10

11

12

13

14

15

16

17

18

19

20

SAND2017-2881J

Delineating Facies Spatial Distribution by Integrating Ensemble Data Assimilation and
Indicator Geostatistics with Level Set Transformation

Xuehang Song'?, Ming Ye', Zhenxue Dai’*, Glenn Hammond’, John M. Zachara®, and Xingyuan
Chen*”

'Department of Scientific Computing, Florida State University, Tallahassee, Florida, USA.
*Pacific Northwest National Laboratory, Richland, Washington, USA.

*Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos,

New Mexico, USA.
*College of Construction Engineering, Jilin University, Changchun, China.

>Applied Systems Analysis and Research, Sandia National Laboratories, Albuquerque, New

Mexico, USA.

*Corresponding author

Email: Xingyuan.Chen@pnnl.gov; Phone: (509) 371-7510; Fax: (509) 375-2999



21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Key Points

* Ensemble-based data assimilation is integrated with indicator geostatistics and level set
transformation for facies delineation.

* The spatial distribution and permeability of two distinct facies are estimated simultaneously
from transient head data induced by pumping tests.

* Imposing spatial continuity by adaptively selecting conditioning points used by indicator

models is proven essential for facies delineation.
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Abstract

A new approach is developed to delineate the spatial distribution of discrete facies (geological
units that have unique distributions of hydraulic, physical, and/or chemical properties)
conditioned not only on direct data (measurements directly related to facies properties, e.g., grain
size distribution obtained from borehole samples) but also on indirect data (observations
indirectly related to facies distribution, e.g., hydraulic head and tracer concentration). Our
method integrates for the first time ensemble data assimilation with traditional transition
probability-based geostatistics. The concept of level set is introduced to build shape
parameterization that allows transformation between discrete facies indicators and continuous
random variables. The spatial structure of different facies is simulated by indicator models using
conditioning points selected adaptively during the iterative process of data assimilation. To
evaluate the new method, a two-dimensional semi-synthetic example is designed to estimate the
spatial distribution and permeability of two distinct facies from transient head data induced by
pumping tests. The example demonstrates that our new method adequately captures the spatial
pattern of facies distribution by imposing spatial continuity through conditioning points. The
new method also reproduces the overall response in hydraulic head field with better accuracy

compared to data assimilation with no constraints on spatial continuity on facies.
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1. Introduction

Characterizing spatial heterogeneity and connectivity within the physical, chemical, and
ecological systems is a daunting challenge facing the modeling community in the various
domains of Earth system sciences [Clark et al., 2015; Harvey and Gooseff, 2015]. The facies-
based approach, which divides the system into a finite number of relatively homogenous units, is
commonly used to reduce the dimensionality and complexity in parameterizing a complex
system [e.g., Sassen et al., 2012]. It is particularly well suited for systems that contain subunits
with sharp contrast in properties. Facies have been defined in different contexts of subsurface
characterization (e.g., lithofacies for lithologic features, hydrofacies for hydraulic properties,
chemofacies for chemical attributes, thermofacies for thermal properties, and reactive facies for
reaction potential) [Bayer et al., 2015; Dai et al., 2009; Yabusaki et al., 2011]. It is important to
develop a mathematically general framework for delineating the spatial distribution of facies.

As direct data on facies attributes are usually scarce due to cost constraints, they are often
insufficient to adequately delineate the spatial distribution of facies with reasonable uncertainty.
Therefore, indirect data have been used to augment the limited direct data for estimating facies
distribution and properties through inverse modeling or data assimilation techniques [e.g., Ye and
Khaleel, 2008; Harp et al., 2008]. The ensemble data assimilation (EDA) methods have been
widely applied to incorporate direct and indirect data to inform process-based numerical models
owing to the EDA methods’ computational efficiency (compared to full Bayesian approaches,
such as the Markov chain Monte Carlo (MCMC) methods applied to data assimilation by
Wainwright et al. [2014]) and flexibility to handle uncertainty arising from multiple sources
[Aanonsen et al., 2009; Oliver and Chen, 2011; Chen et al., 2013]. As the original EDA methods

were developed for estimating single-modal continuous variables (such as a Gaussian random



86 field of permeability), new developments are necessary to implement EDA methods for discrete
87  variables, such as the indicators for different facies types.
88 To enable facies-based EDA, it is necessary to map the discrete facies distribution to space
89  function of continuous random variables is needed. This can be achieved by using various
90 parameterization methods, such as the truncated pluri-Gaussian method [Agbalaka and Oliver,
91  2008; Liu and Oliver, 2005], the Gaussian mixture method [Dovera and Della Rossa, 2010],
92  discrete cosine transform method [Jafarpour and McLaughlin, 2008], and the level set method
93  [Chang et al., 2010; Moreno and Aanonsen, 2014]. These methods typically involve the
94  following steps: (1) estimating a prior ensemble of facies distribution using indicator
95  geostatistical models, (2) translating the ensemble facies distribution to shape parameters that
96 describe the facies boundaries, and (3) performing EDA on the shape parameters to improve the
97  match between model predictions and observations. While such parameterization is effective in
98  general, it imposes no spatial structure constraints on facies (e.g., facies volume proportions,
99  correlation lengths, and juxtapositional tendencies) in the process of data assimilation. Thus, it
100  might lead to an unrealistic discontinuity in facies distribution.
101 In this paper, we propose a new framework that extends the EDA methods developed for
102  continuous variable to discrete facies delineation by assimilating indirect data while imposing
103  spatial continuity constraints on resulting facies distribution. In the new framework, we first
104  adopt a parameterization method based on level set functions [Chang et al., 2010] to describe the
105  occurrence of facies at given locations through facies probability, and then use the EDA methods
106  to update the facies probability. At each data assimilation step, additional conditioning points of
107  facies are selected based on the changes between prior and posterior facies probability and

108  combined with the prior direct data to update the facies spatial structure. The combined set of
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conditioning points and the updated spatial structure are then used in the conditional simulation
of the facies field by using the Transition Probability Geostatistical Software (T-PROGS) [Carle,
1999] for the next step of data assimilation. The new EDA framework for spatial facies
delineation is evaluated with a synthetic two-dimensional (2-D) groundwater modeling with two
facies, in which transient head data induced by pumping tests is assimilated as indirect data to
delineate the spatial distribution of hydrofacies with contrasting high- and low-permeability. The
synthetic case of groundwater modeling specifically investigates the importance of imposing

geostatistical constraints for facies delineation during the data assimilation.

2. Methodology

Two primary building blocks of our framework include the data assimilation method used for
parameter estimation (described in Section 2.1) and the level set method that enables
transformations between discrete facies indicators and Gaussian random variables (described in
Section 2.2). One unique contribution of our framework is on imposing spatial continuity when
updating facies field using T-PROGS, which is also explained in Section 2.2.
2.1 Ensemble data assimilation methods

While EDA methods were originated from the Ensemble Kalman Filter (EnKF) developed by
Evensen [1994] and Burgers et al. [1998], iterative EDA approaches [Gu and Oliver, 2007; Chen
et al., 2013], similar to the Gauss-Newton algorithm for solving nonlinear problems, have been
developed for nonlinear systems by controlling the adverse effect of nonlinearity through
reducing the increment vector in the updating formula by a fraction and iterating the procedure

multiple times. Ensemble Smoother with Multiple Data Assimilation (ES-MDA) [Emerick and
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Reynolds, 2013] is one of such approaches, and it is adopted in this study for its straightforward

implementation and proven efficiency in dealing with nonlinear systems.

The ES-MDA method assimilates all observations simultaneously in each iteration, while the
reduction in the increment vector resulted from data assimilation is achieved by inflating the
observational variance, as in the following analysis scheme for updating m (system states and

parameters):

m"*' =m" +C,, (C,, +aR)" (dobS +Jae - di’~f) , (1)
where m'’ is the i-th realization of the ensemble of m during the /-th iteration, d,is the
observational data to be assimilated, d*/ = f(m") is the model prediction counterpart of d_,,
simulated by a forward model denoted as f(-), matrix C,, is the cross-covariance between the

parameter vector and the model predictions, C,, is the auto-covariance of model predictions, e’

1s the ith realization of measurement errors that are assumed to follow a Gaussian distribution

with zero mean and covariance matrix R, and ¢ is the iteration coefficient of each iteration.

While as many iterations as needed can be performed to approach the optimal solution, the

N,

multiple or iterative updating of Eq. (1) is only valid when the coefficients ¢, satisfy v 1 =1,
=

with / and N, being the iteration index and the total iteration number, respectively. The

covariance matrices C,, and C,, are approximated by their ensemble statistics:

LSl oo | >

CMD =

=

o Sl - o ).

¢
e - i=1

=



150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

where N, is the number of realizations in the ensemble, and T is the transpose of matrix.

Example parameter vector m can be the permeability p for each facies and the Gaussian
variables y related to facies through the level set transformation as described in the next section,

1.e., the i-th realization of the parameter vector at each iteration of ES-MDA is

T

. \T S\ . . . .
m” = [(y”’) ,(p”’) ] . The observations, d, , are indirect data, such as the transient head data

obs ?

used in the numerical example of section 3.

2.2 Facies-based ES-MDA with level set transformation and transition probability-based
geostatistics

We adopted the concept of level set [Chang et al., 2010] for the transformation between
discrete facies types and continuous random variables in order to implement ES-MDA for facies
delineation. Taking a system of two facies types as an example, the facies types at a given
computational cell within a domain can be related to the signs of a group of Gaussian variables

via level set transformation as follows:

=1, ify >0
{’/.'/ 1y]> (4)

ro=2, ify. <0
where r/’ is the i-th realization of facies type on the j-th cell of the computational domain and yj.
is the transformed continuous variable. By assuming that yj. follows a Gaussian distribution

with mean u; and standard deviation o, the probability of the facies being type 1 or type 2 at

the j-th node can be computed as
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Py = Prob(y; >0)=1-®

0-pu,
g;
, (5)

0-u,
g;

where @ is the Cumulative Distribution Function (CDF) of the standard Gaussian distribution.

p,;, =Prob(y; =0)=

The level set transformation offers one way to handle discrete facies when implementing the
ES-MDA method. As shown in Figure 1, the implementation starts with generating geostatistical
realizations of facies distribution from prior information on probability of facies occurrence,
which may include borehole data and expert opinions. Subsequently, the level set method is used
to transform the realizations of discrete facies to realizations of continuous Gaussian variable at
each grid cell by preserving the probability of facies occurrence. One key step in this
transformation is to determine the mean and variance of the transformed Gaussian random
variable. Since the results of data assimilation are not impacted by the value of variance (see the
proof given in the supplementary information), we use a fixed variance of 1 for the transformed
continuous random variable, which simplifies the transformation to find the mean of the
transformed Gaussian random variable at each grid cell.

The transformed Gaussian variables at all grid cells are taken as the state variables in the ES-
MDA formulation and their ensembles are updated at each iteration. The final posterior ensemble
of the transformed variables is transformed back to facies through the probability of occurrence
using equation (5). While this is a typical procedure used in existing facies-based EDA methods,
its main drawback is that the facies at each grid cell changes independently from its neighbors
without considering spatial continuity. The absence of spatial continuity constraint can lead to an
unrealistic discontinuous distribution of facies. In this study, an additional procedure is

introduced at each data assimilation step or each iteration within a step to impose a spatial
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structure in generating updated facies field using geostatistical conditional simulation (e.g., T-
PROGS). The spatial structure is informed by a group of conditioning points selected using a set
of criteria discussed below.

The level-set-based transformation and T-PROGS based conditional simulation of facies are
two building blocks that enable us to delineate facies distribution using the ES-MDA method
developed for the continuous random variables. The important steps in the analysis procedure are
summarized in Figure 1 and described as follows:

(1) Generate prior ensembles of facies field and associated facies property (e.g., permeability)
based on prior information (e.g., borehole data and expert knowledge).

(2) Transform the realizations of facies into the realizations of the Gaussian variable at each
grid cell using mean values calculated from Eq. (A1) in the supplementary information
with standard deviation fixed at 1. This step is referred to as the level set (LS)
Transformation marked in Figure 1.

3) Run forward simulations with the ensemble of facies fields and their associated facies
properties to produce the modeled counterparts of observations.

(4) Update the ensemble of the transformed Gaussian variables and property parameter of
each facies by assimilating observation data using ES-MDA;

(%) Update the facies probabilities at each grid cell using the mean of transformed variables
(Eq. 5) based on the ensemble updated at step (4). This step is referred to as the level set
(LS) back transformation marked in Figure 1.

(6) Select additional conditioning points using the criteria described below.

(7) Combine the conditioning points selected at step (6) with the original set of conditioning

points from the previous iteration to update facies spatial structure information needed by

10



214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

T-PROGS, i.e., discrete transition probability and facies volumetric proportions. Then
generate a new ensemble of geostatistical realizations of facies field using T-PROGS.
(8) Repeat (2) to (7) until convergence or prescribed iteration number is reached.
It should be noted that, while T-PROGS is used in the procedure above, the ES-MDA method is
compatible with other geostatistical simulators for generating random fields of facies.

Steps (5) — (7) (shown in the gray shaded boxes in Figure 1) are the unique contribution of
our framework, which are not included in any existing facies-based EDA approaches. We term
these steps as a “reconditioning” procedure. For selecting the additional conditioning points in
step (6), the absolute changes of facies probability before and after an iteration at all the grid
cells are first ranked in the ascending order, then the locations with the top 1% change are
selected as the candidate points because they are more sensitive to the observation data in the
given iteration. The pool of candidate points accumulates over iterations. We then down select
from all these candidate points to a subset, based on the changes of the updated facies probability
values from their prior estimates. The down selection step is to ensure that the selected points
represent the “new” information content assimilated from the observational data using the prior
as the baseline. To avoid overfitting, we keep the number of additional conditioning points the
same as the number of observation data points. More research on the number of additional

conditioning points and how to control the size of candidate pool is warranted in a future study.

3. Synthetic Example
To demonstrate and evaluate our ES-MDA method for facies-based data assimilation, a
synthetic study of groundwater flow modeling in a domain with two facies was developed by

revising that of Harp et al. [2008] with a reduced amount of direct data, which are borehole logs
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of sediment texture. The study domain (Figure 2a) is a 2-D confined aquifer with the size of
1000m % 200m in 10m x 20m resolution. The left and right boundaries at x = 0 m and x = 1000
m are set with constant hydraulic heads of 100 m and 95 m, respectively. The top and bottom
boundaries at z =200 m and z = 0 m are set as no-flow boundaries. The domain contains two
facies with contrasting permeability, 10 m? for the facies that is more permeable and 10" m?
for the less permeable one, which are comparable with the measured values for two contrasting
geologic layers at the DOE Hanford site [Chen et al., 2012; 2013]. We refer to these two facies
as Hanford and Ringold hereafter. The true facies distribution was generated by Harp et al.
[2008] with the volumetric proportions of 0.7 and 0.3 for Hanford and Ringold, respectively. The
mean lengths of Ringold in the x (length) and z (thickness) directions are 300 m and 20 m,
respectively. Borehole geological data (i.e., direct data) are assumed to be available at each grid
cell along three wells located at x = 0 m, 250 m, and 500 m (marked by the vertical black lines in
Figure 2a). Given that Harp et al. [2008] used direct data at five wells (the other two located at x
= 750m and 1000m), the synthetic example of this study with smaller number of observation
data is more challenging for data assimilation. Groundwater pumping with a constant rate of Q =
10.2 L/s was imposed at the domain center (x = 500 m). Transient head data (indirect data) were
collected at seven discrete times until a steady state was reached at eight observation locations
(marked with green dots in Figure 2a). The data were corrupted by measurement errors, which
were modeled as white noise with the standard deviation of 1 cm.

The facies-based data assimilation framework was applied to estimate the spatial distribution
of the two facies and their associated permeabilities. The initial ensemble of log-transformed
permeability for Hanford and Ringold were generated from the Gaussian distributions with a

variance of 0.5 and mean values of -8 (log;o-m?”) for Hanford and -11 (log;o-m?) for Ringold.
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Note that the initial guesses of mean permeability for the both facies were set one order of
magnitude higher than their true values to test the robustness of our data assimilation framework.
An ensemble size of 300 was used in our data assimilation process to ensure the convergence of

ensemble approximation. Four iterations of ES-MDA were performed with the iteration

coefficient of @; =4 used in Eq. (1). The number of additional conditioning points used in the

“reconditioning” procedure (Figure 1) was set to 50 (the number of head observations), and they
were selected adaptively during the iterations to augment the spatial structure of the facies for the
T-PROGS geostatistical simulations. The discrete lags for T-PROGS to generate a continuous-
lag Markov chain model were 250m and 2m in the horizontal and vertical directions,
respectively, consistent with the minimum lag distances of the borehole data. The flow
simulation for each realization of the permeability field was performed using the high-

performance reactive flow and transport code PFLOTRAN [Hammond et al., 2014].

4. Results and Discussion

Upon the completion of ES-MDA with the reconditioning procedure, the probability of
Ringold occurrence was calculated for each grid cell (by counting the occurrence frequency in
the posterior ensemble of the facies field), and the results were compared with the true Ringold
distribution (Figure 2a) to assess the accuracy of our estimation (Figures 2c, 2e, and 2g).
Comparing Figures 2¢ and 2e of the first two assimilation steps with Figure 2b of the prior
Ringold distribution shows that the facies distribution estimated using our method changed
significantly towards the true field. Convergence was achieved after four iteration steps as there
was negligible difference in estimations between the 3™ (results not shown) and 4" iterations

(Figure 2g). The final estimate of facies distribution (Figure 2g) captured all the major features
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of Ringold distribution, with remarkable improvements noted in the top-left corner and right side
of the domain highlighted in the green boxes. Most of the additional conditioning points (in
Figures 2c, 2e, and 2g) during the data assimilation steps occur within the highlighted regions,
where the initial uncertainty of facies distribution is high due to the lack of direct data.

We also compared the above results with those obtained without the reconditioning
procedure to evaluate the importance of imposing the facies spatial continuity in facies
delineation (Figures 2d, 2f, and 2h). It is evident that the removal of spatial structure
reconstruction at each data assimilation step decreased the overall accuracy of facies
reconstruction with much noisier spatial patterns. One posterior realization of facies field,
corresponding to the same randomly picked prior realization, is provided in Figures 21 and 2j
with and without reconditioning, respectively. The difference between the two realizations is
representative of all the realizations in the ensemble and is consistent with that between their
mean fields (e.g., the facies probability field) shown in Figures 2g and 2h. Imposing spatial
continuity through conditioning is effective in avoiding the unrealistic noisy structure of facies.
Thus this reconditioning step is essential when using data assimilation techniques for facies
delineation, especially when a smaller amount of direct data is available for the facies delineation.

The estimated volumetric proportion and mean length of each facies are compared to their
true values to evaluate the effectiveness of ES-MDA in capturing the primary parameters that
describe the spatial structure of facies distribution. Figures 3a-3¢ show that the constraint on
spatial continuity of facies improves the accuracy of ES-MDA in reproducing both the
volumetric portion and mean length for both facies, compared to ES-MDA without the
reconditioning procedure. The final estimates with the reconditioning procedure deviate less than

4% from their true values. On the other hand, the means of estimated permeabilities for both the
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Hanford and Ringold facies are nearly identical to the true values regardless of the
reconditioning, as shown in Figure 3d. The reconditioning only leads to marginal improvement
in estimating the Ringold permeability.

Root mean square errors (RMSEs) between the estimated facies probabilities and the
corresponding true values were calculated to assess the accuracy of facies estimation at each grid
cell. The RMSEs represent the spatial average of goodness-of-fit over the entire domain, and
they were evaluated for the estimated mean facies field and the individual realizations of facies

field as:

(6)

where N . is the number of grid cells in the domain, N, is the number of realizations, and / and

I*" are the facies indicators (1 for Ringold and 0 for Hanford). RMSE’

mean

is calculated using
mean field of facies, while RMSE! is calculated for each realization of posterior facies field.

The probability distribution of RMSEl.I can be constructed from all the realizations for the range
of goodness-of-fit among different realizations, and the distribution is plotted in Figure 3e.
The RMSE] . value of the mean facies field before ES-MDA is 0.349. After ES-MDA, it

decreases to 0.316 (with reconditioning) and 0.348 (without reconditioning), confirming that the

reconditioning led to an overall improvement in facies delineation across the domain. The
probability density functions (PDFs) of RMSEl.I plotted in Figure 3e also shows that the
reconditioning procedure of our framework shifts the distribution of RMSEs towards smaller

values, i.e., higher accuracy. To evaluate the RMSE’  in the horizontal and vertical directions,

mean
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the squared difference was averaged over the columns of the grid instead of over the entire

domain. The pattern of RMSE’

nean along the horizontal direction (Figure 3g) shows a strong
influence of the direct data on the facies estimation. Assimilating the indirect data has little effect
in the region (e.g., that between x = 0 m and x = 500m) where a significant amount of direct data
are available. However, a major improvement is observed in the region (e.g., the area with x >
500m) with little direct data, indicating the importance of the reconditioning procedure of our
ES-MDA framework.

The RMSEs were also calculated for the hydraulic head field simulated using the estimated
facies distribution and their associated permeabilities before and after applying ES-MDA. The

calculation is the same as that for the facies distribution, with the only difference being averaging

the squared difference over the time steps before averaging over space as shown below:

(7

where H and H™" are the simulated head from the estimated and true facies field, respectively.
Our ES-MDA method with reconditioning yields a RMSE! value of 0.165m, which is
significantly smaller than the value of 0.673m for the prior and the value of 0.235m for the ES-

MDA without reconditioning. The PDF of RMSEIH (Figure 3f) shows higher density in smaller

values, confirming the improvement in prediction of hydraulic head field. The RMSE”  values

calculated for the columns of the grid show that ES-MDA can effectively reduce the errors in
simulated hydraulic head field, and the improvement is enhanced when the spatially continuity of

facies distribution is properly accounted for by reconditioning (Figure 3h). The larger RMSEs
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near the pumping well are likely due to the numerical error in solving the pressure discontinuity

imposed by pumping.

4. Conclusions

A new data assimilation framework (ES-MDA) was developed for delineating the spatial
distributions of facies and for estimating facies permeability based on different data types by
integrating ensemble data assimilation with indicator geostatistics. A parameterization method
based on the level set concept was used to transform between discrete facies distribution and
continuous Gaussian random variables to allow the application of the data assimilation methods
developed for continuous variables for discrete facies delineation. The unique feature of our ES-
MDA framework is that the delineated facies distribution is not only informed by the direct and
indirect information, but also constrained by spatial continuity through the reconditioning
procedure at each assimilation step. The results from a two-dimensional synthetic example
demonstrated that our framework can accurately characterize facies distribution and associated
permeability. The reconditioning procedure is unique and innovative to our framework, and the
procedure was shown to be essential in maintaining spatial continuity in the facies distribution,
which is especially important for systems known to have preferential flow path. It should be
noted that successful facies delineation also depends on the contrast in facies properties. Further
testing the proposed method in a system with mild contrast in facies, such as the Borden aquifer
[Ritzi et al., 2013], could be worthwhile. Although ES-MDA was demonstrated with a two-facies
system, extending it to more than two facies is straightforward by introducing additional

parameters for level set transformation [Chang et al., 2010; Mannseth, 2011]. ES-MDA is
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mathematically general, and thus can also be readily extended for delineating other facies beyond
the hydrofacies, such as reactive facies and thermofacies.
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Figure 1. Flow chart of integrating ensemble data assimilation methods (e.g., ES-MDA) and
indicator geostatistical methods (e.g., T-PROGS) based on level set parameterization. The part
with grey shadow is the integration of geostatistics described in Section 2.2. The red dashed line
shows the EDA procedure without conditional simulation of facies at each data assimilation step
as adopted by most of the existing facies-based EDA methods. The step number (1)~(7) in
Section 2.2 is highlighted.
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474  Figure 2. (a) Spatial distribution of two facies, Hanford (blue) and Ringold (red). Three black
475  vertical lines (one coincides with the west boundary) indicate where facies indicator data are
476  collected. The green dots indicate head observation locations. The pumping well is located on the
477  central black line. (b) Prior probability field of Ringold estimated from the prior ensemble of
478  facies field. (c, e, g) Posterior probability fields of Ringold after the 1, 2" and final data

479  assimilation steps using our ES-MDA method with reconditioning (the black dots are additional
480  conditioning points selected for conditional simulation of facies using T-PROGS). (d, f, h)

481  Posterior probability fields of Ringold after 1%, 2" and final data assimilation steps using ES-
482 MDA without the reconditioning procedure. (i) A representative posterior realization of facies
483  field using our ES-MDA method with reconditioing. (j) A representative posterior realization of
484  facies field using the ES-MDA method without reconditioning.
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Figure 3. Comparisons between the prior and posterior estimates with or without reconditioning
for Ringold volume proportion (a), horizontal mean length of Ringold (b), vertical mean length
of Ringold (c), boxplots of prior and posterior estimations of permeabilities for Hanford and
Ringold (d), pdfs of RMSE calculated on each realization of facies field (e), pdfs of RMSE
calculated on each realization of hydraulic head (f), RMSE of facies probability averaged
vertically (g), and RMSE of hydraulic head averaged vertically (h).
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