinds
of entities.

1.1.2 Connectivity

In a finite element discretization, entities are connected to other entities. Examples include:
element-to-node connectivity (the nodes connected to a given element), node-to-element connec-
tivity (the elements connected to a given node), and face-to-element connectivity (the elements
connected to a given face). A connection from a higher-rank entity to a lower-rank entity is re-
ferred to as a downward relation. When a downward relation is declared (e.g., between an element
and a node), STK Mesh, by default, creates the corresponding upward relation (e.g., from the node
to the element). Table 1.1 shows the default connectivity of a fully-connected mesh. The term
fully-connected means that the client code has established all downward relations. The term fixed
means that the number of relations is defined by topology; the number of node-relations for a hex-8
element is 8. The term dynamic means that the number of relations is unknown until individual
relations have been established. For example, an element may have 0, 1, or more faces depending
on whether it is on an external boundary. STK mesh provides functions for creating all edges or
faces (see Sections 1.6.7 and 1.6.8). It should be noted that STK Mesh does not support connec-
tivity between entities of the same rank. As an additional note, the term relations and connectivity
are used interchangeably in this document.

Table 1.1: Default connectivity of a fully-connected mesh

From-entity | To Node To Edge To Face To Element
Node - dynamic dynamic dynamic
Edge fixed - dynamic dynamic
Face fixed dynamic - dynamic

Element fixed dynamic dynamic -

1.1.3 Topology

Topology provides an entity’s finite element description. This includes several attributes such as
the number and type of lower-rank entities that can exist in that entity’s downward relations. For
example, an element with hex8 topology must have 8 nodes and may have up to a maximum of 6
quad4 faces and 12 line2 edges. Quad4, line2, and nodes are also examples of topologies. Topol-
ogy also defines what permutations in downward connectivity are permissible. Unlike downward
connectivity, upward connectivity is determined at run-time and does not imply restrictions on
permutations. See chapter 2 for more detail about the STK Topology component and examples of
using the APL

18

Note that in STK Mesh, entities with entity-rank higher than element-rank generally don’t have an
associated topology.

1.1.4 Part

Part is a general term for a subset of entities in a mesh. Parts are a grouping mechanism used to
operate on subsets of the mesh (see Section 1.1.6). STK Mesh automatically creates four parts at
startup: the universal part, the locally-owned part, the globally-shared part, and the aura part.
These parts are important to the basic understanding of ghosting (see Section 1.1.8). For meshes
read from Exodus files, additional Exodus parts are created (blocks, sidesets, and nodesets). Each
entity in the mesh must be a member of one or more parts.

Parts exist for the life of the STK Mesh; parts cannot be deleted without deleting the mesh. STK
Mesh provides methods which allow client code to explicitly change the user-defined part mem-
bership of an entity.

See Section 1.5 for more details on mesh parts.

1.1.5 Field

Fields are data associated with mesh entities. Examples include coordinates, velocity, displace-
ment, and temperature. A field in STK Mesh can hold any data type (e.g., double or int) and any
number of scalars per entity (e.g., nodal velocity field has three doubles per node if the spatial
dimension is 3). A field can be allocated (defined) on the whole mesh (e.g., all nodes) or on a Part
(subset) of the mesh (nodes of a sideset). For example, a material property can be defined on a
specified element block.

1.1.6 Selector

Selectors are used to select entities that belong to a specified expression of parts. Here are some
examples:
e Select all elements that are in either block-1 or block-2 or both. (A set-union expression.)

e Select all nodes that are connected to elements in both block-1 and block-2. (A set-
intersection expression.)

e Select all nodes that are locally-owned but not connected to a rigid-body part. (A set-
difference expression.)

e Select all nodes that have a specified field allocated. Since field allocation is specified in
terms of parts, we allow selectors to be created based on fields.

19

The selector system is explained further in Section 1.4.

1.1.7 Bucket

STK Mesh organizes entities into buckets: the entities in a bucket all have the same rank and topol-
ogy, and they are all members of the same parts. Additionally, the entities in a bucket correspond
to contiguously-allocated blocks of memory in the associated field-data values.

There are two primary reasons for grouping entities into buckets. Firstly, the Selector system
(see section 1.4) allows for the traversal of the mesh in arbitrary user-defined subsets, and these
subsets exist as combinations of buckets. Secondly, the performance of mesh-modification (see
section 1.6) is improved by only moving bucket-sized sections of allocated memory (e.g., when
adding/deleting entities) rather than re-allocating and sliding the memory for the whole mesh.

No entity is ever in more than one bucket at any given time. This grouping is performed internally
by STK Mesh; client code has no explicit control over which entities reside in which buckets. If
an entity’s part membership is changed, it is automatically moved to a different bucket.

1.1.8 Ghosting

Ghosting in STK Mesh provides a way to perform operations that involve entities that are nei-
ther locally-owned nor shared on the current processor. STK Mesh automatically provides a one-
element thick ghost layer around each processor, referred to as the aura and is shown in Figures 1.1
and 1.2. Formally, the aura is defined as a ghosting of the upward-relations for shared entities. In
other words, if the aura is on, then shared entities have the same upward-relations on each shar-
ing processor. In addition, STK Mesh client code can also request arbitrary ghosting of entities,
referred to as custom ghosting.

1.1.9 MetaData and BulkData

The MetaData component of a STK Mesh contains the definitions of its parts, the definitions
of its fields, and definitions of relationships among its parts and fields. For example, a subset
relationship can be declared between two parts, and a field definition can be limited to specific
parts. The BulkData component of a STK Mesh contains entities, entity ownership and ghosting
information, connectivity data, and field data. For efficiency, the BulkData API enables data access
via buckets, in addition to data access via entity and rank.

A mesh’s MetaData holds a database definition (a schema), and a mesh’s BulkData holds the con-
tent of that database. MetaData is replicated (duplicated) on all processors; BulkData is distributed
across processors with each processor having a separate subset of the data, subject to sharing and
ghosting.

20

? ——————————
;; _
!

;

[t 3

' '

' '

' '

' T

' 9101 Vo

' v

i Vo

' oo

¢ .

| L

H Lot

' (I

' 16101 1 K ghosted
i T

i Lo

' E

: v

1 1 :

' '

' '

' 1110 '

' '

' '

' '

S o

Proc 0 ’ Proc 1
Ghosted " Locally Owned W Locally Owned & Shared M Shared

Figure 1.1: Aura ghosting per MPI process

_________ ° Q-mmmem-
'
B
{910] E : 1700]
Vo
R
G)
Lo
L
Lo
I S
T
o) o 1300)
]
]
]
Proc 0 ' Proc 1
Ghosted " Locally Owned W Locally Owned & Shared M Shared

Figure 1.2: Final auras

This design requires object construction of MetaData and BulkData to be staged. The spatial
dimension of a mesh is usually specified in the call to the MetaData constructor, which also pro-
vides a valid default initialization. The BulkData constructor requires a MetaData object as an
argument. A BulkData object cannot be modified (e.g., entities added) before its MetaData object
has been initialized and then committed using the MetaData: :commit () member function

21

(for example, see Listing 2.1). Once a MetaData object has been committed, it cannot be changed.
Therefore, fields must be put on parts prior to MetaData commit. Non-topology parts can still
be declared after commit, but they will have limited uses because subset relationships cannot be
changed. For clarity, it is recommended that MetaData commit is called prior to BulkData con-
struction. If new is used to create a BulkData object, then that instance must be deleted before its
MetaData object (used to construct it) is destroyed.

The STK Mesh usage examples below and in Section 1.7 illustrate common uses of the MetaData
and BulkData APIs.

1.1.10 Creating a STK Mesh from an Exodus file

Listing 1.1 shows how to create and populate a STK Mesh using the STK IO module, which is
described in Chapter 4. We provide this example for those who want to quickly get started using
an STK Mesh given an Exodus file. This particular example shows STK IO populating the STK
Mesh from a generated-in-memory mesh, but the “filename” is all that would need to change, to
instead read data from an Exodus file. Further examples will show various uses of the STK Mesh.

Listing 1.1: Example of creating an STK Mesh using an Exodus file

./..[../code/stk/stk_doc_tests/stk_mesh/createStkMesh.cpp

49 TEST (StkMeshHowTo, UseStkIO)
50 {

51 MPI_Comm communicator = MPI_COMM_WORLD;

52 if (stk::parallel_machine_size (communicator) == 1)

53 {

54 stk::mesh: :MetaData meta;

55 stk::mesh::BulkData bulk (meta, communicator);

56

57 stk::io0::StkMeshIoBroker meshReader;

58 meshReader.set_bulk_data (bulk) ;

59 meshReader.add_mesh_database ("generated:8x8x8", stk::io::READ_MESH) ;

60 meshReader.create_input_mesh () ;

61 meshReader.add_all_mesh_fields_as_input_fields();

62 meshReader.populate_bulk_data();

63

64 unsigned numElems = stk::mesh::count_selected entities (meta.universal_part(),
bulk.buckets (stk::topology: :ELEM_RANK)) ;

65 EXPECT_EQ(512u, numElems) ;

66 }
67 }

After these steps, the STK Mesh objects now contain all the data from the Exodus file (e.g., Fields,
Parts, Entities).

1.2 Parallel

STK Mesh maintains a parallel consistent mesh across many MPI processes or subdomains. Most
of the parallel capabilities revolve around communicating information, like field data, for entities

22

on the boundaries of these subdomains. Entities that are communicated between subdomains are
either shared or ghosted.

1.2.1 Shared

Entities that are shared among processors are downward connected from a locally-owned entity,
usually an element. For example, if the side of a hex8 is on a subdomain boundary, the 4 nodes
that touch the boundary are considered shared. If there also exists a face on that side of the hex,
the face would also be shared.

Shared entities have fully symmetric communication information stored on all processors that share
the entity. In other words, every processor that has a shared entity knows about every other pro-
cessor that shares the entity.

1.2.2 Ghosted

Ghosted entities are communicated between subdomains regardless of the connections from
locally-owned entities. This is different from shared entities which are defined by downward con-
nection from locally-owned entities.

Ghosted entities only have communication information about the owner stored on the processor
that the entities are ghosted to. This means that a given processor’s BulkData has information
about the processor the ghost came from but not any other processors that the entity may have
been ghosted to.

1.2.3 Aura

The aura is a special ghosting that automatically sends one layer of ghosted elements on the sub-
domain boundaries to the processors that share those boundaries, as seen in Figures 1.1 and 1.2.
The aura can be turned off when the mesh is initially created. See Section 1.2.3.1 for example
usage.

1.2.3.1 How to use automatically generated aura

This section describes how to control whether or not a one-layer ghosting of elements is automati-
cally generated around each processor’s mesh.

Listing 1.2: Example of how to control automatically generated aura

./.[../code/stk/stk_doc_tests/stk_ mesh/howToUseAura.cpp

48 void expectNumElementsInAura (stk::mesh::BulkData::AutomaticAuraOption autoAuraOption,

23

49 unsigned numExpectedElementsInAura)

51 MPI_Comm communicator = MPI_COMM_WORLD;

52 if (stk::parallel_machine_size (communicator) == 2)

53 {

54 stk::mesh::MetaData meta;

55 stk::mesh: :BulkData bulk (meta, communicator, autoAuraOption);
56 stk::io::fill_mesh ("generated:1x1x2", bulk);

58 EXPECT_EQ (numExpectedElementsInAura,

59 stk::mesh::count_selected_entities (meta.aura_part(),

bulk.buckets (stk::topology: :ELEMENT_RANK))) ;
60 }
61 }
62 TEST (StkMeshHowTo, useNoAura)
63 {
64 expectNumElementsInAura (stk::mesh::BulkData: :NO_AUTO_AURA, O0);
65 }
66 TEST (StkMeshHowTo, useAutomaticGeneratedAura)
67 {
68 expectNumElementsInAura (stk: :mesh::BulkData::AUTO_AURA, 1);
69 }
70 TEST (StkMeshHowTo, useAuraDefaultBehavior)
71 {
72 MPI_Comm communicator = MPI_COMM_WORLD;
73 if (stk::parallel_machine_size (communicator) == 2)
74 {
75 stk::mesh: :MetaData meta;
76 stk::mesh::BulkData bulk (meta, communicator);
77 stk::io::fill_mesh ("generated:1x1x2", bulk);

79 EXPECT_EQ(lu, stk::mesh::count_selected_entities (meta.aura_part(),
bulk.buckets (stk::topology: :ELEMENT_RANK)));
80 }

81 }

1.3 STK Parallel Mesh Consistency Rules

STK Mesh is used by many engineering disciplines such as structural dynamics, solid mechanics,
thermal/fluid mechanics, and mesh refinement. Since the mesh is being used by different applica-
tions, we must ensure that the mesh is consistent. A consistent mesh will always follow certain
rules/guidelines regardless of the application using it. This has a disadvantage in that flexibility to
tune/adjust the mesh for a specific application’s needs is reduced, but it also allows easier coupling
between applications and helps reuse of algorithms that use STK Mesh because of these rules.

Much of the work in STK Mesh, during modification cycles, is towards creating a consistent mesh
especially in parallel. The following are some of the ideas behind a parallel consistent mesh:

e For entities with the same identifier (EntityKey), then for all the processors that have the
entity

— the owner is the same

— the application-defined parts that the entity is a member of, are the same

24

— every entity has the same downward relations on all processors

— every entity has the same upward relations on all processors (only if the aura is active)
e For aura’ed/shared entities
— owner of entity knows with which processors the entity is shared with and/or aura’ed
to
— sharer (not owner) of entity knows which other processors share the entity

— processor with aura’ed entity knows the owner of the entity

At first glance, these rules might seem trivial. The STK Mesh API prevents the ability to change
mesh to get it into an inconsistent state at the end of a modification cycle. This concept has proven
to be powerful in that it allows coupling of codes and reuse of algorithms across applications.

1.3.1 How to enable mesh diagnostics to enforce parallel mesh rules

STK Mesh now provides a means by which an application may enable internal mesh diagnostics
to ensure that the mesh is consistent with the three Parallel Mesh Rules (PMR). These rules may
be summarized as:

e Rule 1: Coincident and partially coincident elements must be owned by the same processor
(no split coincident elements)

e Rule 2: Each global id shall be owned by one and only one processor (no duplicate ids)

e Rule 3: Processor that owns a side also owns at least one element to which it is connected.

(each side needs an element i.e no solo faces)

Enabling mesh diagnostics creates a per-processor file
named “mesh_diagnostics_failures_<proc_id>.txt” which contains the listing of all errors. This
example demonstrates first creating a mesh with a sideset and then checking that there are no solo
faces with attached elements that are remotely owned (PMR-3).

Listing 1.3: Example of how to enable mesh diagnostics

«J..[..Jecode/stk/stk_doc_tests/stk_mesh/howToEnableMeshDiagnostics.cpp

43 TEST (StkMeshHowTo, EnableMeshDiagnostics)
44 |

45 stk::mesh: :MetaData meta;

46 stk::mesh::BulkData bulkData (meta, MPI_COMM_WORLD) ;

47 stk::io::fill_mesh ("generated:4x4x4|sideset:xX", bulkData);
48

49 bulkData.enable_mesh_diagnostic_rule(stk::mesh::RULE_3);

50 EXPECT_EQ (Ou, bulkData.get_mesh_diagnostic_error_count());

51 }

25

1.3.2 How to enforce Parallel Mesh Rule 1

STK Mesh now provides a means by which an application may enforce Parallel Mesh Rule 1
(PMR-1) to ensure that coincident and partially-coincident elements must be owned by the same
processor (no split coincident elements).

Listing 1.4: Example of how to enforce Parallel Mesh Rule 1

./..l../code/stk/stk_balance/doc_tests/howToFixPMR1 Violation.cpp

43 TEST (StkMeshHowTo, FixPMR1lViolation)

44 |

45 stk::mesh: :MetaData meta;

46 stk::mesh::BulkData bulkData (meta, MPI_COMM_WORLD) ;

47 stk::io::fill_mesh ("generated:4x4x4|sideset:xX", bulkData);

48

49 stk::mesh::EntityIdProcMap elementAndDestProc;

50 EXPECT_NO_THROW (elementAndDestProc =
stk::balance::make_mesh_consistent_with_parallel_mesh_rulel (bulkData)) ;

51 EXPECT_TRUE (elementAndDestProc.size ()==0u); // no elements were migrated

52}

1.3.3 Parallel API

This section discusses a few API functions for applications using the parallel capabilities of STK
Mesh.

The following code example shows how to communicate field data from owned to all shared and
ghosted entities, overwriting any local modifications.

Listing 1.5: Example of communicating field data from owned to all shared and ghosted entities

.[..[../code/stk/stk_doc_tests/stk_mesh/communicateFieldData.cpp

59 TEST_F (ParallelHowTo, communicateFieldDataForSharedAndAura)

60 {
61 autos& field =
get_meta () .declare_field<stk::mesh::Field<double>> (stk::topology: :NODE_RANK,
"temperature") ;
62
63 double initialValue = 25.0;
64 stk::mesh::put_field on_entire_mesh with_initial_value (field, &initialValue);
65
66 setup_mesh ("generated:8x8x8", stk::mesh::BulkData::AUTO_AURA) ;
67
68 const stk::mesh::BucketVector& notOwnedBuckets =
get_bulk () .get_buckets (stk::topology: :NODE_RANK,
69
lget_meta() .locally_owned_part());
70
71 for (const stk::mesh::Bucket xbucket : notOwnedBuckets)
72 for (stk::mesh::Entity node : xbucket)
73 +*stk::mesh::field data(field, node) = -1.2345;
74
75 stk::mesh::communicate_field_data (get_bulk (), {&field});
76
77 for (const stk::mesh::Bucket xbucket : notOwnedBuckets)
78 for (stk::mesh::Entity node : xbucket)
79 EXPECT_EQ (initialValue, =xstk::mesh::field_data(field, node));

26

80 }

The parallel_sum, parallel_min, and parallel_max functions operate on shared entities.

Listing 1.6: Example of parallel_sum ../../../code/stk/stk_doc_tests/stk_mesh/communicateFieldData.cpp

84 void expect_field_has_value (const stk::mesh::BucketVector& buckets,

85 const stk::mesh::Field<double> &field,
86 double value)

87 {

88 for (const stk::mesh::Bucket *bucket : buckets)

89 for (stk::mesh::Entity node : xbucket)

90 EXPECT_EQ (value, =xstk::mesh::field_data(field, node));

91 }
92
93 TEST_F (ParallelHowTo, computeParallelSum)

94 {

95 autos field =
get_meta () .declare_field<stk::mesh::Field<double>> (stk::topology: :NODE_RANK,
"temperature") ;

96

97 double initialvalue = 25.0;

98 stk::mesh::put_field on_entire _mesh _with_initial_value (field, &initialValue);

99

100 setup_mesh ("generated:8x8x8", stk::mesh::BulkData::AUTO_AURA) ;

101

102 const stk::mesh::BucketVector& shared = get_bulk() .get_buckets (stk::topology: :NODE_RANK,

103

get_meta() .globally_shared_part());
104 const stk::mesh::BucketVector& notShared =

get_bulk () .get_buckets (stk::topology: :NODE_RANK,
105

!get_meta () .globally_shared_part());

106 expect_field has_value (shared, field, initialValue);

107 expect_field has_value (notShared, field, initialvValue);
108

109 stk::mesh::parallel_sum(get_bulk (), {&field});

110

111 expect_field has_value (shared, field, 2xinitialValue);
112 expect_field _has_value (notShared, field, initialValue);
13 }

The comm_mesh_counts function is shown in Listings 1.7-1.8. The purpose of this function is
to count the number of entities of each entity rank across all processors.

Listing 1.7: Example showing parallel use of comm_mesh_counts

«J..1.Jeode/stk/stk_doc_tests/stk_mesh/UnitTestCommMeshCounts.cpp

75 TEST(CommMeshCounts, Parallel)
76 {

77 stk::ParallelMachine communicator = MPI_COMM_WORLD;

78 int numprocs = stk::parallel machine_size (communicator) ;

79

80 const std::string generatedMeshSpec = getGeneratedMeshString (10,20, 2+numprocs);
81 unitTestUtils: :exampleMeshes: :StkMeshCreator stkMesh (generatedMeshSpec, communicator);
82

83 std::vector<size_t> comm_mesh_counts;

84 stk::mesh::comm_mesh_counts (xstkMesh.getBulkData (), comm_mesh_counts);

85

86 size_t goldNumElements = 10x20x2xnumprocs;

87 EXPECT_EQ (goldNumElements, comm_mesh_counts[stk::topology::ELEMENT_RANK]) ;

88 }

27

Listing 1.8: Example showing parallel use of comm_mesh_counts with min/max counts

./..J../code/stk/stk_doc_tests/stk_mesh/UnitTestCommMeshCounts.cpp

90 TEST(CommMeshCountsWithStats, Parallel)
91 {

92 stk::ParallelMachine communicator = MPI_COMM_WORLD;

93 int numprocs = stk::parallel_machine_size (communicator);

94

95 const std::string generatedMeshSpec = getGeneratedMeshString (10,20, 2+numprocs) ;

96 unitTestUtils: :exampleMeshes: :StkMeshCreator stkMesh (generatedMeshSpec, communicator);
97

98 std::vector<size_t> comm_mesh_counts;

99 std::vector<size_t> min_counts;

100 std::vector<size_t> max_counts;

101

102 stk::mesh::comm_mesh_counts (xstkMesh.getBulkData (), comm_mesh_counts, min_counts,

max_counts) ;
103

104 size_t goldNumElements = 10x20x2xnumprocs;

105 EXPECT_EQ (goldNumElements, comm_mesh_counts[stk::topology::ELEMENT_RANK]) ;
106

107 size_t goldMinNumElements = 10x20%2;

108 EXPECT_EQ (goldMinNumElements, min_counts([stk::topology::ELEMENT_RANK]) ;

109
110 size_t goldMaxNumElements = goldMinNumElements;
111 EXPECT_EQ (goldMaxNumElements, max_counts[stk::topology: :ELEMENT_RANK]) ;

12}

1.4 STK Mesh Selector

A selector is a set-logical expression that can include intersections, unions, and complements. The
default-constructed selector is empty and therefore selects nothing. See Section 1.4.1 for examples.

A selector is typically used with get _buckets () for a given entity rank to get a list of buckets
satisfying that selector. get_buckets () evaluates the selector on each bucket of the specified
rank. When the expression evaluation gets down to a part, the selector must determine if that
part is listed as one of the part intersections in the bucket. The worst-case cost of evaluating
get_buckets () is

o (N number buckets) x 0 (N number selector terms) x 0 (N number bucket parts) (1 . 1)

where Nyumber buckets 15 the number of buckets of the Entity rank that was passed
into get_buckets (), Numberselectorterms 15 the length of the selector expression, and
Nyumber bucket parts 18 the average number of parts that each bucket represents.

Since STK Mesh internally caches the results of calls to get_buckets (), selector performance
often does not have a large impact on overall application runtime. Selectors are implemented to
allow optimization from short-circuiting logic, to allow a positive result from a union to ignore the
rest of the expression, as well as a negative result from an intersection. If selectors are constructed
to take advantage of this type of early termination, the middle term in equation (1.1) is less ex-
pensive in practice. For example, if partA strictly contains partB, then the selector expression
(partA | partB) will tend to select more efficiently than (partB | partA) because, in

28

the first case, once it is known that a bucket is selected for partA, that bucket does not need to be
checked against partB.

1.4.1 How to use selectors

These examples demonstrate creating and printing Selectors, as well as performing set intersec-
tion operations. The second example also demonstrates retrieving the buckets associated with a
Selector.

Listing 1.9: Example of how to use Selectors to avoid getting caught by the ’Nothing” selector

./../../code/stk/stk_doc_tests/stk_mesh/howToUseSelectors.cpp

50 TEST (StkMeshHowTo, betterUnderstandSelectorConstruction)

51
52
53
54

55

56
57
58
59
60
61
62
63

64

65
66
67
68
69
70
71
72

73
74
75
76
77
78
79

90

93
94

95

{

MPI_Comm communicator = MPI_COMM_WORLD;

if (stk::parallel_machine_size (communicator) != 1) { return; }
stk::io::StkMeshIoBroker stkMeshIoBroker (communicator);
const std::string generatedMeshSpecification = "generated:1x1x1"; // syntax creates a

1x1x1l cube
stkMeshIoBroker.add _mesh_database (generatedMeshSpecification, stk::io::READ_MESH) ;
stkMeshIoBroker.create_input_mesh();
stkMeshIoBroker.populate_bulk_data();

stk::mesh::BulkData &stkMeshBulkData = stkMeshIoBroker.bulk_data();

stk::mesh::Selector nothingSelector_byDefaultConstruction;

size_t expectingZeroBuckets = 0;

EXPECT_EQ (expectingZeroBuckets, stkMeshBulkData.get_buckets (stk::topology: :NODE_RANK,
nothingSelector_byDefaultConstruction) .size());

std::ostringstream readableSelectorDescription;
readableSelectorDescription << nothingSelector_byDefaultConstruction;
EXPECT_STREQ ("NOTHING", readableSelectorDescription.str().c_str());

stk::mesh::Selector allSelector (!nothingSelector_byDefaultConstruction);

size_t numberOfAllNodeBuckets = stkMeshBulkData.buckets (stk::topology::NODE_RANK) .size();

EXPECT_EQ (numberOfAllNodeBuckets, stkMeshBulkData.get_buckets (stk::topology::NODE_RANK,
allSelector) .size());

TEST (StkMeshHowTo, makeSureYouAreNotIntersectingNothingSelector)

{

MPI_Comm communicator = MPI_COMM_WORLD;

if (stk::parallel _machine_size (communicator) != 1) { return; }

stk::io::StkMeshIoBroker stkMeshIoBroker (communicator);

// syntax creates faces for surface on the positive: ’'x-side’, ’‘y-side’, and ’z-side’

// of a 1x1xl cube, these parts are given the names: ’surface_1’, ’surface_2’, and
"surface_3’

// automagically when it is created [create_input_mesh ()]

const std::string generatedMeshSpecification = "generated:1lx1xl|sideset:XYZ";

stkMeshIoBroker.add_mesh_database (generatedMeshSpecification, stk::io::READ_MESH);

stkMeshIoBroker.create_input_mesh();

stkMeshIoBroker.populate_bulk_data();

stk::mesh::MetaData &stkMeshMetaData = stkMeshIoBroker.meta_datal();
stk::mesh::Part xsurfacelPart = stkMeshMetaData.get_part ("surface_1");
stk::mesh::Part xsurface2Part = stkMeshMetaData.get_part ("surface_2");
stk::mesh::Part xsurface3Part = stkMeshMetaData.get_part ("surface_3");
stk::mesh::PartVector allSurfaces;

allSurfaces.push_back (surfacelPart);

allSurfaces.push_back (surface2Part);

allSurfaces.push_back (surface3Part);

29

96

97 stk::mesh::Selector selectorIntersectingNothing;

98 for (size_t surfaceIndex = 0; surfaceIndex < allSurfaces.size(); ++surfacelndex)

99 {

100 stk::mesh::Part &surfacePart = x(allSurfaces[surfacelndex]);

101 stk::mesh::Selector surfaceSelector (surfacePart);

102 selectorIntersectingNothing &= surfacePart;

103 }

104 size_t expectedNumberOfBucketsWhenIntersectingNothing = 0;

105 stk::mesh::BulkData &stkMeshBulkData = stkMeshIoBroker.bulk_data();

106 stk::mesh: :BucketVector selectedBuckets =
stkMeshBulkData.get_buckets (stk::topology: :NODE_RANK,
selectorIntersectingNothing) ;

107 EXPECT_EQ (expectedNumberOfBucketsWhenIntersectingNothing, selectedBuckets.size());

109 stk::mesh::Selector preferredBoundaryNodesSelector =
stk::mesh::selectIntersection(allSurfaces);

110 size_t expectedNumberOfNodeBucketsWhenIntersectingAllSurfaces = 1;

111 selectedBuckets = stkMeshBulkData.get_buckets (stk::topology: :NODE_RANK,
preferredBoundaryNodesSelector) ;

112 EXPECT_EQ (expectedNumberOfNodeBucket sWhenIntersectingAllSurfaces, selectedBuckets.size());

1.5 STK Mesh Parts

A mesh part is a subset of entities of the mesh, and may be used to reflect the physics modeled,
discretization methodology, solution algorithm, meshing artifacts, or other application specific
requirements.

STK Mesh automatically defines several parts during initialization, demonstrated here based on the
serial The universal part includes every entity on the current MPI process (Figure 1.3). The locally-
owned part contains all the entities owned by the current MPI process (Figure 1.4). The globally-
shared part contains all the entities on the current MPI process that are shared with another MPI
process, whether locally-owned or not. Figures 1.5 and 1.6 illustrate the globally shared part. An
entity may be in both the locally-owned and globally-shared parts. By default, a shared entity
is owned by the lowest-numbered sharing MPI process, though client code is allowed to change
entity ownership. Part declarations and part membership are consistent across processor ranks;
part membership for a given entity is maintained on the owning rank. The aura part contains all
the entities which are ghosted due to aura. An additional part is kept up-to-date for each custom
ghosting and examples of usage are in Section 1.5.3.

1.5.1 Part Identifiers and Attributes

A mesh part has an unique text name identifier, specified by the application that creates the part.
This identifier is intended to support text input and output by the application, e.g., parsing, logging,
and error reporting. The text name is not intended for referencing a mesh part within application
computations. As reliance on text-based references will lead to text-based searches within the
application’s computations, resulting in unnecessarily degraded performance.

30

(78) 68) i (68) (58)

[100] [200]

(28) & N) (48)

Proc 0 . Proc1

M Identifier

Figure 1.3: Parallel-decomposed STK Mesh. This figure depicts the universal parts on each pro-
cess.

(78) 68) (58)

[100] [200]

(28) (38) (48)

Proc 0 . Proc1l

M Identifier

Figure 1.4: Locally-owned parts. Nodes 38 and 68 are owned by process 1 and are not in process
2’s locally-owned part.

A mesh part also has a unique non-negative integer identifier, its part ordinal, that is internally
generated by the mesh MetaData. Part ordinals are intended to support fast referencing and order-
ing of mesh parts. The part ordinal is also intended to support efficient communication of mesh
part information among distributed memory processes.

An application, for example, may specify a mesh part for an element block (a collection of ele-
ments); in descriptions of part behavior, we use the following notation:

Party = mesh part identified by A 12)
Parrf" = mesh part intended for mesh entities of rank J and identified by A .

Note that all processors have the same part list. Hence, parts must be created synchronously across
all processors to avoid part lists becoming different on any processor.

31

(608) : (6°8)

M [dentifier

Figure 1.5: Globally-shared parts. Nodes 38 and 68 appear in both process’s globally-shared part.

M |dentifier

Figure 1.6: Entities in the globally-shared part from each process.

1.5.2 Induced Part Membership

An application can explicitly insert a mesh entity into a mesh part or explicitly remove a mesh
entity from a part. A mesh entity’s membership in a part may also be induced through its connec-
tivity to a higher rank mesh entity. Thus, a mesh entity may be an explicit member or an induced
member of a mesh part.

For example, a node will have induced membership in an element block (mesh part) when that
node has connectivity from an element that is in that part. Therefore, the nodes of all the elements
in the element block will be in that part due to induced part membership. This enables client code
to select and iterate over the nodes of the elements in the element block directly and uniquely,
rather than through element connectivity. In general, the explicit part membership of a given entity
automatically induces the same part membership onto any lower-ranking entities that are connected
to 1t.

When a mesh part has a specified entity rank (Parrlf‘) then only mesh entities of the same entity rank
J may be explicitly added as members to that mesh part. If a mesh entity is an explicit member of
such a mesh part, entity’ € Parr/ﬁ, and that mesh entity (entity’) is the from-entity of a connectivity,
then the to-entity of that connectivity is an induced member of that mesh part. More formally,

Given a connectivity (entity), , entityk , x) : J>K and
entity), € Part} via explicit membership (1.3)

then entityX € Part) viainduced membership.

32

Note that induced-part memberships are added (or removed) whenever a connectivity is declared
(or deleted). As a result, declaring or deleting a connectivity can cause an entity to move to a
different bucket.

Induced membership only occurs in the presence of a mesh entity connectivity. This means that
induced membership is not transitive. For example, if a mesh has both element-to-face and face-
to-edge connectivities, but does not have element-to-edge connectivities, then the edges in the
element’s closure (via element-to-face-to-edge) are not induced members.

1.5.3 How to use ghost parts

These examples demonstrate how to use the ghost parts to select those entities that are ghosted due
to aura or custom ghosting.

Listing 1.10: Example of how to use Ghost Parts to select aura ghosts and custom ghosts

J. 1. Jeode/stk/stk_doc_tests/stk_mesh/UnitTestGhostParts.cpp

66 TEST (UnitTestGhostParts, Aura)

67 {

68 stk::ParallelMachine communicator = MPI_COMM_WORLD;
69

70 int numProcs = stk::parallel _machine_size (communicator) ;

71 if (numProcs != 2) {

72 return;

73 }

74

75 stk::io0::StkMeshIoBroker stkMeshIoBroker (communicator);

76 const std::string generatedMeshSpecification = "generated:1x1x3";

77 stkMeshIoBroker.add_mesh_database (generatedMeshSpecification, stk::io::READ_MESH) ;

78 stkMeshIoBroker.create_input_mesh();
79 stkMeshIoBroker.populate_bulk_data();

81 stk::mesh: :MetaData &stkMeshMetaData stkMeshIoBroker.meta_data();
82 stk::mesh::BulkData &stkMeshBulkData = stkMeshIoBroker.bulk_data();
83

84 std::cerr<<"about to get aura_part..."<<std::endl;
85 stk::mesh::Part& aura_part = stkMeshMetaData.aura_part();
86 std::cerr<<"...got aura part with name="<<aura_part.name ()<<std::endl;

87 stk::mesh::Selector aura_selector = aura_part;

88

89 stk::mesh::Ghosting& aura_ghosting = stkMeshBulkData.aura_ghosting();

90 EXPECT_EQ (aura_part.mesh_meta_data_ordinal(),
stkMeshBulkData.ghosting_part (aura_ghosting) .mesh_meta_data_ordinal());

91

92 stk::mesh::Selector not_owned_nor_shared = (!stkMeshMetaData.locally_owned_part()) &
(!stkMeshMetaData.globally_shared_part());

93

94 const stk::mesh::BucketVector& not_owned_nor_shared_node_buckets =
stkMeshBulkData.get_buckets (stk::topology::NODE_RANK, not_owned_nor_shared);

95 size_t expected_num_not_owned_nor_shared_node_buckets = 1;
96 EXPECT_EQ (expected_num_not_owned_nor_shared_node_buckets,
not_owned_nor_shared_node_buckets.size());

97
98 const stk::mesh::BucketVector& aura_node_buckets =

stkMeshBulkData.get_buckets (stk::topology: :NODE_RANK, aura_selector);
99
100 EXPECT_EQ (not_owned_nor_shared_node_buckets.size (), aura_node_buckets.size());
101
102 const size_t expected_num_ghost_nodes = 4;

33

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

140

141
142
143
144
145
146
147
148
149
150
151
152
153

154

155
156
157
158
159

160

161
162
163
164
165
166
167

size_t counted_nodes = 0;
size_t counted_aura_nodes = 0;

for (size_t i=0; i<not_owned_nor_shared_node_buckets.size(); ++1i)

{

counted_nodes += not_owned_nor_shared_node_buckets[i]->size();
counted_aura_nodes += aura_node_buckets[i]->size();

}

EXPECT_EQ (expected_num_ghost_nodes, counted_nodes) ;

EXPECT_EQ (expected_num_ghost_nodes, counted_aura_.

TEST (UnitTestGhostParts, Customl)

{

nodes) ;

stk::ParallelMachine communicator = MPI_COMM_WORLD;

int numProcs = stk::parallel machine_size (communicator) ;
!

if (numProcs
return;

'=2) {

stk::i0::StkMeshIoBroker stkMeshIoBroker (communicator);
const std::string generatedMeshSpecification = "generated:1x1x4";
stkMeshIoBroker.add_mesh_database (generatedMeshSpecification, stk::io::READ_MESH) ;

stkMeshIoBroker.create_input_mesh();
stkMeshIoBroker.populate_bulk_data();

stk::mesh::BulkData &stkMeshBulkData = stkMeshIoBroker.bulk_data();

int myProc = stkMeshBulkData.parallel_rank();
int otherProc = (myProc == 0) ? 1 : 0;

stkMeshBulkData.modification_begin () ;

stk::mesh::Ghosting& custom_ghosting = stkMeshBulkData.create_ghosting ("CustomGhostingl")

std::vector<stk::mesh::EntityProc> elems_to_ghost;

const stk::mesh::BucketVectors& elem_buckets =
stkMeshBulkData.buckets (stk::topology:
for(size_t 1=0; i<elem_buckets.size(); ++1i) {

:ELEM_RANK) ;

const stk::mesh::Bucket& bucket = *elem_buckets[i];

for(size_t j=0; Jj<bucket.size(); ++3J) {

if (stkMeshBulkData.parallel_owner_rank (bucket[j]) == myProc) {
elems_to_ghost.push_back (std: :make_pair (bucket[]j], otherProc));

stkMeshBulkData.change_ghosting (custom_ghosting,

stkMeshBulkData.modification_end() ;

//now each processor should have 2 elements that were received as ghosts of elements from

the other proc.

elems_to_ghost);

const size_t expected_num_elems_for_custom_ghosting = 2;

stk::mesh::Part& custom_ghost_part = stkMeshBulkData.ghosting part (custom_ghosting);
stk::mesh::Selector custom_ghost_selector = custom_ghost_part;

const stk::mesh::BucketVector& custom_ghost_elem buckets =
stkMeshBulkData.get_buckets (stk::topology::ELEM_RANK, custom_ghost_selector);

size_t counted_elements = 0;

for(size_t 1=0; i<custom_ghost_elem buckets.size(); ++1i) {
counted_elements += custom_ghost_elem_buckets[i]->size();

EXPECT_EQ (expected_num_elems_for_custom_ghosting,

34

counted_elements) ;

’

1.6 Mesh Modification

1.6.1 Overview

The following types of mesh modifications are available in STK Mesh:

Add/delete entities
Change entities’ part membership

Change connectivity

Change processors’ entity ownership

Change ghosting

A STK Mesh can be modified only within the context of a modification cycle. A modification cycle
begins with a call to BulkData: :modification_begin () and ends when the next call to
BulkData::modification_end () returns. This latter function does a pre-determined set
of checks on mesh status and performs MPI communication to ensure a globally-consistent state.

Modification cycles should not be nested; BulkData: :modification_end () terminates all
“enclosing” modification cycles. If the application inadvertently nests modification cycles, errors
are likely to be thrown.

Application code between a BulkData: :modification_begin () call and the follow-
ing BulkData: :modification_end () call can use STK Mesh modification functions that
cause the BulkData to become parallel inconsistent. That is, mesh information on different pro-
cessor ranks can disagree. After each modification cycle, a STK mesh is guaranteed to be parallel-
consistent. Failures during mesh modification are not recoverable.

The first time BulkData: :modification_begin () is called, the mesh MetaData is verified
to have been committed and to be parallel-consistent (and the MetaData is committed at that time if
it hasn’t already been committed). The function returns t rue if the mesh successfully transitions
from the guaranteed parallel-consistent state to the MODIFIABLE state, and £alse if it is already
in this state.

BulkData: :modification_end () performs parallel synchronization of local mesh modi-
fications since the mesh entered the MODIFIABLE state and transitions the mesh back to a guar-
anteed parallel-consistent state. BulkData: :modification_end () returns true if it suc-
ceeds and false if itis already in the guaranteed parallel-consistent state. If modification resolu-
tion errors occur then a parallel-consistent exception will be thrown.

Because a modification cycle incurs multiple rounds of communication and traversal over large
portions of the mesh, even a modification cycle with a single modification incurs significant cost.

35

From a performance standpoint it is advantageous to group mesh modifications into as few modi-
fication cycles as possible.

To alleviate the expense of a general modification cycle, other single-purpose API have been in-
troduced, such as for the creation of faces, that take into account knowledge of what has been
modified to improve the performance of a modification cycle. These should be considered before
coding a general modification, especially if it is in a performance-critical part of the code.

Note that MetaData changes (declaring parts and fields) are not part of the mesh modification API
since it’s illegal to change MetaData after the MetaData object has been committed.

1.6.2 Public Modification Capability

In this section we describe the modification operations intended to be called from ap-
plication code. As noted above, these functions can only be called between calls to
BulkData: :modification_begin () and BulkData::modification_end(). We
also describe the modification operations that STK Mesh automatically performs internally as a
result of an application explicitly calling a modification function. Understanding what modifica-
tions can occur automatically is particularly important for code reliability. We note that certain
modification types are applicable only in distributed STK Mesh applications.

1.6.2.1 Add/Delete Entities

The BulkData: :declare_entity () function can be used to add an entity to a STK mesh
and assign its entity rank and global identifier. BulkData: :generate_new_entities()
can be used to create multiple entities of specified entity ranks and have unique global identifiers
automatically assigned. When entities of EDGE_RANK, FACE_RANK, or ELEMENT _RANK are
created by application code, they must be assigned a topology and have their nodal connectivities
set before BulkData: :modification_end () is called. See section 1.6.6.

BulkData: :destroy_entity () deletes an entity from a STK Mesh. All upward relations
must be deleted before an entity can be destroyed, as a safety measure to ensure that the user is
explicitly aware of any possible inconsistent mesh states that they are creating (e.g. an element
that is missing one or more nodes). Downward relations are deleted automatically.

Adding or deleting an entity can result in automatic changes to part membership, ownership, con-
nectivity, ghosting, and sharing. Changes in part membership(s) can also result in changes to
bucket structure. Any local modifications to an entity will cause ghosted copies of that entity to be
deleted from other processor ranks. The ghosts will be automatically regenerated if they are part
of the aura.

Unless an entity is deleted, it stays valid before, during, and after a modification cycle.

36

Listing 1.11: Example showing optimized destruction of all elements of a specified topology

«J.[.Jeode/stk/stk_doc_tests/stk_mesh/howToDestroyElementsOfTopology.cpp

| #include <gtest/gtest.h>

> #include <stk_mesh/base/BulkData.hpp>

3 #include <stk_mesh/base/GetEntities.hpp>

4 #include <stk_mesh/base/MetaData.hpp>

5 #include <stk_topology/topology.hpp>

6 #include <stk_unit_test_utils/ioUtils.hpp>
7 namespace

8 {

9 TEST (StkMeshHowTo, DestroyElementsOfTopology)
10 {

11 stk::mesh: :MetaData metaData;

12 stk::mesh::BulkData bulkData (metaData, MPI_COMM_WORLD) ;

13 stk::io::fill _mesh ("generated:1x1x4", bulkData);

14 EXPECT_GT (stk: :mesh: :count_selected_entities (metaData.universal_part (),
bulkData.buckets (stk::topology::ELEM_RANK)), Ou);

15 bulkData.destroy_elements_of_topology (stk::topology::HEX_ 8);

16 EXPECT_EQ (Ou, stk::mesh::count_selected_entities (metaData.universal_part(),

bulkData.buckets (stk::topology::ELEM_RANK)));

1.6.2.2 Getting Unused Globally Unique Identifiers

Code Listing 1.12 shows, by example, how to get globally unique identifiers. The API requires that
a stk topology rank be specified. The ids are then returned in the vector argument. These ids are
unused when this call is made. Hence, care must be taken if these ids are kept on the application
side (client side) and not used until later. This is a collective call (all processors must call this
function). Note, this API is offered in addition to the generate_new_entities () method.
The key difference is that the generate_new_ids () method only obtains identifiers per rank,
and entities are not automatically created.

Listing 1.12: Example showing how to use generate_new_ids

J.[.Jcode/stk/stk_doc_tests/stk_mesh/howToUseGenerateNewlIds.cpp

76 TEST (StkMeshHowTo, use_generate_new_ids)

77 {

78 MPI_Comm communicator = MPI_COMM_WORLD;

79

80 int num_procs = -1;

81 MPI_Comm_size (communicator, &num_procs);

82 std::ostringstream os;

83 os << "generated:1x1lx" << num_procs;

84 const std::string generatedMeshSpecification = os.str();

85

86 stk::io0::StkMeshIoBroker stkMeshIoBroker (communicator);

87 stkMeshIoBroker.add _mesh_database (generatedMeshSpecification, stk::io::READ_MESH) ;
88 stkMeshIoBroker.create_input_mesh();

89 stkMeshIoBroker.populate_bulk_data();

9

91 stk::mesh::BulkData &stkMeshBulkData = stkMeshIoBroker.bulk_data();
92

93 // Given a mesh, request 10 unique node ids

94

95 std::vector<stk::mesh::EntityId> requestedIds;

96 unsigned numRequested = 10;

97

37

98 stkMeshBulkData.generate _new_ids (stk::topology: :NODE_RANK, numRequested, requestedIds);
99

100 test_that_ids_are_unique (stkMeshBulkData, stk::topology::NODE_RANK, requestedIds);

101 }

1.6.2.3 Creating Nodes that are Shared by Multiple Processors

When a node entity is created that is intended to be shared by multiple processors (i.e.,
it will be connected to locally-owned entities on multiple MPI processors), the method
BulkData: :add_node_sharing () must be used to inform STK Mesh that the node is
shared and which other processors share it. The add_node_sharing () method must be called
symmetrically, meaning that for a given shared node, each sharing processor must inform STK
Mesh about all the other sharing processors during the same modification cycle. The code listing
1.13 demonstrates the use of add_node_sharing () when creating shared nodes.

Listing 1.13: Example showing creation of shared nodes

.J../..Jcode/stk/stk_doc_tests/stk_mesh/createSharedNodes.cpp

73 TEST (stkMeshHowTo, createSharedNodes)
74 {

75 const unsigned spatialDimension = 2;

76 stk::mesh::MetaData metaData (spatialDimension, stk::mesh::entity_rank_names());

77 stk::mesh::Part &triPart = metaData.declare_part_with_topology("tri_part",
stk::topology::TRIANGLE_3_2D);

78 metaData.commit () ;

79

80 stk::mesh::BulkData bulkData (metaData, MPI_COMM_WORLD) ;

81 if (bulkData.parallel_size() == 2)

82 {

83 bulkData.modification_begin();

84

85 const unsigned nodesPerElem = 3;

86 stk::mesh::EntityIdVector elemIds = {1, 2};//one elemlId for each proc

87 std::vector<stk::mesh::EntityIdVector> elemNodeIds = { {1, 3, 2}, {4, 2, 3} };

88 const int myproc = bulkData.parallel_rank();

89

90 stk::mesh::Entity elem = bulkData.declare_element (elemlIds [myproc],
stk::mesh::ConstPartVector{&triPart});

91 stk::mesh::EntityVector elemNodes (nodesPerElem) ;

92 elemNodes [0] = bulkData.declare_node (elemNodeIds [myproc] [0]);

93 elemNodes[1l] = bulkData.declare_node (elemNodeIds [myproc] [1]);

94 elemNodes[2] = bulkData.declare_node (elemNodeIds [myproc] [2]);

95

96 bulkData.declare_relation(elem, elemNodes[0], 0);

97 bulkData.declare_relation(elem, elemNodes[1l], 1);

98 bulkData.declare_relation(elem, elemNodes[2], 2);

99
100 int otherproc = testUtils::get_other_ proc (myproc);
101 bulkData.add_node_sharing(elemNodes[1l], otherproc);

102 bulkData.add_node_sharing(elemNodes[2], otherproc);

103

104 bulkData.modification_end();

105

106 const size_t expectedTotalNumNodes = 4;

107 verify_global_node_count (expectedTotalNumNodes, bulkData);

108 }
109 }

38

@ i @

(1) (4)

(3) ; (3)
ProcO : Procl

M Local Identifier M Shared Nodes

Figure 1.7: Creation of shared nodes for code listing 1.13

STK Mesh also supports the creation of independent shared nodes (nodes without connectiv-
ity) for use in p-refinement. In this case, additional nodes are created for higher order ele-
ments and these are maintained without explicit connectivity information in STK Mesh. Some
of these nodes need to be shared across processor boundaries. This capability is to support the
exploration of p-refinement. Currently, this capability cannot predict which nodes are attached
to which elements when change_entity_owner () is called and therefore rebalance opera-
tions will likely not work as anticipated. This additional feature of add_node_sharing () is
only enabled when the nodes are initially created. The code listing 1.14 demonstrates the use of
add_node_sharing () to create independent shared nodes.

Listing 1.14: Example showing creation of independent shared nodes

./..l../code/stk/stk_doc_tests/stk_mesh/createSharedNodes.cpp

113 TEST (stkMeshHowTo, createlIndependentSharedNodes)

114 {

115 const unsigned spatialDimension = 2;

116 stk::mesh::MetaData metaData (spatialDimension, stk::mesh::entity_rank names());
117 metaData.commit () ;

118

119 stk::mesh::BulkData bulkData (metaData, MPI_COMM_WORLD) ;

120 if (bulkData.parallel_size() == 2)

121 {

122 bulkData.modification_begin();

123

124 const unsigned nodesPerProc = 3;

125 std::vector<stk::mesh::EntityIdVector> nodelds = { {1, 3, 2}, {4, 2, 3} };
126 const int myproc = bulkData.parallel_rank();

127 stk::mesh::EntityVector nodes (nodesPerProc);

128 nodes[0] = bulkData.declare_node (nodeIds[myproc][0]);

129 nodes[1l] = bulkData.declare_node (nodelIds[myproc][1]);

130 nodes[2] = bulkData.declare_node (nodeIds [myproc][2]);

131

132 int otherproc = testUtils::get_other_proc (myproc);

133 bulkData.add_node_sharing(nodes[1l], otherproc);

134 bulkData.add_node_sharing(nodes[2], otherproc);

135

136 bulkData.modification_end();

137

138 const size_t expectedTotalNumNodes = 4;

139 verify global_node_count (expectedTotalNumNodes, bulkData);
140 }

141}

39

@ e
o -]

(1) (a)
-] b (-]

&) &)
ProcO : Procl

M Local Identifier M Shared Nodes

Figure 1.8: creation of independent shared nodes for code listing 1.14

This special marking to allow unconnected nodes to be shared will be removed if relations are
attached to the node. The example 1.15 is a demonstration of this feature.

Listing 1.15: Example showing independent shared nodes becoming

dependent../../../code/stk/stk_doc_tests/stk_mesh/createSharedNodes.cpp

145 TEST (stkMeshHowTo, createIndependentSharedNodesThenAddDependence)

146 {

147 const unsigned spatialDimension = 2;

148 stk::mesh::MetaData metaData (spatialDimension, stk::mesh::entity_rank_ names());

149 stk::mesh::Part &triPart = metaData.declare_part_with_topology ("triPart",
stk::topology: :TRIANGLE_3_2D);

150 metaData.commit () ;

151

152 stk::mesh::BulkData bulkData (metaData, MPI_COMM_WORLD) ;

153 if (bulkData.parallel_size() == 2)

154 {

155 bulkData.modification_begin();

156

157 const unsigned nodesPerProc = 3;

158 std: :vector<stk::mesh::EntityIdVector> nodelds = { {1, 3, 2}, {4, 2, 3}};

159 const int myproc = bulkData.parallel_rank();

160

161 stk::mesh::EntityVector nodes (nodesPerProc);

162 nodes[0] = bulkData.declare_node (nodeIds[myproc][0]);

163 nodes[1l] = bulkData.declare_node (nodelIds[myproc][1]);

164 nodes[2] = bulkData.declare_node (nodelds[myproc][2]);

165

166 int otherproc = testUtils::get_other proc (myproc);

167 bulkData.add_node_sharing(nodes[1l], otherproc);

168 bulkData.add_node_sharing(nodes[2], otherproc);

169

170 const size_t expectedNumNodesPriorToModEnd = 6;

171 verify_global_node_count (expectedNumNodesPriorToModEnd, bulkData);

172

173 bulkData.modification_end() ;

174

175 const size_t expectedNumNodesAfterModEnd = 4; // nodes 2 and 3 are shared

176 verify global_node_count (expectedNumNodesAfterModEnd, bulkData);

177

178 const unsigned elemsPerProc = 1;

179 stk::mesh::EntityId elemIds[] [elemsPerProc] = { {1}, {2}};

180

181 bulkData.modification_begin();

182 stk::mesh::Entity elem = bulkData.declare_element (elemlIds[myproc] [0],
stk::mesh::ConstPartVector{&triPart});

183 bulkData.declare_relation(elem, nodes[0], 0);

184 bulkData.declare_relation(elem, nodes[1l], 1);

185 bulkData.declare_relation(elem, nodes[2], 2);

186 EXPECT_NO_THROW (bulkData.modification_end());

40

188 bulkData.modification_begin();

189 bulkData.destroy_entity(elem);

190 bulkData.modification_end();

191

192 if (myproc == 0)

193 verify nodes_2_and_3_are_no_longer_shared(bulkData, nodes);
194

195 else // myproc == 1

196 verify_nodes_2_and_3_are_removed(bulkData, nodes);
197 }

198 }

1.6.2.4 Change Entity Part Membership

BulkData: :change_entity_parts () changes which parts an entity belongs to.

Changes in part membership can result in changes to “induced” part membership. (See Section
1.5.2.) Changes in part membership typically cause entities to move to different buckets.

1.6.2.5 Change Connectivity

BulkData: :declare_relation() adds connectivity between two
entities. destroy_relation () removes connectivity between two entities. Relations must
be destroyed from the point of view of the higher-ranked entity toward the lower-ranked entity,
although the relation in the other direction will also be removed automatically.

Changes in connectivity can result in changes to induced part membership. (See Section 1.5.2).
Changes in connectivity can also result in changes in sharing and automatic ghosting during
modification_end (). By causing changes in part membership(s), changes in connectivity
can also result in changes to bucket structure.

1.6.2.6 Change Entity Ownership

In a parallel mesh, it can be necessary to change what processor rank owns an entity. The typical
case is when there is a change to parallel decomposition.

The change_entity_owner method is used for this and is called with a vector of pairs that
specify entities and destination processors. It must be called on all processes even if the input
vector is empty on some processors.

Changes in ownership can cause changes in ghosting and sharing, which are changes to part
membership. By causing changes in part membership(s), changes in ownership can also result
in changes to bucket structure.

41

1.6.2.7 Change Ghosting

Aura ghosting is maintained automatically by STK Mesh, but can be optionally disabled. STK al-
lows for application-specificed custom ghosting, through the functions change_ghosting (),
create_ghosting(), destroy_ghosting(), and destroy_all_ghosting().
Each of these functions must be called parallel-synchronously.

The method change_ghosting () is used to add entities to be ghosted, or remove entities from
a current ghosting. The input to the method includes a vector of pairs of entities and destination
processors on which the entities are to be ghosted. To be added to a ghosting in this way, an entity
must be locally-owned on the current processor, and must not already be shared by the destination
processor. It is permissible for an entity to be in multiple different custom ghostings at the same
time.

Any modification, directly applied or automatically called, to an entity in a ghosting will au-
tomatically cause that ghosting to be invalidated. For the aura ghosting, entities will be au-
tomatically regenerated during the next modification_end () call. For custom ghost-
ing, it is not as well-defined what should happen to modified entities. It is possible for
an entity in a ghosting to be invalidated without all of that ghosting being invalidated.
stk::mesh::BulkData::1is_valid(entity) can be used to determine whether a ghost
entity has been invalidated.

1.6.3 Mesh Modification Examples

Listing 1.16 shows how an element on processor 0 in the mesh depicted in Figure 1.9 is ghosted
to processor 1. Note that Element 1 is connected to Node 1. This test shows how a user can use
the identifier of the element, i.e. 1, to get an entity, and ghost it to another processor. This test
also shows that Node 1 is automatically ghosted to processor 1 because it is a downward-relation
of Element 1. In general, when an entity is ghosted, its downward-connected entities come along
with it, but upward-connected entities don’t.

111 [2] : 131 141

Proc 0 3 Proc 1
Figure 1.9: Mesh Used in Listings 1.16-1.17

Listing 1.16: Example showing an element being ghosted.

.J..J..Jcode/stk/stk_doc_tests/stk_mesh/customGhosting.cpp

95 TEST (StkMeshHowTo, customGhostElem)
9 {

42

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

114
115
116
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139:
140

MPI_Comm communicator = MPI_COMM_WORLD;

if
{

(stk::parallel _machine_size (communicator) == 2)

stk::mesh: :MetaData metaData;
stk::mesh: :BulkData bulkData (metaData, communicator);
stk::io::fill_mesh ("generated:1x1x4", bulkData);

stk::mesh::EntityId id = 1;

stk::mesh::Entity eleml = bulkData.get_entity(stk::topology::ELEM_RANK, id);
stk::mesh::Entity nodel = bulkData.get_entity(stk::topology::NODE_RANK, id);
verify_that_eleml_and_nodel_are_only_valid_on_pO (bulkData, eleml, nodel);

bulkData.modification_begin();
stk::mesh: :Ghosting& ghosting = bulkData.create_ghosting("custom ghost for elem 1");
std::vector<std::pair<stk::mesh::Entity, int> > elemProcPairs;

if (bulkData.parallel_rank() == 0)
elemProcPairs.push_back (std: :make_pair (eleml,
get_other_proc (bulkData.parallel_rank())));

bulkData.change_ghosting(ghosting, elemProcPairs);
bulkData.modification_end();

verify_that_eleml_and_downward_connected_entities_are_ghosted_from pO_to_pl (bulkData,
id);

TEST (StkMeshHowTo, addElementToGhostingUsingSpecializedModificationForPerformance)

{

MPI_Comm communicator = MPI_COMM_WORLD;
if (stk::parallel_machine_size (communicator) == 2)

{

stk::mesh: :MetaData meta;
stk::mesh::BulkData bulk (meta, communicator);
stk::io::fill_mesh ("generated:1x1x4", bulk);

stk::mesh::EntityId elementId = 1;
stk::mesh::Entity eleml = bulk.get_entity(stk::topology::ELEM_RANK, elementId);
verify_eleml_is_valid_only_on_pO (bulk, eleml);

bulk.modification_begin();
stk::mesh::Ghosting& ghosting = bulk.create_ghosting("my custom ghosting");
bulk.modification_end();

stk::mesh::EntityProcVec entityProcPairs;
if (bulk.parallel_rank() == 0)
entityProcPairs.push_back (stk::mesh::EntityProc (eleml,
get_other_proc (bulk.parallel_rank())));
bulk.batch_add_to_ghosting(ghosting, entityProcPairs);

verify eleml_is_valid_on_both_procs (bulk, elementId);

Listing 1.17 shows how an entity can be moved, or stated alternatively, how to change an
owner of an entity. Note that the change_entity_owner () method must be called by
all processors, and must not be enclosed within calls to modification_begin () and
modification_end () since itis a self-contained modification cycle.

Listing 1.17: Example of changing processor ownership of an element

./.[..Jeode/stk/stk_doc_tests/stk_mesh/changeEntityOwner.cpp

66 TEST (StkMeshHowTo, changeEntityOwner)

67

{

43

68 MPI_Comm communicator = MPI_COMM_WORLD;

69 if (stk::parallel _machine_size (communicator) == 2)

70 {

71 stk::mesh: :MetaData metaData;

72 stk::mesh::BulkData bulkData (metaData, communicator);
73 stk::io::fill_mesh ("generated:1x1x4", bulkData);

75 stk::mesh::EntityId elem2Id = 2;
76 stk::mesh::Entity elem2 = bulkData.get_entity(stk::topology::ELEM_RANK, elem2Id);

77 verify_elem_is_owned_on_pO_and_valid_as_aura_on_pl (bulkData, elem2);

79 std: :vector<std::pair<stk::mesh::Entity, int> > elemProcPairs;

80 if (bulkData.parallel_rank () == 0)

81 elemProcPairs.push_back (std: :make_pair (elem2,
testUtils::get_other_proc(bulkData.parallel_rank())));

82

83 bulkData.change_entity_owner (elemProcPairs);

84

85 verify_elem_is_now_owned_on_pl (bulkData, elem2Id);

1.6.3.1 Resolving Sharing Of Exodus Sidesets - Special Case

Figure 1.10 shows a case of an interior Exodus sideset where two sides exist initially across a
processor boundary. Nodes (1, 5, 8, 4) represent the face on the left (red) element on processor
0, and the nodes (1, 4, 8, 5) represent the face on the right (green) element on processor 1. The
algorithm for determining if these two faces are the same shared face will consider the following
two conditions:

1. The nodes on both face entities are the same or a valid permutation of each other

2. The identifiers of both face entities are the same

A boolean flag exists on BulkData, that if set to true, will require that two entities are the same if
both conditions, (1) and (2), must be true for the entity to be marked as shared.

When reading an Exodus file and populating a STK Mesh, the current setting is that both conditions
must be true for the mesh entities to be marked as the same. However, after the mesh has been read
in, only condition (1) is used to resolve sharing of entities across parallel boundaries.

If the user desires one behavior
over another, the set_use_entity_ids_for_resolving_sharing () function can be
used before calling modification_end () during a mesh modification cycle. This behavior
is undergoing changes so that the face entities created are consistently connected to elements. As
such, the option discussed here is marked to be deprecated.

Code listing 1.18 shows two tests. The first test shows the option that can be used for resolving
sharing. The second test case reads the mesh in Figure 1.10 and tests that there are two faces.

44

90

96

100
101
102

Figure 1.10: Mesh Used in Listing 1.18

Listing 1.18: Example of internal sideset which results in two faces

./....Jcode/stk/stk_integration_tests/stk_ mesh_doc/IntegrationTestBulkData.cpp

TEST (BulkData_test, use_entity_ids_for_ resolving_sharing)

{

MPI_Comm communicator = MPI_COMM_WORLD;

const int spatialDim = 3;
stk::mesh::MetaData stkMeshMetaData (spatialDim) ;
stk::unit_test_util::BulkDataTester stkMeshBulkData (stkMeshMetaData, communicator);

if (stkMeshBulkData.parallel _size () == 2)
{

std::string exodusFileName = stk::unit_test_util::get_option("-i", "mesh.exo");

{

stk::i0::StkMeshIoBroker exodusFileReader (communicator);
exodusFileReader.set_bulk_data (stkMeshBulkData) ;
exodusFileReader.add_mesh_database (exodusFileName, stk::io::READ_MESH) ;
exodusFileReader.create_input_mesh();
exodusFileReader.populate_bulk_data();

stkMeshBulkData.set_use_entity_ids_for_resolving_sharing (false);
EXPECT_FALSE (stkMeshBulkData.use_entity_ids_for_resolving_ sharing());

45

stkMeshBulkData.set_use_entity_ids_for_resolving_sharing(true);

104 EXPECT_TRUE (stkMeshBulkData.use_entity_ids_for_resolving_sharing());

105 }

106

7 TEST (BulkData_test, testTwoDimProblemForSharingOfDifferentEdgesWithSameNodesFourProc)
108 {

109 MPI_Comm communicator = MPI_COMM_WORLD;

110 const int spatialDim = 2;

111 stk::mesh::MetaData stkMeshMetaData (spatialDim);

112 stk::unit_test_util::BulkDataTester stkMeshBulkData (stkMeshMetaData, communicator);
113

114 if (stkMeshBulkData.parallel_size() == 4)

115 {

116 std::string exodusFileName = stk::unit_test_util::get_option("-i", "mesh.exo");
117

118 {

119 stk::10::StkMeshIoBroker exodusFileReader (communicator);

120 exodusFileReader.set_bulk_data (stkMeshBulkData) ;

121 exodusFileReader.add_mesh_database (exodusFileName, stk::io::READ_MESH) ;
122 exodusFileReader.create_input_mesh () ;
123 // With in populate_bulk_data, the option

set_use_entity_ids_for_resolving_sharing is set to true
124 exodusFileReader.populate_bulk_data();
125 }
126
127 std::vector<size_t> globalCounts;
128 stk::mesh::comm_mesh_counts (stkMeshBulkData, globalCounts);
129 EXPECT_EQ(15u, globalCounts[stk::topology::EDGE_RANK]) ;
130 }
131 }

1.6.4 Unsafe operations

There are a number of operations that are inherently unsafe to perform when the mesh is in the
middle of a modification cycle. Exceptions will be thrown if the user tries to perform these opera-
tions during modification in a debug build, but not in a release build since the error checking is too
expensive.

The mesh_index of an entity (which is a pairing of the entity’s bucket and the entity’s offset into
that bucket) can be automatically changed by STK Mesh during a modification cycle. Thus, a
mesh_index cannot be assumed to be valid during a modifcation cycle or be the same before and
after it. A change in the membership of one or more buckets implies a change in the mesh index
of one or more entities, and vice versa.

Although field data can be accessed during a modification cycle, parallel field operations (e.g.,
parallel sum) must be avoided during a modification cycle because the status of parallel sharing is
not guaranteed to be globally consistent until after BulkData: :modification_end().

Mesh modification should generally not be done while looping over buckets. The problem is that
mesh modification can cause entities to move from one bucket to another, which can invalidate the
iteration over a particular bucket. Any loop that makes the assumption of Bucket stability, either
the existence/order of a Bucket or the order of entities within the bucket, is not safe if the loop does
mesh modification. Some errors that can result will be checked in debug, but never in release. If

46

you must iterate the mesh and do mesh modification during the iteration, use an entity loop, not a
bucket loop.

1.6.5 Automatic modification operations in modification _end()

When the client code is finished with all direct calls to any of the modifications in Section 1.6.2, it
must call modification_end () to close the modification cycle.

BulkData::modification_end () automatically performs several types of modifications
to the mesh to bring it into a parallel consistent state. These include

e Synchronizing entity membership in parts for shared entities.
Refreshing the ghost layer around shared entities (referred to as the aura).
Updating ghost entities in the aura that have changed part membership.

Sorting buckets’ entities for a well-defined ordering.
Resolve side creation on the subdomain boundaries.

It is important to note that modification_end () used to automatically determine the sharing
of nodes that had been created with the same global identifier on multiple MPI processors. It no
longer does this, and client code is now required to inform STK Mesh of node sharing information.
See section 1.6.2.3 for more details.

Since the sharing of entities is only changed automatically by STK Mesh internally, that function-
ality is not available through the STK Mesh API.

1.6.6 How to use generate new_entities()

This example (Listing 1.19) shows how to use BulkData: :generate_new_entities ()
to create new entities. After the entities are created, the ELEMENT_RANK entities are each as-
signed a topology and their nodal relations are set before BulkData: :modification_end ()
is called. FACE_RANK and EDGE_RANK entities have the same requirement, but none
are included in this example. The example also illustrates that it is incorrect to call
BulkData::modification_end () if the requirement is not met.

Listing 1.19: Example of how to generate multiple new entities and subsequently set topologies and nodal

relations ../../../code/stk/stk_doc_tests/stk_mesh/generateNewEntities.cpp

8 TEST (stkMeshHowTo, generateNewEntities)

69 {

70 const unsigned spatialDimension = 3;

71

72 stk::mesh::MetaData metaData (spatialDimension, stk::mesh::entity_rank_names());

73 stk::mesh::Part &tetPart = metaData.declare_part_with_topology("tetElementPart",
stk::topology::TET_4);

74 stk::mesh::Part &hexPart = metaData.declare_part_with_topology("hexElementPart",
stk::topology: :HEX_8);

75 metaData.commit () ;

47

76
i // Parts vectors handy for setting topology later.
78 std::vector<stk::mesh::Part x> add_tetPart (1l);

79 add_tetPart[0] = &tetPart;
80 std::vector<stk::mesh::Part *> add_hexPart(l);
81 add_hexPart [0] = &hexPart;

82

83 stk::mesh::BulkData mesh (metaData, MPI_COMM_WORLD) ;
84 mesh.modification_begin();

85

86 std::vector<size_t> requests (metaData.entity_rank_count (), 0);
87 const size_t num_nodes_requested = 12;

88 const size_t num_elems_requested = 2;

89 requests[stk::topology: :NODE_RANK] = num_nodes_requested;

90 requests[stk::topology: :ELEMENT_RANK] = num_elems_requested;
91 std::vector<stk::mesh::Entity> requested_entities;

92

93 mesh.generate_new_entities (requests, requested_entities);

94

95 // Set topologies of new entities with rank > stk::topology::NODE_RANK.

96 stk::mesh::Entity eleml requested_entities[num_nodes_requested];

97 mesh.change_entity_parts(eleml, add_tetPart);

98 stk::mesh::Entity elem2 requested_entities[num_nodes_requested + 1];

99 mesh.change_entity_parts(elem2, add_hexPart);

100

101 // Set downward relations of entities with rank > stk::topology::NODE_RANK

102 unsigned node_1i = 0;

103 for (unsigned node_ord = 0 ; node_ord < 4; ++node_ord, ++node_i)

104 {

105 mesh.declare_relation(eleml , requested_entities[node_i] , node_ord);
106 }

107 for (unsigned node_ord = 0 ; node_ord < 8; ++node_ord, ++node_i)

108 {

109 mesh.declare_relation(elem2 , requested_entities[node_i] , node_ord);

110 }

111 mesh.modification_end();

112

113 check_connectivities_for_stkMeshHowTo_generateNewEntities (mesh, eleml, elem2,
requested_entities);

114

115 // Not setting topologies of new entities with rank > stk::topology::NODE_RANK causes throw

116 mesh.modification_begin();

117 std::vector<stk::mesh::Entity> more_requested_entities;

118 mesh.generate_new_entities (requests, more_requested_entities);

119 #ifdef NDEBUG

120 mesh.modification_end();

121 #else

122 EXPECT_THROW (mesh.modification_end(), std::logic_error);
123 #endif

124 '}

1.6.7 How to create faces

STK Mesh provides functions for creating all edges or faces for an existing mesh. This example
demonstrates first creating a mesh of hex elements with nodes, (generated by STK I0), then uses
the create_faces () function to create all faces in the mesh.

Listing 1.20: Example of how to create all element faces

.J../..[code/stk/stk_doc_tests/stk_mesh/createFacesHex.cpp

49 TEST (StkMeshHowTo, CreateFacesHex)

48

51 //

52 // INITIALIZATION

53 MPI_Comm communicator = MPI_COMM_WORLD;

54 if (stk::parallel_machine_size (communicator) != 1) { return; }
55 stk::i0::StkMeshIoBroker stkIo(communicator);

56

57 const std::string generatedFileName = "generated:8x8x8";

58 stkIo.add_mesh_database (generatedfFileName, stk::io::READ_MESH);
59 stkIo.create_input_mesh () ;

60 stkIo.populate_bulk_data();

61

62 i

63 //+ EXAMPLE

64 //+ Create the faces..

65 stk::mesh::create_faces (stkIo.bulk_data());

66

67 L

68 // VERIFICATION

69 stk::mesh::Selector allEntities = stkIo.meta_data () .universal_part();
70 std::vector<size_t> entityCounts;

71 stk::mesh::count_entities (allEntities, stkIo.bulk_data(), entityCounts);
72 EXPECT_EQ(512u, entityCounts[stk::topology::ELEMENT_RANK]) ;

73 EXPECT_EQ(1728u, entityCounts[stk::topology::FACE_RANK]) ;

74

75 // Edges are not generated, only faces.

76 EXPECT_EQ (Ou, entityCounts[stk::topology: :EDGE_RANK]) ;

77 }

1.6.8 How to create both edges and faces

This example demonstrates create all edges as well as faces for a hex-element mesh. Note that
these functions only create relations to elements and nodes, so the faces will not have relations to
the edges when both create_edges () and create_faces () are called.

Listing 1.21: Example of how to create all element edges and faces

./..[../[code/stk/stk_doc_tests/stk_mesh/createFacesEdgesHex.cpp

61 TEST (StkMeshHowTo, CreateFacesEdgesHex)

62 {

63 //

64 // INITIALIZATION

65 MPI_Comm communicator = MPI_COMM_WORLD;

66 if (stk::parallel_machine_size (communicator) != 1) { return; }
67 stk::io::StkMeshIoBroker stklIo(communicator);

68

69 const std::string generatedFileName = "generated:8x8x8";
70 stkIo.add_mesh_database (generatedfFileName, stk::io::READ_MESH);
71 stkIo.create_input_mesh();

72 stkIo.populate_bulk_data();

73

74 L

75 //+ EXAMPLE

76 //+ Create the faces..

77 stk::mesh::create_faces(stkIo.bulk _data());

78

79 //+ Create the edges..

80 stk::mesh::create_edges (stkIo.bulk_data());

81

82 //

83 // VERIFICATION

49

84 stk::mesh::Selector allEntities = stkIo.meta_data() .universal_part();

85 std::vector<size_t> entityCounts;

86 stk::mesh::count_entities(allEntities, stkIo.bulk _data(), entityCounts);

87 EXPECT_EQ(512u, entityCounts|[stk::topology::ELEMENT_RANK]) ;

88 EXPECT_EQ(1728u, entityCounts[stk::topology::FACE_RANK]);

89 EXPECT_EQ(1944u, entityCounts[stk::topology::EDGE_RANK]) ;

90 // MAKE SURE FACES ARE HOOKED TO EDGES

91 // this should happen if create_faces is called before create_edges

92 stk: :mesh: :BucketVector const & face_buckets =
stkIo.bulk_data() .buckets (stk::topology: :FACE_RANK) ;

93 for (size_t bucket_count=0, bucket_end=face_buckets.size(); bucket_count < bucket_end;
++bucket_count) {

94 stk::mesh: :Bucket & bucket = xface_buckets|[bucket_count];

95 const unsigned num_expected_edges = bucket.topology () .num_edges () ;

96 EXPECT_EQ (4u, num_expected_edges) ;

97 for (size_t face_count=0, face_end=bucket.size(); face_count < face_end; ++face_count) ({

98 stk::mesh::Entity face = bucket[face_count];

99 EXPECT_EQ (num_expected_edges, stkIo.bulk_data().num_edges (face));

100 }
101 }
102 }

1.6.9 How to create faces on only selected elements

This example demonstrates creating faces for a subset of the mesh elements defined by a Selector.
Note that the “generated-mesh” syntax specifies that the initial mesh contains not only hex elements
but also shell elements on all 6 sides.

Listing 1.22: Example of how to create faces on only selected elements

./..J..[code/stk/stk_doc_tests/stk_mesh/createSelectedFaces.cpp

52 TEST (StkMeshHowTo, CreateSelectedFacesHex)
53 {

54 1

55 // INITIALIZATION

56 MPI_Comm communicator = MPI_COMM_WORLD;

57 if (stk::parallel_machine_size (communicator) != 1) { return; }
58 stk::io::StkMeshIoBroker stkIo(communicator);

59

60 // Generate a mesh containing 1 hex part and 6 shell parts

61 const std::string generatedFileName = "generated:8x8x8|shell:xyzXYZ";
62 stkIo.add_mesh_database (generatedFileName, stk::io::READ_MESH);
63 stkIo.create_input_mesh();

64 stkIo.populate_bulk_data();

65 const stk::mesh::PartVector &all_parts = stkIo.meta_data().get_mesh_parts();
66

67 L

68 //+ EXAMPLE

69 //+ Create a selector containing just the shell parts.

70 stk::mesh::Selector shell_subset;

71 for (size_t 1i=0; 1 < all_parts.size(); i++) {

72 const stk::mesh::Part xpart = all_parts[i];

73 stk::topology topo = part—->topology();

74 if (topo == stk::topology::SHELL_QUAD_4) {

75 shell_subset |= x*part;

76 }

77 }

78

79 //+ Create the faces on just the selected shell parts.

80 stk::mesh::create_faces (stkIo.bulk_data(), shell_subset);

50

17
// VERIFICATION

®© oo
(A

84 stk::mesh::Selector allEntities = stkIo.meta_data() .universal_part();

85 std: :vector<size_t> entityCounts;

86 stk::mesh::count_entities(allEntities, stkIo.bulk_data(), entityCounts);
87 EXPECT_EQ(896u, entityCounts[stk::topology::ELEMENT_RANK]) ;

88 EXPECT_EQ(768u, entityCounts[stk::topology::FACE_RANK]);

89

90 // Edges are not generated, only faces.

91 EXPECT_EQ (Ou, entityCounts[stk::topology: :EDGE_RANK]) ;

2}
93

1.6.10 Creating faces with layered shells

This example shows how many faces will be created when there are layered shells present.

Listing 1.23: Example showing that faces are created correctly when layered shells are present

./..[..[code/stk/stk_doc_tests/stk_mesh/CreateFacesLayeredShellsHex.cpp

49 TEST (StkMeshHowTo, CreateFacesLayeredShellsHex)
50 {

51 L

52 // INITIALIZATION

53 MPI_Comm communicator = MPI_COMM_WORLD;

54 if (stk::parallel_machine_size (communicator) != 1) { return; }

55 stk::io::StkMeshIoBroker stklIo(communicator);

56

57 // Generate a mesh containing 1 hex part and 12 shell parts

58 // Shells are layered 2 deep.

59 const std::string generatedFileName = "generated:8x8x8|shell:xxyyzzXYZXYZ";
60 stkIo.add_mesh_database (generatedfFileName, stk::io::READ_MESH);

61 stkIo.create_input_mesh();

62 stkIo.populate_bulk_data();

63

64 !/

65 //+ EXAMPLE

66 //+ Create the faces

67 stk::mesh::create_faces (stkIo.bulk_data());

68

69 Ve

70 // VERIFICATION

71 stk::mesh::Selector allEntities = stkIo.meta_data().universal_part();
72 std::vector<size_t> entityCounts;

73 stk::mesh::count_entities (allEntities, stkIo.bulk_data(), entityCounts);
74 EXPECT_EQ(1280u, entityCounts[stk::topology::ELEMENT_RANK]) ;

75 //+ The shell faces are the same as the boundary hex faces

76 EXPECT_EQ(2112u, entityCounts[stk::topology::FACE_RANK]);

77

78 // Edges are not generated, only faces.

79 EXPECT_EQ (Ou, entityCounts[stk::topology: :EDGE_RANK]) ;

80 }
81

1.6.11 Creating faces between hexes, on shells, and on shells between hexes

This example shows how many faces are created on interior faces between hexes and shells.

51

Listing 1.24: Example of how many faces get constructed by CreateFaces between two hexes.

././../code/stk/stk_doc_tests/stk_mesh/CreateFacesHexesShells.cpp

52 TEST (StkMeshHowTo, CreateFacesTwoHexes)

53 {

54 if (stk::parallel _machine_size (MPI_COMM_WORLD) == 1) {

55 T/ = C

56 Lt) | |

57 // |HEX1|HEX2|

58 i | I

59 Ll —————————

60 stk::io::StkMeshIoBroker stkMeshIoBroker (MPI_COMM_WORLD) ;

61 stkMeshIoBroker.add_mesh_database ("AA.e", stk::io::READ_MESH) ;

62 stkMeshIoBroker.create_input_mesh () ;

63 stkMeshIoBroker.populate_bulk_data();

64 stk::mesh::BulkData &mesh = stkMeshIoBroker.bulk_data();

65

66 stk::mesh::create_faces (mesh);

67

68 i, e B o

69 Jr o1 1 &] |

70 L |HEX1 | <—C—>|HEX2 | Also external faces!

71 VS | E | |

72 A (e

73

74 unsigned first_bucket = 0;

75 unsigned first_element_in_bucket = 0;

76 stk::mesh::Entity first_element =
(*mesh.buckets (stk::topology: :ELEMENT_RANK) [first_bucket]) [first_element_in_bucket];

77 stk::mesh::Entity internal_face = mesh.begin_faces (first_element) [5];

78

79 unsigned num_elements_connected_to_single_face = 2;

80 EXPECT_EQ (num_elements_connected_to_single_face, mesh.num_elements (internal_face));

81

82 unsigned num_expected_external_ faces = 10u;

83 unsigned num_expected_internal_ faces = 1lu;

84 unsigned num_expected_faces = num_expected _external faces +
num_expected_internal_ faces;

85 stk::mesh::Selector all_entities = mesh.mesh_meta_data () .universal_part();

86 std::vector<size_t> entity_counts;

87 stk::mesh::count_entities(all_entities, mesh, entity_counts);

88 EXPECT_EQ (num_expected_faces, entity_counts[stk::topology::FACE_RANK]);

89 }

90 }

Listing 1.25: Example of how many faces get constructed by CreateFaces on a shell.

/code/stk/stk_doc_tests/stk_mesh/CreateFacesHexesShells.cpp

94 TEST (StkMeshHowTo, CreateFacesSingleShell)
95 {

96 if (stk::parallel machine_size (MPI_COMM_WORLD) == 1) {

97 17 8

98 VA

99 // E

100 Ly

101 // L

102 stk::io::StkMeshIoBroker stkMeshIoBroker (MPI_COMM_WORLD) ;
103 stkMeshIoBroker.add_mesh_database ("e.e", stk::io::READ_MESH);
104 stkMeshIoBroker.create_input_mesh();

105 stkMeshIoBroker.populate_bulk_data();

106 stk::mesh::BulkData &mesh = stkMeshIoBroker.bulk_data();
107

108 stk::mesh::create_faces (mesh);

109

110 1/ B 8 E

111 // A H A

52

112 [Y C-=>E=C

113 /J/ E L E

114 Jf 1 L 2

115

116 unsigned first_bucket = 0;

117 unsigned first_element_in_bucket = 0;
118 stk::mesh::Entity first_element =

(*mesh.buckets (stk::topology: :ELEMENT_RANK) [first_bucket]) [first_element_in_bucket];
119 stk::mesh::Entity face_one = mesh.begin_faces (first_element) [0];

120 unsigned num_elements_connected_to_face_one = 1;

121 EXPECT_EQ (num_elements_connected_to_face_one, mesh.num_elements (face_one));
122

123 stk::mesh::Entity face_two = mesh.begin_faces (first_element) [1];

124 unsigned num_elements_connected_to_face_two = 1;

125 EXPECT_EQ (num_elements_connected_to_face_two, mesh.num_elements (face_two));
126

127 EXPECT_NE (face_one, face_two);

128

129 unsigned num_expected_faces = 2u;

130 stk::mesh::Selector all_entities = mesh.mesh_meta_data() .universal_part();
131 std::vector<size_t> entity_counts;

132 stk::mesh::count_entities(all_entities, mesh, entity_counts);

133 EXPECT_EQ (num_expected_faces, entity_counts[stk::topology::FACE_RANK]);

134 }

135}

Listing 1.26: Example of how many faces get constructed by CreateFaces between hexes and an internal

shell. ../../../code/stk/stk_doc_tests/stk_mesh/CreateFacesHexesShells.cpp

139 TEST (StkMeshHowTo, CreateFacesTwoHexesInternalShell)

140 {
141 if (stk::parallel_machine_size (MPI_COMM_WORLD) == 1) {
142 Jofi] Br—————
143) |H| I
144 // |HEX1|E|HEX2 |
145 £ L] I
146 [/ ————— L——————
147 stk::io0::StkMeshIoBroker stkMeshIoBroker (MPI_COMM_WORLD) ;
148 stkMeshIoBroker.add_mesh_database ("AeA.e", stk::io0::READ_MESH) ;
149 stkMeshIoBroker.create_input_mesh();
150 stkMeshIoBroker.populate_bulk_data();
151 stk::mesh::BulkData &mesh = stkMeshIoBroker.bulk_data();
152
153 stk: :mesh::create_faces (mesh);
154
155 it e F § F =—=—==
156 I | A H A |
157 // |HEX1|<-C->E<-C->|HEX2| Also external faces!
158 I | E L E | |
159 L 1 T B
160
161 unsigned first_bucket = 0;
162 unsigned first_element_in_bucket = 0;
163 stk::mesh::Entity first_element =
(*mesh.buckets (stk::topology: :ELEMENT_RANK) [first_bucket]) [first_element_in_bucket];
164 stk::mesh::Entity internal_face_one = mesh.begin_faces (first_element) [5];
165 unsigned num_elements_connected _to_face_one = 2;
166 EXPECT_EQ (num_elements_connected_to_face_one, mesh.num_elements (internal_face_one));
167
168 unsigned second_element_in_bucket = 1;
169 stk::mesh::Entity second_element =
(#mesh.buckets (stk::topology: :ELEMENT_RANK) [first_bucket]) [second_element_in_bucket];
170 stk::mesh::Entity internal_face_two = mesh.begin_faces (second_element) [4];
171 unsigned num elements_connected_to_face_two = 2;
172 EXPECT_EQ (num_elements_connected_to_face_two, mesh.num_elements (internal_face_two));

173

53

174 EXPECT_NE (internal_face_one, internal_face_two);
175

176 unsigned num_expected_external_faces = 10u;

177 unsigned num_expected_internal_ faces = 2u;

178 unsigned num_expected_faces = num_expected_external_faces +
num_expected_internal_ faces;

179 stk::mesh::Selector all_entities = mesh.mesh_meta_data() .universal_part();

180 std::vector<size_t> entity_counts;

181 stk::mesh::count_entities(all_entities, mesh, entity_counts);

182 EXPECT_EQ (num_expected_faces, entity_counts[stk::topology::FACE_RANK]);

183 }

184 }

1.6.12 How to skin a mesh

STK Mesh provides functions for skinning an existing mesh and creating appropriate boundary
sides. This example demonstrates first creating a mesh of one hex element with nodes, (generated
by STK 10), then uses the the create_exposed_boundary_sides () function to skin the
mesh.

Listing 1.27: Example of how to create all the exposed boundary sides

.f.[../code/stk/stk_doc_tests/stk_mesh/howToSkinMesh.cpp

50 TEST (StkMeshHowTo, SkinExposedHex)
51 {

52 il

53 // INITIALIZATION

54 MPI_Comm communicator = MPI_COMM_WORLD;

55 if (stk::parallel _machine_size (communicator) != 1) { return; }

56 stk::io::StkMeshIoBroker stkIo(communicator);

57

58 const std::string generatedFileName = "generated:1x1x1l";

59 stkIo.add_mesh_database (generatedFileName, stk::io::READ_MESH);

60 stkIo.create_input_mesh();

61 stkIo.populate_bulk_data();

62

63 Vi

64 //+ EXAMPLE

65 //+ Skin the mesh and create the exposed boundary sides..

66 stk::mesh::MetaData &metaData = stkIo.meta_datal();

67 stk::mesh::BulkData &bulkData = stkIo.bulk_dataf();

68 stk::mesh::Selector allEntities = metaData.universal_part();

69 stk::mesh::Part &skinPart = metaData.declare_part ("skin", metaData.side_rank());

70 stk::io::put_io_part_attribute (skinPart);

71

72 stk::mesh::create_exposed_block_boundary_sides (bulkData, allEntities, {&skinPart});

73

74 //

75 // VERIFICATION

76 EXPECT_TRUE (stk: :mesh: :check_exposed_block_boundary_sides (bulkData, allEntities,
skinPart));

77 stk::mesh::Selector skin(skinPart & metaData.locally_owned_part());

78 unsigned numSkinnedSides = stk::mesh::count_selected_entities (skin,
bulkData.buckets (metaData.side_rank()));

79 EXPECT_EQ (6u, numSkinnedSides) << "in part " << skinPart.name ();

80 }

54

1.6.13 How to create internal block boundaries of a mesh

STK Mesh also provides functions for creating the interior block boundary sides of an exist-
ing mesh. This example demonstrates first creating a mesh of two hex element with nodes,
(generated by STK IO), creation of an IOPart into which element 2 is moved, followed by
create_interior_block_boundary_sides () function to skin the mesh interior.

Listing 1.28: Example of how to create all the interior block boundary sides

.J.[../code/stk/stk_doc_tests/stk_mesh/howToSkinMesh.cpp

84 TEST (StkMeshHowTo, SkinInteriorHex)
85 {

86 / /

87 J/ INITIALIZATION

88 MPI_Comm communicator = MPI_COMM_WORLD;

89 if (stk::parallel machine_size (communicator) != 1) { return; }

90 stk::io::StkMeshIoBroker stkIo(communicator);
91

92 const std::string generatedFileName = "generated:1x1x2";

93 stkIo.add_mesh_database (generatedFileName, stk::io::READ_MESH);
94 stkIo.create_input_mesh();

95 stkIo.populate_bulk_data();

96

97 L

98 //+ EXAMPLE

99 //+ Skin the mesh and create the exposed boundary sides..

100 stk::mesh::MetaData &metaData = stkIo.meta_datal();
101 stk::mesh::BulkData &bulkData = stkIo.bulk_data();

102 stk::mesh::Selector allEntities = metaData.universal_part ();

103 stk::mesh::Part &skinPart = metaData.declare_part ("skin", metaData.side_rank());
104 stk::io::put_io_part_attribute (skinPart);

105

106 stk::mesh::Entity elem2 = bulkData.get_entity(stk::topology::ELEM_RANK, 2u);

107 stk::mesh::Part xblock_1 = metaData.get_part ("block_1");

108

109 bulkData.modification_begin () ;

110 stk::mesh::Part &block_2 = metaData.declare_part ("block_ 2", stk::topology::ELEM_RANK) ;

111 stk::io::put_io_part_attribute (block_2);

112 bulkData.change_entity_parts (elem2, stk::mesh::ConstPartVector{&block_ 2},
stk::mesh::ConstPartVector{block_1});

113 bulkData.modification_end();

114

115 stk::mesh::create_interior_block_boundary_sides (bulkData, allEntities, {&skinPart});

116

117 L

118 // VERIFICATION

119 EXPECT_TRUE (stk::mesh::check_interior_block_boundary_sides (bulkData, allEntities,
skinPart));

120 stk::mesh::Selector skin(skinPart & metaData.locally_owned_part());

121 unsigned numSkinnedSides = stk::mesh::count_selected_entities (skin,
bulkData.buckets (metaData.side_rank()));

122 EXPECT_EQ(lu, numSkinnedSides) << "in part " << skinPart.name();

123}

1.6.14 How to destroy elements in list

STK Mesh now provides a means by which an application may destroy all the elements in a list as
well as the downward connected entities in order to ensure that there are no orphaned nodes/faces.

55

Listing 1.29: Example of how to destroy elements in a list

.J..[../code/stk/stk_doc_tests/stk_mesh/howToDestroyElementsInList.cpp

Il TEST (StkMeshHowTo, DestroyElementsInList)
12 {
13 stk::mesh::MetaData metaData;

14 stk::mesh::BulkData bulkData (metaData, MPI_COMM_WORLD) ;

15 stk::io::fill _mesh ("generated:1x1x4", bulkData);

16 EXPECT_GT (stk: :mesh::count_selected_entities (metaData.universal_part (),
bulkData.buckets (stk::topology::ELEM_RANK)), Ou);

17 stk::mesh::EntityVector
elementsToDestroy{bulkData.get_entity(stk::topology::ELEMENT_RANK, 1) };

18 stk::mesh::destroy_elements (bulkData, elementsToDestroy);

19

20 stk::mesh::EntityVector orphanedNodes {

21 bulkData.get_entity (stk::topology::NODE_RANK,1),

22 bulkData.get_entity(stk::topology: :NODE_RANK,2),

23 bulkData.get_entity (stk::topology: :NODE_RANK, 3),

24 bulkData.get_entity(stk::topology: :NODE_RANK, 4)

25 }i

26

27 for (stk::mesh::Entity node : orphanedNodes)

28 EXPECT_FALSE (bulkData.is_valid(node));

29 }

1.7 STK Mesh usage examples

This section gives examples of how to access and manipulate a STK Mesh. The examples attempt
to give demonstrations of several common tasks that an application developer may want to perform
using STK Mesh.

1.7.1 How to iterate over nodes

This example shows how to select the nodes for a subset of the mesh (a surface part), then iterate
over those nodes and access the values of a temperature field associated with the nodes.

Listing 1.30: Example of iterating over nodes

./..l../code/stk/stk_doc_tests/stk_mesh/howTolterateEntities.cpp

55 TEST (StkMeshHowTo, iterateSidesetNodesMostEfficientlyForFieldDataAccess)
56 {

57 MPI_Comm communicator = MPI_COMM_WORLD;

58 if (stk::parallel machine_size (communicator) != 1) { return; }

59 stk::io0::StkMeshIoBroker stkMeshIoBroker (communicator);

60 // syntax creates faces for the surface on the positive ’x-side’ of the 2x2x2 cube,
61 // this part is given the name ’'surface_1’ when it is created [create_input_mesh()]
62 const std::string generatedMeshSpecification = "generated:2x2x2|sideset:X";

63 stkMeshIoBroker.add_mesh_database (generatedMeshSpecification, stk::io::READ_MESH);
64 stkMeshIoBroker.create_input_mesh () ;

65

66 stk::mesh::MetaData &stkMeshMetaData = stkMeshIoBroker.meta_datal();

67 stk::mesh::Field<double> &temperatureField =

stkMeshMetaData.declare_field<stk::mesh::Field<double>
> (stk::topology: :NODE_RANK, "temperature");
68 stk::mesh::put_field_on_entire_mesh (temperatureField) ;

56

69 stkMeshIoBroker.populate_bulk_data();

71 stk::mesh::Part &boundaryConditionPart = xstkMeshMetaData.get_part ("surface_1");
72 stk::mesh::Selector boundaryNodesSelector (boundaryConditionPart) ;

73

74 stk::mesh::BulkData &stkMeshBulkData = stkMeshIoBroker.bulk_datal();

75 const stk::mesh::BucketVector &boundaryNodeBuckets =

stkMeshBulkData.get_buckets (stk::topology: :NODE_RANK, boundaryNodesSelector);

77 double prescribedTemperatureValue = 2.0;

78 std::set<stk::mesh::EntityId> boundaryNodelds;

79 for (size_t bucketIndex = 0; bucketIndex < boundaryNodeBuckets.size(); ++bucketIndex)
80 {

81 stk::mesh: :Bucket &nodeBucket = xboundaryNodeBuckets[bucketIndex];

82 double xtemperatureValues = stk::mesh::field_data (temperatureField, nodeBucket);
83 for (size_t nodeIndex = 0; nodeIndex < nodeBucket.size(); ++nodelndex)

84 {

85 stk::mesh::Entity node = nodeBucket [nodeIndex];

86 boundaryNodeIds.insert (stkMeshBulkData.identifier (node));

87 temperatureValues [nodeIndex] = prescribedTemperatureValue;

91 testUtils::testTemperatureFieldSetCorrectly (temperatureField, prescribedTemperatureValue,
boundaryNodelIds) ;

92 }

93

94 TEST (StkMeshHowTo, iterateSidesetNodesWithFieldDataAccess)

95 {

96 MPI_Comm communicator = MPI_COMM_WORLD;

97 if (stk::parallel_machine_size (communicator) != 1) { return; }

98 stk::io::StkMeshIoBroker stkMeshIoBroker (communicator);

99 // syntax creates faces for the surface on the positive ’x-side’ of the 2x2x2 cube,

100 // this part is given the name ’surface_1’ when it is created [create_input_mesh()]

101 const std::string generatedMeshSpecification = "generated:2x2x2|sideset:X";

102 stkMeshIoBroker.add_mesh_database (generatedMeshSpecification, stk::io::READ_MESH) ;

103 stkMeshIoBroker.create_input_mesh () ;

104

105 stk::mesh::MetaData &stkMeshMetaData = stkMeshIoBroker.meta_data();

106 stk::mesh::Field<double> &temperatureField =
stkMeshMetaData.declare_field<stk::mesh::Field<double>
> (stk::topology: :NODE_RANK, "temperature");

107 stk::mesh::put_field_on_entire_mesh (temperatureField) ;

108 stkMeshIoBroker.populate_bulk_data();

109

110 stk::mesh::Part &boundaryConditionPart = xstkMeshMetaData.get_part ("surface_1");

111 stk::mesh::Selector boundaryNodesSelector (boundaryConditionPart);

112

113 stk::mesh::BulkData &stkMeshBulkData = stkMeshIoBroker.bulk_data();

114

115 stk::mesh::EntityVector nodes;

116 stk::mesh::get_selected_entities (boundaryNodesSelector,
stkMeshBulkData.buckets (stk::topology: :NODE_RANK), nodes);

117

118 double prescribedTemperatureValue = 2.0;

119 std::set<stk::mesh::EntityId> boundaryNodelds;

120

121 for (size_t nodeIndex = 0; nodelIndex < nodes.size(); ++nodelndex)

122 {

123 boundaryNodeIds.insert (stkMeshBulkData.identifier (nodes[nodeIndex]));

124 double xtemperatureValues = stk::mesh::field_data (temperatureField, nodes[nodelIndex]);
125 *temperatureValues = prescribedTemperatureValue;

126 }

127

128 testUtils::testTemperatureFieldSetCorrectly (temperatureField, prescribedTemperatureValue,

boundaryNodeIds) ;
129 }

57

1.7.2 How to traverse connectivity

stk::mesh: :BulkData provides member functions for accessing connectivity data by entity
and rank. The implementations of these BulkData methods must first look up the bucket for
the given entity and rank and the entity’s index in that bucket. When iterating through the entities
in a given bucket, it is therefore more efficient to access this connectivity data through a second
connectivity API that STK Mesh provides on the Bucket.

Listing 1.31: Example of how to traverse connectivity via accessors on BulkData and via accessors on

Bucket ../../../code/stk/stk_doc_tests/stk_mesh/howTolterateConnectivity.cpp

54 TEST (StkMeshHowTo, iterateConnectivityThroughBulkData)
55 {

56 MPI_Comm communicator = MPI_COMM_WORLD;

57 if (stk::parallel_machine_size (communicator) != 1) { return; }

58 stk::io::StkMeshIoBroker stkMeshIoBroker (communicator);

59 // Generate a mesh of hexes with a sideset

60 const std::string generatedMeshSpecification = "generated:2x2x2|sideset:X";

61 stkMeshIoBroker.add_mesh_database (generatedMeshSpecification, stk::io::READ_MESH);
62 stkMeshIoBroker.create_input_mesh () ;

63 stkMeshIoBroker.populate_bulk_data();

64

65 stk::mesh::MetaData &stkMeshMetaData = stkMeshIoBroker.meta_datal();

66 stk::mesh::BulkData &stkMeshBulkData = stkMeshIoBroker.bulk_data();

67 const stk::mesh::BucketVector &elementBuckets =

68 stkMeshBulkData.buckets (stk::topology: :ELEMENT_RANK) ;

69

70 typedef stk::mesh::Field<double, stk::mesh::Cartesian> CoordinatesField_t;

71 CoordinatesField_t const & coord_field =

72 +dynamic_cast<CoordinatesField_ t const *>(stkMeshMetaData.coordinate field());
73

74 const unsigned nodesPerHex = 8;

75 const unsigned spatialDim = 3;

76 unsigned count = 0;

77 double elementNodeCoords[nodesPerHex] [spatialDim];

78 for (size_t bucketIndex = 0; bucketIndex < elementBuckets.size(); ++bucketIndex)
79 {

80 stk::mesh::Bucket &elemBucket = xelementBuckets[bucketIndex];

81 for (size_t elemIndex = 0; elemIndex < elemBucket.size(); ++elemIndex)

82 {

83 stk::mesh::Entity elem = elemBucket[elemIndex];

84 unsigned numNodes = stkMeshBulkData.num_nodes (elem) ;

85 EXPECT_EQ (numNodes, nodesPerHex) ;

86 stk::mesh::Entity constx nodes = stkMeshBulkData.begin_nodes (elem);

87 for (unsigned inode = 0; inode < numNodes; ++inode)

88 {

89 double *coords = stk::mesh::field_data(coord_field, nodes[inode]);

90 elementNodeCoords[inode] [0] = coords[0];

91 elementNodeCoords[inode] [1] = coords[1l];

92 elementNodeCoords [inode] [2] = coords[2];

93 EXPECT_NE (elementNodeCoords[inode] [0], std::numeric_limits<double>::max());
94 EXPECT_NE (elementNodeCoords[inode] [1], std::numeric_limits<double>::max());
95 EXPECT_NE (elementNodeCoords [inode] [2], std::numeric_limits<double>::max());
96 ++count;

97 }

98 }

99 }

100 EXPECT_GE (count, 1lu);

101 }
102
103 TEST (StkMeshHowTo, iterateConnectivityThroughBuckets)

104 {
105 MPI_Comm communicator = MPI_COMM_WORLD;
106 if (stk::parallel_machine_size (communicator) != 1) { return; }

58

107 stk::i0::StkMeshIoBroker stkMeshIoBroker (communicator);

108 // Generate a mesh of hexes with a sideset

109 const std::string generatedMeshSpecification = "generated:2x2x2|sideset:X";

110 stkMeshIoBroker.add_mesh_database (generatedMeshSpecification, stk::io::READ_MESH);
111 stkMeshIoBroker.create_input_mesh();

112 stkMeshIoBroker.populate_bulk_data();

113

114 stk::mesh::MetaData &stkMeshMetaData = stkMeshIoBroker.meta_data();

115 stk::mesh::BulkData &stkMeshBulkData = stkMeshIoBroker.bulk_data();

116 const stk::mesh::BucketVector &elementBuckets =

117 stkMeshBulkData.buckets (stk::topology: :ELEMENT_RANK) ;

118

119 typedef stk::mesh::Field<double, stk::mesh::Cartesian> CoordinatesField_t;

120 CoordinatesField_t const & coord_field =

121 +dynamic cast<CoordinatesField t const *>(stkMeshMetaData.coordinate_field());
122

123 const unsigned nodesPerHex = 8;

124 const unsigned spatialDim = 3;

125 unsigned count = 0;

126 double elementNodeCoords[nodesPerHex] [spatialDim];

127 for (size_t bucketIndex = 0; bucketIndex < elementBuckets.size(); ++bucketIndex)
128 {

129 stk::mesh: :Bucket &elemBucket = xelementBuckets[bucketIndex];

130 for (size_t elemIndex = 0; elemIndex < elemBucket.size(); ++elemIndex)

131 {

132 unsigned numNodes = elemBucket.num_nodes (elemIndex);

133 EXPECT_EQ (numNodes, nodesPerHex);

134 stk::mesh::Entity constx nodes = elemBucket.begin_nodes (elemIndex) ;

135 for (unsigned inode = 0; inode < numNodes; ++inode)

136 {

137 double *coords = stk::mesh::field_data(coord_field, nodes[inode]);

138 elementNodeCoords[inode] [0] = coords[0];

139 elementNodeCoords[inode] [1] = coords[1l];

140 elementNodeCoords [inode] [2] = coords[2];

141 EXPECT_NE (elementNodeCoords[inode] [0], std::numeric_limits<double>::max());
142 EXPECT_NE (elementNodeCoords[inode] [1], std::numeric_limits<double>::max());
143 EXPECT_NE (elementNodeCoords [inode] [2], std::numeric_limits<double>::max());
144 ++count;

145 }

146 }

147 }

148 EXPECT_GE (count, 1u);

149 }

1.7.3 How to check side equivalency

Listing 1.32: Example of how to check side equivalency

.J.[../code/stk/stk_doc_tests/stk_ mesh/howToUseEquivalent.cpp

9 TEST_F (MeshWithSide, whenCheckingSideEquivalency_returnsCorrectPermutation)
20 {

21 if (stk::parallel_machine_size(get_comm()) == 1) {

22 setup_mesh ("generated:1x1x4|sideset:x", stk::mesh::BulkData::NO_AUTO_AURA);

23 stk::mesh::Entity eleml = get_bulk() .get_entity(stk::topology::ELEM_RANK, 1);

24 ASSERT_EQ (1lu, get_bulk() .num_faces (eleml));

25 const stk::mesh::Entity side = xget_bulk () .begin_faces(eleml);

26 const stk::mesh::Permutation perm = xget_bulk () .begin_face_permutations (eleml);

27 const stk::mesh::ConnectivityOrdinal ordinal = xget_bulk() .begin_face_ordinals(eleml);
28 const stk::mesh::Entityx sideNodes = get_bulk () .begin_nodes (side);

29 unsigned numNodes = get_bulk () .num_nodes (side);

30

31 std: :pair<bool,unsigned> equivAndPermutation = stk::mesh::side_equivalent (get_bulk(),

eleml, ordinal, sideNodes);

59

32 EXPECT_TRUE (equivAndPermutation.first);

33 EXPECT_EQ (perm, static_cast<stk::mesh::Permutation> (equivAndPermutation.second)) ;
34

35 EXPECT_TRUE (stk::mesh::is_side_equivalent (get_bulk (), eleml, ordinal, sideNodes));
36

37 stk::mesh: :EquivAndPositive result =

stk::mesh::is_side_equivalent_and positive (get_bulk(), eleml, ordinal,
sideNodes, numNodes) ;

38 EXPECT_TRUE (result.is_equiv);

39 EXPECT_TRUE (result.is_positive);
40 }

41 '}

1.7.4 Understanding node ordering of edges and faces

Listing 1.33 shows the difference between node orderings when using the STK Mesh
create_edges () and create_faces () functions versus STK Topology. Listing 2.10 has
more information regarding the lexicographical smallest permutation which is used to change the
ordering for the two cases.

Listing 1.33: Understanding edge and face ordering

./../../[code/stk/stk_doc_tests/stk_mesh/createFacesEdgesHex.cpp

216 Lo

217 //+ EXAMPLE

218 //+ Create the faces..

219 stk::mesh::create_faces (bulkData) ;

220

221 unsigned goldValuesForHexFaceNodesFromStkTopology[6][4] = {

222 {1, 2, 6, 5}, {2, 3, 7, 6}, {3, 4, 8, 7}, {1, 5, 8, 4}, {1, 4, 3, 2}, {5, 6, 7, 8} };

223

224 // Lexicographical smallest permutation per face leads from topology ordering (above) for
face to ordering below

225

226 unsigned goldValuesForHexFaceNodesFromCreateFaces[6] [4] = {

227 {1, 2, 6, 5}, {2, 3, 7, 6}, {3, 4, 8, 7}, {1, 4, 8, 5}, {1, 2, 3, 4}, {5, 6, 7, 8} };

228

229 //+ Create the edges..

230 stk::mesh::create_edges (bulkData) ;

231

232 unsigned goldValuesHexEdgeNodesFromStkTopology[12][2] = {

233 {1, 2}, {2, 3}, {3, 4}, {4, 1}, {5, 6}, {6, 7}, {7, 8}, {8, 5}, {1, 5}, {2, 6}, {3, 7},
{4, 8} };

234

235 // Lexicographical smallest permutation per edge leads from topology ordering (above) for
edge to ordering below

236

237 unsigned goldValuesHexEdgeNodesFromCreateEdges[12][2] = {

238 {1, 2}, {2, 3}, {3, 4}, {1, 4}, {5, 6}, {6, 7}, {7, 8}, {5, 8}, {1, 5}, {2, 6}, {3, 7},

{4, 8} };

60

1.7.5 How to sort entities into an arbitrary order

One possible use case for this is to try and improve cache hit rate when visiting the nodes of an
element.

Listing 1.34: Example showing how to sort entities by descending identifier.

./...Jcode/stk/stk_doc_tests/stk_mesh/howToSortEntities.cpp

#include "gtest/gtest.h"
#include <stk_mesh/base/BulkData.hpp>
#include <stk_unit_test_utils/MeshFixture.hpp>

namespace {

class EntityReverseSorter : public stk::mesh::EntitySorterBase

{

public:
virtual void sort (stk::mesh::BulkData &bulk, stk::mesh::EntityVector& entityVector) const
{

© 0 N R W N —

std::sort (entityVector.begin(), entityVector.end(),
[&bulk] (stk::mesh::Entity a, stk::mesh::Entity b) { return
bulk.identifier (a) > bulk.identifier(b); });

¥

w

14 }

15 };

16

17 class HowToSortEntities : public stk::unit_test_util::MeshFixture
18 {

19 protected:

20 void sort_and_check ()

21 {

22 if (stk::parallel_machine_size (get_comm()) == 1)

23 {

24 setup_mesh ("generated:1x1x4", stk::mesh::BulkData::AUTO_AURA);
25 get_bulk () .sort_entities (EntityReverseSorter());

26 expect_entities_in_reverse_order();

27 }

28 }

29 void expect_entities_in_reverse_order ()

30 {

31 const stk::mesh::BucketVector buckets = get_bulk() .buckets (stk::topology::NODE_RANK) ;
32 ASSERT_EQ (1lu, buckets.size());

33 expect_bucket_in_reverse_order (xbuckets[0]);

34 }

35 void expect_bucket_in_reverse_order (const stk::mesh::Bucket &bucket)
36 {

37 ASSERT_EQ (20u, bucket.size());

38 for(size_t i=1; i<bucket.size(); i++)

39 EXPECT_GT (get_bulk () .identifier (bucket[i-1]), get_bulk() .identifier (bucket[i]));
40 }

41 };

42 TEST_F (HowToSortEntities, example_reverse)
43 |

44 sort_and_check () ;

61

This page intentionally left blank.

Chapter 2

STK Topology

As stated in the introductory chapter, Topology provides an entity’s finite element description and
this includes a number of attributes such as the number and type of lower-rank entities that can
exist in that entity’s downward connectivity (e.g., the number of faces that an element topology
can have, the ordering of nodes attached to particular faces, etc.).

A primary goal of stk_topology is to provide fast traversal of sub-topologies, such as the edges
of an element or the nodes of a face, etc. stk_topology uses value semantics (e.g., no pointers
to singletons) and can be used on GPUs as well as CPUs. stk_topology provides compile-time
access to topology information, as well as run-time. (See Section 2.1.3, Listing 2.3).

2.1 STK Topology API

This section contains several code listings that attempt to aid in the understanding of the stk topol-
ogy APL

Note the following details of the API:

e num_nodes () vs num_vertices (): For linear topologies, the number of nodes equals
the number of vertices. For higher order topologies, “nodes” include those located at the
corners as well as those located at mide-sides and/or mid-edges; but “vertices” are only
those nodes located at the corners.

e is_shell (): Thisis a helper to distinguish between “structural” elements (such as shells
and beams), and “continuum” elements.

e Permutations (num_permutations () vs num_positive_permutations ()): Dif-
ferent orderings of a topology’s nodes may appear in certain contexts. Positive vs negative
refers to whether a given node ordering represents a different direction “normal” for that
topology. Note also that this isn’t a true mathematical permutation since not all possible
“permutations” of the nodes are even valid; these permutations are essentially node traver-
sals with the same sequence but different starting points.

e base (): For topologies with polynomial order higher than linear, “base()” provides the
corresponding linear topology.

63

e is_superelement (), create_superelement_topology(): Super-elements
are used for reduced-order modeling in certain application formulations.

2.1.1 How to set and get topology

This example shows how to attach topology to entities (if entities are created “in line” rather than
being created by STK I0). Essentially, topology is attached to entities by declaring the entities
to be members of a Part that has the desired topology. The example also shows how to retrieve
topology from the mesh. More detailed information about STK Topology is provided in Chapter 2.

Listing 2.1: Example of setting/getting topology

.J..../code/stk/stk_doc_tests/stk_mesh/setAndGetTopology.cpp

61 TEST (stkMeshHowTo, setAndGetTopology)

62 {

63 const unsigned spatialDimension = 3;

64 stk::mesh::MetaData metaData (spatialDimension, stk::mesh::entity_rank_ names());

65 stk::mesh::Part &tetPart = metaData.declare_part_with_topology("tet part",
stk::topology::TET_4);

66

67 stk::mesh::Part &hexPart = metaData.declare_part ("existing part with currently unknown
topology") ;

68 // . . . then later assigned

69 stk::mesh::set_topology (hexPart, stk::topology::HEX_ 8);

70

71 metaData.commit () ;

72 stk::mesh::BulkData bulkData (metaData, MPI_COMM_WORLD) ;

73

74 bulkData.modification_begin () ;

75 stk::mesh::EntityId elemlId = 1, elem2Id = 2;

76 stk::mesh::Entity eleml = bulkData.declare_element (elemlId,
stk::mesh::ConstPartVector{&tetPart});

77 stk::mesh::Entity elem2 = bulkData.declare_element (elem21d,
stk::mesh::ConstPartVector{&hexPart});

78 declare_element_nodes (bulkData, eleml, elem2);

79 bulkData.modification_end();

8(

81 stk::topology eleml_topology = bulkData.bucket (eleml) .topology();

82 stk::topology elem2_topology = bulkData.bucket (elem2) .topology () ;

83

84 EXPECT_EQ (stk::topology::TET_4, eleml_topology);

85 EXPECT_EQ (stk::topology::HEX_8, elem2_topology);

86 }

2.1.2 STK topology ranks

Listing 2.2 demonstrates the link between various STK topologies and their ranks.

Listing 2.2: Example showing mapping of STK topologies to ranks

.[..[../code/stk/stk_doc_tests/stk_topology/map_stk_topologies_to_ranks.cpp

41 TEST (stk_topology_how_to, map_topologies_to_ranks)

42 |
43 stk::topology topology = stk::topology::INVALID_TOPOLOGY;
44 EXPECT_EQ (stk::topology::INVALID_RANK, topology.rank());

64

66

67

69

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111

112

std::vector<stk::topology> node_rank_topologies;
node_rank_topologies.push_back (stk::topology: :NODE) ;

std::vector<stk::topology> edge_rank_topologies;
edge_rank_topologies.push_back (stk::topology::LINE_2);
edge_rank_topologies.push_back (stk::topology::LINE_3);

std::vector<stk::topology> face_rank_topologies;

face_rank_topologies
face_rank_topologies

(
face_rank_topologies. (
face_rank_topologies. (
.push_back (stk:
push_back (stk:
push_back (stk:

(

(

(

(

(

face_rank_topologies

face_rank_topologies.
face_rank_topologies.

face_rank_topologies
face_rank_topologies
face_rank_topologies
face_rank_topologies
face_rank_topologies

.push_back (stk:
.push_back (stk:
push_back (stk:
push_back (stk:

.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:

:topology::TRI_3);
:topology: :TRIANGLE_3);
:topology::TRI_4);
:topology: :TRIANGLE_4) ;
:topology::TRI_6);
:topology: :TRIANGLE_6) ;

std::vector<stk::topology> element
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:

element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies

element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies

element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies

element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies

element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies
element_rank_topologies

element_rank_topologies

.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:

.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:

.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:

.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:
.push_back (stk:

.push_back (stk:

:topology:
:topology:
:topology:
rtopelegy:
:topology:
:topology:
:topology:
:topology:
:topology:
:topology:
:topology:
:topology:

:topology:
:topology:
:topology:
:topology:
:topology:
:topology:

:topology:
:topology:
:topology:
:topology:
:topology:
:topology:

:topology:
:topology:
:topology:
:topology:
:topology:
:topology:
:topology:
:topology:

:topology:

65

:topology: :QUAD_4);
:topology: :QUADRILATERAL_4) ;
:topology: :QUAD_38);
:topology: :QUADRILATERAL_S8) ;
:topology: :QUAD_9);
:topology: :QUADRILATERAL_9);

_rank_topologies;
:topology:
:topology:
:topology:
:topology:
:topology:
:topology:
:topology:

:PARTICLE) ;
:LINE_2_1D);
:LINE_3_1D) ;
:BEAM_2) ;

:BEAM_3) ;

:SHELL_LINE_2);
:SHELL_LINE_3);

’

:TRI_3 2D);
:TRIANGLE_3_2D) ;
:TRI_4_2D);
:TRIANGLE_4_2D) ;
:TRI_6_2D);
:TRIANGLE_6_2D) ;
:QUAD_4_2D);
:QUADRILATERAL_4_2D);
:QUAD_8_2D);
:QUADRILATERAL_8_2D) ;
:QUAD_9_2D);
:QUADRILATERAL_9_2D);

:SHELL_TRI_3);
:SHELL_TRIANGLE_3) ;
:SHELL_TRI_4);
:SHELL_TRIANGLE_4) ;
:SHELL_TRI_6);
:SHELL_TRIANGLE_6) ;

:SHELL_QUAD_4);
:SHELL_QUADRILATERAL_4);
:SHELL_QUAD_38) ;
:SHELL_QUADRILATERAL_S8) ;
:SHELL_QUAD_9) ;
:SHELL_QUADRILATERAL_9);

:TET_4);
: TETRAHEDRON_4) ;
STET 8)i;
: TETRAHEDRON_8) ;
:TET_10);
:TETRAHEDRON_10) ;
:TET_11);
:TETRAHEDRON_11) ;

:PYRAMID_5);

113 element_rank_topologies.push_back (stk::topology::PYRAMID_ 13);

114 element_rank_topologies.push_back (stk::topology: :PYRAMID_14);

115 element_rank_topologies.push_back (stk::topology: :WEDGE_6) ;

116 element_rank_topologies.push_back (stk::topology: :WEDGE_15);

117 element_rank_topologies.push_back (stk::topology: :WEDGE_18);

118 element_rank_topologies.push_back (stk::topology: :QUADRILATERAL_9_2D);
119 element_rank_topologies.push_back (stk::topology: :QUADRILATERAL_9_ 2D);
120

121 element_rank_topologies.push_back (stk::topology: :HEX_8);

122 element_rank_topologies.push_back (stk::topology: :HEXAHEDRON_8) ;

123 element_rank_topologies.push_back (stk::topology::HEX_ 20);

124 element_rank_topologies.push_back (stk::topology: :HEXAHEDRON_20) ;

125 element_rank_topologies.push_back (stk::topology::HEX_ 27);

126 element_rank_topologies.push_back (stk::topology: :HEXAHEDRON_27);

127

128 unsigned num_nodes_in_super_element = 10;

129 element_rank_topologies.

130 push_back (stk: :create_superelement_topology (num_nodes_in_super_element));

2.1.3 Compile-time STK topology information

Listing 2.3 demonstrates how to access compile-time topology information. In this example,
compiletime_num_nodes is a variable that is assigned a constant, compile-time value.
compiletime_hex8 is a type of struct, and num_nodes is a static const member whose
value is defined at compile-time. It thus can be used to allocate space on the stack instead
of on the heap. Other compile-time topology attributes are defined by the members of the
topology: :topology_type structin the file stk_topology/topology_type.tcc.

Listing 2.3: Example using compile-time STK topology information

/.. Jcode/stk/stk_doc_tests/stk_topology/runtime_vs_compiletime_topology.cpp

39 TEST (stk_topology_how_to, runtime_vs_compiletime_topology)

40 |

41 stk::topology runtime_hex8 = stk::topology::HEX 8;

42

43 typedef stk::topology::topology_type<stk::topology::HEX 8> compiletime_ hex8;
44

45 const unsigned compiletime_num_nodes = compiletime_hex8::num_nodes;

46

47 EXPECT_EQ(runtime_hex8.num_nodes (), compiletime_num_nodes);

48

49 //declare a static array with length given by compile-time num-nodes

50 double compile_time_sized_array|[compiletime_num_nodes];

51 EXPECT_EQ (sizeof (compile_time_sized_array), sizeof (double)x*compiletime_num_nodes) ;

2.1.4 STK topology for the Particle

Listing 2.4 demonstrates the API for a Particle element.

Listing 2.4: Example showing STK topology for a zero-dimensional element

«/..[.Jcode/stk/stk_doc_tests/stk_topology/element_topologies.cpp

66

41 TEST (stk_topology_understanding, zero_dim_element)

2 {

43 stk::topology sphere = stk::topology::PARTICLE;

44

45 EXPECT_TRUE (sphere.is_valid());

46 EXPECT_FALSE (sphere.has_homogeneous_faces());

47 EXPECT_FALSE (sphere.is_shell());

48

49 EXPECT_TRUE (sphere.rank () != stk::topology::NODE_RANK) ;
50 EXPECT_TRUE (sphere.rank () != stk::topology::EDGE_RANK) ;
51 EXPECT_TRUE (sphere.rank () != stk::topology::FACE_RANK) ;
52 EXPECT_TRUE (sphere.rank () != stk::topology::CONSTRAINT_RANK) ;
53 EXPECT_TRUE (sphere.rank () == stk::topology::ELEMENT_RANK) ;
54

55 EXPECT_EQ (sphere.side_rank (), stk::topology::INVALID_RANK) ;
56

57 EXPECT_EQ (sphere.dimension (), lu);

58 EXPECT_EQ (sphere.num_nodes (), lu) ;

59 EXPECT_EQ (sphere.num_vertices (), 1lu);

60 EXPECT_EQ (sphere.num_edges (), 0u) ;

61 EXPECT_EQ (sphere.num_faces (), 0u);

62 EXPECT_EQ (sphere.num_sides (), 0u);

63 EXPECT_EQ (sphere.num_permutations(),1lu);

64 EXPECT_EQ (sphere.num_positive_permutations (), 1lu);

65

66 EXPECT_FALSE (sphere.defined_on_spatial_dimension(0));
67

68 EXPECT_TRUE (sphere.defined_on_spatial_dimension(1l));

69 EXPECT_TRUE (sphere.defined_on_spatial_dimension(2));

70 EXPECT_TRUE (sphere.defined_on_spatial_dimension(3));

71

72 EXPECT_EQ (sphere.base (), stk::topology: :PARTICLE) ;

73}

2.1.5 STK topology for the high order Beam

Listing 2.5 demonstrates the API for a higher order Beam element.

Listing 2.5: Example of STK topology for a one-dimensional element

./..I../lcode/stk/stk_doc_tests/stk_topology/element_topologies.cpp

157 TEST (stk_topology_understanding, one_dim_higher_order_element)
158 {

159 stk::topology secondOrderBeam = stk::topology::BEAM_3;

160

161 EXPECT_TRUE (secondOrderBeam.is_valid());

162 EXPECT_FALSE (secondOrderBeam.has_homogeneous_faces ());

163 EXPECT_FALSE (secondOrderBeam.is_shell());

164

165 EXPECT_TRUE (secondOrderBeam.rank () != stk::topology::NODE_RANK) ;

166 EXPECT_TRUE (secondOrderBeam.rank () != stk::topology::EDGE_RANK) ;

167 EXPECT_TRUE (secondOrderBeam.rank () != stk::topology::FACE_RANK) ;
!

= stk::topology::CONSTRAINT_RANK) ;

)
168 EXPECT_TRUE (secondOrderBeam. rank ()
) == stk::topology::ELEMENT_RANK) ;

169 EXPECT_TRUE (secondOrderBeam. rank (
170

171 EXPECT_TRUE (secondOrderBeam.side_rank () == stk::topology::EDGE_RANK) ;
172

173 EXPECT_EQ (2u, secondOrderBeam.dimension());

174 EXPECT_EQ (3u, secondOrderBeam.num_nodes());

175 EXPECT_EQ (2u, secondOrderBeam.num_vertices());

176 EXPECT_EQ (1lu, secondOrderBeam.num_edges());

177

67

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

205

206
207

}

EXPECT_EQ (Ou, secondOrderBeam.num_faces());
EXPECT_EQ (lu, secondOrderBeam.num_positive_permutations());
EXPECT_EQ (2u, secondOrderBeam.num_permutations());

EXPECT_FALSE (secondOrderBeam.defined_on_spatial_dimension(0));
EXPECT_FALSE (secondOrderBeam.defined_on_spatial_dimension(1l));

EXPECT_TRUE (secondOrderBeam.defined_on_spatial_dimension(2))
EXPECT_TRUE (secondOrderBeam.defined_on_spatial_dimension(3));

EXPECT_TRUE (secondOrderBeam.base ()

unsigned beamNodes[3] = { 10, 20,

{

unsigned expectedNodeOffsets[3] =
//unit-test checking utility:
checkNodeOrderingAndOffsetsForEdges (secondOrderBeam, beamNodes, expectedNodeOffsets);

unsigned expectedNodeOffsets[6] =

0, 1, 2,
1, 0, 2
}i

//unit-test checking utility:
checkNodeOrderingAndOffsetsForPermutations (secondOrderBeam, beamNodes,

expectedNodeOffsets) ;

14 };

{

{

// 10
i

0, Ly

*

2

’

== stk::topology::BEAM 2);

bi

2.1.6 STK topology for the high order triangular Shell

Listing 2.6 demonstrates the API for a higher order triangular shell element.

210 TEST (stk_topology_understanding,

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

{

Listing 2.6: Example of STK topology for a two-dimensional element

./..[..[code/stk/stk_doc_tests/stk_topology/element_topologies.cpp

two_dim_higher_order_element)

stk::topology secondOrderTriShell = stk::topology::SHELL_TRIANGLE_G6;
== stk::topology::SHELL_TRI_6);

EXPECT_TRUE (secondOrderTriShell

EXPECT_TRUE (secondOrderTriShell.
EXPECT_TRUE (secondOrderTriShell.
EXPECT_TRUE (secondOrderTriShell.

EXPECT_TRUE (secondOrderTriShell.
EXPECT_TRUE (secondOrderTriShell.
EXPECT_TRUE (secondOrderTriShell.
EXPECT_TRUE (secondOrderTriShell.
EXPECT_TRUE (secondOrderTriShell.

EXPECT_TRUE (secondOrderTriShell.

EXPECT_EQ (3u, secondOrderTriShell.
EXPECT_EQ (6u, secondOrderTriShell.
EXPECT_EQ (3u, secondOrderTriShell.
EXPECT_EQ (3u, secondOrderTriShell.
EXPECT_EQ (2u, secondOrderTriShell.

is_valid());
has_homogeneous_faces());
is_shell());

rank () != stk:
rank () != stk:
rank () != stk:
rank () != stk:
rank () == stk:
side_rank () ==
dimension (

))
num_nodes ())
num_vertices
num_edges ())
num_faces ())

68

:topology: :NODE_RANK) ;
:topology: :EDGE_RANK) ;
:topology: :FACE_RANK) ;
:topology: :CONSTRAINT_RANK) ;
:topology: :ELEMENT_RANK) ;

’

(

’

’

stk::topology: :FACE_RANK) ;

)) i

// permutations are the number of ways the number of vertices can be permuted
EXPECT_EQ (6u, secondOrderTriShell.num_permutations());

// positive permutations are ones that the normal is maintained

EXPECT_EQ (3u, secondOrderTriShell.num_positive_permutations());

ST ST SRR SR R)
2D W oW W W W
® A O R

EXPECT_FALSE (secondOrderTriShell.defined_on_spatial_dimension(0));

239 EXPECT_FALSE (secondOrderTriShell.defined_on_spatial_dimension(1l));

240 EXPECT_FALSE (secondOrderTriShell.defined_on_spatial dimension(2));

241

242 EXPECT_TRUE (secondOrderTriShell.defined_on_spatial_dimension(3));

243

244 EXPECT_TRUE (secondOrderTriShell.base () == stk::topology::SHELL_TRI_3);

245 EXPECT_TRUE (secondOrderTriShell.base () == stk::topology::SHELL_TRIANGLE_3);

246

247 unsigned shellNodes[6] = { 10, 11, 12, 100, 101, 102 }; // first 3 are vertex nodes
(picture?)

248

249 {

250 unsigned goldValuesEdgeOffsets[9] = {

251 0, 1, 3,

252 1, 2, 4,

253 2, 0, 5

254 };

255

256 //unit-test checking utility:

257 checkNodeOrderingAndOffsetsForEdges (secondOrderTriShell, shellNodes,

goldvaluesEdgeOffsets) ;
258 }

259

260 {

261 unsigned goldValuesFaceNodeOffsets[12] = {

262 0, 1, 2, 3, 4, 5,

263 0, 2, 1, 5, 4, 3

264 15

265

266 //unit-test checking utility:

267 checkNodeOrderingAndOffsetsForFaces (secondOrderTriShell, shellNodes,
goldValuesFaceNodeOffsets);

268 }

269

270 {

271 unsigned goldValueOffsetsPerm[36] = {

2712 Oy 1o 24 3¢ 4y 5,

273 25 O Ly B¢ 34 Ly

274 1, 2, 0, 4 5; 3,

275 0y 2, 1, 5, 4, 3y

276 2y Ly, 0, 4, 3, 5,

277 1, 0, 2, 3, 5, 4

278 Y

279

280 //unit-test checking utility:

281 checkNodeOrderingAndOffsetsForPermutations (secondOrderTriShell, shellNodes,

goldValueOffsetsPerm) ;
282 }
283}

2.1.7 STK topology for the linear Hexahedral

Listing 2.7 demonstrates the API for a linear Hexahedral element.

Listing 2.7: Example of STK topology for a three-dimensional element

«/..[.Jcode/stk/stk_doc_tests/stk_topology/element_topologies.cpp

69

287 TEST (stk_topology_understanding, three_dim_linear_element)
288 |

289 stk::topology hex8 = stk::topology::HEX_8;

290 EXPECT_TRUE (hex8 == stk::topology::HEXAHEDRON_S8) ;

291

292 EXPECT_TRUE (hex8.is_valid());

293 EXPECT_TRUE (hex8.has_homogeneous_faces());

294 EXPECT_FALSE (hex8.is_shell());

295

296 EXPECT_TRUE (hex8.rank () != stk::topology::NODE_RANK) ;

297 EXPECT_TRUE (hex8.rank () != stk::topology::EDGE_RANK) ;

298 EXPECT_TRUE (hex8.rank () != stk::topology::FACE_RANK);

299 EXPECT_TRUE (hex8.rank () != stk::topology::CONSTRAINT_RANK) ;
)

300 EXPECT_TRUE (hex8.rank (
301

== stk::topology::ELEMENT_RANK) ;

302 EXPECT_TRUE (hex8.side_rank () == stk::topology::FACE_RANK) ;
303

304 EXPECT_EQ (3u, hex8.dimension());

305 EXPECT_EQ (8u, hex8.num_nodes());

306 EXPECT_EQ (8u, hex8.num_vertices());

307 EXPECT_EQ(12u, hex8.num_edges());

308 EXPECT_EQ (6u, hex8.num_faces());

309
310 if (stk::topology::topology_type<stk::topology::HEX_ 8>::num_permutations > 1) {
311 // permutations are the number of ways the number of vertices can be permuted

312 EXPECT_EQ(24u, hex8.num permutations());

313 // positive permutations are ones that the normal is maintained
314 EXPECT_EQ(24u, hex8.num _positive_permutations());

315 }

316

317 EXPECT_FALSE (hex8.defined_on_spatial_dimension (0));

318 EXPECT_FALSE (hex8.defined_on_spatial_dimension(1l));

319 EXPECT_FALSE (hex8.defined_on_spatial_dimension(2));

321 EXPECT_TRUE (hex8.defined_on_spatial_dimension(3));

323 EXPECT_TRUE (hex8.base () == stk::topology::HEX_38);

324

325 unsigned hex8Nodes[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };

326

327 {

328 stk::topology goldEdgeTopology = stk::topology::LINE_2;
329 EXPECT_EQ (goldEdgeTopology, hex8.edge_topology());

330

331 unsigned goldNumNodesPerEdge = 2;

332 ASSERT_EQ (goldNumNodesPerEdge, hex8.edge_topology () .num_nodes ());
333 unsigned goldValuesEdgeOffsets[24] = ({

334 0l Ly

335 1, 2,

336 2, 3,

337 3, 0,

338 4, 5,

339 Sy 64

340 6; Ta

341 7, 4,

342 0, 4,

343 1y 5y

344 2% By

345 Sy

346 }i

347

348 //unit—-test checking utility:

349 checkNodeOrderingAndOffsetsForEdges (hex8, hex8Nodes, goldValuesEdgeOffsets);

stk::topology goldFaceTopology

= stk::topology: :QUAD_A4;
354 unsigned goldNumNodesPerFace = 4;

70

355 for (unsigned faceIndex=0; faceIndex<hex8.num_faces () ; faceIndex++)
356 {

357 EXPECT_EQ (goldFaceTopology, hex8.face_topology (facelndex));

358 ASSERT_EQ (goldNumNodesPerFace, hex8.face_topology (faceIndex) .num_nodes());
359 }

360

361 unsigned goldValuesFaceOffsets[24] = ({

362 0, 1, 5, 4,

363 1, 2, 6, 5,

364 2, 3, 7, &

365 0, 4, 7, 3,

366 O Bz 25 Ls

367 4, 5; 6, 7

368 13-

369

370 //unit-test checking utility:

371 checkNodeOrderingAndOffsetsForFaces (hex8, hex8Nodes, goldValuesFaceOffsets);

372 }
373
374}

2.1.8 STK topology equivalent method

Listing 2.8 demonstrates the API for checking, given the nodes of topology, if two entities are
equivalent. The support for HEX 8, etc., only includes positive node-permutations, since there is
no current need for negative permutations.

Listing 2.8: Example using of an equivalent method

./../../code/stk/stk_doc_tests/stk_topology/equivalent.cpp

41 TEST (stk_topology_understanding, equivalent_elements)

2 |

43 std::pair<bool, unsigned> areElementsEquivalent;

44

45 {

46 if (stk::topology::topology_type<stk::topology::HEX_ 8>::num _permutations > 1) {
47 unsigned hex1[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };

48 unsigned hex2([(8] = { 4, 7, 6, 5, 0, 3, 2, 1 };

49 unsigned hex3[8] = { 4, 5, 6, 7, 0, 1, 2, 3 };

5(

51 stk::topology hex8 = stk::topology::HEX_ 8;

52

53 areElementsEquivalent = hex8.equivalent (hexl, hex2);

54 EXPECT_TRUE (areElementsEquivalent.first);

55 areElementsEquivalent = hex8.equivalent (hexl, hex3);

56 EXPECT_FALSE (areElementsEquivalent.first);

57 }

58 }

59

60 {

61 unsigned triangle_1[3] = {0, 1, 2};

62 unsigned triangle 2[3] = {0, 2, 1};

63

64 stk::topology triangular_shell = stk::topology::SHELL_TRIANGLE_3;
65

66 areElementsEquivalent = triangular_shell.equivalent (triangle_1, triangle_2);
67

68 EXPECT_TRUE (areElementsEquivalent.first);

69

70 unsigned permutation_index = areElementsEquivalent.second;

71 unsigned goldvalue = 3;

71

72 EXPECT_EQ (goldvValue, permutation_index); // From previous unit test, this is the 4th
permutation

73 }

74

75}

2.1.9 STK topology’s is positive polarity method

Listing 2.9: Example using is_positive polarity

.J..l../code/stk/stk_doc_tests/stk_topology/how_to_use_stk_topology.cpp

240 TEST (stk_topology_how_to, check_for positive_polarity)

241 |

242 stk::topology quad4Topology = stk::topology::QUAD_4;
243

244 ASSERT_EQ (8u, quad4Topology.num_permutations());

245 ASSERT_EQ (4u, quad4Topology.num_positive_permutations());
246

247 EXPECT_TRUE (quad4Topology.is_positive_polarity(0));
248 EXPECT_TRUE (quad4Topology.is_positive_polarity(1l));
249 EXPECT_TRUE (quad4Topology.is_positive_polarity(2));
250 EXPECT_TRUE (quad4Topology.is_positive_polarity(3));
51 EXPECT_TRUE (! quad4Topology.is_positive_polarity(4));
52 EXPECT_TRUE (! quad4Topology.is_positive_polarity(5));

U
Y

EXPECT_TRUE (!quad4Topology.is_positive_polarity(6));
EXPECT_TRUE (!quad4Topology.is_positive_polarity(7));

th
=

93
N0

//or, print it and examine the output:
stk::verbose_print_topology (std::cout, quad4Topology) ;

RN RN NN NN
S tot)
3 O

G
]
—

2.1.10 STK topology’s lexicographical smallest permutation
method

Listing 2.10 demonstrates the API for obtaining the smallest lexicographical permutation index.
The support for HEX 8, etc., only includes positive node-permutations.

Listing 2.10: Example using lexicographical _smallest_permutation

./../../code/stk/stk_doc_tests/stk_topology/how_to_use_stk_topology.cpp

56 TEST (stk_topology_understanding, lexicographical_smallest_permutation)
57 {
58 {

59 unsigned triangle_node_ids[3] = {10, 8, 12};

60

61 stk::topology triangular_shell = stk::topology::SHELL_TRIANGLE_3;

62

63 unsigned gold_triangle_permutations[18]= {

64 108, 8, 12,

65 12, 10, 8,

66 8, 12, 10, // lexicographical smallest permutation by node ids if considering
only positive permutations

67 10, 12, 8,

68 12, 8, 10,

69 8, 10, 12 // lexicographical smallest permutation by node ids if considering

all permutations

72

70 15

71

72 verifyPermutationsForTriangle (triangular_shell, triangle_node_ids,
gold_triangle_permutations);

73

74 bool usePositivePermutationsOnly = false;

75 unsigned permutation_index =
triangular_shell.lexicographical_smallest_permutation (triangle_node_ids,
usePositivePermutationsOnly) ;

76 unsigned gold_lexicographical_smallest_permutation_index = 5;

77 // driven by vertices, NOT mid-edge nodes

78 EXPECT_EQ (gold_lexicographical_smallest_permutation_index, permutation_index);
79

80 usePositivePermutationsOnly = true;

81 permutation_index =

triangular_shell.lexicographical_smallest_permutation (triangle_node_ids,
usePositivePermutationsOnly) ;

82 gold_lexicographical_smallest_permutation_index = 2;
83 // driven by vertices, NOT mid-edge nodes
84 EXPECT_EQ (gold_lexicographical_smallest_permutation_index, permutation_index);

85 }
86 }

2.1.11 STK topology’s lexicographical smallest permutation
preserve polarity method

Listing 2.11 demonstrates the API for obtaining the smallest lexicographical permutation index
that matches the polarity of the input permutation

Listing 2.11: Example using 1exicographical _smallest permutation preserve polarity

.[../../code/stk/stk_doc_tests/stk_topology/how_to_use stk topology.cpp

90 TEST (stk_topology_understanding, lexicographical_smallest_permutation_preserve_polarity)
91 {
92 {

93 stk::topology triangular_shell = stk::topology::SHELL_TRIANGLE_3;
94 unsigned shell_node_ids[3] = {10, 8, 12};

95 {

96 unsigned triangle_node_ids[3] = {12, 10, 8};

97

98 unsigned permutation_index =

triangular_shell.lexicographical_smallest_permutation_preserve_polarity(triangle_node_ids,
shell_node_ids);

99 unsigned expected_positive_permutation = 2;

100

101 EXPECT_EQ (expected_positive_permutation, permutation_index);

102 EXPECT_LT (expected_positive_permutation,
triangular_shell.num positive_permutations());

103 }

104 {

105 unsigned triangle_node_ids[3] = {12, 8, 10};

106

107 unsigned permutation_index =

triangular_shell.lexicographical_smallest_permutation_preserve_polarity(triangle_node_ids,
shell_node_ids);

108 unsigned expected_negative_permutation = 5;

109

110 EXPECT_EQ (expected_negative_permutation, permutation_index);

111 EXPECT_GE (expected_negative_permutation,
triangular_shell.num _positive_permutations());

73

112 }

113 }

114}

115

116 TEST (stk_topology_understanding, quad_lexicographical_smallest_permutation_preserve_polarity)
117 {

118 {

119 stk::topology quad_shell = stk::topology::SHELL_QUAD_4;
120 unsigned shell node_ids[4] = {1, 2, 3, 4};

121 {

122 unsigned quad_node_ids[4] = {1, 2, 3, 4};

123

124 unsigned permutation_index =

quad_shell.lexicographical_smallest_permutation_preserve_polarity(quad_node_ids,
shell_node_ids);

125 unsigned expected_positive_permutation = 0;

126

127 EXPECT_EQ (expected_positive_permutation, permutation_index);

128 EXPECT_LT (expected_positive_permutation, quad_shell.num_positive_permutations());
129 }

130

131 {

132 unsigned quad_node_ids[4] = {1, 4, 3, 2};

133

134 unsigned permutation_index =

quad_shell.lexicographical_smallest_permutation preserve_polarity(quad_node_ids,
shell_node_ids);

135 unsigned expected_negative_permutation = 4;

136

137 EXPECT_EQ (expected_negative_permutation, permutation_index);

138 EXPECT_GE (expected_negative_permutation, quad_shell.num_positive_permutations());
139 }

140

141 {

142 unsigned quad_node_ids[4] = {4, 2, 3, 1};

143

144 unsigned permutation_index =

quad_shell.lexicographical_smallest_permutation preserve_polarity(quad_node_ids,
shell node_ids) ;

145 unsigned expected_invalid_permutation = 8§;

146

147 EXPECT_EQ (expected_invalid_permutation, permutation_index);

148 EXPECT_EQ (expected_invalid_permutation, quad_shell.num_permutations());

149 }
150 }
151}

2.1.12 STK Topology’s sub_topology methods

Listing 2.12 demonstrates the API for obtaining information about a topology’s sub-topologies
(sub-topologies define downward-connected entities; e.g., the face-rank sub-topology of HEX_20
is QUAD._8.).

Listing 2.12: Example using of sub_topology

.J.[..Jecode/stk/stk_doc_tests/stk_topology/how_to_use stk _topology.cpp

155 TEST (stk_topology_understanding, sub_topology)
156 {

157 stk::topology hex20 = stk::topology::HEX_ 20;
158 unsigned hex20Nodes[20] = {
159 0, 1, 2, 3,

74

160 4, 5, 6, 7,

161 8, 9, 10, Ily

162 12, 13, 14, 15,

163 18, 17, 18, 19

164 iy

165

166 unsigned numFaces = hex20.num_sub_topology (stk::topology: :FACE_RANK) ;

167 EXPECT_EQ (6u, numFaces);

168

169 unsigned facelIndex=2;

170 stk::topology top = hex20.sub_topology(stk::topology::FACE_RANK, facelndex);
171 EXPECT_EQ (stk::topology: :QUADRILATERAL_8, top);

172

173 unsigned nodelIdsFace[8];

174 hex20.sub_topology_nodes (hex20Nodes, stk::topology::FACE_RANK, faceIndex, nodelIdsFace);
175

176 unsigned goldIdsFace[8] = { 2, 3, 7, 6, 10, 15, 18, 14 };

177 for (unsigned i=0;i<hex20.face_topology (faceIndex) .num_nodes();i++)

178 {

179 EXPECT_EQ (goldIdsFace[i], nodelIdsFace[il]);

180 }
181}

2.1.13 STK Topology’s sides methods

Listing 2.13 demonstrates the API for understanding sides in STK topologies. Note that for some
topologies, sides differs in meaning from the Exodus [1] standard. For example, the number of
sides on a shell-4 in Exodus is 6 (two faces, 4 edges) while the SHELL_QUAD _4 in stk _topology
only counts the faces as sides, i.e., num_sides () returns 2.

Listing 2.13: Example for understanding sides in STK topology

./../../code/stk/stk_doc_tests/stk_topology/how_to_use_stk_topology.cpp

184 TEST (stk_topology_understanding, sides)
185 {

186 stk::topology hex20 = stk::topology::HEX 20;

187 EXPECT_EQ(6u, hex20.num_sides());

188

189 stk::topology quad8 = stk::topology::SHELL_QUADRILATERAL_S8;

190 EXPECT_EQ (2u, quad8.num_sides());

191

192 stk::topology wedge = stk::topology::WEDGE_15;

193 EXPECT_EQ (5u, wedge.num_sides());

194 EXPECT_EQ (stk::topology: :QUADRILATERAL_8, wedge.side_topology(0));
195 EXPECT_EQ (stk: :topology: :QUADRILATERAL_8, wedge.side_topology(l));
196 EXPECT_EQ (stk::topology: :QUADRILATERAL_8, wedge.side_topology(2));
197 EXPECT_EQ (stk::topology: :TRIANGLE_6, wedge.side_topology(3));

198 EXPECT_EQ (stk::topology::TRIANGLE_6, wedge.side_topology(4));

199
200 }

2.1.14 STK topology for a SuperElement

Listing 2.14 demonstrates the API for using super elements in STK Topology.

75

Listing 2.14: Example using a SuperElement with STK topology

.J../../[code/stk/stk_doc_tests/stk_topology/how_to_use_stk_topology.cpp

203 TEST (stk_topology_understanding, superelements)

204 {

205 unsigned eightNodes=8§;

206 stk::topology validSuperElement = stk::create_superelement_topology (eightNodes);
207 EXPECT_TRUE (validSuperElement.is_superelement ());

208 EXPECT_TRUE (stk::topology: :ELEMENT_RANK == validSuperElement.rank());

209 EXPECT_EQ (eightNodes, validSuperElement.num_nodes());

210 EXPECT_EQ (Ou, validSuperElement.num_edges());

211 EXPECT_EQ (0Ou, validSuperElement.num_faces());

212 EXPECT_EQ (0u, validSuperElement.num_permutations());

213 EXPECT_EQ (0u, validSuperElement.num_sides());

214 EXPECT_EQ (Ou, validSuperElement.dimension());

215 EXPECT_EQ (stk::topology::INVALID_TOPOLOGY, validSuperElement.face_topology(0));
216 EXPECT_EQ (stk: :topology::INVALID_TOPOLOGY, validSuperElement.edge_topology());
217 EXPECT_EQ (stk::topology: :INVALID_ _TOPOLOGY, validSuperElement.base());

218 EXPECT_FALSE (validSuperElement .has_homogeneous_faces());

219 EXPECT_FALSE (validSuperElement.is_shell());

220

221 unsigned zeroNodes=0;

222 stk::topology invalidSuperElement = stk::create_superelement_topology (zeroNodes) ;
223 EXPECT_FALSE (invalidSuperElement.is_superelement ());

224 EXPECT_TRUE (stk::topology: :INVALID_RANK == invalidSuperElement.rank());

225 EXPECT_EQ (zeroNodes, invalidSuperElement.num_nodes());

226 EXPECT_EQ (Ou, invalidSuperElement.num_edges());

227 EXPECT_EQ (0Ou, invalidSuperElement.num_faces());

228 EXPECT_EQ (Ou, invalidSuperElement.num_permutations());

229 EXPECT_EQ (Ou, invalidSuperElement.num_sides());

230 EXPECT_EQ (Ou, invalidSuperElement.dimension());

231 EXPECT_EQ (stk::topology: :INVALID_TOPOLOGY, invalidSuperElement.face_topology(0));
232 EXPECT_EQ (stk::topology: :INVALID_TOPOLOGY, invalidSuperElement.edge_topology());
233 EXPECT_EQ (stk::topology: :INVALID_TOPOLOGY, invalidSuperElement.base());

234 EXPECT_FALSE (invalidSuperElement .has_homogeneous_faces());

235 EXPECT_FALSE (invalidSuperElement.is_shell());

236 }

2.2 Mapping of Sierra topologies

Listing 2.15 compares four topology implementations found in Sierra: the Exodus Topology (de-
fined by the name and number of nodes of the element), Ioss Topology, STK Topology, and the
Cell (Shards) Topology. The test shows how a few elements compare for these implementations.

Listing 2.15: Example for understanding various Sierra topologies

.J../..[code/stk/stk_doc_tests/stk_topology/understanding_various_topologies.cpp

67
68 void setUpMappingsToTest (std::vector<TopologyMapper>& topologyMappings)
69 |

70 std::string exodusName;

71 int exodusNumNodes=-1;

72 std::string iossTopologyName;

73 stk::topology stkTopology;

74 shards::CellTopology shardsTopology;
75

76 exodusName="sphere";

77 exodusNumNodes=1;

78 iossTopologyName="sphere";

79 stkTopology=stk::topology: :PARTICLE;

76

80 shardsTopology=shards::CellTopology (shards::getCellTopologyData< shards::Particle >());
81 topologyMappings.push_back (TopologyMapper (exodusName, exodusNumNodes, iossTopologyName,
stkTopology, shardsTopology));

83 exodusName="BEan";

84 exodusNumNodes=3;

85 iossTopologyName="bar3";

86 stkTopology=stk::topology: :BEAM_3;

87 shardsTopology=shards::CellTopology (shards::getCellTopologyData< shards::Beam<3> >());
88 topologyMappings.push_back (TopologyMapper (exodusName, exodusNumNodes, iossTopologyName,

stkTopology, shardsTopology));

90 exodusName="Tri";
91 exodusNumNodes=3;

92 iossTopologyName="trishell3";

93 stkTopology=stk::topology::SHELL_TRIANGLE_3;

94 shardsTopology=shards::CellTopology (shards::getCellTopologyData< shards::ShellTriangle<3>
>());

95 topologyMappings.push_back (TopologyMapper (exodusName, exodusNumNodes, iossTopologyName,

stkTopology, shardsTopology));

96

97 exodusName="hex";

98 exodusNumNodes=20;

99 iossTopologyName="hex20";

100 stkTopology=stk::topology: :HEXAHEDRON_20;

101 shardsTopology=shards: :CellTopology (shards::getCellTopologyData< shards::Hexahedron<20>
>());

102 topologyMappings.push_back (TopologyMapper (exodusName, exodusNumNodes, iossTopologyName,
stkTopology, shardsTopology));

103 }

104

105 TEST (Understanding, sierra_topologies)

106 {

107 int spatialDim = 3;

108 std: :vector<TopologyMapper> topologyMappings;

109 setUpMappingsToTest (topologyMappings) ;

110

111 size_t numMappings = topologyMappings.size();

112

113 createlossElementRegistryForKnownElementTopologies () ;

114

115 for (size_t 1i=0;i<numMappings;i++)

116 {

117 TopologyMapper goldValues = topologyMappings([i];

118

119 std::string fixedExodusName = Ioss::Utils::fixup_type (topologyMappings[i].exodusName,
topologyMappings[i] .exodusNumNodes, spatialDim);

120 Ioss::ElementTopology *iossTopology = Ioss::ElementTopology::factory (fixedExodusName,

true);

121 ASSERT_TRUE (iossTopology != NULL) ;

122 EXPECT_EQ (goldValues.iossTopologyName, iossTopology->name());

123

124 stk::topology mappedStkTopologyFromIossTopology =
stk::io::map_ioss_topology_to_stk(iossTopology, spatialDim);

125 EXPECT_EQ (goldValues.stkTopology, mappedStkTopologyFromIossTopology) ;

127 shards::CellTopology mappedShardsTopologyFromStkTopology =
stk::mesh::get_cell_topology (mappedStkTopologyFromIossTopology) ;
128 EXPECT_EQ (goldValues.shardsTopology, mappedShardsTopologyFromStkTopology) ;

130 stk::topology mappedStkTopologyFromShards =
stk::mesh::get_topology (mappedShardsTopologyFromStkTopology, spatialDim);
131 EXPECT_EQ (goldValues.stkTopology, mappedStkTopologyFromShards) ;

77

Some client applications still heavily use shards topologies with STK Mesh. To maintain sup-
port for this capability, STK Mesh provides a fast mapping between shards and stk_topology (see
listing 2.16).

996
997
998
999
1000
1001

1002
1003

1004
1005

1006
1007

1008
1009

1010
1011

1012
1013

1014
1015

1016
1017

1018
1019

1020
1021

1022

1023

1024

1025

1026
1027

1028
1029

1030
1031

1032
1033

1034
1035

1036

{

Listing 2.16: Mapping of shards::CellTopologies to stk::topologies provided by

stk::mesh::get_cell_topology() ../../../code/stk/stk_mesh/stk_mesh/base/MetaData.cpp

switch(t ())
{
case stk::topology
return shards:
>())i

case stk::topology:

return shards:
>())i

case stk::topology:

return shards:

>0)i

case stk::topology:

return shards:
>())i

case stk::topology:

return shards:
>())i

case stk::topology:

return shards:

>0)i

case stk::topology:

return shards:
>())

case stk::topology:

return shards:
>())i

case stk::topology:

return shards:

>0)i

case stk::topology:

return shards:
>())i

case stk::topology:

return shards:
>())i

case stk::topology:

return shards:

>0)i

case stk::topology:

return shards:
>())i

case stk::topology:

return shards:
>())i

case stk::topology:

return shards:
>())i

case stk::topology:

return shards:

>0)i

case stk::topology:

return shards:
>())i

case stk::topology:

return shards:
>0)i
case stk::topology

: :NODE:
:CellTopology (

sI.ILNE 23
:CellTopology (

:LINE_3:
:CellTopology (

:TRI_3:
:CellTopology (

:TRI_4:
:CellTopology (

:TRI_6:
:CellTopology (

:QUAD_4:
:CellTopology (

:QUAD_S8:
:CellTopology (

:QUAD_9:
:CellTopology (

:PARTICLE:
:CellTopology (

:LINE_2_1D:
:CellTopology (

:LINE_3_1D:
:CellTopology (

:BEAM_2:
:CellTopology (

:BEAM_3:
:CellTopology (

:SHELL_LINE_2:
:CellTopology (

:SHELL_LINE_3:
:CellTopology (

:TRI_3_2D:
:CellTopology (

:TRI_4_2D:
:CellTopology (

f2TRT. 6. 2D3:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards::CellTopology get_cell_topology (stk::topology t)

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyDatac<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyDatac<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyDatac<

78

shards:

shardsi :

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

:Node

Line<2>

:Line<3>

:Triangle<3>

:Triangle<4>

:Triangle<6>

:Quadrilateral<4>

:Quadrilateral<8>

:Quadrilateral<9>

:Particle

:Line<2>

:Line<3>

:Beam<2>

:Beam<3>

:ShellLine<2>

:ShellLine<3>

:Triangle<3>

:Triangle<4>

1037

1038
1039

1040
1041

1042
1043

1044
1045

1046

1047

1048

1049
1050

1051

1052

1053

1054

1055

1056

1057
1058

1059
1060

1061
1062

1063
1064

1065
1066

1067
1068

1069
1070

1071
1072

1073
1074

1075
1076

1077
1078

1079
1080

1081

return shards::

>())i
case stk::topology:
return shards::

>())i
case stk::topology:
return shards::

>())i
case stk::topology:
return shards::

>())i
case stk::topology:
return shards::

>())i

CellTopology (

:QUAD_4_2D:
CellTopology (

:QUAD_8_2D:
CellTopology (

:QUAD_9_2D:
CellTopology (

:SHELL_TRI_3:
CellTopology (

shards:

shards:

shards:

shards:

shards

case stk::topology::SHELL_TRI_4:break;

//NOTE :

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

shards:

shards:

shards:

shards:

shards:

shards does not define a topology for a 4-noded triangular

//return shards::CellTopology(shards::getCellTopologyData< shards

>0)i
case stk::topology:
return shards::

>())i
case stk::topology:
return shards:

>())i
case stk::topology:
return shards:

>0)i
case stk::topology:
return shards:

>())i
case stk::topology:
return shards:

>())i
case stk::topology:
return shards:

>0)i
case stk::topology:
return shards:

>0)i
case stk::topology:
return shards:

>())i
case stk::topology:
return shards:

>())i
case stk::topology:
return shards:

>())i
case stk::topology:
return shards:

>0)i
case stk::topology:
return shards:

>0)i
case stk::topology:
return shards:

>0)i
case stk::topology:
return shards:

>())i
case stk::topology:
return shards:

>())i
case stk::topology:
return shards:

>0)i
case stk::topology:

:SHELL_TRI_6:
CellTopology (

:SHELL_QUAD_4:

:CellTopology (

:SHELL_QUAD_S8:

:CellTopology (

:SHELL_QUAD_9:

:CellTopology (

:TET 4:

:CellTopology (

TR i

:CellTopology (

:TET_10:

:CellTopology (

:TET_11:

:CellTopology (

:PYRAMID_5:

:CellTopology (

:PYRAMID_13:

:CellTopology (

:PYRAMID_14:

:CellTopology (

:WEDGE_6:

:CellTopology (

:WEDGE_15:

:CellTopology (

:WEDGE_18:

:CellTopology (

:HEX_8:

:CellTopology (

:HEX_20:

:CellTopology (

:HEX_27:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

:getCellTopologyData<

79

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

shards:

:Triangle<6>

:Quadrilateral<4>

:Quadrilateral<8>

:Quadrilateral<9>

:ShellTriangle<3>

shell
:ShellTriangle<4>

:ShellTriangle<6>

:ShellQuadrilateral<4>

:ShellQuadrilateral<8>

:ShellQuadrilateral<9>

:Tetrahedron<4>

:Tetrahedron<8>

:Tetrahedron<10>

:Tetrahedron<1l1>

:Pyramid<5>

:Pyramid<13>

:Pyramid<14>

:Wedge<o6>

:Wedge<15>

:Wedge<18>

:Hexahedron<8>

:Hexahedron<20>

1082 return shards::CellTopology(shards::getCellTopologyData< shards::Hexahedron<27>
>())i

1083 default: break;

1084 }

1085 return shards::CellTopology (NULL) ;

1086 '}

80

Chapter 3

STK Fields

A STK field is a data structure that defines values associated with entities, such as temperatures,
coordinates, or stress. A field can be defined over the whole mesh or a subset of the mesh (typically
defined by a list of parts). STK Mesh currently manages STK field creation, storage, retrieval and
field data memory allocation. Fields are managed by entity rank (node, edge, face, element, etc.).
Fields can have the same name as long as they are defined on different entity ranks.

The following code listings demonstrate some common usage of fields:

e Scalar, vector, and tensor fields

e Fields on nodes or on elements

e Fields allocated for the entire mesh

e Fields allocated for only part of the mesh
e Fields with constant size across the mesh
e Fields with variable size per part

e Multi-state fields

e Communicate field data

In each example, the general flow of execution is as follows:

1. Declare and initialize stk : :mesh: :MetaData: declare fields and parts
2. Declare and initialize stk : :mesh: : BulkData: create elements and nodes
3. Initialize, access and/or test field-data.

3.1 Example STK fields usage

Listing 3.1: Examples of constant-size whole-mesh field usage

«/..[..[code/stk/stk_doc_tests/stk_mesh/useSimpleFields.cpp

70 TEST (stkMeshHowTo, useSimpleFields)
71 {

72 stk::mesh::MetaData metaData (SpatialDimension::three, stk::mesh::entity_rank_names());
73

74 typedef stk::mesh::Field<double> ScalarField;

75 typedef stk::mesh::Field<double, stk::mesh::Cartesian3d> VectorField;

81

76

717

78
79
80

81

82
83
84
85
86
87
88
89
90
91
92
93
94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111

112

ScalarField& pressureField =
metaData.declare_field<ScalarField> (stk::topology::ELEM_RANK, "pressure");
VectorFields& displacementsField =
metaData.declare_field<VectorField> (stk::topology: :NODE_RANK, "displacements");

double initialPressureValue = 4.4;

stk::mesh::put_field on_entire _mesh with_initial value (pressureField,
&initialPressureValue) ;

stk::mesh::put_field_on_entire_mesh(displacementsField);

stk::mesh::BulkData mesh (metaData, MPI_COMM_WORLD) ;
create_two_tet_element_mesh (mesh) ;

const stk::mesh::BucketVector& nodeBuckets = mesh.buckets (stk::topology: :NODE_RANK) ;
EXPECT_TRUE (!nodeBuckets.empty ());
for (size_t bucketIndex=0; bucketIndex<nodeBuckets.size(); bucketIndex++)
{
const stk::mesh::Bucket& bucket = xnodeBuckets[bucketIndex];
doublex displacementDataForBucket = stk::mesh::field _data(displacementsField, bucket);
EXPECT_GT (bucket.size (), Ou);
for (size_t nodelIndex=0; nodeIndex<bucket.size(); nodelndex++)
{
unsigned numValuesPerNode =
stk::mesh::field_scalars_per_entity(displacementsField, bucket);
EXPECT_EQ (SpatialDimension: :three, numValuesPerNode);
for (unsigned i=0; i<numValuesPerNode; i++)
{
EXPECT_EQ (0.0, displacementDataForBucket [nodeIndex*numValuesPerNode + i]);
displacementDataForBucket [nodeIndex*numValuesPerNode + 1] = 99.9;

stk::mesh::Entity eleml = mesh.get_entity(stk::topology::ELEM RANK, 1);
doublex pressureFieldDataForEleml = stk::mesh::field _data(pressureField, eleml);
EXPECT_EQ(initialPressureValue, xpressureFieldDataForEleml);

stk::mesh::Entity elem2 = mesh.get_entity(stk::topology::ELEM_RANK, 2);
doublex pressureFieldDataForElem2 = stk::mesh::field data(pressureField, elem2);
EXPECT_EQ(initialPressureValue, xpressureFieldDataForElem2);

Multidimensional fields (including ’vector’ fields) must be declared by passing a second type pa-
rameter into the field’s templated parameter list; failure to do so will result in the instantiation of a
scalar field.

128
129
130
131
132

133

134
135
136

137
138
139
140

Listing 3.2: Example of incorrect vector field declaration

.J.[.Jeode/stk/stk_doc_tests/stk_mesh/useSimpleFields.cpp

TEST (stkMeshHowTo, declareVectorFields_putFieldLengthWithoutCartesian3dParam)

{

stk::mesh::MetaData metaData (SpatialDimension::three, stk::mesh::entity_rank_names());

typedef stk::mesh::Field<double, stk::mesh::Cartesian3d> VectorField;
VectorField& velocities = metaData.declare_field<VectorField> (stk::topology: :NODE_RANK,
"velocities");

typedef stk::mesh::Field<double> BadVectorField;

BadVectorField& displacements =
metaData.declare_field<BadVectorField> (stk::topology: :NODE_RANK,
"displacements");

unsigned fieldLength = 3;

stk::mesh::put_field(velocities, metaData.universal_part (), fieldLength);
stk::mesh::put_field(displacements, metaData.universal_part (), fieldLength);

82

141
142 stk::mesh::BulkData mesh (metaData, MPI_COMM_WORLD) ;

143 create_single_tet_element (mesh);

144

145 stk::mesh::Entity nodel = mesh.get_entity(stk::topology::NODE_RANK, 1);
146 EXPECT_EQ(stk::mesh::field_scalars_per_entity(velocities, nodel),

stk::mesh::field scalars_per_entity(displacements, nodel));
147 '}

Listing 3.3: Examples of how to get fields by name

.. Jeode/stk/stk_doc_tests/stk_mesh/howToGetFields.cpp

47 TEST (stkMeshHowTo, getFields)

48 {

49 stk::mesh::MetaData metaData (SpatialDimension::three);

50

51 typedef stk::mesh::Field<double> ScalarField;

52 typedef stk::mesh::Field<double, stk::mesh::Cartesian3d> VectorField;
53

54 const std::string pressureFieldName = "pressure";

55 const std::string displacementsFieldName = "displacements";

56 ScalarField +pressureField =

&metaData.declare_field<ScalarField> (stk::topology: :ELEM_RANK,
pressureFieldName) ;

57 VectorField xdisplacementsField =
&metaData.declare_field<VectorField> (stk::topology: :NODE_RANK,
displacementsFieldName) ;

58 metaData.commit () ;

59

60 EXPECT_EQ (pressureField, metaData.get_field<ScalarField> (stk::topology::ELEM_RANK,
pressureFieldName)) ;

61 EXPECT_EQ (pressureField, metaData.get_field(stk::topology::ELEM_RANK, pressureFieldName));

62

63 EXPECT_EQ (displacementsField, metaData.get_field<VectorField> (stk::topology: :NODE_RANK,
displacementsFieldName)) ;

64 EXPECT_EQ (displacementsField, metaData.get_field(stk::topology::NODE_RANK,

displacementsFieldName)) ;
65 }

Listing 3.4: Examples of using fields that are variable-size and defined on only a subset of the mesh

.J..[..Jeode/stk/stk_doc_tests/stk_mesh/useAdvancedFields.cpp

50 TEST (stkMeshHowTo, useAdvancedFields)
51 4

52 const unsigned spatialDimension = 3;

53 stk::mesh::MetaData metaData (spatialDimension, stk::mesh::entity_rank_names());

54

55 typedef stk::mesh::Field<double, stk::mesh::Cartesian> VectorField;

56 typedef stk::mesh::Field<double, stk::mesh::FullTensor36> TensorField;

57 TensorField& tensorField = metaData.declare_field<TensorField> (stk::topology::ELEM_RANK,
"tensor");

58 VectorField& variableSizeField =

metaData.declare_field<VectorField> (stk::topology::ELEM_RANK,
"variableSizeField");
59

60 stk::mesh::Part &tetPart = metaData.declare_part_with_topology("tetElementPart",
stk::topology::TET_4);
61 stk::mesh::Part &hexPart = metaData.declare_part_with_topology("hexElementPart",

stk::topology: :HEX_8);

62

63 double initialTensorvValuel] = {1, 2, 3, 4, 5, 6, 7, 8, 9};

64 stk::mesh::put_field_on_entire_mesh_with_initial_value (tensorField, initialTensorValue);
65

66 double initialVectorvaluel[] = {1, 2, 3, 4, 5, 6, 7, 8};

83

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

84

85
86

88

const unsigned nodesPerTet = 4;
stk::mesh::put_field(variableSizeF
const unsigned nodesPerHex = 8;
stk::mesh::put_field(variableSizeF

metaData.commit () ;
stk::mesh::BulkData mesh (metaData,
mesh.modification_begin();

stk::mesh::EntityId tetId = 1;
stk::mesh::EntityIdVector tetNodes

stk: :mesh:

stk::mesh::EntityId hexId = 2;
stk::mesh::EntityIdVector hexNodes {5, 6, 7, 8, 9,
stk::mesh: :Entity hexElem=stk: :mes

mesh.modification_end();

const unsigned tensor_scalars_per_

hexElem) ;

const unsigned tensor_scalars_per_:

tetElem);

EXPECT_EQ (tensor_scalars_per_hex,
const unsigned tensor_enum_size =
EXPECT_EQ (tensor_scalars_per_hex,

:Entity tetElem=stk::mesh::declare_element (mesh, tetPart,

ield, tetPart, nodesPerTet, initialVectorValue);

ield, hexPart, nodesPerHex, initialVectorValue);

MPI_COMM_WORLD) ;

{1, 2, 3, 4};

tetId, tetNodes);

10, 11, 12};

h::declare_element (mesh, hexPart, hexId, hexNodes) ;

hex =

stk::mesh::field_scalars_per_entity(tensorField,

tet =

stk::mesh::field_scalars_per_entity(tensorField,

tensor_scalars_per_tet);
stk::mesh::FullTensor36::Size;
tensor_enum_size);

89

90 double+ tensorData = stk::mesh::field_data(tensorField, hexElem);

91 for (unsigned i=0; i<tensor_scalars_per_ hex; i++)

92 {

93 EXPECT_EQ(initialTensorValue[i], tensorDatal[i]);

94 }

95

96 const unsigned scalars_per_tet = stk::mesh::field scalars_per_entity(variableSizeField,
tetElem) ;

97 EXPECT_EQ (nodesPerTet, scalars_per_tet);

98

99 const unsigned scalars_per_hex = stk::mesh::field_scalars_per_entity(variableSizeField,
hexElem) ;

100
101
102 doublex vectorHexData =
103 for (unsigned i=0; i<scalars_per_hex;
104 {
105

106 }
107

108 doublex vectorTetData =
109 for (unsigned i=0; i<scalars_per_tet;
110 {

111 EXPECT_EQ(initialVectorValue[i],
112 }

13 '}

EXPECT_EQ (nodesPerHex, scalars_per_hex);

stk::mesh::field_data(variableSizeField, hexElem);
i++)

EXPECT_EQ(initialVectorValue[i], vectorHexDatal[il]);

stk::mesh::field_data(variableSizeField, tetElem);
i++)

vectorTetDatalil);

Some application time-stepping algorithms use multi-state fields to assist with separating and up-
dating the field values for time-step n, n — 1, n+ 1, etc. STK Mesh supports fields with up to 6
states.

Listing 3.5: Examples of multi-state field usage

.J.[../code/stk/stk_doc_tests/stk_mesh/useMultistateFields.cpp

49 TEST (stkMeshHowTo, useMultistateField)

50 {

51 const unsigned spatialDimension = 3;

52 stk::mesh::MetaData metaData (spatialDimension, stk::mesh::entity_rank_names());
53

54 typedef stk::mesh::Field<double> ScalarField;

84

60
61

const unsigned numStates = 2;

ScalarField& temperatureFieldStateNpl =
metaData.declare_field<ScalarField> (stk::topology: :NODE_RANK, "temperature",
numStates) ;

double initialTemperatureValue = 1.0;
stk::mesh::put_field on_entire_mesh with initial value (temperatureFieldStateNpl,
&initialTemperatureValue) ;

metaData.commit () ;

stk::mesh::BulkData mesh (metaData, MPI_COMM_WORLD) ;
mesh.modification_begin();

stk::mesh::EntityId nodelId = 1;

stk::mesh::Entity node = mesh.declare_node (nodeld);
mesh.modification_end();

EXPECT_EQ(stk::mesh::StateNP1l, temperatureFieldStateNpl.state());

doublex temperatureStateNpl = stk::mesh::field_data (temperatureFieldStateNpl, node);
EXPECT_EQ (initialTemperatureValue, *temperatureStateNpl);

double newTemperatureValue = 2.0;

*temperatureStateNpl = newTemperatureValue;

ScalarField& temperatureFieldStateN =

temperatureFieldStateNpl.field _of_state(stk::mesh::StateN);
doublex temperatureStateN = stk::mesh::field_data (temperatureFieldStateN, node);
EXPECT_EQ (initialTemperatureValue, x*temperatureStateN);

mesh.update_field_data_states();

temperatureStateN = stk::mesh::field_data (temperatureFieldStateN, node);
EXPECT_EQ (newTemperatureValue, xtemperatureStateN);

85

This page intentionally left blank.

Chapter 4

STK 10

4.1 STK IO: usage examples

STK 10 is a module available for reading from and writing to Exodus [1] files (and other formats)
into and out of STK Mesh. This section gives examples of how to use STK 10 (referred hereon as
STK Mesh 10 Broker).

4.1.1 Reading mesh data to create a STK Mesh

The first example shows how to read mesh data from a file and create a STK Mesh corresponding
to that mesh data. A STK Part will be created for each element block, nodeset, and sideset on the
input mesh file and the name of the corresponding part will be the same as the name of the block
or set in the mesh file.

Listing 4.1: Reading mesh data to create a STK mesh ../../../code/stk/stk_doc_tests/stk_io/readMesh.cpp

73 Vi

74 //+ EXAMPLE:

75 //+ Read mesh data from the specified file.

76 stk::io::StkMeshIoBroker stklIo(communicator);

77 stkIo.add_mesh_database (mesh_name, stk::io::READ_MESH) ;
78

79 //+ Creates meta data; creates parts

80 stkIo.create_input_mesh();

81

82 //+ Any modifications to the meta data must be done here.
83 //+ This includes declaring fields.

84

85 //+ Commit the meta data and create the bulk data.

86 //+ populate the bulk data with data from the mesh file.
87 stkIo.populate_bulk_data();

88

89 //

90 //+ VERIFICATION

91 //+ There should be:

92 //+ 4 parts corresponding to the 1 hex block and 3 shell blocks
93 stk::mesh::MetaData &meta = stkIo.meta_data();

94 stk::mesh::Part xinvalid = NULL;

95 EXPECT_NE (invalid, meta.get_part ("block_1"));

96 EXPECT_NE (invalid, meta.get_part ("block_2"));

97 EXPECT_NE (invalid, meta.get_part ("block_3"));

98 EXPECT_NE (invalid, meta.get_part ("block_4"));

99

87

100 //+ 3 parts corresponding to the 3 nodesets.

101 EXPECT_NE (invalid, meta.get_part ("nodelist_1"));
102 EXPECT_NE (invalid, meta.get_part ("nodelist_2"));
103 EXPECT_NE (invalid, meta.get_part ("nodelist_3"));
104

105 //+ 3 parts corresponding to the 3 sidesets.

106 EXPECT_NE (invalid, meta.get_part ("surface_1"));
107 EXPECT_NE (invalid, meta.get_part ("surface_2"));
108 EXPECT_NE (invalid, meta.get_part ("surface_3"));

109
110

4.1.1.1 Face creation for input sidesets

Sidesets on volume elements where no shells are involved

Exploded view of input Resulting STK Mesh

Orientation

coincident surfaces

Figure 4.1: Sideset face creation in STK IO for 2 hexes.

‘face is put into part’

‘ ‘face attached to element’

- ‘element side in sideset’

‘face normal oriented this direction’
Legend

Figure 4.2: Legend for Sideset Face Creation

88

The simple case of reading in Exodus files with sidesets on an exposed or interior surfaces of
volume elements (like hexes, tetrahedra, etc.) creates single faces on each surface during mesh read
by StkMeshlOBroker. Additional sidesets on exposed or interior surfaces do not create additional
faces but do add that face into additional STK parts.

When a face is created due to a sideset in Exodus, it is connected to all elements that share those
nodes on a surface. So even if a sideset is present on an interior surface and has only one adjacent
volume element, it will be connected to both volume elements that share that interior surface.

This includes doubly-sided sidesets with sides on the two adjacent interior surfaces on neighboring
volume elements. In this case, only a single face that is connected to the two neighboring volume
elements will be created but it will added to two STK parts. Whichever side of these coincident
sidesets is listed first in the Exodus file will be created first, hence the orientation of that side will
be used to set the orientation of the face. The SEACAS utility ncdump is useful in determining
the ordering of sides and sidesets in Exodus files.

Figure 4.1 shows an example for 2 hexes with a sideset on the leftmost interior surface. Figure 4.2
shows the legend. Listing 4.2 documents the behavior and shows how to check.

Listing 4.2: Face creation during IO for one sideset between hexes

.J..J..[code/stk/stk_doc_tests/stk_mesh/IOSidesetFaceCreation.cpp

57 bool is_positive_permutation (stk::mesh::BulkData & mesh,

58 stk::mesh::Entity face,

59 stk::mesh::Entity hex,

60 unsigned face_ordinal)

61 {

62 stk::topology faceTopology = mesh.bucket (face) .topology();

63 stk::mesh::EntityVector face_nodes (mesh.num_nodes (face));

64 for (unsigned face_node_count=0; face_node_count < mesh.num_nodes (face);
++face_node_count) {

65 face_nodes[face_node_count] = mesh.begin_nodes (face) [face_node_count];

66 }

67 std::pair<bool, unsigned> permutation = stk::mesh::side_equivalent (mesh, hex,
face_ordinal, face_nodes.data());

68

69 bool is_a_valid_permutation = permutation.first;

70 EXPECT_TRUE (is_a_valid_permutation);

71 bool is_positive_permutation = permutation.second <
faceTopology.num_positive_permutations () ;

72 return is_positive_permutation;

73}

75 TEST (StkMeshHowTo, StkIO2HexlSidesetFaceCreation)
76 {

77 if (stk::parallel _machine_size (MPI_COMM_WORLD) == 1) {

78 [|8 ————— mee—— [F ——mee

79 VA [P | | & I

80 v JHEX1 5<—|D' 4 HEX2| —-—-STK-I0-—-> |HEX1l 5<—|C—>4 HEX2|

81 7 | B | | | | IE |

82 /] e |§ =————— = | seeeeee

83 L |E | -——-> face is put into
84 T | T part surface_1
85 Iy |-——> orientation points outward
86 L from Hexl faceb
87

88 stk::io::StkMeshIoBroker stkMeshIoBroker (MPI_COMM_WORLD) ;

89 stkMeshIoBroker.add_mesh_database ("ALA.e", stk::io::READ_MESH) ;

90 stkMeshIoBroker.create_input_mesh();

91 stkMeshIoBroker.populate_bulk_data();

&9

93 stk::mesh::BulkData &mesh = stkMeshIoBroker.bulk_data();
94 stk::mesh::EntityVector all_faces;

95 stk::mesh::get_entities (mesh, stk::topology::FACE_RANK, all_faces);
96 std::sort (all_faces.begin(),all_faces.end());

97 unsigned expected_num_faces = 1;

98 ASSERT_EQ (expected_num_faces, all_faces.size());

99 size_t face_index = 0;

100 stk::mesh::Entity face = all_faces[face_index];

101 unsigned expected_connected_elements = 2;

102 ASSERT_EQ (expected_connected_elements, mesh.num_elements (face));
104 EXPECT_TRUE (mesh.bucket (face) .member (xmesh.mesh_meta_data () .get_part ("surface_1")));

106 const stk::mesh::Entity » connected_elements = mesh.begin_elements (face);
107 const stk::mesh::ConnectivityOrdinal * which_side_of_element =
mesh.begin_element_ordinals (face);

110 int element_count = 0;

111 stk::mesh::Entity hex_2 = connected_elements|[element_count];

112 EXPECT_EQ (2u, mesh.identifier (hex_2));

113 unsigned expected_face_ordinal = 4;

114 EXPECT_EQ (expected_face_ordinal, which_side_of_element [element_count]);
115 EXPECT_FALSE (is_positive_permutation (

116 mesh, face, hex_2, expected_ face_ordinal));

120 int element_count = 1;

121 stk::mesh::Entity hex_1 = connected_elements|[element_count];

122 EXPECT_EQ(lu, mesh.identifier (hex_1));

123 unsigned expected_face_ordinal = 5;

124 EXPECT_EQ (expected_face_ordinal, which_side_of_element [element_count]);
125 EXPECT_TRUE (is_positive_permutation (

126 mesh, face, hex_1, expected_face_ordinal));

128
129 }
130}

Sidesets on shell elements

Sides in sidesets can be created on either surface of a shell or both surfaces. If a single side is
present in the Exodus file, a single face will be created and connected to the shell on a single sur-
face. If two sides are present, two faces will be created with opposite permutations and individually
connected to single distinct surfaces of the shell.

Figure 4.3 shows an example of two cases on a single shell. Figure 4.2 shows the legend.
Sidesets on stacked shell elements

On coincident shells, a maximum of two faces are ever created with opposite permutations, no
matter how many sidesets are present. Extra sidesets cause parts to be added to the faces. If a
single face is created, it is hooked to the same orientation of every coincident shell. If two faces
are created, they are individually hooked to the same orientation of all coincident shells.

Sidesets on mixed volume and shell elements

90

Exploded view of input Resulting STK Mesh

O ne Orientation
sideset
F
TWO Orientation 2 Orientation
sidesets :

=

Figure 4.3: Sideset face creation in STK IO for one shell.

When shells are adjacent to volume elements, a maximum of two faces can be created (as opposed
to single face with no shells present).

The first side in the first sideset (from the ordering in Exodus as checked by ncdump) determines
the orientation of the face created for this surface on the element. If this side is on a volume
element, it will be hooked to the opposite orientation of any and all coincident shells. If this
side is on a shell element, it will be hooked to the same orientation of all other coincident shells
but the opposite orientation of any adjacent surfaces on volume elements. If additional sides in
sidesets are present in Exodus that would create faces that are already defined, additional parts
will be created but not additional faces. If additional sides in sidesets would create a face on the
opposing orientation of the shell, then it will be created and hooked to all other shell elements on
that orientation and the opposite orientation of any adjacent surfaces on volume elements. Note
that orientations of faces on volume elements are always outward directed.

Figure 4.4 an example of two shells between two hexes with three sidesets, only two faces are
created. Figure 4.2 shows the legend. Listing 4.3 shows relevant code for checking the ordinals,
permutations and parts.

Listing 4.3: Face creation during 10 for shells between hexes with sidesets

«[.J..Jeode/stk/stk_doc_tests/stk_mesh/IOSidesetFaceCreation.cpp

134 TEST (StkMeshHowTo, StkIO2Hex2Shell3SidesetFaceCreation)
135 {

136 if (stk::parallel _machine_size (MPI_COMM_WORLD) == 1) {
137 == IS Isl| ISl I8 [8§ w————e
138 1| | I'T (B [E] | G | |
139 // |HEX1 5<-|D |E| |EO<—|D |D->4 HEX2|
140 Le | | [b s |IE |E | |
141 Il =—————e IS 1Ll IL] |8 |8 ==

Exploded view of input

coincident surfaces

Resulting STK Mesh

Orientation

Orientation

Figure 4.4: Sideset face creation in STK 10 for a complicated example with stacked shells between
two hex elements and multiple sidesets.

142
143

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

165
166
167
168

/7 IE 3 4 |E |E

Ll T [T |IT

Ll

17

L

L

/] mmmm IE S| IS

Lt | |A-—-|H|->1H|

J/ |HEXL 5<—|C-31E| [BEfg———————————
I IolE (DO [l e
it ===—==r= [Ll 1L

/7 | 3 4

14 | ———> oF¥ientaticn

’/ |-——> in surface_l part
17

STK

[e
A !
|C->4 HEX2 |
IE | !

|

| -—>orientation

|—>in surface 2 and
surface_3 parts

stk::io::StkMeshIoBroker stkMeshIoBroker (MPI_COMM_WORLD) ;
stkMeshIoBroker.add_mesh_database ("ALefLRA.e", stk::io::READ_MESH);

stkMeshIoBroker.create_input_mesh();
stkMeshIoBroker.populate_bulk_data();

stk::mesh::BulkData &mesh = stkMeshIoBroker.bulk_data();

stk::mesh::EntityVector all_faces;

stk::mesh::get_entities (mesh, stk::topology::FACE_RANK, all_faces);
std::sort (all_faces.begin(),all_faces.end());

unsigned expected_num_faces = 2;

92

169 ASSERT_EQ (expected_num_faces, all_faces.size());
170

171 size_t face_index = 0;
172 {
173 stk::mesh::Entity face = all_faces[face_index];
174 unsigned expected_connected_elements = 3;
175 ASSERT_EQ (expected_connected_elements, mesh.num_elements (face));
176
177
EXPECT_TRUE (mesh.bucket (face) .member (xmesh.mesh_meta_data() .get_part ("surface_1")));
178
179 const stk::mesh::Entity x connected_elements = mesh.begin_elements (face);
180 const stk::mesh::ConnectivityOrdinal * which_side_of_element =

mesh.begin_element_ordinals (face);
18
182 {

183 int element_count = 0;
184 stk::mesh::Entity shell_3 = connected_elements[element_count];
185 EXPECT_EQ(3u, mesh.identifier (shell_3));
186 unsigned expected_face_ordinal = 1;
187 EXPECT_EQ (expected_face_ordinal, which_side_of_element [element_count]);
188 EXPECT_FALSE (is_positive_permutation (
189 mesh, face, shell_3, expected_face_ordinal));
190 }
191 {
192 int element_count = 1;
193 stk::mesh::Entity shell_4 = connected_elements[element_count];
194 EXPECT_EQ (4u, mesh.identifier (shell_4));
195 unsigned expected_face_ordinal = 1;
196 EXPECT_EQ (expected_face_ordinal, which_side_of_element [element_count]);
197 EXPECT_FALSE (is_positive_permutation (
198 mesh, face, shell_4, expected_face_ordinal));
199 }
200 {
201 int element_count = 2;
202 stk::mesh::Entity hex_1 = connected_elements[element_count];
203 EXPECT_EQ(lu, mesh.identifier (hex_1));
204 unsigned expected_face_ordinal = 5;
205 EXPECT_EQ (expected_face_ordinal, which_side_of_element [element_count]);
206 EXPECT_TRUE (is_positive_permutation (
207 mesh, face, hex_1, expected_face_ordinal));
208 }
209 }
210
211 face_index = 1;
212 {
213 stk::mesh::Entity face = all_faces[face_index];
214 unsigned expected_connected_elements = 3;
215 ASSERT_EQ (expected_connected_elements, mesh.num_elements (face));
216
217
EXPECT_TRUE (mesh.bucket (face) .member (xmesh.mesh_meta_data () .get_part ("surface_2")));
218
EXPECT_TRUE (mesh.bucket (face) .member (xmesh.mesh_meta_data () .get_part ("surface_3")));
219
220 const stk::mesh::Entity x connected_elements = mesh.begin_elements (face);
221 const stk::mesh::ConnectivityOrdinal * which_side_of_element =

mesh.begin_element_ordinals (face);
222

223 {

224 int element_count = 0;

225 stk::mesh::Entity shell_3 = connected_elements[element_count];

226 EXPECT_EQ(3u, mesh.identifier(shell_3));

227 unsigned expected_face_ordinal = 0;

228 EXPECT_EQ (expected_face_ordinal, which_side_of_element[element_count]);
229 EXPECT_FALSE (is_positive_permutation (

230 mesh, face, shell_3, expected_face_ordinal));

231 }

93

33 int element_count = 1;

23

2

234 stk::mesh::Entity shell_4 = connected_elements[element_count];

235 EXPECT_EQ (4u, mesh.identifier (shell_4));

236 unsigned expected_face_ordinal = 0;

237 EXPECT_EQ (expected_face_ordinal, which_side_of_element[element_count]);

238 EXPECT_FALSE (is_positive_permutation (

239 mesh, face, shell_ 4, expected face_ordinal));

240 }

241 {

242 int element_count = 2;

243 stk::mesh::Entity hex_ 2 = connected_elements[element_count];

244 EXPECT_EQ (2u, mesh.identifier (hex_2));

245 unsigned expected_face_ordinal = 4;

246 EXPECT_EQ (expected_face_ordinal, which_side_of_element[element_count]);

247 EXPECT_TRUE (is_positive_permutation (mesh, face, hex_2,
expected_face_ordinal));

248 }

249 }
250 }
251 }

STK IO Classic for Transition

To aid transition, we are documenting and preserving the old STK IO behavior for now. The old
behavior is that every sideset creates a unique face. These faces are not hooked to other elements.

4.1.2 Reading mesh data to create a STK Mesh allowing StkMeshloBroker
to go out of scope

This example shows how to read mesh data from a file and create a STK Mesh corresponding to
that mesh data while also allowing the StkMeshloBroker to go out of scope without deleting the
STK Mesh.

Listing 4.4: Reading mesh data to create a STK mesh using set bulk

data../../../code/stk/stk_doc_tests/stk_mesh/createStkMeshAltl.cpp

53 TEST (StkMeshHowTo, CreateStkMesh)

54 {

S5 MPI_Comm communicator = MPI_COMM_WORLD;

56 if (stk::parallel_machine_size (communicator) != 1) { return; }
57 const std::string exodusFileName = "example.exo";

59 create_example_exodus_file (communicator, exodusFileName) ;

60 // Creation of STK Mesh objects.

61 // MetaData creates the universal_part, locally-owned part, and globally shared part.
62 const int spatialDim = 3;

63 stk::mesh::MetaData stkMeshMetaData (spatialDim);

64 stk::mesh::BulkData stkMeshBulkData (stkMeshMetaData, communicator);

66 // STK IO module will be described in separate chapter.
67 // It is used here to read the mesh data from the Exodus file and populate an STK Mesh.

68 // The order of the following lines in {} are important

69 {

70 stk::io::StkMeshIoBroker exodusFileReader (communicator);
71

72 // Inform STK IO which STK Mesh objects to populate later
73 exodusFileReader.set_bulk_data (stkMeshBulkData) ;

94

74
75 exodusFileReader.add_mesh_database (exodusFileName, stk::io::READ_MESH) ;
76

77 // Populate the MetaData which has the descriptions of the Parts and Fields.
78 exodusFileReader.create_input_mesh();

79

80 // Populate entities in STK Mesh from Exodus file

81 exodusFileReader.populate_bulk_data();

82 }

83

84 // Test if the STK Mesh has 512 elements. Other examples will discuss details below.
85 stk::mesh::Selector allEntities = stkMeshMetaData.universal_part();

86 std::vector<size_t> entityCounts;

87 stk::mesh::count_entities(allEntities, stkMeshBulkData, entityCounts);

88 EXPECT_EQ(512u, entityCounts[stk::topology::ELEMENT_RANK]) ;

89 unlink (exodusFileName.c_str());

9 }

4.1.3 Reading mesh data to create a STK Mesh, delaying field allocations

This example is almost the same as the previous except it delays the allocation of field data so that
the application can modify the mesh. If the field data is allocated prior to the mesh modification,
the reordering and moving of field data memory may be expensive; if the field data allocation is
delayed, no reordering or moving of memory is needed.

The field data memory allocation delay is accomplished by calling populate_mesh ()
and populate_field_data () instead of populate_bulk_data (). Any mesh mod-
ifications, for example, creating mesh edges or mesh faces is performed prior to calling
populate_field_data/().

Listing 4.5: Reading mesh data to create a STK mesh; delay field allocation

.J../..Jcode/stk/stk_doc_tests/stk_io/readMeshDelayField Allocation.cpp

68 //

69 //+ EXAMPLE:

70 //+ Read mesh data from the specified file.

71 stk::io::StkMeshIoBroker stklIo(communicator);

72 stkIo.add_mesh_database (mesh_name, stk::io::READ_MESH) ;
73

74 //+ Creates meta data; creates parts

75 stkIo.create_input_mesh () ;

76

77 //+ Any modifications to the meta data must be done here.
78 //+ This includes declaring fields.

79

80 //+ Commit the meta data and create the bulk data.

81 //+ populate the bulk data with data from the mesh file.
82 stkIo.populate_mesh();

83

84 //+ Application would call mesh modification here.

85 //+ for example, create_edges() or create_ faces().

86

87 //+ Mesh modifications complete, allocate field data.
88 stkIo.populate_field_data();

89
90

95

4.1.4 Outputting STK Mesh

12

14
15

17
18

20

26
27
28

29

Listing 4.6: Writing a STK Mesh ../../../code/stk/stk_doc_tests/stk_io/howToWriteMesh.cpp

#include <unistd.h>

#include <gtest/gtest.h>

#include <stk_mesh/base/MetaData.hpp>
#include <stk_mesh/base/BulkData.hpp>
#include <stk_mesh/base/Comm.hpp>

#include <stk_io/StkMeshIoBroker.hpp>
#include <stk_unit_test_utils/ioUtils.hpp>
namespace

{

TEST (StkIoHowTo, WriteMesh)
{
std::string filename = "output.exo";
{
stk::mesh: :MetaData meta;
stk::mesh::BulkData bulk (meta, MPI_COMM_WORLD) ;
stk::io::fill_mesh ("generated:1x1x4", bulk);

stk::io::StkMeshIoBroker stkIo;

stkIo.set_bulk_data (bulk);

size_t outputFileIndex = stklIo.create_output_mesh (filename,
stkIo.write_output_mesh (outputFileIndex) ;
stkIo.write_defined output_fields (outputFileIndex) ;

stk::mesh: :MetaData meta;
stk::mesh::BulkData bulk (meta, MPI_COMM_WORLD) ;
stk::i0::fill_mesh(filename, bulk);

std::vector<size_t> entityCounts;

stk::mesh::comm _mesh_counts (bulk, entityCounts);
EXPECT_EQ (4u, entityCounts[stk::topology::ELEM_RANK]) ;

unlink (filename.c_str());

stk::i0::WRITE_RESULTS) ;

96

4.1.5 Outputting STK Mesh With Internal Sidesets

Hex Block 1 Hex Block 2

Hex Block 1 Hex Block 2

T Aljus apis

Figure 4.5: Example mesh used for Listing 4.7

97

Option 1 —surface part
maps to block 1.
Side entity becomes
sideset attached to Hex
block 1

Hex Block 2

Hex Block 1 ‘

T Aljua opIs

2. Option 2 — surface part
m maps to block 2.
Hex Block 1 E » Hex Block 2 Side entity becomes
2 sideset attachedto Hex
= block 2
” Option 3 — surface parts
= maps to blocks 1 and 2.
Hex Block 1 ‘ g ‘ Hex Block 2 Side entity becomes
= sideset attached to Hex
- block1 and 2

Figure 4.4: Options for creating a sideset for Listing 4.7

Listing 4.7: Writing a STK Mesh

./..[..[code/stk/stk_doc_tests/stk_io/howToWriteMeshWithInternalSidesets.cpp

106 std::vector<const stk::mesh::Partx> blocks;

107 for (const std::string& blockName : testData.blockNames)
108 {

109 stk::mesh::Part xblock = meta.get_part (blockName);
110 blocks.push_back (block) ;

111 }

112

113 meta.set_surface_to_block_mapping(&sideSetPart, blocks);
114

98

4.1.6 Outputting results data from a STK Mesh

This example shows how an application can output the application’s calculated field data to a
results database.

Listing 4.8: Writing calculated field data to a results database

./..[../code/stk/stk_doc_tests/stk_io/writeResults.cpp

82 //

83 //+ EXAMPLE:

84 //+ Read mesh data from the specified file.

85 stk::i0::StkMeshIoBroker stkIo(communicator);

86 stkIo.add_mesh_database (mesh_name, stk::io::READ_MESH);

87

88 //+ Creates meta data; creates parts

89 stkIo.create_input_mesh () ;

90

91 //+ Declare a field

92 //+ NOTE: Fields must be declared before "populate_bulk_data()" is called

93 //+ since it commits the meta data.

94 const std::string fieldName = "disp";

95 stk::mesh::Field<double> &field =
stkIo.meta_data () .declare_field<stk::mesh::Field<double>
>(stk::topology: :NODE_RANK, fieldName, 1);

96 stk::mesh::put_field(field, stkIo.meta_data().universal_part());

97

98 //+ commit the meta data and create the bulk data.

99 //+ populate the bulk data with data from the mesh file.

100 stkIo.populate_bulk_data();

101

102 L

103 //+ Create results file. By default, all parts created from the input

104 //+ mesh will be written to the results output file.

105 size_t fh = stkIo.create_output_mesh(results_name, stk::io::WRITE_RESULTS);

106

107 //+ The field will be output to the results file with the default field name.

108 stkIo.add_field(fh, field);

109

110 std::vector<stk::mesh::Entity> nodes;

111 stk::mesh::get_entities(stkIo.bulk_data(), stk::topology::NODE_RANK, nodes);
112

113 // Iterate the application’s execute loop five times and output

114 // field data each iteration.

115 for (int step=0; step < 5; step++) {

116 double time = step;

117

118 // BApplication execution...

119 double value = 10.0 x time;

120 for(size_t i=0; i<nodes.size(); 1i++) {

121 double xnode_data = stk::mesh::field_data(field, nodes[i]);
122 *node_data = value;

123 }

124

125 //+ Output the field data calculated by the application.
126 stkIo.begin_output_step (fh, time);

127 stkIo.write_defined_output_fields (fh);

128 stkIo.end_output_step (fh);

129 }

130

99

4.1.7 Outputting a field with an alternative name to a results file

The client can specify a field name for results output that is different than the internally used
STK Mesh field name. The results output field name is specified as the second argument to the
add_field () function. The code excerpt shown below replaces line 108 in the previous exam-
ple (Listing 4.8) to cause the name of the field on the output

Listing 4.9: Outputting a field with an alternative name

./..[..[code/stk/stk_doc_tests/stk_io/requestedResultsFieldName.cpp

103 //+ The field ’'fieldName’ will be output to the results file with the name
’alternateFieldName’

104 std::string alternateFieldName ("displacement");

105 stkIo.add_field(fh, field, alternateFieldName) ;

106

4.1.8 Outputting both results and restart data from a STK Mesh

The STK Mesh IO Broker class can output both results data and restart data. Currently, the only
difference between results data and restart data is that a restart output will automatically output
the multiple states of a multi-state field. If, for example, the application defines a three-state field
named “disp”, then outputting this field to a restart database will result in the two newest states
being output. On the restart database the variables will appear as “disp” and “disp.N.” Outputting
this field to a results database will only output the data on the newest state as the variable “disp”.
When the restart database is read back in, the variables will be restored back to the same states that
were written.

The example below shows how an application can output both a results and restart database. The
example shows both databases being written on each step, but this is not required — each file can
specify its own output frequency.

Listing 4.10: Write results and restart ../../../code/stk/stk_doc_tests/stk_io/writeResultsAndRestart.cpp

84 i

85 //+ EXAMPLE:

86 //+ Read mesh data from the specified file.

87 stk::io::StkMeshIoBroker stkIo(communicator);

88 stkIo.add_mesh_database (mesh_name, stk::io::READ_MESH) ;
89

90 //+ Creates meta data; creates parts

91 stkIo.create_input_mesh();

92

93 //+ Declare a three-state field

94 //+ NOTE: Fields must be declared before "populate bulk data()" is called
95 //+ since it commits the meta data.

96 const std::string fieldName = "disp";

97 stk::mesh::Field<double> &field =

stkIo.meta_data () .declare_field<stk::mesh::Field<double>
>(stk::topology::NODE_RANK, fieldName, 3);
98 stk::mesh::put_field(field, stkIo.meta_data().universal_part());
99
100 const stk::mesh::Part& block_1 = *stkIo.meta_data().get_part ("block_1");
101 //+ create a two-state field

100

102 stk::mesh::Field<double> &fooSubset = stkIo.meta_data().

103 declare_field<stk::mesh::Field<double> > (stk::topology::NODE_RANK, "fooSubset",
2);

104 stk::mesh::put_field(fooSubset, block_1);

105

106 //+ commit the meta data and create the bulk data.

107 //+ populate the bulk data with data from the mesh file.

108 stkIo.populate_bulk_data();

109

110 I

111 //+ Create results file. By default, all parts created from the input
112 //+ mesh will be written to the results output file.

113 size_t results_fh = stkIo.create_output_mesh (results_name, stk::io::WRITE_RESULTS) ;
114

115 //+ Create restart file. By default, all parts created from the input

116 //+ mesh will be written to the results output file.

117 size_t restart_fh = stklIo.create_output_mesh(restart_name, stk::io::WRITE_RESTART);
118

119 //+ The field will be output to the results file with the default field name.

120 //+ Only the newest state will be output.

121 stkIo.add_field(results_fh, field);

122

123 //+ Output the field to the restart database also.

124 //+ The two newest states will be output.

125 stkIo.add_field(restart_fh, field);

126 stkIo.add_field(restart_fh, fooSubset);

127

128 std::vector<stk::mesh::Entity> nodes;

129 stk::mesh::get_entities(stkIo.bulk_data(), stk::topology::NODE_RANK, nodes);

130
131 stk::mesh::FieldBase *statedFieldNpl

field.field state(stk::mesh::StateNP1l);

132 stk::mesh::FieldBase xstatedFieldN = field.field state(stk::mesh::StateN);

133 stk::mesh::FieldBase *statedFieldNml = field.field_state(stk::mesh::StateNMl);

134

135 // Iterate the application’s execute loop five times and output

136 // field data each iteration.

137 for (int step=0; step < 5; step++) {

138 double time = step;

139

140 // Application execution...

141 double value = 10.0 * time;

142 for(size_t i=0; i<nodes.size(); 1i++) {

143 double xnpl_data = static_cast<doublex> (stk::mesh::field_data(xstatedFieldNpl,
nodes[i]));

144 *npl_data = wvalue;

145 double xn_data = static_cast<doublex> (stk::mesh::field_data (xstatedFieldN,
nodes([i]));

146 *n_data = value + 0.1;

147 double »nml_data = static cast<double*> (stk::mesh::field data (*statedFieldNml,
nodes[i]));

148 *nml_data = value + 0.2;

149 }

150

151 //+ Results output...

152 stkIo.begin_output_step(results_fh, time);

153 stkIo.write_defined_output_fields (results_fh);

154 stkIo.end_output_step(results_fh);

155

156 //+ Restart output...

157 stkIo.begin_output_step (restart_fh, time);

158 stkIo.write_defined_output_fields (restart_fh);

159 stkIo.end_output_step(restart_£fh);

160 }
161

101

4.1.9 Writing multi-state fields to results output file

The previous example showed that a results file will only output the newest state of a multi-state
field. However, it is possible to tell a results file to output multiple states from a multi-state field.
Each state of the field must be registered individually. Since each state will have the same field
name, the add_field () call mustalso specify the name to be used for the variable on the results
database in order to get unique names for each state. The example below shows how to output all
three states of a multi-state field to a results database.

Listing 4.11: Writing multi-state field to results output

./..l../code/stk/stk_doc_tests/stk_io/usingResults.cpp

70 const std::string fieldName = "disp";

71 const std::string nplName = fieldName+"NP1";

72 const std::string nName = fieldName+"N";

73 const std::string nmlName = fieldName+"Nml";

74 {

75 //

76 //+ INITIALIZATION

77 const std::string exodusFileName = "generated:1x1x8";

78 stk::io::StkMeshIoBroker stkIo(communicator);

79 size_t index = stkIo.add_mesh_database (exodusFileName, stk::io::READ_MESH) ;
80 stkIo.set_active_mesh (index) ;

81 stkIo.create_input_mesh();

82

83 //+ Declare a three-state field

84 //+ NOTE: Fields must be declared before "populate bulk data()" is called
85 //+ since it commits the meta data.

86 stk::mesh::Field<double> &field =

87 stkIo.meta_data () .declare_field<stk::mesh::Field<double> > (stk::topology::NODE_RANK,
88 fieldName, 3);
89 stk::mesh::put_field(field, stkIo.meta_data().universal_part());

9
91 stkIo.populate_bulk_data();

92

93 size_t fh =

94 stkIo.create_output_mesh (resultsFilename, stk::io::WRITE_RESULTS);

(8] S

96 1

97 //+ EXAMPLE

98 //+ Output each state of the multi-state field individually to results file

99 stk::mesh::FieldBase xstatedFieldNpl = field.field_ state(stk::mesh::StateNP1l);
100 stk::mesh::FieldBase *statedFieldN = field.field state(stk::mesh::StateN);

101 stk::mesh::FieldBase xstatedFieldNml = field.field_ state(stk::mesh::StateNMl);
102

103 std::vector<stk::mesh::Entity> nodes;

104 stk::mesh::get_entities (stkIo.bulk_data(), stk::topology::NODE_RANK, nodes);
105

106 stkIo.add_field(fh, *statedFieldNpl, nplName) ;

107 stkIo.add_field(fh, *statedFieldN, nName) ;

108 stkIo.add_field(fh, *statedFieldNml, nmlName) ;

109
110 // Iterate the application’s execute loop five times and output
111 // field data each iteration.

112 for (int step=0; step < 5; step++) {

113 double time = step;

114

115 // Application execution...

116 // Generate field data... (details omitted)
117

131 //+ Results output...

132 stkIo.begin_output_step(fh, time);

133 stkIo.write_defined_output_fields (fh);

134 stkIo.end_output_step (fh);

102

135 }
136

4.1.10 Writing multiple output files

The following example shows how to write multiple output files. Although different fields and
global variables are written to each file in the example, the same field or global variable can be
written to multiple files.

Listing 4.12: Writing multiple output files

.J.[..[code/stk/stk_doc_tests/stk_io/writingMultipleOutputFiles.cpp

65 L

66 //+ EXAMPLE —-- Two results output files

67 stk::mesh::FieldBase xdisplacementField =

68 meta_data.get_field(stk::topology: :NODE_RANK, displacementFieldName);

69

70 //+ For file one, set up results and global variables

71 size_t filelHandle = stkIo.create_output_mesh (resultsFilenamel,

72 stk::io0: :WRITE_RESULTS) ;

73 stkIo.add_field(filelHandle, xdisplacementField);

74 stkIo.add_global (filelHandle, globalVarNameFilel, Ioss::Field::REAL);

75

76 //+ For file two, set up results and global variables

77 size_t file2Handle = stkIo.create_output_mesh (resultsFilename2,

78 stk::io: :WRITE_RESULTS) ;

79 stkIo.add_field(file2Handle, xdisplacementField, nameOnOutputFile);

80 stk::mesh::FieldBase xvelocityField = meta_data.get_field(stk::topology: :NODE_RANK,
velocityFieldName) ;

81 stkIo.add_field(file2Handle, xvelocityField);

82 stkIo.add_global (file2Handle, globalVarNameFile2, Ioss::Field::REAL);

83

84 //+ Write output

85 double time = 0.0;

86 stkIo.begin_output_step(filelHandle, time);

87 stkIo.write_defined_output_fields(filelHandle);

88 stkIo.write_global (filelHandle, globalVarNameFilel, globalVarValuel);

89 stkIo.end_output_step (filelHandle);

9%

91 stkIo.begin_output_step(file2Handle, time);

92 stkIo.write_defined output_fields(file2Handle);

93 stkIo.write_global (file2Handle, globalVarNameFile2, globalVarValue2);

94 stkIo.end_output_step (file2Handle);

95 }
96

4.1.11 Outputting nodal variables on a subset of the nodes

By default, a nodal variable is assumed to be defined on all nodes of the mesh. If the variable does
not exist on all nodes, then a value of zero will be output for those nodes. If a nodal variable is
only defined on a few of the nodes of the mesh, this can increase the size of the mesh file since it
is storing much more data than is required. There is an option in STK Mesh 10 Broker to handle
this case by creating one or more “nodesets” which consist of the nodes of the part or parts where

103

the nodal variable is defined. The name of the nodeset will be the part name suffixed by “_n”. For
example, if the part is named “firset”, the nodeset corresponding to the nodes of this part will be
named “fireset_n”.

Listing 4.13: Using a nodeset variable to output nodal fields defined on only a subset of the mesh

./../..[code/stk/stk_doc_tests/stk_io/useNodesetDbVarForNodalField.cpp

73 1/

74 // INITIALIZATION

75 std::string s_elems_per_edge = std::to_string(num_elems_per_edge);
76

77 //+ Create a generated mesh containg hexes and shells.

78 std::string input_filename = s_elems_per_edge + "x" +

79 s_elems_per_edge + "x" +

80 s_elems_per_edge + "|shell:xyzXYZ";

81

82 stk::io0::StkMeshIoBroker stkIo(communicator);

83 stkIo.add_mesh_database (input_filename, "generated",

84 stk::i0::READ_MESH) ;

85 stkIo.create_input_mesh () ;

86

87 stk::mesh: :MetaData &meta_data = stkIo.meta_data();

88 stk::mesh::Field<double> &temperature = meta_data.

89 declare_field<stk::mesh::Field<double> > (stk::topology: :NODE_RANK,
90 appFieldName, 1);

91

92 //

93 //+ Put the temperature field on the nodes of the shell parts.

94 const stk::mesh::PartVector &all _parts = meta_data.get_mesh_parts();
95 stk::mesh::Selector shell_subset;

96 for (size_t 1i=0; 1 < all_parts.size(); 1i++) {

97 const stk::mesh::Part spart = all_parts[i];

98 stk::topology topo = part->topology();

99 if (topo == stk::topology::SHELL_QUAD_4) {

100 stk::mesh::put_field (temperature, =xpart);

101 }

102 }

103

104 stkIo.populate_bulk_data();

105

106 // Create the output...

107 size_t fh = stkIo.create_output_mesh(resultsFilename, stk::io::WRITE_RESULTS);
108

109 //+ The "temperature" field will be output on nodesets consisting

110 //+ of the nodes of each part the field is defined on.
111 stkIo.use_nodeset_for_ sideset_nodes_fields (fh, true);

112 stkIo.use_nodeset_for_block _nodes_fields (fh, true);

113 stkIo.add_field(fh, temperature, dbFieldName);

114

115 std::vector<stk::mesh::Entity> nodes;

116 stk::mesh::get_entities(stkIo.bulk_data(),

117 stk::topology: :NODE_RANK, nodes);

118
119 // Add three steps to the database

120 // For each step, the value of the field is the value ’time’
121 for (size_t i=0; i < 3; 1i++) {

122 double time = i;

123

124 for (size_t inode=0; inode<nodes.size(); inode++) {

125 double xfieldDataForNode = stk::mesh::field_data (temperature, nodes[inode]);
126 if (fieldDataForNode)

127 +fieldDataForNode = time;

128 }

129

130 stkIo.begin_output_step(fh, time);

131 stkIo.write_defined_output_fields (fh);

132 stkIo.end_output_step (fh);

104

133 }
134 // Verification omitted...
135

4.1.12 Get number of time steps from a database

Listing 4.14: get num time steps ../../../code/stk/stk_doc_tests/stk_io/howToGetNumTimeSteps.cpp

26 TEST_F (ExodusFileWithVariables, queryingFileWithSingleTimeStep_NumTimeStepsEqualsOne)
27 {

28 create_mesh_with_single_time_step(filename, get_comm());
29 read_mesh (filename) ;
30 EXPECT_EQ (1, stkIo.get_num_time_steps());

31}

33 TEST_F (ExodusFileWithVariables, queryingFileWithoutTimeSteps_NumTimeStepsEqualsZero)
34 {

35 stk::unit_test_util::create_mesh _without_time_steps (filename, get_comm());
36 read_mesh (filename) ;
37 EXPECT_EQ (0, stkIo.get_num_time_steps());

38)

40 TEST_F (ExodusFileWithVariables, readDefinedInputFieldsFromInvalidTimeStep_throws)
41 {

42 create_mesh_with_single_time_step(filename, get_comm());

43 read_mesh (filename) ;

44 EXPECT_THROW (stkIo.read_defined_input_fields(3), std::exception);
45 }

47 TEST_F (ExodusFileWithVariables, readDefinedInputFields_throws)

48 |

49 stk::unit_test_util::create_mesh_without_time_steps (filename, get_comm());
50 read_mesh (filename) ;

51 EXPECT_THROW (stkIo.read_defined _input_fields (1), std::exception);

52}

4.1.13 Reading sequenced fields from a database

Sequenced fields have the same base name and are numbered sequentially starting with one
(field_1, field 2, ..., field_n). They can be read into individual fields or collapsed into a single
multi-dimensioned field.

Listing 4.15: Reading sequenced fields

.J./.Jcode/stk/stk_doc_tests/stk_io/setOptionToNotCollapseSequencedFields.cpp

17 TEST_F (MultipleNumberedFieldsWithSameBaseName, whenReading_collapseToSingleStkField)

18 1

19 stk::unit_test_util::create_mesh_with__field 1 field 2_ field 3 (filename, get_comm());

20 read_mesh (filename) ;

1 EXPECT_EQ (lu, get_meta() .get_fields(stk::topology::ELEM RANK) .size());

2}

4 TEST_F (MultipleNumberedFieldsWithSameBaseName,
whenReadingWithoutCollapseOption_threeStkFieldsAreRead)

25 {

26 stk::unit_test_util::create_mesh_with__field 1_ field 2 field 3(filename, get_comm());

27 stkIo.set_option_to_not_collapse_sequenced_fields();

105

28 read_mesh (filename) ;
29 EXPECT_EQ (3u, get_meta () .get_fields(stk::topology::ELEM_RANK) .size());
30 }

4.1.14 Reading initial conditions from a field on a mesh database

This example shows how to read data from an input mesh database at a specified time and put the
data into a STK Mesh field for use as initial condition data. The name of the field in the database
and the name of the STK Mesh field do not match to illustrate how to specify alternate names. The
initial portion of the example, which is not shown, creates a mesh with timesteps at times 0.0, 1.0,
and 2.0. The database contains a nodal field called “temp” with the same values for each node.
The value is the same as the time (0.0, 1.0, and 2.0) for each time step. The example shows how to
specify the reading of the field data at a specified time step.

Listing 4.16: Reading initial condition data from a mesh database

./.[../code/stk/stk_doc_tests/stk_io/readInitial Condition.cpp

106 Lt

107 //+ EXAMPLE:

108 //+ Read the value of the "temp" field at step 2 and populate

109 //+ the nodal field "temperature" for use as an initial condition

110 stk::io0::StkMeshIoBroker stkIo(communicator);

111 size_t index = stkIo.add_mesh_database (ic_name, stk::io::READ_MESH) ;
112 stkIo.set_active_mesh (index) ;

113 stkIo.create_input_mesh();

114

115 stk::mesh::Field<double> &temperature = stklIo.meta_datal().

116 declare_field<stk::mesh::Field<double> > (stk::topology::NODE_RANK, "temperature",1l);
117 stk::mesh::put_field(temperature, stkIo.meta_data() .universal_part());

118 stkIo.populate_bulk_data();

119

120 //+ The name of the field on the database is "temp"

121 stkIo.add_input_field(stk::io::MeshField (temperature, "temp"));

122

123 //+ Read the field values from the database at time 2.0

124 stkIo.read_defined_input_fields(2.0);

125

126 L7

127 //+ VERIFICATION

128 //+ The value of the field at all nodes should be 2.0

129 std::vector<stk::mesh::Entity> nodes;

130 stk::mesh::get_entities (stkIo.bulk_data(), stk::topology::NODE_RANK,

131 nodes) ;

132 for(size_t 1=0; i<nodes.size(); i++) {

133 double xfieldDataForNode = stk::mesh::field data(temperature, nodes[i]);
134 EXPECT_DOUBLE_EQ (2.0, =xfieldDataForNode) ;

135 }
136

106

4.1.15 Reading initial conditions from a field on a mesh database — apply to

a specified subset of mesh parts

This example is similar to the previous except that the field data read from the mesh database is
limited to a subset of the parts in the model. The mesh consists of seven element blocks — one
hex block and six shell blocks. The mesh database contains a single field defined on all blocks. In
the example, the reading of the field is limited to the six shell element blocks; the field on the hex
element block will not be initialized from the data on the mesh database. The add_subset ()
function is where this is specified.

66

69
70
71
72
73
74
75
76
77

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

Listing 4.17: Reading initial condition data from a mesh database

.J.[../code/stk/stk_doc_tests/stk_io/readInitial ConditionSubset.cpp

std::string dbFieldNameShell = "ElementBlock_1";
std::string appFieldName = "pressure";

MPI_Comm communicator = MPI_COMM_WORLD;

int numProcs = stk::parallel_machine_size (communicator);
if (numProcs != 1) {
return;
}
{
'8

// INITIALIZATION

//+ Create a generated mesh containg hexes and shells with a

//+ single element variable —-- ElementBlock_1

std::string input_filename = "9x9x9|shell:xyzXYZ|variables:element,l|times:1";

stk::io::StkMeshIoBroker stkIo(communicator);
stkIo.add_mesh_database (input_filename, "generated", stk::io::READ_MESH) ;
stkIo.create_input_mesh{();

stk::mesh::MetaData &meta_data = stkIo.meta_data();

// Declare the element "pressure" field...
stk::mesh::Field<double> &pressure = stkIo.meta_data() .
declare_field<stk::mesh::Field<double> > (stk::topology::ELEMENT_RANK, appFieldName,1l);

// "ElementBlock_1" is the name of the element field on the input mesh.
stk::io::MeshField mf (pressure, dbFieldNameShell);

const stk::mesh::PartVector &all_parts = meta_data.get_mesh_parts();
for (size_t i=0; i < all_parts.size(); i++) {
const stk::mesh::Part xpart = all_parts[i];

//+ Put the field on all element block parts...
stk::mesh::put_field(pressure, =*part);

stk::topology topo = part->topology();
if (topo == stk::topology::SHELL_QUAD_4) {

//+ But only initialize the "pressure" field from mesh data on the shell parts.
mf.add_subset (xpart) ;
}
}

stkIo.add_input_field (mf);
stkIo.populate_bulk_data();

double time = stkIo.get_input_io_region()->get_state_time (1) ;

107

11 //+ Populate the fields with data from the input mesh.
112 stkIo.read_defined_input_fields (time);
113

114

The previous example specified all of the subset parts on a single MeshField. It is also possible
to specify a separate MeshField for each subset part. This is not the most efficient method, but
can be used if other modifications of the MeshField are needed for each or some of the subset
parts.

Listing 4.18: Reading initial condition data from a mesh database

.J[../..[code/stk/stk_doc_tests/stk_io/readInitial ConditionMultiSubset.cpp

72 //

73 J/ INITIALIZATION

74 //+ Create a generated mesh containg hexes and shells with a

75 //+ single element variable —-— pressure

76 std::string input_filename = "9x9x9|shell:xyzXYZ|variables:element,l|times:1";
77

78 stk::io0::StkMeshIoBroker stkIo(communicator);

79 stkIo.add_mesh_database (input_filename, "generated", stk::io::READ_MESH);

80 stkIo.create_input_mesh();

81

82 stk::mesh: :MetaData &meta_data = stkIo.meta_datal();

83

84 // Declare the element "pressure" field...

85 stk::mesh::Field<double> &pressure = stklIo.meta_data().

86 declare_field<stk::mesh::Field<double> > (stk::topology::ELEMENT_RANK, appFieldName, 1) ;
87

88 const stk::mesh::PartVector &all_parts = meta_data.get_mesh_parts();

89 for (size_t i=0; 1 < all_parts.size(); i++) {

90 //+ Put the field on all element block parts...

91 stk::mesh::put_field(pressure, =*all_parts[i]);

92 }

93

94 // This commits BulkData and populates the coordinates, connectivity, mesh...
95 stkIo.populate_bulk_data();

96

97 double time = stklIo.get_input_io_region()->get_state_time(l);

98

99 //+ Initialize the "pressure" field from mesh data on the shell parts on demand...
100 for (size_t i=0; i < all_parts.size(); i++) {

101 stk::topology topo = all_parts[i]->topology();

102 if (topo == stk::topology::SHELL_QUAD_4) {

103

104 stk::io0::MeshField mf (pressure, dbFieldNameShell);

105 mf.set_read_time (time);

106 mf.add_subset (xall_parts[i]);

107 stkIo.add_input_field (mf);

108 }

109 }

110

111 //+ Populate any other fields with data from the input mesh.

112 //+ This would *not* know about the MeshFields above since
113 //+ "add_input_field()" was not called...
114 stkIo.read_defined_input_fields (time);

115
116
117

The final example in this section shows that the same STK field can be initialized from different
database fields on different parts through the use of multiple MeshF ields with different subsets.

108

In this example, the “pressure” field on the shell element blocks is initialized from one database
element variable and the “pressure” field on the non-shell element blocks is initialized from a
different database element variable.

62
63
64
65
66
67
68
69
70
71

73
74
75
76
77
78
79
80
81
82
83
84

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

121

Listing 4.19: Reading initial condition data from a mesh database

./.[..[code/stk/stk_doc_tests/stk_io/readInitialConditionTwoFieldSubset.cpp

std::string dbFieldNameShell = "ElementBlock_1";
std::string dbFieldNameOther = "ElementBlock_ 2";
std::string appFieldName = "pressure";

MPI_Comm communicator = MPI_COMM_WORLD;

int numProcs = stk::parallel machine_size (communicator) ;
if (numProcs != 1) {
return;
}
{
/Y

// INITIALIZATION

//+ Create a generated mesh containg hexes and shells with two

//+ element variables —— ElementBlock_1l and ElementBlock_2

std::string input_filename = "9x9x9|shell:xyzXYZ|variables:element,2|times:1";

stk::io::StkMeshIoBroker stkIo(communicator);
stkIo.add_mesh_database (input_filename, "generated", stk::io::READ_MESH);
stkIo.create_input_mesh();

stk::mesh::MetaData &meta_data = stkIo.meta_data();

// Declare the element "pressure" field...
stk::mesh::Field<double> &pressure = stklo.meta_data().
declare_field<stk::mesh::Field<double> > (stk::topology::ELEMENT_RANK, appFieldName,1l);

stk::io::MeshField mf_shell (pressure, dbFieldNameShell);
stk::io::MeshField mf_other (pressure, dbFieldNameOther) ;

const stk::mesh::PartVector &all_parts = meta_data.get_mesh_parts();
for (size_t 1i=0; 1 < all_parts.size(); i++) {
const stk::mesh::Part xpart = all_parts[i];

//+ Put the field on all element block parts...
stk::mesh::put_field(pressure, =*part);

stk::topology topo = part->topology();

if (topo == stk::topology::SHELL_QUAD_4) {
//+ The shell blocks will have the pressure field initialized
//+ from the dbFieldNameShell database variable.
mf_shell.add_subset (xpart) ;

}

else {
//+ The non-shell blocks will have the pressure field initialized
//+ from the dbFieldNameOther database variable.
mf_other.add_subset (xpart) ;

}

stkIo.add_input_field (mf_shell);
stkIo.add_input_field (mf_other);
stkIo.populate_bulk_data();

double time = stklIo.get_input_io_region()->get_state_time(l);

//+ Populate the fields with data from the input mesh.
stkIo.read_defined_input_fields (time);

109

4.1.16 Reading initial conditions from a field on a mesh database — only read
once

This example is the same as the previous example, except that the initial condition field will only be
active for a single read. Once data has been read into the field, it is no longer active for subsequent
reads. This is specified by calling set_read_once (true) on the input field as shown on
line 125.

The read_defined_input_fields () functionis called twice and it is verified that the field
data does not change on the second call since the input field is no longer active at that call.

Listing 4.20: Reading initial condition data from a mesh database one time only

.J.[..Jcode/stk/stk_doc_tests/stk_io/readInitial ConditionOnce.cpp

106 //

107 //+ EXAMPLE:

108 //+ Read the value of the "temp" field at step 2 and populate

109 //+ the nodal field "temperature" for use as an initial condition

110 //+ The input field should only be active for one ’'read _defined input_ fields’
111 //+ call, so verify this by calling the function again at step 3 and

112 //+ then verify that the field values are still those read from step 2.
113 stk::io::StkMeshIoBroker stkIo(communicator);

114 size_t index = stkIo.add_mesh_database (ic_name, stk::io::READ_MESH) ;

115 stkIo.set_active_mesh (index) ;

116 stkIo.create_input_mesh();
117

118 stk::mesh::Field<double> &temperature = stkIo.meta_data().

119 declare_field<stk::mesh::Field<double> > (stk::topology::NODE_RANK, "temperature", 1);
120 stk::mesh::put_field(temperature, stkIo.meta_data().universal _part());

121 stkIo.populate_bulk_data();

122

123 //+ The name of the field on the database is "temp"

124 stk::io::MeshField input_field(temperature, "temp", stk::io::MeshField::CLOSEST);
125 input_field.set_read_once (true);

126 stkIo.add_input_field (input_field);

127

128 //+ Read the field values from the database at time 2.0

129 //+ Pass in a time of 2.2 to verify that the value returned is

130 //+ from the closest step and not interpolated.

131 stkIo.read_defined_input_fields(2.2);

132

133 L

134 //+ VERIFICATION

135 //+ The value of the field at all nodes should be 2.0

136 std::vector<stk::mesh::Entity> nodes;

137 stk::mesh::get_entities(stkIo.bulk_data (), stk::topology::NODE_RANK,

138 nodes) ;

139 for(size_t i=0; i<nodes.size(); i++) {

140 double xfieldDataForNode = stk::mesh::field data(temperature, nodes[i]);
141 EXPECT_DOUBLE_EQ (2.0, xfieldDataForNode) ;

142 }

143

144 //+ Call read defined input_fields again and verify that the

145 //+ input field registration is no longer active after the

146 //+ since it was specified to be "only_read_once()"

147 stkIo.read_defined_input_fields (3.0);

110

149 //+ The value of the field at all nodes should still be 2.0

150 for(size_t 1i=0; i<nodes.size(); 1i++) {
151 double xfieldDataForNode = stk::mesh::field data (temperature, nodes[i]);
152 EXPECT_DOUBLE_EQ (2.0, =fieldDataForNode);

153 }
154

155

4.1.17 Reading initial conditions from a mesh database field at a specified
database time

This example is similar to the previous two examples except that the database time at which the
field data is to be read is specified explicitly instead of being equal to the analysis time. This is
specified by calling set_read_time () on the input field as shown on line 141.

The read_defined_input_fields () function is called with an analysis time argument of
1.0. The “flux” field gets the database field values corresponding to that time, but the “temp” field
gets the database field values at the database time (2.0) time at which it is explicitly specified.

Listing 4.21: Reading initial condition data from a mesh database at a specified time

./.[..[code/stk/stk_doc_tests/stk_io/readInitialConditionSpecified Time.cpp

114 L

115 //+ EXAMPLE:

116 //+ Register the reading of database fields "temp" and "flux" to

117 //+ populate the stk nodal fields "temperature" and "heat_ flux"

118 //+ for use as initial conditionss.

119 //+ Specify that the "temp" field should be read from database

120 //+ time 2.0 no matter what time is specified in the read defined input_fields
121 //+ call.

122 //+ The "flux" field will be read at the database time corresponding
123 //+ to the analysis time passed in to read_defined input_fields.

124

125 stk::io::StkMeshIoBroker stkIo(communicator);

126 size_t index = stkIo.add_mesh_database (ic_name, stk::io::READ_MESH) ;
127 stkIo.set_active_mesh (index) ;

128 stkIo.create_input_mesh();

129
130 stk::mesh::Field<double> &temperature = stkIo.meta_data().
131 declare_field<stk::mesh::Field<double> > (stk::topology::NODE_RANK, "temperature", 1);

132 stk::mesh::put_field(temperature, stkIo.meta_data().universal_part());

133

134 stk::mesh: :Field<double> &heat_flux = stkIo.meta_data().

135 declare_field<stk::mesh::Field<double> > (stk::topology::NODE_RANK, "heat_flux", 1);
136 stk::mesh::put_field(heat_flux, stkIo.meta_data() .universal_part());

137 stkIo.populate_bulk_data();

138

139 // The name of the field on the database is "temp"

140 stk::i0::MeshField temp_field(temperature, "temp", stk::io::MeshField::CLOSEST);
141 temp_field.set_read_time(2.0);

142 stkIo.add_input_field(temp_£field);

143

144 // The name of the field on the database is "flux"

145 stk::io::MeshField flux_field(heat_flux, "flux", stk::io::MeshField::CLOSEST);
146 stkIo.add_input_field (flux_£field);

147

148 //+ Read the field values from the database at time 1.0

149 //+ The value of "flux" will be the values from database time 1.0

111

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

//+ However, the value of "temp" will be the values from database time 2.0
stkIo.read_defined_input_fields(1.0);

LY

//+ VERIFICATION

std::vector<stk::mesh::Entity> nodes;

stk::mesh::get_entities (stkIo.bulk_data(), stk::topology::NODE_RANK,
nodes) ;

//+ The value of the "temperature" field at all nodes should be 2.0
for(size_t i=0; i<nodes.size(); 1i++) {
double xfieldDataForNode = stk::mesh::field data (temperature, nodes[i]);
EXPECT_DOUBLE_EQ (2.0, =xfieldDataForNode);
}

//+ The value of the "heat_flux" field at all nodes should be 1.0
for(size_t i=0; i<nodes.size(); 1i++) {
double xfieldDataForNode = stk::mesh::field_data (heat_flux, nodes[i]);
EXPECT_DOUBLE_EQ (1.0, *fieldDataForNode);
}

4.1.18 Reading field data from a mesh database — interpolating between

database times

This example shows how to read data from an input mesh database at multiple times. The database
field values are linearly interpolated if the analysis time does not match an existing database time.
The initial portion of the example, which is not shown, creates a mesh with time steps at times 0.0,
1.0, and 2.0. The database contains a nodal field called “temp” with the same values for each node.
The value is the same as the time (0.0, 1.0, and 2.0) for each time step. The example shows how
to specify the reading of the field data at multiple steps and linearly interpolating the database data
to the specified analysis times. Line 128 shows how to specify that the field data are to be linear
interpolated.

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

125

Listing 4.22: Linearly interpolating field data from a mesh database

./..[..[code/stk/stk_doc_tests/stk_io/interpolateNodalField.cpp

Vi
//+ EXAMPLE:

//+ The input mesh database has 3 timesteps with times 0.0, 1.0, 2.0,
//+ The value of the field "temp" is equal to the time

//+ Read the "temp" value at times 0.0 to 2.0 with an interval

//+ of 0.1 (0.0, 0.1, 0.2, 0.3, ..., 2.0) and verify that

//+ the field contains the correct interpolated value.
stk::i0::StkMeshIoBroker stkIo(communicator);

stkIo.add_mesh_database (ic_name, stk::io::READ_MESH) ;
stkIo.create_input_mesh();

stk::mesh::Field<double> &temperature = stkIo.meta_data().
declare_field<stk::mesh::Field<double> > (stk::topology::NODE_RANK, "temperature",1);
stk::mesh::put_field (temperature, stkIo.meta_data().universal_part());

stkIo.populate_bulk_data();

std::vector<stk::mesh::Entity> nodes;
stk::mesh::get_entities (stkIo.bulk_data(), stk::topology::NODE_RANK, nodes);

112

26 //+ Specify that the field data are to be linear interpolated.

27 stkIo.add_input_field(stk::io::MeshField (temperature, "temp",

28 stk::io::MeshField: :LINEAR_INTERPOLATION)) ;
)

1
1
1
130 //+ If the same stk field (temperature) is added more than once,

131 //+ the first database name and settings will be used. For example,

132 //+ the add_input_field below will be ignored with no error or warning.

133 stkIo.add_input_field(stk::io::MeshField (temperature, "temp-again",

134 stk::io::MeshField: :LINEAR_INTERPOLATION)) ;
1

1
1
1

36 for (size_t i=0; i < 21; i++) {
7 double time = i/10.0;
38 //+ Read the field values from the database and verify that they
139 //+ are interpolated correctly.
140 stkIo.read_defined_input_fields (time);

142 //
143 //+ VERIFICATION

144 // The value of the "temperature" field at all nodes should be ’time’
145 for (size_t 3=0; Jj<nodes.size(); Jj++) {

146 double xfieldData = stk::mesh::field_data (temperature, nodes[]]);
147 EXPECT_DOUBLE_EQ (time, xfieldData);

148 }

149 }

150

4.1.19 Combining restart and interpolation of field data

This example shows how to specify that an analysis, that is using field interpolation, should be
restarted. This requires two input databases: one that contains the restart data and another that
contains the field data to be interpolated.

The initial portion of the example, which is not shown, creates a restart database with several
nodal and element fields containing three time steps at times 0.0, 1.0, and 2.0. It then also creates
a database containing the field values which will be interpolated. This database contains 10 time
steps (0.0 to 9.0) with the nodal field “temp”. The value of the field at each time step is equal to
the database time (0.0 to 9.0).

The add_mesh_database () function is called twice — once for each database. Since there
are multiple mesh databases, the set_active_mesh () function is called to specify which
mesh is active for subsequent calls. The fields that are to be read from each database are spec-
ified using add_all_mesh_fields_as_input_fields () for the restart database and
add_input_field () for the interpolated field database. Note that the file index for the in-
terpolated field database is passed to the add_input_field () since that database is not active
at the time of the call.

The example then “restarts” the analysis by setting the restart database as the active mesh and
reads the restart field data at time 1.0. The active mesh is then switched to the mesh database
containing the “temp” field and the analysis is then continued up to time 9.0 with the values for the
temperature field being interpolated.

113

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

Listing 4.23: Combining restart and field interpolation

.J.[..[code/stk/stk_doc_tests/stk_io/restartInterpolatedField.cpp

/Y
//+ EXAMPLE:

//+ The restart mesh database has 3 timesteps with times 0.0, 1.0, 2.0,
//+ and several fields.

//+

//+ The initial condition database has 10 timesteps with times
//+ 0.0, 1.0, ..., 9.0 and a nodal variable "temp"

//+ The value of the field "temp" is equal to the time

ik

//+ The example will read the restart database at time 1.0

//+ and then simulate continuing the analysis at that time

//+ reading the initial condition data from the other database

//+ interpolating this data.

stk::io0::StkMeshIoBroker stkIo(communicator);

size_t ic = stkIo.add_mesh_database (ic_name, stk::io::READ_MESH) ;
size_t rs = stklIo.add_mesh_database (rs_name, stk::io::READ_RESTART) ;

//+ "Restart" the calculation...
double time = 1.0;
stkIo.set_active_mesh (rs);
stkIo.create_input_mesh();

stkIo.add_all_mesh_fields_as_input_fields();

stk::mesh::Field<double> &temperature = stkIo.meta_datal().
declare_field<stk::mesh::Field<double> > (stk::topology::NODE_RANK, "temperature", 1);
stk::mesh::put_field(temperature, stkIo.meta_data().universal_part());

// The name of the field on the initial condition database is "temp"
stkIo.add_input_field(ic, stk::io::MeshField(temperature, "temp",

stk::i0::MeshField::LINEAR_INTERPOLATION)) ;
stkIo.populate_bulk_data();

std: rvector<stk: :mesh: :Entity> nodes;
stk::mesh::get_entities (stkIo.bulk_data(), stk::topology::NODE_RANK, nodes);

//+ Read restart data
stkIo.read_defined_input_fields (time);

//+ Switch active mesh to "initial condition" database
stkIo.set_active_mesh (ic);

double delta_time = 1.0 / 4.0;
while (time <= 9.0) {
//+ Read the field values from the database and verify that they
//+ are interpolated correctly.
stkIo.read_defined_input_fields (time);

1
//+ VERIFICATION
// The value of the "temperature" field at all nodes should be ’time’
for(size_t 1i=0; i<nodes.size(); 1i++) {
double xfieldDataForNode = stk::mesh::field data (temperature, nodes[i]);
EXPECT_DOUBLE_EQ (time, =*fieldDataForNode);
}

time += delta_time;

114

4.1.20 Interpolating field data from a mesh database with only a single
database time

If an application specifies that the mesh database field data should be linearly interpolated, but the
mesh database only has a single time step, then the field data will not be interpolated and instead,
the values read from that single time will be used.

The initial portion of the example, which is not shown, creates a mesh with a time step at time 1.0.
The database contains a nodal field called “temp” with the same values for each node. The value
is the same as the time (1.0).

The example specifies that the field data should be linearly interpolated and then reads the data at
multiple steps. Since there is only a single step on the mesh database, all field values are equal to
the database values at that step.

Listing 4.24: Linearly interpolating field data from a mesh database with only a single step

.J.[..Jcode/stk/stk_doc_tests/stk_io/interpolateSingleStep.cpp

102 I/

103 //+ EXAMPLE:

104 //+ The input mesh database has 1 timesteps with time 1.0
105 //+ The value of the field "temp" is equal to the time

106 //+ Read the "temp" value at times 0.0 to 2.0 with an interval
107 //+ of 0.1 (0.0, 0.1, 0.2, 0.3, ..., 2.0) and verify that
108 //+ the field value does not change since there are not
109 //+ enough steps to do any interpolation.

110 //+

111 stk::io::StkMeshIoBroker stkIo(communicator);

112 stkIo.add_mesh_database (ic_name, stk::io::READ_MESH) ;

113 stkIo.create_input_mesh();
114

115 stk::mesh::Field<double> &temperature = stkIo.meta_data().
116 declare_field<stk::mesh::Field<double> > (stk::topology::NODE_RANK, "temperature",1l);
117 stk::mesh::put_field(temperature, stkIo.meta_data() .universal_part());

118
119 // The name of the field on the database is "temp"

120 stkIo.add_input_field(stk::io::MeshField (temperature, "temp",

121 stk::io::MeshField: :LINEAR_INTERPOLATION)) ;
122

123 stkIo.populate_bulk_data();

124

125 std::vector<stk::mesh::Entity> nodes;

126 stk::mesh::get_entities(stkIo.bulk_data(), stk::topology::NODE_RANK, nodes);

127

128 for (size_t i=0; i < 21; i++) {

129 double time = i/10.0;

130 //+ Read the field values from the database and verify that they
131 //+ are interpolated correctly.

132 stkIo.read_defined_input_fields (time);

133

134 Lf

135 //+ VERIFICATION

136 // The value of the "temperature" field at all nodes should be 1.0
137 for(size_t j=0; j<nodes.size(); j++) {

138 double xfieldData = stk::mesh::field_data (temperature, nodes[]j]);

139 EXPECT_DOUBLE_EQ (1.0, =xfieldData);
140 }

141 }

142

115

4.1.21 Interpolating field data from a mesh database when time is outside
database time interval

If an application specifies that the mesh database field data should be linearly interpolated, but
requests data at times outside the interval of times present on the mesh database, then the values
at the closest database time will be used instead. In other words, the database values are not
extrapolated.

The initial portion of the example, which is not shown, creates a mesh with two time steps at times
1.0 and 2.0. The database contains a nodal field called “temp” with the same values for each node.
The value is the same as the time (1.0 or 2.0).

The example specifies that the field data should be linearly interpolated and then reads the data at
multiple times from 0.0 to 3.0. Since the database only contains data at times 1.0 and 2.0, the field
values at times 0.0 to 1.0 will be set to the database values at time 1.0 and the field values at times
2.0 to 3.0 will be set to the database values at time 2.0. The field values at times 1.0 to 2.0 will be
linearly interpolated from the database values.

Listing 4.25: Linearly interpolating field data when the time is outside the database time interval

./.[../code/stk/stk_doc_tests/stk_io/interpolateOutsideRange.cpp

104 /Y

105 //+ EXAMPLE:

106 //+ The input mesh database has 2 timesteps with time 1.0 and 2.0
107 //+ The value of the field "temp" is equal to the time

108 //+ Read the "temp" value at times 0.0 to 3.0 with an interval

109 L1 of QT {(0k0; 031y 0.2 0.3, wasy 2:0):

110 //+

11 //+ The times 0.0 to 1.0 and 2.0 to 3.0 are outside

112 //+ the range of the mesh database so no interpolation

113 //+ or extrapolation will occur -- the field values

114 //+ will be set to the values at the nearest time.

115 //+

116 //+ Verify that the values from times 0.0 to 1.0

117 //+ are equal to 1.0 and that the values from 2.0 to 3.0

118 //+ are equal to 2.0.

119 //+ The field values from 1.0 to 2.0 will be interpolated

120 //+

121 stk::io::StkMeshIoBroker stklIo(communicator);

122 stkIo.add_mesh_database (ic_name, stk::io::READ_MESH) ;

123 stkIo.create_input_mesh();

124

125 stk::mesh::Field<double> &temperature = stkIo.meta_data().

126 declare_field<stk::mesh::Field<double> > (stk::topology::NODE_RANK, "temperature",1l);
127 stk::mesh::put_field(temperature, stkIo.meta_data().universal_part());
128

129 stkIo.populate_bulk_data();

130
131 std::vector<stk::mesh::Entity> nodes;

132 stk::mesh::get_entities(stkIo.bulk_data(), stk::topology::NODE_RANK, nodes);

133

134 // The name of the field on the database is "temp"

135 stkIo.add_input_field(stk::io::MeshField (temperature, "temp",

136 stk::io::MeshField: :LINEAR_INTERPOLATION)) ;
137

138 for (size_t i=0; 1 < 21; i++) {

139 double time = 1/10.0;

140 //+ Read the field values from the database and verify that they

141 //+ are interpolated correctly.

116

142 stkIo.read_defined_input_fields(time);

144 L

145 //+ VERIFICATION

146

147 double expected_value = time;

148 if (time <= 1.0)

149 expected_value = 1.0;

150 if (time >= 2.0)

151 expected_value = 2.0;

152

153 for(size_t j=0; Jj<nodes.size(); Jj++) {

154 double xfieldData = stk::mesh::field_data (temperature, nodes[]]);
155 EXPECT_DOUBLE_EQ (expected_value, xfieldData);

156 }
157 }
158

4.1.22 Error condition — reading initial conditions from a field that does not
exist on a mesh database

This example shows the behavior when the application specifies that initial condition or restart
data should be read from the input database, but one or more of the specified fields do not exist on
the database. The application specifies that the data for the field “displacement” is to be populated
from the database field “disp”, which does not exist. Two scenarios are possible. In the first, the
application passes in a vector which on return from the read_defined_input_fields ()
function will contain a list of all fields that were not found, with one entry for each missing field
state. In the second, the vector is omitted in the call to read_defined_input_fields();
in this case, the code will print an error message and throw an exception if there are any fields not
found.

Listing 4.26: Specifying initial conditions from a non-existent field

./.[../code/stk/stk_doc_tests/stk_io/handleMissingFieldOnRead.cpp

108 //
109 //+ EXAMPLE:

110 //+ Demonstrate what happens when application requests the
111 //+ reading of a field that does not exist on the input

112 //+ mesh database. The nodal field "displacement" is

113 //+ requested for input from the database field "disp" which

114 //+ does not exist.

115 stk::io::StkMeshIoBroker stkIo(communicator);

116 size_t index = stkIo.add_mesh_database (ic_name, stk::io::READ_MESH) ;

117 stkIo.set_active_mesh (index) ;

118 stkIo.create_input_mesh();

119

120 stk::mesh::Field<double> &temperature =

121 stkIo.meta_data () .declare_field<stk::mesh::Field<double> > (

122 stk::topology: :NODE_RANK, "temperature”, 1) ;
123 stk::mesh::put_field(temperature, stkIo.meta_data().universal_part());

124

125 stk::mesh::Field<double> &displacement =

126 stkIo.meta_data () .declare_field<stk::mesh::Field<double> > (

127 stk::topology: :NODE_RANK, "displacement", 3) ;
128 stk::mesh::put_field(displacement, stkIo.meta_data () .universal_part());

129 stkIo.populate_bulk_data();

130

117

131 // The name of the field on the database is "temp"

132 // This field does exist and should be read correctly

133 stkIo.add_input_field(stk::io::MeshField (temperature, "temp"));
134

135 //+ The name of the field on the database is "disp"

136 //+ This field does not exist and will not be found.

137 stkIo.add_input_field(stk::io::MeshField(displacement, "disp"));
138

139

140 //+ Read the field values from the database at time 2.0

141 //+ The ’'missing fields’ vector will contain the names of

142 //+ any fields that were not found.

143 std::vector<stk::io::MeshField> missing_fields;

144 stkIo.read_defined_input_fields (2.0, &missing_fields);

145

146 Xy

147 //+ VERIFICATION

148 //+ The ’'missing’ vector should be of size 1 and contain

149 //+ 'disp’

150 EXPECT_EQ(2u, missing_fields.size());

151 EXPECT_EQ ("disp", missing_fields[0].db_name());

152 EXPECT_EQ ("displacement", missing_fields[0].field()->name());

153 EXPECT_EQ("disp", missing_fields[1l].db_name());

154 EXPECT_EQ ("displacement_ STKFS_N", missing_ fields[1l].field()->name());
155

156 // The value of the "temperature" field at all nodes should be 2.0
157 std::vector<stk::mesh::Entity> nodes;

158 stk::mesh::get_entities (stkIo.bulk_data(), stk::topology::NODE_RANK,
159 nodes) ;

160 for (size_t i=0; i<nodes.size(); i++) {

161 double xfieldDataForNode =

162 stk::mesh::field_data (temperature, nodes[i]);

163 EXPECT_DOUBLE_EQ (2.0, xfieldDataForNode);

164 }

165

This example is the same as the previous except that instead of passing in the vector to hold
the missing fields, the application will throw an exception for the missing field. Note that if the
application throws an exception, it will not read any field data even for the fields that do exist.

Listing 4.27: Specifying initial conditions from a non-existent field

./.[..[code/stk/stk_doc_tests/stk_io/handleMissingFieldOnRead Throw.cpp

136 //+ If read the fields, but don’t pass in the ’'missing fields’
137 //+ vector, the code will print an error message and throw an
138 //+ exception if it doesn’t find all of the requested fields.
139 EXPECT_ANY_THROW (stkIo.read_defined_input_fields(2.0));

140

141 //+ If code throws due to missing field(s), it will NOT read
142 //+ even the fields that exist.

143

4.1.23 Interpolation of fields on database with negative times

Although it is not common, there are occasions when an analysis will use negative times. For
example, an analysis may run from time -3.0 to 0.0 to “preload” a structure and then continue from
time 0.0 onward to analyze the preloaded structure. This example shows that the field interpolation
capability works correctly when the mesh database and the analysis use negative times.

118

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

Listing 4.28: Interpolating fields on a database with negative times

./.[..[code/stk/stk_doc_tests/stk_io/interpolateFieldNegativeTime.cpp

/Y
//+ EXAMPLE :

//+ The input mesh database has 3 timesteps with times -2.0, -1.0, 0.0.
//+ The value of the field "temp" is equal to the time

//+ Read the "temp" value at times -2.0 to 0.0 with an interval

//+ of 0.1 (-2.0, -1.9, -1.8, ..., 0.0) and verify that

//+ the field contains the correct interpolated value.
stk::io::StkMeshIoBroker stkIo(communicator);

stkIo.add_mesh_database (ic_name, stk::io::READ_MESH) ;
stkIo.create_input_mesh();

stk::mesh::Field<double> &temperature = stkIo.meta_datal().
declare_field<stk::mesh::Field<double> > (stk::topology::NODE_RANK, "temperature", 1);
stk::mesh::put_field (temperature, stkIo.meta_data().universal_part());

stkIo.populate_bulk_data();

std::vector<stk::mesh::Entity> nodes;
stk::mesh::get_entities (stkIo.bulk_data(), stk::topology::NODE_RANK, nodes);

// The name of the field on the database is "temp"
stkIo.add_input_field(stk::io::MeshField (temperature, "temp",
stk::io0::MeshField: :LINEAR_INTERPOLATION)) ;

for (int i=-20; i <= 0; i++) {
double time = i1/10.0;
//+ Read the field values from the database and verify that they
//+ are interpolated correctly.
stkIo.read_defined_input_fields (time);

//
//+ VERIFICATION
// The value of the "temperature" field at all nodes should be ’time’
for(size_t j=0; j<nodes.size(); Jj++) {
double xfieldData = stk::mesh::field _data(temperature, nodes[jl);
EXPECT_DOUBLE_EQ (time, =xfieldData);
}

4.1.24 Interpolation of fields on database with non-monotonically increas-

ing times

In some cases, the database from which the field values are being interpolated may contain non-
monotonically increasing time values. For example, the time steps could contain the values 2.0 at
step 1, 0.0 at step 2, and 1.0 at step 3. The example shows that the field interpolation capability
works correctly in this case.

107
108
109
110
111

Listing 4.29: Interpolating fields on a database with non-monotonically increasing times

.J.[.Jcode/stk/stk_doc_tests/stk_io/interpolateFieldNonMonotonicTime.cpp

L
//+ EXAMPLE:

//+ The input mesh database has 3 timesteps with times 2.0, 0.0, 1.0
//+ which are non-monotonically increasing.

//+ The value of the field "temp" is equal to the time

119

112
113
114
115
116
117
118
119
120

121

123
124
125

126

144
145

146

//+ Read the "temp" value at times 0.0 to 2.0 with an interval
//+ of 0.1 (0.0, 0.1, 0.2, ..., 2.0) and verify that

//+ the field contains the correct interpolated value.
stk::io::StkMeshIoBroker stkIo(communicator);
stkIo.add_mesh_database (ic_name, stk::io::READ_MESH) ;
stkIo.create_input_mesh();

stk::mesh::Field<double> &temperature = stkIo.meta_data().

declare_field<stk::mesh::Field<double> > (stk::topology::NODE_RANK, "temperature",

stk::mesh::put_field(temperature, stkIo.meta_data().universal_part());
stkIo.populate_bulk_data();

std: :vector<stk::mesh::Entity> nodes;
stk::mesh::get_entities(stkIo.bulk_data(), stk::topology::NODE_RANK, nodes);

// The name of the field on the database is "temp"
stkIo.add_input_field(stk::io::MeshField (temperature, "temp",

stk::io0::MeshField: :LINEAR_INTERPOLATION)) ;

for (int i=0; i < 21; i++) {
double time = i/10.0;
//+ Read the field values from the database and verify that they
//+ are interpolated correctly.
stkIo.read_defined_input_fields (time);

/1 m==m==mm=mmmemmm==—e ===
//+ VERIFICATION
// The value of the "temperature" field at all nodes should be ’'time’
for(size_t 3j=0; j<nodes.size(); j++) {
double xfieldData = stk::mesh::field_data (temperature, nodes[]j]);
EXPECT_DOUBLE_EQ (time, =xfieldData);

}

1);

4.1.25 Arbitrary analysis time to database time mapping during field input

There are instances in which the analysis times do not exactly correspond to the times on the
mesh database. An example is a mesh database with times in microseconds and the analysis using
seconds for the time units. Another example is when the conditions specified on the mesh database
describe a cyclic loading over a small time period, but the analysis time runs over multiples of this
period.

The InputFile class in STK Mesh IO Broker module contains several options for mapping the
analysis time to the database time. These include: offset, scale, period, startup, period type, start
time, and stop time.

To describe the mapping from analysis time to database time we will use the following notation:

a variable of type ¢, is in units of time.
tapp 18 application time.
t4p 18 database time, which is the time that will be used to query the database.

tperiod 18 the length of the cyclic period,; it is 0.0 if not cyclic.

120

e scale is the time scaling factor.
® 1,5 18 the time offset.

e The cyclic behavior can either by specified as CYCLIC or REVERSING. In the cyclic case,
the time would repeat as 1,2,3,1,2,3,.. .; the reversing case would repeat as 1,2,3,2,1,2,3,,.. ..
Both of these have a #,¢,io4 Of length 2.

We now describe the mapping:

o If: 74y < lfsart OF tapp > Ls0p Then the field is inactive.
o If: 74 < tstarmp Then tg, = tqpp.
e Else if cyclic behavior is CYCLIC Then tg, = tsarmp + m0d (tupp — tstartups tperiod)-
e Else if cyclic behavior is REVERSING Then
— Lettyn = mod (tapp — tstarup, 2 X tperiod)
— If: (tpm < tperiod) Then tgp = tyarmp +tom
— Else: tap = tstarmup + (2 X toeriod — tom)-
e Finally: 14, = 14, X scale +t,e;.
The example below shows an input mesh database containing a nodal field named “temp”. The

database contains 3 steps with times 0.0, 10.0, and 20.0; the value of the field at each time is equal
to the time value (0.0, 10.0, or 20.0).

The analysis wants to use the data on this mesh to provide linearly interpolated values for the
analysis field “temperature”. The mesh database values will be defined as REVERSING cyclic
with a period length of 2.0; in addition, the times will be scaled by 10. This should result in a
mapping of application time (Z,p,) to database time (74,) of:

p O 1 2 3 4 5 6 78 9 10
tx 0 10 20 10 0 10 20 10 0 10 20

Listing 4.30: Arbitrary analysis time to database time mapping during field input

.[..[..[code/stk/stk_doc_tests/stk_io/interpolateField Cyclic.cpp

107 Fi
108 //+ EXAMPLE:

109 //+ The input mesh database has 3 timesteps with times 0.0, 10.0, 20.0,
110 //+ The value of the field "temp" is equal to the time

111 //+ Read the "temp" value at times 0.0 to 10.0 with an interval

112 //* of 0,25 (0:0, 0.25, 0.50, 0.75; s:., 10:0)
113 //+ The mapping from analysis time (0.0 to 10.0) to database
114 //+ time will be reverse cyclic and scaled.

115 //+

116 //+ The parameters are:

117 //+ * period = 2.0

118 //+ * scale = 10.0

119 //+ * offset = 0.0

120 //+ * cycle type = REVERSING

121 //+

122 //+ Analysis Time and DB_Time:

121

123 J/€£0 1 2 3 4 5 6 7 8 9 10

124 /[/+ 0 10 20 10 0 10 20 10 0 10 20

125 //+

126

127 stk::io0::StkMeshIoBroker stkIo(communicator);

128 size_t i1dx = stkIo.add_mesh_database(ic_name, stk::io::READ_MESH) ;
129 stkIo.create_input_mesh();

130
131 stk::mesh::Field<double> &temperature = stkIo.

132 meta_data () .declare_field<stk::mesh::Field<double> >
133 (stk::topology: :NODE_RANK, "temperature", 1);
134 stk::mesh::put_field(temperature, stkIo.meta_data().universal_part());

135
136 stkIo.populate_bulk_data();

137

138 std::vector<stk::mesh::Entity> nodes;

139 stk::mesh::get_entities (stkIo.bulk_data(), stk::topology::NODE_RANK, nodes);
140

141 // The name of the field on the database is "temp"

142 stkIo.add_input_field(stk::io::MeshField (temperature, "temp",

143 stk::io::MeshField: :LINEAR_INTERPOLATION)) ;
144

145 //+ Set the periodic parameters on the input mesh...

146 double period_length = 2.0;

147 double startup = 0.0;

148 double scale = 10.0;

149 stkIo.get_mesh_database (idx)

150 .set_periodic_time (period_length, startup, stk::io::InputFile::REVERSING)
151 .set_scale_time (scale)

152 .set_start_time(0.0) .set_offset_time (0.0) .set_stop_time(999.0); // These are optional
153 double delta_time = 0.25;

154 double time = 0.0;

155 double expected = 0.0;

156 double exp_inc = 10.0 * delta_time;

157

158 while (time <= 10.0) {

159
160 //+ Read the field values from the database and verify that they
161 //+ are interpolated correctly.

162 stkIo.read _defined_input_fields (time);

163

164 L

165 //+ VERIFICATION

166 // The value of the "temperature" field at all nodes should be ’expected’
167 for(size_t i=0; i<nodes.size(); 1i++) {

168 double xfieldData = stk::mesh::field_data (temperature, nodes[i]);

169 EXPECT_DOUBLE_EQ (expected, xfieldData);
170 }
171 time += delta_time;

172 expected += exp_inc;
173 if (expected >= 20.0 || expected <= 0.0) {
174 exp_inc = -exp_inc;

175 }
176 }

177

4.1.26 Error condition — specifying interpolation for an integer field

This example shows the behavior when the application specifies that linear interpolation should be
used for an integer field. Although there are a few instances in which this could be valid, it is not
supported and an exception will be thrown when the field is registered.

122

Listing 4.31: Error condition — specifying interpolation of an integer field

.J..[..Jcode/stk/stk_doc_tests/stk_io/interpolateIntegerFieldInvalid.cpp

58 //

59 //+ EXAMPLE:

60 //+ Interpolated fields cannot be of type integer.

61 //+ An exception will be thrown if you try to register an

62 //+ integer interpolated field.

63

64 stk::io0::StkMeshIoBroker stkIo(communicator);

65

66 const std::string generatedFileName = "generated:8x8x8|nodeset:xyz";

67 stkIo.add_mesh_database (generatedFileName, stk::io::READ_MESH);

68 stkIo.create_input_mesh();

69

70 stk::mesh::Field<int> &integer_field = stkIo.meta_datal() .

71 declare_field<stk::mesh::Field<int> > (stk::topology::NODE_RANK, "int_field", 1);
72 stk::mesh::put_field(integer_field, stkIo.meta_data().universal_part());
73 stkIo.populate_bulk_data();

74

75 EXPECT_ANY_THROW (stkIo.add_input_field(stk::io::MeshField(integer_field,
76 "int_field",

77 stk::i0::MeshField: :LINEAR_INTERPOLATION))) ;

4.1.27 Working with element attributes

Listing 4.32: Working with element attributes ../../../code/stk/stk_doc_tests/stk_io/read Attributes.cpp

77 std::vector<double> get_attributes_of_first_element (const stk::mesh::BulkData &bulk, const
stk::mesh::Part xioPart)

78 {

79 stk::mesh::FieldVector attributeFields =
get_attribute_fields_for_part (bulk.mesh_meta_data(), ioPart);

8(

81 stk::mesh::EntityVector elements;

82 stk::mesh::get_selected_entities (xioPart, bulk.buckets (stk::topology::ELEM_RANK),
elements) ;

83

84 std: :vector<double> attributes;

85 if (!elements.empty())

86 {

87 for (const stk::mesh::FieldBase *field : attributeFields)

88 {

89 unsigned numAttribute = stk::mesh::field scalars_per_entity(xfield, elements[0]);

90 double *dataForElement = static cast<doublex> (stk::mesh::field _data(xfield,
elements[0]));

91 for (unsigned i=0; i<numAttribute; ++i)

92 attributes.push_back (dataForElement [1]) ;

93 }

94 }

95 return attributes;

9 }

97
98 TEST_F (ExodusFileWithAttributes, readAttributes_haveFieldsWithAttributes)

99 {

100 setup_mesh ("hex_spider.exo", stk::mesh::BulkData::AUTO_AURA);

101

102 const stk::mesh::Part *partBlock2 = get_meta().get_part ("block_2");

103 const stk::mesh::Part xpartBlockl0 = get_meta().get_part ("block_10");

104

105 EXPECT_EQ (lu, get_attributes_of_ first_element (get_bulk(), partBlock2).size());
106 EXPECT_EQ (7u, get_attributes_of_ first_element (get_bulk(), partBlockl0).size());

123

107 }

108

109 void mark_field as_attribute (stk::mesh::FieldBase &field)

110 {

111 stk::io::set_field_role(field, Ioss::Field::ATTRIBUTE);

12}

113

114 TEST_F (ExodusFileWithAttributes, addAttribute_haveFieldsWithAttribute)
115 {

116 allocate_bulk (stk::mesh::BulkData::AUTO_AURA) ;

117

118 stk::io::StkMeshIoBroker stkIo;

119 stkIo.set_bulk_data (get_bulk());

120 stkIo.add_mesh_database ("hex_spider.exo", stk::io::READ_MESH);

121 stkIo.create_input_mesh();

122

123 double initialvValue = 0.0;

124 auto &newAttrField =
get_meta () .declare_field<stk::mesh::Field<double>> (stk::topology::ELEM_RANK,
"newAttr");

125 mark_field as_attribute (newAttrField);

126

127 const stk::mesh::Part *partBlockl0 = get_meta () .get_part ("block_10");

128 stk::mesh::put_field(newAttrField, xpartBlockl0, &initialValue);

129

130 stkIo.populate_bulk_data();

131

132 EXPECT_EQ(8u, get_attributes_of_ first_element (get_bulk(), partBlockl0) .size());

133}

4.1.28 Create an output mesh with a subset of the mesh parts

If a results file that only contains a portion or subset of the parts existing in the STK Mesh is
wanted, this can be specified by creating a Selector (see Section 1.4) containing the desired
output parts and then calling the set_subset_selector () function with that Selector as
an argument. This is illustrated in the following example.

Listing 4.33: Creating output mesh containing a subset of the mesh parts

.J..[../[code/stk/stk_doc_tests/stk_io/subsettingOutputDB.cpp

65 v

66 // INITIALIZATION

67 std::string s_elems_per_edge = std::to_string(num_elems_per_edge);
68

69 //+ Create a generated mesh containg hexes and shells.

70 std::string input_filename = s_elems_per_edge + "x" +

71 s_elems_per_edge + "x" +

72 s_elems_per_edge + "|shell:xyzXYZ";
73

74 stk::i0::StkMeshIoBroker stkIo(communicator);

75 size_t index = stkIo.add_mesh_database (input_filename, "generated",
76 stk::io::READ_MESH) ;

77 stkIo.set_active_mesh (index) ;

78 stkIo.create_input_mesh();

79 stkIo.populate_bulk_data();

8

81 stk::mesh::MetaData &meta_data = stkIo.meta_data();

82 const stk::mesh::PartVector &all_parts = meta_data.get_mesh_parts();
83

84 Vi

85 //+ EXAMPLE

86 //+ Create a selector containing just the shell parts.

124

87 stk::mesh::Selector shell_subset;

88 for (size_t i=0; 1 < all_parts.size(); 1i++) |

89 const stk::mesh::Part sxpart = all_parts[i];

90 stk::topology topo = part->topology();

91 if (topo == stk::topology::SHELL_QUAD_4) {

92 shell_subset |= xpart;

93 }

94 }

95

9 // Create the output...

97 size_t fh = stkIo.create_output_mesh(resultsFilename,

98 stk::i0: :WRITE_RESULTS) ;
99

100 //+ Specify that only the subset of parts selected by the
101 //+ "shell subset" selector will be on the output database.
102 stkIo.set_subset_selector (fh, shell_subset);

103 stkIo.write_output_mesh (fh);

104 // Verification omitted...

105

4.1.29 Writing and reading global variables

The following example shows the use of global variables for a scalar double precision floating
point value, but a similar interface exists for working with vectors of global values. The example
also shows two methods for handling the error condition of accessing a nonexistent global variable.

Listing 4.34: Writing and reading a global variable

./../../code/stk/stk_doc_tests/stk_io/writingAndReadingGlobal Variables.cpp

49 TEST (StkMeshIoBrokerHowTo, writeAndReadGlobalVariables)
50 {

51 MPI_Comm communicator = MPI_COMM_WORLD;

52 int numProcs = stk::parallel_machine_size (communicator);

53 if (numProcs != 1) { return; }

54

55 const std::string restartFileName = "OneGlobalDouble.restart";

56 const std::string timeStepVarName = "timeStep";

57 const double timeStepSize = le-6;

58 const double currentTime = 1.0;

59

60 //+ Write restart file with time step size as a global variable

61 {

62 stk::io::StkMeshIoBroker stkIo(communicator);

63 const std::string exodusFileName = "generated:1x1x8";

64 stkIo.add_mesh_database (exodusFileName, stk::io::READ_MESH);

65 stkIo.create_input_mesh () ;

66 stkIo.populate_bulk_data();

67

68 size_t fileIndex =

69 stkIo.create_output_mesh (restartFileName, stk::io::WRITE_RESTART);
70 stkIo.add_global (fileIndex, timeStepVarName, Ioss::Field::REAL);
71 stkIo.begin_output_step(fileIndex, currentTime) ;

72 stkIo.write_global (fileIndex, timeStepVarName, timeStepSize);

73 stkIo.end_output_step(filelIndex);

74 }

75

76 //+ Read restart file with time step size as a global variable

77 {

78 stk::io::StkMeshIoBroker stkIo(communicator);

79 stkIo.add_mesh_database (restartFileName, stk::io::READ_RESTART) ;
80 stkIo.create_input_mesh();

125

81 stkIo.populate_bulk_data();

82 stkIo.read_defined_input_fields (currentTime);

83 std::vector<std::string> globalNamesOnFile;

84 stkIo.get_global_variable_names (globalNamesOnFile) ;

85

86 ASSERT_EQ (lu, globalNamesOnFile.size());

87 EXPECT_STRCASEEQ (timeStepVarName.c_str (),

88 globalNamesOnFile[0].c_str());

89 double timeStepSizeReadFromFile = 0.0;

90 stkIo.get_global (globalNamesOnFile[0], timeStepSizeReadFromFile);
91

92 const double epsilon = std::numeric_limits<double>::epsilon();
93 EXPECT_NEAR (timeStepSize, timeStepSizeReadFromFile, epsilon);
94

95 //+ If try to get a global that does not exist, will throw

96 //+ an exception by default...

97 double value = 0.0;

98 EXPECT_ANY_THROW (stkIo.get_global ("does_not_exist", value));

99
100 //+ If the application wants to handle the error instead (without a try/catch),
101 //+ can pass in an optional boolean:

102 bool abort_if not_found = false;

103 bool found = stkIo.get_global ("does_not_exist", value, abort_if_ not_found);
104 ASSERT_FALSE (found) ;

105 }

106

107 unlink (restartFileName.c_str());

108}

4.1.30 Writing and reading global parameters

The following example shows the use of stk : :util: :Parameter objects for global variable
output and input. The example defines several parameters of type double, integer, vector of dou-
bles, and a vector of integers. The list containing these parameters is iterated and each is defined
to be an output global variable. Then, each variable is written in the time step loop. At the end of
writing, the file is reopened for reading and the parameter values are restored and checked to make
sure the correct values were read.

Listing 4.35: Writing and reading parameters as global variables

«/..[../code/stk/stk_doc_tests/stk_io/writingAndReadingGlobalParameters.cpp

49 TEST (StkMeshIoBrokerHowTo, writeAndReadGlobalParameters)
50 {

51 1t

52 //+ INITIALIZATION

53 const std::string file name = "GlobalParameters.e";

54 MPI_Comm communicator = MPI_COMM_WORLD;

55

56 // Add some parameters to write and read...

57 stk::util::ParameterlList params;

58 params.set_param("PI", 3.14159); // Double

59 params.set_param("Answer", 42); // Integer

6(

61 std::vector<double> my_vector = { 2.78, 5.30, 6.21 };

62 params.set_param("doubles", my_vector); // Vector of doubles...
63

64 std::vector<int> ages = { 55, 49, 21, 19};

65 params.set_param("Ages", ages); // Vector of integers...

66

126

67 {
68 stk::io::StkMeshIoBroker stkIo(communicator);

69 const std::string exodusFileName = "generated:1x1x8";

70 size_t index = stkIo.add_mesh_database (exodusFileName, stk::io::READ_MESH);
71 stkIo.set_active_mesh (index) ;

72 stkIo.create_input_mesh();

73 stkIo.populate_bulk_data();
%

75 L

76 //+ EXAMPLE

77 //+ Write output file with all parameters in params list...

78 size_t idx = stkIo.create_output_mesh (file_name,

79 stk::io: :WRITE_RESTART) ;
80

81 stk::util::ParameterMapType::const_iterator i = params.begin();
82 stk::util::ParameterMapType: :const_iterator ie = params.end();
83 for (; 1 != ie; ++1) {

84 const std::string parameterName = (xi).first;

85 stk::util::Parameter ¶m = params.get_param(parameterName) ;
86 stkIo.add_global (idx, parameterName, param.value, param.type);
87 }

88

89 stkIo.begin_output_step(idx, 0.0);

9

91 for (i = params.begin(); 1 != ie; ++1i) {

92 const std::string parameterName = (xi).first;

93 stk::util::Parameter ¶m = params.get_param(parameterName) ;
94 stkIo.write_global (idx, parameterName, param.value, param.type);
95 }

96

97 stkIo.end_output_step (idx);

98 }

99

100 {

101 Vil

102 //+ EXAMPLE

103 //+ Read parameters from file...

104 stk::i0::StkMeshIoBroker stklIo(communicator);

105 stkIo.add_mesh_database (file_name, stk::io::READ_MESH) ;

106 stkIo.create_input_mesh () ;

107 stkIo.populate_bulk_data();
109 stkIo.read_defined_input_fields(0.0);

111 stk::util::ParameterMapType::const_iterator i = params.begin();

112 stk::util::ParameterMapType: :const_iterator ie = params.end();
113 for (; 1 !'= ie; ++1i) {

114 const std::string parameterName = (%i).first;

115 stk::util::Parameter ¶m = params.get_param(parameterName) ;

116 stkIo.get_global (parameterName, param.value, param.type);

119 L

120 //+ VALIDATION

121 stk::util::ParameterList gold_params; // To compare values read
122 gold_params.set_param("PI", 3.14159); // Double

123 gold_params.set_param("Answer", 42); // Integer

124 gold_params.set_param("doubles", my_vector); // Vector of doubles
125 gold_params.set_param("Ages", ages); // Vector of integers...
126

127 size_t param_count = 0;

128 for (i = params.begin(); i != ie; ++1i) {

129 param_count++;

130 const std::string parameterName = (%i).first;

131 stk::util::Parameter ¶m = params.get_param(parameterName) ;
132 stk::util::Parameter &gold_parameter =

133 gold_params.get_param(parameterName) ;

134 validate_parameters_equal_value (param, gold_parameter);

127

135 }
136
137 std::vector<std::string> globalNamesOnFile;

138 stkIo.get_global_variable_names (globalNamesOnFile);
139 ASSERT_EQ (param_count, globalNamesOnFile.size());
140 }

141 Lot

142 // CLEAN UP

143 unlink (file_name.c_str());

144 }

145

4.1.31 Writing global variables automatically

This example is similar to the previous one except that in this case, the global variables are writ-
ten automatically without calling write_global () for each value. The only changes to the
previous example are:

e replace the call to add_global () withacall to add_global_ref ().

e pass the address of the value instead of just the value as is shown on line 94, and

e replace the code on lines 89 to 97 of the previous example with the call to
process_output_request () on line 99.

Listing 4.36: Automatically writing parameters as global variables

./.[..Jeode/stk/stk_doc_tests/stk_io/writingAndReadingGlobalParametersAuto.cpp

74 // ... Setup is the same as in the previous example

75 // Write output file with all parameters in params list...

76 {

77 stk::i0::StkMeshIoBroker stkIo(communicator);

78 const std::string exodusFileName = "generated:1x1x8";

79 size_t input_index = stkIo.add _mesh_database (exodusFileName, stk::io::READ_MESH) ;
80 stkIo.set_active_mesh (input_index) ;

81 stkIo.create_input_mesh () ;

82 stkIo.populate_bulk_data();

83

84 size_t idx = stkIo.create_output_mesh (file_name,

85 stk::io: :WRITE_RESTART) ;

86

87 stk::util::ParameterMapType: :const_iterator i = params.begin();
88 stk::util::ParameterMapType: :const_iterator iend = params.end();
89 for (; 1 !'= iend; ++1i) {

90 const std::string paramName = (xi).first;

91 //+ NOTE: Need a reference to the parameter.

92 stk::util::Parameter ¶m = params.get_param(paramName) ;

93 //+ NOTE: Calling add_global_ref, passing address of value

94 stkIo.add_global_ref (idx, paramName, ¶m.value, param.type);
95 }

96

97 //+ All writing of the values is handled automatically,

98 //+ do not need to call write_global

99 stkIo.process_output_request (idx, 0.0);

100 }

101 // ... Reading is the same as in previous example

102

128

4.1.32 Heartbeat output

The Heartbeat periodically outputs user-defined data to either a text or binary (exodus) file. The
data are typically defined in stk::util::Parameter objects, but raw integer, double, or
complex values can also be specified. The format of the heartbeat output is customizable and
consists of an optional “legend” followed by one or more lines containing the current value of the
registered variables at each time step. The data can be scalars, vectors, tensors, or other composite
types consisting of integer, real, or complex values.

The currently defined basic formats for heartbeat output are:

CeV Comma-separated values. The output consists of a header line containing
the names of each variable being output. The names are separated by com-
mas. Each data line consists of comma-separated values.

TS_CSV Time-stamped comma-separated values. Similar to the CSV format except
that each line is preceded by a timestamp showing, by default, the time of
day that the line was output in 24-hour format.

TEXT Similar to CSV except that tab characters are used to separate the fields
instead of commas.

TS_TEXT Similar to TEXT except that each line is preceded by a timestamp.

SPYHIS A format that can be plotted by the spyplot graphics program.

BINARY The data will be output to an exodus file as global variables. This is some-
times referred to as a “history” file.

The format is specified as the second argument to the add_heartbeat_output () command
as shown on line 90 in the example below where the TEXT format is selected.

The following example shows the basic usage of the heartbeat capability. In the initialization
section, the parameters and their values are defined. Note that in addition to scalar values, vec-
tors of values are also supported. The values to be output to the heartbeat file are defined in
lines 92 to 103. The values are output at line 111. Note that the application does not have
to individually output each value; the heartbeat system does this automatically. The applica-
tion only has to make sure that the correct value is in the parameter.value prior to calling
process_heartbeat_output ().

Listing 4.37: Writing global variables to a Heartbeat file

«/.../code/stk/stk_doc_tests/stk_io/usingHeartbeat.cpp

60 stk::util::ParameterlList params;

62 {

63 LY

64 //+ INITIALIZATION...

65 // Add some params to write and read...

66 params.set_param("PI", -3.14159); // Double
67 params.set_param("Answer", 42); // Integer

69 std: :vector<double> my_vector;
70 my_vector.push_back (2.78);

129

71 my_vector.push_back (5.30);

72 my_vector.push_back (6.21);

73 params.set_param("some_doubles", my_vector); // Vector of doubles
74

75 std::vector<int> ages;

76 ages.push_back (55);

77 ages.push_back (49);

78 ages.push_back (21);

79 ages.push_back (19);

80 params.set_param("Ages", ages); // Vector of integers
81 }

82

83 {

84 /17

85 //+ EXAMPLE USAGE. ..

86 //+ Begin use of stk io heartbeat file...

87 stk::io::StkMeshIoBroker stkIo(communicator);

88

89 //+ Define the heartbeat output to be in TEXT format.

90 size_t hb = stkIo.add_heartbeat_output (file_name, stk::io::TEXT);
91

92 stk::util::ParameterMapType::const_iterator i = params.begin();

93 stk::util::ParameterMapType: :const_iterator iend = params.end();

94 for (; 1 != iend; ++1) {

95 const std::string paramName = (xi).first;

96 //+ NOTE: A reference to the param is needed here.

97 stk::util::Parameter ¶m = params.get_param(paramName) ;

98

99 //+ Tell heartbeat which variables to output at each step...

100 //+ NOTE: The address of the value to be output is needed since the
101 //+ value is output in the process_heartbeat_output call.

102 stkIo.add_heartbeat_global (hb, paramName, ¶m.value, param.type);
103 }

104

105 // Application’s "Execution Loop"

106 int timestep_count = 1;

107 double time = 0.0;

108 for (int step=1; step <= timestep_count; step++) {

109 //+ Now output the global variables...

110 //+ NOTE: All registered global values automatically output.
111 stkIo.process_heartbeat_output (hb, step, time);

12 }

113 }

If the stk::i0:: TEXT argument to the add_heartbeat_output () function is changed to
stk: :io: :BINARY, then the code will output a binary “history” file instead of a text-based file.
Similarly for the other formats described above.

4.1.32.1 Change output precision

The default precision of the floating point values written by heartbeat to the non-binary formats is
five which gives a number of the form *“-1.12345e+00”. To change the precision, the application
defines the “PRECISION” property prior to creating the heartbeat output. The lines below show
how this is done and also select the CSV format. These lines would replace line 90 in the previous
example.

Listing 4.38: Writing global variables to a Heartbeat file in CSV format with extended precision

.J.[..Jcode/stk/stk_doc_tests/stk _io/usingHeartheatCSV ChangePrecision.cpp

130

92 //+ Output should have 10 digits of precision (1.0123456789e+00)

93 //+ default precision is 5 digits (1.012345e+00)

94 Ioss::PropertyManager hb_props;

95 hb_props.add(Ioss::Property ("PRECISION", 10));

96

97 //+ Define the heartbeat output and the format (CSV)

98 size_t hb =

99 stkIo.add_heartbeat_output (file_name, stk::io0::CSV, hb_props);

100

4.1.32.2 Change field separator

Other customizations of the output are also possible. The example below shows the lines that
would be changed in order to use a vertical bar “—" as the field separator in the TEXT format.

Listing 4.39: Writing global variables to a Heartbeat file with a user-specified field separator

.1 Jeode/stk/stk_doc_tests/stk_io/usingHeartbeatOverrideSeparator.cpp

92 //+ Use vertical bar as field separator

93 Ioss::PropertyManager hb_props;

94 hb_props.add(Ioss::Property ("FIELD_SEPARATOR", " | "));

95 size_t hb =

96 stkIo.add_heartbeat_output (file_name, stk::io::TEXT, hb_props);

97

4.1.33 Miscellaneous capabilities

This section describes how to perform some functions that are useful, but don’t fit into any of the
previous sections.

4.1.33.1 Add contents of a file and/or strings to the information records of a database

The first example shows how to embed the contents of a file into the information records of a
results or restart output database. This is done on line 93. This is often useful since it then provides
some documentation internal to the database itself showing the commands that were given to the
application that created the database. The example also shows (see line 97) how to add a string as
an additional information record.

In a parallel run in which the file-per-processor output is being used, the information records are
only written to the file on processor 0.

Listing 4.40: Adding the contents of a file to the information records of an output database

.J./.Jeode/stk/stk_doc_tests/stk_io/addFileContentsToOutputDatabase.cpp

60 Ve
61 //+ SETUP
62 std::string input_file = "application_input_file.i";

131

63 std::string infol ("This is the first line of the input file.");

64 std::string info2 ("This is the second line of the input file. "

65 "It is longer than 80 characters, so it should be wrapped.");
66 std::string info3("This is the third line of the input file.");

67 std::string info4 ("This is the fourth and last line of the input file.");
68

69 std::string additional_info_record = "This is an info record added explicitly,"
70 " not from the input file.";

71 {

72 std::ofstream my_file(input_file.c_str());

73 my_file << infol <<"\n" << info2 <<"\n" << info3 <<"\n" << info4 <<"\n";
74 }

75

76 {

77 //

78 //+ EXAMPLE

79 stk::io::StkMeshIoBroker stkIo(communicator);

80 size_t ifh = stkIo.add_mesh_database ("9x9x9|shell:xyzXYZ", "generated",
81 stk::i0::READ_MESH) ;

82 stkIo.set_active_mesh (ifh);

83 stkIo.create_input_mesh () ;

84 stkIo.populate_bulk_data();

85

86 L BUEBTt.s c

87 size_t fh = stkIo.create_output_mesh(filename,

88 stk::io0: :WRITE_RESULTS) ;

89 Ioss::Region xio_reg = stkIo.get_output_io_region (fh).get();

9
91 //+ Add the data from the file "application_input_ file.i"

92 //+ as information records on this file.

93 io_reg->property_add(Ioss::Property ("input_file name", input_file));
94

95 //+ Add the data from the "additional info_record" vector as

96 //+ information records on this file.

97 io_reg->add_information_record(additional_info_record);

98

99 stkIo.write_output_mesh (fh);

100 // ... Verification deleted

101

4.1.33.2 Tell database to overwrite steps instead of adding new steps

The next example shows how to tell an output database (typically restart) to only store a single
time step and overwrite this time step each time that a new step is added to the database. This
is done by setting the cycle count on the database to one as is shown on line 82. The reason an
application would want to do this is to minimize the size of a restart file, but still output restart data
periodically in case the analysis job crashes for some reason.

For more robustness, an application might have two or more restart databases active and cycle
writing to each database in turn. That is, if the application had two restart databases and it was
writing every 0.1 seconds, it would write to the first database at times 0.1, 0.3, 0.5, 0.7; and it
would write to the second database at times 0.2, 0.4. 0.6, 0.8. In this scenario, a crash during the
output of one database would not affect the other database, so there should always be a database
containing valid data.

Listing 4.41: Overwriting time steps instead of adding new steps to a database

.J.[.Jcode/stk/stk_doc_tests/stk_io/singleStepOnRestart.cpp

132

90

93
94

95

// ... Setup deleted

L

// EXAMPLE USAGE...

// Create a restart file,

size_t fh = stkIo.create_output_mesh(filename,
stk::i0::WRITE_RESTART) ;

stkIo.add_field(fh, field);

//+ Set the cycle count to 1. This will result in a maximum

//+ of one step on the output database -- when a new step is

//+ added, it will overwrite the existing step.
stkIo.get_output_io_region (fh)->get_database () ->set_cycle_count (1);

// Write multiple steps to the restart file.

for (size_t step=0; step < 3; step++) {
double time = step;
stkIo.begin_output_step (fh, time);
stkIo.write_defined_output_fields (fh);
stkIo.end_output_step(fh);

}

//+ At this point, there should only be a single state on the
//+ restart database. The time of this state should be 2.0.
// ... Verification deleted

The cycle count can be set to any value. In general, if the “analysis” step is “AS” and the cycle
count is “CYCLE”, then the database step is given by “AS mod CYCLE” where “mod” is the
remainder when AS is divided by CYCLE.

133

4.1.34 How to create and write a nodeset and sideset with fields using STK
Mesh

Listing 4.42: Example of creating and writing a nodeset with fields.

/.1 Jeode/stk/stk_doc_tests/stk_io/howToCreateAndWriteNodesetOrSideset.cpp

170 TEST_F (MeshWithNodeset, createAndWriteNodesetWithField)
171 {

172 if (stk::parallel_machine_size (get_comm()) == 1)

173 {

174 std::string nodesetName ("nodelist_1");

175 stk::mesh::Part& nodesetPart = get_meta().declare_part (nodesetName,

stk::topology: :NODE_RANK) ;
176

177 const std::string fieldName = "nodesetField";

178 const unsigned fieldLength = 1;

179 double initialValue[fieldLength];

180 for (unsigned count=0; count<fieldLength; ++count)

181 initialValue[count] = 0.;

182 const int numStates = 1;

183 stk::mesh::Field<double, stk::mesh::Cartesian> &newField =

184 get_meta () .declare_field<stk::mesh::Field<double, stk::mesh::Cartesian> >(
185 stk::topology: :NODE_RANK, fieldName, numStates);

186

187 stk::mesh::put_field(newField, nodesetPart, fieldLength, initialValue);

188

189 setup_mesh ("generated:1x1x1", stk::mesh::BulkData::AUTO_AURA);

190

191 stk::mesh::Entity nodel = get_bulk() .get_entity(stk::topology::NODE_RANK, 1);
192

193 get_bulk () .modification_begin();

194 get_bulk () .change_entity_parts(nodel, stk::mesh::ConstPartVector{&nodesetPart});
195 get_bulk () .modification_end();

196

197 stk::io::put_io_part_attribute (nodesetPart);

198

199 verify_field_is_valid(get_meta (), nodel, initialValue, fieldLength, fieldName);
200 verify_nodesetField_in_file(get_bulk (), nodel, nodesetName, fieldName);

201 }

202}

Listing 4.43: Example of creating and writing a sideset with fields.

«/..[..Jeode/stk/stk_doc_tests/stk_io/howToCreateAndWriteNodesetOrSideset.cpp

219 TEST_F (MeshWithSideset, createAndWriteSidesetWithField)
220 |

221 if (stk::parallel machine_size (get_comm()) == 1)

222 {

223 std::string sidesetName ("surface_1");

224 stk::mesh::Parts& sidesetPart = get_meta().declare_part (sidesetName,
get_meta () .side_rank());

225

226 const std::string fieldName = "sidesetField";

227 const unsigned fieldLength = 1;

228 double initialvValue[fieldLength];

229 for (unsigned count=0; count<fieldLength; ++count)

230 initialvalue[count] = 1.;

231 const int numStates = 1;

232 stk::mesh::Field<double, stk::mesh::Cartesian> &newField =

233 get_meta () .declare_field<stk::mesh::Field<double, stk::mesh::Cartesian> >(

234 get_meta () .side_rank (), fieldName, numStates);

235

236 stk::mesh::put_field(newField, sidesetPart, fieldLength, initialValue);

134

245
246
247
248
249
250
251

252

setup_mesh ("generated:1x1x1", stk::mesh::BulkData::AUTO_AURA);

stk::mesh::Entity eleml = get_bulk().get_entity(stk::topology::ELEM_RANK, 1);
unsigned sideOrdinal = 0;

get_bulk () .modification_begin () ;

stk::mesh::Entity side = get_bulk() .declare_element_side (eleml, sideOrdinal,
stk::mesh::PartVector{&sidesetPart});

get_bulk () .modification_end();

stk::io::put_io_part_attribute (sidesetPart);

verify_ field_is_valid(get_meta (), side, initialValue, fieldLength, fieldName);
verify_sidesetField _in_file(get_bulk (), side, sidesetName, fieldName) ;

135

This page intentionally left blank.

Chapter 5

STK Search

The STK Search module provides a geometric proximity box-box search using various methods as
documented below in Listings 5.1 - 5.2.

5.1 STK Search: usage examples

STK Search takes two lists of bounding volumes and finds intersections between them. It is gen-
erally more efficient to have the first list be larger than the second list.

5.1.1 Using Boost R-tree bounding volume search

Listing 5.1: Using the bounding volume search with the Boost R-tree method

.J.[.Jeode/stk/stk_doc_tests/stk_search/boundingBoxSearch3D.cpp

5.1.2 Search method options

The third argument to coarse_search (. .) selects the spatial index implementation used in
the local search portion of the search, i.e, after the implementation does any necessary ghosting.

Listing 5.2 shows the list of possible search methods.

Listing 5.2: Search method options ../../../code/stk/stk_search/stk_search/SearchMethod.hpp

BOOST_RTREE,
KDTREE,
MORTON_LINEARIZED_BVH // Coming soon!

The BOOST_RTREE and the KDTREE methods are recommended over OCTREE for perfor-
mance. BOOST_RTREE uses the boost : :geometry::index: : rtree spatial index from
the Boost.Geometry library. KDTREE employs a bounding-volume hierarchy (BVH) based on
k — d-trees [3, 4]. The KDTREE implementation is native and only has a Kokkos dependency.
The structure of the BVH corresponds to that of a kK — d-tree computed for the centroids of one

137

set of input boxes. Bounding boxes are computed at the nodes of the tree to make it into a BVH.
The KDTREE implementation can take advantage of OpenMP parallelism.! Performance bene-
fits beyond two threads is quite limited, so far, as threading has not been fully integrated into the
coarse_search implementation.

Currently, the spatial indexing data structures are computed on the fly, but in the future it is possible
that the stk: :search API will be extended to support some form of re-use or incremental
update.

"Must be built with OpenMP support, and OpenMP threading must be available at runtime.

138

Chapter 6

STK Util

The STK Util module provides many utility capabilities that are used within STK modules and
STK-based applications. The categories of utilities include error-handling, exception handling,
execution tracing, application argument processing, parallel operations, timing, string operations,
etc. These utilities are candidates for future independent STK modules.

6.1 Using the Diagnostic Timers

The following tests show the basic usage of the Diagnostic Timers.

£ W oW

66

#include
#include
#include
#include

namespac

{

3 #if defi

const
#else

const
#endif

void doW
{
1l

}

TEST (Stk
{
stk:
stk

{

Listing 6.1: Diagnostic Timers ../../../code/stk/stk_doc_tests/stk_util/TimerHowTo.cpp

<gtest/gtest.h>

<stk_util/diag/PrintTimer.hpp>

<stk_util/diag/Timer.hpp>
<stk_unit_test_utils/comparison/stringAndNumberComparisons.hpp>

e

ned (NDEBUG)
double tolerance

I
(@
e
[=

double tolerance = 0.25;

ork ()

leep(leb5);

DiagTimerHowTo, useTheRootTimer)

:diag::TimerSet enabledTimerSet (0);
:diag::Timer rootTimer = createRootTimer ("totalTestRuntime", enabledTimerSet) ;

stk::diag::TimeBlock totalTestRuntime (rootTimer) ;
doWork () ;

std::ostringstream outputStream;

bool printTimingsOnlySincelLastPrint = false;

stk::diag::printTimersTable (outputStream, rootTimer, stk::diag::METRICS_ALL,
printTimingsOnlySinceLastPrint);

139

67
68
69
70

90
91
%2
93
94
95
96
97
98

99
100
101
102
103
104
105

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

123

124
125
126
127
128
129

130

std::string expectedOutput =
Timer Count CPU Time Wall Time

totalTestRuntime 1 SKIP SKIP 0.100 SKIP

2 Took 0.0001 seconds to generate the table above.

".
’

EXPECT_TRUE (unitTestUtils::areStringsEqualWithToleranceForNumbers (expectedOutput,
outputStream.str (), tolerance));

stk::diag::deleteRootTimer (rootTimer) ;

TEST (StkDiagTimerHowTo, useChildTimers)
{
enum {CHILDMASK1l = 1, CHILDMASK2 = 2};
stk::diag::TimerSet enabledTimerSet (CHILDMASK1 | CHILDMASK2);
stk::diag::Timer rootTimer = createRootTimer ("totalTestRuntime", enabledTimerSet);
rootTimer.start ();

stk::diag::Timer childTimerl ("childTimerl", CHILDMASK1l, rootTimer);
stk::diag::Timer childTimer2 ("childTimer2", CHILDMASK2, rootTimer);

stk::diag::TimeBlock timeStuffInThisScope (childTimerl);
stk::diag::TimeBlock timeStuffInThisScopeAgain (childTimer2);
doWork () ;

std::ostringstream outputStream;

bool printTimingsOnlySincelLastPrint = false;

stk::diag::printTimersTable (outputStream, rootTimer, stk::diag::METRICS_ALL,
printTimingsOnlySincelLastPrint);

stk::diag::TimeBlock timeStuffInThisScope (childTimerl);
doWork () ;

stk::diag::printTimersTable (outputStream, rootTimer, stk::diag::METRICS_ALL,
printTimingsOnlySincelLastPrint);

std::string expectedOutput =

Timer Count CPU Time Wall Time
totalTestRuntime 1 SKIP SKIP 0..:1.00: SKLP
childTimerl 1 SKIP SKIP 0.100 SKIP
childTimer2 1 SKI1IP SKIP 0.100 SKIP

Took 0.0001 seconds to generate the table above.

Timer Count CPU Time Wall Time
totalTestRuntime 1 SKIP SKIP 0.200 SKIP
childTimerl 2 SKIP SKIP 0.200 SKIP
childTimer2 1 8KIP SKIP 0.100 SKIP

Took 0.0001 seconds to generate the table above.

r
EXPECT_TRUE (unitTestUtils::areStringsEqualWithToleranceForNumbers (expectedOutput,
outputStream.str (), tolerance));

stk::diag::deleteRootTimer (rootTimer) ;

TEST (StkDiagTimerHowTo, disableChildTimers)

{
enum {CHILDMASK1l = 1, CHILDMASKZ = 2};

140

—

— -

" T e e e

P

131 stk::diag::TimerSet enabledTimerSet (CHILDMASK2) ;

132 stk::diag::Timer rootTimer = createRootTimer ("totalTestRuntime", enabledTimerSet);

133 rootTimer.start () ;

134

135 stk::diag::Timer disabledTimer ("disabledTimer", CHILDMASKl, rootTimer);

136 stk::diag::Timer enabledTimer ("enabledTimer", CHILDMASK2, rootTimer);

137

138 {

139 stk::diag::TimeBlock timeStuffInThisScope (disabledTimer) ;

140 stk::diag::TimeBlock timeStuffInThisScopeAgain (enabledTimer);

141 doWork () ;

142 }

143

144 std::ostringstream outputStream;

145 bool printTimingsOnlySincelLastPrint = false;

146 stk::diag::printTimersTable (outputStream, rootTimer, stk::diag::METRICS_ALL,
printTimingsOnlySincelLastPrint);

147

148 {

149 stk::diag::TimeBlock timeStuffInThisScope (disabledTimer) ;

150 doWork () ;

151 }

152

153 stk::diag::printTimersTable (outputStream, rootTimer, stk::diag::METRICS_ALL,
printTimingsOnlySincelLastPrint);

154

155 std::string expectedOutput = " \

156 Timer Count CPU Time Wall Time \

157 == e~ e s = e \

158 totalTestRuntime 1 SKIP SKIP 0.100 SKIP \

159 enabledTimer 1 SKIP SKIP 0.100 SKIP \

160 \

161 Took 0.0001 seconds to generate the table above. \

162 Timer Count CPU Time Wall Time \

o B e o T e T i e \

164 totalTestRuntime 1 SKIP SKIP 0.200 SKIP \

165 enabledTimer 1 SKIP SKIP 0.100 SKIP S

166 \

167 Took 0.0001 seconds to generate the table above. \

168 L

169 EXPECT_TRUE (unitTestUtils: :areStringsEqualWithToleranceForNumbers (expectedOutput,
outputStream.str (), tolerance));

170

171 stk::diag::deleteRootTimer (rootTimer) ;

172}

173

174}

Listing 6.2: Diagnostic Timers in Parallel ../../../code/stk/stk_doc_tests/stk_util/TimerHowToParallel.cpp

35 #include <gtest/gtest.h>

36 #include <stk_util/diag/PrintTimer.hpp>

37 #include <stk_util/diag/Timer.hpp>

38 #include <stk_unit_test_utils/comparison/stringAndNumberComparisons.hpp>

Bt

namespace
41 {

43 const double tolerance = 0.10;

45 void doWork ()

46 |

47 ::usleep(led);
48 '}

w

TEST (StkDiagTimerHowTo, useTimersInParallel)

141

52 MPI_Comm communicator = MPI_COMM_WORLD;

53 int numProcs = -1;

54 MPI_Comm_size (communicator, &numProcs);

55 if (numProcs == 2)

56 {

57 enum {CHILDMASK1l = 1};

58 stk::diag::TimerSet enabledTimerSet (CHILDMASK1) ;

59 stk::diag::Timer rootTimer = createRootTimer ("totalTestRuntime", enabledTimerSet);

60 rootTimer.start ();

62 stk::diag::Timer childTimerl ("childTimerl", CHILDMASK1l, rootTimer);

63

64 {

65 stk::diag::TimeBlockSynchronized
timerStartSynchronizedAcrossProcessors (childTimerl, communicator);

66 doWork () ;

67 }

68

69 std::ostringstream outputStream;

70 bool printTimingsOnlySincelLastPrint = false;

71 stk::diag::printTimersTable (outputStream, rootTimer, stk::diag::METRICS_ALL,
printTimingsOnlySinceLastPrint, communicator);

73 int procId = -1;

74 MPI_Comm_rank (communicator, &procId);

75 if (procId == 0)

76 {

77 std::string expectedOutput = " \
78 CPU Time CPU Time CPU Time %
79 Wall Time Wall Time Wall Time 5
80 Timer Count Sum (% of System) Min (% of System) Max (% of System) %
81 Sum (% of System) Min (% of System) Max (% of System) \
82 SKIP ————— ——— s SKIP SKIP SKIP ————————————————— e \
83 totalTestRuntime 2 SKIP' SKIB SKIP SKIP SKIP SKIP \
84 0.200 SKIP 0.100 SKIP 0.100 SKIP \
85 childTimerl 2 SKIP SKIP SKIP SKIP SKIP SKIP \
86 0.200 SKIP 0.100 SKIP 0.100 SKIP \
87 \
88 Took SKIP seconds to generate the table above. \

89 "3

90 EXPECT_TRUE (unitTestUtils::areStringsEqualWithToleranceForNumbers (expectedOutput,
outputStream.str (), tolerance));

91 }

92

93 stk::diag: :deleteRootTimer (rootTimer) ;

94 }

95 }

96

97 }

The line at the end that prints the time to generate the table is not that useful for small or medium
sized runs, but at large numbers of processors, it can take a non-trivial amount of time to gather the
timing data from all processors. Knowing this time can help you understand the overall problem
runtime.

142

6.2 Communicating with other MPI processors

Listing 6.3 shows an example of how to pass a floating point value(double) to all other processors.
Note that there currently is a two phase process for doing this. In phase 1, the data that is to be
sent is used to size the communication buffer which will be sent to that processor. Then at the end
of phase 1, the buffer allocation call is made. Then, in phase 2, the same packing of buffers is
done again, and in this phase, the communicate call is made. Finally, the buffer for each receive is
obtained and unpacked in the order in which it was packed. Here, the assumption is that only one
value is received from each processor.

Note, that the call to allocate_buffers takes a parameter which is usually 1/4 of the total number
of processors. Inside the communicate method, the number of max processors to communicate
with is calculated, and if that number is less than a certain threshold, a sparse communication
method is chosen, otherwise a dense communication method is chosen. The parameter sent to
allocate_buffers is that threshold value.

Listing 6.3: Example showing how to communicate with other processors

./.[..[code/stk/stk_doc_tests/stk_util/CommSparseHowTo.cpp

45 TEST (ParallelComm, HowToCommunicateOneValue)
46 {

47 MPI_Comm comm = MPI_COMM_WORLD;

48 stk::CommSparse commSparse (comm) ;

49

50 int myProcId = commSparse.parallel_rank();
51 int numProcs = commSparse.parallel_size();
52

53 double sendSomeNumber = 100-myProcId;

54

55 for (int phase = 0; phase < 2; ++phase)

56 {

57 for (int proc=0;proc<numProcs;proc++)
58 {

59 if (proc != myProcId)

60 {

61 stk::CommBuffer& proc_buff = commSparse.send_buffer (proc);
62 proc_buff.pack<double> (sendSomeNumber) ;
63 }

64 }

65 if (phase == 0)

66 {

67 commSparse.allocate_buffers();

68 }

69 else

70 {

71 commSparse.communicate () ;

72 }

73 }

74

75

76 for (int proc=0;proc<numProcs;proc++)

77 {

78 if (proc != myProcId)

79 {

80 stk::CommBuffer& dataReceived = commSparse.recv_buffer (proc);
81 double val = -1;

82 dataReceived.unpack (val) ;

83 EXPECT_EQ(100-proc, wval);

84 }
85 }

143

86}

Listing 6.4 shows how to receive an unknown amount of data from a processor.

Listing 6.4: Example showing how to communicate an arbitrary amount of data with other processors

.. Jeode/stk/stk_doc_tests/stk_util/CommSparseHowTo.cpp

89 TEST (ParallelComm, HowToCommunicateAnArbitraryNumberOfValues)
90 {

91 MPI_Comm comm = MPI_COMM_WORLD;

92 stk::CommSparse commSparse (comm) ;

93

94 int myProcId = commSparse.parallel_rank();
95 int numProcs = commSparse.parallel size();
96

97 double sendSomeNumber = 100-myProcId;

98

99 for (int phase = 0; phase < 2; ++phase)

100 {

101 for (int proc=0;proc<numProcs;proc++)
102 {

103 if (proc != myProcId)

104 {

105 stk::CommBuffer& proc_buff = commSparse.send_buffer (proc);
106 for (int i=0;i<myProcId;i++)
107 {

108 proc_buff.pack<double> (sendSomeNumber+i) ;
109 }

110 }

111 }

112 if (phase == 0)

113 {

114 commSparse.allocate_buffers();

115 }

116 else

117 {

118 commSparse.communicate () ;

119 }

120 }

121

122

123 for (int

procFromWhichDataIsReceived=0;procFromiWhichDataIsReceived<numProcs;procFromWhichDataIsReceived++)
124 {

125 if (procFromWhichDataIsReceived != myProcId)
126 {
127 stk::CommBuffer& dataReceived =
commSparse.recv_buffer (procFromWhichDataIsReceived) ;
128 int numItemsReceived = 0;
129 while (dataReceived.remaining())
130 {
131 double val = -1;
132 dataReceived.unpack (val) ;
133 EXPECT_EQ (100-procFromWhichDataIsReceived+numItemsReceived, val);
134 numItemsReceived++;
135 }
136 int goldNumItemsReceived = procFromWhichDataIsReceived;
137 EXPECT_EQ (goldNumItemsReceived, numItemsReceived);
138 }
139 }
140 '}

144

6.3 Using the STK Scheduler

The STK Scheduler provides a capability for scheduling an operation, for example output, that will
happen at various periods throughout an analysis. The application can create a scheduler and then
set the schedule based on time intervals, explicit times, step intervals, and explicit steps. Multiple
scheduling intervals can be specified with different scheduling in each interval. The application
can then query the scheduler throughout the analysis and determine whether the scheduled activity
should be performed at the current analysis time and step.

This section describes two methods of using the STK Scheduler tool: time-based and step-based
scheduling. Examples of time-based and step-based scheduling are provided below to show the
behavior of the two methods and the combinations thereof. The figures at the end of the section
show differences between time-based and step-based scheduling. One main difference is that with
time-based scheduling, the is_it_time () function will return ‘true” the first time it is called
per time period, while the step-based scheduling will return “true” only if the step number is equal
to a step period.

In addition to time-based and step-based scheduling, the STK Scheduler state can also be modified
via operating system signals and explicit application control; examine the source code to see these
additional capabilities.

Listing 6.5: Using the scheduler ../../../code/stk/stk_doc_tests/stk_util/usingScheduler.cpp

36 #include <gtest/gtest.h>
37 #include <stk_util/environment/Scheduler.hpp>

39 namespace

40 {

41 TEST (StkUtilTestForDocumentation, TimeBasedScheduling)
42 {

43 stk::util::Scheduler scheduler;

44

45 const stk::util::Time startTime = 0.0;

46 const stk::util::Time timelInterval = 1.0;

47 scheduler.add_interval (startTime, timelInterval);

48

49 stk::util::Step timeStep = 0;

50 EXPECT_TRUE (scheduler.is_it_time (0.0, timeStep++));
51 EXPECT_FALSE (scheduler.is_it_time (0.5, timeStep++));
52 EXPECT_TRUE (scheduler.is_it_time (1.0, timeStep++));

53 }

55 TEST (StkUtilTestForDocumentation, TimeBasedSchedulingWithTerminationTime)
56 {
57 stk::util::Scheduler scheduler;

59 const stk::util::Time startTime = 2.0;
60 const stk::util::Time timeInterval = 10.0;

61 scheduler.add_interval (startTime, timelInterval);

63 const stk::util::Time terminationTime = 8.2;
64 scheduler.set_termination_time (terminationTime) ;

66 stk::util::Step timeStep = 0;

67 EXPECT_FALSE (scheduler.is_it_time (startTime - 1.0, timeStep++));

68 const stk::util::Time firstTimeAfterStartTime = terminationTime-0.1;

69 EXPECT_TRUE (scheduler.is_it_time (firstTimeAfterStartTime, timeStep++));
70 const stk::util::Time firstAfterTermination = terminationTime+0.1;

145

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

122

TEST (StkUtilTestForDocumentation,

{

TEST (StkUtilTestForDocumentation,

{

EXPECT_TRUE (scheduler.is_it_time (firstAfterTermination,

EXPECT_FALSE (scheduler.is_it_time (terminationTime+0.2,

stk::util::Scheduler scheduler;

const stk::util::Step startStep = 0;

const stk::util::Step stepInterval 4;

StepBasedScheduler)

scheduler.add_interval (startStep, stepInterval);

const stk::util::Time dt = 0.1;

timeStep++));
timeStep++));

for (stk::util::Step timeStep=0;timeStep<100;timeStep+=3)

{
stk::util::Time time = timeStep=*dt;

bool check = scheduler.is_it_time (time,

[

if (timeStep % steplInterval == 0)
{
EXPECT_TRUE (check) ;
}
else
{
EXPECT_FALSE (check) ;

stk::util::Scheduler scheduler;
const stk::util::Time startTimel = 0.0;
const stk::util::Time deltal = 0.1;

scheduler.add_interval (startTimel, deltal);

const stk::util::Time startTime2 = 0.9;
const stk::util::Time delta2 = 0.3;

scheduler.add_interval (startTime2, delta2);

stk::util::Step timeStep = O;

timeStep);

EXPECT_TRUE (scheduler.is_it_time (0.0, timeStep++));
timeStep++));

EXPECT_FALSE (scheduler.is_it_time (0.07,
EXPECT_TRUE (scheduler.is_it_time (0.14,
EXPECT_TRUE (scheduler.is_it_time (0.62,

EXPECT_TRUE (scheduler.is_it_time (0.6999999,

EXPECT_FALSE (scheduler.is_it_time (0.77,

EXPECT_FALSE (scheduler.is_it_time (0.97,
EXPECT_FALSE (scheduler.is_it_time (1.04,
EXPECT_FALSE (scheduler.is_it_time(1.11,
EXPECT_TRUE (scheduler.is_it_time(1.27,

timeStep++));
timeStep++));

TimeBasedSchedulerWithTwoTimeIntervals)

timeStep++));
timeStep++));
EXPECT_TRUE (scheduler.is_it_time (0.9, timeStep++));

timeStep++));
timeStep++));
timeStep++));

timeStep++));

146

Delta 1 Delta 2

A 4

Start Time 1 Start Time 2

Figure 6.1: Example time-based scheduler: Using two intervals of different sizes. The first interval
spans the time from 0.0 to 0.9 with a time-delta of 0.1; the second interval continues from time 0.9
to the end of the analysis with a time-delta of 0.3.

1,2,3,4,5,6,7,8,9 10 11
O:O—o-|——:—<>|——|—<>——|-—:—<>+—o:9—o—<>—c1>}2——o—<>z|-5—o—>

True
¢ False
True within tolerance

Figure 6.2: Example time-based scheduler: The first call to is_it_time () per interval (within
a tolerance) will return true. The diamond shapes show the sequence of calls and the color of the
diamond signifies whether the function returns true (green or yellow) or false (red). The time-delta
and interval settings are the same as in the previous figure.

Step Increment = 4 Step Increment = 2

TrtIJe
& False
(\
| | | | 2 | 2 | o
I i i ; I i i i I | v I A | -
0 1 2 3 4 5 6 7 8 9 11 13
4 4
Start Step 1 Start Step 2

Figure 6.3: Example step-based scheduler: The call to is_it_time () will return true on the
interval boundary aligned with the step increment. The diamond shapes show the sequence of calls
and the color of the diamond signifies whether the function returns true (green) or false (red). This
scheduler has two intervals; the first spans steps 0 to 9 with a step-increment of 4 followed by an
interval with a step-increment of 2.

147

6.4 Parameters — type-safe named storage of any variable type

The Parameter class provides a type-save mechanism for storing any variable. A variable or
vector of variables can be stored in a ParameterList and later retrieved by name. The param-
eters can also be read from and written to mesh and results files as demonstrated in Sections 4.1.30
and 4.1.31.

The supported variable types that can currently be stored in a Parameter object are 32-bit inte-
gers, 64-bit integers, doubles, floats, and std::strings and vectors of those types. If an additional
type is required, it can be added fairly easily and non-supported types can be stored with reduced
functionality.

The first example sets up some variables of various types for use in the following parameter exam-
ples.

Listing 6.6: Parameters: Data for use in the following examples

./.[.Jeode/stk/stk_doc_tests/stk_util/parameters.cpp

51 //+ INITIALIZATION

52 std::vector<std::string> expected_name;

53 std::vector<stk::util::ParameterType::Type> expected_type;

54

55 //+ Scalar values of type double, float, int, int64_t, and string
56 double pi = 3.14159;

57 float e = 2.71828;

58 int answer = 42;

59 int64_t big_answer = 42000000000001;

60 std::string team_name = "STK Transition Team";

6l

62 expected_name.push_back ("PI");

63 expected_type.push_back (stk::util::ParameterType: :DOUBLE) ;

64 expected_name.push_back ("E") ;

65 expected_type.push_back (stk::util::ParameterType: :FLOAT) ;

66 expected_name.push_back ("Answer") ;

67 expected_type.push_back (stk::util::ParameterType: : INTEGER) ;

68 expected_name.push_back ("Answer_64");

69 expected_type.push_back (stk::util::ParameterType: :INT64);

70 expected_name.push_back ("TeamName") ;

71 expected_type.push_back (stk::util::ParameterType: :STRING) ;

72

73 //+ vector of doubles

74 std: :vector<double> my_double_vector;

75 my_double_vector.push_back (2.78); my_double_vector.push_back(5.30);
76 my_double_vector.push_back (6.21);

77 expected_name.push_back ("some_doubles") ;

78 expected_type.push_back (stk::util::ParameterType: :DOUBLEVECTOR) ;
79

80 //+ vector of floats

81 std: :vector<float> my_float_vector;

82 my_float_vector.push_back(194.0); my_float_vector.push_back(-194.0);
83 my_float_vector.push_back(47.0); my_float_vector.push_back(92.0);
84 expected_name.push_back ("some_floats");

85 expected_type.push_back (stk::util::ParameterType: :FLOATVECTOR) ;

86

87 //+ vector of ints

88 std: :vector<int> ages;

89 ages.push_back (55); ages.push_back(49); ages.push_back(21l); ages.push_back(19);
90 expected_name.push_back ("Ages") ;

91 expected_type.push_back (stk::util::ParameterType: : INTEGERVECTOR) ;

92

148

93 //+ vector of int64_ts

94 std::vector<int64_t> ages_64;

95 ages_64.push_back (55); ages_64.push_back(49); ages_64.push_back (21);
ages_64.push_back (19);

96 expected_name.push_back ("Ages_64") ;

97 expected_type.push_back (stk::util::ParameterType: :INT64VECTOR) ;

98

99 //+ vector of strings

100 std: :vector<std::string> names;
101 names.push_back ("greg"); names.push_back ("chloe"); names.push_back ("tuffy");

102 names.push_back ("liberty"); names.push_back ("I have spaces");
103 expected_name.push_back ("Names") ;
104 expected_type.push_back (stk::util::ParameterType: :STRINGVECTOR) ;

105

This example illustrates how to create a ParameterList and add variables to it. Note that a
single ParameterList can store multiple variables of multiple types.

Listing 6.7: Parameters: Defining ../../../code/stk/stk_doc_tests/stk _util/parameters.cpp

108 //+ Define parameters...

109 stk::util::ParameterList params;

110 params.set_param("PI", pi);

111 params.set_param("E", e);

112 params.set_param("Answer", answer) ;

113 params.set_param("Answer_64", big_answer);

114 params.set_param("TeamName", team_name) ;

115 params.set_param("some_doubles", my_double_vector);
116 params.set_param("some_floats", my_float_vector);
117 params.set_param("Ages", ages) ;

118 params.set_param("Ages_64", ages_64);

119 params.set_param("Names", names) ;

120

Once the parameters have been added to a ParameterList, they can be printed or accessed by
various means as shown in the following example.

Listing 6.8: Parameters: Accessing values ../../../code/stk/stk_doc_tests/stk util/parameters.cpp

123 //+ Write parameters to stdout...

124 params.write_parameter_list (std::cout);

125

126 //+ Access parameters by name. ..

127 size_t num_param = expected_name.size();

128 for (size_t 1i=0; i < num_param; i++) {

129 stk::util::Parameter ¶m = params.get_param(expected name[i]);
130 EXPECT_EQ (param.type, expected_typelil]);

131 }

132

133 //+ Extract some parameter values if know type:
134 std::vector<int> pages = params.get_value<std::vector<int> > ("Ages");
135 for (size_t 1=0; 1 < pages.size(); i++) {

136 EXPECT_EQ (pages[i], ages[il);

137 }

138

139 double my_pi = params.get_value<double> ("PI");

140 EXPECT_EQ (my_pi, pi);

141

142 //+ Change value of an existing parameter

143 params.set_value ("Answer", 21);

144

145 int new_answer = params.get_value<int> ("Answer");
146 EXPECT_EQ (new_answer, 21);

149

147
148 {

149 //+ Access a variable of unknown type...

150 //+ The parameter uses boost::any to store the actual value.

151 stk::util::Parameter ¶m = params.get_param("Answer");

152 double value_as_double = 0.0;

153 switch (param.type) {

154 case stk::util::ParameterType: :DOUBLE:

155 value_as_double = boost::any_cast<double> (param.value);

156 break;

157 case stk::util::ParameterType::FLOAT:

158 value_as_double = static_cast<double> (boost::any_cast<float> (param.value));
159 break;

160 case stk::util::ParameterType: :INTEGER:

161 value_as_double = static_cast<double> (boost::any_cast<int> (param.value));
162 break;

163 case stk::util::ParameterType::INT64:

164 value_as_double = static_cast<double> (boost::any_cast<int64_t> (param.value));
165 break;

166 default:

167 std::cerr << "ERROR: I can not convert ’'Answers’ value to a double\n";

168 break;

169 }

170 EXPECT_EQ (static_cast<double> (new_answer), value_as_double);

171 }

172

173 {

174 //+ Access a variable of unknown type without using boost::any cast

175 stk::util::Parameter ¶m = params.get_param("Answer");

176 double value_as_double = 0.0;

177 switch (param.type) {

178 case stk::util::ParameterType: :DOUBLE:

179 value_as_double = params.get_value<double> ("Answer");

180 break;

181 case stk::util::ParameterType: :FLOAT:

182 value_as_double = static_cast<double> (params.get_value<float> ("Answer"));
183 break;

184 case stk::util::ParameterType: :INTEGER:

185 value_as_double = static_cast<double> (params.get_value<int> ("Answer"));
186 break;

187 case stk::util::ParameterType: :INT64:

188 value_as_double = static_cast<double> (params.get_value<inté4_t> ("Answer"));
189 break;

190 default:

191 std::cerr << "ERROR: I can not convert ’'Answers’ value to a double\n";

192 break;

193 }

194 EXPECT_EQ (static_cast<double> (new_answer), value_as_double);

195 }
196
197

This example shows how the Parameter class deals with errors such as accessing nonexistent
parameters or specifying the incorrect type for a parameter.

Listing 6.9: Parameters: Dealing with errors ../../../code/stk/stk_doc_tests/stk_util/parameters.cpp

200 //+ If the requested parameter does not exist,

201 //+ an error message is printed to stderr and an invalid

202 //+ parameter object is returned

203 stk::util::Parameter no_exist = params.get_param("DoesNotExist");
204 EXPECT_EQ(stk::util::ParameterType: :INVALID, no_exist.type);

205

206 //+ In this method of requesting a parameter, no error

207 //+ message is printed if the parameter doesn’t exist and

150

208 //+ instead the returned iterator is equal to the end of the

209 //+ parameter list.

210 stk::util::ParameterMapType::iterator it = params.find("DoesNotExist");
211 EXPECT_TRUE (it == params.end());

212

213 //+ If the value of a non-existant parameter is requested,

214 //+ an error message is printed and the value 0 is returned.

215 double invalid_value = params.get_value<double> ("DoesNotExist");

216 EXPECT_EQ (0.0, invalid_value);

217

218 //+ If the parameter types do not match, an error message is

219 //+ printed and the value 0 of the requested type is returned.

220 int invalid = params.get_value<int> ("PI");

221 EXPECT_EQ (0, invalid);

339

223 //+ If the parameter types do not match, an error message is

224 //+ printed and an empty vector of the requested type is returned.

225 std::vector<double> pies = params.get_value<std::vector<double> > ("PI");
226 EXPECT_EQ(Ou, pies.size());

227

Although it is best to use a ParameterList with the supported variable types, it can also be
used to store types that it does not officially support. The following example shows this capability
by storing a value of std: : complex type. Note that although an unsupported type can be stored
and retrieved from a ParameterList, it cannot be read from or written to a mesh or results file
or printed using the Parameter system.

Listing 6.10: Parameters: Storing unsupported types ../../../code/stk/stk_doc_tests/stk_util/parameters.cpp

234 //+ Adding a parameter of "unsupported" type...
235 stk::util::ParameterList more_params;

236 std: :complex<double> phase(3.14,2.718);

37 more_params.set_param("phase", phase);

9 //+ The print system doesn’t know about this type, so will print

240 //+ a warning message about unrecognized type.

241 more_params.write_parameter_list (std::cout);

242

243 //+ However, you can still retrieve the value of the parameter

244 //+ if you know what type it is.

245 std::complex<double> my_phase = more_params.get_value<std::complex<double> > ("phase");
246 EXPECT_EQ (my_phase, phase);

247

248 //+ The Parameter class won’t help you on determining the type,

249 //+ You must know what it is.

250 EXPECT_EQ (more_params.get_param("phase") .type, stk::util::ParameterType::INVALID);
251

252 //+ If the wrong type is specified, an exception will be thrown...

253 EXPECT_ANY_THROW (more_params.get_value<std::complex<int> > ("phase"));

254

6.5 Filename substitution

The filename _substitution function in STK Util provides a basic substitution capability. If the
string (typically a filename) passed as an argument to this function contains “special characters”,

151

the special characters will be replaced with runtime-calculated values. The currently supported
substitutions are:

e 3B For applications which use the command-line-argument parsing facilities provided in
stk_util/environment/ProgramOptions.hpp, and which use a command-line
argument called “input-deck”, then $B will be replaced by the basename of the file named as
that “input-deck” argument. If there is no “input-deck” argument, then the basename “stdin”
will be used. The basename of the file is the portion of the string between the last “/”” and
the last “.”. For example, given the string /path/to/the/file/input. i, the basename
would be input.

e %P will be replaced by the number of processors being used in the current execution.

The example below shows a very simple example of this capability. It is run on 1 processor with
no input file, so the substituted filename should be “stdin-1.e”.

152

Listing 6.11: Filename substitution capability

./.J..[code/stk/stk_doc_tests/stk_util/filenameSubstitution.cpp

35 #include <gtest/gtest.h> // for AssertHelper, EXPECT_EQ, etc

36 #include <stk_util/environment/EnvData.hpp> // for EnvData

37 #include <stk_util/environment/FileUtils.hpp>

38 #include <stk_util/environment/ProgramOptions.hpp>

39 #include <string> // for string, allocator, etc

#include <utility> // for make_pair

41 #include "boost/program_options/variables_map.hpp" // for variable_value, etc
42

43 namespace

B

44 |

45 TEST (StkUtilHowTo, useFilenameSubstitutionWithNoCommandLineOptions)

46 {

47 const std::string default_base_filename = "stdin";

48 const std::string numProcsString = "1";

49 const std::string expected_filename = default_base_filename + "-" + numProcsString + ".e";
50

51 std::string file_name = "%B-%P.e";

52 stk::util::filename_substitution (file_name) ;

53 EXPECT_EQ (expected_filename, file_name);

56 void setFilenameInCommandLineOptions (const std::string &filename)
57 {

58 boost::program_options::variables_map &command_ line_options = stk::get_variables_map();

59 command_line_options.insert (std::make_pair ("input-deck",
boost::program_options::variable_value (filename, false)));

60 stk::EnvData::instance () .m_inputFile = filename;

61 }

62 TEST (StkUtilHowTo, useFilenameSubstitutionWithFileComingFromCommandLineOptions)
63 {

64 const std::string base_filename = "myfile";

65 const std::string full_filename = "/path/to/" + base_filename + ".g";
66 setFilenameInCommandLineOptions (full_filename);

67

68 const std::string numProcsString = "1";

69 const std::string expected_filename = base_filename + "-" + numProcsString + ".e";
70

71 std::string file_name = "%B-%P.e";

72 stk::util::filename_substitution (file_name) ;

73

74 EXPECT_EQ (expected_filename, file_name);

75 }

76 '}

153

This page intentionally left blank.

Chapter 7

STK Balance

The STK Balance module provides load balancing capabilities for which many options are con-
figurable by the application teams. STK Balance interfaces with Zoltan2 (need reference) which
provides geometric and graph based decomposition capabilities. STK Balance is scalable and able
to balance very large (billions of elements) meshes.

7.1 Geometric Balancing

The following tests show the basic usage of the STK Balance with the RCB (Recursive Coordinate
Bisection - need reference) method.

Listing 7.1: Stk Balance RCB Example ../../../code/stk/stk_balance/doc_tests/howToUseStkBalance.cpp

67 TEST_F (StkBalanceHowTo, UseRebalanceWithGeometricMethods)
68 {

69 if (stk::parallel _machine_size (get_comm()) == 2)

7

71 { setup_mesh ("generated:4x4x4|sideset:xX", stk::mesh::BulkData::NO_AUTO_AURA) ;
72

73 RcbSettings balanceSettings;

74 stk::balance::balanceStkMesh (balanceSettings, get_bulk());

75

76 EXPECT_TRUE (is_mesh_balanced (get_bulk()));

77 }
78}

Listing 7.2: Stk Balance Settings For RCB ../../../code/stk/stk_balance/doc_tests/howToUseStkBalance.cpp

14 class RcbSettings : public stk::balance::BalanceSettings
15 {

16 public:

17 RcbSettings () {}

18 virtual "RcbSettings () {}

19

20 virtual bool isIncrementalRebalance() const { return false; }

21 virtual bool areVertexWeightsProvidedViaFields() const { return false; }

22 virtual std::string getDecompMethod() const { return std::string("rcb"); }

23 virtual std::string getCoordinateFieldName () const { return std::string("coordinates"); }
24 virtual bool shouldPrintMetrics () const { return true; }

25 };

155

7.2 Graph Based Balancing With Parmetis

The following tests show the basic usage of the STK Balance with Parmetis (need reference - graph
based decomposition). This allows the application developer to set vertex and edge weights of the
graph. In addition, it provides the flexibility to change what defines an edge between two vertices.
In this context, a vertex is an element, and an edge is a connection between elements.

Listing 7.3: Stk Balance API Parmetis Example

.[..[..Jeode/stk/stk_balance/doc_tests/howToUseStkBalance.cpp

187 TEST_F (StkBalanceHowTo, UseRebalanceWithParmetis)
188 {

189 if (stk::parallel_machine_size (get_comm()) == 2)

190 {

191 setup_mesh ("generated:4x4x4|sideset:xX", stk::mesh::BulkData::NO_AUTO_AURA) ;
192

193 ParmetisSettings balanceSettings;

194 stk::balance::balanceStkMesh (balanceSettings, get_bulk());

195

196 EXPECT_TRUE (is_mesh_balanced (get_bulk()));

197 }
198 }

Listing 7.4: Stk Balance Settings For Parmetis

./..l../code/stk/stk_balance/doc_tests/howToUseStkBalance.cpp

3 class ParmetisSettings : public stk::balance::GraphCreationSettings

o
"]

84 {

85 public:

86 virtual std::string getDecompMethod() const { return "parmetis"; }

87

88 size_t getNumNodesRequiredForConnection (stk::topology elementlTopology, stk::topology
element2Topology) const

89 {

90 const int noConnection = 1000;

91 const int s = noConnection;

92 const static int connectionTable[7][7] = {

93 11 14 1 1y 14 1, &3 f7 0 dim

94 1L Ly L Ly Ly I,), (4 1 dim

95 L, 1, 2, 3, 2, 3, 8}, [/ 2 dim linear

96 {1, 1, 3, 3, 3, 3, s}, // 3 dim linear

97 {1, 1, 2, 3, 3, 4, s}, // 2 dim higher-order

98 {1, 1, 3, 3, 4, 4, s}, // 3 dim higher-order

99 {s, s, s, s, s, s, s} // super element

100 1i

101

102 int elementlIndex = getConnectionTablelIndex (elementlTopology) ;

103 int element2Index = getConnectionTablelIndex (element2Topology) ;

104

105 return connectionTable[elementlIndex] [element2Index];

106 }

107

108 virtual double getGraphEdgeWeight (stk::topology elementlTopology, stk::topology
element2Topology) const

109 {

110 const double noConnection = 0;

111 const double s = noConnection;

112 const double largeWeight = 1000;

113 const double L = largeWeight;

114 const double twoDimWeight = 5;

115 const double g = twoDimWeight;

116 const double defaultWeight = 1.0;

156

117 const double D = defaultWeight;

118 const static double weightTable[7][7] = {
19 {., ., L, L, L, L, s}, // O dim
120 {L, L, L, L, L, L, s}, // dim

1
121 {L, L, 9, 9, 9, 9, s}, // 2 dim linear

122 {L, L, q, D, q, D, s}, // 3 dim linear

123 {L, L, 9, 9, 9, 9, s}, // 2 dim higher-order
124 {L, L, g, D, q, D, s}, // 3 dim higher-order
125 {s, s, s, s, s, s, s} // super element

126 };

127

128 int elementlIndex = getConnectionTablelIndex (elementlTopology);
129 int element2Index = getConnectionTableIndex (element2Topology) ;
130

131 return weightTable[elementlIndex] [element2Index];
132 }

133

134 virtual int getGraphVertexWeight (stk::topology type) const
135 {

136 switch (type)

137 {

138 case stk::topology::PARTICLE:

139 case stk::topology::LINE_2:

140 case stk::topology::BEAM_2:

141 return 1;

142 break;

143 case stk::topology::SHELL_TRIANGLE_3:

144 return 3;

145 break;

146 case stk::topology::SHELL_TRIANGLE_6:

147 return 6;

148 break;

149 case stk::topology::SHELL_QUADRILATERAL_A4:
150 return 6;

151 break;

152 case stk::topology::SHELL_QUADRILATERAL_S8:
153 return 12;

154 break;

155 case stk::topology::HEXAHEDRON_8:

156 return 3;

157 break;

158 case stk::topology::HEXAHEDRON_20:

159 return 12;

160 break;

161 case stk::topology::TETRAHEDRON_4:

162 return 1;

163 break;

164 case stk::topology::TETRAHEDRON_10:

165 return 3;

166 break;

167 case stk::topology::WEDGE_6:

168 return 2;

169 break;

170 case stk::topology::WEDGE_15:

171 return 12;

172 break;

173 default:

174 if (type.is_superelement ())

175 {

176 return 10;

177 }

178 throw("Invalid Element Type In WeightsOfElement");
179 break;

180 }

181 return O;

182 }
183 };

157

7.3 Graph Based Balancing With Parmetis Using Search

The following tests show the basic usage of the STK Balance with Parmetis (need reference -
graph based decomposition) where a coarse search is used to insert edges into the graph. The
search settings will override the vertex weights of the graph if defined on the settings.

Listing 7.5: Stk Balance API Parmetis With Search Example

./.[..[code/stk/stk_balance/doc_tests/howToUseStkBalance.cpp

214 TEST_F (StkBalanceHowTo, UseRebalanceWithParmetisAugmentedWithSearch)

215 {

216 if (stk::parallel_machine_size (get_comm()) == 2)

217 {

218 setup_mesh ("generated:4x4x4|sideset:xX", stk::mesh::BulkData::NO_AUTO_AURA) ;
219

220 ParmetisWithSearchSettings balanceSettings;

221 stk::balance: :balanceStkMesh (balanceSettings, get_bulk());
222

223 EXPECT_TRUE (is_mesh_balanced (get_bulk()));

224 }

225 '}

Listing 7.6: Stk Balance Settings For Parmetis With Search

./..[..Jcode/stk/stk_balance/doc_tests/howToUseStkBalance.cpp

202 class ParmetisWithSearchSettings : public ParmetisSettings
203 {

204 using ParmetisSettings::getToleranceForFaceSearch;

205 virtual bool includeSearchResultsInGraph() const { return true; }

206 virtual double getToleranceForFaceSearch() const { return 0.0001; }

207 virtual double getVertexWeightMultiplierForVertexInSearch() const { return 6.0; }
208 virtual double getGraphEdgeWeightForSearch() const { return 1000; }

209 };

7.4 Graph Based Balancing Using A Field For Vertex Weights

The following tests show the basic usage of the STK Balance where an application specified field
is used to set vertex weights.

Listing 7.7: Stk Balance API Using A Field To Set Vertex Weights Example

./..[../code/stk/stk_balance/doc_tests/howToUseStkBalance.cpp

281 TEST_F (StkBalanceHowTo, UseRebalanceWithFieldSpecifiedVertexWeights)

282 {
283 if (stk::parallel_machine_size(get_comm()) == 2)
284 {
285 stk::mesh: :Field<double> &weightField =
get_meta () .declare_field<stk::mesh::Field<double>> (stk::topology::ELEM_RANK,
"vertex_weights");
286 stk::mesh::put_field(weightField, get_meta().universal_part());
287 setup_mesh ("generated:4x4x4|sideset:xX", stk::mesh::BulkData::NO_AUTO_AURA) ;
288 set_vertex_weights (get_bulk(), get_meta().locally_owned part (), weightField);
289
290 FieldVertexWeightSettings balanceSettings (weightField);
291 stk::balance: :balanceStkMesh (balanceSettings, get_bulk());

158

292

293 EXPECT_TRUE (is_mesh_balanced_wrt_weight (get_bulk (), weightField));
294 }

295 }

Listing 7.8: Stk Balance Settings For Setting Vertex Weights Using A Field

.J/..[../code/stk/stk_balance/doc_tests/howToUseStkBalance.cpp

9 class FieldVertexWeightSettings : public stk::balance::GraphCreationSettings
0 |

w
3

2

2

231 public:

232 FieldVertexWeightSettings (const stk::balance::DoubleFieldType &weightField,
233 const double defaultWeight = 0.0)

234 : m_weightField(weightField),

235 m_defaultWeight (defaultWeight) { }

236 virtual "FieldVertexWeightSettings () = default;

o

i

9%}
&

virtual double getGraphEdgeWeight (stk::topology elementlTopology, stk::topology
element2Topology) const { return 1.0; }
239

240 virtual bool areVertexWeightsProvidedInAVector () const { return
lareVertexWeightsProvidedviaFields (); }

241 virtual bool areVertexWeightsProvidedvViaFields () const { return true; }

242

243 virtual int getGraphVertexWeight (stk::topology type) const { return 1; }

244 virtual double getImbalanceTolerance() const { return 1.0001; }

245 virtual std::string getDecompMethod() const { return "rcb"; }

246

247 virtual double getGraphVertexWeight (stk::mesh::Entity entity, int criteria_index = 0)
const

248 {

249 const double xweight = stk::mesh::field data(m_weightField, entity);

250 if (weight) return xweight;

251

252 return m_defaultWeight;

253 }
254
255 protected:

256 FieldVertexWeightSettings () = default;

257 FieldVertexWeightSettings (const FieldVertexWeightSettingsé&) = delete;

258 FieldVertexWeightSettings& operator=(const FieldVertexWeightSettings&) = delete;
259

260 const stk::balance::DoubleFieldType &m_weightField;

261 const double m_defaultWeight;

262 };

7.5 STK Balancing Using Multiple Criteria

The following tests show the usage of the STK Balance when balancing different grouping of
entities at the same time, e.g., a multi-physics balancing. Currently, multi-criteria rebalancing is
related to balancing a mesh using multiple selectors or fields or both. The next two sections show
the API for selector and field based multi-criteria balancing.

159

7.5.1 Multiple Criteria Related To Selectors

This shows the API for using multiple selectors to balance a mesh, e.g., a multi-physics mesh.

Listing 7.9: Stk Balance API Using Selectors To Balance A Mesh Example

./../l../code/stk/stk_balance/doc_tests/howToUseStkBalance.cpp

364 TEST_F (StkBalanceHowTo, UseRebalanceWithMultipleCriteriaWithSelectors)
365

366 if (stk::parallel_machine_size (get_comm()) == 2)

367 {

368 stk::mesh::Part &partl = get_meta().declare_part ("madeup_part_1",
stk::topology: :ELEM_RANK) ;

369 stk::mesh::Part &part2 = get_meta () .declare_part ("part_2", stk::topology::ELEM_RANK) ;

370 setup_mesh ("generated:4x4x4|sideset:xX", stk::mesh::BulkData::NO_AUTO_AURA) ;

371

372 put_elements_in different_parts(get_bulk(), partl, part2);

373

374 std: :vector<stk::mesh::Selector> selectors = { partl, part2 };

375

376 MultipleCriteriaSelectorSettings balanceSettings;

377 stk::balance::balanceStkMesh (balanceSettings, get_bulk(), selectors);

378

379 verify mesh_balanced_wrt_selectors(get_bulk(), selectors);

380 }

381}

Listing 7.10: Stk Balance Settings For Multi-criteria Balancing Using Selectors

./../..[code/stk/stk_balance/doc_tests/howToUseStkBalance.cpp

316 class MultipleCriteriaSelectorSettings : public ParmetisSettings
317 {

318 public:

319 MultipleCriteriaSelectorSettings () { }

320 virtual "MultipleCriteriaSelectorSettings() = default;

321

322 virtual bool isMultiCriteriaRebalance () const { return true;}

323 virtual bool areVertexWeightsProvidedViaFields() const { return true; }

324
325 protected:

326 MultipleCriteriaSelectorSettings (const MultipleCriteriaSelectorSettings&) = delete;
327 MultipleCriteriaSelectorSettingsé& operator=(const MultipleCriteriaSelectorSettings&) =
delete;

328 };

7.5.2 Multiple Criteria Related To Multiple Fields

This shows the API for using multiple fields to balance a mesh, e.g., a multi-physics mesh.

Listing 7.11: Stk Balance API Using Fields To Balance A Mesh Example

./.[../Jcode/stk/stk_balance/doc_tests/howToUseStkBalance.cpp

473 TEST_F (StkBalanceHowTo, UseRebalanceWithMultipleCriteriaWithFields)

474 {
475 if (stk::parallel_machine_size (get_comm()) == 2)
476 {

160

477 stk::mesh::Field<double> &weightFieldl =
get_meta () .declare_field<stk::mesh::Field<double>> (stk::topology::ELEM_RANK,
"vertex_weightsl");

478 stk::mesh::put_field(weightFieldl, get_meta().universal_part());

479

480 stk::mesh::Field<double> &weightField2 =
get_meta () .declare_field<stk::mesh::Field<double>> (stk::topology::ELEM_RANK,
"vertex_weights2");

481 stk::mesh::put_field(weightField2, get_meta().universal_part());

482

483 setup_mesh ("generated:4x4x4 |sideset:xX", stk::mesh::BulkData::NO_AUTO_AURA) ;
484

485 set_vertex_weights_checkerboard(get_bulk (), get_meta().locally_owned_part (),

weightFieldl, weightField2);

487 std::vector<stk::mesh::Field<double>*> critFields = { &weightFieldl, &weightField2 };
488 MultipleCriteriaFieldSettings balanceSettings (critFields);

489 stk::balance: :balanceStkMesh (balanceSettings, get_bulk());

490

491 verify_mesh_balanced_wrt_fields (get_bulk (), critFields);

492 }

493 '}

Listing 7.12: Stk Balance Settings For Multi-criteria Balancing Using Fields

./..l../code/stk/stk_balance/doc_tests/howToUseStkBalance.cpp

385 class MultipleCriteriaFieldSettings : public ParmetisSettings

386 {
387 public:
388 MultipleCriteriaFieldSettings (const std::vector<stk::mesh::Field<double>*> critFields,
389 const double default_weight = 0.0)
390 : m_critFields (critFields), m_defaultWeight (default_weight)
391 {1}
392 virtual "MultipleCriteriaFieldSettings() = default;
393
394 virtual bool areVertexWeightsProvidedvViaFields() const { return true; }
395 virtual int getNumCriteria() const { return m_critFields.size(); }
396 virtual bool isMultiCriteriaRebalance() const { return true;}
397
398 using ParmetisSettings::getGraphVertexWeight;
399 virtual double getGraphVertexWeight (stk::mesh::Entity entity, int criteria_index) const
400 {
401 ThrowRequireWithSierraHelpMsg (criteria_index>=0 &&
static _cast<size_t>(criteria_index)<m_critFields.size());
402 const double x*weight = stk::mesh::field _data(*m_critFields[criteria_index], entity);
403 if (weight != nullptr)
404 {
405 ThrowRequireWithSierraHelpMsg (xweight >= 0);
406 return sweight;
407 }
408 else
409 {
410 return m_defaultWeight;
411 }
412 }
413
414 protected:
415 MultipleCriteriaFieldSettings () = default;
416 MultipleCriteriaFieldSettings (const MultipleCriteriaFieldSettings&) = delete;
417 MultipleCriteriaFieldSettings& operator=(const MultipleCriteriaFieldSettingsé&) = delete;
418
419 const std::vector<stk::mesh::Field<double>x> m_critFields;
420 const double m_defaultWeight;

421 };

161

This page intentionally left blank.

Chapter 8

STK SIMD

The STK SIMD module provides a computationally efficient way of performing mathematical
operations on vector arrays of double and float types. The key components of this library are

o stk::simd::Doubles

e stk::simd::Floats
These types are actually a packed array of size stk::simd::ndoubles and stk::simd::nfloats, respec-
tively. These vector length sizes can be vary from platform to platform. It is important that the

user of the stk_simd library writes their algorithms so that changing ndoubles (or nfloats) does
not change behavior. Most basic mathematical operations are implemented to work on these simd

types.

8.1 Example STK SIMD usage

This test gives an example of how to apply a simple nonlinear operations on all the entries of an
array using SIMD types, in a way which does not assume a specific vector length. Three essential
steps are necessary to accomplish this

o the data from the input array must be loaded into the SIMD type

e the mathematical operations are applied to the SIMD data and stored temporarily into an
output SIMD type

e the data is stored into the output array

Listing 8.1: Example of simple operations using STK SIMD

./...[code/stk/stk_doc_tests/stk_simd/simpleStkSimd.cpp

62 TEST (stkMeshHowTo, simdSimdTest)

63 {

64 const int N = 512; // this is a multiple of the simd width
65 // if this is not true, the remainder
66 // must be handled appropriately

163

67
68
69

90

static_assert(N % stk::simd::ndoubles == 0, "Required to be a multiple of ndoubles");

std::vector<double, non_std::AlignedAllocator<double, 64> > x(N);
std::vector<double, non_std::AlignedAllocator<double, 64> > y(N);
std::vector<double, non_std::AlignedAllocator<double, 64> > solution(N);

for (int n=0; n < N; ++n) {
x[n] = (rand()-0.5)/RAND_MAX;
y[n] = (rand()-0.5)/RAND_MAX;

for (int n=0; n < N; n+=stk::simd::ndoubles) {
const stk::simd::Double x1 = stk::simd::load(&x[n]);
const stk::simd::Double yl stk::simd::load (&y[n]);
stk::simd::Double zl = stk::math::abs(xl) = stk::math::exp(yl);
stk::simd: :store(&solution[n], zl);

I

const double epsilon = std::numeric_limits<double>::epsilon();
for (int n=0; n < N; ++n) {
EXPECT_NEAR(std::abs(x[n]) % std::exp(y[n]), solution[n], epsilon);

164

References

[1] Larry A. Schoof and Victor R. Yarberry, “EXODUSII: A Finite Element Data Model,”
SAND92-2137, Sandia National Laboratories, Albuquerque, NM, September, 19941

[2] C. Farhat, K. G. Van der Zee, and P. Geuzaine “EXODUSII: A Finite Element Data Model
Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlin-

ear computational aeroelasticity,” Computer Methods in Applied Mechanics and Engineering,
2006; 195 (17-18): 1973-2001.

[3] Jon L. Bentley “Multidimensional binary search trees used for associative searching,” Com-
munications of the ACM, 1975; 18 (9): 509-517.

[4] Mark de Berg, Mark van Krewald, Mark Overmars, and Otfried Schwarzkopf Computational
Geometry: Algorithms and Applications (2nd, revised edition), Springer-Verlag, 2000.

IThis document is very out of date. A new document is being prepared and a draft of the current state is available
athttp://jal.sandia.gov/SEACAS/Documentation/exodusII-new.pdf.

165

Index

aura, 20, 23
aura part, 19, 30

buckets, 20
bulkdata, 20

connectivity, 18
custom ghosting, 42

downward relation, 18

element block, 31
entity, 18
explicit member, 32

field, 81
fields, 19

ghosted, 23
ghosting, 20

globally-shared part, 19, 30

induced member, 32

locally-owned part, 19, 30

mesh part, 30
metadata, 20, 36

part, 19

part ordinal, 31
parts, 41
permutations, 18

rank, 18
relations, 18

search, 137
selector, 28
selectors, 19
shared, 23
simd, 163

topology, 18, 63

universal part, 30
upward relation, 18

166

DISTRIBUTION:

1 MS 0899 Technical Library, 9536 (electronic copy)

167

This page intentionally left blank.

v1.40

169

@ Sandia National Laboratories

170

