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Dear Prof. D’Odorico, Prof. Sander:

Please find enclosed a manuscript entitled “Application of a hybrid multiscale approach 
to simulate hydrologic and biogeochemical processes in the river-groundwater 
interaction zone” by Xiaofan Yang et al., which we wish to submit for publication in 
Advances in Water Resources. The manuscript was prepared using Microsoft Word and 
creates a 36-page document in 1.5-spaced format.
This paper presents a novel hybrid multiscale simulation approach that couples 
hydrologic-biogeochemical (HBGC) processes between two distinct length scales of 
interest in the river-groundwater interaction zone. Our multiscale simulation approach is 
tested and demonstrated on a two-dimensional (2D) domain that intersects the aquifer 
and the adjacent Columbia River within the 300 Area of the U. S. Department of 
Energy’s Hanford Site. This domain is characterized by temporally dynamic intrusion of 
river water, aquifer contaminant plumes that interact with hydrologic exchange flows, 
and complex biogeochemistry driven by mixed sources of organic carbon. Microbial 
activity and biogeochemical reactions are focused in a relatively thin zone (1-2 m thick) 
immediately underlying and adjacent to the river, comprising recent riverbed sediments 
and referred to here as the alluvium layer. Within this layer, it has been hypothesized 
that biogeochemical reactions are strongly impacted by flow variations associated with 
permeability heterogeneity, and therefore may require unusually high spatial resolution 
of processes and material properties within the alluvium (microscale domain), relative to 
the full model domain (macroscale domain). Use of a fine grid over the full macroscale 
domain would be computationally inefficient and perhaps infeasible for three-
dimensional domains of larger size. Additionally, the biogeochemistry within the 
alluvium layer is more complex than that of the rest of the macroscale domain, 
warranting use of different BGC reaction networks in the two domains. The current 
multiscale approach loosely couples high-fidelity simulations in the microscale domain 
with low-fidelity simulations in the macroscale domain. 
In the hybrid multiscale modeling workflow demonstrated and tested here, simulations 
at both scales employ the PFLOTRAN code. However, at the microscale, a grid with 
finer resolution is employed together with a complex BGC reaction network, while at the 
macroscale a simplified reaction network is utilized with a coarsely-resolved model grid. 
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A scripted workflow using the Swift computational workflow environment is used to 
execute, monitor and couple microscale and macroscale simulations. The coupling is 
loose and is accomplished through iterated input-output file transfers. The approach, 
previously demonstrated for coupling pore- and continuum-scale reactive transport 
simulations, is applied here to couple multiple scales of continuum models over a field-
scale domain. We test the accuracy and efficiency of our hybrid multiscale simulation by 
comparison with equivalent single-scale models, and then apply the multiscale model to 
numerically investigate the potential impacts of small-scale heterogeneity and different 
BGC reaction models.
Regarding the choice of referees, we will leave to your better judgment the selection of 
individuals that you feel can best offer constructive feedback on our manuscript. 
Researchers that we feel are especially well-qualified include 
Prof. Albert Valocchi (University of Illinois at Urbana-Champaign, valocchi@illinois.edu), 
Prof. Matthew Balhoff (University of Texas at Austin, balhoff@mail.utexas.edu), 
Prof. Ilenia Battiato (Stanford University, ibattiat@stanford.edu) 
Prof. Diogo Bolster (University of Nortre Dame, bolster@nd.edu) and 
Prof. Ciaran Harman (Johns Hopkins University, charman1@jhu.edu).
On behalf of my co-authors, I wish to thank you for your time and consideration of our 
manuscript. We look forward to hearing from you in due course.

Yours sincerely,

Xiaofan Yang
Hydrology Technical Group
Energy and Environment Directorate
Pacific Northwest National Laboratory
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31 Abstract

32 The groundwater-surface water interaction zone (GSIZ) plays an important role in riverine and 

33 watershed ecosystems as the exchange of waters of variable composition and temperature 

34 (hydrologic exchange flows) stimulate microbial activity and associated biogeochemical 

35 reactions. Variable temporal and spatial scales of hydrologic exchange flows, heterogeneity of 

36 the subsurface environment, and complexity of biogeochemical reaction networks in the GSIZ 

37 present challenges to incorporation of fundamental process representations and model 

38 parameterization across a range of spatial scales (e.g. from pore-scale to field scale). This paper 

39 presents a novel hybrid multiscale simulation approach that couples hydrologic-biogeochemical 

40 (HBGC) processes between two distinct length scales of interest. 

41 Our multiscale simulation approach is tested and demonstrated on a two-dimensional (2D) 

42 domain that intersects the aquifer and the adjacent Columbia River within the 300 Area of the U. 

43 S. Department of Energy’s Hanford Site.  This domain is characterized by temporally dynamic 

44 intrusion of river water, aquifer contaminant plumes that interact with hydrologic exchange 

45 flows, and complex biogeochemistry driven by mixed sources of organic carbon. Microbial 

46 activity and biogeochemical reactions are focused in a relatively thin zone (1-2 m thick) 

47 immediately underlying and adjacent to the river, comprising recent riverbed sediments and 

48 referred to here as the alluvium layer. Within this layer, it has been hypothesized that 

49 biogeochemical reactions are strongly impacted by flow variations associated with permeability 

50 heterogeneity, and therefore may require unusually high spatial resolution of processes and 

51 material properties within the alluvium (microscale domain), relative to the full model domain 

52 (macroscale domain). Use of a fine grid over the full macroscale domain would be 

53 computationally inefficient and perhaps infeasible for three-dimensional domains of larger size. 

54 Additionally, the biogeochemistry within the alluvium layer is more complex than that of the rest 

55 of the macroscale domain, warranting use of different BGC reaction networks in the two 

56 domains. One approach to address these challenges is the application of a hybrid multiscale 

57 method that loosely couples high-fidelity simulations in the microscale domain with low-fidelity 

58 simulations in the macroscale domain. 

59 In the hybrid multiscale modeling workflow demonstrated and tested here, simulations at both 

60 scales employ the PFLOTRAN code. However, at the microscale, a grid with finer resolution is 
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61 employed together with a complex BGC reaction network, while at the macroscale a simplified 

62 reaction network is utilized with a coarsely-resolved model grid. A scripted workflow using the 

63 Swift computational workflow environment is used to execute, monitor and couple microscale 

64 and macroscale simulations. The coupling is loose and is accomplished through iterated input-

65 output file transfers. The approach, previously demonstrated for coupling pore- and continuum-

66 scale reactive transport simulations, is applied here to couple multiple scales of continuum 

67 models over a field-scale domain. We test the accuracy and efficiency of our hybrid multiscale 

68 simulation by comparison with equivalent single-scale models, and then apply the multiscale 

69 model to numerically investigate the potential impacts of small-scale heterogeneity and different 

70 BGC reaction models. 

71

72 Key words: hybrid multiscale simulation; loose coupling; groundwater-surface water interaction; 

73 hydrologic-biogeochemical processes
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88 1. Introduction

89 The groundwater-surface water interaction zone (GSIZ), the region of the subsurface below or 

90 adjacent to a river or stream into which surface water exchanges occur, has been recognized as 

91 an ecologically and biogeochemically active zone that plays a critical role in river ecosystems 

92 [Findlay, 1996; Brunke and Gonser, 1997; Smith, 2005; Larned et al., 2015]. It is also a key 

93 element of the earth critical zone (land surface-soil-water-atmosphere interaction zone) 

94 [http://criticalzone.org/national/]. Movement of surface water into and out of the GSIZ (referred 

95 to as hydrologic exchange flows [Harvey and Gooseff, 2015]) leads to mixing of waters 

96 containing variable levels of dissolved oxygen (DO), dissolved organic carbon (DOC), nutrients, 

97 contaminants, and other solutes, and thereby gives rise to complex coupled hydrologic-

98 biogeochemical (HBGC) processes [Boano, 2014;Cardenas, 2015]. Among those processes, 

99 microbially-mediated aerobic respiration of organic carbon, nitrification and denitrification are 

100 considered to be important [Findlay,1995; Bencala, 2000; Pinay et al., 2015], and can be related 

101 to other redox-sensitive reactions. Field experiments [Packman et al., 2004; Kessler et al., 2012; 

102 Fox et al., 2014], column experiments with hyporheic zone sediments [Doussan et al., 1997; Gu 

103 et al., 2007; Yan et al., 2016; Liu et al., 2017] and numerical modeling studies [Mayer et al., 

104 2002; Storey et al., 2003; Lautz and Siegel, 2006; Fleckenstein et al., 2010; Brunner et al., 2010; 

105 Frei et al., 2012; Gu et al., 2012; Janssen et al., 2012; Han et al., 2014; Krause et al., 2014; Chen 

106 et al., 2015; Liggett et al., 2015] have all been useful in improving our understanding of solute 

107 transport and biogeochemical turnover processes in the GSIZ. A number of studies have 

108 successfully used numerical models to simulate results of field studies and laboratory 

109 experiments [Boano et al., 2009; Fleckenstein et al., 2010; Frei et al., 2012; Gu et al., 2012; 

110 Janssen et al,. 2012; Han et al., 2014; Krause et al., 2014; Trauth et al., 2013; Trauth et al.,2014], 

111 by providing detailed understanding of the controlling mechanisms and dynamic distributions of 

112 the processes within the GSIZ. However, three major issues pose challenges to field-scale 

113 numerical modeling of HBGC processes in the GSIZ. Firstly, hydrogeological structures in the 

114 GSIZ are often complex and exhibit strong physical and biogeochemical heterogeneity that can 

115 greatly impact HBGC processes. Secondly, river discharge (and therefore river stage) can vary 

116 over a range of temporal scales from hourly to multi-year, leading to dynamic hydrologic 

117 exchange flows and complexities in microbiological responses that introduce computational 

118 challenges. Finally, because of multiple scales of physical and biogeochemical heterogeneity in 
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119 natural systems, HBGC processes in the GSIZ often require scale-dependent parameterizations 

120 and/or process representations, and the interactions among processes at different scales are 

121 poorly understood and difficult to predict. 

122 In summary, coupled HBGC processes in the GSIZ exhibit multi-scale and multi-physical 

123 features (different mathematical representations of physical, biological and chemical processes at 

124 distinct scales) that motivate the development of multiscale modeling approaches. Single-scale 

125 simulations at low fidelity are computationally efficient, but require high levels of 

126 parameterization that may inadequately represent impacts of microscopic physical/chemical 

127 processes and their linkages to macroscopic phenomena [Wood, 2009; Gray et al., 2013]. Single-

128 scale simulations at high fidelity may offer higher predictive potential, but at high computational 

129 expense [Molins, 2015; Yang et al., 2016]. In recent years, hybrid multiscale methods [E et al., 

130 2003; Ingram et al., 2004; Mehmani and Balhoff, 2015] have begun to be applied to study of 

131 flow and transport processes in subsurface systems with multiscale heterogeneity. Scheibe et al. 

132 [2015a] provide a review of several classes of multiscale methods including hybrid multiscale 

133 methods, with discussion of recent applications to subsurface flow and reactive transport 

134 simulation. Conceptually, hybrid multiscale methods describe the flow and reactive transport 

135 processes using different mathematical models and parameters at each scale, and define coupling 

136 schemes between models at different scales (e.g., Tartakovsky and Scheibe, 2011) to ensure 

137 process continuity and exchange model parameters (e.g. reaction rate), states, and boundary 

138 conditions. It is obvious that the coupling scheme between scales is the core and major challenge 

139 of this method. Key factors to be considered include the consistency between models, data 

140 exchange and I/O control, and computational efficiency. A variety of different hybrid methods 

141 have been developed and applied, such as the hybrid mortar method [Balhoff et al., 2008; 

142 Mehmani and Balhoff, 2014; Tang et al., 2015], iterative boundary coupling [Battiato et al., 

143 2011], non-iterative coupling of Smoothed Particle Hydrodynamics (SPH, Tartakovsky et al., 

144 2010), and the hybrid multiscale finite volume (h-MsFV) method [Tomin and Lunati, 2013; 

145 Tomin and Lunati, 2015; Barajas-Solano and Tartakovsky, 2016]. A hybrid loose coupling 

146 method based on the heterogeneous multiscale method of E et al. [2003] was developed by our 

147 team and previously applied to coupled pore- and Darcy-scale simulation of reactive transport 

148 [Scheibe et al., 2015b, 2015c]. The loose coupling method employs user-specification of input 

149 and output files passed to and from each at-scale simulator, together with functional descriptions 

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280



6

150 (subdomain determination and upscaling/downscaling schemes) used for data exchange between 

151 scales, in a Swift-controlled high-performance computing workflow environment [Wilde et al., 

152 2011]. The script-based multiscale modeling framework was tested using a mixing-controlled 

153 reaction in a homogeneous porous media system [Scheibe et al., 2015b], in which microscale 

154 (pore-scale) and macroscale (continuum-scale) reactive transport models were loosely coupled. 

155 Most of the previous hydrogeologic applications of hybrid multiscale methods have been used to 

156 couple flow and reactive transport from pore scale to continuum scale in synthetic porous media, 

157 with limited focus on field-scale applications. In the current study, we apply the same loose-

158 coupling modeling framework to simulate field-scale groundwater-river water mixing and its 

159 impacts on HBGC processes (carbon and nitrogen biogeochemistry) in the GSIZ.  

160 The current study is based on a field research site at the 300 Area of the U. S. Department of 

161 Energy’s (DOE) Hanford Site [Zachara et al., 2013]. The site is located in a semi-arid region and 

162 is bordered by the Columbia River (Figure 1a). Interest in field-scale models applied over 

163 domains hundreds of meters in size is motivated by the existence of contaminant plumes near the 

164 river [Hammond and Lichtner, 2010]. The plumes are impacted by river water intrusion that can 

165 extend significant distances inland [Johnson et al., 2015], and by biogeochemical processes that 

166 are relatively high in the GSIZ [Moser et al., 2003]. Modeling coupled hydrologic and 

167 biogeochemical processes in this context is challenging because 1) biogeochemical activity is 

168 enhanced in a relatively thin zone of recent river alluvium (1-2 meters thick) immediately 

169 underlying the river (referred to as the alluvial layer, Figure 1b) relative to the surrounding 

170 aquifer materials; 2) hydrobiogeochemical processes may be strongly impacted by small-scale 

171 physical and biogeochemical heterogeneity within the alluvial layer; and 3) the biogeochemical 

172 reactions in the alluvial layer are more complex than those in the surrounding aquifer. Therefore, 

173 a more sophisticated level of simulation may be required for accuracy in the thin alluvial layer 

174 (higher resolution and complex biogeochemical reaction network) while maintaining a simpler 

175 model in the rest of the model domain for computational efficiency. Hybrid multiscale 

176 simulation offers a potential approach to meet these competing objectives. The loose coupling 

177 approach used in our previous studies was adapted to this problem. In this application both 

178 model scales (the alluvial layer – microscale domain -- and the rest of the system –macroscale 

179 domain, Figure 1c) are simulated using the open-source PFLOTRAN flow and reactive transport 

180 simulation code [Lichtner et al., 2013]. However, at the microscale a computational grid with 
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181 finer resolution is employed together with a more complex biogeochemical reaction network, 

182 while at the macroscale a simplified reaction network is utilized with a coarsely-resolved model 

183 grid. Table 1 summarizes the attributes of the microscale and macroscale models. Customized 

184 scripts were developed for coupling schemes and exchange of data between scales. The entire 

185 multiscale simulation framework is executed in the Swift-based environment on high 

186 performance computing clusters.

187

188

189 Figure 1. Schematic diagrams of the modeling domain: (a) Hanford 300A study site; (b) the GSIZ; (c) the 
190 current 2D modeling domain. 

191
192 Table 1. Multiscale modeling framework for flow and reactive transport

Scale\Model Facies Formation Flow model BGC model Grid Solver

Macro-scale Subsurface Hanford+Ringold Richards 
Equation

Gu et al. 
2012

Coarse PFLOTRAN

Micro-scale Riverine Alluvium Richards 
Equation

Song et al. 
2017

Fine PFLOTRAN
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195 The rest of the paper is organized as follows: Section 2 introduces the modeling domain and 

196 setup (including hydrogeological properties assigned in the domain and the biogeochemical 

197 reaction network models); Section 3 explains the hybrid multiscale simulation framework and its 

198 execution; Section 4 presents results and discussion followed by concluding remarks.

199

200 2. Hanford 300A Site Model Configuration

201 The hybrid multiscale modeling framework simulates subsurface flow and reactive transport. 

202 Subsurface flow is simulated on a 2D cross-sectional domain (Figure 2), with dynamic head 

203 boundary conditions specified from observations of river water stage (river boundary) and 

204 interpolation of observations from inland wells (aquifer boundary). Reactive transport 

205 simulations are based on a combination of previously published (Gu et al., 2012) and newly 

206 developed (Song H.-S., et al., 2017) biogeochemical network models describing aerobic 

207 respiration and denitrification. The 2D computational domain is that same as that used by our 

208 team to investigate the impact of dam operation and hydropeaking on HBGC processes (Song X. 

209 et al., 2017). We use this 2D domain here for simplicity, and to facilitate comparisons with 

210 independent simulation outputs (such as a single-scale simulation with uniformly fine grid 

211 resolution). We recognize that this 2D system could be represented at high resolution over the 

212 entire domain without undue computational demand, and therefore does not require the hybrid 

213 multiscale approach. However, this test system allows us to develop, test and demonstrate our 

214 approach prior to application to larger 3D domains for which the computational efficiency of the 

215 hybrid method would be more advantageous. 

216 2.1. Computational domain and setup

217 The 2D model domain is shown in Figure 2. The dimensions of the domain are 143.2 m by 20 m, 

218 with the elevation ranging from 90 m to 110 m. A sloping bank represents the geometry of the 

219 groundwater-river water interface. The modeling domain comprises three stratigraphic 

220 formations with different hydrogeological properties [Williams et al., 2000; Williams et al., 

221 2008; Zachara et al., 2012]: alluvium layer (recent fluvial deposits with low permeability), 

222 Hanford formation (gravels with high permeability) and Ringold formation (ancient semi-

223 consolidated fluvial deposits with low permeability). The boundaries and shapes of the 

224 formations are based on previous field surveys and measurements at the extensively-studied 

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448



9

225 300A site. As mentioned above, the alluvium is a thin layer (1-2 m thick) adjacent to the river, 

226 but with disproportionate impact on flow and biogeochemical reactions. Both homogeneous and 

227 heterogeneous property distributions are considered for the aquifer properties in the current 

228 study. For homogeneous scenarios, hydraulic conductivity is assumed to be constant within each 

229 formation with values as listed in Table 2. For heterogeneous scenarios, the spatial distributions 

230 of the hydraulic conductivities in the modeling domain were defined using geostatistical models 

231 explained in Section 2.3. Four sets of hypothetical well observation points (marked by red dots in 

232 Figure 2) are located in the alluvium layer and the Hanford formation.

233

234

235 Figure 2. Computational domain (143.2 m x 20 m) and hydrostratigraphic formations: blue – Hanford 
236 formation; yellow – Ringold formation; red – Alluvium; dark blue – River water. Four sets of observation 
237 points are marked in red and located in the Hanford and Alluvium layers for comparison. In the current 
238 multiscale modeling framework, the Hanford and Ringold layers are defined as macro-scale domains 
239 while the thin Alluvium layer is defined as micro-scale domain.

240
241 Table 2. Parameters used in homogeneous scenarios

Parameters\Formations Hanford Ringold Alluvium

Porosity 0.2 0.43 0.43

Permeability 7.387e-9 1.055e-12 3.864e-11

242

243 2.2. Geostatistical model of physical heterogeneity

244 Hydrogeological properties vary naturally through space as a result of the complex geologic 

245 processes through which aquifers evolve. The heterogeneity of hydraulic conductivity (K) exerts 

246 control on the movement of water and solutes in groundwater and through surface water-

247 groundwater interfaces. Hydraulic conductivity can vary by several orders of magnitude over 

248 short distances. However, there is rarely sufficient data to deterministically prescribe these 
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249 heterogeneous spatial distributions. Accordingly, it has become common practice to use 

250 stochastic approaches to incorporate spatial heterogeneity in hydraulic properties into numerical 

251 models of subsurface fluid flow and transport [e.g., Gelhar, 1986; Wagner and Gorelick, 1989; 

252 Rubin, 2003]. Various geostatistical simulation approaches can be used to generate multiple 

253 realizations of heterogeneous fields of hydraulic conductivity, which are treated in this context as 

254 spatial random functions. Gaussian geostatistical simulation is commonly used for continuous 

255 data; it assumes that the data, or a transformation of the data, is multivariate Gaussian and 

256 stationary (i.e., the mean, variance, and spatial structure (semivariogram) is constant in the 

257 spatial domain) [Rubin and Journel, 1991; Deutsch and Journel, 1998].

258 The Hanford, Ringold, and recent alluvium geological units are each associated with different 

259 erosional and depositional processes and therefore exhibit different characteristics of 

260 heterogeneity [Hou et al., 2017]. The statistical moments of hydraulic conductivity (K) for the 

261 Hanford and Ringold formations are inferred based on previous reports focused on the Columbia 

262 River and Hanford Reach [Newcomb and Brown, 1961; Newcomb et al., 1972; Cass et al., 1981; 

263 Williams et al., 2000; Vermeul et al., 2003, 2009; Last et al., 2006; Thorne et al., 2006; Fritz and 

264 Arntzen, 2007; Fritz et al., 2007; Peterson et al., 2008; Williams et al., 2008; Truex et al., 2009; 

265 Bjornstad et al., 2010; USDOE, 2010; Zachara et al., 2012], and the spatial semivariogram model 

266 parameters are trained based on hydraulic conductivity measurements from an array of boreholes 

267 in Hanford 300A (an exponential semivariogram model is used here). The anisotropy angles are 

268 determined by assuming the maximum correlation direction is parallel to the interfaces between 

269 the formations. Insufficient data are available for the alluvium layer to determine the correlation 

270 length parameter, which is assumed here to be no more than 1 m since the parameter is scale-

271 dependent [Goovaerts and Webster, 1994; Davis et al., 1997; Di Fedrico and Neuman, 1997; 

272 Dobermann et al., 1997] and the thickness of the alluvial layer is typically 1-2 meters. Table 3 

273 summarizes the geostatistical parameters that are used for the simulations of log10(K(m/d)). 
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281
282 Table 3. Geostatistical parameters for three geostratigraphic formations in the modeling domain.

Parameters\Formations Hanford Ringold Recent alluvium

Mean, log10(m/d) 3.077 0.8787 1.978

Variance/Sill 0.71 0.41 0.55

Max correlation range (m) 9.4 9.4 1.0

Anisotropy ratio 0.1 0.1 0.1

Nugget 0 0 0

Anisotropy angle (radians) -0.052 -0.052 0.157

283

284 Figure 3 shows two representative realizations (for the alluvium and the entire domain, 

285 respectively) of the heterogeneous 2D field of log10(K) generated based on the above parameters 

286 using the R geostatistical package geoR. To systematically evaluate the performance of the 

287 numerical model and understand how spatial heterogeneity (K) may affect the flow and transport 

288 processes in the study domain, multiple realizations are generated reflecting uncertainty in the 

289 specific configuration of the K field while honoring the global distribution and spatial correlation 

290 structure of the data. A small number of selected realizations are employed and tested in the 

291 current multiscale modeling study. Further studies using additional realizations and sensitivity 

292 analysis of parameters are continuing and will be reported in future manuscripts.
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294

295 Figure 3. Two example realizations of the 2-D heterogeneity field of log10 hydraulic conductivity (m/d).

296

297 2.3. Subsurface flow model

298 In PFLOTRAN, the groundwater model simulates variably saturated flows by solving the 

299 Richards equation described as follows:

300  (3.1)              s Q
t

  
   


q

301 where φ denotes the porosity for each stratigraphic formation, s is the saturation, ρ is the fluid 

302 density, t is the time, q is the Darcy velocity and Q is the source/sink term. For variably saturated 

303 flow, the unsaturated soil hydraulic conductivities (Section 2.2) are accounted for using the van 

304 Genuchten soil water retention model [van Genuchten, 1980]. The residual and saturated 

305 moisture contents and the associated parameters are determined from in situ soil characteristics. 

306 Hydrostatic heads are applied to the entire modeling domain as initial conditions. Transient 

307 hydrostatic (variable head) boundary conditions are interpolated from observations and assigned 

308 to the inland (West) and river (East) boundaries (Figure 4) over a period of 2500 hr (short-term) 

309 for the current modeling application. Longer-term simulations with different objectives are 

310 described in Song X. et al. [2017]. The river stage varies 2 m or less over the short-term study 

311 period. The top and bottom boundaries of the domain are treated as no flow boundaries. 

312 Recharge is not considered in the model.
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313

314

315 Figure 4. Boundary conditions: seasonal river stage calibrated from field measurement and monitored 
316 data from wells.

317

318 A standard finite volume method is used for discretization in PFLOTRAN (see user manual for 

319 details). The grid resolution of the domain is initially uniform (0.1 m x 0.05 m) then nested (finer 

320 resolution in alluvium) for multiscale simulations, which will be further explained in Section 3. 

321 A time step of 1 hr was selected to ensure numerical stability. All numerical simulations were 

322 conducted using National Energy Research Scientific Computing Center (NERSC) 

323 supercomputers (Edison and Cori).

324

325 2.4. Reactive transport and biogeochemical models

326 Solute transport in PFLOTRAN is represented by the advective-dispersive equation based on the 

327 simulated transient flow field:

328  (3.2)( )i
i i i ci

C C s D C Q
t

  
     


q

329 where Ci is the concentration of each species, D is the dispersion coefficient and Qci is the 

330 source/sink term. The dispersion coefficients are constant in all directions with an assumed value 

331 of 1e-9 m2/s. The boundary conditions for the transport (inland and river) are based on averaged 

332 sampling data from field measurements [Stegen et al., 2016].
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333 As introduced in Section 1, two different biogeochemical (BGC) models were employed 

334 concurrently: one for the alluvial layer [Song H.-S. et al., 2017] and second simpler model for 

335 the rest of the domain [Gu et al., 2012]. Both BGC models represent aerobic respiration and 

336 denitrification but utilize different reaction networks and reaction rates/coefficients. 

337 Gu et al. [2012] developed a general Monod-type model to describe aerobic respiration 

338  (3.3)2 2 2 2CH O O CO H O 

339 and denitrification  

340  (3.4)2 3 22 21.25 0.5 1.25 1.75CH O NO H CO H ON   

341 The reactants and products being monitored in the simulations include H+, CO2, CH2O, O2, NO3
- 

342 and N2. The source term for the reactive transport of the species is calculated as:

343  (3.5)ci i iQ R q

344 where the reaction rates Ri are calculated using multiple Monod kinetics. The above model was 

345 previously used to study flow and reactive transport under hyporheic exchanges in the riparian 

346 zone, and has been tested and proved to be informative. Therefore we have adopted this model 

347 for use in the Hanford and Ringold formations, with the associated parameters as described in Gu 

348 et al. [2012]. 

349 The model of Song H.-S. et al. [2017] is based on laboratory experiments using 300A alluvium 

350 sediments, and thus more specifically represents the microscale domain in the current study. This 

351 new model places a focus on the description of microbial regulation as a key component of 

352 biogeochemical modeling. Microbes regulate metabolism by controlling enzyme levels and 

353 activities so that, when alternative electron donors and acceptors are available in environment, 

354 they often preferentially use one over another instead of using them all simultaneously. Detailed 

355 regulatory modeling will require information on molecular details, which are largely unknown, 

356 however, except for specific processes. Consequently, in most of the biogeochemical modeling 

357 studies, microbial regulation has been accounted for using empirical inhibition kinetics (e.g., 

358 Trauth et al., 2014; Gu et al., 2007). The cybernetic modeling approach developed Ramkrishna 

359 and coworkers provides an alternative way to account for microbial regulation [Ramkrishna and 

360 Song, 2012]. The cybernetic approach views organisms as teleonomic systems that regulate 

361 metabolism to promote a certain metabolic objective in a varying environment. This postulate 

362 leads to analytic forms of regulation rules (called the cybernetic control laws), which can be 
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363 derived from an optimal control theory [Young and Ramkrishna, 2007]. In a previous study, 

364 Song and Liu [2015] demonstrated how the cybernetic modeling could be successfully applied to 

365 model denitrifying organisms. In the extension to microbial communities, Song H.-S. et al. 

366 [2017] provided two versions of the cybernetic model: genetically structured and simplified 

367 models. Below, we provide a summary of the simplified cybernetic model. 

368 Based on data from the laboratory column experiments [Li et al., 2016], the microbially 

369 mediated biogeochemical processes are modeled by accounting for aerobic respiration and 

370 denitrification as follows:

371 Oxidative respiration:  

372  (3.6)2 2 2 2CH O O CO H O 

373 NO3
- reduction to NO2

-:  

374  (3.7)2 3 2 2 2  2 2  CH O NO NO CO H O   

375 NO2
- reduction to N2:    

376  (3.8)2 2 2 2 2 4 / 3  4 / 3 2 / 3  5 / 3CH O NO H N CO H O     

377 In equation (3.8), multi-stage reduction from NO2
- to N2 is lumped into a single reaction by 

378 assuming relatively fast dynamics of nitrogen oxide intermediates such as NO and N2O. 

379 Microbial biomass production can be written as follows: 

380  (3.9)2 4 5 7 2 2  1/ 5 1/ 5  3 / 5   1/ 5CH O NH C H O N H O H    

381 Microbes obtain energy for growth and maintenance through aerobic or anaerobic respiration 

382 depending on what electron acceptors are available in environment. To account for this coupling, 

383 each of the energy-producing reactions, equations (3.6) – (3.8), is combined with biomass 

384 synthesis reaction, equation (3.9), as follows: 

385  (3.10)CH2O  fO2
O2  1

5
(1 fO3

)NH4
  f3CO2  1

5
(1 fO2

)C5H7O2N

386  (3.11)
3 3 3 3 3

2 3 4 2 2 5 7 2
1 12 (1 ) 2 (1 )
5 5NO NO NO NO NO

CH O f NO f NH f NO f CO f C H O N    
        

387  (3.12)
2 2 2 2 2

2 2 4 2 2 5 7 2
4 1 2 1(1 ) (1 )
3 5 3 5NO NO NO NO NO

CH O f NO f NH f N f CO f C H O N    
       

388 where  , , and  are parameters that denote the fraction of energy-producing 
2Of

3NO
f 

2NO
f 

389 pathway. Due to our focus on simulating carbon and nitrogen flows, H+ and H2O are omitted in 
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390 the equations above. Equations (3.10) - (3.12) share the same electron donor (CH2O), but involve 

391 different electron acceptors (i.e., O2 for aerobic respiration, NO3
- and NO2

- for anaerobic 

392 respiration), thus representing three alternative pathways for the production of biomass 

393 (C5H7O2N). 

394 The reactants and products in the simulations include C5H7O2N, CO2, CH2O, O2, NO3
-, NO2

-, and 

395 N2. Hereafter, we use DOC (dissolved organic carbon), DIC (dissolved inorganic carbon) and 

396 BM (biomass) to denote CH2O, CO2 and C5H7O2N for simplicity.

397 Dynamic mass balances of key variables in simulation can be written based on stoichiometric 

398 equations (3.10) - (3.12) as follows:   

399  (3.13)

2

3
2

3 2
3

2
2

2 3 2

2 3 2

2

3

2

2

1 1 1
[ ]

0 0
[ ]

0 2 0
[ ]

0 2 4 / 3[ ]
0 0 3 / 2[ ]

[ ]
[ ] (1 ) / 5 (1 ) / 5 (1 ) / 5

O

NO O

NO NO NO

NO NO

O NO NO

O NO NO

DOC
f

O
f rNO

d f f rNO
dt

fN r
DIC f f f
BM f f f



 





 

 





   
      
                           
   
         

[ ]BM



400 where  , , and  denote microbes’ carbon uptake rates through three reaction 
2Or

3NO
r 

2NO
r 

401 pathways (equation (3.10) - (3.12)), respectively. Finally, mass balances of BM and DOC are 

402 modified to account for biomass degradation and the resulting impact on DOC concentration, 

403  (3.14)
  32 2

2 3 2
deg

1 11
[ ]

5 5 5
NOO NO

O NO NO

f ffd BM
r r r k BM

dt
 

 

  
     

 

404  (3.15)   2 3 3
deg5 [ ]O NO NO

d DOC
r r r k BM

dt      

405 where  denotes the rate of biomass degradation [1/day]. degk

406 Three biogeochemical reactions considered above can be modeled as being catalyzed by distinct 

407 enzymes as follows:

408  (3.16)
2 2 2 3 3 3 2 2 2

, ,kin kin kin
O O O NO NO NO NO NO NO

r e r r e r r e r       
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409 where  , , and  denote the relative level of enzymes that catalyze aerobic respiration 
2Oe

3NO
e 

2NO
e 

410 and two-step denitrification reactions, respectively, and  , , and  are 
2

kin
Or

3

kin
NO

r 
2

kin
NO

r 

411 unregulated reaction rates that can be represented by Monod kinetics, i.e., 

412  (3.17)

2 2

2 2

3 3

3 3

2 2

2 2

2

, , 2

3

3, ,

2

2, ,

[ ][ ]
[ ] [ ]

[ ][ ]
[ ] [ ]

[ ][ ]
[ ] [ ]

kin
O O

d O a O

kin
NO NO

d NO a NO

kin
NO NO

d NO a NO

ODOCr k
K DOC K O

NODOCr k
K DOC K NO

NODOCr k
K DOC K NO

 

 

 

 










 


 


 

413 While enzyme levels are determined by solving dynamic enzyme balance equations in the 

414 original formulation of the cybernetic modeling, they can be determined through a direct linkage 

415 to the cybernetic control laws [Young and Ramkrishna, 2007]:  

416  (3.18)32 2

2 3 2
2 2 23 2 3 2 3 2

, ,
kin kinkin

NOO NO
O kin kin kin kin kin kin kin kin kinNO NO

O O ONO NO NO NO NO NO

r rr
e e e

r r r r r r r r r
 

 

     

  
     

417 The above equation implies that microbes control the synthesis of enzymes in proportion to their 

418 relative contribution to a chosen objective (i.e., the carbon uptake rate). This formulation enables 

419 the model to simulate the dynamic shift among three electron acceptors (i.e., O2, NO3
- and NO2

-) 

420 without having to rely on empirical inhibitive kinetics. 

421 Key parameters of denitrification, including  , ,   and and , are 
3NO

f 
2NO

f 
3NO

k 
2NO

k  degk

422 determined through model fit to the batch denitrification data [Li et al., 2016], which was 

423 collected using the sediment obtained from the Columbia River hyporheic zone at the US DOE’s 

424 Hanford Site. More details of the lab sediment experiments are reported in previous studies [Li et 

425 al., 2016]. Literature data are used for the half saturation constants associated with DIC (i.e., 

426  and ) and electron acceptors (i.e.,  and ) [Rittmann and McCarty, 
3,d NO

K 
2,d NO

K 
3,a NO

K 
2,a NO

K 

427 2001; Yan S. et al., 2016]. Parameters associated with oxidative respiration are determined by 

428 assuming the relation to anaerobic respiration, i.e., 1) oxidative respiration is energetically more 

429 favorable than NO3
-  reduction (i.e., , ) and 2) half saturation constants 

2 3
/ 3O NO

f f  kO2
 3k

NO3


430 are the same (i.e.,  , ). This parameter setting leads to the sequential 
2 3

, ,d O d NO
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2 3
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431 utilization of three alternative electron acceptors, i.e., O2, NO3
-, NO2

-, and in batch reactor 

432 simulation. Model parameters used for simulations here are summarized in Table 4 and are based 

433 on fitting model results to the experimental data, which shows good agreement [Song H.-S. et al., 

434 2017].

435
436 Table 4. Parameter values of the biogeochemical model used to simulate the interaction between 
437 environment and microbial growth through aerobic respiration and denitrification.

Parameter
Aerobic 

respiration 3NO  reduction 2NO  reduction

Fractional of energy-producing 
pathway [-] 2

0.217Of 
3

0.65
NO

f  
2

0.99
NO

f  

Reaction rate constant 
[mmol/mmol BM/day] 2

84.78Ok 
3

28.26
NO

k  
2

23.28
NO

k  

Half saturation constant of electron 
donor [mM] 2, 0.25d OK 

3,
0.25

d NO
K  

2,
0.25

d NO
K  

Half saturation constant of electron 
acceptor [mM] 2, 0.001a OK 

3,
0.001

a NO
K  

2,
0.004

a NO
K  

Biomass degradation rate [1/day] deg 0.242k 

438

439 3. Hybrid Multiscale Modeling Approach

440 3.1. A loose-coupling framework

441 The hybrid multiscale modeling framework follows the loose-coupling method presented in 

442 Scheibe et al. [2015b; 2015c]. In the current framework, the computational domain is divided 

443 into hierarchical macroscale and microscale subdomains that are simulated using different 

444 models. The at-scale simulations are conducted sequentially and loosely-coupled by customized 

445 scripts. In the current study, as shown in Figure 2 and Table 1, the microscale subdomain 

446 (alluvial layer) is simulated using the Richards equation with fine grid resolution and the 

447 cybernetic BGC model [Song H.-S. et al., 2017], and the macro-scale subdomain including the 

448 Hanford and Ringold formations are simulated using the Richards equation with coarse grid 

449 resolution and the BGC model developed by Gu et al. [2012]. The concept of the loose-coupling 

450 method is to use script-based functional operators to perform numerical upscaling/downscaling, 

451 exchange data (file based) and convert between input and output files from at-scale simulators 
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452 where the two domains overlap. Advantages of the loose-coupling method include (1) it does not 

453 require modification of the at-scale simulators and (2) ease of programming. Potential 

454 disadvantages are 1) numerical errors or instabilities introduced by the sequential coupling, and 

455 2) inefficiencies introduced by passing data through I/O files rather than direct message passing. 

456 The workflow of the loose-coupling framework for the current application is presented in Figure 

457 5, which includes the following steps:

458 1. The macroscale simulator (PFLOTRAN) is applied over the full computational domain. 

459 Flow and reactive transport simulation using BGC model by Gu et al. [2012] are 

460 executed for a specified period of time. Configuration files describing the initial model 

461 configuration (initial condition, boundary condition and parameters) are provided to 

462 start the simulation at the beginning of the workflow.

463 2. A serial python script –Lifting Operator (LO) –executes the downscaling step (interface 

464 coupling and model updating) and constructs microscale simulator (PFLOTRAN) input 

465 files. The LO script provides algorithms to reconstruct initial conditions for micro-scale 

466 subdomains based on macro-scale quantities from Step 1. Since the size of the micro-

467 scale subdomain is fixed in the current application, no adaptivity control (to 

468 dynamically determine the micro-scale subdomains) is needed.

469 3. The microscale simulator (PFLOTRAN) is then applied only to the alluvial layer 

470 subdomain with the cybernetic BGC model [Song H.-S. et al., 2017] and finer grids, and 

471 is executed for the same period of time as the previous macroscale simulation.

472 4. A serial python script – Restriction Operator (RO) –performs numerical upscaling 

473 (interface coupling and averaging) and constructs macroscale input files for the next 

474 time step based on outputs from the microscale simulations. 

475 5. Repeat the procedure until the entire simulation period is completed.

476
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477
478 Figure 5. Swift-managed flowchart and execution for the current application

479

480 3.2.  Coupling strategies 

481 The challenge in all hybrid methods based on physical domain decomposition is how to ensure 

482 consistency between the macroscale and microscale subdomains [Scheibe et al., 2015a; 

483 Mehmani and Balhoff 2015]. For flow and reactive transport problems, it is critical to ensure 

484 consistency of flow and concentrations of multiple chemical species and their flux at the 

485 interface (in this case, the bottom boundary of the alluvium layer). There are two critical issues 

486 for coupling in the current application: (1) multi-grid matching and (2) consistency of the BGC 

487 models. Since the heterogeneity and unique HBGC processes in the alluvium (microscale 

488 subdomain) require simulations with higher resolution, we refine the grids in the microscale 

489 subdomain relative to the coarser grids used in the macroscale subdomain. Different ratios of 

490 grid resolutions (macro- to micro-) were tested: 1:1, 1:0.5 and 1:0.25. To match the values 

491 (velocity, concentration and their fluxes) on the nodes of the nested grids, the loose-coupling 
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492 method uses an interpolation/extrapolation scheme for the dependent variable along the interface. 

493 From macro-scale to micro-scale subdomain, the nodal values of the coarse grid are distributed 

494 evenly to the fine nodes. On the other hand, the nodal values simulated on the fine grids are 

495 averaged to coarse grids. A prediction-correction procedure is enforced in each time step. For 

496 example, for flow simulations, at the beginning of each time step, we use the velocity from the 

497 last time step at the interface. Thereafter the flow and transport equations in the macro-scale 

498 subdomain can be solved. Then we pass the interfacial pressure to the micro-scale subdomain, 

499 and solve the governing equations to correct the micro-scale velocity. We repeat this procedure 

500 iteratively until convergence. The same procedure is conducted for transport simulations. The 

501 two BGC models presented in Section 2.4 are different in terms of species and reaction rates. In 

502 Gu et al. [2012], the species (reactants and products) include H+, CO2, CH2O, O2, NO3
- and N2. 

503 In the cybernetic model [Song et al., 2017], the reactants and products being monitored in the 

504 simulations include C5H7O2N, CO2, CH2O, O2, NH4
+, NO3

-, NO2
-, and N2. The number of 

505 reactions and species are slightly different in two models. For variable data exchange, we only 

506 pass those that co-exist in both models. The reaction rates are calculated in each time step, then 

507 passed and updated between scales.

508 3.3.  Simulation cases

509 To validate and apply the above Swift-managed workflow to the 2D modeling domain, we set up 

510 a series of simulation cases using increasingly complex scenarios. A list of the cases is 

511 summarized in Table 5.

512 1. Case 1 is designed to validate that the multiscale coupling algorithm is working 

513 correctly. In this case, we compare results from the hybrid multiscale simulation 

514 (including multiple nested grid ratios) with equivalent single-scale (single-domain) 

515 simulations using a uniform grid resolution, homogeneous properties and one BGC 

516 model (Gu et al., 2012).  Since both the multiscale and single-scale models use the same 

517 property distributions and BGC model, the only difference is the multiscale coupling 

518 and subgrid resolution, and all solutions should be comparable.

519 2. Following successful validation, Case 2 simulations are designed to evaluate the 

520 potential impacts of sub-grid heterogeneity within the alluvial layer only. We apply 
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521 several realizations of the statistical heterogeneity model (Section 2.2) to the alluvium 

522 only (microscale subdomain) and compare with the homogeneous case (Case 1). 

523 3. Case 3 is designed to evaluate the potential impacts of applying an alternative and more 

524 complex BGC model in the alluvium layer. The BGC model of Song H.-S. et al. [2017] 

525 is applied in the alluvium while maintaining use of the Gu et al. [2012] BGC model in 

526 the larger domain. Again, results are compared to Case 1 which uses the Gu et al. [2012] 

527 model everywhere.

528 4. Case 4 applies the full combination of nested multiscale grids, heterogeneities in all 

529 formations, and different BGC model in the alluvial layer. This reflects the full level of 

530 complexity that is enabled by the hybrid multiscale coupling, and the results are 

531 evaluated to determine whether representing this level of complexity could reveal 

532 different behaviors from the simpler cases above.

533

534 Table 5. A list of simulation cases

Scale\Case Case 1 Case 2 Case 3 Case 4

Macro-scale Coarse/fine grid

Homogeneous

BGC model 1

Coarse grid

Homogeneous

BGC model 1

Coarse grid

Homogeneous

BGC model 1

Coarse grid

Homogeneous

BGC model 1

Micro-scale Coarse/fine grid

Homogeneous

BGC model 1

Fine grid

Heterogeneous

BGC model 1

Fine grid

Homogeneous

BGC model 2

Fine grid

Heterogeneous

BGC model 2

535

536 4. Results

537 4.1. Case 1: Validation

538 The hybrid multiscale model was applied to simulate HBGC processes in the 2D domain over a 

539 2500 hr time period. The instantaneous velocity (with streamlines) and reaction product (N2) 

540 species concentration contour plots at a selected time (384 hours) are shown in Figure 6. 

541 Intrusion of river water into the various subsurface formations is clearly evident. The 
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542 geostratigraphic formations strongly impact the flow paths, with the fastest flow paths occurring 

543 in the high-permeability Hanford formation. The purpose of Case 1 is to validate the multiscale 

544 coupling methodology by comparing results to equivalent single-scale simulations. For this case, 

545 a uniform fine (high-resolution 0.05 m horizontal x 0.025 m vertical) grid was used for the 

546 single-scale model, whereas the multiscale model used variable nested grids. 

547

548
549 (a)

550
551 (b)

552
553 (c)
554 Figure 6. Instantaneous contour plots of (a) velocity magnitude, (b) concentrations of N2 and (c) 
555 tracer.

556

557 Figures 7-9 present the comparisons from different perspectives. Instantaneous contour plots of 

558 velocity magnitude are shown in Figure 7, which shows minimal differences between the single-

559 scale and multi-scale simulations. To further quantify the results, velocity distributions 

560 (histograms) are shown in Figure 8 for a series of simulations with different computational grids 

561 (Figure 8). The hybrid multiscale result with a uniformly fine grid is indistinguishable from that 

562 of the equivalent single-scale model, indicating minimal error introduced by the coupling 

563 process. Employment of a coarse (0.1 m horizontal x 0.05 m vertical) grid everywhere introduces 

564 errors of up to 6%. The nested grid used in the multiscale simulation (coarse-to-fine ratio equals 
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565 to 0.25) provides results that are more accurate than the coarse grid, but still have small errors 

566 relative to the uniform fine grid. This is expected from the loosely-coupled multiscale method, 

567 and represents the tradeoff between accuracy and computational demand. In cases where a 

568 uniform fine grid is not computationally feasible, the multiscale method provides higher 

569 accuracy than a uniform coarse grid, but with a relatively modest increase in computational 

570 demand. To evaluate impacts on predictions of biogeochemical reactions, multiple species 

571 concentration histories at one of the hypothetical observation locations (Well 2M in the alluvium 

572 in Figure 2) are presented in Figure 9. Again the results obtained from the single- and multi-scale 

573 simulations (based on uniform fine grids and BGC model from Gu et al. 2012) are 

574 indistinguishable, which validates the loose coupling of reactive transport. 

575

576
577 Figure 7. Comparisons of velocity magnitude contour plots (t = 384 hr): (a) single-scale 
578 simulation using uniform fine grids; (b) hybrid multi-scale simulation using nested grids. 
579
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580
581 Figure 8. Comparisons of velocity histograms between single- and multi-scale models.
582

583
584 Figure 9. Comparisons of species concentration time histories (using the same setup) between (a) 
585 single-scale model and (b) hybrid multi-scale model.

586

587 Finally, we present the results of computing cost in terms of CPU hrs (Table 5). For uniform 

588 (fine or coarse) grids, the hybrid simulations use more CPU time than the corresponding single-

589 scale models due to computational overhead associated with model coupling and data/file 

590 exchange. However, for the nested grid in multiscale hybrid simulations, the computing cost was 

591 significantly reduced relative to single-scale simulations on uniform fine grids. These results 

592 demonstrate that the loosely-coupled hybrid multiscale simulation method is a feasible approach 

593 for investigation of the impacts of detailed processes and property distributions within 

594 microscale subdomains.
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595

596 4.2.  Case 2: Impact of micro-scale heterogeneity

597 Having established confidence in the numerical coupling algorithm based on Case 1 

598 comparisons, we now apply our hybrid multiscale model approach to more complex cases. We 

599 consider these additional cases as numerical experiments to evaluate the potential impact of 

600 small-scale heterogeneity and complex biogeochemistry within the alluvial layer. Case 2 tests the 

601 potential impacts of permeability heterogeneity in the alluvial layer by replacing the 

602 homogeneous properties used in Case 1 with heterogeneous distributions (using a 

603 geostatistically-generated realization). Figure 10 shows the altered flow field in the alluvium and 

604 associated velocity profiles along a selected transect as shown in the figure. Comparisons 

605 between homogeneous and heterogeneous cases are provided along the transect (red dashed 

606 line). While the overall results are similar for all cases, variable velocities are observed in the 

607 alluvium layer for the multiscale case, indicating that the microscale heterogeneity impacts flow 

608 fields within the microscale subdomain but not in the macroscale domain. Figure 11 shows the 

609 time history of the considered biogeochemical species at hypothetical observation location 2M 

610 (Figure 2).  In comparison to Figure 9 (Case 1), the overall trends are similar but there are some 

611 significant differences, suggesting that physical heterogeneity in the alluvium alone can impact 

612 the system biogeochemistry through formation of preferential flow paths and low-flow zones. 

613

614
615 (a)

1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456



27

616
617 (b)
618 Figure 10. Case 2: (a) distribution of river water (as a tracer) within the alluvium at a selected 
619 time point (t = 384 hr), showing the impacts of alluvial heterogeneity; (b) comparisons among 
620 velocity magnitude profiles (along the red dashed line across the domain) for single-scale and 
621 multiscale models on different grids and with homogeneous and heterogeneous alluvium 
622 properties.
623

624
625 Figure 11. Impact of small-scale permeability heterogeneity in the alluvium on biogeochemical 
626 reaction outcomes; compare to Figure 9.

627

1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512



28

628 4.3. Case 3: Impact of alternative BGC model in the alluvium

629 In Case 3, we employ the more complex biogeochemical model of Song H.-S. et al. [2017], 

630 developed specifically for alluvial sediments, in the microscale subdomain while keeping the 

631 more general model of Gu et al. [2012] used in the macro-scale subdomain. Since there are two 

632 pathways in the model by Song H.-S. et al. [2017], there exist additional species and 

633 intermediate products that are not simulated in the macroscale domain. This inconsistency 

634 induces some potential numerical instability in the loose coupling algorithm. For comparison 

635 purposes, we consider only those species simulated in both biogeochemical models. Figure 12 

636 again shows the time histories of the species concentrations at hypothetical observation point 

637 2M. Comparison to Case 1 results (Figure 9) indicate significantly lower simulated 

638 concentrations of N2 (reaction product) among other differences, which suggests that the 

639 application of a more complex reaction network within the biogeochemically active alluvial layer 

640 can lead to significant differences in model prediction. However, since we do not have direct 

641 observational information for comparison, we cannot confidently state that this prediction is in 

642 fact better. What is clear is that the multiscale hybrid approach enables the use of more complex 

643 representations of biogeochemistry (Case 3) and physical heterogeneity (Case 2) which could 

644 have significant impacts on model predictions. Additional model testing and experimental data 

645 are needed to confirm the significance of these differences.

646

647
648 Figure 12. Impact of using an alternative biogeochemistry model in the alluvium; compare to 
649 Figure 9.
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651 4.4.  Case 4: A complete simulation

652 This final case combines the complexities of Cases 2 and 3, and in addition incorporates a 

653 realization of physical heterogeneity (hydraulic conductivity) in the Hanford and Ringold 

654 formations (macroscale domain). Figure 13a shows a snapshot of tracer (river water) distribution 

655 at a selected time (t = 276 hr), and Figure 13b shows the corresponding time history of 

656 biogeochemical species at the hypothetical observation point 2M. The complex flow pattern 

657 interacts with the biogeochemical processes (mostly in the alluvial layer) to create transient 

658 species behaviors that differ significantly from the homogeneous scenarios (Case 1). Again, 

659 additional model testing and experimental data are needed to confirm the significance of these 

660 differences. However, our numerical experiments demonstrate that multiscale physical 

661 heterogeneity and complexity of the biogeochemical reaction model are key factors that can 

662 strongly impact predictions of hydrobiogeochemical processes in the GSIZ. 

663

664
665 (a)

666
667 (b)
668 Figure 13. Case 4: (a) instantaneous contour plot of tracer transport (t = 276 hr); (b) BGC species 
669 concentration time histories.
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671 5. Summary and Conclusions

672 We used a hybrid multiscale modeling approach to simulate hydrologic-biogeochemical 

673 processes (HBGC) in the groundwater-surface water interaction zone (GSIZ) at the US DOE 

674 Hanford 300A site. A 2D modeling domain [Song X. et al., 2017] was studied and decomposed 

675 into macroscale and microscale subdomains based on the spatial configuration of 

676 hydrogeological formations [Hou et al., 2016]. Enhanced biogeochemical activity associated 

677 with groundwater-river water exchange has been observed in a heterogeneous thin alluvial layer 

678 that is adjacent to the river. Resolution of these processes was enabled by utilizing a fine grid and 

679 complex biogeochemical model in the microscale domain, coupled to a coarser grid and simpler 

680 biogeochemical model in the macroscale domain. A hybrid multiscale method was implemented 

681 in a script-based high-performance computing workflow to loosely couple microscale and 

682 macroscale models, both implemented using the same reactive transport simulator, through 

683 upscaling/downscaling methods and file-based data exchange. 

684 The hybrid multiscale model algorithm was successfully validated by comparing results to a 

685 single-scale simulation with uniformly fine grid, homogeneous facies properties and uniform 

686 BGC models. Comparisons demonstrate that the hybrid multiscale simulation approach provides 

687 greater process fidelity than a coarsely-resolved single-scale model while maintaining higher 

688 computational efficiency than a finely-resolved single-scale model. A series of numerical 

689 experiments demonstrated potential impacts of incorporating microscale heterogeneity and 

690 complex biogeochemistry on model predictions; further testing and validation against 

691 experimental results are needed to confirm these outcomes. The use of stochastic simulation 

692 methods to represent heterogeneous properties also can enable future study of model 

693 uncertainties associated with microscale heterogeneity.

694 Our results demonstrate that hybrid multiscale models can be successfully implemented in field-

695 scale simulations with complex subsurface sediment structures and complicated HBGC 

696 processes. The 2D model system used here for method demonstration and testing does not 

697 require the computational efficiency of the multiscale approach, but the same method can easily 

698 be extended to 3D domains of much larger size for which this efficiency will be required. Further 

699 developments of the hybrid multiscale models, especially refinement of the coupling methods, 

700 are needed to ensure robustness and generalizability. Research is continuing in (1) development 
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701 of a generalized hybrid multiscale modeling framework using a universal coupling interface and 

702 (2) intercomparison and community benchmarking of alternative hybrid multiscale modeling 

703 approaches.
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