AN APPROACH TO QUAD MESHING BASED ON HARMONIC
CROSS-VALUED MAPS AND THE GINZBURG-LANDAU THEORY*
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Abstract. A generalization of vector fields, referred to as N-direction fields or cross fields
when N = 4, has been recently introduced and studied for geometry processing, with applications
in quadrilateral (quad) meshing, texture mapping, and parameterization. We make the observation
that cross field design for two-dimensional quad meshing is related to the well-known Ginzburg-
Landau problem from mathematical physics. This identification yields a variety of theoretical tools
for efficiently computing boundary-aligned quad meshes, with provable guarantees on the resulting
mesh, for example, the number of mesh defects and bounds on the defect locations. The procedure
for generating the quad mesh is to (i) find a complex-valued “representation” field that minimizes
the Dirichlet energy subject to a boundary constraint, (ii) convert the representation field into a
boundary-aligned, smooth cross field, (iii) use separatrices of the cross field to partition the domain
into four sided regions, and (iv) mesh each of these four-sided regions using standard techniques.
Under certain assumptions on the geometry of the domain, we prove that this procedure can be used
to produce a cross field whose separatrices partition the domain into four sided regions. To solve
the energy minimization problem for the representation field, we use an extension of the Merriman-
Bence-Osher (MBO) threshold dynamics method, originally conceived as an algorithm to simulate
motion by mean curvature, to minimize the Ginzburg-Landau energy for the optimal representation
field. Finally, we demonstrate the method on a variety of test domains.
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1. Introduction. A generalization of vector fields, referred to as N -direction
fields allow for N directions to be encoded at each point of a domain. When N = 4 the
term cross field is often used. Such fields are better suited to encode multidirectional
information than simply using IV overlaid vector fields because they can encode singu-
larities of “fractional index” in the neighborhood of which an N-direction field turns
27 /N radians (see Figure 1). N-direction fields have found recent applications in quad
re-meshing for computer graphics and finite element simulations [8, 15, 17, 21, 32],
parameterization [29, 33], non-photorealistic rendering [13], and texture mapping [19].
This paper will focus mainly on cross fields and their application in quad meshing for
finite element methods.

Various methods have been proposed to generate a quad mesh on a domain using
a cross field (see subsection 2.0.2). One basic procedure, identical to the approach
taken in [21], is illustrated in Figure 2. In the top left panel we have a domain, U,
with outward normal boundary vectors indicated. In the top right a complex-valued
“representation” field that minimizes the Dirichlet energy subject to a boundary con-
dition and a unit norm constraint is found. In the bottom left the representation field
is converted into a boundary-aligned, smooth cross field. Seperatrices of the cross
field are computed which partition the domain into four sided regions. Finally, the
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Fic. 1. Singularities of index +1/4 and —1/4. (left) A singularity with index +1/4 is
contained in the region enclosed by the three red lines, which are streamlines of the cross field. Since
the index is +1/4, the cross field makes a quarter turn counterclockwise when circulating around
this singularity. (right) Similarly, a singularity with index -1/4 is enclosed by the 5 red lines. The
cross field makes a quarter turn clockwise when circulating around this singularity.
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Fic. 2. Overview of the cross field based meshing methods. (top left) The domain
is shown with outward pointing normals. (top right) A 4-aligned boundary condition is assigned
(see Definition 3.12) and a representation vector field is found by approzimately minimizing the
Ginzburg-Landau energy. (bottom left) The representation field is mapped to a smooth cross field
and separatrices of the cross field are traced to partition the domain into a quad layout. (bottom
right) A regular mesh is mapped into each region.

bottom right panel shows a regular mesh mapped into each of the four-sided regions.

1.1. Contributions. In this paper, we consider the problem of cross field gen-
eration and cross field guided quad meshing. We make the observation that cross
field design for quad meshing is related to the Ginzburg-Landau theory from math-
ematical physics. In particular, many of the computational methods currently used
for cross field design are minimizing an energy that is, or is very similar to, a discrete
Ginzburg-Landau energy; see, for example, [3, 8, 15, 16, 21, 31, 37, 36].

We make this correspondence precise and use results from the Ginzburg-Landau
theory to prove, in Theorems 5.6 and 5.9, that the separatrices of a harmonic cross
field with indices < 1/4 partition a domain into four-sided regions, possibly with a T-
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junction if a limit cycle is present. The corners of these four-sided regions are located
at the singularities of the harmonic cross field. The proof of this result depends on
an asymptotic analysis of the cross field near singularities, which uses results from
the Ginzburg-Landau theory; see subsection 5.1. Because we consider domains with
corners, we also make precise a notion of boundary singularities (see Definition 5.3)
and study their properties. We show, in Lemma 5.5, the structure of a boundary
singularity with these definitions is consistent with the structure of a cross field near
an (interior) singularity. In addition, topological results from the Ginzburg-Landau
theory as well as the renormalized energy that describes the positions of singularities
gives provable guarantees for this partition with four-sided regions. Based on these
results, we develop an algorithm (Algorithm 1) that uses a harmonic cross field to
partition a domain into four-sided regions, possibly with T-junctions.

To find a harmonic cross field, we approximately minimize the Ginzburg-Landau
energy and find a suitable representation field by using a generalization of the MBO
algorithm (Algorithm 2) [27]. This results in a harmonic cross field with isolated
singularities of degree +1/4. This can then be used as input for Algorithm 1 to find
a partition with four-sided regions. The partition can then be used to generate a
high-quality quad mesh on the domain with standard techniques.

Finally, we use our cross field design algorithm and partitioning theorem to design
quad meshes for several example geometries; see Figure 11. Throughout, we also
include figures, generated using the algorithms described in this paper, to illustrate
the main ideas.

Outline. In section 2, we review previous work. In section 3 we recall some
background material and establish nomenclature for the paper. In section 4, we
describe a connection between quad meshing and the Ginzburg-Landau theory. In
section 5, we use the Ginzburg-Landau theory to prove results about quad meshes.
In section 6 we discuss computational methods. We conclude in section 7 with a
discussion.

2. Previous work. The problem of building a quad mesh via a cross field is two-
fold, and consequently most works in the field fall into two categories: papers that
are concerned with cross field design [12, 18, 37] and papers that are concerned with
meshing [6, 17, 29, 30]. There are some which cover both topics [8, 15, 20]. Here we
present a selection of works that have contributed to the understanding of fundamental
issues in the cross field design and meshing problems. For brevity, we only review
the work that is most relevant to this paper, however excellent literature reviews are
available on cross field and directional field design [47] and recent approaches to quad
meshing [7].

2.0.1. Cross field design. Each cross field design algorithm must choose a way
to represent a cross. In particular, it is necessary that the representative object ex-
hibit m/2-rotational symmetry. A pair of orthogonal vectors is inadequate unless an
identification is made between the two vectors. In [22], an integer variable called a
period jump was introduced between any two crosses on a discrete triangle mesh that
explicitly encoded the ambiguous matching between vectors. In [31], a representation
referred to as the N-RoSy representation was introduced, based on the periodic rep-
resentation in [33]. In the N-RoSy representation, a cross in 2D is represented by a
vector on S', where the angle the vector makes with a reference axis is four times
the angle that the nearest component of the cross makes with that reference axis;
see Figure 3. The advantage of such a representation is that the matching between
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FiG. 3. The representation map for cross fields. The left figure for each pair represents
an element of Cy (see Definition 3.8), visualized by a line from zero to the representative numbers
on the unit circle. The right figure shows the representation as a line from zero to [c]*. This
representation is equivalent to the N-RoSy representation, only expressed in complex numbers.

adjacent crosses is implicit, and there is no need to introduce an integer variable to
control the matchings. The N-RoSy representation is also defined in the continuum,
not just as a discrete construction. Subsequent work has used some variation of the
N-RoSy representation [3, 16, 18, 21] or has opted to use period jumps to explicitly
define the matchings [8, 15, 37].

Most cross field design papers have approached the problem of generating a
smooth field by an energy minimization technique. Because of the close ties in this
field of research with software applications, these energies are often only defined in
the discrete setting. The typical measure of field smoothness is a discrete version of
the Dirichlet energy: the sum of squared differences of some quantity representing the
cross orientation at each point. For formulations using the N-RoSy representation
[16, 21, 31], this is the discrete Dirichlet energy of the representation vector. Since
only unit vectors are representative of crosses, a point-wise unit norm constraint is
applied to each vector, limiting the search space of the minimization problem to allow
only unit vector fields. As we will establish in section 4, the continuous analogue of
this problem is exactly the problem considered in the Ginzburg-Landau theory.

In approaches which use period jumps [8, 22, 37], the energy consists of the
squared differences of angles representing the orientation of each cross. Since there is
ambiguity in choosing how the vectors match up in two adjacent crosses, an integer
variable called a period jump is required to encode this information. Its appearance
in the energy functional makes the minimization problem a mixed integer problem.
Though this energy has not been extended to a continuous setting, the quantity being
minimized is a discrete Dirichlet energy of a scalar function representing the angle
that a cross makes with a reference direction at each point in the domain. In the
case of a domain where singularities are not topologically necessary, there is no need
for period jump variables in the definition of the energy. Setting each period jump
variable to zero, the energy becomes exactly a discretization of the Dirichlet energy of
the angle. The results of section 4 show that minimizing the Dirichlet energy of the
cross angle is equivalent to minimizing the Ginzburg-Landau energy; see Theorem 4.5
and the preceding example.

Beaufort et al. [3] have also recently recognized the connection between the
Ginzburg-Landau model and cross field generation. They use the N-RoSy represen-
tation and minimize the Ginzburg-Landau energy using a Newton method. Many of
these ideas have appeared in earlier work on cross field design [8, 15, 21, 22, 31, 37],
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e.g., the discrete energies formulated approximately minimize a Ginzburg-Landau
type energy, though the connection to Ginzburg-Landau theory is not explicitly made.

There are two cross field design algorithms that we are aware of that are funda-
mentally different than the above algorithms. The first is by Crane et al. [11]. This
algorithm builds N-direction fields on a surface with a known set of singularities by
solving for trivial connections on the surface, and then simply parallel transporting
a given reference N-direction across the entire surface. On a flat surface this reduces
to simply a constant field. This is fundamentally different from our problem because
we wish to design a harmonic field on the domain that meets a specified boundary
condition. The second paper is by Knoppel et al. [18]. In this paper, the energy of a
cross field is defined as the minimum Dirichlet energy of any scaling of the field. This
allows the representation vectors near singularities to approach zero, and removes the
necessity of applying a point-wise unit vector constraint. Unlike Ginzburg-Landau
type approaches, with this definition the singularities carry finite energy (see sec-
tion 4). Further, the energy is convex, guaranteeing that a globally optimal solution
can be found by solving a sparse linear system of size that is linear in the number of
mesh elements.

2.0.2. Cross field guided meshing. Most cross field driven quad meshing
techniques fall into two categories: streamline tracing techniques and parameterization
techniques. While parameterization techniques have found success in some commercial
applications and received more attention in early research [8, 6, 17], we choose to focus
on streamline tracing methods because of their direct connection with the topology
of the cross field. We refer the reader interested in parameterization based meshing
techniques to [7].

Streamline tracing methods decompose the geometry into four-sided regions by
tracing separatrices of the cross field. Alliez et al. [1] produced quad dominant meshes
by tracing streamlines in principle curvature directions and filling in flat areas with
triangle elements. Kowalski et al. [21] implemented a streamline tracing algorithm
in flat 2D by tracing streamlines starting at singularities and continuing until the
streamline reaches either the boundary of the domain or another singularity. This
approach works well on most domains but can fail on geometries with limit cycles.
Naive streamline tracing algorithms have the disadvantage that parallel streamlines
can intersect due to numerical inaccuracies. Ray and Sokolov [34] and Myles and Zorin
[29] independently developed robust streamline tracing methods such that prevent
such errors. Further, Myles and Zorin [29] developed a robust algorithm to partition
a 2-manifold into four-sided regions and demonstrated its robustness on a database
of 100 objects.

3. Background, assumptions, and basic definitions. Throughout this pa-
per, we will make the following assumptions about the geometric domain to be meshed.

ASSUMPTION 3.1. The domain D C R? is a bounded, simply connected planar
domain with a piecewise smooth boundary.

The theorems for the Ginzburg-Landau Theory in section 4 require a smooth bound-
ary, however many domains of interest for the meshing problem have corners. For
theoretical results sections 4 and 5, we smooth each corner of the domain with a
Bézier curve with three control points, one on the corner, and two on the boundary
at a distance € < 1 from the corner. The boundary condition along the smooth curve
is then assigned by linearly interpolating the cross with the angle of inclination above
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Fic. 4. (left) The cross field along a sharp corner with index 1/4. The cross turns 90° coun-
terclockwise with respect to the direction of the curve, all at a single point. (center) Transformation
between a sharp corner and a smooth curve, the crosses turn smoothly with the angle of inclina-
tion. (right) The cross field along a smooth curve turning 90° counterclockwise with respect to the
direction of the curve.
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the corner, and then propagated back onto the domain constant along each ray; see
Figure 4. In practice there is no need to apply this smoothing operation; as described
in section 6, we approximate the domain with linear finite elements which have a sim-
ilar effect. Multiply connected domains can be handled using the framework within
this paper by cutting the domain, or handled directly by applying the results in [38].
We expect that many of the results in this paper can be generalized to surfaces with
piecewise smooth boundary.

3.1. Quad meshing.

DEFINITION 3.2. A 2D polygonal mesh is a finite collection of nodes, edges, and
faces. Each node is associated with and can be viewed as a point in R?. An edge is a
straight line between two nodes and is said to be bounded by those nodes. A face is
a surface bounded by a minimal cycle of edges; minimal meaning that removing any
edge would break the cycle, and that no edge is contained in the interior of the cycle.

DEFINITION 3.3. A quad mesh is a polygonal mesh where each face is bounded
by four edges. We will sometimes say all-quad mesh for emphasis. A quad layout
is similar to a quad mesh, but in place of straight edges piecewise smooth curves are
allowed, and further we allow for the degenerate case where a face of a quad layout is
only bounded by two curves i.e., an annulus.

DEFINITION 3.4. A T-junction is a mesh feature where an internal edge contains
an extra node called a free node, which bounds only one edge.

The mesh in Figure 9(right) contains a T-junction.

DEFINITION 3.5. The valence of a node is the number of edges it bounds. An
internal node of a quad mesh is irregular if its valence is not four. A boundary node
of a quad mesh is irregular if its valence is not three.

DEFINITION 3.6. A string of edges of a quad mesh is the set of edges formed by
starting with a given edge, and recursively adding to the set all edges on a regqular
node that are opposite to an edge in the current set. By construction, each string
terminates at an irregular node, or at the boundary.

DEFINITION 3.7. The skeleton of a quad mesh is the set of all strings beginning
at irreqular nodes of the mesh along with all boundary edges.

The skeleton of the quad meshes in Figure 2(bottom right), Figure 7(bottom right),
and Figure 11(right) are colored in red.
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3.2. Cross fields.

DEFINITION 3.8. Let T = {z € C: |z| = 1} be the circle group with group opera-
tion given by complex multiplication and let p(N) be the set of the Nth roots of unity.
An N-direction is an element of Cy = T/p(N). A 4-direction is also called a cross.

DEFINITION 3.9. There is a canonical group isomorphism R: Cy — T called the

representation map given by
R([]) = ¥,

where ¢ is any representative member of the equivalence class [c] € Cn. The inverse
representation map R~': T — Cy is given by

R (u) = [Vu] ,

i.e. by choosing the equivalence class of the Nth roots of u.

In the literature, an N-direction, [¢] € C, is often visualized as an unordered set
{vg,v1,...,vny—1} of N unit vectors, each one pointing from the origin towards the
N representative elements of the class [¢]. Clearly, an N-direction has a rotational
symmetry of 27/N. An example of a cross field is illustrated in Figure 2 (bottom
left).

DEFINITION 3.10. An N-direction field on D is a map f: D — Cn U {0} where
only finitely many points are mapped to zero. The map Rof: D — T obtained by com-
posing the representation map with an N -direction field, f is called the representation

field for f.

DEFINITION 3.11. Let N(f) be the zero set of an N-direction field, f. Then f is
smooth if Ro f: D\ N(f) = T is a smooth map. Similarly, f is harmonic if Ro f
is harmonic on D\ N(f), i.e. satisfies A(Ro f) =0.

DEFINITION 3.12. Let v = (v}, v?) be the outward pointing unit normal vector on

D, and let ¢, = (v' +iv?). If a map g: D — T is such that g = ¢ for every smooth
point p € 0D, then g is said to be N-aligned to the boundary of D. If f: D — Cy is
an N-direction field on D such that Ro flop = ¢}, then f is said to be boundary-
aligned to D.

DEFINITION 3.13. Let v: [0,1] — D be a simple closed curve circulating a single
zero of the map [ at an interior point p of D. Then the value

I(p) 1= 21 R(f(v(l));;;rg R(f((0)))

is the index of p. The zero p is called o singularity of the N -direction field if its index
is not zero. The index of a singularity of an N-direction field is 1/N times the index
of the corresponding singularity of the representation field.

Note: The argument in Definition 3.13 can be chosen arbitrarily at v(0) but after
varies smoothly along ~.

3.2.1. Streamlines. A characteristic trait of a smooth vector field is that away
from zeros it locally foliates the space, meaning that streamlines of the vector field
partition the space into disjoint curves [24]. Streamlines can be similarly defined for
an N-direction field except that these streamlines can intersect themselves and each
other at angles of 27 /N, as we make precise below.
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F1c. 5. The covering vector field and the four sheets of the Riemann surface for the half disk.
The red and cyan streamlines both cross a green branch cut, causing the streamline to change sheets.
The red, black, and cyan streamlines of the covering vector field project onto the base domain as
streamlines of the cross field.

For the representation field Ro f: D — T of the N-direction field f on D, the
map Ay: D — T defined by Ay = Y/R(f) is a multi-valued map on D. We can
make a branch cut from each of the singularities of R(f) to the boundary, and define
a Riemann surface, R for this choice of branch cuts.

DEFINITION 3.14. The covering vector field on D for the given N-direction field
f and choice of branch cuts of Ay is the smooth vector field An: R — T defined by
assigning the vector pointing from the origin to An(p) at each point p of R.

The initial observation that a cross field has a corresponding smooth vector field
on a 4-covering of the domain of definition is accredited to Kélberer et al. [17].

DEFINITION 3.15. Let yn: [a,b] — R be a streamline of /A\N, satisfying dg—tN =
An(y(t) for t € [a,b]. Then the function v: [a,b] — D given by

y=moN

is a streamline of the N-direction field f. A separatrix of an N-direction field is a
streamline that begins or ends at a singularity.

Figure 5 shows an illustration of the covering field for a cross field on a half disk.
The two green lines are branch cuts that join a singularity to a point on the boundary.
Several example streamlines are drawn. For example, the red streamline in the top
left panel is continued in the top right panel.

No two streamlines of Ay can intersect each other on R, thus, if streamlines of
the N-direction field were to intersect at a point p € D, they could only do so if
7 1(7y)|p is on two different covers of R. Thus we conclude that streamlines of an
N-direction field can only intersect themselves and each other at integer multiples of
the angle 27 /N’; see, e.g., Figure 11 (bottom center).

4. Correspondence between cross field design and the Ginzburg-Landaull
theory. As mentioned in section 2, the cross field design problem is often formulated
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as finding harmonic cross fields, or equivalently as an energy minimization problem
with a feasibility constraint. Approaches using the N-RoSy representation for a cross
field, f, use the Dirichlet energy for the representation map, given by

(1) E[R(f)], where  E[u] ::%/D|Vu|2dA.

The problem then is to find the minimizer among all complex fields that can feasibly
represent a cross field:

2 inf E
( ) uef}?(D;T) (U)

where
H;(D;T) :={u e HY(D;C): u(z) =g(x) Vo € D and |u(z)| =1 a.e. x € D}.

Here, g is an N-aligned boundary condition (see Definition 3.12), and the feasibility
constraint |u(z)| = 1 keeps the solution on the unit circle so that a cross can be
defined at a point = by R™1(u(z)).

The admissible set in (2), H; (D, T), is empty for any topology that requires a sin-
gularity [4]. Indeed, the Dirichlet energy (1) is infinite for functions with singularities
[4, 18]. This is problematic because, by the Poincaré-Hopf theorem, a boundary-
aligned field will require singularities for many geometries of interest. Problem (2)
can be relaxed by enlarging the admissible set to H ; (D, C), so that the solution can
approach zero in the neighborhood of a singularity. A penalty term can then be added
to the Dirichlet energy given the minimization problem

: 1 2 1 2 2
(3) uef}?(fD,C) E (u) where E.(u) = 5 /D [Vul*dA + 122 /D (u® —1)*dA.
This is the approach taken in the study of the Ginzburg-Landau theory. In their
foundational work on Ginzburg-Landau vortices, Betheul et al. show that there is a
well-defined sense in which generalized solutions to (2) can be understood as solutions
to (3) in the limit e — 0. The following results of the Ginzburg-Landau theory can
be applied to N-direction field design

DEFINITION 4.1. The Brouwer degree of a map g: 0D — T, written d = deg(g,9D),}}
is the number of times that g(s) wraps around T as s traverses 9D.

THEOREM 4.2 ([4, Theorem 0.1]). Let D C R? be a bounded, simply connected
domain with smooth boundary ' and let g: 0D — T be a smooth function. Let d =
deg(g,0D) be the Brouwer degree of g on 0D. Denote by u. a solution of (3) for
e > 0. Given a sequence €, — 0 there exists a subsequence €y, and exactly d points
ai,as,...,aq in D C C and a smooth harmonic map u,: D\ {a1,...,aq} — T with
uy =g on 0D such that

Ue, — Us in CF (D\U(a;)) Yk and in CH*(D\ U(a;)) Ya < 1.

In addition, if d # 0, each singularity of us has index sgn(d) and, more precisely,
there are complex constants, «;, with |a;| =1 such that

Z — Q4

ue(2) — oy <Clz—a* as z—a; Vi

|z — a;]

ITheorems 4.2 and 4.3 are stated in [4] for star shaped domains, but this assumption was relaxed
to simply connected domains in [44].
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In other words, Theorem 4.2 guarantees a sequence of minimizers of the relaxed
problem (3) that converges to a function, wu,, that is harmonic on D \ {a,...,aq}.
Thus we can think of u, as a generalized solution of the minimization problem (2).

THEOREM 4.3 ([4, Corollary 1.1]). Let D C R? and g: D — T be as in The-
orem 4.2 with d = deg(g,0D). Given any configuration a = {ay,...,a,} of distinct
points a; € D with indices I = {dy,...,d,} satisfying d =Y., d;, there is a unique
function ug satisfying

(i) ug is a smooth harmonic map from D\ U;a; to T,

(i) uo = g on 0D, and

(iii) for some complex numbers o with |a;| =1,

dj
4) uo(z)ajm <Clz—aj| as z—aj, Vi
j
Furthermore, ug is given by
di do dn
B R o GRS CE™
0 |z —ai|® |z — aglde |z — ap|dn’
where @ is the solution of the Dirichlet problem
(5a) Ap=0 in D
(5b) ® = Yo on 0D,
and g is defined on 0D by
(6) ipo(z) — (2) [z —ai|™ |2 —as|® |Z_an|dn
e =g(z T % "
(z—a1))" (z—a2) (z —ap)

DEFINITION 4.4. The smooth harmonic map ug: D \ U;a; — T in Theorem 4.3
is called the canonical harmonic map associated with the boundary condition g, and
singularity configuration with locations a = {ay,...,a,} and indices I = {dy,...,dy}.
The N -direction field associated with the canonical harmonic map, defined by R~ (uo)
is called the canonical harmonic N-direction field associated with (g,a,I).

For a given boundary condition and configuration of singularities, the canonical
harmonic map has the smallest Dirichlet energy (1) (in a generalized sense). Figure 6
displays streamlines of cross fields having the same geometry and boundary condition
but different singularity configurations. Each of these cross fields was generated using
the explicit formulation from Theorem 4.3.

Example: domain with zero Brouwer degree. The case of a domain with
zero Brouwer degree helps to understand Theorem 4.3. If the Brouwer degree, d, is
zero, then no singularities are required, and equation (6) simplifies to e*#0(*) = g(z)
for z € 9D, i.e., po(z) is simply the smoothly varying angle that g(z) makes with
the x-axis. Since d is zero, ¢o(z) will return to its original value after circulating
the geometry. Thus the cross field can be unambiguously encoded by its angle of
inclination. The angle defined on the boundary is smoothly propagated into the
domain by solving (5), and transformed into elements of T simply by exponentiating
the angle. Another result by Bethuel et. al. [4] shows that (5) is equivalent to the
Ginzburg-Landau problem on domains with Brouwer degree zero.
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F1G. 6. A plot of the streamlines for multiple smooth cross fields on a “mushroom” domain,
each with different singularity configuration. The Brouwer degree of this domain is zero. (left) This
is the boundary-aligned canonical harmonic cross field with no singularities, which by Theorem 4.5 is
the global minimizer of the Ginzburg-Landau energy. (center) This cross field has four singularities.
The top two have degree +1/4 and the bottom two have degree —1/4. (right) This cross field has
two singularities. The top one has degree +1/2 and the bottom one has degree —1/2.

THEOREM 4.5 ([4, Theorem 0.3]). Let d be the Brouwer degree for domain D,
{a1,...,aq} be the singularity positions, and u, be the minimizer of the Ginzburg-
Landau energy with boundary condition g as in Theorem 4.2. Then uy is the canonical
harmonic map for the boundary condition g and singularity configuration {ai,...,aq}
with indices sgn(d).

On a domain with Brouwer degree zero, the minimizer of the angle Dirichlet energy
is the canonical harmonic map for the empty singularity configuration, which by
Theorem 4.5 is exactly the minimizer of the Ginzburg-Landau problem.

4.1. Renormalized energy, singularity location, and index. Theorem 4.2
tells us that the global minimizer of (2) will have isolated singularities occurring on
the interior of D each with index sgn(d). For practical applications such as meshing,
we cannot rely on finding a global minimizer as the problem is non-convex. The
Ginzburg-Landau theory offers some results that can be extended to local minimizers
as well. In particular, it tells us that the singularities of a local minimizer will not
occur on the boundary, be placed too close together, or have index with magnitude
> 1. A similar discussion appears in [3].

DEFINITION 4.6. The renormalized energy, W, of a cross field f is defined as

1 n
W =Y did; log a; — as] + 5/6]3 (g x gr) — 7> diR(ay),

i] i=1

where if v is the outward pointing unit normal on 0D, T is the unit tangent vector
to OD such that (v,T) is direct, g, is the directional derivative of g in the direction
7, R(x) = ®(x) — Z?Zl d;jlog |z — a;|, and ® is the solution of the linear Neumann
problem

AD = Z 21d;0,, in D
=1

8;1) =g Xxg, on 0D.

ov

THEOREM 4.7 ([4, Theorem 1.8]). Let ug be the canonical harmonic map associ-
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ated to (g,a,I), then as p — 0

n
7) o [ 1Tul = w (o d g1/ W00,

2 Ja, i=1
where Q, = D\ Ui, B(a;,p).

The first term on the right hand side of (7) tells us that a configuration where any
singularity has degree other than +1 can not be a local minimizer. Further, since the
second term of W is bounded independent of the singularity configuration, the first
term of W causes W — oo as singularities with index of the same sign approach each
other, and R — oo as singularities approach the boundary. Thus, even for a local
minimizer we can expect that the representation field will have isolated singularities
of index 1. For further discussion see the proof of [4, Theorem 1.10].

5. Cross field topology and quad mesh structure. At the heart of cross
field based quad meshing methods is the notion that there is a connection between the
topology of a cross field and the structure of a quad mesh. Streamline tracing methods
use the cross field topology directly; by tracing separatrices of the field, they decom-
pose the geometry into four-sided regions [21, 29]. Parameterization based methods
use this connection implicitly by building a parameterization that is as aligned as
possible to the cross field in a least squares sense [8, 17].

In this section, we make rigorous the connection between the topology of a har-
monic cross field and the structure that can be extracted from it for use in building
a quad mesh on a domain. Central to this idea is the relation between the index of a
cross field singularity, and the valence of a node in a mesh. Subsections 5.1 and 5.2
contains three lemmas which make this relationship explicit. We begin with any
boundary-aligned canonical harmonic cross field, not necessarily a minimizer of the
Ginzburg-Landau energy. In Lemmas 5.1 and 5.4 we show that there is a relationship
between the singularity index and the number of separatrices meeting at that singu-
larity. Kowalski et al. [21] reached a similar result for discrete fields, assuming a linear
interpolation across mesh elements. Beaufort et al. [3] also reach similar conclusions
for cross fields that are a priori aligned to a quad mesh. Further, in Lemma 5.5 we
show that the local topology of the cross field in each sector between separatrices is
identical to that of a constant field on a 90° corner. The results of these lemmas are
illustrated in Figure 7. For the sake of generality, the results in the following section
are stated in terms of N-direction fields.

5.1. Behavior of N-direction fields near (interior) singularities. Our first
result is that singularities locally partition an N-direction field into evenly angled
sectors. The number of sectors depends only on the index of the singularity.

LEMMA 5.1. Let f be a boundary-aligned canonical harmonic N -direction field on
D. Let a be an interior singularity of f of index d/N with d < N. There are exactly
N —d separatrices meeting at a. These separatrices partition a neighborhood of a into
N —d sectors.

Proof. Let uy be the representation vector field for f. Write z = a + re??. The
estimate (4) gives
(8) uo(2) = e + o(r) for 6 € [0, 27).

Writing @ = €%/N | the Nth-roots of the ug(z) are then given by e/“x>+%%) for

ke Z.
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Fi1a. 7. (top) Local behavior of cross fields around an interior singularity (left) and boundary
singularity (right). The thick red lines show the separatrices exiting singularities as described by
Lemmas 5.1 and 5.4. If the separatrices are considered as boundaries of the sectors, then the index of
each corner is +1/4; see Definition 5.3. (bottom left) A cross field and speparatriz partition for a
regular hexagon. The singularity in the center has index —1/2. (bottom right) The corresponding
quad mesh with skeleton highlighted in red; see Definition 3.7.

We seek directions where the vector originating at a and pointing towards z is
parallel to a vector originating at the origin and pointing towards any of the Nth-
roots. Thus we want to solve the equation

9) el = WU = 9= 2nk/(N — d) + 0o/ (N — d)

Since we are looking for solutions where 6 € [0, 27) we have exactly N — d solutions.
This gives N — d separatrices and N — d sectors. |

5.2. Boundary singularities and nearby behavior of canonical harmonic
N-direction fields. We can make further assertions about the behavior of N-directionll
fields on these sectors, but first we must introduce the concept of boundary singular-
ities:

DEFINITION 5.2. Let 0D be piecewise smooth with corners {ci, ... ,cx}. Letint(c;)J}
be the interior angle at the corner c;. The angle of deviation at a corner c; is the
signed angle dev(c;) = 7 — int(c¢;).

_ DEFINITION 5.3. Let 9D be piecewise smooth with corners {cy, ..., cx}. Lety: [0,1] —f
D be a simple closed curve such that v(0) = ¢; = v(1), and y'(0) and y'(1) are tangent
to 0D at ¢, and containing no other singularity. Let

Aarg(c;) =lim arg R(f(y(1 - 5))) — arg R(f(+(s))).
The index of the corner is defined

(10) I(c;) = dev(c;) *2§A arg(cl-)-

The corner ¢; is said to be a boundary singularity if its index is non-zero.
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Fic. 8. Singularities of index > 1/2 lead to degenerate quad meshes. (left) A boundary
singularity of index 1/2 leads to an infinite number of separatrices converging to a single point.
(right) An internal singularity of index 1/2 leads to a pair of the degenerate “doublet” quads.
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A boundary singularity can be interpreted as the number of 1/N turns in the
counterclockwise direction that the N-direction makes in relation to the boundary.
It is akin to the concept of a turning number from [37], except that it happens at a
single point (see Figure 4).

To apply the Ginzburg-Landau theory to a domain D with corners, we first
smooth the corners via the operation described in section 3 and Figure 4, to ob-
tain a canonical harmonic N-direction field f defined on a smooth domain D. We
then extend f to D constant along each ray from the corner; see Figure 4.

LEMMA 5.4. Let N be even and f as described in the previous paragraph. Let ¢ be
a boundary singularity of f of index d/N with d < N/2. There are exactly % —d+1
separatrices meeting at ¢; (including the boundaries themselves). These separatrices
partition a neighborhood of ¢ into % — d even-angled sectors.

Proof. Let ¢. = int(c). By the definition of a boundary singularity (Defini-
tion 5.3), we calculate that Aarg(c) = N(m — ¢.) — 2mrd. We can parameterize the
geometry near the corner with polar coordinates (r, ¢), where r is the distance be-
tween from the corner and ¢ € [0, ¢.] measures the angle from the segment succeeding
the corner. In this coordinate system, the representation field, u, near the corner can
be written

7i¢N(7r—¢c)—21rd

= e Pc

Aarg(c)
be

(11) u=e"
Just as in Lemma 5.1, we want to find any rays emanating from the singularity such
that the crosses along those rays are aligned with the rays. Thus, we want to solve

(12) el — e—i¢7N(W7J\%172Wd+% — b= Pe

k.
N
N_d

Since we are looking for solutions in ¢ € [0, ¢.], for d < N/2 and N even we have
solutions for k =0, ..., % —d. Thus the N-direction field corresponding to u partitions
a neighborhood of the corner into % — d even-angled sectors. O

In Lemma 5.4, if we allow d = N/2 then (12) simplifies to the identity, and so for
every value of § we get a separatrix. In the case of a cross field, this means that any
boundary singularity with index +1/2 has infinitely many separatrices; see Figure 8
(left).

The following Lemma specifies the behavior of the cross field within each sector
around a singularity.

LEMMA 5.5. Let N be even and d < N/2. Consider a component of the partition

described in Lemmas 5.1 and 5.4. A singularity, ¢, in the corner of this component,

. . . . 1 1
when viewed as a boundary singularity, has indez 5 — + .
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Proof. If the singularity is an internal singularity, then (9) gives that on each of
the sectors, the angle of deviation is

B 2r(k+1) o 2k 0o B 27
dev(c)-”—({ N_d +N—d]_{N—d+N—d N4

From (8), we compute

2k 4+ 1) 0o 2k 0o
Aarg(c)d{ N _d +N—d:|+00(d|:N—d+N—d +90

21
N—d

=d

Using (10), the index of the corner is

If the singularity is a boundary singularity, then from eq. (12), the angle of devi-

ation for each sector is
- l $ck D %
¥ g ¥

dev(c) =7 — <[¢C(k +1)
Aarg(c) — N(ﬂ_d)c) —27d <¢)c(k+1) ¢ck ) — N(ﬂ-_qbc) _27Td.

Using (11), we compute

g
o B

N N
5 = d 5 d
Thus (10) gi\/es that the indeX Of the corner iS

_— %qsid _ %N(ﬂ_%(bi)d_%rd % 3
I(C) = 7 = N 0

Lemma 5.5 says that the index of the boundary singularity around the corner of
any sector is (% —1)/N. When N = 4, this simply means that each corner of a sector
looks like a right angle with respect to the cross field; see Figure 7. Thus locally, the
neighborhood of an internal singularity of index d/N has the same structure as an
irregular node of a quad mesh of valence N — d; see Figure 7 (bottom).

The next section shows how we can use this local structure to determine the
structure of a quad mesh on D.

5.3. Partitioning into four-sided regions. The skeleton of a quad mesh (Def-
inition 3.7) gives the basic structure of the mesh in the sense that it partitions the
domain into the coarsest possible quad layout for the given choice of irregular nodes
and connectivity between them; see Figure 2 (bottom), Figure 7 (bottom left), and
Figure 11 (right). Any mesh with this structure, including the original mesh, can be
seen as simply a refinement of this quad layout.

It is well known that a cross field can be generated on a quad mesh by locally
aligning the crosses with quad edges (see [3, 49]). Beaufort et al. [3] show that a
cross field created in such a way will have singularities exactly at the irregular nodes.
Further, the separatrices of the cross field will be exactly the curves traced out by the
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Fic. 9. A cross field on a domain that exhibits a limit cycle. (left) The separatriz traced
in yellow converges to a limit cycle. The partition shown in red inserts a T-junction at the first
place where the yellow separatriz intersects another one. (right) The four-sided regions without
a T-junction can be meshed by conformal mapping. The region with the T-junction requires the
insertion of more irreqular nodes in order to conform with the mesh on its right and left sides.

skeleton of the quad mesh. Presumably, one could create the skeleton of a quad layout
by reversing this process, i.e., simply tracing separatrices of the cross field (this is the
approach taken in [21]). This would allow for meshing the domain by conformally
mapping a regular grid into each region of the quad layout. Unfortunately, it is not
always so simple. Figure 9 shows a geometry that contains a limit cycle. The yellow
separatrix begins at the corner, but continues indefinitely as it approaches the limit
cycle. The following theorem shows that this is the only type of failure case that can
occur. The second part of the proof follows [29].

THEOREM 5.6. Let f be a boundary-aligned canonical harmonic cross field on D
whose singularities have index < 1/4. If no separatriz of f converges to a limit cycle,
then the separatrices of f, along with 0D partition D into a quad layout.

Proof. By Lemma 5.1, a finite number of separatrices meet at each singularity.
Since no separatrix converges to a limit cycle on D (and consequently, none on R) the
Poincaré-Bendixson theorem for manifolds [41] guarantees that each separatrix must
either end at another singularity, or exit the domain orthogonal to the boundary. The
set of separatrices along with D then partition the domain into bounded regions that
contain no singularities. If a curve of the boundary of any region meets another curve,
the corner where they meet must have index +1/4 because they are either separatrices
intersecting each other or the boundary orthogonally, or they meet at singularities and
by Lemma 5.5 have index +1/4. Since there are no internal singularities, the total
index must come from corner singularities, and since the index for each corner is
positive, the sum must be non-negative. By the Poincaré-Hopf theorem for cross
fields [37], the total index of a given region must equal the Euler characteristic of
that region. The genus of each region is zero because the domain is defined in two
dimensions. Thus there are only two possibilities; either there is one boundary and
the Euler characteristic is one, in which case we have four corners each of index +1/4,
a quad element. Otherwise, there are two boundaries and the Euler characteristic is
zero. In this case the total index is zero, so there are no singularities, i.e., an annulus.0

The main takeaway is that when no separatrix of the cross field converges to
a limit cycle, the topology of the cross field is sufficient to uniquely determine a
quad layout, which can then easily be meshed by mapping a regular grid into each
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region. The irregular nodes of any such mesh mirror exactly the singularity structure
of the cross field through the relationship established in Lemmas 5.1 and 5.4. Further,
since the index of each singularity is < 1/4, each singularity will have at least three
separatrices, and so none of the quad elements of the mesh will be degenerate; see
Figure 8.

The failure case occurs when one of the separatrices converges to a limit cycle. In
a case like this, we propose that such separatrices can easily be handled by allowing
T-junctions on the quad layout; see Figure 9. This complicates the meshing problem
slightly; a domain can no longer be meshed by simply mapping a regular grid into
each region of the quad layout. Instead, regions adjacent to T-junctions will require
additional singularities to resolve the differing number of quads needed on opposite
sides of the region. This however has been addressed in [40, 45, 46], and so partitioning
the domain into a quad layout with T-junctions is sufficient to produce a quad mesh
where the number, location, and valence of its irregular nodes are determined only by
the singularities and T-junctions in the partition, and the target density of the quad
mesh. See subsection 6.2 for more details.

THEOREM b5.7. Let f be a smooth cross field on D with a finite singularity set.
Every separatrixz that converges to a limit cycle intersects at least one other separatriz.

Proof. Let s: [0,00) — D be a separatrix beginning at a singularity s(0) with s(¢)
converging to the limit cycle, 7o, as t = 0o. Since s converges to 7., there exists a t*
such that a streamline intersecting s at s(¢*) must also intersect vo.. Let si,t* be the
segment of this streamline beginning at s(¢*) and continuing in the direction towards
Yoo- Consider the the family of streamline segments sit for t € [0,00) beginning at

s(t), and continuing in the direction from s consistent with SI - Let this family of

curves be parameterized so that each curve, sjr_ .(r), has unit speed and starts on s at
s(t) when r = 0. Finally, let s) ; be the corresponding streamlines.

If sj , intersects 7o, for every ¢, then sir o must also be a separatrix (since it

starts at a singularity), and since it intersects v, it must also intersect s. If sir , does
not intersect v, for all ¢, then there is a greatest lower bound, 7, such that for ¢ > 7,

+ .
5] ; must intersect voo.

We claim that SIT cannot intersect v... If it did, then by the stability of ordinary
differential equations with respect to initial data, [10, Proposition 2.76], there would
be a neighborhood around s(7) within which any streamline would also intersect vo0,
contradicting the fact that 7 is a greatest lower bound.

We claim that SIT connects to a singularity, making s, , a separatrix, and argue

by contradiction. If sir - does not connect to a singularity, then by the Poincaré-

Bendixson theorem, either s, , is a periodic orbit (case 1), or siT will exit the

boundary (case 2) or approach a limit cycle (case 3).

Case 1: If s, . is a periodic orbit, then since both s, ; and 7. are closed sets,
there is a finite distance, § > 0, between s, ; and voo. Let V ={x € D: d(z,s,1 ;) <
d/2}. By [10, Proposition 2.76], there exists an € > 0 such that sit must remain in
Vfort € (r—e,7+¢). Then SITJrE/Q must remain in V, and on the other hand,
must intersect voo since 7+ &/2 > 7. This is a contradiction since V N 4 is empty.

Case 2: Suppose that sj . exits the boundary. Since sir - and v are a compact

sets, there exists a § > 0 such that the set V = {z € D: d(z,sT ) < 6/2} has an
empty intersection with v... Again by [10, Proposition 2.76] there is an € > 0 such
that sit must remain in V for all » > 0 when t € (1—¢,7+¢). But SI tre/2 intersects
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Yoo, Which again is a contradiction since V' N 4 is empty.

Case 3: Suppose si  approaches a limit cycle £,. Then there exists an r* and an

€1 > O such that if ¢t € (1 —e1,7+¢1), then sit(r) approaches £, asymptotically as r
increases from 7* to co. Consider the segment of SIT(T) for r € [0,7*]. This segment
is a closed set, so again there is a ¢ such that the set V = {x € D: d(az,siﬁ(r)) <
§/2 for r € [0,7*]} has an empty intersection with v.. Again, by [10, Proposition
2.76], there is a e2 > 0 such that sit must remain in V for all » € [0,7*] when
t € (1 —ea,7+¢2). Let € = min(eq,e2). Then for ¢t € (1 —¢,74¢€), s14+(r) €V for
r < r*, and approaches /., asymptotically afterwards. Thus sI t4e/ CANNOL intersect
Yoo, Which again is a contradiction. ]

COROLLARY 5.8. Let f be as in Theorem 5.7. Let voo be a limit cycle with a
separatriz, s, converging to it. There is a separatriz, s', (not necessarily the same
as s) that converges to v that also intersects a separatriz beginning at the same
singularity.

Proof. Let s ;+ be defined as in Theorem 5.7. Either s, ; intersects 7, for all
t (case A), or not (case B). In case A, by Theorem 5.7 s intersects s, o, which is a
separatrix beginning at the same singularity, so s’ = s and we are done. In case B, by
Theorem 5.7, sit connects to a singularity at some time. Denote the time by t = 7,
the singularity by z,, and the separatrix by sIT.

For some sufficiently small £ > 0, consider the segment of sJLT 4. beginning at
s(T + €) and terminating at its first intersection with ... Call this segment ST rte
Since s converges t0 Yoo, for any point p on s% ., s will always intersect s7
between p and 7o. Thus all streamlines intersecting s . must converge t0 Yoo.
One of these must be a separatrix connecting to x, since s and 7., are on opposite
sides of z,. This new separatrix must fall into case A or case B. If it falls into case
A we are done. If it falls into case B, then by repeating this argument we can always
find another separatrix converging to 7. Since there are only a finite number of
singularities, we can only repeat this process a finite number of times until eventually
finding a limit cycle that falls into case A. |

Theorem 5.7 and Corollary 5.8 allow us to deal with the issue of limit cycles in
a predictable manner. When a limit cycle occurs in the cross field, the partition can
be obtained by first tracing out all of the separatrices that don’t converge to a limit
cycle, and then tracing out each separatrix that does converge to a limit cycle until it
reaches another separatrix, placing a T-junction at that point. The exact process for
partitioning a domain into a quad layout with T-junctions is specified in Algorithm 1.
We denote the set of separatrices that converge to any limit cycle by P.

THEOREM 5.9. Algorithm 1 is well defined, terminates in finite time, and parti-
tions D into a quad layout with exactly |P| T-junctions.

Proof. The first ‘for’ loop is well-defined by Corollary 5.8.

In the second ‘for’ loop, each separatrix that converges to a limit cycle is guar-
anteed to intersect another separatrix by Theorem 5.7. If it does not intersect a
separatrix in S, then it must intersect one that runs orthogonal to the limit cycle
itself which is added to B in the first for loop.

Clearly Algorithm 1 partitions the domain into regions without singularities. As
in Theorem 5.6, each corner formed by the partitioning must have an index of 1/4
because it either meets at a singularity, intersects another separatrix, or exits the
boundary orthogonally. Following the argument from the second part of the proof of
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Algorithm 1 Partitioning D into a quad layout with T-junctions.

Input: Let D be a domain satisfying Assumption 3.1. Let f be a boundary-
aligned canonical harmonic cross field for a given set of singularities.

Output: A set B containing limit cycles and separatrices that define a quad
layout with T junctions.

Let S be the set of separatrices that do not converge to a limit cycle. Let P be
the set of separatrices that do. Let £ be the set of limit cycles.

Initialize the set B = S.

forl € £ do
if no element of B intersects [ then
(i) Add I to B.
(ii) By Corollary 5.8, there is an element of P that intersects I. Let p’ be
the portion of that separatrix beginning at the singularity and ending in a
T-junction with [.
(iii) Add p’ to B.
(iv) remove p from P.
end if
end for
for p € P do
Let p’ be the curve segment of p beginning at the singularity and continuing
until it intersects an element of B. Add p’ to B.
end for

Theorem 5.6, this is enough to guarantee that each region is a quad or an annulus.
There are exactly |P| T-junctions because they are created exactly when we trace a
separatrix in |P| until it reaches another separatrix that is already in the set 8. 0O

6. Computational methods.

6.1. The MBO method. Another consequence of the connection between the
cross field design problem and Ginzburg-Landau Theory is an efficient computational
method for minimizing the Ginzburg Landau functional (3) based on a generalization
of the Merriman-Bence-Osher (MBO) method. The MBO method was originally in-
troduced in [25, 26, 27] in the context of diffusion generated motion by mean curvature
and extended to (3) in [39]. The details of the algorithm are given in Algorithm 2. We
view this method as an energy splitting method for the Ginzburg-Landau functional
(3) where we alternatively (i) diffuse the representation map by a time 7 and (ii)
project onto the unit circle. The intuition behind Algorithm 2 is that the Dirichlet
energy of a representation map decreases in the first step, as it is the gradient flow
of the Dirichlet energy subject to the boundary condition. In the second step, the
representation map is projected on T.

The MBO method (Algorithm 2) provides an efficient way to approximate local
minimizers for the Ginzburg-Landau energy (3). By subsection 4.1. local minimizers
will have isolated singularities of degree 1. The field produced by Algorithm 2 is a
boundary-aligned canonical harmonic map for some singularity configuration, so the
results in section 5 apply, and Theorems 5.6 and 5.9 guarantee that its separatrices
will partition the domain into four-sided regions.
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Algorithm 2 A diffusion generated motion algorithm for approximating minimizers
of the Ginzburg-Landau energy (3).

Input: Let D be a domain satisfying Assumption 3.1 and 7 > 0. Fix boundary
conditions g on QU as in Definition 3.12. Initialize a representation map of the
cross field, ug: D — C, with ug(z) = g(x) for every € 9D. Let k = 0.

while the uy is not stationary do
(i) Solve the diffusion equation,

(13a) o(t,z) = Av(t, ) zeD
(13b) v(t,x) = g(x) x € 0D
(13¢) v(0,x) = ug(x) x €D,

A

until time 7. Denote the solution by g1 = €™ ux = v(7).

(i) Set upyy = 12 and k = k + 1.

[Tkt1]

end while

Fic. 10. [Iterations 0, 1, 3, and 19 of Algorithm 2 for a half disk. At each time step, the
representation field is drawn. As time evolves the singularities in the field move as to reduce the
Ginzburg-Landau energy (3). The time step in Algorithm 2, T, was chosen very small so that the
algorithm takes several steps to reach a stationary state.

Given a domain D, we discretize it with linear triangle elements, and assign a
Dirichlet boundary condition at each boundary node. We initialize the field either
with a canonical harmonic map using Theorem 4.3, or with a harmonic map obtained
by solving Laplace’s equation on D. The diffusion steps of the MBO iterations are
then performed with a finite element method using the FEniCS software [2].

6.2. Creating a quad mesh from a representation field. The discrete rep-
resentation map produced by our implementation of the MBO method can be trans-
formed into a discrete cross field by taking the fourth root of the representation map
at any point. Singularities occur at the zeros of the representation map. The direc-
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tions that separatrices exit a singularity are then computed by using (9) and (12),
and separatrices are computed using a fourth order Runge-Kutta method. There is
no need to compute a Riemann surface for the domain for streamline tracing because
locally the appropriate vector field is completely determined.

By tracing out streamlines as specified in Algorithm 1, we obtain a partition of
the domain into a quad layout with exactly one T-junction for every separatrix that
approaches a limit cycle. For quad layouts that contain no T-junctions, a regular grid
can be conformally mapped into each quad region to obtain the mesh. We do this
using the CUBIT software [40].

When a T-junctions appears in a quad layout, a mesh can no longer be obtained
by simply mapping a grid into each region. The problem is illustrated in Figure 9
(right). To mesh a region, the opposite sides of that region must have the same number
of quads. If we were to map a regular grid into each subsequent region, we would
have to satisfy the conditions a +b=c¢, c¢=0b,a >0, b > 0 and ¢ > 0 where a and b
are the number of quads required on the sides adjacent to the T-junction, and c is the
number of quads required on the opposite side; see Figure 9. Clearly these conditions
are incompatible, so any mesh in such a region will require additional singularities. In
our examples, we mesh these regions using the paving algorithm [5], however a more
deterministic method such as [46] could be used.

These singularities do not necessarily need to be placed in the region adjacent to
the T-junction as shown in Figure 9, but can be distributed throughout the regions
by assigning the number of quads to appear on each curve. This is a combinatorial
problem similar to the user specified interval assignment problem considered in [28].

Figure 11 shows several example meshes using this method. The first example is a
surface from a CAD designed mechanical part [40]. This domain has Brouwer degree
two and the cross field contains two singularities of index +1/4. Three separatrices
meet at each of these singularities, and thus the corresponding quad mesh has 3-valent
nodes at the singularity locations.

The second example is a block U. The field was initialized with a canonical har-
monic cross field with a boundary condition of Brouwer degree —2 and a singularity
configuration placing two singularities of index —1/4 in the bottom corners of the U.
The corresponding quad mesh has two 5-valent nodes.

The next two examples are multiply connected domains. As stated in section 3,
these examples could be handled within the framework of this paper by cutting the
domain, however in practice we apply the MBO method directly to the multiply con-
nected domain. The first multiply connected domain has Brouwer degree —1, which
we count by subtracting the Brouwer degree of the interior boundaries from the exte-
rior one. One singularity of index —1/4 appears near the curve that contributes to the
negative Brouwer degree. The cross field in the last example contains two singularities
with index —1/4, and also contains periodic orbits that intersect themselves.

7. Discussion and future directions. In this paper, we have made the ob-
servation that cross field design for two-dimensional quad meshing is related to the
well-known Ginzburg-Landau problem from mathematical physics. Using this identi-
fication, we prove that this procedure can be used to produce a cross field whose sepa-
ratrices partition the domain into four sided regions. This identification also allows for
an extension of the Merriman-Bence-Osher (MBO) threshold dynamics method to be
used to find representation fields that approximately minimize the Ginzburg-Landau
energy. The methods are demonstrated with a number of computational examples.

Some limitations exist when using the energy (1). Since the problem is non-
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F1c. 11. For several different geometries (rows), we plot the (left) representation field obtained
via the MBO method (Algorithm 2), (center) the cross field and quad layout obtained from the
separatrices of the cross field, and (right) quad mesh with skeleton drawn in red.
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convex, for most domains, we cannot guarantee that we will reach a global minimum.
Ironically, a global minimum may not always result in the best mesh. For example, the
cross field in Figure 6 (left) is the global minimizer of the Ginzburg-Landau energy for
this domain because it is the canonical harmonic cross field with no singularities. The
one shown in Figure 6 (center) is the cross field obtained through the MBO method.
Isotropy of mesh elements is a desirable property in many meshing applications, and
in this case the local minimizer found by the MBO method produces a more isotropic
mesh than the global minimizer because of the additional singularities. This suggests
that this definition of cross field energy may assign too much weight to singularities.
The infinite energy at singularities is also problematic because the discrete measure of
field energy depends on the discretization. As the mesh is refined near singularities,
the energy is increased.

Despite these limitations, we have shown that approximate solutions to prob-
lem (1) has many desirable properties for meshing. For example, the MBO method
produces cross fields with isolated singularities of index +1/4 (subsection 4.1) that
locally exhibit the same structure as irregular mesh nodes subsection 5.1. Further,
the separatrices of these cross fields are guaranteed to partition a domain into a quad
layout, possibly with T-junctions.

There are a number of future directions for this work. One direction is a more
careful numerical analysis of the finite element problem arising in the discretization
of (3). Along the same line, a more careful comparison should be made with the quad
meshing methods in [15, 16, 18, 21, 33]. Also, a comparison between the location of
singularities of fields generated via this method and those generated via the method
in [18], utilizing a different cross field energy, is necessary.

In section 3 we discuss a method to smooth the corners of a piecewise smooth
domain so as to be able to apply the Ginzburg-Landau theory. A more elegant solution
would be to extend the Ginzburg-Landau theory to handle domains with piecewise
smooth boundary.

In this paper, the index of a boundary singularity is determined by the corner
smoothing operation in section 3. While this is a natural choice, it does not allow us
to mesh geometries with sharp corners such as that in Figure 8 (left), since a boundary
singularity of index 1/2 would be assigned. While quad elements are more isotropic
when the index values are chosen close to dev(c)/2mw, in reality, there is ambiguity
in the index assignment of any corner. For example, the bottom four corners on the
block U in Figure 11 were each assigned an index of 1/4, but an index of zero would
have been just as reasonable, and would change the resulting cross field and mesh. It
may be preferable to let the user have control of the index assignment for each corner
to allow for greater flexibility for the mesh and enable meshing of geometries with
sharp corners.

Proving general symmetry results for solutions of the Ginzburg-Landau energy is
a difficult problem. In [23], a the symmetric solution on a disc is analyzed and is shown
to be stable under perturbations. See also [9] for further discussion and open problems.
However, we observe in numerous numerical examples that the symmetries of a domain
are inherited by the configuration of the Ginzburg-Landau vortices. Analytical results
in this direction for the specific boundary conditions considered here could be used to
guarantee symmetries in the resulting mesh.

For simplicity, in this paper we have restricted to planar Euclidean domains and
not surfaces with boundary. However, due to the topological nature of our results and
the Ginzburg-Landau Theory, we expect that many of these results can be extended
to surfaces [43]. We also intend to extend our implementation of the MBO method to
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surfaces, as well as a generalization of the method discussed in section 4 for producing
fields with a fixed set of singularities.

In higher dimensions, the analogous approach is to minimize the Dirichlet energy
over the set of H! functions taking values in SO(3)/O where O is the octahedral
symmetry group [14, 35, 42]. Unfortunately, this approach is more complicated as the
field topology is no longer sufficient to determine the underlying structure of a hex
mesh [48]. Finding an efficient representation for elements of the set SO(3)/O and
studying the singularity structure for generalized solutions of this problem requires
further attention.
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