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Abstract

In this study, we employ a numerical model to compare the performance of a number of
wave energy converter control strategies. The controllers selected for evaluation span a
wide range in their requirements for implementation. Each control strategy is evaluated
using a single numerical model with a set of sea states to represent a deployment site
off the coast of Newport, OR. A number of metrics, ranging from power absorption to
kinematics, are employed to provide a comparison of each control strategy’s performance
that accounts for both relative benefits and costs. The results show a wide range of
performances from the different controllers and highlight the need for a holistic design
approach which considers control design as a parallel component within the larger process

WEC design.

Keywords: wave energy, control, dynamics

1. Introduction

The energy contained in ocean waves is distributed across a wide range of frequen-
cies. In order to produce electricity efficiently, wave energy converters (WECs) must
be designed to capture a large share of the energy from a broad range of ocean wave
frequencies. Additionally, the majority of energy in ocean waves exists at relatively low
frequencies, which are most easily accessed by relatively large WECs. To limit the size,
and therefore cost, of a WEC and to increase energy absorption over a broad range of
frequencies, an increasing body of research has shown power take-off (PTO) control to

be an attractive path.
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The dynamic system of a WEC can be considered as a series of subsystems. A hy-
drodynamic/hydrostatic process transfers energy from the ocean to the WEC device;
a mechanical process transfers energy from the moving bodies of the WEC to PTO; a
hydraulic/magnetic/electrical process transfers the mechanical energy to electricity. Con-
sidering the wide range of WECs currently under design, this coupled system can take
many forms. While this description vastly over simplifies the various physical processes
involved, it does begin to emphasize the multi-layer nature of the system of interest.
The hydrodynamic/hydrostatic and mechanical properties of WEC can produce a cer-
tain frequency response; however, when coupled with input from a PTO, which can be
understood to act as some combination of a spring, a damper, and a mass, a new fre-
quency response for the overall device is achieved. It is on this basis that specific control
strategies for WEC PTOs can influence energy absorption.

A large range of strategies have been proposed and studied for the control of a WEC
PTO. Budal and Falnes considered both reactive control and latching in the early 1970s
and carried out much of the early development of latching-type ‘phase control’” through
both theory and wave tank experimentation [I]. An independent early application of
this approach was recorded in the U.S. by Dedger Jones [2]. Latching control was soon
being studied for WEC control by a number of other groups around the world (see, e.g.,
[BL 4 Bl [6]). Scruggs et al. applied a linear quadratic Gaussian (LQG) control, which
incorporates spectrally-dependent gain parameters [7]. Many studies in the past two
decades have also considered model predictive control (MPC) for WECs [8, 9]. Hals et
al. studied a series of control strategies and provided some comparison of these options
[10].

This study presents eight different control strategies for WEC control. Individual con-
troller implementations are presented and discussed. These strategies are implemented
for a single case study WEC device, and are used to run a series of numerical simulations.
From these simulations, we compare results to better understand the relative performance
of these different control strategies, in addition to the PTO characteristics required to
implement each of the algorithm. We conclude the study with some discussion on the

various trade-offs between these different approaches.
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Figure 1: Test-bed WEC device used for control comparison.

2. Background

2.1. Study device

A test-bed WEC device was designed with the purpose of evaluating system identi-
fication, modeling, and control approaches [I1]. Figure [1| shows an illustration of this
device, highlighting the waterline, draft and key dimensions. This device is designed
to allow motion in 3 degrees-of-freedom (DOF'), however, for this study only motion in
heave is considered. A list of the relevant physical parameters for this WEC are listed
in Table This device is considered to be roughly 1/20th-scale when compared with

current designs for grid-scale systems.

2.2. Numerical model

A model for the heave velocity of the device introduced in Section has been

developed using the formulation of Cummins [12]. In the time domain, the heave velocity
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Table 1: Model-scale WEC physical parameters.

Parameter | Value

Rigid-body mass (float & slider), m (kg) 858
Displaced volume, ¥ (m?®) | 0.858

Float radius, r (m) | 0.88

Float draft, T (m) | 0.53

Water density, p (kg/m?) | 1000

can be described by the Volterra integro-differential equation [13]

(m+ Ax)? + /Ot Er(t = N)2(A) d\ + byz + kpez = folt) + fu(t), (1)

where z is the vertical position of the device. The rigid-body and hydrodynamic infinite-
frequency added mass are represented by m and A, respectively. Radiation damp-
ing and frequency-dependent added mass are incorporated via the impulse response
function k.. The linear product b,Z accounts for viscous damping effects. The hy-

drostatic/gravitational spring contribution is given by ky.

khs = pgAwp (2)

Here, A, is the area of the water plane. The density of the water and gravitational
constant are p and g, respectively.

The force applied by the PTO is represented by f,, which is dependent on the control
strategy imposed. Wave excitation forces are represented by f.. By working in the
frequency domain, these can be obtained for some complex wave spectrum by taking the
complex product of the wave input, {(w), and the device’s excitation frequency response

function (FRF), H(w), as:

Fo(w) = H(w)¢(w). 3)

Thus, Fe(w) is the complex excitation, which can be used to obtain a the time history of

excitation, f.(t), via the inverse Fourier transform.
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The convolution term in can be replaced by fitting a parametric model to the

radiation FRF (see, e.g., [I4, [15]). In state-space form, this can be written as

&y = Arxy + Br2()
(4)
fi(t) = Cray,

Here, A,, B, and C, are the radiation state, input and output matrices, respectively.
Similarly, radiation states are stored via z,.. The matrices A,., B,., and C). can be tuned to
approximate the non-parametric radiation FRF in either the time or frequency domain.
Applying along with some minor manipulations, we can rewrite as system of first
order ordinary differential equations (ODEs).

Z=0
(M4 As)d = —Crer — by — Epsz + folt) + fult) (5)
Zr = Arxy + Br2(1)
Using 7 we can rewrite the dynamic equation for the vertical velocity of the WEC

as a single state-space model.

Xc(t) = Acxc + Be(uc(t) + ve(t))

Ye (t) = CcXc(t)

Here, u.(t) and v.(t) are control input and excitation, respectively. The state variable

(6)

X. and the output variable y. are defined, respectively, as

z

z
X.= | v | €R*™ Ve = € R?. (7)

v

X
The matrices A., B, and C, are
0 1 0
= —kn —by -1 (n+2)x (n+2)

AC - m+.»4m m+As m—+As CT €R (8)

0 B, A,
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Figure 2: Added mass and radiation damping frequency response functions for WEC device; WAMIT

in solid lines (-), experiment in dashed lines (- -).

0
B. = ﬁ €1R(71—§—2)><17 C, = 1 00 ER2X(n+2)~ (9)
e 010
0

An initial version of this model employed coefficients obtained from the boundary
element (BEM) tool WAMIT [16]. Data collected during experimental wave tank testing
showed good agreement with this model [I7]. The added mass and radiation damping
FRF's from both of these cases (numerical and experimental) are shown in Figure[2l The
FRF's from WAMIT are shown with solid lines; the FRFs based on empirical testing and

system identification are shown with dashed lines.

2.3. Study environment

A deployment climate of Newport, OR is considered for the comparisons performed
in this study. A joint probability distribution (JPD) is used to assign probabilities of
a finite set of sea states. Using a k-means clustering approach (see, e.g., [18]), a set of
17 Bretschneider sea states were selected to represent the deployment climate. All 17

of the sea states considered for this study are shown in Figure [3| and listed in Table
6
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Figure 3: Numbering of the sea state. NOTE: sea states 1, 2, and 3 all fall in the same bin.

Here, the probability distribution of the Newport, OR climate is shown via shading in the
background and the indexing number of each sea state identified in Table [2]is associated

with the corresponding bin in the JPD.

3. Control strategies

The main purpose of a controller is to alter the dynamic behavior of a given system (in
this case a WEC) in order to pursue a specific objective (e.g., maximize power absorption,
smooth power output, limit loads). The majority of power produced by WEC devices
occurs during resonant absorption, when the excitation force is in phase with device
velocity. Thus, the control strategies considered in this study, which foremost consider
maximizing power absorption, generally attempt to alter the system dynamics in order
to achieve resonance.

Figure [4] depicts a generalized structure of a control system applied, in this particular
case, to a WEC (shown as G(s) in Figure @) In general, the architecture of a control
system is composed of two main blocks: feedback (FB) and feedforward (FF). The name
feedback derives from the fact that an output signal (or a set of output signals), marked
as y in Figure [4 is measured and fed back to the control system which continuously
reacts, based on the current and past measurements, according to the control objective.

Conversely, a controller implemented in feedforward mode generates a control signal
7
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Figure 4: Basic feedforward/feedback controller structure [20].

based on a reference (r in Figure [4) which can be pre-determined or calculated from
some quantities not related to the state of the system (e.g., incident wave elevation).
Pure feedforward controllers do not react to the instantaneous state of the system (no
signal is fed back to the controller). In practice, it is common for control systems to
be built by combining both feedback and feedforward. The design of the control system
consists of developing the control functions (FF and FB), by using the controller model,
with respect to some desired performance objective. Figure (4] also depicts a pre-filter
block, denoted by H,.f, that can be used to improve the properties of the closed-loop
system, such as stability margins and sensitivity to noise and parameter uncertainty
(modeling errors). This type of structure is generally known as a two degrees of freedom
controller [19].

A number of control strategies considered here employ optimization algorithms. Op-
timization can be used in both the design of a control strategy (i.e., to determine some
optimal gain factors) and/or in the during execution to determine the control signal. Lin-
ear quadratic control (LQ; Section and a proportional-derivative version of complex
conjugate Control (PDC3; Scction employ optimization in control design. Model pre-
dictive control (MPC; Section , shape based control (SB; Section , and dynamic
programming (DP; Section employ optimization during execution to determine the

control signal. This process often follows a receding horizon structure, as depicted in
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Figure 5: Basic structure for “receding horizon.”

Figure Here, a control decision is computed based on predictions over a some finite
future time. The current system state is measured and used as initial conditions at each
time step in the controller computation. In some cases (such as DP and SB) the compu-
tational resources required for optimization can limit real-time implementation. While
these methods may not be implemented for real-time execution, they can still provide
valuable insights for the control design process.

The following sections describe eight different control strategies which are considered
and implemented here for the control of the WEC introduced in Section Some of
the strategies require reactive power, while others do not. Similarly, certain strategies
are better suited than others to incorporating constraints. As shown in Table [3] the
strategies selected here span the design space. Note that in some cases, a given control
strategy may be implemented in a number a ways; the categorization in Table [3| reflects
the most standard implementation of each strategy and that which is considered in the
present study. For example, while Table [3|records the possibility of including constraints
for a number of control strategies, no constraints were included in this study except for
when necessary to enforce stability. Similarly, Table [3] shows that MPC, DP, SB require
reactive power. However, since constraints can be introduced to these strategies, it is
possible to limit the power to be one-side (i.e., no reactive power). The computational
expense presented in Table|3| was determined based on the simulations run for this study.
Another factor which should be considered is that the different strategies are inherently
at different levels of implementation. For example, DP is considered primarily as a design
tool, and due to high computational expense would be very challenging to implement on
a real-time system. At the other end of the spectrum, LQ is readily implementable on a

real-time system and even uses a simple model of PTO efficiency.

9
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3.1. Resistive control

In resistive damping control, a constant of proportionality between the force and
velocity determines the resistance offered, which is also the power absorption rate. Net
power capture from a wave-excited oscillating body is a resistive process. Therefore, this

control strategy is a simple proportional feedback.

Ju=—bpro v (10)

Here, the constant damping factor is bpro and serves as the proportional gain. Optimal
values of bpro can be determined analytically (assuming potential flow) for monochro-
matic waves (see, e.g., [2I]). For irregular sea states, numerical optimization can be

applied.

3.2. Complex conjugate control (CCC)

As resistive control is considered somewhat of a lower bounding case for gross WEC
energy absorption, complex conjugate control (CCC) is considered to represent an upper

bound. Working in the frequency domain, we can rewrite as

k
(10 m+ 4@ + B+, + 22 ) V) = ) + P (11)
From the left hand side of , we can define the intrinsic impedance (see, e.g., [21]) for
the WEC as

Zi(w) = iw(m+ A(w)) + B(w) + b, + %, (12)
such that
Zi(w)V (w) = Fe(w) + Fu(w) (13)
= ext(w).
Solving for the complex velocity V(w), we have
- Fext(w) - Fext(w)
Viw) = Ziw)  (iw(m+ A(w)) + B(w) + b, + Ee=)’ (14)

10
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If we define some impedance, Z,(w) for the PTO force, such at F,(w) = —Z,(w)V(w),

the useful time-averaged power produced will subsequently be

1 .
Pu(w) = gR{-Fu(w)2(w))}
1 . (15)
. 2
= JR{Zu(W)}[Z(w)]
For resonance, it can be shown that maximum useful power is obtained by setting
Zy(w) = =Z] (w), (16)

where * denotes the complex conjugate.

It is well known that when F.(w) is formed as function of the wave elevation at the
location of the floating body (as is typical), is non-causal (i.e., f,(t) depends on
future values of f.(t)) [22]. For this study, as described in Section we simply pre-
compute f.(t) for the entire simulation period. This represents an assumption of perfect
prediction of incoming waves (as well as the location of the device). The control strategies
that depend on current and future knowledge of the excitation force (i.e., CCC, MPC,
DP, SB) will undoubtedly benefit from this assumption. Thus, this assumption leads to

an upper estimate for the performance of these strategies.

3.3. Model predictive control (MPC)

Model predictive control is an optimization based control strategy that is derived
from attempting to solve a quadratic programing (QP) problem in a receding horizon
fashion (see Figure [5). In the implementation employed here, no inner feedback loop
has been considered, therefore the transfer function of the feedback block is Hrp(s) =0
and the controller is Crp(s) = 1, however, as shown in Figure [5] the current state of
the system is passed to the optimization block directly. The signal r is the excitation
force and the prediction block (“PRED” in Figure |5)) predicts the value of the excitation
force over some time horizon, which is used to optimize the PTO input. As noted in
Section [3.2] for this study the prediction process is assumed to be perfect. The receding
horizon procedure is repeated iteratively to compensate for disturbances and imperfect
modeling by updating the current state of the system every time the optimization is

carried out.
11
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The MPC algorithm requires the dynamic model to be formulated in discrete time.
Following [8], the discretization of the model in @ is carried out by means of a triangle-
hold (first order-hold), which results in continuous and piecewise linear profile for the
optimal PTO force. The benefit of this type of discretization is to allow for a longer
update interval compared to a zero-hold discretization, which provides only a discon-
tinuous, piecewise constant profile for the optimal control force. Thus, the state space

model resulting from the discretization is

x(k+1) = Ax(k) + BAu(k + 1) + F Av(k + 1) (17)

y(k) = Cx(k). (18)

Here, the matrices A, B, F', and C are

¢(h) T T A
A= 0 10 ER(n+4)X(n+4) B= |1 eR(n+4)><1 (19)
0 0 1 0
A 10 0 00 0
F=|0| e R+9x1 c=101 0 0 0 0| eR¥>*(Hd) (20)
1 00 1 00 0

with ¢(h) = e<? and

I =A7'(¢(h) —I) B, € R"F2x1 (21)
A= %A;l (T —hB.) €RM2xL (22)

Note that the state vector, x(k), has been augmented by including the PTO force
and the excitation force; also the output vector has been augmented to include the PTO
force. The state and output vectors have been augmented because the input has been
expressed as increments with respect to its previous value (Au and Av are the change
in control input and excitation, respectively), therefore the dynamical system had to be

augmented with two integrators corresponding to the last two rows of matrix A.
12



200 Letting N denote the number of prediction steps, the predicted output of the system

20 can be written as function of the current state and future inputs increments as

y(k) = Px(k) + T.Au(k) + T,Av(k), (23)
an where P, T, and T, are
CA
2
P = cA c RSNx(n+4) (24)
C AN
;] 0 0 ]
CAB CB 0
T.=| CA?B CAB CB € R3VXN (25)
_CAN_lB CAN=2B CAN-3B |
eda 0 0 ]
CAF CF 0
T.=| CA*F CAF CF € R3VXN (26)
_CAN_lF CAN—2F CAN-3F |
212 The quantity to be maximized is the mechanical work done by the PTO over the
213 prediction horizon T, expressed as
t+T
Eipyr =—(m+ AOO)/ u(T)v(r)dr. (27)
t

2 By means of the discretization, this quantity can be written in matrix form as the

a5 quadratic cost function J

J= AT TIQT.Au + AuTTTQ (Px + TAY)

13

(28)



216 where (Q and M are

M
] 0 00
Q= ' ., M=1o0 o0 1. (29)
M
. 010
5 M
217 Constraints on the maximum PTO force and maximum displacement can be included

218 in the formulation of the optimization problem using the linear inequalities

Mz _Mz
T.Au = (PX + IEJM) + Zmax (30)
*Mz Mz
My —Mj
TuAu = ’ (PX + 7:;&) + fmaz, (31)
— My My

20 where M, and My are

C. ]
M, = ’ eRVSBN . =1[100] (32)
C.
C: |
of ]
M; = ' eRV3N 0 =1001]. (33)
Cy
Cr |
20 3.4. Dynamic programming (DP)
o Dynamic programming (DP) is a useful mathematical technique for making a se-

22 quence of interrelated decisions. It provides a systematic procedure for determining the
23 optimal combination of decisions [23]. The basis of the DP approach is the Bellman’s
24 principle of optimality [24]. An optimal sequence of decisions has the property that at

»s any stage (time) the remaining decisions must be optimal for the remaining problem

14
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with the decision and state resulting from the previous decision considered as initial con-
ditions. There is no standard mathematical formulation of the dynamic programming
problem; unlike other techniques, such as linear programming, DP is a general approach
to problem solving.

Hence the implementation of DP requires developing a tailored algorithm and equa-
tions for the particular application. In this optimal WEC control problem, the space-time
domain is discretized. This discretization renders the obtained solution sub-optimal. At
each time node, the problem can be thought of as searching for the optimal control (de-
cision) at that time, such that the extracted energy is maximized over a given future
horizon. DP is a receding horizon strategy (see Figure [5) and in the current implemen-
tation does not include a inner feedback loop (block Crp(s) =1 and feedback block
Hpp(s) =0). Instead, as shown in Figure [5} the current state of the system is passed to
the optimization block directly.

The states are discretized in space and time. This discretization is fundamental
for DP operation and is crucial for computational efficiency/feasibility of the DP ap-
proach. Given maximum and minimum values for each of the system states, the state
space is divided into nodes of equal inter-spaces. The number of nodes for the states,
Ng1,Nga, -+, Ny, are tuning parameters. An illustration for a two-dimensional dis-
cretized domain is shown in Figure [} In this discretized domain, any state @;, for
instance in box 1, is associated with the state vector at the node Z,; in the same box.
When the system transitions from a state &; at time step k to a state &, for instance in
box 2, at time step £+ 1 through a control u, the two associated states for Z; and &;, Za
and Za, respectively, are computed and stored. The transition between any two other
states whose associated states are also Tn; and Ty, (i.e., transition between any state in
box 1 to any state in box 2) at the time step k and k + 1, respectively, is considered to
have the same fitness value as the fitness of the transition between Z; and Z;; hence a
significant computational effort can be saved.

The process of dynamic programming for the WEC optimal control is here described.
Suppose that the control is updated at a rate of u,q. Hz. Given a current state vector
Zy and current time ¢, the optimal control over a horizon (H seconds) is computed,

Ui, U, ... uyn, where N = H X Upqte. Only the first control u, is used to update the

15
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Figure 6: Discretization of the state space for DP implementation.

current state to a new state @;y1. This process is repeated. To implement this process,
three matrices are constructed and updated at a rate u,qse; also an index is given to
each associated state. The three matrices are: Srpa N, Urna,n, and Irnq,n, where Ind =
Nz1 X Ngo is the total number of indices. The matrix Sr,q,n contains associated states
at IV different times starting from the current time until the end of the horizon H. The
matrix element S(7, k), for instance, includes the index of the associated states at time
k — 1 that is transitioned to the associated state ¢ at time k. The corresponding control
used for this transition is stored in U(i, k). The corresponding extracted energy is stored
in I(i, k).

The three matrices (S, U and I) are initialized recursively. Starting from the initial
state ¥y at time tg, each of the Nu discrete control values between 4, and —uUp,qz is
applied to Zy to compute a set of new states Z1, - - - , Ty, at time t1. The associated states
(Zao0, Tal, -+, and Tany) of the states Ty, &1, - -, and &, respectively, are computed

and stored in the S matrix.

16



S(fala 1) = -'EaO

S(Zanu,1) = Tao (34)

on The corresponding controls and extracted energies are stored in U and I matrices as

a2 follows

U(fab 1) = U
U(faNm 1) = UNu
I(fah 1) = up X fo(Q)
I(faNm 1) = UNy X {fo (2) (35)
o3 Starting from each of &, ..., Z N, as initial states, the above process is repeated recur-

ora - sively until time ¢y to initialize the three matrices. The extracted energy is accumulated

s in subsequent steps, e.g.,

I(fa4, 2) = I(fal, 1) — Uy X 51(2) (36)

276 After initialization, the last column in the I matrix is scanned for the maximum value
or (maximum extracted energy). This entry in the I matrix at time ¢y is traced back in
a3 the U matrix to find the corresponding control at initial time wy. This initial control is
oo applied to the initial state to compute the new updated state. The above process repeats
0 iteratively. It is not necessary to compute the full matrices anymore; we only need to

2 compute one additional column in each matrix, at each new time step.

22 3.5. Shape-based (SB) control

283 The SB approach was recently developed for control of wave energy conversion [25],

2 for space trajectory optimization [26] 27] 28] 29], and it has its roots in pseudo-spectral
17
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optimal control [30, BI]. In pseudo-spectral methods, the system dynamics are approx-
imated by function series. The derivative of the state vector is approximated by the
analytic derivative of the corresponding approximating function of the state.

This SB approach differs from the pseudo-spectral optimal control approach in that
it approximates only one state (buoy’s vertical velocity) using Fourier series as opposed
to approximating all the system’s states and the control in pseudo-spectral methods;
hence the SB method is computationally faster. The SB approach benefits from a priori
knowledge about the shape of one of the states to generate a good initial guess for the
optimization process. In this development, the buoy’s vertical velocity is selected to
be the approximated state since the shape of the wave vertical velocity can be used as
initial guess for the buoy’s vertical velocity. For this, a Fourier series expansion is used
for approximation. Hence, existing, well-developed optimization algorithms may be used
to solve the transformed problem [31].

The SB control approach is a receding horizon strategy. The implementation of SB
used here does not include an inner feedback loop (block Crp(s) = 1 and feedback block
Hpp(s) = 0). However, as shown in Figure |5 the current state of the system is passed
to the optimization block directly.

For the WEC optimal control problem, the SB control approach approximate the

buoy’s vertical velocity, v(t), as follows:

vp(t) = a0 = % 4 N (an cos (%Tt) + by, sin (%t)) (37)

Where H is the predication horizon time interval, and N is number of Fourier terms
which is a design parameter. The coefficients ag, a,, and b,, are the design variables to
be optimized in order to obtain the shape of v¢(t) that would maximize the extracted
energy. (Note that including ag in allows for a nonzero initial value for v,(t).) For
a given set of the coefficients, vy(t) is computed using (37). The PTO control input
associated with the obtained buoy’s vertical velocity is computed using the system’s
dynamic model (A, B, C, D matrices).

The SB optimal control problem is formulated as: find the optimal values of the

coefficients ag, a,, and b,, Vn = 1--- N such that the extracted energy is maximized,
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subject to the constraints: u(t) < tmaz, 0 < t < T. The optimal control problem is con-
verted to a parameters optimization problem. An interior point optimization algorithm
is used for optimizing the coefficients. A good initial guess for the coefficients ag, a,,
and b, (Vn =1---N) can be obtained if we note that the wave velocity model can be

approximated using Fourier series as follows:

w(t) = %O + 2N (cn cos (%t) + d,, sin (%Tt)) (38)

In , the coefficients cg, ¢, and d,, can be computed given a prediction for w(t). These
coefficients are used as initial guesses for the coefficients ag, a,, and b, , respectively.
The SB approach computes the required control at each control update step over the
prediction horizon. These control updates are stored. In order to save computational
time, it is possible to use these control updates at subsequent control time steps without
updating the control calculations. The number of control steps that do not need control

calculations is C'triInteg. The following parameters need to be selected:

e Ny : an integer that represents the horizon length in units of wave period (or peak

period for irregular sea states)
e N, : an integer that determines the number of control updates in one wave period
e Npp7 : the number of Fourier terms

e Ctrilnteg : an integer that determines the step of updating the control calculations

The optimal selection for these parameters varies depending on the sea state being

solved. Table [4 shows the parameters’ values for some of the irregular sea states.

3.6. Linear quadratic (LQ) control

Linear quadratic (LQ) control is a pure feedback control strategy (see Figure [4]),
meaning that the control signal can be expressed as a function of the current state by
means of the controller Crp(s). For this reason, the LQ control strategy requires a state
estimator (block Hrp(s)). LQ does not include any feedforward block (Cpp(s)) nor

input conditioning/pre-filtering block (H,c¢(s)), and the reference signal r is zero.
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LQ optimal control is an optimization based design technique for the calculation of a
feedback law. The linear quadratic regulator (LQR) and the linear quadratic Gaussian
(LQG) controller are two common “special cases” of LQ optimal control problems. In

particular, consider the linear dynamical system (non-necessarily time-invariant)

#(t) = A(D)z(t) + B(t)u(t), (39)

where u(¢) € R™ is the input and z(¢t) € R™ is the state. The objective of the LQR is
to find a feedback matrix K (t), such that the closed-loop system with feedback

u(t) = =K (t) z(t) (40)
minimizes the function J
ty
J:/ 2"Qr + 2T Hu+u" Rudt + z(ty)" Fa(ty), (41)
to

where @ > 0, F > 0 and R > 0 [32]. The weight matrices @, H, R, and F are in general
design parameters to be tuned. The feedback gain K is calculated as K (t) = R~!BT P(t),

where the symmetric matrix P is the solution of the Riccati equation

~P=PA+ATP—(PB+H)R (BT P+ HT) +Q, (42)

with boundary condition P(ty) = F.
A special case of the LQR problem is the infinite-time and time-invariant LQR, that
is when ¢ty — oo and the matrices A and B are constant. In this case, both the gain

matrix K and the matrix P are constant; in particular,

K=R'BTP (43)

and P is the solution of Continuous time Algebraic Riccati Equation (CARE)

PA+A"P— (PB+H)R ' (B"P+H") +Q. (44)

The LQG control problem differs from the LQR in that it considers dynamical systems
affected by noise and for which the state is not accessible. The LQG problem is solved by
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applying the separation principle, stating that the control design and the estimator design
can be carried out independently. In practice, the LQG comprises an LQR and a Kalman
filter, which is used for the estimation of the state from noisy outputs (measurements).

Assuming the system is time-invariant, it may be described as

&t =Ax+ Bu+k (45)

y=Cr+w, (46)

where y is the system output, k is the system noise and w is the measurement noise.
A fundamental assumption for optimality is that the noise (both k and @) is white and

Gaussian. The estimate of the state z is given by the Kalman-Bucy filter

&= A+ Bu+ L(y — C%) (47)

with initial condition #(0) = E[2(0)]. The Kalman gain L is calculated as L = SCTW !

with W = E[ww?]. The term S is the solution of the Riccati equation.

0=AS+SAT —scTw=tCcS+V (48)

where V = E[k kT]. By applying the separation principle, the gain K is calculated as in
the LQR case, that is via , and by using the same Riccati equation in for the
calculation of P.

For this study, both the control system and the estimator are designed based on the
formulation described in [7] as a single-input/single-output. However, the LQG allows the
design of multi-input/multi-output controllers. More specifically, the controller model is
composed of a linear system (A4, By, Cy) describing the heave dynamics, combined with a
second linear system (A., Be, C.) describing the excitation, which is considered as colored

system noise. Thus, we write the dynamic model in heave as

Tq=Aqxq+ Byu+ By f. (49)

y = Cyx, (50)

while the model of the excitation force is
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ie=Acte+ B.w (51)

fe = Ce Le (52)

The state vector x4 and the system matrices Ay and By the same as those used in @
(i,e,, Ag = A. and By = B.). The input u is the PTO force and the output y is the
heave velocity (y = v), thus the output matrix Cy is different from (6) (i.e., it is the last
row of C; in (@)).

The linear system (A, Be, C.) is obtained by first approximating the wave spectrum
S(w) with a transfer function S(w) =~ S(w), as described in [33]. The spectral character-
istics of the sea are assumed to follow a Bretschneider distribution. The excitation force

E(w) is calculated as

E(w) = H(w) S(w), (53)

where H(w) is the excitation FRF defined in , and the matrices A., B, C. are ob-
tained through a balanced realization of the transfer function F(w). The matrices of the

augmented state space model are built as

Aq BaC. B 0
A=|"t B =" B. = C'=1[Cy 0],  (54)
0 A 0 B,

resulting in the dynamical system

t=Ax+ B u+ By w (55)

y=0C". (56)

The system is analogous to the model for the LQG problem in and . However,
the cost function to be minimized is different. In fact, the objective is to maximize
the expected value of the electrical absorbed power Pps = E[—Vyyus ], where vy, is the

output voltage and ¢ is the current. The instantaneous power can be written as

_Vouti:_(Vemf'i_Ri)i:_Vemfi_RiQa (57)
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where Ven, s is the back electromotive force. As depicted in Figure |Z|, the force and

velocity are related to the current and voltage as

f=K;i v=K,, (58)

thus the dynamical system can be redefined in terms of the current ¢ as the input, and

the voltage v+ as the output, by redefining B and C' as

B=DBK, C=K,C". (59)

The resulting LQ problem is then defined by the cost function

J=-E[z"Hi+i" Ri], (60)

subject to the dynamical the model

i=Ax+Bi+Bow (61)
v=Cuz. (62)

Note that is written in the same form as the standard LQ problem in , with
Q =0 and H = CT. The R matrix corresponds to the resistance in the PTO model.

The LQ problem defined by 7 and depends of the wave spectra because
the matrices A, Be, C, are calculated from S(w). Therefore, the feedback gain, opti-
mized by , needs to be updated whenever the spectral properties of the sea change.
The optimization problem has an analytical solution (the feedback gain matrix) because
the problem is linear quadratic (LQ) (i.e., the model is linear and the cost function is
quadratic). The solution to the LQ problem is found by solving the CARE in , which
is build using , , and . With this control strategy is not possible to include

constraints in the problem formulation.

3.7. PD wversion of CC control (PDC3)

This control strategy sub-optimally (in terms of power absorption) realizes complex

conjugate control (CCC) via a feedback strategy (see Figure [4]) by creating a resonate
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Figure 7: Schematic for LQ control.

generator. The theoretical underpinnings of complex conjugate control are fundamentally
linear, and hence PDC3 this is also linear. This strategy targets individual frequency
components that come from the excitation input signal. Each individual frequency uses
a proportional-derivative (PD) control to provide both optimal resistive and reactive
elements. By resonating each frequency component and summing them together, the
controller feedback effort that maximizes the amount of absorbed power is provided. A
fully detailed description of this control strategy is provided in [34].

The controller model consists of a linear transfer function with individual feedback for
a bank of filters that isolate primary frequencies associated with a given sea state irregular
wave input profile. Control design consists of an offline filter design optimization process
that includes the number of filters and frequencies selected with their corresponding Q-
factor (which is a parameter related to the bandwidth of the filter). The optimal P and
D are values are derived from linear complex conjugate control. The goal is to have the
filters resonate for frequencies that are off-resonance, which will require reactive power
to help boost total energy capture width and absorbed power.

In the current implementation, the filter sets are sea state specific. A range of 1 — 3
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peaking filters where used during this study for each sea state. As development work

continues on this strategy, the filter set is expected to become sea state independent.

3.8. Latching

Latching is a type of switching control, the origins of which in wave energy conversion
can be traced back to early studies on small heaving point absorber buoys with short
natural resonant periods. The technique consisted of locking the buoy displacement until
the approach of a crest (or a trough) and releasing it so it achieved full velocity at the
crest (or trough) and then re-locking the displacement until the approach of the next crest
or trough. A formal theoretical foundation was established in the mid-eighties through
the work of Hoskin and Nichols [5]. In practice, the objective of latching control can be
seen as to maximize the absorbed power by “keeping” the velocity of the buoy in phase
with the excitation force. The strategy is most effective when the incoming wave has a
period greater than the resonance period of the oscillating body because by holding the
device in a latched state for a given amount of time, the net result can be understood as
“shifting” the resonance period of the device to a larger value.

Latching is a mixed feedback/feedforward control strategy, and its implementation is
based on the prediction of the excitation force caused by the incident wave. Rather than
the exact profile of the excitation force, latching requires the prediction of the next peak
in the excitation force. Although the design of the latching control strategy has been
based on a single DOF device, it can be also be implemented with additional DOFs (see,
e.g., [39]).

Latching is a type of nonlinear control because the control variable can only assume
two values, 1 or 0. Typically, latching involves application of resistive loads only, so it is
a sub-optimal control in the hydrodynamics sense. The entire formulation is developed
in the time domain, and is framed as an optimal switching control problem.

The optimal switching sequence is one that leads to maximum power absorption over
a duration of time 7', subject to the constraints imposed by the converter dynamic model
and limits on PTO force and stroke-length. In the framework of Hoskin and Nichols [5],
the switching sequence is derived using the Pontryagin Max/Min principle. Implicit in the
procedure, is the need to solve a two-point boundary value problem in the time domain,

where the boundary extends from the current instant to 7' time units into the future.
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Therefore, prediction of the exciting force is required even though the control leads to
suboptimal velocities. Early latching solutions evaluated the optimal switching sequence
using an iterative procedure. More expedient approaches have evolved in recent years,
among which empirical rules to calculate the switching sequence [36]. In this case, the
device is latched whenever the buoy reaches zero velocity and it is released approximately
Tes/4s before the next predicted peak in the excitation force, where T,..5 is the resonance
period of the device.

The calculation of the latching control law can be carried out online in both the Hoskin
and Nichols [5] approach, where the implementation is based on Pontryagin Max/Min
principle, and in the empirical approach [36]. The Hoskin and Nichols approach, how-
ever, may not be suitable for real-time implementation due to the required intensive
computation. On the opposite side, the empirical approach requires the prediction of
the incoming excitation force and the resonance period of the device (TreS)El, but it is
generally suitable for real-time implementation.

Latching is a type of switching control (Figure , the implementation of which is

carried out by assuming that the force exerted by the linear generator is of the form

fu=—=(Bu+u(t) BL)v(t) (63)

where v is the heave velocity of the buoy and B, is the damping coefficient used for
power absorption, such that the instantaneous absorbed power is P, (t) = —f,(t) v(t) =
By, v(t)%. The control signal u(t) is a switching binary function that takes the value of 0
when the device in unlatched (absorption mode), or 1 when the device is latched. When
the device is in latched mode (u(t) = 1), then the total of the damping exerted by the
PTO is equal to B, + By, where, in practice, By, takes a value large enough to prevent
the device from moving. However, since the value of By, is not infinite, the device moves
with a very small velocity when latched.

The optimal switching policy for u(t) can be obtained by using Pontryagin principle
[5]; however, this approach is not suitable for real-time implementation because of the

high computational cost. The solution chosen for the switching policy is the empirical

IThe resonance period is fixed once the structural/hydrodynamical properties of the device have been

set.
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Figure 8: Structure of latching control.

method described by Budal and Falnes in [36], where the device is being latched whenever
it reaches zero velocity, and it is being released a quarter of the resonance period before
the next predicted peak in the excitation force. Figure [Jillustrates the working principle
of latching control: by holding the device locked for an appropriate time interval so as
the peak of the velocity matched with the peak of the excitation force, the oscillating

body moves at considerably higher peak velocity and it absorbs more power.

4. Results & discussion

Table [5| summarizes the relative performance of the assessed control strategies in
irregular waves. Six different quantities are considered: net power, reactive power, PTO
force, position, velocity, and acceleration. Here, net power is the absorbed power minus
any reactive power (note that this does not include any consideration for efficiency, i.e.,
the motor is considered to be 100% efficient). Reactive power is power expended by
the WEC. For each of these quantities, three different statistical measures are reported:
average (mean), peak (98th percentile), and ratio of peak over average. For the averages,
the reported value is obtained based on an average annual calculation, which takes into
account the relative occurrence of the sea states analyzed. All values are given as the

average annual value for the quantity defined. Further, all units are metric and all results
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Figure 9: Heave velocities of latching control versus resistive control.

are shown in model scale.

From Table [5] we can see that the various control strategies have a wide range of
performances. For example, the average net power produced ranges from 52.5W for
CCC to 15.5 W for resistive control. While CCC is not considered directly implementable,
MPC produced nearly as much net power with 46.1 W (roughly 3 times that of resistive
control). PDC3, LQ, and Latching control, which are all purely feedback, produce similar
levels of net power (on the order of 25 W).

The peak/average net power also shows a wide range of results. This metric is con-
sidered to be somewhat similar to a capacity factor, in that it might indicate the degree
to which a WEC design utilizes its capabilities. A lower peak/average net power ratio
would mean that the device is generally operating in a similar region, avoiding the need
for components (e.g., PTO and power electronics) to be over-designed to accommodate
infrequent spikes. LQ shows good power absorption (50% more than resistive control),
while maintaining a low peak/average net power ratio. Conversely, PDC3 shows a rel-
ative large peak/average net power ratio. This may be partially due to some tuning,
which could be improved reduce spikes in absorption.

Many of the strategies utilize reactive power levels an order of magnitude greater
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than the net absorbed power. This may prove unrealistic in physical implementation, as
the PTO would need to be sized quite large to supply the necessary reactive power. LQ
also uses orders magnitude less reactive power compared to some of the other strategies.
This may be partially due to the fact that LQ is the only strategy that includes a model,
although very simplistic, of the PTO, which includes a resistor that provides a basic,
lumped parameter, linear model for the PTO inefficiency.

As with other metrics considered here, PTO forces required by the different control
strategies span a full order of magnitude. However, the peak/average force ratios from
each strategy were relatively similar (much more so than the net power peak/average
ratios). Acceleration may serve as a rough proxy for the loading on the mechani-
cal/structural components of a device. LQ has the lowest acceleration in Table |5} while
DP and CCC have the highest. Not surprisingly, latching control also tends to produce
relatively large accelerations.

It is also somewhat useful to compare the time history responses of the different
control strategies. Figure [[0a] shows a sample time-history from select control strategies
for the irregular sea state 15 (H; = 0.32m, T}, = 3.6s). The four subplots (a-d) show the
heave velocity, heave position, PTO force and instantaneous absorbed power, respectively.
For each of the subplots, the excitation force (which is fully linear and therefore the same
for each of the control strategies) is shown in green.

It is interesting to note that all the control strategies attempt to improve the “phase
matching” between velocity and excitation force, when compared to resistive control.
The plots also show the different specific method each control strategy uses to keep
velocity in phase with excitation. Latching control locks the device in order to match
the peaks of the velocity with the peaks of the excitation force. MPC and LQ force the
device to follow excitation with a smoother profile, by using reactive power (Figure ,
that is by accelerating the device by means of the actuator force. The smoother motion
resulting from MPC and LQ can be observed also by looking at the time profiles of the
position (Figure and the force exerted by the actuator (Figures .
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Figure 10: Sample time histories from irregular sea state 15 (Hs = 0.32m, T, = 3.6s).
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5. Conclusions

This study considered and evaluated a series of eight WEC control strategies. In ad-
dition to strategies well-studied for WECs, some novel strategies for this application were
also introduced. Using a numerical simulation, each strategy was utilized to simulate the
WEC response in a series irregular sea states. The results from these simulations were
distilled to provide a concise comparison of the performance produced by the different
control strategies. In addition to the obvious metric of power absorption, other perfor-
mance metrics were studied with the aim of providing some insight into the relative costs
and challenges of implementing the different control strategies. As WECs are intended
to be commercially profitable devices, this type of consideration is essential.

The results shown in this study begin to highlight the need for a holistic approach
to WEC design. So-called “co-design” practices, where components of a system design
which are often taken into account sequentially are instead considered in conjunction with
each other, will be needed to properly utilize advanced control for a WEC. Fundamental
design factors, such as the characteristic scale of a WEC, cannot properly be considered
without considering in earnest the eventual control strategies which may be implemented
on the device.

Thus, future work should consider a more comprehensive assessment of how control
design interfaces with overall WEC design. In this study, a device with a fixed design
was augmented with a series of control strategies. However, a more realistic study would
consider control design as part of the larger WEC design process. Also, some additional
development on the formulation of performance metrics would be helpful. Instead of
simply considering, for example, the peak PTO force across a series of sea states, processes
defined by design standards and technical specifications should be followed. In addition
to peak loading, modeling for fatigue could provide an important consideration.

If possible, similar studies should also be conducted for different WEC devices. This
study presents results only for a single specific device. We believe that the results provide
some general relative comparison, but further work will be necessary to establish just
how much such a comparison will vary for different device designs and archetypes. Addi-
tionally some further understanding can be obtained by considering control performance

in regular waves, and by normalizing both regular and irregular wave results with respect
31



576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

to the natural frequency of the device.

It will also be useful to consider a more complete model of the WEC system. As is
typical, only the hydro-mechanical system is considered in this study. Mechanical power
is used as a performance metric, but most WEC systems are targeted at producing
electricity. Thus the PTO and power electronics should be considered to provide a fuller
assessment. By adding these components for both plant and control models, the impact
of generator efficiencies and dynamics can be included in the comparison. This may, for
example, tend to penalize strategies which use large amounts of reactive power. In this
study, the only strategy to somehow take into account some aspects of the PTO efficiency
is LQ control, which includes a model of the internal resistance of the generator circuit.
Another consideration, highlighted by the large levels of peak reactive utilized by many
of the strategies considered here, would be to apply constraints to curtail reactive power
levels.

A related ongoing project is focused on PTO design, considering integration with the
full WEC system, grid, and control. The purview of this work includes consideration for
stored energy in order to provide both reactive power and smoothing. Since the PTO
may indeed play an important role in the overall system dynamics, it is possible that
including this in the plant for control design could greatly affect outcome of a study such
as this.

Another important factor not fully considered here is the realistic implementation of
these various control strategies on a deployed device. For this study, the control model
is considered to be perfectly accurate (i.e. the control model and plan model are the
same). However, this will certainly not be the case in implementation. Model uncer-
tainties and nonlinearities not captured by the reduced-order control model are likely to
adversely affect the performance of controllers. The magnitude of such adverse effects
will be dependent on the specific control strategy. Additionally, this study assumed per-
fect foreknowledge of incoming waves and no sensor noise. While methods are available
for filtering noisy measurement signals and estimating/predicting the system state, limi-
tations in these methods, and their affect on controller performance should be considered

in future studies.
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Table 2: Full list of the 17 irregular sea states considered in study. Note that sea states listed with an
occurrence percentage of 0 are from the constant-steepness set and are not considered for average annual

statistics.

Sea State Peak period, Significant wave Steepness, Occurrence

index T, [s] height, H, [m] (%) -] (%]
1 1.00 0.0247 63 0
2 1.00 0.0148 105 0
3 1.00 0.0370 42 0
4 1.53 0.0871 42 18.5
5 2.00 0.0594 105 0
6 2.05 0.1039 63 17.2
7 2.25 0.1875 42 11.3
8 2.50 0.1545 63 0
9 2.50 0.0927 105 0
10 2.58 0.1194 87 211
11 2.89 0.2523 52 7.6
12 3.00 0.3337 42 0
13 3.03 0.1363 105 12.8
14 3.46 0.1283 146 9.2
15 3.60 0.3195 63 4.9
16 4.02 0.1320 191 5.8
17 4.86 0.1617 228 1.6
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Table 3: Control strategies evaluated. *categorization is determined based on implementation in this

study, however, these strategies can be implemented, e.g., to avoid reactive power.

Computational
Constraints Reactive Foreknowledge
expense
Resistive low yes no no
MPC moderate-high yes yes™® yes
DP high yes yes* yes
SB high yes yes* yes
LQ low no yes no
PDC3 low no yes no
Latching low no no yes*

Table 4: Selected SB parameters for some of the irregular sea states.

Ny | New | Nppr | Ctrilnteg
IS10 | 3 60 7 3
IS11 | 3 60 6 3
IS12 | 3 50 7 2
IS13 | 3 50 8 2
IS14 | 3 50 7 2
IS15 | 3 50 7 2
IS16 | 3 50 7 2
IS17 | 3 60 7 2
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Table 5: Comparison of WEC control strategy performance.

CcCcC DP LQ Latch. MPC PDC3 Res. SB
Net power [W]
average 52.5 38.4 23.5 28.8 46.1 26.8 15.5 17.7
peak 4.8E3 4.6E3 4.5E2 3.9E2 1.8E3 1.3E3 1.7E2 4.9E2
peak/average 92.0 119.1 18.9 13.6 38.6 48.4 10.8 27.9
Reactive power [W]
average 1.3E2 1.7E2 3.7E0 0 4.3E1 3.2E1 0 1.3E1
peak 2.7TE3 3.1E3 7.4E1 0 7.6E2 6.8E2 0 1.9E2
peak/average 20.4 18.1 19.7 0 17.8 21.0 0 15.3
PTO force |N]
average 1.3E3 1.6E3 2.6E2 5.1E2 7.7E2 6.9E2 2.1E2 3.4E2
peak 1.0E4 1.2E4 2.1E3 3.6E3 5.7E3 5.4E3 1.1E3 1.8E3
peak/average 8.1 7.7 8.0 7.2 7.5 7.7 5.0 5.1
Position [m]
average 7.3E-2 8.4E-2 2.9E-2 3.3E-2 4.9E-2 4.0E-2 1.6E-2 3.0E-2
peak 5.3E-1 5.3E-1 1.6E-1 1.7E-1 3.1E-1 2.8E-1 7.5E-2 1.7E-1
peak/average 7.2 6.3 5.4 5.2 6.4 7.1 4.6 5.7
Velocity [m/s]
average 1.4E-1 1.5E-1 7.1E-2 6.0E-2 1.0E-1 7.6E-2 4.0E-2 8.7TE-2
peak 8.0E-1 8.3E-1 3.1E-1 4.0E-1 5.2E-1 4.1E-1 1.6E-1 4.8E-1
peak/average 5.8 5.5 4.4 6.7 5.1 5.4 4.0 5.5
Acceleration [m/s?]
average 0.31 0.38 0.07 0.21 0.13 0.12 0.11 0.28
peak 1.42 1.83 0.31 1.37 0.83 0.58 0.40 1.46
peak/average 4.5 4.9 4.4 6.6 6.2 4.7 3.6 5.3
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