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Abstract. We generalize the theory of underlying one-step methods to strictly
stable general linear methods (GLMs) solving time-dependent ordinary differ-

ential equations (ODEs) that satisfiy a global Lipschitz condition. We combine

this theory with the Lyapunov and Sacker-Sell spectral stability theory for one-
step methods developed in [22, 23, 24] to analyze the Lyapunov stability of a

strictly stable GLM solving a time-dependent linear ODE. These results are

applied to develop a stability diagnostic for the solution of linear ODEs by
strictly stable GLMs.

1. Introduction. ’What do multistep methods approximate?’ This question is
one that beleaguers many researchers of multistep discretizations of ordinary differ-
ential equation (ODE) initial value problems (IVPs) due to the fact that the local
truncation error of a k-step multistep method depends on the previous k steps. For
autonomous ODEs, two classic papers, [16] and [19], provide an answer to this ques-
tion by applying invariant manifold theory for maps to relate the numerical solution
produced by a multistep method to the flow of the differential equation it is ap-
proximating. This facilitates the use of discrete dynamical systems theory which is
important in the context of structure preserving methods [17] and time-dependent
(nonautonomous) stability theory [22, 23, 24]. The focus of this paper is to use
the spirit and technique of [16] and [19] together with invariant manifold theory for
nonautonomous difference equations to develop a stability theory for general linear
methods (GLMs) solving uniformly exponentially stable, nonautonomous, linear
ODEs.

Our contribution in this work is twofold. We first apply invariant manifold theory
for nonautonomous difference equations to prove Theorem 3.1. This theorem states
that for a strictly stable GLM solving a nonautonomous ODE that satisfies a global
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Lipshitz condition, there is a time-independent change of variables and a unique
one-step method (called the underlying one-step method) so that if the step-size is
sufficiently small, then the graph of the one-step method is a global, exponentially
attractive, invariant manifold of the discrete-time system resulting from the change
of variables. Theorem 3.1 generalizes the technique of characterizing the approxi-
mation properties of a GLM by its underlying one-step method to ODEs that are
nonautonomous.

The second contribution of this paper is to use Theorem 3.1 and the Lyapunov
and Sacker-Sell spectrum based stability theory for one-step methods solving nonau-
tonomous ODE IVPs developed in [22, 23, 24] to prove Theorem 3.3. By stability we
shall always be referring to the concept of time-dependent Lyapunov stability un-
less otherwise specified. Theorem 3.1 states that for all sufficiently small step-sizes
the numerical solution by a strictly stable GLM of a nonautonomous linear ODE
with Sacker-Sell spectrum bounded above by zero decays at a uniform exponential
rate. This provides a way of analyzing the numerical stability of time-dependent
linear ODEs that may fail to satisfy a one-sided Lipshitz condition or the uniform
decay estimates of AN- and B-stability theory. Subsequently, we apply Theorem 3.3
to develop a stability diagnostic to determine when a strictly stable GLM fails to
produce a decaying numerical solution to a linear ODE whose Sacker-Sell spectrum
is bounded above by zero.

The use of invariant manifold theory to characterize the approximation properties
of a multistep method by an associated one-step method was pioneered in [19] and
[16]. The results of [19] were extended to GLMs in [25] using the invariant manifold
theory for maps developed in [26]. The techniques used in these works are only
rigorously justified for autonomous differential equations which is probably due
to the fact that at the time there was not a well-established theory for invariant
manifolds of nonautonomous differential and difference equations. This subject has
since been one of intensive investigation (see [1, 3, 4, 5, 7]) that we use in the
development of our theoretical results.

The stability of the numerical solution of an ODE IVP by a multistep method
is a challenging and important problem dating back at least to the investigations
by Dahlquist in [8, 9, 10]. For time-dependent trajectories the well-established
stability theories (e.g. AN-stability, B-stability, algebraic stability) give conditions
on a GLM so that with no step-size restriction it preserves the asymptotic decay
of a trajectory that is uniformly decaying. This restricts the analysis to implicit
methods and these theories do not provide a way to restrict the step-size for a
given convergent or strictly stable GLM solving non-uniformly decaying problems;
no obvious analog of linear stability domains exists for time-dependent problems. In
this paper we exploit the Lyapunov and Sacker-Sell spectral stability theory for one-
step methods developed in [22, 23, 24] to characterize the stability of a strictly stable
GLM solving a nonautonmous linear ODE whose Sacker-Sell spectrum is bounded
above by zero by analyzing the stability of its underlying one-step method.

The remainder of this paper is organized as follows. In Section 2 we introduce
some preliminary notation and cover some background material on the approxima-
tion of Lyapunov and Sacker-Sell spectral intervals based on smooth QR decom-
positions of fundamental matrix solutions. In Section 3.1 we prove an existence
theorem (Theorem 3.1) for underlying one-step methods. In Section 3.2 we apply
Theorem 3.1 to prove Theorem 3.3 which relates the stability of a strictly stable
GLM to the Lyapunov and Sacker-Sell spectrum of its underlying one-step method.
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In Section 4 we present the results of two experiments showing how the theory de-
veloped in Section 3 can be used as a stability diagnostic for strictly stable GLMs
solving linear ODEs. The paper is concluded with some final remarks in Section 5.

2. Preliminaries. In this section we introduce some notation and terminology and
state some basic results from the theory of Lyapunov and Sacker-Sell spectra and
their approximation using QR based methods. For the remainder of this work we
let ‖ · ‖ be a norm on Rd and use the same symbol for the induced matrix norm.
We may sometimes drop writing the explicit t dependence of matrices and functions
when their time dependence is clear from the context. Whenever we use the word
stability we are referring to time-dependent Lyapunov stability. Consider the ODE
IVP {

ẋ = f(x, t)
x(t0) = x0

(1)

where t0 ∈ R and f : (t0,∞)×Rd → Rd. We consider numerical solutions of (1) by
a fixed step-size, k-step, s-stage general linear method{

Gn = (U ⊗ I)Xn + h(C ⊗ I)Fn
Xn+1 = (V ⊗ I)Xn + h(D ⊗ I)Fn

(2)

where h > 0 is the size of the time step (the step-size) with tn = t0 + nh and
U = (ui,j) ∈ Rs×k, V = (vi,j) ∈ Rk×k, C = (ci,j) ∈ Rs×s, D = (di,j) ∈ Rk×s, and
Fn = (fn,1, . . . , fn,s)

T ∈ Rds where fn,i = f(gn,i, tn + ξih) for some real constants
ξi and i = 1, . . . , s. We also let Gn = (gTn,1, . . . , g

T
n,s)

T ∈ Rds. The symbol I is the
d×d identity matrix and ⊗ denotes the Kronecker matrix product which defines an
algebraic operation on matrices A = (ai,j) ∈ Rm×n, B ∈ Rp×q for positive integers
m,n, p, q by the rule

A⊗B =

 a1,1B . . . a1,nB
...

. . .
...

am,1B . . . am,nB


An important property of Kronecker products we use in Section 3 is that if A and
B are invertible, then (A⊗B)−1 = (A−1⊗B−1). We always consider general linear
methods (2) that are in Nordsieck form, that is, the vector Xn = (x1n, . . . , x

k
n)T ∈

Rdk is such that

xin =

p∑
j=0

qi,jx
(j)(tn) +O(hp+1), i = 1, . . . , k, n ≥ 0

where each qi,j ∈ R, x(j)(t) denotes the jth derivative of the exact solution x(t;x0) of
(1), and p is the order of the local truncation error of the method. Well-known time-
stepping methods such as linear multistep and Runge-Kutta methods are examples
of GLMs in addition to many predictor-correct and implicit-explicit methods. A
general linear method (2) is said to be strictly stable if 1 is an eigenvalue of V and
all the other eigenvalues of V have modulus strictly less than 1. Strict stability is
not a particularly stringent hypothesis to place on a GLM since all Runge-Kutta
methods are strictly stable as are many popular linear multistep methods such as
BDF1-6 and the Adams-Bashforth methods. We refer readers to [18] for an excellent
overview of the theory of general linear methods.
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Assume that f(x, t) is continuously differentiable. Associated to the solution
x(t;x0) of (1) is the linear variational equation

ẋ = D(x(t;x0), t)x ≡ A(t)x, t ≥ t0, D =
∂

∂x
. (3)

The stability of the zero solution of (3) in general does not depend on the time-
dependent eigenvalues of A(t) which has motivated the development of several alter-
native stability spectra. The two spectra we consider in this work are the Lyapunov
spectrum, first considered in [20], and the Sacker-Sell spectrum, which was first
developed in [21].

We say that (3) is uniformly exponentially stable if for any fundamental matrix
solution X(t), there exists K > 0 and α > 0 so that

‖X(t)X(s)−1‖ ≤ Ke−α(t−s), t ≥ s ≥ t0.

Analogously, we say that (3) is exponentially stable if for any fundamental matrix
solution X(t), there exists K > 0 and α > 0 so that

‖X(t)‖ ≤ Ke−αt.

A sufficient condition for uniform exponential stability of the zero solution is that
the Sacker-Sell spectrum is bounded above by zero and a sufficient condition for
exponential stability of the zero solution is that the Lypaunov spectrum is bounded
above by zero.

Using (3) we can express (1) in linear inhomogeneous form{
ẋ = A(t)x+N(t)
x(t0) = x0

(4)

where N(t) is bounded. Uniform exponential stability of (3) implies that the solu-
tion of (4) is uniformly exponentially stable. A similar implication is not true if is
only exponentially stable.

The QR theory for the approximation of the Lyapunov and Sacker-Sell spectrum
of (3), developed and analyzed extensively in [12, 13, 14, 15], is based on the con-
struction of a time-dependent orthogonal change of variables. Let Q(t) be a solution
of the differential equation

Q̇(t) = Q(t)S(Q(t), A(t)), S(Q,A)ij =

 (QTAQ)i,j , i > j
0, i = j

−(QTAQ)i,j , i < j
(5)

where A(t) comes from (3). Under the change of variables x = Q(t)y, the system

ẏ = B(t)y, B = QTAQ−QT Q̇ (6)

is such that B(t) is upper triangular for all t. We refer to the system (6) as a
corresponding upper triangular system to (3) and the Lyapunov and Sacker-Sell
spectra of these two systems coincide. The endpoints of the Sacker-Sell spectrum can
be computed using the diagonal of B(t) so long as the coefficient matrix A(t) of (3)
is bounded and continuous. To accurately compute the endpoints of the Lyapunov
spectrum we must assume in addition that (3) has an integral separation structure;
without this additional assumption the Lyapunov spectrum may be unstable with
respect to L∞(t0,∞) perturbations of A(t). The following theorem summarizes how
to compute end-points of the Lyapunov and Sacker-Sell spectrum of (3) in terms of
the diagonal entries of B(t)
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Theorem 2.1 (Theorems 2.8, 5.1, 5.5, 6.1 of [12]). Let B : (t0,∞) → Rd×d be
bounded, continuous, and upper triangular and let ΣED = ∪di=1[αi, βi] denote the
Sacker-Sell spectrum of ẏ(t) = B(t)y(t). The endpoints of the spectral intervals are
given by

αi = lim inf
H→0

inf
t≥t0

1

H

∫ t+H

t

Bi,i(τ)dτ, βi = lim sup
H→∞

sup
t≥t0

1

H

∫ t+H

t

Bi,i(τ)dτ, i = 1, . . . , d.

(7)
Furthermore, there exists H > 0 so that if t− s > H, then

αi = inf
t≥t0

1

t− s

∫ t

s

Bi,i(τ)dτ, βi = supt≥t0
1

t− s

∫ t

s

Bi,i(τ)dτ, i = 1, . . . , d. (8)

Assume that B : (t0,∞) → Rd×d has an integral separation structure and let
ΣL = ∪di=1[ηi, µi] denote the Lyapunov spectrum of ẏ = B(t)y. Then the Lyapunov
spectrum of ẏ(t) = B(t)y(t) is continuous with respect to L∞(t0,∞) perturbations
of B(t) and the endpoints of the Lyapunov spectral intervals are given by

ηi = lim inf
t→∞

1

t− t0

∫ t

t0

Bi,i(τ)dτ, µi = lim sup
t→∞

1

t− t0

∫ t

t0

Bi,i(τ)dτ, i = 1, . . . , d.

(9)

A similar theorem can be proved for discrete-time linear systems (see [6, 27] and
[23]) which are in turn used to prove the main results of [23] and Section 3.2 of
[22]) which are summarized in the following theorem. This result is fundamentally
based on the observation that the numerical solution of a nonautonomous linear
ODE ż = C(t)z by a one-step method takes the form zn+1 = ΦC(n)zn.

Theorem 2.2. Let xn+1 = ΦA(n;h)xn denote the numerical solution to (3) by a
one-step method with local truncation error of order p ≥ 1 with step-size h > 0
and initial condition x0. Let ΣAL = ∪ni=1[ηAi , µ

A
i ] and ΣAED = ∪di=1[aAi , b

A
i ] de-

note the Lyapunov and Sacker-Sell spectrum respectively of the discrete nonau-
tonomous difference equation xn+1 = ΦA(n;h)xn and let ΣL = ∪ni=1[ηi, µi] and
ΣAED = ∪di=1[ai, bi] denote the Lyapunov and Sacker-Sell spectrum of (3).

1. If the coefficient matrix is bounded and continuous, then for every ε > 0 there
exists h∗ > 0 to that if h < h∗, then |aAi − ai| < ε and |bAi − bi| < ε for
i = 1, . . . , d.

2. If (3) has an integral separation structure, then there exists h∗ > 0 so that if
h < h∗, then |aAi − ai| = O(hp+1) and |bAi − bi| = O(hp+1) for i = 1, . . . , d.

We apply Theorem 2.2 in Section 3.2 to prove a stability result for strictly stable
GLMs solving nonautonomous, linear ODEs with Sacker-Sell spectrum bounded
above by zero.

3. Main Results.

3.1. Nonautonomous invariant manifold reduction. In this section we prove
that there exists a unique underlying one-step method for a strictly stable GLM
approximating the solution of nonautonomous ODE whose nonlinear part satsifies
a global Lipschitz condition. Throughout we consider a strictly stable, k-step, and
s-stage general linear method (2) in Nordsieck form that we denote by M and we
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assume that M has local truncation error of order p ≥ 1 . We let P ∈ Rk×k be a

matrix so that E = P−1V P is of the form E =

[
1

E2,2

]
where the eigenvalues

of E2,2 ∈ Rk−1×k−1 all have modulus strictly less than 1 (E may be taken to be
e.g. the real Jordan form of V ). The main result of this section is the following
theorem.

Theorem 3.1. Consider the following ODE

ẋ = A(t)x+N(x, t) (10)

where N(x, t) satisfies the Lipschitz condition that there exists K > 0 so that for all
x, y ∈ Rd we have

‖N(x, t)−N(y, t)‖ ≤ K‖x− y‖ (11)

Assume that A(t) is bounded, N(0, t) = 0, DN(0, t) = 0, and both A(t) and N(x, t)
are Cp+1. Then there exists G > 0, γ ∈ (0, 1), and h∗ > 0 so that such that the
following conclusions hold.

1. Every numerical solution {Xn}∞n=0 with Xn ∈ Rdk of (10) by M using step-
size h ∈ (0, h∗) is the solution of a nonautonomous discrete dynamical system
Xn+1 = F (Xn, tn).

2. The discrete dynamical system Yn+1 = H(Yn, tn) ≡ (P−1⊗I)F ((P ⊗I)Yn, tn)
defined from the change of variables Xn = (P ⊗ I)Yn satisfies that if h ∈
(0, h∗), then there exists a unique continuous function ϕ : Rd × Z → Rd(k−1)
whose graph is invariant under the flow of Yn+1 = H(Yn, tn) and such that
for any Y0 ∈ Rdk, there exists z10 ∈ Rd such that the solution {Yn}∞n=0 of
Yn+1 = H(Yn, tn) using initial value Y0 satisfies

‖Yn − Zn‖ ≤ Gγn, (12)

where the sequence {Zn}∞n=0 is such that Zn = ((z1n)T , ϕ(zn, n)T )T and Zn+1 =
H(Zn, tn) for all n ≥ 0.

3. The difference equation yn+1 = H1(yn, ϕ(yn, n), tn) where H1 denotes the
first d components of H defines a one-step approximation to (10) with local
truncation error of order p which is referred to as the underlying one-step
method of M.

4. If the derivatives of f(x, t) = A(t)x+N(x, t) are bounded and h ≤ h∗, then ϕ
is as smooth as f(x, t).

The remainder of this section is dedicated to the proof of Theorem 3.1. The
method M applied to the problem (10) with step-size h > 0 takes the form{

Gn = (U ⊗ I)Xn + h(C ⊗ I)MnGn + h(C ⊗ I)Nn

Xn+1 = (V ⊗ I)Xn + h(D ⊗ I)MnGn + h(D ⊗ I)Nn
(13)

whereMn = diag(An,1, . . . , An,s) ∈ Rds×ds, Nn = (N(gn,1, tn+ξ1h)T , . . . , N(gn,s, tn+
ξsh)T )T , and An,i = A(tn + ξih) for i = 1, . . . , s. The equation (13) implies that
the internal stages Gn satisfy the following algebraic condition

Gn = [I − h(C ⊗ I)Mn]−1(U ⊗ I)Xn + h[I − h(C ⊗ I)Mn]−1(C ⊗ I)Nn. (14)

The implicit function theorem, N(0, t) = 0, DN(0, t) = 0, and the fact that A(t)
and N(x, t) are at least C2 then implies that there exists h∗ > 0 so that h ∈ (0, h∗),
then

Xn+1 = (V ⊗ I)Xn +R(Xn, tn, h) (15)
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where the term R(X, t, h) is Lipschitz in Xn with Lipschitz constant LR = LR(h)
bounded as LR(h) ≤ hJ ′ for some constant J ′ > 0. Therefore the first conclusion
of Theorem 3.1 is proved. Under the change of variables Xn = (P ⊗ I)Yn we have{

y1n+1 = y1n +R1(Yn, tn)
y2n+1 = (E2,2 ⊗ I)y2n +R2(Yn, tn)

, Yn = ((y1n)T , (y2n)T )T , y1n ∈ Rd, y2n ∈ Rd(k−1).

(16)
where R1 and R2 each have Lipschitz constants LR1 = LR1(h) and LR1 = LR2(h)
bounded by hJ where J ≤ ‖P−1 ⊗ I‖J ′‖P ⊗ I‖. The following is an invariant
manifold theorem for difference equations of the form (16) and is a restatement of
the conclusions of Theorem 3.1, Theorem 3.2, and Theorem 5.1 in [2]. It is included
for completeness.

Theorem 3.2. Consider a system of difference equations of the form{
xn+1 = Anxn + F1(tn, xn, yn)
yn+1 = Bnyn + F2(tn, xn, yn)

(17)

where xn ∈ Rd1 , yn ∈ Rd2 , and n ≥ n0 such that

‖
∏m
j=nA

−1
j ‖ ≤ Kβn−m, n0 ≤ n ≤ m

‖
∏n
j=mBj‖ ≤ Kαn−m, n ≥ m ≥ n0

(18)

and
‖F1(tn, xn, yn)− F2(tn, x̃n, ỹn)‖ ≤ L‖xn − x̃n‖+ L‖yn − ỹn‖
‖F2(tn, xn, yn)− F2(tn, x̃n, ỹn‖ ≤ L‖xn − x̃n‖+ L‖yn − ỹn‖

(19)

for constants L > 0, K ≥ 1 and 0 < α < β satisfying the following spectral gap
conditions

0 < L <
β − α
4K

(2 +K −
√

4 +K2), c(α+ 2KL) < 1 < c(β − 2KL) (20)

for some c > 0. Denote the solution of (17) with the initial condition z0 =

[
x0
y0

]
at initial time n0 as

z(n;n0, x0, y0) =

[
x(n;n0, x0, y0)
y(n;n0, x0, y0)

]
(21)

Then there exists a unique continuous map ϕ : Rd1 × Z → Rd2 whose graph is the
manifold

D = {(n, x, ϕ(x, n)) : n ∈ Z, x ∈ Rd1}.
and D is invariant under the discrete flow of (17). Additionally, D is globally
exponentially attracting in the sense that for any z0 = (x0, y0) ∈ Rd1 × Rd2 there
exists (n0, w0, ϕ(w0, n0)) ∈M, G > 0 and γ ∈ (0, 1) so that

‖z(n;n0, x0, y0)− z(n;n0, w0, ϕ(w0, n0))‖ ≤ Gγn−n0 , n ≥ n0 (22)

We now use Theorem 3.2 to complete the proof of Theorem 3.1. There exists
h∗1 > 0 so that if h ∈ (0, h∗1), then Xn satisifes the difference equation (15). The
matrix sequence {Yn}∞n=0 where Yn = (P−1⊗ I)Xn satisfies the difference equation
(16). Since the eigenvalues of E2,2 all have modulus strictly less 1 the difference
equation satisfied by {Yn}∞n=0 is of the form (17) for α < β = 1 and L = hJ . Thus,
we can choose c > 0 and h∗ ∈ (0, h∗1] so small that the inequalities (20) are satisfied
whenever h ∈ (0, h∗). So, if h ∈ (0, h∗), then there exists a unique continuous map
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ϕ : Rd × Z→ Rd(k−1), G > 0, and γ ∈ (0, 1) such that if Yn is the solution of (16),
then there exists a sequence {zn}∞n=0 such that

zn+1 = zn +R1(zn, ϕ(zn, tn), tn), ‖Yn − (zn, ϕ(zn, n))T ‖ ≤ Gγn. (23)

which proves the second conclusion of Theorem 3.1. SinceM is of order p the third
conclusion follows from the definition of the local truncation error of a GLM in
Nordsieck form and the fact that solutions of (16) and (2) are related by the change
of variables defined by P ⊗ I. Conclusion 4 follows from the results of [5].

3.2. Nonautonomous stability of general linear methods. In this section
combine the results of Theorems 2.2 and 3.1 to prove a stability result for the so-
lution of (3) by a strictly stable GLM. The main result is the following theorem
which shows that if the step-size of a GLM satisfying the hypotheses of Theorem
3.1 solving the linear problem (3) is sufficiently small, then the exponential stabil-
ity/instability of numerical solutions of (3) found with the GLM are determined by
the stability spectra its underlying one-step method approximates. This provides a
partial answer to the question posed in the title of this paper.

Theorem 3.3. Suppose that the coefficient matrix A(t) of the nonautonomous lin-
ear ODE (3) is bounded and Cp+1. Assume that the method (2) denoted by M is
strictly stable, in Nordsieck form, and has local truncation error of order p ≥ 1. Let
ΣSS denote the Sacker-Sell spectrum of (3).

1. If ΣSS ∩ [0,∞) = ∅, then there exists h∗ > 0, G > 0, and γ ∈ (0, 1) so that
the numerical solution {Xn}∞n=0 of (3) by M using step-size h > 0 satisfies
‖Xn‖ ≤ Gγn for any initial value X0 = (xT0 , . . . , x

T
k−1)T and h ∈ (0, h∗).

2. If ΣSS ∩ [0,∞) 6= ∅, then there exists h∗ > 0, G > 0, and γ > 1 so that for
any h ∈ (0, h∗, there exists an initial value X0 = (xT0 , . . . , x

T
k−1)T so that the

numerical solution {Xn}∞n=0 of (3) by M using step-size h and initial value
X0 satisfies ‖Xn‖ ≥ Gγn.

An analagous result holds for the Lyapunov spectrum of (3) if we assume that the
ODE has an integral separation structure.

Proof. We prove the first conclusion since the proof of the second is very similar.
Since A(t) is bounded and Cp+1 and M is strictly stable, in Nordsieck form and
has local truncation error of order p ≥ 1, we can choose h∗1 > 0 so small that the
four conclusions of Theorem 3.1 hold for h < h∗1. The first conclusion of Theorem
3.1 implies that Xn+1 = F (Xn, tn) for some function F and the second conclusion
of 3.1 implies that there exists G1 > 0 and γ1 ∈ (0, 1) so that

‖(P−1 ⊗ I)Xn − Zn‖ ≤ G1γ
n
1 , n ≥ 0

where Zn = ((z1n)T , (ϕ(y1n, n))T )T is a solution of Zn+1 = H(Zn, tn) with H defined
as in Theorem 3.1. The third conclusion implies that z1n+1 = H1(z1n, ϕ(z1n, n), tn),
where H1 is the first d components of H, defines a one-step approximation with local
truncation error of order p to ẋ = A(t)x with initial condition z10 . We therefore can
write z1n+1 = H1(z1n, ϕ(z1n, n), tn) ≡ ΦA(n)zn. Theorem 2.2 then implies that there

exists h∗2 > 0 so that if h ∈ (0, h∗2) then the Sacker-Sell spectrum of zn+1 = ΦA(n)zn
is bounded above by zero and therefore

‖z1n‖ ≤ G2γ
n
2 , n ≥ 0 (24)

for some G2 > 0 and γ2 ∈ (0, 1). By the work in the previous section, there
exists h∗2 > 0 so that if h ∈ (0, h∗2), then F (Xn, tn) = Φ(n)Xn and H(Yn, tn) =
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(P−1 ⊗ I)Φ(n)(P ⊗ I)Yn where

Φ(n) = (V ⊗ I) + h(D ⊗ I)Mn[I − h(C ⊗ I)Mn]−1

and Φ(n) is bounded and invertible with Mn as defined in Equation (16). Since the
graph of ϕ is invariant under the flow of H and Φ(n) is bounded and invertible,
it follows that 0 = ϕ(y, n) if and only if y = 0 for all n ≥ 0. Therefore, since the
fourth conclusion of Theorem 3.1 implies that ϕ is Cp+1 and since p ≥ 1 it follows
from (24) that there exists G3 > 0 and γ3 ∈ (0, 1) so that

‖Zn‖ ≤ G3γ
n
3 , n ≥ 0

If we let h∗ = max{h∗1, h∗2} and h ∈ (0, h∗), then

‖Xn‖ ≤ ‖(P⊗I)‖
(
‖(P−1 ⊗ I)Xn − Zn‖+ ‖Zn‖

)
≤ ‖(P⊗I)‖ (G1γ

n
1 +G3γ

n
3 ) , n ≥ 0.

The result follows by taking G = max{G1, G3} and γ = max{γ1, γ3}.

In the stability theory of ODE IVP solvers it is often the case that a class of
test problems is used to characterize the stability of a solver. In [22] and [23] it is
shown that the stability of the numerical solution by a one-step method with local
truncation error of order p ≥ 1 of a nonautonomous linear ODE with an integral
separation structure and a bounded and sufficiently smooth coefficient matrix can
be characterized (approximately to within the supremum of the local truncation
error of the method) by the one-step method applied to d scalar test problems of
the form ẋ = λ(t)x where λ(t) is the real-valued diagonal element of a matrix B(t)
of a corresponding upper triangular system ẏ = B(t)y to (3). Theorem 3.3 justifies
using such test problems to characterize the stability of strictly stable GLMs solving
nonautonomous linear ODEs satisfying the above stated hypotheses by passing to
the underlying one-step method.

Theorem 3.3 is an asymptotic result that says that as h→ 0 we can guarantee the
exponential decay of the numerical solution of an nonautonomous linear ODE whose
Sacker-Selll spectrum lies to the left of zero. It is natural to try and find a subset
of AN-stable methods that preserve the asymptotic decay of all such linear ODEs
with no restriction on h. The following theorem partially answers this question and
says that step-size restriction is essential for the preservation of asymptotic decay
by strictly stable linear multistep and Runge-Kutta methods.

Theorem 3.4. Given any strictly stable and consistent linear multistep method or
a convergent Runge-Kutta method M and any fixed step-size h > 0, there exists an
asymptotically contracting scalar ODE ẋ = λ(t)x such that the numerical solution
{xn}∞n=0 becomes unbounded as n→∞ for any intial condition x(0) = x0 6= 0.

Proof. Let S denote the linear stability domain ofM and let ∂S denote its bound-
ary. Since M is a strictly stable linear multistep method or a convergent Runge-
Kutta method it follows that there exists δ > 0 such that (0, δ) /∈ S ∪ ∂S. Consider
the ODE ẋ = (D cos(2πωt) +L)x ≡ λ(t)x where t > 0, 0 < D+L < δ

2h , L < 0 and
ω = 2π/h and let x(0) = x0 6= 0. Since L < 0 it follows that ẋ = λ(t)x has Sacker-
Sell spectrum bounded above by zero. The equation D cos(2πωtn) + L = D + L
implies that the solution of ẋ = λ(t)x using M with step-size h > 0 is the same as
the numerical solution of the ODE ẋ = (D+L)x. The quantity h(D+L) /∈ S ∪ ∂S
since h(D + L) < δ/2. Therefore the numerical solution of ẋ = λ(t)x by M using
the step-size h > 0 becomes unbounded as n→∞.



10 ANDREW J. STEYER AND ERIK S. VAN VLECK

The geometric idea behind the proof of Theorem 3.4 is that if the step-size is too
large, then hλ(nh+ t0) may be outside the classical stability domain too often and
destabilize the numerical solution.

In [22, 23], the stability results for one-step methods approximating a nonau-
tonomous linear ODE with Sacker-Sell spectrum bounded above by zero are ex-
tended to linear homogeneous problems of the form (4) using the discrete variation
of parameters formula. It is challenging to extend the technique developed in this
section for analyzing the stability of a strictly stable GLM solving a linear ODE
to linear inhomogeneous ODEs since it is unclear what the relationship is between
the underlying one-step method of the linear ODE and that of the corresponding
linear inhomogeneous equation. It is unlikely that the underlying one-step method
is a Runge-Kutta or other classical one-step method and indeed (see [16]) such ab-
stractly defined methods can be ’quite exotic’. This precludes a straightforward
application of the discrete variation of parameters formula.

4. Experiments. In this section we apply the results of Section 3 to investigate
the stability of the numerical solution of the linear ODE

ẋ(t) = A(t)x(t), A(t) = QBQT + Q̇QT , t > 0 (25)

B(t) =

[
a1 cos(t) + b1 β

0 a2 cos(t) + b2

]
, Q(t) =

[
cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

]
,

b2 < b1 < 0, a1, a2, ω > 0

by the BDF2 method

xn+2 −
4

3
xn+1 +

1

3
xn =

2

3
hf(xn+2, tn+2). (26)

The BDF2 method is well known to be a 3-step and single stage strictly stable
GLM that is AN-stable and has local truncation error of order 2. The ODE (25)
has Lyapunov and Sacker-Sell spectrum that is bounded above by zero, the right
endpoints of the Lyapunov and Sacker-Sell spectra are equal and given by b1 <
0, and there exists K > 0 so that every solution x(t;x0) of (25) satisfies that
‖x(t;x0)‖ ≤ K‖x0‖eb1t. Although the AN-stability of BDF2 might seem to suggest
there should be no stability issues when solving (25), Theorem 3.4 and the results
of our experiments below imply that this need not be the case.

We first show how to evaluate the underlying one-step method of a strictly stable
GLM indirectly. Theorem 3.3 implies that the exponential stability of a strictly sta-
ble GLM solving (25) can be characterized by the Lyapunov or Sacker-Sell spectrum
of the underlying one-step method

yn+1 = H1(yn, tn) ≡ ΦA(n)yn (27)

which has local truncation error of the same order. Rather than attempting to
directly evaluate the function H1 we instead make use of (12) to evaluate H1 in-
directly. Let X0 be some starting values for a GLM satisfying the hypotheses of
Section 3.1 applied to solve (3) with step-size h > 0 and denote the associated
numerical solution as {Xn}∞n=0 where Xn = (x1n, . . . , x

k
n)T . For the sequence de-

fined by Yn = (P−1 ⊗ I)Xn there exists G > 0, γ ∈ (0, 1), and Zn of the form
Zn = (zn, ϕ(zn, n))T so that

‖Yn − Zn‖ ≤ Gγn
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and zn+1 = H1(zn, tn). If we let P−1 = (pi,j)
k
i,j=1, then the sequence defined

component-wise as wn :=
∑k
j=1 p1,jx

j
n is approximately equal to an output of (27)

for sufficiently large values of n ≥ 0.
We use this technique to approximate the largest discrete Lyapunov exponent

of (27) as follows. Given an initial condition x(0) = x0 we use the RK4 Runge-
Kutta method to compute x1. For n ≥ 2, we solve the equation (25) for xn+2 and

set Xn = (xn, . . . , xn+2)T . Using Xn, we form wn =
∑3
j=1 q1,jxn+j−1. Since wn

approximately satisfies (27) we can view it as the first column in a fundamental
matrix solution. Suppose that we let wn = QnRn be a QR factorization where
Qn ∈ Rd×d is orthogonal and Rn ∈ Rd×1. Under the assumption that (27) has
a discrete integral separation structure, the largest (see [11]) discrete Lyapunov
exponent µmax of (27) is typically given by

µmax = lim sup
n→∞

1

tn − t0

n∑
j=0

(Rj)1,1 (28)

where (Rn)1,1 denotes the (1, 1) entry of Rn. We estimate (28) by truncating the
limsup as

µappr(N0, N) = maxN0≤n≤N0+N
1

tn − t0

n∑
j=N0

(Rj)1,1. (29)

We approximate the largest discrete Lyapunov exponent µmax of (27) by (29) and
use the sign of µappr(N0, N) for large values of N0 and N as a stability diagnostic
for the numerical solution of (25) by (26).

h LTEmean LTEmax µappr(Nf/2, Nf/2)

7.5E − 1 1.37E10 1.51E11 7.68E − 1
7.5E − 2 3.75E − 3 9.42E − 3 9.03E − 3
7.5E − 3 3.60E − 7 6.38E − 4 −9.70E − 2
7.5E − 4 1.95E − 9 6.24E − 5 9.04E − 2

Table 1. Results of an experiment for the solution of (25) us-
ing BDF2, a1 = a2 = 1.2, b1 = −0.14, b2 = −0.15, β = 10.0,
ω = 1, and a final time of tf = 40 for various step-sizes h and
the initial condition x(0) = (1, 0)T . LTEmean is the mean local
truncation error, LTEmax is the maximum local truncation error,
and µappr(Nf/2, Nf/2) is the value of (29) where Nf is the final
step of the approximation.

We display the results of our first experiment in Table 1 and Figure 1. For step-
sizes h = 7.5 · 10−1, 7.5 · 10−2 the method (26) produces numerical solutions to (25)
that are growing in norm with approximate largest discrete Lyapunov exponents
that are positive. When h = 7.5 · 10−2 the local trunation error, which is gradually
increasing as shown in Figure 1, remains bounded by 10−2. When h = 7.5·10−3, 7.5·
10−4 the method (26) produces a decaying solution to (25) and the approximate
largest discrete Lyapunov exponent of (27) is negative. This experiment shows
that monitoring the approximate largest discrete Lyapunov exponent of the one-
step method (27) can be a more effective tool for controlling the global error and
monitoring stability than the local truncation error.
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Figure 1. Left: Logarithmic plot of the 2-norm of the local trunc-
tion error of the numerical solution versus time for various values
of h. Right: Logarithmic plot of the 2-norm of the numerical so-
lution versus time for various values of h. The parameter values
used were a1 = a2 = 1.2, b1 = −0.14, b2 = −0.15, β = 10.0, ω = 1
with a final time of tf = 40 and the initial condition x(0) = (1, 0)T .

a1 = a2 = a LTEmean LTEmax µappr(Nf/2, Nf/2) τmax

1.15 5.50E − 5 4.38E − 3 −2.33E − 2 1.068
1.45 1.18E − 4 5.02E − 3 −1.69E − 3 1.086
1.75 2.88E − 4 5.70E − 3 1.78E − 2 1.11
2.05 7.96E − 4 6.4E − 3 3.64E − 2 1.23

Table 2. Results of an experiment for the solution of (25) using
BDF2, using b1 = −0.5, b2 = −.055, β = 1.0, ω = 1, and a final
time of tf = 100 for various values of a = a1 = a2 using the step-
sizes h = 0.05 and the initial condition x(0) = (1, 0)T . LTEmean
is the mean local truncation error, LTEmax is the maximum local
truncation error, µappr(Nf/2, Nf/2) is the value of (29) where Nf
is the final step of the approximation, and τmax is the maximum
value of τn which denotes the quotient of the local truncation error
at time-steps n+ 1 and n.

In Table 2 and Figure 2 we display the results of our second experiment. The
results of this experiment are meant to illustrate the difficulty in detecting stabil-
ity using only point-wise values of the local truncation error. We see that there
are no spikes in the local truncation error from one step to the next since τmax is
approximately 1 for all values of a = a1 = a2. Additionally, as the parameter a
varies from 1.45 to 1.75, the numerical solution becomes unstable and the ratio be-
tween the mean and maximum 2-norm of the local truncation error is 2.44 and 1.14
respectively which are comparable in value to the corresponding ratios when the
parameter a varies from 1.15 to 1.45 where there is no loss of stability. This exper-
iment demonstrates that the pointwise local trunation error and its local variation
can fail to detect a loss of time-dependent stability.
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Figure 2. Left: Logarithmic plot of the 2-norm of the local trunc-
tion error of the numerical solution versus time for various values
of h. Right: Logarithmic plot of the 2-norm of the numerical solu-
tion versus time for various values of h. The parameter values used
were using b1 = −0.5, b2 = −.055, β = 1.0, ω = 1, and a final time
of tf = 100 for various values of a = a1 = a2 using the step-sizes
h = 0.05 and the initial condition x(0) = (1, 0)T .

5. Conclusion. In this work we have used invariant manifold theory for nonau-
tonomous difference equations to show that a strictly stable GLM solving a nonau-
tonomous ODE that satisfies a global Lipschitz condition has an underlying one-step
methods whenever the step-size is sufficiently small. This result combined with the
Lyapunov and Sacker-Sell spectral stability theory for one-step methods developed
in [23, 24] and [22] is applied to analyze the stability of a strictly stable GLM solv-
ing an nonautonomous, linear ODE whose Sacker-Sell spectrum lies to the left of
zero. These theoretical results are then applied to show that sign of the approxi-
mate largest discrete Lyapunov exponent of the underlying one-step method of a
strictly stable GLM can be a more robust tool than the point-wise values of the
local truncation error for monitoring the stability (and hence global error) of the
numerical solution of a nonautonomous, linear ODE IVP.

Most step-size selection strategies for the solution of ODE IVPs select step-size
based mainly on the local accuracy of the method, which we have shown in Section
4 can lead to stability issues for linear nonautonomous ODEs, even if the method
is AN-stable. Our experimental results suggest that the nonautonomous stability
theory for GLMs that we have developed can be a useful tool for step-size selection
based on stability as well as accuracy (a practical step-size selection algorithm for
Runge-Kutta methods based on these ideas can be found in [24]). In future work it
remains to show that our results can be extended to variable step-size and variable
order GLMs and that the stability theory can be extended to nonlinear ODE IVPs.
Interestingly, whereas we have used our nonautonomous results as a practical way of
detecting (and hence correcting) an unstable numerical solution, in the abstract of
[19] it is stated that ”...this result is of theoretical interest; it does not seem to affect
the significance of multi-step methods for practical computations”. The results of
this paper serve as yet another example of how mathematics that is considered
theoretical and abstract can one day find a practical application.
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