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Abstract

In this study, we employ a numerical model to compare the performance of a number of

wave energy converter control strategies. The controllers selected for evaluation span a

wide range in their requirements for implementation. Each control strategy is evaluated

using a single numerical model with a set of sea states to represent a deployment site

off the coast of Newport, OR. A number of metrics, ranging from power absorption to

kinematics, are employed to provide a comparison of each control strategy’s performance

that accounts for both relative benefits and costs. The results show a wide range of

performances from the different controllers and highlight the need for a holistic design

approach which considers control design as a parallel component within the larger process

WEC design.

Keywords: wave energy, control, dynamics

1. Introduction1

The energy contained in ocean waves is distributed across a wide range of frequen-2

cies. In order to produce electricity efficiently, wave energy converters (WECs) must3

be designed to capture a large share of the energy from a broad range of ocean wave4

frequencies. Additionally, the majority of energy in ocean waves exists at relatively low5

frequencies, which are most easily accessed by relatively large WECs. To limit the size,6

and therefore cost, of a WEC and to increase energy absorption over a broad range of7

frequencies, an increasing body of research has shown power take-off (PTO) control to8

be an attractive path.9
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The dynamic system of a WEC can be considered as a series of subsystems. A hy-10

drodynamic/hydrostatic process transfers energy from the ocean to the WEC device;11

a mechanical process transfers energy from the moving bodies of the WEC to PTO; a12

hydraulic/magnetic/electrical process transfers the mechanical energy to electricity. Con-13

sidering the wide range of WECs currently under design, this coupled system can take14

many forms. While this description vastly over simplifies the various physical processes15

involved, it does begin to emphasize the multi-layer nature of the system of interest.16

The hydrodynamic/hydrostatic and mechanical properties of WEC can produce a cer-17

tain frequency response; however, when coupled with input from a PTO, which can be18

understood to act as some combination of a spring, a damper, and a mass, a new fre-19

quency response for the overall device is achieved. It is on this basis that specific control20

strategies for WEC PTOs can influence energy absorption.21

A large range of strategies have been proposed and studied for the control of a WEC22

PTO. Budal and Falnes considered both reactive control and latching in the early 1970s23

and carried out much of the early development of latching-type ‘phase control’ through24

both theory and wave tank experimentation [1]. An independent early application of25

this approach was recorded in the U.S. by Dedger Jones [2]. Latching control was soon26

being studied for WEC control by a number of other groups around the world (see, e.g.,27

[3, 4, 5, 6]). Scruggs et al. applied a linear quadratic Gaussian (LQG) control, which28

incorporates spectrally-dependent gain parameters [7]. Many studies in the past two29

decades have also considered model predictive control (MPC) for WECs [8, 9]. Hals et30

al. studied a series of control strategies and provided some comparison of these options31

[10].32

This study presents eight different control strategies for WEC control. Individual con-33

troller implementations are presented and discussed. These strategies are implemented34

for a single case study WEC device, and are used to run a series of numerical simulations.35

From these simulations, we compare results to better understand the relative performance36

of these different control strategies, in addition to the PTO characteristics required to37

implement each of the algorithm. We conclude the study with some discussion on the38

various trade-offs between these different approaches.39
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Figure 1: Test-bed WEC device used for control comparison.

2. Background40

2.1. Study device41

A test-bed WEC device was designed with the purpose of evaluating system identi-42

fication, modeling, and control approaches [11]. Figure 1 shows an illustration of this43

device, highlighting the waterline, draft and key dimensions. This device is designed44

to allow motion in 3 degrees-of-freedom (DOF), however, for this study only motion in45

heave is considered. A list of the relevant physical parameters for this WEC are listed46

in Table 1. This device is considered to be roughly 1/20th-scale when compared with47

current designs for grid-scale systems.48

2.2. Numerical model49

A model for the heave velocity of the device introduced in Section 2.1 has been50

developed using the formulation of Cummins [12]. In the time domain, the heave velocity51
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Table 1: Model-scale WEC physical parameters.

Parameter Value

Rigid-body mass (float & slider), m (kg) 858

Displaced volume, ∀ (m3) 0.858

Float radius, r (m) 0.88

Float draft, T (m) 0.53

Water density, ρ (kg/m3) 1000

can be described by the Volterra integro-differential equation [13]52

(m+A∞)z̈ +

∫ t

0

kr(t− λ)ż (λ) dλ+ bv ż + khsz = fe(t) + fu(t), (1)

where z is the vertical position of the device. The rigid-body and hydrodynamic infinite-53

frequency added mass are represented by m and A∞, respectively. Radiation damp-54

ing and frequency-dependent added mass are incorporated via the impulse response55

function kr. The linear product bv ż accounts for viscous damping effects. The hy-56

drostatic/gravitational spring contribution is given by khs.57

khs = ρgAwp (2)

Here, Awp is the area of the water plane. The density of the water and gravitational58

constant are ρ and g, respectively.59

The force applied by the PTO is represented by fu, which is dependent on the control60

strategy imposed. Wave excitation forces are represented by fe. By working in the61

frequency domain, these can be obtained for some complex wave spectrum by taking the62

complex product of the wave input, ζ(ω), and the device’s excitation frequency response63

function (FRF), H(ω), as:64

Fe(ω) = H(ω)ζ(ω). (3)

Thus, Fe(ω) is the complex excitation, which can be used to obtain a the time history of65

excitation, fe(t), via the inverse Fourier transform.66
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The convolution term in (1) can be replaced by fitting a parametric model to the67

radiation FRF (see, e.g., [14, 15]). In state-space form, this can be written as68

ẋr = Arxr +Br ż(t)

µ̌(t) = Crxr,
(4)

Here, Ar, Br, and Cr are the radiation state, input and output matrices, respectively.69

Similarly, radiation states are stored via xr. The matrices Ar, Br, and Cr can be tuned to70

approximate the non-parametric radiation FRF in either the time or frequency domain.71

Applying (4) along with some minor manipulations, we can rewrite (1) as system of first72

order ordinary differential equations (ODEs).73

ż = v

(m+A∞)v̇ = −Crxr − bvv − khsz + fe(t) + fu(t)

ẋr = Arxr +Br ż(t)

(5)

Using (5), we can rewrite the dynamic equation for the vertical velocity of the WEC74

as a single state-space model.75

ẋc(t) = Acxc +Bc(uc(t) + vc(t))

yc(t) = Ccxc(t)
(6)

Here, uc(t) and vc(t) are control input and excitation, respectively. The state variable76

xc and the output variable yc are defined, respectively, as77

xc =


z

v

xr

 ∈ R2+n yc =

z
v

 ∈ R2. (7)

The matrices Ac, Bc and Cc are78

Ac =


0 1 0

−kh
m+A∞

−bv
m+A∞

−1
m+A∞

Cr

0 Br Ar

 ∈ R(n+2)×(n+2) (8)
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Figure 2: Added mass and radiation damping frequency response functions for WEC device; WAMIT

in solid lines (-), experiment in dashed lines (- -).

Bc =


0

1
m+A∞

0

 ∈ R(n+2)×1, Cc =

1 0 0

0 1 0

 ∈ R2×(n+2). (9)

An initial version of this model employed coefficients obtained from the boundary79

element (BEM) tool WAMIT [16]. Data collected during experimental wave tank testing80

showed good agreement with this model [17]. The added mass and radiation damping81

FRFs from both of these cases (numerical and experimental) are shown in Figure 2. The82

FRFs from WAMIT are shown with solid lines; the FRFs based on empirical testing and83

system identification are shown with dashed lines.84

2.3. Study environment85

A deployment climate of Newport, OR is considered for the comparisons performed86

in this study. A joint probability distribution (JPD) is used to assign probabilities of87

a finite set of sea states. Using a k-means clustering approach (see, e.g., [18]), a set of88

17 Bretschneider sea states were selected to represent the deployment climate. All 1789

of the sea states considered for this study are shown in Figure 3 and listed in Table 2.90
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Figure 3: Numbering of the sea state. NOTE: sea states 1, 2, and 3 all fall in the same bin.

Here, the probability distribution of the Newport, OR climate is shown via shading in the91

background and the indexing number of each sea state identified in Table 2 is associated92

with the corresponding bin in the JPD.93

3. Control strategies94

The main purpose of a controller is to alter the dynamic behavior of a given system (in95

this case a WEC) in order to pursue a specific objective (e.g., maximize power absorption,96

smooth power output, limit loads). The majority of power produced by WEC devices97

occurs during resonant absorption, when the excitation force is in phase with device98

velocity. Thus, the control strategies considered in this study, which foremost consider99

maximizing power absorption, generally attempt to alter the system dynamics in order100

to achieve resonance.101

Figure 4 depicts a generalized structure of a control system applied, in this particular102

case, to a WEC (shown as G(s) in Figure 4). In general, the architecture of a control103

system is composed of two main blocks: feedback (FB) and feedforward (FF). The name104

feedback derives from the fact that an output signal (or a set of output signals), marked105

as y in Figure 4, is measured and fed back to the control system which continuously106

reacts, based on the current and past measurements, according to the control objective.107

Conversely, a controller implemented in feedforward mode generates a control signal108
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Figure 4: Basic feedforward/feedback controller structure [20].

based on a reference (r in Figure 4) which can be pre-determined or calculated from109

some quantities not related to the state of the system (e.g., incident wave elevation).110

Pure feedforward controllers do not react to the instantaneous state of the system (no111

signal is fed back to the controller). In practice, it is common for control systems to112

be built by combining both feedback and feedforward. The design of the control system113

consists of developing the control functions (FF and FB), by using the controller model,114

with respect to some desired performance objective. Figure 4 also depicts a pre-filter115

block, denoted by Href , that can be used to improve the properties of the closed-loop116

system, such as stability margins and sensitivity to noise and parameter uncertainty117

(modeling errors). This type of structure is generally known as a two degrees of freedom118

controller [19].119

A number of control strategies considered here employ optimization algorithms. Op-120

timization can be used in both the design of a control strategy (i.e., to determine some121

optimal gain factors) and/or in the during execution to determine the control signal. Lin-122

ear quadratic control (LQ; Section 3.6) and a proportional-derivative version of complex123

conjugate Control (PDC3; Section 3.7) employ optimization in control design. Model pre-124

dictive control (MPC; Section 3.3), shape based control (SB; Section 3.5), and dynamic125

programming (DP; Section 3.3) employ optimization during execution to determine the126

control signal. This process often follows a receding horizon structure, as depicted in127
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Figure 5: Basic structure for “receding horizon.”

Figure 5. Here, a control decision is computed based on predictions over a some finite128

future time. The current system state is measured and used as initial conditions at each129

time step in the controller computation. In some cases (such as DP and SB) the compu-130

tational resources required for optimization can limit real-time implementation. While131

these methods may not be implemented for real-time execution, they can still provide132

valuable insights for the control design process.133

The following sections describe eight different control strategies which are considered134

and implemented here for the control of the WEC introduced in Section 2.1. Some of135

the strategies require reactive power, while others do not. Similarly, certain strategies136

are better suited than others to incorporating constraints. As shown in Table 3, the137

strategies selected here span the design space. Note that in some cases, a given control138

strategy may be implemented in a number a ways; the categorization in Table 3 reflects139

the most standard implementation of each strategy and that which is considered in the140

present study. For example, while Table 3 records the possibility of including constraints141

for a number of control strategies, no constraints were included in this study except for142

when necessary to enforce stability. Similarly, Table 3 shows that MPC, DP, SB require143

reactive power. However, since constraints can be introduced to these strategies, it is144

possible to limit the power to be one-side (i.e., no reactive power). The computational145

expense presented in Table 3 was determined based on the simulations run for this study.146

Another factor which should be considered is that the different strategies are inherently147

at different levels of implementation. For example, DP is considered primarily as a design148

tool, and due to high computational expense would be very challenging to implement on149

a real-time system. At the other end of the spectrum, LQ is readily implementable on a150

real-time system and even uses a simple model of PTO efficiency.151
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3.1. Resistive control152

In resistive damping control, a constant of proportionality between the force and153

velocity determines the resistance offered, which is also the power absorption rate. Net154

power capture from a wave-excited oscillating body is a resistive process. Therefore, this155

control strategy is a simple proportional feedback.156

fu = −bPTO v (10)

Here, the constant damping factor is bPTO and serves as the proportional gain. Optimal157

values of bPTO can be determined analytically (assuming potential flow) for monochro-158

matic waves (see, e.g., [21]). For irregular sea states, numerical optimization can be159

applied.160

3.2. Complex conjugate control (CCC)161

As resistive control is considered somewhat of a lower bounding case for gross WEC162

energy absorption, complex conjugate control (CCC) is considered to represent an upper163

bound. Working in the frequency domain, we can rewrite (1) as164

(
iω (m+A(ω)) +B(ω) + bv +

khs
iω

)
V (ω) = Fe(ω) + Fu(ω). (11)

From the left hand side of (11), we can define the intrinsic impedance (see, e.g., [21]) for165

the WEC as166

Zi(ω) = iω (m+A(ω)) +B(ω) + bv +
khs
iω

, (12)

such that167

Zi(ω)V (ω) = Fe(ω) + Fu(ω)

= Fext(ω).
(13)

Solving for the complex velocity V (ω), we have168

V (ω) =
Fext(ω)

Zi(ω)
=

Fext(ω)(
iω (m+A(ω)) +B(ω) + bv + khs

iω

) . (14)
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If we define some impedance, Zu(ω) for the PTO force, such at Fu(ω) = −Zu(ω)V (ω),169

the useful time-averaged power produced will subsequently be170

Pu(ω) =
1

2
R {−Fu(ω)ż(ω))}

=
1

2
R {Zu(ω)} |ż(ω)|2

. (15)

For resonance, it can be shown that maximum useful power is obtained by setting171

Zu(ω) = −Z∗i (ω), (16)

where ∗ denotes the complex conjugate.172

It is well known that when Fe(ω) is formed as function of the wave elevation at the173

location of the floating body (as is typical), (16) is non-causal (i.e., fu(t) depends on174

future values of fe(t)) [22]. For this study, as described in Section 2.2, we simply pre-175

compute fe(t) for the entire simulation period. This represents an assumption of perfect176

prediction of incoming waves (as well as the location of the device). The control strategies177

that depend on current and future knowledge of the excitation force (i.e., CCC, MPC,178

DP, SB) will undoubtedly benefit from this assumption. Thus, this assumption leads to179

an upper estimate for the performance of these strategies.180

3.3. Model predictive control (MPC)181

Model predictive control is an optimization based control strategy that is derived182

from attempting to solve a quadratic programing (QP) problem in a receding horizon183

fashion (see Figure 5). In the implementation employed here, no inner feedback loop184

has been considered, therefore the transfer function of the feedback block is HFB(s) = 0185

and the controller is CFB(s) = 1, however, as shown in Figure 5, the current state of186

the system is passed to the optimization block directly. The signal r is the excitation187

force and the prediction block (“PRED” in Figure 5) predicts the value of the excitation188

force over some time horizon, which is used to optimize the PTO input. As noted in189

Section 3.2, for this study the prediction process is assumed to be perfect. The receding190

horizon procedure is repeated iteratively to compensate for disturbances and imperfect191

modeling by updating the current state of the system every time the optimization is192

carried out.193
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The MPC algorithm requires the dynamic model to be formulated in discrete time.194

Following [8], the discretization of the model in (6) is carried out by means of a triangle-195

hold (first order-hold), which results in continuous and piecewise linear profile for the196

optimal PTO force. The benefit of this type of discretization is to allow for a longer197

update interval compared to a zero-hold discretization, which provides only a discon-198

tinuous, piecewise constant profile for the optimal control force. Thus, the state space199

model resulting from the discretization is200

x(k + 1) = Ax(k) +B∆u(k + 1) + F ∆v(k + 1) (17)

y(k) = C x(k). (18)

Here, the matrices A, B, F , and C are201

A =


φ(h) Γ Γ

0 1 0

0 0 1

 ∈ R(n+4)×(n+4) B =


Λ

1

0

 ∈ R(n+4)×1 (19)

F =


Λ

0

1

 ∈ R(n+4)×1 C =


1 0 0 . . . 0 0 0

0 1 0 . . . 0 0 0

0 0 1 . . . 0 0 0

 ∈ R3×(n+4), (20)

with φ(h) = eAc h and202

Γ = A−1c (φ(h)− I) Bc ∈ R(n+2)×1 (21)

Λ =
1

h
A−1c (Γ− hBc) ∈ R(n+2)×1. (22)

Note that the state vector, x(k), has been augmented by including the PTO force203

and the excitation force; also the output vector has been augmented to include the PTO204

force. The state and output vectors have been augmented because the input has been205

expressed as increments with respect to its previous value (∆u and ∆v are the change206

in control input and excitation, respectively), therefore the dynamical system had to be207

augmented with two integrators corresponding to the last two rows of matrix A.208
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Letting N denote the number of prediction steps, the predicted output of the system209

can be written as function of the current state and future inputs increments as210

y(k) = Px(k) + Tu∆u(k) + Tv∆v(k), (23)

where P, Tu and Tv are211

P =


C A

C A2

...

C AN

 ∈ R3N×(n+4) (24)

Tu =



C B 0 0 . . .

C AB C B 0 . . .

C A2B C AB C B . . .
...

...
...

...

C AN−1B C AN−2B C AN−3B . . .


∈ R3N×N (25)

Tv =



C F 0 0 . . .

C AF C F 0 . . .

C A2 F C AF C F . . .
...

...
...

...

C AN−1 F C AN−2 F C AN−3 F . . .


∈ R3N×N (26)

The quantity to be maximized is the mechanical work done by the PTO over the212

prediction horizon T , expressed as213

Et,t+T = −(m+A∞)

∫ t+T

t

u(τ)v(τ) dτ. (27)

By means of the discretization, this quantity can be written in matrix form as the214

quadratic cost function J215

J =
1

2
∆uTT Tu QTu∆u + ∆uTT Tu Q (Px + Tv∆v) , (28)
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where Q and M are216

Q =


M

. . .

M

1
2M

 , M =


0 0 0

0 0 1

0 1 0

 . (29)

Constraints on the maximum PTO force and maximum displacement can be included217

in the formulation of the optimization problem using the linear inequalities218

 Mz

−Mz

 Tu∆u =

−Mz

Mz

 (Px + Tv∆v) + zmax (30)

 Mf

−Mf

 Tu∆u =

−Mf

Mf

 (Px + Tv∆v) + fmax, (31)

where Mz and Mf are219

Mz =


Cz

. . .

Cz

Cz

 ∈ RN×3N Cz = [1 0 0] (32)

Mf =


Cf

. . .

Cf

Cf

 ∈ RN×3N Cf = [0 0 1]. (33)

3.4. Dynamic programming (DP)220

Dynamic programming (DP) is a useful mathematical technique for making a se-221

quence of interrelated decisions. It provides a systematic procedure for determining the222

optimal combination of decisions [23]. The basis of the DP approach is the Bellman’s223

principle of optimality [24]. An optimal sequence of decisions has the property that at224

any stage (time) the remaining decisions must be optimal for the remaining problem225
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with the decision and state resulting from the previous decision considered as initial con-226

ditions. There is no standard mathematical formulation of the dynamic programming227

problem; unlike other techniques, such as linear programming, DP is a general approach228

to problem solving.229

Hence the implementation of DP requires developing a tailored algorithm and equa-230

tions for the particular application. In this optimal WEC control problem, the space-time231

domain is discretized. This discretization renders the obtained solution sub-optimal. At232

each time node, the problem can be thought of as searching for the optimal control (de-233

cision) at that time, such that the extracted energy is maximized over a given future234

horizon. DP is a receding horizon strategy (see Figure 5) and in the current implemen-235

tation does not include a inner feedback loop (block CFB(s) = 1 and feedback block236

HFB(s) = 0). Instead, as shown in Figure 5, the current state of the system is passed to237

the optimization block directly.238

The states are discretized in space and time. This discretization is fundamental239

for DP operation and is crucial for computational efficiency/feasibility of the DP ap-240

proach. Given maximum and minimum values for each of the system states, the state241

space is divided into nodes of equal inter-spaces. The number of nodes for the states,242

Nx1, Nx2, · · · , Nxn, are tuning parameters. An illustration for a two-dimensional dis-243

cretized domain is shown in Figure 6. In this discretized domain, any state ~xi, for244

instance in box 1, is associated with the state vector at the node ~xal in the same box.245

When the system transitions from a state ~xi at time step k to a state ~xj , for instance in246

box 2, at time step k+ 1 through a control u, the two associated states for ~xi and ~xj , ~xal247

and ~xam, respectively, are computed and stored. The transition between any two other248

states whose associated states are also ~xal and ~xam (i.e., transition between any state in249

box 1 to any state in box 2) at the time step k and k + 1, respectively, is considered to250

have the same fitness value as the fitness of the transition between ~xi and ~xj ; hence a251

significant computational effort can be saved.252

The process of dynamic programming for the WEC optimal control is here described.253

Suppose that the control is updated at a rate of urate Hz. Given a current state vector254

~xk and current time tk, the optimal control over a horizon (H seconds) is computed,255

u1, u2, . . . uN , where N = H × urate. Only the first control u1 is used to update the256
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Figure 6: Discretization of the state space for DP implementation.

current state to a new state ~xk+1. This process is repeated. To implement this process,257

three matrices are constructed and updated at a rate urate; also an index is given to258

each associated state. The three matrices are: SInd,N , UInd,N , and IInd,N , where Ind =259

Nx1 ×Nx2 is the total number of indices. The matrix SInd,N contains associated states260

at N different times starting from the current time until the end of the horizon H. The261

matrix element S(i, k), for instance, includes the index of the associated states at time262

k − 1 that is transitioned to the associated state i at time k. The corresponding control263

used for this transition is stored in U(i, k). The corresponding extracted energy is stored264

in I(i, k).265

The three matrices (S, U and I) are initialized recursively. Starting from the initial266

state ~x0 at time t0, each of the Nu discrete control values between umax and −umax is267

applied to ~x0 to compute a set of new states ~x1, · · · , ~xNu at time t1. The associated states268

(~xa0, ~xal, · · · , and ~xaNu) of the states ~x0, ~x1, · · · , and ~xNu, respectively, are computed269

and stored in the S matrix.270
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S(~xal, 1) = ~xa0
...

S(~xaNu, 1) = ~xa0 (34)

The corresponding controls and extracted energies are stored in U and I matrices as271

follows272

U(~xal, 1) = u1
...

U(~xaNu, 1) = uNu

I(~xal, 1) = u1 × ~x0(2)

...

I(~xaNu, 1) = uNu × ~x0(2) (35)

Starting from each of ~x1, . . . , ~xNu as initial states, the above process is repeated recur-273

sively until time tN to initialize the three matrices. The extracted energy is accumulated274

in subsequent steps, e.g.,275

I(~xa4, 2) = I(~xa1, 1)− u1 × ~x1(2) (36)

After initialization, the last column in the I matrix is scanned for the maximum value276

(maximum extracted energy). This entry in the I matrix at time tN is traced back in277

the U matrix to find the corresponding control at initial time u1. This initial control is278

applied to the initial state to compute the new updated state. The above process repeats279

iteratively. It is not necessary to compute the full matrices anymore; we only need to280

compute one additional column in each matrix, at each new time step.281

3.5. Shape-based (SB) control282

The SB approach was recently developed for control of wave energy conversion [25],283

for space trajectory optimization [26, 27, 28, 29], and it has its roots in pseudo-spectral284
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optimal control [30, 31]. In pseudo-spectral methods, the system dynamics are approx-285

imated by function series. The derivative of the state vector is approximated by the286

analytic derivative of the corresponding approximating function of the state.287

This SB approach differs from the pseudo-spectral optimal control approach in that288

it approximates only one state (buoy’s vertical velocity) using Fourier series as opposed289

to approximating all the system’s states and the control in pseudo-spectral methods;290

hence the SB method is computationally faster. The SB approach benefits from a priori291

knowledge about the shape of one of the states to generate a good initial guess for the292

optimization process. In this development, the buoy’s vertical velocity is selected to293

be the approximated state since the shape of the wave vertical velocity can be used as294

initial guess for the buoy’s vertical velocity. For this, a Fourier series expansion is used295

for approximation. Hence, existing, well-developed optimization algorithms may be used296

to solve the transformed problem [31].297

The SB control approach is a receding horizon strategy. The implementation of SB298

used here does not include an inner feedback loop (block CFB(s) = 1 and feedback block299

HFB(s) = 0). However, as shown in Figure 5, the current state of the system is passed300

to the optimization block directly.301

For the WEC optimal control problem, the SB control approach approximate the302

buoy’s vertical velocity, vf (t), as follows:303

vf (t) ≡ x2 =
a0
2

+ ΣNn=1

(
an cos

(nπ
H
t
)

+ bn sin
(nπ
H
t
))

(37)

Where H is the predication horizon time interval, and N is number of Fourier terms304

which is a design parameter. The coefficients a0, an, and bn are the design variables to305

be optimized in order to obtain the shape of vf (t) that would maximize the extracted306

energy. (Note that including a0 in (37) allows for a nonzero initial value for vf (t).) For307

a given set of the coefficients, vf (t) is computed using (37). The PTO control input308

associated with the obtained buoy’s vertical velocity is computed using the system’s309

dynamic model (A, B, C, D matrices).310

The SB optimal control problem is formulated as: find the optimal values of the311

coefficients a0, an, and bn, ∀n = 1 · · ·N such that the extracted energy is maximized,312
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subject to the constraints: u(t) < umax, 0 < t < T . The optimal control problem is con-313

verted to a parameters optimization problem. An interior point optimization algorithm314

is used for optimizing the coefficients. A good initial guess for the coefficients a0, an,315

and bn (∀n = 1 · · ·N) can be obtained if we note that the wave velocity model can be316

approximated using Fourier series as follows:317

w(t) =
c0
2

+ ΣNn=1

(
cn cos

(nπ
T
t
)

+ dn sin
(nπ
T
t
))

(38)

In (38), the coefficients c0, cn, and dn can be computed given a prediction for w(t). These318

coefficients are used as initial guesses for the coefficients a0, an, and bn, respectively.319

The SB approach computes the required control at each control update step over the320

prediction horizon. These control updates are stored. In order to save computational321

time, it is possible to use these control updates at subsequent control time steps without322

updating the control calculations. The number of control steps that do not need control323

calculations is CtrlInteg. The following parameters need to be selected:324

• NH : an integer that represents the horizon length in units of wave period (or peak325

period for irregular sea states)326

• Ncw : an integer that determines the number of control updates in one wave period327

• NFFT : the number of Fourier terms328

• CtrlInteg : an integer that determines the step of updating the control calculations329

The optimal selection for these parameters varies depending on the sea state being330

solved. Table 4 shows the parameters’ values for some of the irregular sea states.331

3.6. Linear quadratic (LQ) control332

Linear quadratic (LQ) control is a pure feedback control strategy (see Figure 4),333

meaning that the control signal can be expressed as a function of the current state by334

means of the controller CFB(s). For this reason, the LQ control strategy requires a state335

estimator (block HFB(s)). LQ does not include any feedforward block (CFF (s)) nor336

input conditioning/pre-filtering block (Href (s)), and the reference signal r is zero.337
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LQ optimal control is an optimization based design technique for the calculation of a338

feedback law. The linear quadratic regulator (LQR) and the linear quadratic Gaussian339

(LQG) controller are two common “special cases” of LQ optimal control problems. In340

particular, consider the linear dynamical system (non-necessarily time-invariant)341

ẋ(t) = A(t)x(t) +B(t)u(t), (39)

where u(t) ∈ Rm is the input and x(t) ∈ Rm is the state. The objective of the LQR is342

to find a feedback matrix K(t), such that the closed-loop system with feedback343

u(t) = −K(t)x(t) (40)

minimizes the function J344

J =

∫ tf

t0

xTQx+ xT H u+ uTRu dt+ x(tf )T F x(tf ), (41)

where Q ≥ 0, F ≥ 0 and R > 0 [32]. The weight matrices Q, H, R, and F are in general345

design parameters to be tuned. The feedback gain K is calculated as K(t) = R−1BTP (t),346

where the symmetric matrix P is the solution of the Riccati equation347

−Ṗ = P A+ATP − (P B +H)R−1
(
BT P +HT

)
+Q, (42)

with boundary condition P (tf ) = F .348

A special case of the LQR problem is the infinite-time and time-invariant LQR, that349

is when tf → ∞ and the matrices A and B are constant. In this case, both the gain350

matrix K and the matrix P are constant; in particular,351

K = R−1BTP (43)

and P is the solution of Continuous time Algebraic Riccati Equation (CARE)352

P A+ATP − (P B +H)R−1
(
BT P +HT

)
+Q. (44)

The LQG control problem differs from the LQR in that it considers dynamical systems353

affected by noise and for which the state is not accessible. The LQG problem is solved by354
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applying the separation principle, stating that the control design and the estimator design355

can be carried out independently. In practice, the LQG comprises an LQR and a Kalman356

filter, which is used for the estimation of the state from noisy outputs (measurements).357

Assuming the system is time-invariant, it may be described as358

ẋ = Ax+Bu+ k (45)

y = Cx+$, (46)

where y is the system output, k is the system noise and $ is the measurement noise.359

A fundamental assumption for optimality is that the noise (both k and $) is white and360

Gaussian. The estimate of the state x̂ is given by the Kalman-Bucy filter361

˙̂x = Ax̂+Bu+ L(y − Cx̂) (47)

with initial condition x̂(0) = E[x(0)]. The Kalman gain L is calculated as L = S CTW−1362

with W = E[$$T ]. The term S is the solution of the Riccati equation.363

0 = AS + S AT − S CTW−1 C S + V (48)

where V = E[k kT ]. By applying the separation principle, the gain K is calculated as in364

the LQR case, that is via (43), and by using the same Riccati equation in (44) for the365

calculation of P .366

For this study, both the control system and the estimator are designed based on the367

formulation described in [7] as a single-input/single-output. However, the LQG allows the368

design of multi-input/multi-output controllers. More specifically, the controller model is369

composed of a linear system (Ad, Bd, Cd) describing the heave dynamics, combined with a370

second linear system (Ae, Be, Ce) describing the excitation, which is considered as colored371

system noise. Thus, we write the dynamic model in heave as372

ẋd = Ad xd +Bd u+Bd fe (49)

y = Cdx, (50)

while the model of the excitation force is373
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ẋe = Ae xe +Be$ (51)

fe = Ce xe (52)

The state vector xd and the system matrices Ad and Bd the same as those used in (6)374

(i,e,. Ad = Ac and Bd = Bc). The input u is the PTO force and the output y is the375

heave velocity (y = v), thus the output matrix Cd is different from (6) (i.e., it is the last376

row of Cc in (6)).377

The linear system (Ae, Be, Ce) is obtained by first approximating the wave spectrum378

S(ω) with a transfer function S̃(ω) ≈ S(ω), as described in [33]. The spectral character-379

istics of the sea are assumed to follow a Bretschneider distribution. The excitation force380

E(ω) is calculated as381

E(ω) = H(ω) S̃(ω), (53)

where H(ω) is the excitation FRF defined in (3), and the matrices Ae, Be, Ce are ob-382

tained through a balanced realization of the transfer function E(ω). The matrices of the383

augmented state space model are built as384

A =

Ad BdCe

0 Ae

 B′ =

Bd
0

 B$ =

 0

Be

 C ′ = [Cd 0] , (54)

resulting in the dynamical system385

ẋ = Ax+B′ u+B$$ (55)

y = C ′ x. (56)

The system is analogous to the model for the LQG problem in (45) and (46). However,386

the cost function to be minimized is different. In fact, the objective is to maximize387

the expected value of the electrical absorbed power P̄abs = E[−νout i], where νout is the388

output voltage and i is the current. The instantaneous power can be written as389

−νout i = − (νemf +R i) i = −νemf i−R i2, (57)
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where νemf is the back electromotive force. As depicted in Figure 7, the force and390

velocity are related to the current and voltage as391

f = Ki i ν = Kv v, (58)

thus the dynamical system can be redefined in terms of the current i as the input, and392

the voltage νout as the output, by redefining B and C as393

B = B′Ki C = Kv C
′. (59)

The resulting LQ problem is then defined by the cost function394

J = −E
[
xT H i+ iT Ri

]
, (60)

subject to the dynamical the model395

ẋ = Ax+B i+B$$ (61)

v = C x. (62)

Note that (60) is written in the same form as the standard LQ problem in (41), with396

Q = 0 and H = CT . The R matrix corresponds to the resistance in the PTO model.397

The LQ problem defined by (60), (61) and (62) depends of the wave spectra because398

the matrices Ae, Be, Ce are calculated from S(ω). Therefore, the feedback gain, opti-399

mized by (60), needs to be updated whenever the spectral properties of the sea change.400

The optimization problem has an analytical solution (the feedback gain matrix) because401

the problem is linear quadratic (LQ) (i.e., the model is linear and the cost function is402

quadratic). The solution to the LQ problem is found by solving the CARE in (44), which403

is build using (60), (61), and (62). With this control strategy is not possible to include404

constraints in the problem formulation.405

3.7. PD version of CC control (PDC3)406

This control strategy sub-optimally (in terms of power absorption) realizes complex407

conjugate control (CCC) via a feedback strategy (see Figure 4) by creating a resonate408
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Figure 7: Schematic for LQ control.

generator. The theoretical underpinnings of complex conjugate control are fundamentally409

linear, and hence PDC3 this is also linear. This strategy targets individual frequency410

components that come from the excitation input signal. Each individual frequency uses411

a proportional-derivative (PD) control to provide both optimal resistive and reactive412

elements. By resonating each frequency component and summing them together, the413

controller feedback effort that maximizes the amount of absorbed power is provided. A414

fully detailed description of this control strategy is provided in [34].415

The controller model consists of a linear transfer function with individual feedback for416

a bank of filters that isolate primary frequencies associated with a given sea state irregular417

wave input profile. Control design consists of an offline filter design optimization process418

that includes the number of filters and frequencies selected with their corresponding Q-419

factor (which is a parameter related to the bandwidth of the filter). The optimal P and420

D are values are derived from linear complex conjugate control. The goal is to have the421

filters resonate for frequencies that are off-resonance, which will require reactive power422

to help boost total energy capture width and absorbed power.423

In the current implementation, the filter sets are sea state specific. A range of 1− 3424
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peaking filters where used during this study for each sea state. As development work425

continues on this strategy, the filter set is expected to become sea state independent.426

3.8. Latching427

Latching is a type of switching control, the origins of which in wave energy conversion428

can be traced back to early studies on small heaving point absorber buoys with short429

natural resonant periods. The technique consisted of locking the buoy displacement until430

the approach of a crest (or a trough) and releasing it so it achieved full velocity at the431

crest (or trough) and then re-locking the displacement until the approach of the next crest432

or trough. A formal theoretical foundation was established in the mid-eighties through433

the work of Hoskin and Nichols [5]. In practice, the objective of latching control can be434

seen as to maximize the absorbed power by “keeping” the velocity of the buoy in phase435

with the excitation force. The strategy is most effective when the incoming wave has a436

period greater than the resonance period of the oscillating body because by holding the437

device in a latched state for a given amount of time, the net result can be understood as438

“shifting” the resonance period of the device to a larger value.439

Latching is a mixed feedback/feedforward control strategy, and its implementation is440

based on the prediction of the excitation force caused by the incident wave. Rather than441

the exact profile of the excitation force, latching requires the prediction of the next peak442

in the excitation force. Although the design of the latching control strategy has been443

based on a single DOF device, it can be also be implemented with additional DOFs (see,444

e.g., [35]).445

Latching is a type of nonlinear control because the control variable can only assume446

two values, 1 or 0. Typically, latching involves application of resistive loads only, so it is447

a sub-optimal control in the hydrodynamics sense. The entire formulation is developed448

in the time domain, and is framed as an optimal switching control problem.449

The optimal switching sequence is one that leads to maximum power absorption over450

a duration of time T , subject to the constraints imposed by the converter dynamic model451

and limits on PTO force and stroke-length. In the framework of Hoskin and Nichols [5],452

the switching sequence is derived using the Pontryagin Max/Min principle. Implicit in the453

procedure, is the need to solve a two-point boundary value problem in the time domain,454

where the boundary extends from the current instant to T time units into the future.455
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Therefore, prediction of the exciting force is required even though the control leads to456

suboptimal velocities. Early latching solutions evaluated the optimal switching sequence457

using an iterative procedure. More expedient approaches have evolved in recent years,458

among which empirical rules to calculate the switching sequence [36]. In this case, the459

device is latched whenever the buoy reaches zero velocity and it is released approximately460

Tres/4 s before the next predicted peak in the excitation force, where Tres is the resonance461

period of the device.462

The calculation of the latching control law can be carried out online in both the Hoskin463

and Nichols [5] approach, where the implementation is based on Pontryagin Max/Min464

principle, and in the empirical approach [36]. The Hoskin and Nichols approach, how-465

ever, may not be suitable for real-time implementation due to the required intensive466

computation. On the opposite side, the empirical approach requires the prediction of467

the incoming excitation force and the resonance period of the device (Tres)
1, but it is468

generally suitable for real-time implementation.469

Latching is a type of switching control (Figure 8), the implementation of which is470

carried out by assuming that the force exerted by the linear generator is of the form471

fu = −(Bu + u(t)BL)v(t) (63)

where v is the heave velocity of the buoy and Bu is the damping coefficient used for472

power absorption, such that the instantaneous absorbed power is Pu(t) = −fu(t) v(t) =473

Bu v(t)2. The control signal u(t) is a switching binary function that takes the value of 0474

when the device in unlatched (absorption mode), or 1 when the device is latched. When475

the device is in latched mode (u(t) = 1), then the total of the damping exerted by the476

PTO is equal to Bu +BL, where, in practice, BL takes a value large enough to prevent477

the device from moving. However, since the value of BL is not infinite, the device moves478

with a very small velocity when latched.479

The optimal switching policy for u(t) can be obtained by using Pontryagin principle480

[5]; however, this approach is not suitable for real-time implementation because of the481

high computational cost. The solution chosen for the switching policy is the empirical482

1The resonance period is fixed once the structural/hydrodynamical properties of the device have been

set.
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Figure 8: Structure of latching control.

method described by Budal and Falnes in [36], where the device is being latched whenever483

it reaches zero velocity, and it is being released a quarter of the resonance period before484

the next predicted peak in the excitation force. Figure 9 illustrates the working principle485

of latching control: by holding the device locked for an appropriate time interval so as486

the peak of the velocity matched with the peak of the excitation force, the oscillating487

body moves at considerably higher peak velocity and it absorbs more power.488

4. Results & discussion489

Table 5 summarizes the relative performance of the assessed control strategies in490

irregular waves. Six different quantities are considered: net power, reactive power, PTO491

force, position, velocity, and acceleration. Here, net power is the absorbed power minus492

any reactive power (note that this does not include any consideration for efficiency, i.e.,493

the motor is considered to be 100% efficient). Reactive power is power expended by494

the WEC. For each of these quantities, three different statistical measures are reported:495

average (mean), peak (98th percentile), and ratio of peak over average. For the averages,496

the reported value is obtained based on an average annual calculation, which takes into497

account the relative occurrence of the sea states analyzed. All values are given as the498

average annual value for the quantity defined. Further, all units are metric and all results499
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Figure 9: Heave velocities of latching control versus resistive control.

are shown in model scale.500

From Table 5, we can see that the various control strategies have a wide range of501

performances. For example, the average net power produced ranges from 52.5 W for502

CCC to 15.5 W for resistive control. While CCC is not considered directly implementable,503

MPC produced nearly as much net power with 46.1 W (roughly 3 times that of resistive504

control). PDC3, LQ, and Latching control, which are all purely feedback, produce similar505

levels of net power (on the order of 25 W).506

The peak/average net power also shows a wide range of results. This metric is con-507

sidered to be somewhat similar to a capacity factor, in that it might indicate the degree508

to which a WEC design utilizes its capabilities. A lower peak/average net power ratio509

would mean that the device is generally operating in a similar region, avoiding the need510

for components (e.g., PTO and power electronics) to be over-designed to accommodate511

infrequent spikes. LQ shows good power absorption (50% more than resistive control),512

while maintaining a low peak/average net power ratio. Conversely, PDC3 shows a rel-513

ative large peak/average net power ratio. This may be partially due to some tuning,514

which could be improved reduce spikes in absorption.515

Many of the strategies utilize reactive power levels an order of magnitude greater516
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than the net absorbed power. This may prove unrealistic in physical implementation, as517

the PTO would need to be sized quite large to supply the necessary reactive power. LQ518

also uses orders magnitude less reactive power compared to some of the other strategies.519

This may be partially due to the fact that LQ is the only strategy that includes a model,520

although very simplistic, of the PTO, which includes a resistor that provides a basic,521

lumped parameter, linear model for the PTO inefficiency.522

As with other metrics considered here, PTO forces required by the different control523

strategies span a full order of magnitude. However, the peak/average force ratios from524

each strategy were relatively similar (much more so than the net power peak/average525

ratios). Acceleration may serve as a rough proxy for the loading on the mechani-526

cal/structural components of a device. LQ has the lowest acceleration in Table 5; while527

DP and CCC have the highest. Not surprisingly, latching control also tends to produce528

relatively large accelerations.529

It is also somewhat useful to compare the time history responses of the different530

control strategies. Figure 10a shows a sample time-history from select control strategies531

for the irregular sea state 15 (Hs = 0.32 m, Tp = 3.6 s). The four subplots (a-d) show the532

heave velocity, heave position, PTO force and instantaneous absorbed power, respectively.533

For each of the subplots, the excitation force (which is fully linear and therefore the same534

for each of the control strategies) is shown in green.535

It is interesting to note that all the control strategies attempt to improve the “phase536

matching” between velocity and excitation force, when compared to resistive control.537

The plots also show the different specific method each control strategy uses to keep538

velocity in phase with excitation. Latching control locks the device in order to match539

the peaks of the velocity with the peaks of the excitation force. MPC and LQ force the540

device to follow excitation with a smoother profile, by using reactive power (Figure 10d),541

that is by accelerating the device by means of the actuator force. The smoother motion542

resulting from MPC and LQ can be observed also by looking at the time profiles of the543

position (Figure 10b) and the force exerted by the actuator (Figures 10c).544
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(c) PTO force
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Figure 10: Sample time histories from irregular sea state 15 (Hs = 0.32 m, Tp = 3.6 s).
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5. Conclusions545

This study considered and evaluated a series of eight WEC control strategies. In ad-546

dition to strategies well-studied for WECs, some novel strategies for this application were547

also introduced. Using a numerical simulation, each strategy was utilized to simulate the548

WEC response in a series irregular sea states. The results from these simulations were549

distilled to provide a concise comparison of the performance produced by the different550

control strategies. In addition to the obvious metric of power absorption, other perfor-551

mance metrics were studied with the aim of providing some insight into the relative costs552

and challenges of implementing the different control strategies. As WECs are intended553

to be commercially profitable devices, this type of consideration is essential.554

The results shown in this study begin to highlight the need for a holistic approach555

to WEC design. So-called “co-design” practices, where components of a system design556

which are often taken into account sequentially are instead considered in conjunction with557

each other, will be needed to properly utilize advanced control for a WEC. Fundamental558

design factors, such as the characteristic scale of a WEC, cannot properly be considered559

without considering in earnest the eventual control strategies which may be implemented560

on the device.561

Thus, future work should consider a more comprehensive assessment of how control562

design interfaces with overall WEC design. In this study, a device with a fixed design563

was augmented with a series of control strategies. However, a more realistic study would564

consider control design as part of the larger WEC design process. Also, some additional565

development on the formulation of performance metrics would be helpful. Instead of566

simply considering, for example, the peak PTO force across a series of sea states, processes567

defined by design standards and technical specifications should be followed. In addition568

to peak loading, modeling for fatigue could provide an important consideration.569

If possible, similar studies should also be conducted for different WEC devices. This570

study presents results only for a single specific device. We believe that the results provide571

some general relative comparison, but further work will be necessary to establish just572

how much such a comparison will vary for different device designs and archetypes. Addi-573

tionally some further understanding can be obtained by considering control performance574

in regular waves, and by normalizing both regular and irregular wave results with respect575
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to the natural frequency of the device.576

It will also be useful to consider a more complete model of the WEC system. As is577

typical, only the hydro-mechanical system is considered in this study. Mechanical power578

is used as a performance metric, but most WEC systems are targeted at producing579

electricity. Thus the PTO and power electronics should be considered to provide a fuller580

assessment. By adding these components for both plant and control models, the impact581

of generator efficiencies and dynamics can be included in the comparison. This may, for582

example, tend to penalize strategies which use large amounts of reactive power. In this583

study, the only strategy to somehow take into account some aspects of the PTO efficiency584

is LQ control, which includes a model of the internal resistance of the generator circuit.585

Another consideration, highlighted by the large levels of peak reactive utilized by many586

of the strategies considered here, would be to apply constraints to curtail reactive power587

levels.588

A related ongoing project is focused on PTO design, considering integration with the589

full WEC system, grid, and control. The purview of this work includes consideration for590

stored energy in order to provide both reactive power and smoothing. Since the PTO591

may indeed play an important role in the overall system dynamics, it is possible that592

including this in the plant for control design could greatly affect outcome of a study such593

as this.594

Another important factor not fully considered here is the realistic implementation of595

these various control strategies on a deployed device. For this study, the control model596

is considered to be perfectly accurate (i.e. the control model and plan model are the597

same). However, this will certainly not be the case in implementation. Model uncer-598

tainties and nonlinearities not captured by the reduced-order control model are likely to599

adversely affect the performance of controllers. The magnitude of such adverse effects600

will be dependent on the specific control strategy. Additionally, this study assumed per-601

fect foreknowledge of incoming waves and no sensor noise. While methods are available602

for filtering noisy measurement signals and estimating/predicting the system state, limi-603

tations in these methods, and their affect on controller performance should be considered604

in future studies.605
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Table 2: Full list of the 17 irregular sea states considered in study. Note that sea states listed with an

occurrence percentage of 0 are from the constant-steepness set and are not considered for average annual

statistics.

Sea State

index

Peak period,

Tp [s]

Significant wave

height, Hs [m]

Steepness,

(
λp

Hs
) [-]

Occurrence

[%]

1 1.00 0.0247 63 0

2 1.00 0.0148 105 0

3 1.00 0.0370 42 0

4 1.53 0.0871 42 18.5

5 2.00 0.0594 105 0

6 2.05 0.1039 63 17.2

7 2.25 0.1875 42 11.3

8 2.50 0.1545 63 0

9 2.50 0.0927 105 0

10 2.58 0.1194 87 21.1

11 2.89 0.2523 52 7.6

12 3.00 0.3337 42 0

13 3.03 0.1363 105 12.8

14 3.46 0.1283 146 9.2

15 3.60 0.3195 63 4.9

16 4.02 0.1320 191 5.8

17 4.86 0.1617 228 1.6
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Table 3: Control strategies evaluated. ∗categorization is determined based on implementation in this

study, however, these strategies can be implemented, e.g., to avoid reactive power.

Computational

expense
Constraints Reactive Foreknowledge

Resistive low yes no no

MPC moderate-high yes yes∗ yes

DP high yes yes∗ yes

SB high yes yes∗ yes

LQ low no yes no

PDC3 low no yes no

Latching low no no yes∗

Table 4: Selected SB parameters for some of the irregular sea states.

NH Ncw NFFT CtrlInteg

IS10 3 60 7 3

IS11 3 60 6 3

IS12 3 50 7 2

IS13 3 50 8 2

IS14 3 50 7 2

IS15 3 50 7 2

IS16 3 50 7 2

IS17 3 60 7 2
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Table 5: Comparison of WEC control strategy performance.

CCC DP LQ Latch. MPC PDC3 Res. SB

Net power [W]

average 52.5 38.4 23.5 28.8 46.1 26.8 15.5 17.7

peak 4.8E3 4.6E3 4.5E2 3.9E2 1.8E3 1.3E3 1.7E2 4.9E2

peak/average 92.0 119.1 18.9 13.6 38.6 48.4 10.8 27.9

Reactive power [W]

average 1.3E2 1.7E2 3.7E0 0 4.3E1 3.2E1 0 1.3E1

peak 2.7E3 3.1E3 7.4E1 0 7.6E2 6.8E2 0 1.9E2

peak/average 20.4 18.1 19.7 0 17.8 21.0 0 15.3

PTO force [N]

average 1.3E3 1.6E3 2.6E2 5.1E2 7.7E2 6.9E2 2.1E2 3.4E2

peak 1.0E4 1.2E4 2.1E3 3.6E3 5.7E3 5.4E3 1.1E3 1.8E3

peak/average 8.1 7.7 8.0 7.2 7.5 7.7 5.0 5.1

Position [m]

average 7.3E-2 8.4E-2 2.9E-2 3.3E-2 4.9E-2 4.0E-2 1.6E-2 3.0E-2

peak 5.3E-1 5.3E-1 1.6E-1 1.7E-1 3.1E-1 2.8E-1 7.5E-2 1.7E-1

peak/average 7.2 6.3 5.4 5.2 6.4 7.1 4.6 5.7

Velocity [m/s]

average 1.4E-1 1.5E-1 7.1E-2 6.0E-2 1.0E-1 7.6E-2 4.0E-2 8.7E-2

peak 8.0E-1 8.3E-1 3.1E-1 4.0E-1 5.2E-1 4.1E-1 1.6E-1 4.8E-1

peak/average 5.8 5.5 4.4 6.7 5.1 5.4 4.0 5.5

Acceleration [m/s2]

average 0.31 0.38 0.07 0.21 0.13 0.12 0.11 0.28

peak 1.42 1.83 0.31 1.37 0.83 0.58 0.40 1.46

peak/average 4.5 4.9 4.4 6.6 6.2 4.7 3.6 5.3
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