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This paper presents a novel hybrid multiscale simulation approach that couples
hydrologic-biogeochemical (HBGC) processes between two distinct length scales of
interest in the river-groundwater interaction zone. Our multiscale simulation approach is
tested and demonstrated on a two-dimensional (2D) domain that intersects the aquifer
and the adjacent Columbia River within the 300 Area of the U. S. Department of
Energy’s Hanford Site. This domain is characterized by temporally dynamic intrusion of
river water, aquifer contaminant plumes that interact with hydrologic exchange flows,
and complex biogeochemistry driven by mixed sources of organic carbon. Microbial
activity and biogeochemical reactions are focused in a relatively thin zone (1-2 m thick)
immediately underlying and adjacent to the river, comprising recent riverbed sediments
and referred to here as the alluvium layer. Within this layer, it has been hypothesized
that biogeochemical reactions are strongly impacted by flow variations associated with
permeability heterogeneity, and therefore may require unusually high spatial resolution
of processes and material properties within the alluvium (microscale domain), relative to
the full model domain (macroscale domain). Use of a fine grid over the full macroscale
domain would be computationally inefficient and perhaps infeasible for three-
dimensional domains of larger size. Additionally, the biogeochemistry within the
alluvium layer is more complex than that of the rest of the macroscale domain,
warranting use of different BGC reaction networks in the two domains. The current
multiscale approach loosely couples high-fidelity simulations in the microscale domain
with low-fidelity simulations in the macroscale domain.

In the hybrid multiscale modeling workflow demonstrated and tested here, simulations
at both scales employ the PFLOTRAN code. However, at the microscale, a grid with
finer resolution is employed together with a complex BGC reaction network, while at the
macroscale a simplified reaction network is utilized with a coarsely-resolved model grid.
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A scripted workflow using the Swift computational workflow environment is used to
execute, monitor and couple microscale and macroscale simulations. The coupling is
loose and is accomplished through iterated input-output file transfers. The approach,
previously demonstrated for coupling pore- and continuum-scale reactive transport
simulations, is applied here to couple multiple scales of continuum models over a field-
scale domain. We test the accuracy and efficiency of our hybrid multiscale simulation by
comparison with equivalent single-scale models, and then apply the multiscale model to
numerically investigate the potential impacts of small-scale heterogeneity and different
BGC reaction models.
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Abstract

The groundwater-surface water interaction zone (GSIZ) plays an important role in riverine and
watershed ecosystems as the exchange of waters of variable composition and temperature
(hydrologic exchange flows) stimulate microbial activity and associated biogeochemical
reactions. Variable temporal and spatial scales of hydrologic exchange flows, heterogeneity of
the subsurface environment, and complexity of biogeochemical reaction networks in the GSIZ
present challenges to incorporation of fundamental process representations and model
parameterization across a range of spatial scales (e.g. from pore-scale to field scale). This paper
presents a novel hybrid multiscale simulation approach that couples hydrologic-biogeochemical

(HBGC) processes between two distinct length scales of interest.

Our multiscale simulation approach is tested and demonstrated on a two-dimensional (2D)
domain that intersects the aquifer and the adjacent Columbia River within the 300 Area of the U.
S. Department of Energy’s Hanford Site. This domain is characterized by temporally dynamic
intrusion of river water, aquifer contaminant plumes that interact with hydrologic exchange
flows, and complex biogeochemistry driven by mixed sources of organic carbon. Microbial
activity and biogeochemical reactions are focused in a relatively thin zone (1-2 m thick)
immediately underlying and adjacent to the river, comprising recent riverbed sediments and
referred to here as the alluvium layer. Within this layer, it has been hypothesized that
biogeochemical reactions are strongly impacted by flow variations associated with permeability
heterogeneity, and therefore may require unusually high spatial resolution of processes and
material properties within the alluvium (microscale domain), relative to the full model domain
(macroscale domain). Use of a fine grid over the full macroscale domain would be
computationally inefficient and perhaps infeasible for three-dimensional domains of larger size.
Additionally, the biogeochemistry within the alluvium layer is more complex than that of the rest
of the macroscale domain, warranting use of different BGC reaction networks in the two
domains. One approach to address these challenges is the application of a hybrid multiscale
method that loosely couples high-fidelity simulations in the microscale domain with low-fidelity

simulations in the macroscale domain.

In the hybrid multiscale modeling workflow demonstrated and tested here, simulations at both

scales employ the PFLOTRAN code. However, at the microscale, a grid with finer resolution is
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employed together with a complex BGC reaction network, while at the macroscale a simplified
reaction network is utilized with a coarsely-resolved model grid. A scripted workflow using the
Swift computational workflow environment is used to execute, monitor and couple microscale
and macroscale simulations. The coupling is loose and is accomplished through iterated input-
output file transfers. The approach, previously demonstrated for coupling pore- and continuum-
scale reactive transport simulations, is applied here to couple multiple scales of continuum
models over a field-scale domain. We test the accuracy and efficiency of our hybrid multiscale
simulation by comparison with equivalent single-scale models, and then apply the multiscale
model to numerically investigate the potential impacts of small-scale heterogeneity and different

BGC reaction models.

Key words: hybrid multiscale simulation; loose coupling; groundwater-surface water interaction;

hydrologic-biogeochemical processes



169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

88

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

1. Introduction

The groundwater-surface water interaction zone (GSIZ), the region of the subsurface below or
adjacent to a river or stream into which surface water exchanges occur, has been recognized as
an ecologically and biogeochemically active zone that plays a critical role in river ecosystems
[Findlay, 1996; Brunke and Gonser, 1997; Smith, 2005; Larned et al., 2015]. It is also a key
element of the earth critical zone (land surface-soil-water-atmosphere interaction zone)
[http://criticalzone.org/national/]. Movement of surface water into and out of the GSIZ (referred
to as hydrologic exchange flows [Harvey and Gooseff, 2015]) leads to mixing of waters
containing variable levels of dissolved oxygen (DO), dissolved organic carbon (DOC), nutrients,
contaminants, and other solutes, and thereby gives rise to complex coupled hydrologic-
biogeochemical (HBGC) processes [Boano, 2014;Cardenas, 2015]. Among those processes,
microbially-mediated aerobic respiration of organic carbon, nitrification and denitrification are
considered to be important [Findlay,1995; Bencala, 2000; Pinay et al., 2015], and can be related
to other redox-sensitive reactions. Field experiments [Packman et al., 2004; Kessler et al., 2012;
Fox et al., 2014], column experiments with hyporheic zone sediments [Doussan et al., 1997; Gu
etal., 2007; Yan et al., 2016; Liu et al., 2017] and numerical modeling studies [Mayer et al.,
2002; Storey et al., 2003; Lautz and Siegel, 2006; Fleckenstein et al., 2010; Brunner et al., 2010;
Freietal., 2012; Gu et al., 2012; Janssen et al., 2012; Han et al., 2014; Krause et al., 2014; Chen
et al., 2015; Liggett et al., 2015] have all been useful in improving our understanding of solute
transport and biogeochemical turnover processes in the GSIZ. A number of studies have
successfully used numerical models to simulate results of field studies and laboratory
experiments [Boano et al., 2009; Fleckenstein et al., 2010; Frei et al., 2012; Gu et al., 2012;
Janssen et al,. 2012; Han et al., 2014; Krause et al., 2014; Trauth et al., 2013; Trauth et al.,2014],
by providing detailed understanding of the controlling mechanisms and dynamic distributions of
the processes within the GSIZ. However, three major issues pose challenges to field-scale
numerical modeling of HBGC processes in the GSIZ. Firstly, hydrogeological structures in the
GSIZ are often complex and exhibit strong physical and biogeochemical heterogeneity that can
greatly impact HBGC processes. Secondly, river discharge (and therefore river stage) can vary
over a range of temporal scales from hourly to multi-year, leading to dynamic hydrologic
exchange flows and complexities in microbiological responses that introduce computational

challenges. Finally, because of multiple scales of physical and biogeochemical heterogeneity in
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natural systems, HBGC processes in the GSIZ often require scale-dependent parameterizations
and/or process representations, and the interactions among processes at different scales are

poorly understood and difficult to predict.

In summary, coupled HBGC processes in the GSIZ exhibit multi-scale and multi-physical
features (different mathematical representations of physical, biological and chemical processes at
distinct scales) that motivate the development of multiscale modeling approaches. Single-scale
simulations at low fidelity are computationally efficient, but require high levels of
parameterization that may inadequately represent impacts of microscopic physical/chemical
processes and their linkages to macroscopic phenomena [Wood, 2009; Gray et al., 2013]. Single-
scale simulations at high fidelity may offer higher predictive potential, but at high computational
expense [Molins, 2015; Yang et al., 2016]. In recent years, hybrid multiscale methods [E et al.,
2003; Ingram et al., 2004; Mehmani and Balhoft, 2015] have begun to be applied to study of
flow and transport processes in subsurface systems with multiscale heterogeneity. Scheibe et al.
[2015a] provide a review of several classes of multiscale methods including hybrid multiscale
methods, with discussion of recent applications to subsurface flow and reactive transport
simulation. Conceptually, hybrid multiscale methods describe the flow and reactive transport
processes using different mathematical models and parameters at each scale, and define coupling
schemes between models at different scales (e.g., Tartakovsky and Scheibe, 2011) to ensure
process continuity and exchange model parameters (e.g. reaction rate), states, and boundary
conditions. It is obvious that the coupling scheme between scales is the core and major challenge
of this method. Key factors to be considered include the consistency between models, data
exchange and I/O control, and computational efficiency. A variety of different hybrid methods
have been developed and applied, such as the hybrid mortar method [Balhoff et al., 2008;
Mehmani and Balhoff, 2014; Tang et al., 2015], iterative boundary coupling [Battiato et al.,
2011], non-iterative coupling of Smoothed Particle Hydrodynamics (SPH, Tartakovsky et al.,
2010), and the hybrid multiscale finite volume (h-MsFV) method [Tomin and Lunati, 2013;
Tomin and Lunati, 2015; Barajas-Solano and Tartakovsky, 2016]. A hybrid loose coupling
method based on the heterogeneous multiscale method of E et al. [2003] was developed by our
team and previously applied to coupled pore- and Darcy-scale simulation of reactive transport
[Scheibe et al., 2015b, 2015c]. The loose coupling method employs user-specification of input

and output files passed to and from each at-scale simulator, together with functional descriptions

5
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(subdomain determination and upscaling/downscaling schemes) used for data exchange between
scales, in a Swift-controlled high-performance computing workflow environment [Wilde et al.,
2011]. The script-based multiscale modeling framework was tested using a mixing-controlled
reaction in a homogeneous porous media system [Scheibe et al., 2015b], in which microscale
(pore-scale) and macroscale (continuum-scale) reactive transport models were loosely coupled.
Most of the previous hydrogeologic applications of hybrid multiscale methods have been used to
couple flow and reactive transport from pore scale to continuum scale in synthetic porous media,
with limited focus on field-scale applications. In the current study, we apply the same loose-
coupling modeling framework to simulate field-scale groundwater-river water mixing and its

impacts on HBGC processes (carbon and nitrogen biogeochemistry) in the GSIZ.

The current study is based on a field research site at the 300 Area of the U. S. Department of
Energy’s (DOE) Hanford Site [Zachara et al., 2013]. The site is located in a semi-arid region and
is bordered by the Columbia River (Figure 1a). Interest in field-scale models applied over
domains hundreds of meters in size is motivated by the existence of contaminant plumes near the
river [Hammond and Lichtner, 2010]. The plumes are impacted by river water intrusion that can
extend significant distances inland [Johnson et al., 2015], and by biogeochemical processes that
are relatively high in the GSIZ [Moser et al., 2003]. Modeling coupled hydrologic and
biogeochemical processes in this context is challenging because 1) biogeochemical activity is
enhanced in a relatively thin zone of recent river alluvium (1-2 meters thick) immediately
underlying the river (referred to as the alluvial layer, Figure 1b) relative to the surrounding
aquifer materials; 2) hydrobiogeochemical processes may be strongly impacted by small-scale
physical and biogeochemical heterogeneity within the alluvial layer; and 3) the biogeochemical
reactions in the alluvial layer are more complex than those in the surrounding aquifer. Therefore,
a more sophisticated level of simulation may be required for accuracy in the thin alluvial layer
(higher resolution and complex biogeochemical reaction network) while maintaining a simpler
model in the rest of the model domain for computational efficiency. Hybrid multiscale
simulation offers a potential approach to meet these competing objectives. The loose coupling
approach used in our previous studies was adapted to this problem. In this application both
model scales (the alluvial layer — microscale domain -- and the rest of the system —macroscale
domain, Figure 1c) are simulated using the open-source PFLOTRAN flow and reactive transport

simulation code [Lichtner et al., 2013]. However, at the microscale a computational grid with
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finer resolution is employed together with a more complex biogeochemical reaction network,
while at the macroscale a simplified reaction network is utilized with a coarsely-resolved model
grid. Table 1 summarizes the attributes of the microscale and macroscale models. Customized
scripts were developed for coupling schemes and exchange of data between scales. The entire
multiscale simulation framework is executed in the Swift-based environment on high

performance computing clusters.

Hanford formation Alluvium River

Ringold formation

4 el
roundwater - River Water =
b I
i
s : -~ -

Figure 1. Schematic diagrams of the modeling domain: (a) Hanford 300A study site; (b) the GSIZ; (c) the
current 2D modeling domain.

Table 1. Multiscale modeling framework for flow and reactive transport

Scale\Model | Facies Formation Flow model BGC model Grid Solver

Macro-scale | Subsurface | Hanford+Ringold | Richards Guetal. Coarse PFLOTRAN
Equation 2012

Micro-scale | Riverine Alluvium Richards Song et al. Fine PFLOTRAN
Equation 2017
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The rest of the paper is organized as follows: Section 2 introduces the modeling domain and
setup (including hydrogeological properties assigned in the domain and the biogeochemical
reaction network models); Section 3 explains the hybrid multiscale simulation framework and its

execution; Section 4 presents results and discussion followed by concluding remarks.

2. Hanford 300A Site Model Configuration

The hybrid multiscale modeling framework simulates subsurface flow and reactive transport.
Subsurface flow is simulated on a 2D cross-sectional domain (Figure 2), with dynamic head
boundary conditions specified from observations of river water stage (river boundary) and
interpolation of observations from inland wells (aquifer boundary). Reactive transport
simulations are based on a combination of previously published (Gu et al., 2012) and newly
developed (Song H.-S., et al., 2017) biogeochemical network models describing aerobic
respiration and denitrification. The 2D computational domain is that same as that used by our
team to investigate the impact of dam operation and hydropeaking on HBGC processes (Song X.
et al., 2017). We use this 2D domain here for simplicity, and to facilitate comparisons with
independent simulation outputs (such as a single-scale simulation with uniformly fine grid
resolution). We recognize that this 2D system could be represented at high resolution over the
entire domain without undue computational demand, and therefore does not require the hybrid
multiscale approach. However, this test system allows us to develop, test and demonstrate our
approach prior to application to larger 3D domains for which the computational efficiency of the

hybrid method would be more advantageous.
2.1. Computational domain and setup

The 2D model domain is shown in Figure 2. The dimensions of the domain are 143.2 m by 20 m,
with the elevation ranging from 90 m to 110 m. A sloping bank represents the geometry of the
groundwater-river water interface. The modeling domain comprises three stratigraphic
formations with different hydrogeological properties [Williams et al., 2000; Williams et al.,
2008; Zachara et al., 2012]: alluvium layer (recent fluvial deposits with low permeability),
Hanford formation (gravels with high permeability) and Ringold formation (ancient semi-
consolidated fluvial deposits with low permeability). The boundaries and shapes of the

formations are based on previous field surveys and measurements at the extensively-studied
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300A site. As mentioned above, the alluvium is a thin layer (1-2 m thick) adjacent to the river,
but with disproportionate impact on flow and biogeochemical reactions. Both homogeneous and
heterogeneous property distributions are considered for the aquifer properties in the current
study. For homogeneous scenarios, hydraulic conductivity is assumed to be constant within each
formation with values as listed in Table 2. For heterogeneous scenarios, the spatial distributions
of the hydraulic conductivities in the modeling domain were defined using geostatistical models
explained in Section 2.3. Four sets of hypothetical well observation points (marked by red dots in

Figure 2) are located in the alluvium layer and the Hanford formation.

z
cs Hanford formation (Macro-) Allviimgicro-) _ R1ver
Ringold formation (Macro-) M
143.2m X

Figure 2. Computational domain (143.2 m x 20 m) and hydrostratigraphic formations: blue — Hanford
formation; yellow — Ringold formation; red — Alluvium; dark blue — River water. Four sets of observation
points are marked in red and located in the Hanford and Alluvium layers for comparison. In the current
multiscale modeling framework, the Hanford and Ringold layers are defined as macro-scale domains
while the thin Alluvium layer is defined as micro-scale domain.

Table 2. Parameters used in homogeneous scenarios

Parameters\Formations Hanford Ringold Alluvium
Porosity 0.2 0.43 0.43
Permeability 7.387¢-9 1.055e-12 3.864e-11

2.2. Geostatistical model of physical heterogeneity

Hydrogeological properties vary naturally through space as a result of the complex geologic
processes through which aquifers evolve. The heterogeneity of hydraulic conductivity (K) exerts
control on the movement of water and solutes in groundwater and through surface water-
groundwater interfaces. Hydraulic conductivity can vary by several orders of magnitude over

short distances. However, there is rarely sufficient data to deterministically prescribe these
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heterogeneous spatial distributions. Accordingly, it has become common practice to use
stochastic approaches to incorporate spatial heterogeneity in hydraulic properties into numerical
models of subsurface fluid flow and transport [e.g., Gelhar, 1986; Wagner and Gorelick, 1989;
Rubin, 2003]. Various geostatistical simulation approaches can be used to generate multiple
realizations of heterogeneous fields of hydraulic conductivity, which are treated in this context as
spatial random functions. Gaussian geostatistical simulation is commonly used for continuous
data; it assumes that the data, or a transformation of the data, is multivariate Gaussian and
stationary (i.e., the mean, variance, and spatial structure (semivariogram) is constant in the

spatial domain) [Rubin and Journel, 1991; Deutsch and Journel, 1998].

The Hanford, Ringold, and recent alluvium geological units are each associated with different
erosional and depositional processes and therefore exhibit different characteristics of
heterogeneity [Hou et al., 2017]. The statistical moments of hydraulic conductivity (K) for the
Hanford and Ringold formations are inferred based on previous reports focused on the Columbia
River and Hanford Reach [Newcomb and Brown, 1961; Newcomb et al., 1972; Cass et al., 1981;
Williams et al., 2000; Vermeul et al., 2003, 2009; Last et al., 2006; Thorne et al., 2006; Fritz and
Arntzen, 2007; Fritz et al., 2007; Peterson et al., 2008; Williams et al., 2008; Truex et al., 2009;
Bjornstad et al., 2010; USDOE, 2010; Zachara et al., 2012], and the spatial semivariogram model
parameters are trained based on hydraulic conductivity measurements from an array of boreholes
in Hanford 300A (an exponential semivariogram model is used here). The anisotropy angles are
determined by assuming the maximum correlation direction is parallel to the interfaces between
the formations. Insufficient data are available for the alluvium layer to determine the correlation
length parameter, which is assumed here to be no more than 1 m since the parameter is scale-
dependent [Goovaerts and Webster, 1994; Davis et al., 1997; Di Fedrico and Neuman, 1997,
Dobermann et al., 1997] and the thickness of the alluvial layer is typically 1-2 meters. Table 3

summarizes the geostatistical parameters that are used for the simulations of log;o(K(m/d)).
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Table 3. Geostatistical parameters for three geostratigraphic formations in the modeling domain.

Parameters\Formations Hanford Ringold Recent alluvium
Mean, log;o(m/d) 3.077 0.8787 1.978
Variance/Sill 0.71 0.41 0.55

Max correlation range (m) 9.4 9.4 1.0

Anisotropy ratio 0.1 0.1 0.1

Nugget 0 0 0

Anisotropy angle (radians) | -0.052 -0.052 0.157

Figure 3 shows two representative realizations (for the alluvium and the entire domain,

respectively) of the heterogeneous 2D field of log;(K) generated based on the above parameters

using the R geostatistical package geoR. To systematically evaluate the performance of the

numerical model and understand how spatial heterogeneity (K) may affect the flow and transport

processes in the study domain, multiple realizations are generated reflecting uncertainty in the

specific configuration of the K field while honoring the global distribution and spatial correlation

structure of the data. A small number of selected realizations are employed and tested in the

current multiscale modeling study. Further studies using additional realizations and sensitivity

analysis of parameters are continuing and will be reported in future manuscripts.
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Figure 3. Two example realizations of the 2-D heterogeneity field of log;y hydraulic conductivity (m/d).

2.3. Subsurface flow model

In PFLOTRAN, the groundwater model simulates variably saturated flows by solving the

Richards equation described as follows:

a(g—jpw-qp:Q (3.1)

where ¢ denotes the porosity for each stratigraphic formation, s is the saturation, p is the fluid
density, ¢ is the time, q is the Darcy velocity and Q is the source/sink term. For variably saturated
flow, the unsaturated soil hydraulic conductivities (Section 2.2) are accounted for using the van
Genuchten soil water retention model [van Genuchten, 1980]. The residual and saturated

moisture contents and the associated parameters are determined from in situ soil characteristics.

Hydrostatic heads are applied to the entire modeling domain as initial conditions. Transient
hydrostatic (variable head) boundary conditions are interpolated from observations and assigned
to the inland (West) and river (East) boundaries (Figure 4) over a period of 2500 hr (short-term)
for the current modeling application. Longer-term simulations with different objectives are
described in Song X. et al. [2017]. The river stage varies 2 m or less over the short-term study
period. The top and bottom boundaries of the domain are treated as no flow boundaries.

Recharge is not considered in the model.
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Figure 4. Boundary conditions: seasonal river stage calibrated from field measurement and monitored
data from wells.

A standard finite volume method is used for discretization in PFLOTRAN (see user manual for
details). The grid resolution of the domain is initially uniform (0.1 m x 0.05 m) then nested (finer
resolution in alluvium) for multiscale simulations, which will be further explained in Section 3.
A time step of 1 hr was selected to ensure numerical stability. All numerical simulations were
conducted using National Energy Research Scientific Computing Center (NERSC)

supercomputers (Edison and Cori).

2.4. Reactive transport and biogeochemical models

Solute transport in PFLOTRAN is represented by the advective-dispersive equation based on the

simulated transient flow field:

%+ V-(q,C,—pstDVC,) =0, (3.2)

where C; is the concentration of each species, D is the dispersion coefficient and Q,; is the
source/sink term. The dispersion coefficients are constant in all directions with an assumed value
of 1e-9 m?/s. The boundary conditions for the transport (inland and river) are based on averaged

sampling data from field measurements [Stegen et al., 2016].
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As introduced in Section 1, two different biogeochemical (BGC) models were employed
concurrently: one for the alluvial layer [Song H.-S. et al., 2017] and second simpler model for
the rest of the domain [Gu et al., 2012]. Both BGC models represent aerobic respiration and

denitrification but utilize different reaction networks and reaction rates/coefficients.

Gu et al. [2012] developed a general Monod-type model to describe aerobic respiration

CH,O0 + 0,—»CO,+ H,0 (3.3)
and denitrification

1.25CH,0 + NO, + H* —0.5N, +1.25C0, + 1.75H,0 (3.4)

The reactants and products being monitored in the simulations include H*, CO,, CH,0, O,, NOs
and N,. The source term for the reactive transport of the species is calculated as:

0. = Rq, (3.5)
where the reaction rates R; are calculated using multiple Monod kinetics. The above model was
previously used to study flow and reactive transport under hyporheic exchanges in the riparian
zone, and has been tested and proved to be informative. Therefore we have adopted this model

for use in the Hanford and Ringold formations, with the associated parameters as described in Gu

et al. [2012].

The model of Song H.-S. et al. [2017] is based on laboratory experiments using 300A alluvium
sediments, and thus more specifically represents the microscale domain in the current study. This
new model places a focus on the description of microbial regulation as a key component of
biogeochemical modeling. Microbes regulate metabolism by controlling enzyme levels and
activities so that, when alternative electron donors and acceptors are available in environment,
they often preferentially use one over another instead of using them all simultaneously. Detailed
regulatory modeling will require information on molecular details, which are largely unknown,
however, except for specific processes. Consequently, in most of the biogeochemical modeling
studies, microbial regulation has been accounted for using empirical inhibition kinetics (e.g.,
Trauth et al., 2014; Gu et al., 2007). The cybernetic modeling approach developed Ramkrishna
and coworkers provides an alternative way to account for microbial regulation [Ramkrishna and
Song, 2012]. The cybernetic approach views organisms as teleonomic systems that regulate
metabolism to promote a certain metabolic objective in a varying environment. This postulate

leads to analytic forms of regulation rules (called the cybernetic control laws), which can be
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derived from an optimal control theory [Young and Ramkrishna, 2007]. In a previous study,
Song and Liu [2015] demonstrated how the cybernetic modeling could be successfully applied to
model denitrifying organisms. In the extension to microbial communities, Song H.-S. et al.
[2017] provided two versions of the cybernetic model: genetically structured and simplified

models. Below, we provide a summary of the simplified cybernetic model.

Based on data from the laboratory column experiments [Li et al., 2016], the microbially
mediated biogeochemical processes are modeled by accounting for aerobic respiration and

denitrification as follows:

Oxidative respiration:

CH,O + O,—CO,+ H,0 (3.6)
NOj reduction to NO;:
CH,O + 2NO, - 2NO, +CO,+ H,O0 (3.7)
NO> reduction to N:
CH,O +4/3NO, + 4/3H" ->2/3N,+CO,+ 5/3H,0 (3.8)

In equation (3.8), multi-stage reduction from NO; to N, is lumped into a single reaction by
assuming relatively fast dynamics of nitrogen oxide intermediates such as NO and N,O.

Microbial biomass production can be written as follows:

CH,O + 1/5NH," >1/5C,H,0,N+ 3/5H,0 + 1/5H" (3.9)

Microbes obtain energy for growth and maintenance through aerobic or anaerobic respiration
depending on what electron acceptors are available in environment. To account for this coupling,
each of the energy-producing reactions, equations (3.6) — (3.8), is combined with biomass

synthesis reaction, equation (3.9), as follows:

CH,0+f,0, +%(1— £, )NH > £,CO, +§(1— £, )CHON (3.10)
CH20+2fN03_N03’ +§(1—fN03_ )NH," — 2fN03_N02’ +fN03_CO2 +%(1—fN03_ )C,H,O,N  (3.11)
CH20+§]‘NOZNO2 +%(1_fN02 )NH,” —> %fNOZN2 +fNo;C02 jté(l—fNO2 )C;H,O,N (3.12)

where f, , f, o0 and f, o are parameters that denote the fraction of energy-producing
pathway. Due to our focus on simulating carbon and nitrogen flows, " and H,0O are omitted in
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the equations above. Equations (3.10) - (3.12) share the same electron donor (CH,0), but involve
different electron acceptors (i.e., O, for aerobic respiration, NO;™ and NO, for anaerobic
respiration), thus representing three alternative pathways for the production of biomass

(CsH,O;N).

The reactants and products in the simulations include Cs;H;0,N, CO,, CH,0, O,, NOs, NOy, and
N>. Hereafter, we use DOC (dissolved organic carbon), DIC (dissolved inorganic carbon) and

BM (biomass) to denote CH,0, CO; and CsH;O,N for simplicity.

Dynamic mass balances of key variables in simulation can be written based on stoichiometric

equations (3.10) - (3.12) as follows:

_ [ -1 -1 -1 ]
[DOC] i . .
o) 0
[ 21 0 2f 0
[NOy] N "o,
di [NO; 1 |= 0 2/ vor 4y, /3 ro [(BM1 - (3.13)
1) 0 0 3,2 |
[DIC] f 0, f NOj f NO;
BMIT La- )05 a-1,0/5 a-1,,)/5]

where 7, , r_,and r, _ denote microbes’ carbon uptake rates through three reaction
3

0,
pathways (equation (3.10) - (3.12)), respectively. Finally, mass balances of BM and DOC are

modified to account for biomass degradation and the resulting impact on DOC concentration,

dBM] (1-f, 1= fror 1= fror

dt :£ 5 rOZ " 5 ‘ rNOs_ * 5 rNOZ‘ _kdeg [BM] (314)
d[DOC]

- (70, * 7y + 7 kg JLBM] (3.15)

where k

4 denotes the rate of biomass degradation [1/day].

Three biogeochemical reactions considered above can be modeled as being catalyzed by distinct

enzymes as follows:

_ kin _ kin _ kin
Yo, = €o,70, > VNO; - eNog rNog’ rNog - eNog rNog (3.16)
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where ¢, , e and e, denote the relative level of enzymes that catalyze aerobic respiration

NO_’: ’ 2

fp . . . kin kin kin
and two-step denitrification reactions, respectively, and o, s e and Tvoy  are

unregulated reaction rates that can be represented by Monod kinetics, i.e.,

rkin — k [DOC] [02]
% =Fo K, +DOCI K, +[0,]
iy LDOC] NG, ] (3.17)
Vo e K, yor TIDOCIK . +[NO;]
o _ [DOC] [NO; ]
YN K, +IDOCTK, | +[NO;]

While enzyme levels are determined by solving dynamic enzyme balance equations in the
original formulation of the cybernetic modeling, they can be determined through a direct linkage

to the cybernetic control laws [Young and Ramkrishna, 2007]:

Mo, Mo,
€0, = Tt P > Cno- T rr—— Cor = T i (3.18)
r,, +r._+r. oor, +r._+ro :or, tr._ +r
> NO; NO; 0, NO; NO; 0, NO; NO;

The above equation implies that microbes control the synthesis of enzymes in proportion to their
relative contribution to a chosen objective (i.e., the carbon uptake rate). This formulation enables
the model to simulate the dynamic shift among three electron acceptors (i.e., O,, NO3~ and NOy")

without having to rely on empirical inhibitive kinetics.

Key parameters of denitrification, including fN o fN o kN o and kN o and kdeg , are

determined through model fit to the batch denitrification data [Li et al., 2016], which was
collected using the sediment obtained from the Columbia River hyporheic zone at the US DOE’s
Hanford Site. More details of the lab sediment experiments are reported in previous studies [Li et
al., 2016]. Literature data are used for the half saturation constants associated with DIC (i.e.,

K 4.No~ and K JNO ) and electron acceptors (i.e., Ka’ Yo,

and Ka’ N 02,) [Rittmann and McCarty,

2001; Yan S. et al., 2016]. Parameters associated with oxidative respiration are determined by
assuming the relation to anaerobic respiration, i.e., 1) oxidative respiration is energetically more

favorable than NO;~ reduction (i.e., f, = f,, /3, ko2 =3k ) and 2) half saturation constants

are the same (i.e., K, , =K JNO- Ko =K, , o ). This parameter setting leads to the sequential
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utilization of three alternative electron acceptors, i.e., O,, NO;s, NO,, and in batch reactor
simulation. Model parameters used for simulations here are summarized in Table 4 and are based
on fitting model results to the experimental data, which shows good agreement [Song H.-S. et al.,

2017].

Table 4. Parameter values of the biogeochemical model used to simulate the interaction between
environment and microbial growth through aerobic respiration and denitrification.

Aerobi - _

Parameter e.ro ?C NO; reduction | NO, reduction
respiration

Fractional of energy-producing 0217 —0.65 —0.99
pathway [-] J; 0, ' /, NO5 / NO;
Reaction rate constant ko _84.78 k = 2826 Kk =2328
[mmol/mmol BM/day] 2 N3 N,
Half saturation constant of electron _ _ _
donor [mM] Kio, = 025 | &, NO; 0.25 Kd,NO; 0.25
Half saturation constant of electron K . =0.001 K 0001 | K —0.004
acceptor [mM] a0 a,NO; a,NO;
Biomass degradation rate [1/day] kdeg =0.242

3. Hybrid Multiscale Modeling Approach
3.1. 4 loose-coupling framework

The hybrid multiscale modeling framework follows the loose-coupling method presented in
Scheibe et al. [2015b; 2015¢]. In the current framework, the computational domain is divided
into hierarchical macroscale and microscale subdomains that are simulated using different
models. The at-scale simulations are conducted sequentially and loosely-coupled by customized
scripts. In the current study, as shown in Figure 2 and Table 1, the microscale subdomain
(alluvial layer) is simulated using the Richards equation with fine grid resolution and the
cybernetic BGC model [Song H.-S. et al., 2017], and the macro-scale subdomain including the
Hanford and Ringold formations are simulated using the Richards equation with coarse grid
resolution and the BGC model developed by Gu et al. [2012]. The concept of the loose-coupling
method is to use script-based functional operators to perform numerical upscaling/downscaling,

exchange data (file based) and convert between input and output files from at-scale simulators
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where the two domains overlap. Advantages of the loose-coupling method include (1) it does not
require modification of the at-scale simulators and (2) ease of programming. Potential
disadvantages are 1) numerical errors or instabilities introduced by the sequential coupling, and
2) inefficiencies introduced by passing data through I/O files rather than direct message passing.
The workflow of the loose-coupling framework for the current application is presented in Figure

5, which includes the following steps:

1.  The macroscale simulator (PFLOTRAN) is applied over the full computational domain.
Flow and reactive transport simulation using BGC model by Gu et al. [2012] are
executed for a specified period of time. Configuration files describing the initial model
configuration (initial condition, boundary condition and parameters) are provided to
start the simulation at the beginning of the workflow.

2. A serial python script —Lifting Operator (LO) —executes the downscaling step (interface
coupling and model updating) and constructs microscale simulator (PFLOTRAN) input
files. The LO script provides algorithms to reconstruct initial conditions for micro-scale
subdomains based on macro-scale quantities from Step 1. Since the size of the micro-
scale subdomain is fixed in the current application, no adaptivity control (to
dynamically determine the micro-scale subdomains) is needed.

3. The microscale simulator (PFLOTRAN) is then applied only to the alluvial layer
subdomain with the cybernetic BGC model [Song H.-S. et al., 2017] and finer grids, and
is executed for the same period of time as the previous macroscale simulation.

4. A serial python script — Restriction Operator (RO) —performs numerical upscaling
(interface coupling and averaging) and constructs macroscale input files for the next
time step based on outputs from the microscale simulations.

5. Repeat the procedure until the entire simulation period is completed.
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Figure 5. Swift-managed flowchart and execution for the current application

3.2. Coupling strategies

The challenge in all hybrid methods based on physical domain decomposition is how to ensure
consistency between the macroscale and microscale subdomains [Scheibe et al., 2015a;
Mehmani and Balhoff 2015]. For flow and reactive transport problems, it is critical to ensure
consistency of flow and concentrations of multiple chemical species and their flux at the
interface (in this case, the bottom boundary of the alluvium layer). There are two critical issues
for coupling in the current application: (1) multi-grid matching and (2) consistency of the BGC
models. Since the heterogeneity and unique HBGC processes in the alluvium (microscale
subdomain) require simulations with higher resolution, we refine the grids in the microscale
subdomain relative to the coarser grids used in the macroscale subdomain. Different ratios of
grid resolutions (macro- to micro-) were tested: 1:1, 1:0.5 and 1:0.25. To match the values

(velocity, concentration and their fluxes) on the nodes of the nested grids, the loose-coupling
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method uses an interpolation/extrapolation scheme for the dependent variable along the interface.
From macro-scale to micro-scale subdomain, the nodal values of the coarse grid are distributed
evenly to the fine nodes. On the other hand, the nodal values simulated on the fine grids are
averaged to coarse grids. A prediction-correction procedure is enforced in each time step. For
example, for flow simulations, at the beginning of each time step, we use the velocity from the
last time step at the interface. Thereafter the flow and transport equations in the macro-scale
subdomain can be solved. Then we pass the interfacial pressure to the micro-scale subdomain,
and solve the governing equations to correct the micro-scale velocity. We repeat this procedure
iteratively until convergence. The same procedure is conducted for transport simulations. The
two BGC models presented in Section 2.4 are different in terms of species and reaction rates. In
Gu et al. [2012], the species (reactants and products) include H*, CO,, CH,0, O, NOs and N,.
In the cybernetic model [Song et al., 2017], the reactants and products being monitored in the
simulations include CsH;O,N, CO,, CH,0, O,, NH,", NOs, NOy, and N,. The number of
reactions and species are slightly different in two models. For variable data exchange, we only
pass those that co-exist in both models. The reaction rates are calculated in each time step, then

passed and updated between scales.

3.3. Simulation cases

To validate and apply the above Swift-managed workflow to the 2D modeling domain, we set up
a series of simulation cases using increasingly complex scenarios. A list of the cases is

summarized in Table 5.

1. Case 1 is designed to validate that the multiscale coupling algorithm is working
correctly. In this case, we compare results from the hybrid multiscale simulation
(including multiple nested grid ratios) with equivalent single-scale (single-domain)
simulations using a uniform grid resolution, homogeneous properties and one BGC
model (Gu et al., 2012). Since both the multiscale and single-scale models use the same
property distributions and BGC model, the only difference is the multiscale coupling
and subgrid resolution, and all solutions should be comparable.

2. Following successful validation, Case 2 simulations are designed to evaluate the

potential impacts of sub-grid heterogeneity within the alluvial layer only. We apply
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several realizations of the statistical heterogeneity model (Section 2.2) to the alluvium
only (microscale subdomain) and compare with the homogeneous case (Case 1).

3. Case 3 is designed to evaluate the potential impacts of applying an alternative and more
complex BGC model in the alluvium layer. The BGC model of Song H.-S. et al. [2017]
is applied in the alluvium while maintaining use of the Gu et al. [2012] BGC model in
the larger domain. Again, results are compared to Case 1 which uses the Gu et al. [2012]
model everywhere.

4. Case 4 applies the full combination of nested multiscale grids, heterogeneities in all
formations, and different BGC model in the alluvial layer. This reflects the full level of
complexity that is enabled by the hybrid multiscale coupling, and the results are
evaluated to determine whether representing this level of complexity could reveal

different behaviors from the simpler cases above.

Table 5. A list of simulation cases

Scale\Case Case 1 Case 2 Case 3 Case 4
Macro-scale | Coarse/fine grid | Coarse grid Coarse grid Coarse grid
Homogeneous Homogeneous | Homogeneous | Homogeneous

BGC model 1 BGCmodel1l | BGCmodell | BGC model 1

Micro-scale | Coarse/fine grid | Fine grid Fine grid Fine grid
Homogeneous Heterogeneous | Homogeneous | Heterogeneous

BGC model 1 BGC model 1 | BGC model 2 | BGC model 2

4. Results
4.1. Case 1: Validation

The hybrid multiscale model was applied to simulate HBGC processes in the 2D domain over a
2500 hr time period. The instantaneous velocity (with streamlines) and reaction product (V)
species concentration contour plots at a selected time (384 hours) are shown in Figure 6.

Intrusion of river water into the various subsurface formations is clearly evident. The
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geostratigraphic formations strongly impact the flow paths, with the fastest flow paths occurring
in the high-permeability Hanford formation. The purpose of Case 1 is to validate the multiscale
coupling methodology by comparing results to equivalent single-scale simulations. For this case,
a uniform fine (high-resolution 0.05 m horizontal x 0.025 m vertical) grid was used for the

single-scale model, whereas the multiscale model used variable nested grids.

Velocity Magnitude .l ﬂ.l

Time = 384 hr Velocity Magnitude: 0 04081216 2

(a)

N2 i
Concentration _ [ L ‘ -

Time = 384 hr 1E-Q7  5.2E-07 94E-07 1.36E-06 1.78E-06 2.2E-06

Figure 6. Instantaneous contour plots of (a) velocity magnitude, (b) concentrations of N, and (c)
tracer.

Figures 7-9 present the comparisons from different perspectives. Instantaneous contour plots of
velocity magnitude are shown in Figure 7, which shows minimal differences between the single-
scale and multi-scale simulations. To further quantify the results, velocity distributions
(histograms) are shown in Figure 8 for a series of simulations with different computational grids
(Figure 8). The hybrid multiscale result with a uniformly fine grid is indistinguishable from that
of the equivalent single-scale model, indicating minimal error introduced by the coupling
process. Employment of a coarse (0.1 m horizontal x 0.05 m vertical) grid everywhere introduces

errors of up to 6%. The nested grid used in the multiscale simulation (coarse-to-fine ratio equals
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to 0.25) provides results that are more accurate than the coarse grid, but still have small errors
relative to the uniform fine grid. This is expected from the loosely-coupled multiscale method,
and represents the tradeoff between accuracy and computational demand. In cases where a
uniform fine grid is not computationally feasible, the multiscale method provides higher
accuracy than a uniform coarse grid, but with a relatively modest increase in computational
demand. To evaluate impacts on predictions of biogeochemical reactions, multiple species
concentration histories at one of the hypothetical observation locations (Well 2M in the alluvium
in Figure 2) are presented in Figure 9. Again the results obtained from the single- and multi-scale
simulations (based on uniform fine grids and BGC model from Gu et al. 2012) are

indistinguishable, which validates the loose coupling of reactive transport.

[ [’

Velocity Magnitude: 0 .02 0.04 0.06 0.08 0.1

E—__,

(@
————————
(b)

Figure 7. Comparisons of velocity magnitude contour plots (t = 384 hr): (a) single-scale
simulation using uniform fine grids; (b) hybrid multi-scale simulation using nested grids.
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Figure 8. Comparisons of velocity histograms between single- and multi-scale models.
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Figure 9. Comparisons of species concentration time histories (using the same setup) between (a)
single-scale model and (b) hybrid multi-scale model.

Finally, we present the results of computing cost in terms of CPU hrs (Table 5). For uniform
(fine or coarse) grids, the hybrid simulations use more CPU time than the corresponding single-
scale models due to computational overhead associated with model coupling and data/file
exchange. However, for the nested grid in multiscale hybrid simulations, the computing cost was
significantly reduced relative to single-scale simulations on uniform fine grids. These results
demonstrate that the loosely-coupled hybrid multiscale simulation method is a feasible approach
for investigation of the impacts of detailed processes and property distributions within

microscale subdomains.
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4.2. Case 2: Impact of micro-scale heterogeneity

Having established confidence in the numerical coupling algorithm based on Case 1
comparisons, we now apply our hybrid multiscale model approach to more complex cases. We
consider these additional cases as numerical experiments to evaluate the potential impact of
small-scale heterogeneity and complex biogeochemistry within the alluvial layer. Case 2 tests the
potential impacts of permeability heterogeneity in the alluvial layer by replacing the
homogeneous properties used in Case 1 with heterogeneous distributions (using a
geostatistically-generated realization). Figure 10 shows the altered flow field in the alluvium and
associated velocity profiles along a selected transect as shown in the figure. Comparisons
between homogeneous and heterogeneous cases are provided along the transect (red dashed
line). While the overall results are similar for all cases, variable velocities are observed in the
alluvium layer for the multiscale case, indicating that the microscale heterogeneity impacts flow
fields within the microscale subdomain but not in the macroscale domain. Figure 11 shows the
time history of the considered biogeochemical species at hypothetical observation location 2M
(Figure 2). In comparison to Figure 9 (Case 1), the overall trends are similar but there are some
significant differences, suggesting that physical heterogeneity in the alluvium alone can impact

the system biogeochemistry through formation of preferential flow paths and low-flow zones.

(a)
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4.3.  Case 3: Impact of alternative BGC model in the alluvium

In Case 3, we employ the more complex biogeochemical model of Song H.-S. et al. [2017],
developed specifically for alluvial sediments, in the microscale subdomain while keeping the
more general model of Gu et al. [2012] used in the macro-scale subdomain. Since there are two
pathways in the model by Song H.-S. et al. [2017], there exist additional species and
intermediate products that are not simulated in the macroscale domain. This inconsistency
induces some potential numerical instability in the loose coupling algorithm. For comparison
purposes, we consider only those species simulated in both biogeochemical models. Figure 12
again shows the time histories of the species concentrations at hypothetical observation point
2M. Comparison to Case 1 results (Figure 9) indicate significantly lower simulated
concentrations of N, (reaction product) among other differences, which suggests that the
application of a more complex reaction network within the biogeochemically active alluvial layer
can lead to significant differences in model prediction. However, since we do not have direct
observational information for comparison, we cannot confidently state that this prediction is in
fact better. What is clear is that the multiscale hybrid approach enables the use of more complex
representations of biogeochemistry (Case 3) and physical heterogeneity (Case 2) which could
have significant impacts on model predictions. Additional model testing and experimental data

are needed to confirm the significance of these differences.
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Figure 12. Impact of using an alternative biogeochemistry model in the alluvium; compare to
Figure 9.
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4.4. Case 4: A complete simulation

This final case combines the complexities of Cases 2 and 3, and in addition incorporates a
realization of physical heterogeneity (hydraulic conductivity) in the Hanford and Ringold
formations (macroscale domain). Figure 13a shows a snapshot of tracer (river water) distribution
at a selected time (t =276 hr), and Figure 13b shows the corresponding time history of
biogeochemical species at the hypothetical observation point 2M. The complex flow pattern
interacts with the biogeochemical processes (mostly in the alluvial layer) to create transient
species behaviors that differ significantly from the homogeneous scenarios (Case 1). Again,
additional model testing and experimental data are needed to confirm the significance of these
differences. However, our numerical experiments demonstrate that multiscale physical

heterogeneity and complexity of the biogeochemical reaction model are key factors that can

strongly impact predictions of hydrobiogeochemical processes in the GSIZ.
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Figure 13. Case 4: (a) instantaneous contour plot of tracer transport (t = 276 hr); (b) BGC species
concentration time histories.
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5. Summary and Conclusions

We used a hybrid multiscale modeling approach to simulate hydrologic-biogeochemical
processes (HBGC) in the groundwater-surface water interaction zone (GSIZ) at the US DOE
Hanford 300A site. A 2D modeling domain [Song X. et al., 2017] was studied and decomposed
into macroscale and microscale subdomains based on the spatial configuration of
hydrogeological formations [Hou et al., 2016]. Enhanced biogeochemical activity associated
with groundwater-river water exchange has been observed in a heterogeneous thin alluvial layer
that is adjacent to the river. Resolution of these processes was enabled by utilizing a fine grid and
complex biogeochemical model in the microscale domain, coupled to a coarser grid and simpler
biogeochemical model in the macroscale domain. A hybrid multiscale method was implemented
in a script-based high-performance computing workflow to loosely couple microscale and
macroscale models, both implemented using the same reactive transport simulator, through

upscaling/downscaling methods and file-based data exchange.

The hybrid multiscale model algorithm was successfully validated by comparing results to a
single-scale simulation with uniformly fine grid, homogeneous facies properties and uniform
BGC models. Comparisons demonstrate that the hybrid multiscale simulation approach provides
greater process fidelity than a coarsely-resolved single-scale model while maintaining higher
computational efficiency than a finely-resolved single-scale model. A series of numerical
experiments demonstrated potential impacts of incorporating microscale heterogeneity and
complex biogeochemistry on model predictions; further testing and validation against
experimental results are needed to confirm these outcomes. The use of stochastic simulation
methods to represent heterogeneous properties also can enable future study of model

uncertainties associated with microscale heterogeneity.

Our results demonstrate that hybrid multiscale models can be successfully implemented in field-
scale simulations with complex subsurface sediment structures and complicated HBGC
processes. The 2D model system used here for method demonstration and testing does not
require the computational efficiency of the multiscale approach, but the same method can easily
be extended to 3D domains of much larger size for which this efficiency will be required. Further
developments of the hybrid multiscale models, especially refinement of the coupling methods,

are needed to ensure robustness and generalizability. Research is continuing in (1) development
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of a generalized hybrid multiscale modeling framework using a universal coupling interface and
(2) intercomparison and community benchmarking of alternative hybrid multiscale modeling

approaches.
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