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Key Points 21	

• Ensemble-based data assimilation is integrated with indicator geostatistics and level set 22	

transformation for facies delineation. 23	

• The spatial distribution and permeability of two distinct facies are estimated simultaneously 24	

from transient head data induced by pumping tests. 25	

• Imposing spatial continuity by adaptively selecting conditioning points used by indicator 26	

models is proven essential for facies delineation. 27	
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Abstract 41	

A new approach is developed to delineate the spatial distribution of discrete facies (geological 42	

units that have unique distributions of hydraulic, physical, and/or chemical properties) 43	

conditioned not only on direct data (measurements directly related to facies properties, e.g., grain 44	

size distribution obtained from borehole samples) but also on indirect data (observations 45	

indirectly related to facies distribution, e.g., hydraulic head and tracer concentration). Our 46	

method integrates for the first time ensemble data assimilation with traditional transition 47	

probability-based geostatistics. The concept of level set is introduced to build shape 48	

parameterization that allows transformation between discrete facies indicators and continuous 49	

random variables. The spatial structure of different facies is simulated by indicator models using 50	

conditioning points selected adaptively during the iterative process of data assimilation. To 51	

evaluate the new method, a two-dimensional semi-synthetic example is designed to estimate the 52	

spatial distribution and permeability of two distinct facies from transient head data induced by 53	

pumping tests. The example demonstrates that our new method adequately captures the spatial 54	

pattern of facies distribution by imposing spatial continuity through conditioning points. The 55	

new method also reproduces the overall response in hydraulic head field with better accuracy 56	

compared to data assimilation with no constraints on spatial continuity on facies. 57	

 58	

 59	

 60	

 61	

 62	
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1. Introduction 63	

Characterizing spatial heterogeneity and connectivity within the physical, chemical, and 64	

ecological systems is a daunting challenge facing the modeling community in the various 65	

domains of Earth system sciences [Clark et al., 2015; Harvey and Gooseff, 2015]. The facies-66	

based approach, which divides the system into a finite number of relatively homogenous units, is 67	

commonly used to reduce the dimensionality and complexity in parameterizing a complex 68	

system [e.g., Sassen et al., 2012]. It is particularly well suited for systems that contain subunits 69	

with sharp contrast in properties. Facies have been defined in different contexts of subsurface 70	

characterization (e.g., lithofacies for lithologic features, hydrofacies for hydraulic properties, 71	

chemofacies for chemical attributes, thermofacies for thermal properties, and reactive facies for 72	

reaction potential) [Bayer et al., 2015; Dai et al., 2009; Yabusaki et al., 2011]. It is important to 73	

develop a mathematically general framework for delineating the spatial distribution of facies. 74	

As direct data on facies attributes are usually scarce due to cost constraints, they are often 75	

insufficient to adequately delineate the spatial distribution of facies with reasonable uncertainty. 76	

Therefore, indirect data have been used to augment the limited direct data for estimating facies 77	

distribution and properties through inverse modeling or data assimilation techniques [e.g., Ye and 78	

Khaleel, 2008; Harp et al., 2008]. The ensemble data assimilation (EDA) methods have been 79	

widely applied to incorporate direct and indirect data to inform process-based numerical models 80	

owing to the EDA methods’ computational efficiency (compared to full Bayesian approaches, 81	

such as the Markov chain Monte Carlo (MCMC) methods applied to data assimilation by 82	

Wainwright et al. [2014]) and flexibility to handle uncertainty arising from multiple sources 83	

[Aanonsen et al., 2009; Oliver and Chen, 2011; Chen et al., 2013]. As the original EDA methods 84	

were developed for estimating single-modal continuous variables (such as a Gaussian random 85	
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field of permeability), new developments are necessary to implement EDA methods for discrete 86	

variables, such as the indicators for different facies types. 87	

To enable facies-based EDA, it is necessary to map the discrete facies distribution to space 88	

function of continuous random variables is needed. This can be achieved by using various 89	

parameterization methods, such as the truncated pluri-Gaussian method [Agbalaka and Oliver, 90	

2008; Liu and Oliver, 2005], the Gaussian mixture method [Dovera and Della Rossa, 2010], 91	

discrete cosine transform method [Jafarpour and McLaughlin, 2008], and the level set method 92	

[Chang et al., 2010; Moreno and Aanonsen, 2014]. These methods typically involve the 93	

following steps: (1) estimating a prior ensemble of facies distribution using indicator 94	

geostatistical models, (2) translating the ensemble facies distribution to shape parameters that 95	

describe the facies boundaries, and (3) performing EDA on the shape parameters to improve the 96	

match between model predictions and observations. While such parameterization is effective in 97	

general, it imposes no spatial structure constraints on facies (e.g., facies volume proportions, 98	

correlation lengths, and juxtapositional tendencies) in the process of data assimilation. Thus, it 99	

might lead to an unrealistic discontinuity in facies distribution.  100	

In this paper, we propose a new framework that extends the EDA methods developed for 101	

continuous variable to discrete facies delineation by assimilating indirect data while imposing 102	

spatial continuity constraints on resulting facies distribution. In the new framework, we first 103	

adopt a parameterization method based on level set functions [Chang et al., 2010] to describe the 104	

occurrence of facies at given locations through facies probability, and then use the EDA methods 105	

to update the facies probability. At each data assimilation step, additional conditioning points of 106	

facies are selected based on the changes between prior and posterior facies probability and 107	

combined with the prior direct data to update the facies spatial structure. The combined set of 108	
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conditioning points and the updated spatial structure are then used in the conditional simulation 109	

of the facies field by using the Transition Probability Geostatistical Software (T-PROGS) [Carle, 110	

1999] for the next step of data assimilation. The new EDA framework for spatial facies 111	

delineation is evaluated with a synthetic two-dimensional (2-D) groundwater modeling with two 112	

facies, in which transient head data induced by pumping tests is assimilated as indirect data to 113	

delineate the spatial distribution of hydrofacies with contrasting high- and low-permeability. The 114	

synthetic case of groundwater modeling specifically investigates the importance of imposing 115	

geostatistical constraints for facies delineation during the data assimilation.    116	

 117	

2. Methodology  118	

Two primary building blocks of our framework include the data assimilation method used for 119	

parameter estimation (described in Section 2.1) and the level set method that enables 120	

transformations between discrete facies indicators and Gaussian random variables (described in 121	

Section 2.2). One unique contribution of our framework is on imposing spatial continuity when 122	

updating facies field using T-PROGS, which is also explained in Section 2.2.  123	

2.1 Ensemble data assimilation methods  124	

While EDA methods were originated from the Ensemble Kalman Filter (EnKF) developed by 125	

Evensen [1994] and Burgers et al. [1998], iterative EDA approaches [Gu and Oliver, 2007; Chen 126	

et al., 2013], similar to the Gauss-Newton algorithm for solving nonlinear problems, have been 127	

developed for nonlinear systems by controlling the adverse effect of nonlinearity through 128	

reducing the increment vector in the updating formula by a fraction and iterating the procedure 129	

multiple times. Ensemble Smoother with Multiple Data Assimilation (ES-MDA) [Emerick and 130	
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Reynolds, 2013] is one of such approaches, and it is adopted in this study for its straightforward 131	

implementation and proven efficiency in dealing with nonlinear systems.  132	

The ES-MDA method assimilates all observations simultaneously in each iteration, while the 133	

reduction in the increment vector resulted from data assimilation is achieved by inflating the 134	

observational variance, as in the following analysis scheme for updating m (system states and 135	

parameters):  136	

 ( ) ( )1, 1 , ,
obs  ,i l i l i i f

MD DD l lα α
−+ = + + + −C C R d em dm                        (1) 137	

where ,i lm  is the i-th realization of the ensemble of m during the l-th iteration, obsd is the 138	

observational data to be assimilated, , ( )i f if= md  is the model prediction counterpart of  obsd  139	

simulated by a forward model denoted as ( )f ⋅ , matrix MDC  is the cross-covariance between the 140	

parameter vector and the model predictions, DDC  is the auto-covariance of model predictions, ie141	

is the 𝑖th realization of measurement errors that are assumed to follow a Gaussian distribution 142	

with zero mean and covariance matrix R , and lα is the iteration coefficient of each iteration. 143	

While as many iterations as needed can be performed to approach the optimal solution, the 144	

multiple or iterative updating of Eq. (1) is only valid when the coefficients lα  satisfy
1

1 1
N

l l

α

α=

=∑ , 145	

with l and Na being the iteration index and the total iteration number, respectively. The 146	

covariance matrices MDC and DDC  are approximated by their ensemble statistics: 147	

 ( )( )T, , , ,

1

1  ,
1

eN
i l i l i f i f

MD
ieN =

⎡ ⎤≈ − −
⎢ ⎥⎣ ⎦− ∑C m dm d                                 (2) 148	

 ( )( )T, , , ,

1

1  ,
1

eN
i f i f i f i f

DD
ieN =

⎡ ⎤≈ − −
⎢ ⎥⎣ ⎦− ∑C d d d d                                 (3) 149	
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where eN  is the number of realizations in the ensemble, and T is the transpose of matrix.  150	

Example parameter vector m can be the permeability p for each facies and the Gaussian 151	

variables y related to facies through the level set transformation as described in the next section, 152	

i.e., the i-th realization of the parameter vector at each iteration of ES-MDA is 153	

( ) ( )
TT T, , ,,i l i l i l⎡ ⎤= ⎢ ⎥⎣ ⎦

m y p . The observations, obsd , are indirect data, such as the transient head data 154	

used in the numerical example of section 3.   155	

 156	

2.2 Facies-based ES-MDA with level set transformation and transition probability-based 157	
geostatistics 158	

 159	
We adopted the concept of level set [Chang et al., 2010] for the transformation between 160	

discrete facies types and continuous random variables in order to implement ES-MDA for facies 161	

delineation. Taking a system of two facies types as an example, the facies types at a given 162	

computational cell within a domain can be related to the signs of a group of Gaussian variables 163	

via level set transformation as follows: 164	

 
,    if  01

2
 ,

,    if  0

i i
j j
i i
j j

r
r

y
y

=

=

⎧ >⎪
⎨

≤⎪⎩
                                                              (4) 165	

where i
jr  is the i-th realization of facies type on the j-th cell of the computational domain and i

jy  166	

is the transformed continuous variable. By assuming that i
jy  follows a Gaussian distribution 167	

with mean ju  and standard deviation jσ , the probability of the facies being type 1 or type 2 at 168	

the j-th node can be computed as 169	
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                                (5) 170	

where Φ  is the Cumulative Distribution Function (CDF) of the standard Gaussian distribution. 171	

The level set transformation offers one way to handle discrete facies when implementing the 172	

ES-MDA method. As shown in Figure 1, the implementation starts with generating	geostatistical 173	

realizations of facies distribution from prior information on probability of facies occurrence, 174	

which may include borehole data and expert opinions. Subsequently, the level set method is used 175	

to transform the realizations of discrete facies to realizations of continuous Gaussian variable at 176	

each grid cell by preserving the probability of facies occurrence. One key step in this 177	

transformation is to determine the mean and variance of the transformed Gaussian random 178	

variable. Since the results of data assimilation are not impacted by the value of variance (see the 179	

proof given in the supplementary information), we use a fixed variance of 1 for the transformed 180	

continuous random variable, which simplifies the transformation to find the mean of the 181	

transformed Gaussian random variable at each grid cell. 182	

The transformed Gaussian variables at all grid cells are taken as the state variables in the ES-183	

MDA formulation and their ensembles are updated at each iteration. The final posterior ensemble 184	

of the transformed variables is transformed back to facies through the probability of occurrence 185	

using equation (5). While this is a typical procedure used in existing facies-based EDA methods, 186	

its main drawback is that the facies at each grid cell changes independently from its neighbors 187	

without considering spatial continuity. The absence of spatial continuity constraint can lead to an 188	

unrealistic discontinuous distribution of facies. In this study, an additional procedure is 189	

introduced at each data assimilation step or each iteration within a step to impose a spatial 190	
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structure in generating updated facies field using geostatistical conditional simulation (e.g., T-191	

PROGS). The spatial structure is informed by a group of conditioning points selected using a set 192	

of criteria discussed below. 193	

The level-set-based transformation and T-PROGS based conditional simulation of facies are 194	

two building blocks that enable us to delineate facies distribution using the ES-MDA method 195	

developed for the continuous random variables. The important steps in the analysis procedure are 196	

summarized in Figure 1 and described as follows: 197	

(1) Generate prior ensembles of facies field and associated facies property (e.g., permeability) 198	

based on prior information (e.g., borehole data and expert knowledge). 199	

(2) Transform the realizations of facies into the realizations of the Gaussian variable at each 200	

grid cell using mean values calculated from Eq. (A1) in the supplementary information 201	

with standard deviation fixed at 1. This step is referred to as the level set (LS) 202	

Transformation marked in Figure 1. 203	

(3) Run forward simulations with the ensemble of facies fields and their associated facies 204	

properties to produce the modeled counterparts of observations.  205	

(4) Update the ensemble of the transformed Gaussian variables and property parameter of 206	

each facies by assimilating observation data using ES-MDA; 207	

(5) Update the facies probabilities at each grid cell using the mean of transformed variables 208	

(Eq. 5) based on the ensemble updated at step (4). This step is referred to as the level set 209	

(LS) back transformation marked in Figure 1. 210	

(6) Select additional conditioning points using the criteria described below. 211	

(7) Combine the conditioning points selected at step (6) with the original set of conditioning 212	

points from the previous iteration to update facies spatial structure information needed by 213	
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T-PROGS, i.e., discrete transition probability and facies volumetric proportions. Then 214	

generate a new ensemble of geostatistical realizations of facies field using T-PROGS. 215	

(8) Repeat (2) to (7) until convergence or prescribed iteration number is reached. 216	

It should be noted that, while T-PROGS is used in the procedure above, the ES-MDA method is 217	

compatible with other geostatistical simulators for generating random fields of facies. 218	

Steps (5) – (7) (shown in the gray shaded boxes in Figure 1) are the unique contribution of 219	

our framework, which are not included in any existing facies-based EDA approaches. We term 220	

these steps as a “reconditioning” procedure. For selecting the additional conditioning points in 221	

step (6), the absolute changes of facies probability before and after an iteration at all the grid 222	

cells are first ranked in the ascending order, then the locations with the top 1% change are 223	

selected as the candidate points because they are more sensitive to the observation data in the 224	

given iteration. The pool of candidate points accumulates over iterations. We then down select 225	

from all these candidate points to a subset, based on the changes of the updated facies probability 226	

values from their prior estimates. The down selection step is to ensure that the selected points 227	

represent the “new” information content assimilated from the observational data using the prior 228	

as the baseline. To avoid overfitting, we keep the number of additional conditioning points the 229	

same as the number of observation data points. More research on the number of additional 230	

conditioning points and how to control the size of candidate pool is warranted in a future study. 231	

 232	

3. Synthetic Example 233	

To demonstrate and evaluate our ES-MDA method for facies-based data assimilation, a 234	

synthetic study of groundwater flow modeling in a domain with two facies was developed by 235	

revising that of Harp et al. [2008] with a reduced amount of direct data, which are borehole logs 236	
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of sediment texture. The study domain (Figure 2a) is a 2-D confined aquifer with the size of 237	

1000m × 200m in 10m × 20m resolution. The left and right boundaries at x = 0 m and x = 1000 238	

m are set with constant hydraulic heads of 100 m and 95 m, respectively. The top and bottom 239	

boundaries at z = 200 m and z = 0 m are set as no-flow boundaries. The domain contains two 240	

facies with contrasting permeability, 10-9 m2 for the facies that is more permeable and 10-12 m2 241	

for the less permeable one, which are comparable with the measured values for two contrasting 242	

geologic layers at the DOE Hanford site [Chen et al., 2012; 2013]. We refer to these two facies 243	

as Hanford and Ringold hereafter. The true facies distribution was generated by Harp et al. 244	

[2008] with the volumetric proportions of 0.7 and 0.3 for Hanford and Ringold, respectively. The 245	

mean lengths of Ringold in the x (length) and z (thickness) directions are 300 m and 20 m, 246	

respectively. Borehole geological data (i.e., direct data) are assumed to be available at each grid 247	

cell along three wells located at x = 0 m, 250 m, and 500 m (marked by the vertical black lines in 248	

Figure 2a). Given that Harp et al. [2008] used direct data at five wells (the other two located at x 249	

= 750m and 1000m), the synthetic example of this study with smaller number of observation 250	

data is more challenging for data assimilation. Groundwater pumping with a constant rate of Q = 251	

10.2 L/s was imposed at the domain center (x = 500 m). Transient head data (indirect data) were 252	

collected at seven discrete times until a steady state was reached at eight observation locations 253	

(marked with green dots in Figure 2a). The data were corrupted by measurement errors, which 254	

were modeled as white noise with the standard deviation of 1 cm. 255	

The facies-based data assimilation framework was applied to estimate the spatial distribution 256	

of the two facies and their associated permeabilities. The initial ensemble of log-transformed 257	

permeability for Hanford and Ringold were generated from the Gaussian distributions with a 258	

variance of 0.5 and mean values of -8 (log10-m2) for Hanford and -11 (log10-m2) for Ringold. 259	
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Note that the initial guesses of mean permeability for the both facies were set one order of 260	

magnitude higher than their true values to test the robustness of our data assimilation framework. 261	

An ensemble size of 300 was used in our data assimilation process to ensure the convergence of 262	

ensemble approximation. Four iterations of ES-MDA were performed with the iteration 263	

coefficient of  = 4 used in Eq. (1). The number of additional conditioning points used in the 264	

“reconditioning” procedure (Figure 1) was set to 50 (the number of head observations), and they 265	

were selected adaptively during the iterations to augment the spatial structure of the facies for the 266	

T-PROGS geostatistical simulations. The discrete lags for T-PROGS to generate a continuous-267	

lag Markov chain model were 250m and 2m in the horizontal and vertical directions, 268	

respectively, consistent with the minimum lag distances of the borehole data. The flow 269	

simulation for each realization of the permeability field was performed using the high-270	

performance reactive flow and transport code PFLOTRAN [Hammond et al., 2014].  271	

 272	

4. Results and Discussion 273	

Upon the completion of ES-MDA with the reconditioning procedure, the probability of 274	

Ringold occurrence was calculated for each grid cell (by counting the occurrence frequency in 275	

the posterior ensemble of the facies field), and the results were compared with the true Ringold 276	

distribution (Figure 2a) to assess the accuracy of our estimation (Figures 2c, 2e, and 2g). 277	

Comparing Figures 2c and 2e of the first two assimilation steps with Figure 2b of the prior 278	

Ringold distribution shows that the facies distribution estimated using our method changed 279	

significantly towards the true field. Convergence was achieved after four iteration steps as there 280	

was negligible difference in estimations between the 3rd (results not shown) and 4th iterations 281	

(Figure 2g). The final estimate of facies distribution (Figure 2g) captured all the major features 282	

lα
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of Ringold distribution, with remarkable improvements noted in the top-left corner and right side 283	

of the domain highlighted in the green boxes. Most of the additional conditioning points (in 284	

Figures 2c, 2e, and 2g) during the data assimilation steps occur within the highlighted regions, 285	

where the initial uncertainty of facies distribution is high due to the lack of direct data.  286	

We also compared the above results with those obtained without the reconditioning 287	

procedure to evaluate the importance of imposing the facies spatial continuity in facies 288	

delineation (Figures 2d, 2f, and 2h). It is evident that the removal of spatial structure 289	

reconstruction at each data assimilation step decreased the overall accuracy of facies 290	

reconstruction with much noisier spatial patterns. One posterior realization of facies field, 291	

corresponding to the same randomly picked prior realization, is provided in Figures 2i and 2j 292	

with and without reconditioning, respectively. The difference between the two realizations is 293	

representative of all the realizations in the ensemble and is consistent with that between their 294	

mean fields (e.g., the facies probability field) shown in Figures 2g and 2h. Imposing spatial 295	

continuity through conditioning is effective in avoiding the unrealistic noisy structure of facies. 296	

Thus this reconditioning step is essential when using data assimilation techniques for facies 297	

delineation, especially when a smaller amount of direct data is available for the facies delineation.  298	

The estimated volumetric proportion and mean length of each facies are compared to their 299	

true values to evaluate the effectiveness of ES-MDA in capturing the primary parameters that 300	

describe the spatial structure of facies distribution. Figures 3a-3c show that the constraint on 301	

spatial continuity of facies improves the accuracy of ES-MDA in reproducing both the 302	

volumetric portion and mean length for both facies, compared to ES-MDA without the 303	

reconditioning procedure. The final estimates with the reconditioning procedure deviate less than 304	

4% from their true values. On the other hand, the means of estimated permeabilities for both the 305	
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Hanford and Ringold facies are nearly identical to the true values regardless of the 306	

reconditioning, as shown in Figure 3d. The reconditioning only leads to marginal improvement 307	

in estimating the Ringold permeability.  308	

Root mean square errors (RMSEs) between the estimated facies probabilities and the 309	

corresponding true values were calculated to assess the accuracy of facies estimation at each grid 310	

cell. The RMSEs represent the spatial average of goodness-of-fit over the entire domain, and 311	

they were evaluated for the estimated mean facies field and the individual realizations of facies 312	

field as:   313	
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2
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1 1
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= −

∑ ∑

∑

                                 (6) 314	

where gN  is the number of grid cells in the domain, eN  is the number of realizations, and I and 315	

Iref are the facies indicators (1 for Ringold and 0 for Hanford).  meanRMSE I  is calculated using 316	

mean field of facies, while RMSE Ii  is calculated for each realization of posterior facies field. 317	

The probability distribution of RMSE Ii  can be constructed from all the realizations for the range 318	

of goodness-of-fit among different realizations, and the distribution is plotted in Figure 3e. 319	

The meanRMSE I  value of the mean facies field before ES-MDA is 0.349. After ES-MDA, it 320	

decreases to 0.316 (with reconditioning) and 0.348 (without reconditioning), confirming that the 321	

reconditioning led to an overall improvement in facies delineation across the domain. The 322	

probability density functions (PDFs) of RMSE Ii  plotted in Figure 3e also shows that the 323	

reconditioning procedure of our framework shifts the distribution of RMSEs towards smaller 324	

values, i.e., higher accuracy. To evaluate the meanRMSE I  in the horizontal and vertical directions, 325	
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the squared difference was averaged over the columns of the grid instead of over the entire 326	

domain. The pattern of meanRMSE I  along the horizontal direction (Figure 3g) shows a strong 327	

influence of the direct data on the facies estimation. Assimilating the indirect data has little effect 328	

in the region (e.g., that between x = 0 m and x = 500m) where a significant amount of direct data 329	

are available. However, a major improvement is observed in the region (e.g., the area with x > 330	

500m) with little direct data, indicating the importance of the reconditioning procedure of our 331	

ES-MDA framework. 332	

The RMSEs were also calculated for the hydraulic head field simulated using the estimated 333	

facies distribution and their associated permeabilities before and after applying ES-MDA. The 334	

calculation is the same as that for the facies distribution, with the only difference being averaging 335	

the squared difference over the time steps before averaging over space as shown below:  336	

 

( )

2
ref

mean , , ,
1 1 1

2ref
, , ,

1 1

1 1RMSE

1RMSE  ,

g t e

g t

N N N
H

i j k j k
j k ig e

N N
H
i i j k j k

j kg

H H
N N

H H
N

= = =

= =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

= −

∑∑ ∑

∑∑

                     (7) 337	

where H and Href are the simulated head from the estimated and true facies field, respectively. 338	

Our ES-MDA method with reconditioning yields a meanRMSEH value of 0.165m, which is 339	

significantly smaller than the value of 0.673m for the prior and the value of 0.235m for the ES-340	

MDA without reconditioning. The PDF of RMSEHi  (Figure 3f) shows higher density in smaller 341	

values, confirming the improvement in prediction of hydraulic head field. The meanRMSEH  values 342	

calculated for the columns of the grid show that ES-MDA can effectively reduce the errors in 343	

simulated hydraulic head field, and the improvement is enhanced when the spatially continuity of 344	

facies distribution is properly accounted for by reconditioning (Figure 3h). The larger RMSEs 345	
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near the pumping well are likely due to the numerical error in solving the pressure discontinuity 346	

imposed by pumping. 347	

 348	

4. Conclusions 349	

A new data assimilation framework (ES-MDA) was developed for delineating the spatial 350	

distributions of facies and for estimating facies permeability based on different data types by 351	

integrating ensemble data assimilation with indicator geostatistics. A parameterization method 352	

based on the level set concept was used to transform between discrete facies distribution and 353	

continuous Gaussian random variables to allow the application of the data assimilation methods 354	

developed for continuous variables for discrete facies delineation. The unique feature of our ES-355	

MDA framework is that the delineated facies distribution is not only informed by the direct and 356	

indirect information, but also constrained by spatial continuity through the reconditioning 357	

procedure at each assimilation step. The results from a two-dimensional synthetic example 358	

demonstrated that our framework can accurately characterize facies distribution and associated 359	

permeability. The reconditioning procedure is unique and innovative to our framework, and the 360	

procedure was shown to be essential in maintaining spatial continuity in the facies distribution, 361	

which is especially important for systems known to have preferential flow path. It should be 362	

noted that successful facies delineation also depends on the contrast in facies properties. Further  363	

testing the proposed method in a system with mild contrast in facies, such as the Borden aquifer 364	

[Ritzi et al., 2013], could be worthwhile. Although ES-MDA was demonstrated with a two-facies 365	

system, extending it to more than two facies is straightforward by introducing additional 366	

parameters for level set transformation [Chang et al., 2010; Mannseth, 2011]. ES-MDA is 367	
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mathematically general, and thus can also be readily extended for delineating other facies beyond 368	

the hydrofacies, such as reactive facies and thermofacies.  369	
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LIST OF FIGURES 464	

 465	

Figure 1. Flow chart of integrating ensemble data assimilation methods (e.g., ES-MDA) and 466	
indicator geostatistical methods (e.g., T-PROGS) based on level set parameterization. The part 467	
with grey shadow is the integration of geostatistics described in Section 2.2. The red dashed line 468	
shows the EDA procedure without conditional simulation of facies at each data assimilation step 469	
as adopted by most of the existing facies-based EDA methods.  The step number (1)~(7) in 470	
Section 2.2 is highlighted. 471	
  472	
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 473	

Figure 2. (a) Spatial distribution of two facies, Hanford (blue) and Ringold (red). Three black 474	
vertical lines (one coincides with the west boundary) indicate where facies indicator data are 475	
collected. The green dots indicate head observation locations. The pumping well is located on the 476	
central black line. (b) Prior probability field of Ringold estimated from the prior ensemble of 477	
facies field. (c, e, g) Posterior probability fields of Ringold after the 1st, 2nd and final data 478	
assimilation steps using our ES-MDA method with reconditioning (the black dots are additional 479	
conditioning points selected for conditional simulation of facies using T-PROGS). (d, f, h) 480	
Posterior probability fields of Ringold after 1st, 2nd and final data assimilation steps using ES-481	
MDA without the reconditioning procedure. (i) A representative posterior realization of facies 482	
field using our ES-MDA method with reconditioing. (j) A representative posterior realization of 483	
facies field using the ES-MDA method without reconditioning. 	484	
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	485	

Figure 3. Comparisons between the prior and posterior estimates with or without reconditioning 486	
for Ringold volume proportion (a), horizontal mean length of Ringold (b), vertical mean length 487	
of Ringold (c), boxplots of prior and posterior estimations of permeabilities for Hanford and 488	
Ringold (d), pdfs of RMSE calculated on each realization of facies field (e), pdfs of RMSE 489	
calculated on each realization of hydraulic head (f), RMSE of facies probability averaged 490	
vertically (g), and RMSE of hydraulic head averaged vertically (h).	491	


