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The characteristic most often associated with neutrinos is a 
very small probability of interaction with other forms of 
matter, allowing them to traverse astronomical objects 
while undergoing no energy loss. As a result, large targets 
(tons to tens of kilotons) are used for their detection. The 
discovery of a weak neutral current in neutrino interactions 
(1) implied that neutrinos were capable of coupling to 

quarks through the exchange of neutral Z bosons. Soon 
thereafter it was suggested that this mechanism should also 
lead to coherent interactions between neutrinos and all nu-
cleons present in an atomic nucleus (2). This possibility 
would exist only as long as the momentum exchanged re-
mained significantly smaller than the inverse of the nuclear 
size (Fig. 1A), effectively restricting the process to neutrino 

Observation of coherent elastic neutrino-nucleus scattering 
D. Akimov,1,2 J. B. Albert,3 P. An,4 C. Awe,4,5 P. S. Barbeau,4,5 B. Becker,6 V. Belov,1,2 A. Brown,4,7 A. 
Bolozdynya,2 B. Cabrera-Palmer,8 M. Cervantes,5 J. I. Collar,9* R. J. Cooper,10 R. L. Cooper,11,12 C. 
Cuesta,13† D. J. Dean,14 J. A. Detwiler,13 A. Eberhardt,13 Y. Efremenko,6,14 S. R. Elliott,12 E. M. Erkela,13 
L. Fabris,14 M. Febbraro,14 N. E. Fields,9‡ W. Fox,3 Z. Fu,13 A. Galindo-Uribarri,14 M. P. Green,4,14,15 M. 
Hai,9§ M. R. Heath,3 S. Hedges,4,5 D. Hornback,14 T. W. Hossbach,16 E. B. Iverson,14 L. J. Kaufman,3|| S. 
Ki,4,5 S. R. Klein,10 A. Khromov,2 A. Konovalov,1,2,17 M. Kremer,4 A. Kumpan,2 C. Leadbetter,4 L. Li,4,5 
W. Lu,14 K. Mann,4,15 D. M. Markoff,4,7 K. Miller,4,5 H. Moreno,11 P. E. Mueller,14 J. Newby,14 J. L. 
Orrell,16 C. T. Overman,16 D. S. Parno,13¶ S. Penttila,14 G. Perumpilly,9 H. Ray,18 J. Raybern,5 D. Reyna,8 
G. C. Rich,4,14,19 D. Rimal,18 D. Rudik,1,2 K. Scholberg,5 B. J. Scholz,9 G. Sinev,5 W. M. Snow,3 V. 
Sosnovtsev,2 A. Shakirov,2 S. Suchyta,10 B. Suh,4,5,14 R. Tayloe,3 R. T. Thornton,3 I. Tolstukhin,3 J. 
Vanderwerp,3 R. L. Varner,14 C. J. Virtue,20 Z. Wan,4 J. Yoo,21 C.-H. Yu,14 A. Zawada,4 J. Zettlemoyer,3 
A. M. Zderic,13 COHERENT Collaboration# 
1Institute for Theoretical and Experimental Physics named by A. I. Alikhanov of National Research Centre “Kurchatov Institute,” Moscow 117218, Russian Federation. 
2National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409, Russian Federation. 3Department of Physics, Indiana University, 
Bloomington, IN 47405, USA. 4Triangle Universities Nuclear Laboratory, Durham, NC 27708, USA. 5Department of Physics, Duke University, Durham, NC 27708, USA. 
6Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA. 7Department of Mathematics and Physics, North Carolina Central University, 
Durham, NC 27707, USA. 8Sandia National Laboratories, Livermore, CA 94550, USA. 9Enrico Fermi Institute, Kavli Institute for Cosmological Physics, and Department of 
Physics, University of Chicago, Chicago, IL 60637, USA. 10Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. 11Department of Physics, New Mexico State 
University, Las Cruces, NM 88003, USA.  12Los Alamos National Laboratory, Los Alamos, NM 87545, USA. 13Center for Experimental Nuclear Physics and Astrophysics and 
Department of Physics, University of Washington, Seattle, WA 98195, USA. 14Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. 15Department of Physics, North 
Carolina State University, Raleigh, NC 27695, USA. 16Pacific Northwest National Laboratory, Richland, WA 99352, USA. 17Moscow Institute of Physics and Technology, 
Dolgoprudny, Moscow Region 141700, Russian Federation. 18Department of Physics, University of Florida, Gainesville, FL 32611, USA. 19Department of Physics and 
Astronomy, University of North Carolina, Chapel Hill, NC 27599, USA. 20Department of Physics, Laurentian University, Sudbury, Ontario P3E 2C6, Canada. 21Department of 
Physics at Korea Advanced Institute of Science and Technology (KAIST) and Center for Axion and Precision Physics Research (CAPP) at Institute for Basic Science (IBS), 
Daejeon 34141, Republic of Korea. 

*Corresponding author. Email: collar@uchicago.edu 
†Present address: Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid 28040, Spain. 
‡Present address: U.S. Nuclear Regulatory Commission, Lisle, IL 60532, USA. 
§Present address: SpaceX Rocket Development Facility, McGregor, TX 76657, USA. 
||Present address: SLAC National Accelerator Laboratory, Menlo Park, CA 94205, USA. 
¶Present address: Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA. 
#The collaboration consists of all listed authors. There are no additional collaborators. 

The coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though 
its predicted cross-section is the largest by far of all low-energy neutrino couplings. This mode of 
interaction provides new opportunities to study neutrino properties, and leads to a miniaturization of 
detector size, with potential technological applications. We observe this process at a 6.7-sigma 
confidence level, using a low-background, 14.6-kg CsI[Na] scintillator exposed to the neutrino emissions 
from the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Characteristic signatures in 
energy and time, predicted by the Standard Model for this process, are observed in high signal-to-
background conditions. Improved constraints on non-standard neutrino interactions with quarks are 
derived from this initial dataset. 
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energies below a few tens of MeV. The enhancement to the 
probability of interaction (scattering cross-section) would 
however be very large when compared to interactions with 
isolated nucleons, approximately scaling with the square of 
the number of neutrons in the nucleus (2, 3). For heavy nu-
clei and sufficiently intense neutrino sources, this can lead 
to a dramatic reduction in detector mass, down to a few 
kilograms. 

Coherent elastic neutrino-nucleus scattering (CEνNS) 
has evaded experimental demonstration for forty-three 
years following its first theoretical description. This is 
somewhat surprising, in view of the magnitude of its ex-
pected cross-section relative to other tried-and-tested neu-
trino couplings (Fig. 1B), and of the availability of suitable 
neutrino sources: solar, atmospheric and terrestrial, super-
nova bursts, nuclear reactors, spallation facilities, and cer-
tain radioisotopes (3). This delay stems from the difficulty in 
detecting the low-energy (few keV) nuclear recoil produced 
as the single outcome of the interaction. Compared to a 
minimum ionizing particle of the same energy, a recoiling 
nucleus has a diminished ability to generate measurable 
scintillation or ionization in common radiation detector 
materials. This is exacerbated by a trade-off between the 
enhancement to the CEνNS cross-section brought about by a 
large nuclear mass, and the smaller maximum recoil energy 
of a heavy target nucleus. 

The interest in CEνNS detection goes beyond complet-
ing the picture of neutrino couplings predicted by the 
Standard Model of particle interactions. In the time since its 
description, CEνNS has been suggested as a tool to expand 
our knowledge of neutrino properties. These studies include 
searches for sterile neutrinos (4–6), a neutrino magnetic 
moment (7, 8), non-standard interactions mediated by new 
particles (9–11), probes of nuclear structure (12), and im-
proved constraints on the value of the weak nuclear charge 
(13). In addition to these, the reduction in neutrino detector 
mass may lead to a number of technological applications 
(14), such as non-intrusive nuclear reactor monitoring (15). 
CEνNS is also expected to dominate neutrino transport in 
neutron stars, and during stellar collapse (16–18). Direct 
searches for Weakly Interacting Massive Particles (WIMPs), 
presently favored dark matter candidates, rely on the same 
untested coherent enhancement to the WIMP-nucleus scat-
tering cross-section, and will soon be limited by an irreduci-
ble CEνNS background from solar and atmospheric 
neutrinos (19). The importance of this process has generated 
a broad array of proposals for potential CEνNS detectors: 
superconducting devices (3), cryogenic detectors (20–22), 
modified semiconductors (23–25), noble liquids (26–30), and 
inorganic scintillators (31), among others. 

The Spallation Neutron Source (SNS) at Oak Ridge Na-
tional Laboratory generates the most intense pulsed neu-

tron beams in the world, produced by the interactions of 
accelerator-driven high-energy (~1 GeV) protons striking a 
mercury target. These beams serve an array of neutron-
scattering instruments, and a cross-disciplinary community 
of users. Spallation sources are known to simultaneously 
create a significant yield of neutrinos, generated when pi-
ons, themselves a byproduct of proton interactions in the 
target, decay at rest. The resulting low neutrino energies are 
favorable for CEνNS detection (3, 32, 33). Three neutrino 
flavors are produced (prompt muon neutrinos νµ, delayed 
electron neutrinos νe, and delayed muon anti-neutrinos μν ), 

each with characteristic energy and time distributions (fig. 
S2), and all having a similar CEνNS cross-section for a given 
energy. During beam operation, approximately 5 × 1020 pro-
tons-on-target (POT) are delivered per day, each proton re-
turning ~0.08 isotropically-emitted neutrinos per flavor. An 
attractive feature is the pulsed nature of the emission: 60 
Hz of ~1 µs-wide POT spills. This allows us to isolate the 
steady-state environmental backgrounds affecting a CEνNS 
detector from the neutrino-induced signals, which should 
occur within ~10 µs windows following POT triggers. Simi-
lar time windows preceding the triggers can be inspected to 
obtain information about the nature and rate of steady-state 
backgrounds, which can then be subtracted (31, 34). A facili-
ty-wide 60 Hz trigger signal is provided by the SNS, at all 
times. 

As large as this neutrino yield may seem, prompt neu-
trons escaping the iron and steel shielding monolith sur-
rounding the mercury target (Fig. 2) would swamp a CEνNS 
detector sited at the SNS instrument bay. Neutron-induced 
nuclear recoils would largely dominate over neutrino-
induced recoils, making experimentation impossible. This 
led to a systematic investigation of prompt neutron fluxes 
within the SNS facility (34). A basement corridor, now 
dubbed the “neutrino alley” was found to offer locations 
with more than 12 m of additional void-free neutron-
moderating materials (concrete, gravel) in the line-of-sight 
to the SNS target monolith. An overburden of 8 m of water 
equivalent (m.w.e.) provides an additional reduction in 
backgrounds associated with cosmic rays. The CsI[Na] 
CEνNS detector and shielding described next were installed 
in the corridor location nearest to the SNS target (Fig. 2). 

The advantages of sodium-doped CsI as a CEνNS detec-
tion material, its characterization for this application, and 
background studies using a 2 kg prototype are described in 
(31). Heavy cesium and iodine nuclei provide large cross-
sections, and nearly-identical response to CEνNS (Fig. 1B), 
while generating sufficient scintillation for the detection of 
nuclear recoil energies down to a few keV. We performed 
supplementary calibrations of the final 14.6 kg CsI[Na] crys-
tal before its installation at the SNS, as well as studies of the 
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scintillation response to nuclear recoils in the relevant en-
ergy region (34). In addition to these, an initial dedicated 
experiment was performed at the chosen detector location, 
measuring the very small flux of prompt neutrons able to 
reach this position, and constraining the maximum contri-
bution from the neutrino-induced neutron (NIN) back-
ground that can originate in lead shielding surrounding the 
detector (Fig. 1B) (34). The conclusion from this measure-
ment was that a CEνNS signal should largely dominate over 
beam-related backgrounds. The level of steady-state envi-
ronmental backgrounds achieved in the final crystal slightly 
improved on expectations based on the prototype in (31), 
mostly thanks to refinements in data analysis, and to the 
presence of additional shielding. Further information about 
the experimental setup is provided in (34). 

Figure 3 displays our main result, derived from fifteen 
months of accumulated live-time (fig. S1). When comparing 
CsI[Na] signals occurring before POT triggers, and those 
taking place immediately after, we observe a high-
significance excess in the second group of signals, visible in 
both the energy spectrum and the distribution of signal-
arrival times. This excess appears only during times of neu-
trino production (“Beam ON” in the figure). The excess fol-
lows the expected CEνNS signature very closely, containing 
only a minimal contamination from beam-associated back-
grounds (34). NINs have a negligible contribution, even 
smaller than that from prompt neutrons, which is shown in 
the figure. The formation of the excess is strongly correlated 
to the instantaneous power on target (fig. S14). All neutrino 
flavors emitted by the SNS contribute to reconstructing the 
excess, as expected from a neutral current process. Stacked 
histograms in Fig. 3 display the Standard Model CEνNS 
predictions for prompt νµ and delayed νe, μν  emissions. 

Consistency with the Standard Model is observed at the one-
sigma level (134 ± 22 events observed, 173 ± 48 predicted). A 
2-D (energy, time) profile maximum likelihood fit favors the 
presence of CEνNS over its absence at the 6.7-sigma level 
(fig. S13). Further details and a discussion of uncertainties 
are provided in (34), together with similar results from a 
parallel analysis (fig. S11). 

Figure 4 shows an example of CEνNS applications: im-
proved constraints on non-standard interactions between 
neutrinos and quarks, caused by new physics beyond the 
Standard Model (9–11). These are extracted from the maxi-
mum deviation from Standard Model CEνNS predictions 
allowed by the present dataset (34), using the parametriza-
tion in (30, 33). 

Data-taking continues, with neutrino production ex-
pected to increase this summer by up to 30%, compared to 
the average delivered during this initial period. In addition 
to CsI[Na], the COHERENT collaboration presently operates 

a 28 kg single-phase liquid argon (LAr) detector, 185 kg of 
NaI[Tl] crystals, and three modules dedicated to the study 
of NIN production in several targets (Fig. 2). Presently 
planned expansion includes a ~1 ton LAr detector with nu-
clear/electron recoil discrimination capability, an already-
in-hand 2 ton NaI[Tl] array simultaneously sensitive to so-
dium CEνNS and charged-current interactions in iodine 
(Fig. 1B), and p-type point contact germanium detectors (24) 
with sub-keV energy threshold. We intend to pursue the 
new neutrino physics opportunities provided by CEνNS us-
ing this ensemble. 
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Fig. 1. Neutrino interactions. (A) Coherent Elastic Neutrino-Nucleus Scattering. For a sufficiently small 
momentum exchange (q) during neutral-current neutrino scattering (qR < 1, where R is the nuclear radius 
in natural units), a long-wavelength Z boson can probe the entire nucleus, and interact with it as a whole. 
An inconspicuous low-energy nuclear recoil is the only observable. However, the probability of neutrino 
interaction increases dramatically with the square of the number of neutrons in the target nucleus. In 
scintillating materials, the ensuing dense cascade of secondary recoils dissipates a fraction of its energy as 
detectable light. (B) Total cross-sections from CEνNS and some known neutrino couplings. Included are 
neutrino-electron scattering, charged-current (CC) interaction with iodine, and inverse beta decay (IBD). 
Because of their similar nuclear masses, cesium and iodine respond to CEνNS almost identically. The 
present CEνNS measurement involves neutrino energies in the range ~16-53 MeV, the lower bound defined 
by the lowest nuclear recoil energy measured (fig. S9), the upper bound by SNS neutrino emissions (fig. 
S2). The cross-section for neutrino-induced neutron (NIN) generation following 208Pb(νe,e– xn) is also 
shown. This reaction, originating in lead shielding around the detectors, can generate a potential beam-
related background affecting CEνNS searches. The cross-section for CEνNS is more than two orders of 
magnitude larger than for IBD, the mechanism employed for neutrino discovery (35). 
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Fig. 2. COHERENT detectors populating the “neutrino alley” at the SNS 
(34). Locations in this basement corridor profit from more than 19 m of 
continuous shielding against beam-related neutrons, and a modest 8 m.w.e. 
overburden able to reduce cosmic-ray induced backgrounds, while 
sustaining an instantaneous neutrino flux as high as 1.7 × 1011 νµ / cm2 s. 
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Fig. 3. Observation of Coherent Elastic Neutrino-Nucleus Scattering. Shown are residual differences 
(datapoints) between CsI[Na] signals in the 12 µs following POT triggers, and those in a 12-µs window before, 
as a function of their (A) energy (number of photoelectrons detected), and of (B) event arrival time (onset of 
scintillation). Steady-state environmental backgrounds contribute to both groups of signals equally, 
vanishing in the subtraction. Error bars are statistical. These residuals are shown for 153.5 live-days of SNS 
inactivity (“Beam OFF”) and 308.1 live-days of neutrino production (“Beam ON”), over which 7.48 GWhr of 
energy (~1.76 × 1023 protons) was delivered to the mercury target. Approximately 1.17 photoelectrons are 
expected per keV of cesium or iodine nuclear recoil energy (34). Characteristic excesses closely following the 
Standard Model CEνNS prediction (histograms) are observed for periods of neutrino production only, with a 
rate correlated to instantaneous beam power (fig. S14). 
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Fig. 4. Constraints on non-standard neutrino-

quark interactions. Blue region: values allowed by 

the present data set at 90% C.L. ( 2
minχ  < 4.6) in 

,ε εuV dV
ee ee  space. These quantities parametrize a 

subset of possible non-standard interactions 

between neutrinos and quarks, where ,ε εuV dV
ee ee  = 0,0 

corresponds to the Standard Model of weak 

interactions, and indices denote quark flavor and 

type of coupling. The gray region shows an existing 

constraint from the CHARM experiment (34). 
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