

A comparison of control strategies for wave energy converters

Ryan G. Coe^{a,*}, Giorgio Bacelli^a, David G. Wilson^a, Ossama Abdelkhalik^b,
Umesh A. Korde^b, Rush D. Robinett III^b

^a*Sandia National Labs, P.O. BOX 5800 MS 1124, Albuquerque, NM 87106, USA*

^b*Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931-1295, USA*

Abstract

In this study, we employ a numerical model to compare the performance of a number of wave energy converter control strategies. The controllers selected for evaluation span a wide range in their requirements for implementation. Each control strategy is evaluated using a single numerical model with a set of sea states to represent a deployment site off the coast of Newport, OR. A number of metrics, ranging from power absorption to kinematics, are employed to provide a comparison of each control strategy's performance that accounts for both relative benefits and costs. The results show a wide range of performances from the different controllers and highlight the need for a holistic design approach which considers control design as a parallel component within the larger process WEC design.

Keywords: wave energy, control, dynamics

1. Introduction

The energy contained in ocean waves is distributed across a wide range of frequencies. In order to produce electricity efficiently, wave energy converters (WECs) must be designed to capture a large share of the energy from a broad range of ocean wave frequencies. Additionally, the majority of energy in ocean waves exists at relatively low frequencies, which are most easily accessed by relatively large WECs. To limit the size, and therefore cost, of a WEC and to increase energy absorption over a broad range of frequencies, an increasing body of research has shown power take-off (PTO) control to be an attractive path.

*rcoe@sandia.gov

10 The dynamic system of a WEC can be considered as a series of subsystems. A hy-
11 drodynamic/hydrostatic process transfers energy from the ocean to the WEC device;
12 a mechanical process transfers energy from the moving bodies of the WEC to PTO; a
13 hydraulic/magnetic/electrical process transfers the mechanical energy to electricity. Con-
14 sidering the wide range of WECs currently under design, this coupled system can take
15 many forms. While this description vastly over simplifies the various physical processes
16 involved, it does begin to emphasize the multi-layer nature of the system of interest.
17 The hydrodynamic/hydrostatic and mechanical properties of WEC can produce a cer-
18 tain frequency response; however, when coupled with input from a PTO, which can be
19 understood to act as some combination of a spring, a damper, and a mass, a new fre-
20 quency response for the overall device is achieved. It is on this basis that specific control
21 strategies for WEC PTOs can influence energy absorption.

22 A large range of strategies have been proposed and studied for the control of a WEC
23 PTO. Budal and Falnes considered both reactive control and latching in the early 1970s
24 and carried out much of the early development of latching-type ‘phase control’ through
25 both theory and wave tank experimentation [1]. An independent early application of
26 this approach was recorded in the U.S. by Dedger Jones [2]. Latching control was soon
27 being studied for WEC control by a number of other groups around the world (see, e.g.,
28 [3, 4, 5, 6]). Scruggs et al. applied a linear quadratic Gaussian (LQG) control, which
29 incorporates spectrally-dependent gain parameters [7]. Many studies in the past two
30 decades have also considered model predictive control (MPC) for WECs [8, 9]. Hals et
31 al. studied a series of control strategies and provided some comparison of these options
32 [10].

33 This study presents eight different control strategies for WEC control. Individual con-
34 troller implementations are presented and discussed. These strategies are implemented
35 for a single case study WEC device, and are used to run a series of numerical simulations.
36 From these simulations, we compare results to better understand the relative performance
37 of these different control strategies, in addition to the PTO characteristics required to
38 implement each of the algorithm. We conclude the study with some discussion on the
39 various trade-offs between these different approaches.

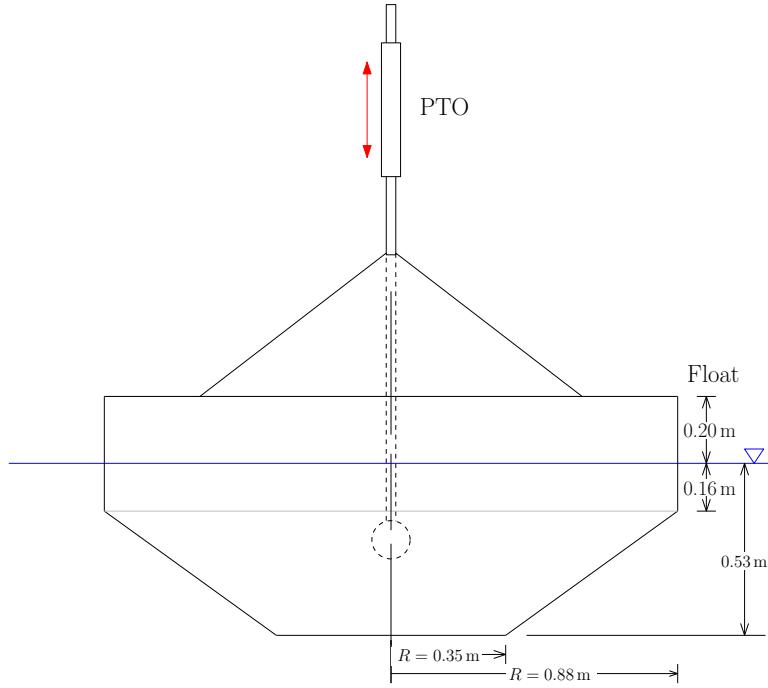


Figure 1: Test-bed WEC device used for control comparison.

40 **2. Background**

41 *2.1. Study device*

42 A test-bed WEC device was designed with the purpose of evaluating system identi-
 43 fication, modeling, and control approaches [11]. Figure 1 shows an illustration of this
 44 device, highlighting the waterline, draft and key dimensions. This device is designed
 45 to allow motion in 3 degrees-of-freedom (DOF), however, for this study only motion in
 46 heave is considered. A list of the relevant physical parameters for this WEC are listed
 47 in Table 1. This device is considered to be roughly 1/20th-scale when compared with
 48 current designs for grid-scale systems.

49 *2.2. Numerical model*

50 A model for the heave velocity of the device introduced in Section 2.1 has been
 51 developed using the formulation of Cummins [12]. In the time domain, the heave velocity

Table 1: Model-scale WEC physical parameters.

Parameter	Value
Rigid-body mass (float & slider), m (kg)	858
Displaced volume, \forall (m ³)	0.858
Float radius, r (m)	0.88
Float draft, T (m)	0.53
Water density, ρ (kg/m ³)	1000

52 can be described by the Volterra integro-differential equation [13]

$$(m + A_\infty)\ddot{z} + \int_0^t k_r(t - \lambda)\dot{z}(\lambda) d\lambda + b_v\dot{z} + k_{hs}z = f_e(t) + f_u(t), \quad (1)$$

53 where z is the vertical position of the device. The rigid-body and hydrodynamic infinite-
54 frequency added mass are represented by m and A_∞ , respectively. Radiation damp-
55 ing and frequency-dependent added mass are incorporated via the impulse response
56 function k_r . The linear product $b_v\dot{z}$ accounts for viscous damping effects. The hy-
57 drostatic/gravitational spring contribution is given by k_{hs} .

$$k_{hs} = \rho g A_{wp} \quad (2)$$

58 Here, A_{wp} is the area of the water plane. The density of the water and gravitational
59 constant are ρ and g , respectively.

60 The force applied by the PTO is represented by f_u , which is dependent on the control
61 strategy imposed. Wave excitation forces are represented by f_e . By working in the
62 frequency domain, these can be obtained for some complex wave spectrum by taking the
63 complex product of the wave input, $\zeta(\omega)$, and the device's excitation frequency response
64 function (FRF), $H(\omega)$, as:

$$F_e(\omega) = H(\omega)\zeta(\omega). \quad (3)$$

65 Thus, $F_e(\omega)$ is the complex excitation, which can be used to obtain a the time history of
66 excitation, $f_e(t)$, via the inverse Fourier transform.

67 The convolution term in (1) can be replaced by fitting a parametric model to the
 68 radiation FRF (see, e.g., [14, 15]). In state-space form, this can be written as

$$\begin{aligned}\dot{x}_r &= A_r x_r + B_r \dot{z}(t) \\ \check{u}(t) &= C_r x_r,\end{aligned}\tag{4}$$

69 Here, A_r , B_r , and C_r are the radiation state, input and output matrices, respectively.
 70 Similarly, radiation states are stored via x_r . The matrices A_r , B_r , and C_r can be tuned to
 71 approximate the non-parametric radiation FRF in either the time or frequency domain.
 72 Applying (4) along with some minor manipulations, we can rewrite (1) as system of first
 73 order ordinary differential equations (ODEs).

$$\dot{z} = v$$

$$\begin{aligned}(m + A_\infty) \dot{v} &= -C_r x_r - b_v v - k_{hs} z + f_e(t) + f_u(t) \\ \dot{x}_r &= A_r x_r + B_r \dot{z}(t)\end{aligned}\tag{5}$$

74 Using (5), we can rewrite the dynamic equation for the vertical velocity of the WEC
 75 as a single state-space model.

$$\begin{aligned}\dot{\mathbf{x}}_c(t) &= A_c \mathbf{x}_c + B_c (u_c(t) + v_c(t)) \\ \mathbf{y}_c(t) &= C_c \mathbf{x}_c(t)\end{aligned}\tag{6}$$

76 Here, $u_c(t)$ and $v_c(t)$ are control input and excitation, respectively. The state variable
 77 \mathbf{x}_c and the output variable \mathbf{y}_c are defined, respectively, as

$$\mathbf{x}_c = \begin{bmatrix} z \\ v \\ \mathbf{x}_r \end{bmatrix} \in \mathbb{R}^{2+n} \quad \mathbf{y}_c = \begin{bmatrix} z \\ v \end{bmatrix} \in \mathbb{R}^2.\tag{7}$$

78 The matrices A_c , B_c and C_c are

$$A_c = \begin{bmatrix} 0 & 1 & \mathbf{0} \\ \frac{-k_h}{m+A_\infty} & \frac{-b_v}{m+A_\infty} & \frac{-1}{m+A_\infty} C_r \\ \mathbf{0} & B_r & A_r \end{bmatrix} \in \mathbb{R}^{(n+2) \times (n+2)}\tag{8}$$

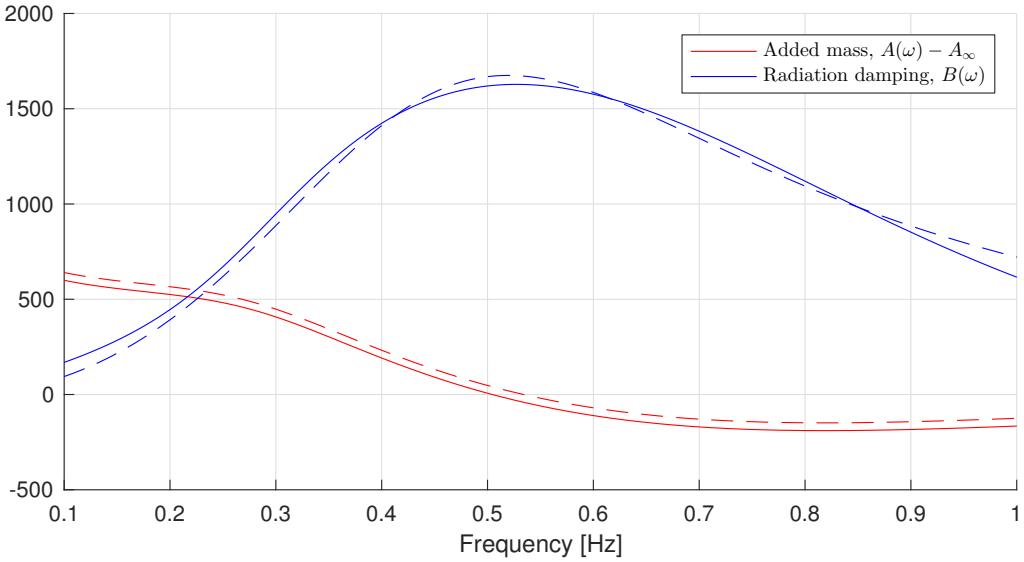


Figure 2: Added mass and radiation damping frequency response functions for WEC device; WAMIT in solid lines (-), experiment in dashed lines (- -).

$$B_c = \begin{bmatrix} 0 \\ \frac{1}{m+A_\infty} \\ \mathbf{0} \end{bmatrix} \in \mathbb{R}^{(n+2) \times 1}, \quad C_c = \begin{bmatrix} 1 & 0 & \mathbf{0} \\ 0 & 1 & \mathbf{0} \end{bmatrix} \in \mathbb{R}^{2 \times (n+2)}. \quad (9)$$

79 An initial version of this model employed coefficients obtained from the boundary
 80 element (BEM) tool WAMIT [16]. Data collected during experimental wave tank testing
 81 showed good agreement with this model [17]. The added mass and radiation damping
 82 FRFs from both of these cases (numerical and experimental) are shown in Figure 2. The
 83 FRFs from WAMIT are shown with solid lines; the FRFs based on empirical testing and
 84 system identification are shown with dashed lines.

85 *2.3. Study environment*

86 A deployment climate of Newport, OR is considered for the comparisons performed
 87 in this study. A joint probability distribution (JPD) is used to assign probabilities of
 88 a finite set of sea states. Using a k-means clustering approach (see, e.g., [18]), a set of
 89 17 Bretschneider sea states were selected to represent the deployment climate. All 17
 90 of the sea states considered for this study are shown in Figure 3 and listed in Table 2.

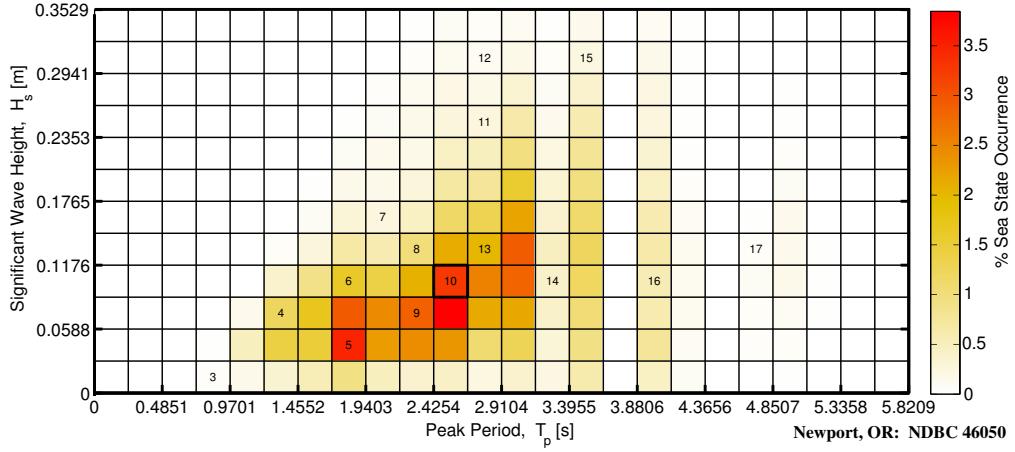


Figure 3: Numbering of the sea state. NOTE: sea states 1, 2, and 3 all fall in the same bin.

91 Here, the probability distribution of the Newport, OR climate is shown via shading in the
 92 background and the indexing number of each sea state identified in Table 2 is associated
 93 with the corresponding bin in the JPD.

94 **3. Control strategies**

95 The main purpose of a controller is to alter the dynamic behavior of a given system (in
 96 this case a WEC) in order to pursue a specific objective (e.g., maximize power absorption,
 97 smooth power output, limit loads). The majority of power produced by WEC devices
 98 occurs during resonant absorption, when the excitation force is in phase with device
 99 velocity. Thus, the control strategies considered in this study, which foremost consider
 100 maximizing power absorption, generally attempt to alter the system dynamics in order
 101 to achieve resonance.

102 Figure 4 depicts a generalized structure of a control system applied, in this particular
 103 case, to a WEC (shown as $G(s)$ in Figure 4). In general, the architecture of a control
 104 system is composed of two main blocks: feedback (FB) and feedforward (FF). The name
 105 feedback derives from the fact that an output signal (or a set of output signals), marked
 106 as y in Figure 4, is measured and fed back to the control system which continuously
 107 reacts, based on the current and past measurements, according to the control objective.
 108 Conversely, a controller implemented in feedforward mode generates a control signal

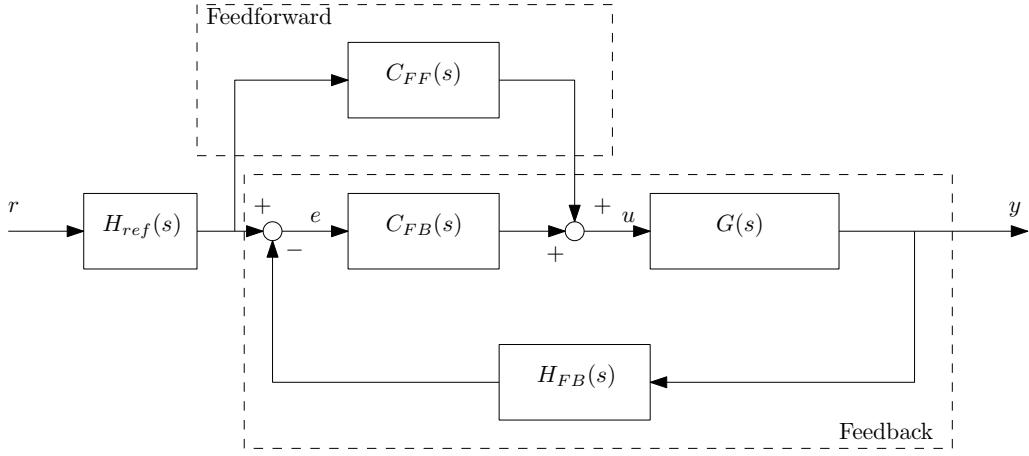


Figure 4: Basic feedforward/feedback controller structure [20].

109 based on a reference (r in Figure 4) which can be pre-determined or calculated from
 110 some quantities not related to the state of the system (e.g., incident wave elevation).
 111 Pure feedforward controllers do not react to the instantaneous state of the system (no
 112 signal is fed back to the controller). In practice, it is common for control systems to
 113 be built by combining both feedback and feedforward. The design of the control system
 114 consists of developing the control functions (FF and FB), by using the controller model,
 115 with respect to some desired performance objective. Figure 4 also depicts a pre-filter
 116 block, denoted by H_{ref} , that can be used to improve the properties of the closed-loop
 117 system, such as stability margins and sensitivity to noise and parameter uncertainty
 118 (modeling errors). This type of structure is generally known as a two degrees of freedom
 119 controller [19].

120 A number of control strategies considered here employ optimization algorithms. Op-
 121 timization can be used in both the design of a control strategy (i.e., to determine some
 122 optimal gain factors) and/or in the during execution to determine the control signal. Lin-
 123 ear quadratic control (LQ; Section 3.6) and a proportional-derivative version of complex
 124 conjugate Control (PDC3; Section 3.7) employ optimization in control design. Model pre-
 125 dictive control (MPC; Section 3.3), shape based control (SB; Section 3.5), and dynamic
 126 programming (DP; Section 3.3) employ optimization during execution to determine the
 127 control signal. This process often follows a receding horizon structure, as depicted in

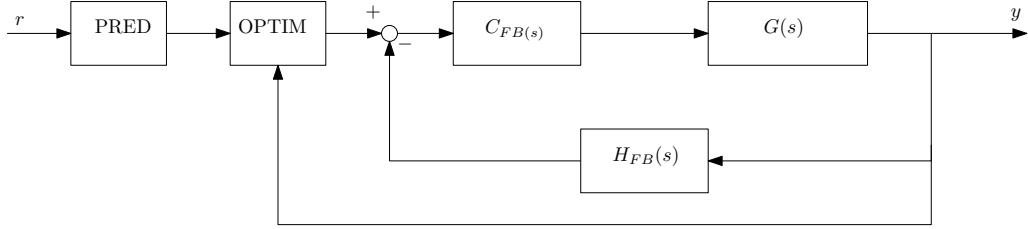


Figure 5: Basic structure for “receding horizon.”

128 Figure 5. Here, a control decision is computed based on predictions over a some finite
 129 future time. The current system state is measured and used as initial conditions at each
 130 time step in the controller computation. In some cases (such as DP and SB) the compu-
 131 tational resources required for optimization can limit real-time implementation. While
 132 these methods may not be implemented for real-time execution, they can still provide
 133 valuable insights for the control design process.

134 The following sections describe eight different control strategies which are considered
 135 and implemented here for the control of the WEC introduced in Section 2.1. Some of
 136 the strategies require reactive power, while others do not. Similarly, certain strategies
 137 are better suited than others to incorporating constraints. As shown in Table 3, the
 138 strategies selected here span the design space. Note that in some cases, a given control
 139 strategy may be implemented in a number a ways; the categorization in Table 3 reflects
 140 the most standard implementation of each strategy and that which is considered in the
 141 present study. For example, while Table 3 records the possibility of including constraints
 142 for a number of control strategies, no constraints were included in this study except for
 143 when necessary to enforce stability. Similarly, Table 3 shows that MPC, DP, SB require
 144 reactive power. However, since constraints can be introduced to these strategies, it is
 145 possible to limit the power to be one-side (i.e., no reactive power). The computational
 146 expense presented in Table 3 was determined based on the simulations run for this study.
 147 Another factor which should be considered is that the different strategies are inherently
 148 at different levels of implementation. For example, DP is considered primarily as a design
 149 tool, and due to high computational expense would be very challenging to implement on a
 150 a real-time system. At the other end of the spectrum, LQ is readily implementable on a
 151 real-time system and even uses a simple model of PTO efficiency.

152 3.1. Resistive control

153 In resistive damping control, a constant of proportionality between the force and
 154 velocity determines the resistance offered, which is also the power absorption rate. Net
 155 power capture from a wave-excited oscillating body is a resistive process. Therefore, this
 156 control strategy is a simple proportional feedback.

$$f_u = -b_{PTO} v \quad (10)$$

157 Here, the constant damping factor is b_{PTO} and serves as the proportional gain. Optimal
 158 values of b_{PTO} can be determined analytically (assuming potential flow) for monochro-
 159 matic waves (see, e.g., [21]). For irregular sea states, numerical optimization can be
 160 applied.

161 3.2. Complex conjugate control (CCC)

162 As resistive control is considered somewhat of a lower bounding case for gross WEC
 163 energy absorption, complex conjugate control (CCC) is considered to represent an upper
 164 bound. Working in the frequency domain, we can rewrite (1) as

$$\left(i\omega (m + A(\omega)) + B(\omega) + b_v + \frac{k_{hs}}{i\omega} \right) V(\omega) = F_e(\omega) + F_u(\omega). \quad (11)$$

165 From the left hand side of (11), we can define the intrinsic impedance (see, e.g., [21]) for
 166 the WEC as

$$Z_i(\omega) = i\omega (m + A(\omega)) + B(\omega) + b_v + \frac{k_{hs}}{i\omega}, \quad (12)$$

167 such that

$$\begin{aligned} Z_i(\omega)V(\omega) &= F_e(\omega) + F_u(\omega) \\ &= F_{\text{ext}}(\omega). \end{aligned} \quad (13)$$

168 Solving for the complex velocity $V(\omega)$, we have

$$V(\omega) = \frac{F_{\text{ext}}(\omega)}{Z_i(\omega)} = \frac{F_{\text{ext}}(\omega)}{\left(i\omega (m + A(\omega)) + B(\omega) + b_v + \frac{k_{hs}}{i\omega} \right)}. \quad (14)$$

¹⁶⁹ If we define some impedance, $Z_u(\omega)$ for the PTO force, such at $F_u(\omega) = -Z_u(\omega)V(\omega)$,
¹⁷⁰ the useful time-averaged power produced will subsequently be

$$\begin{aligned} P_u(\omega) &= \frac{1}{2}\mathbb{R}\{-F_u(\omega)\dot{z}(\omega)\} \\ &= \frac{1}{2}\mathbb{R}\{Z_u(\omega)\}|\dot{z}(\omega)|^2. \end{aligned} \quad (15)$$

¹⁷¹ For resonance, it can be shown that maximum useful power is obtained by setting

$$Z_u(\omega) = -Z_i^*(\omega), \quad (16)$$

¹⁷² where $*$ denotes the complex conjugate.

¹⁷³ It is well known that when $F_e(\omega)$ is formed as function of the wave elevation at the
¹⁷⁴ location of the floating body (as is typical), (16) is non-causal (i.e., $f_u(t)$ depends on
¹⁷⁵ future values of $f_e(t)$) [22]. For this study, as described in Section 2.2, we simply pre-
¹⁷⁶ compute $f_e(t)$ for the entire simulation period. This represents an assumption of perfect
¹⁷⁷ prediction of incoming waves (as well as the location of the device). The control strategies
¹⁷⁸ that depend on current and future knowledge of the excitation force (i.e., CCC, MPC,
¹⁷⁹ DP, SB) will undoubtedly benefit from this assumption. Thus, this assumption leads to
¹⁸⁰ an upper estimate for the performance of these strategies.

¹⁸¹ *3.3. Model predictive control (MPC)*

¹⁸² Model predictive control is an optimization based control strategy that is derived
¹⁸³ from attempting to solve a quadratic programing (QP) problem in a receding horizon
¹⁸⁴ fashion (see Figure 5). In the implementation employed here, no inner feedback loop
¹⁸⁵ has been considered, therefore the transfer function of the feedback block is $H_{FB}(s) = 0$
¹⁸⁶ and the controller is $C_{FB}(s) = 1$, however, as shown in Figure 5, the current state of
¹⁸⁷ the system is passed to the optimization block directly. The signal r is the excitation
¹⁸⁸ force and the prediction block (“PRED” in Figure 5) predicts the value of the excitation
¹⁸⁹ force over some time horizon, which is used to optimize the PTO input. As noted in
¹⁹⁰ Section 3.2, for this study the prediction process is assumed to be perfect. The receding
¹⁹¹ horizon procedure is repeated iteratively to compensate for disturbances and imperfect
¹⁹² modeling by updating the current state of the system every time the optimization is
¹⁹³ carried out.

194 The MPC algorithm requires the dynamic model to be formulated in discrete time.
 195 Following [8], the discretization of the model in (6) is carried out by means of a triangle-
 196 hold (first order-hold), which results in continuous and piecewise linear profile for the
 197 optimal PTO force. The benefit of this type of discretization is to allow for a longer
 198 update interval compared to a zero-hold discretization, which provides only a discon-
 199 tinuous, piecewise constant profile for the optimal control force. Thus, the state space
 200 model resulting from the discretization is

$$\mathbf{x}(k+1) = A \mathbf{x}(k) + B \Delta u(k+1) + F \Delta v(k+1) \quad (17)$$

$$\mathbf{y}(k) = C \mathbf{x}(k). \quad (18)$$

201 Here, the matrices A , B , F , and C are

$$A = \begin{bmatrix} \phi(h) & \Gamma & \Gamma \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \in \mathbb{R}^{(n+4) \times (n+4)} \quad B = \begin{bmatrix} \Lambda \\ 1 \\ 0 \end{bmatrix} \in \mathbb{R}^{(n+4) \times 1} \quad (19)$$

$$F = \begin{bmatrix} \Lambda \\ 0 \\ 1 \end{bmatrix} \in \mathbb{R}^{(n+4) \times 1} \quad C = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \end{bmatrix} \in \mathbb{R}^{3 \times (n+4)}, \quad (20)$$

202 with $\phi(h) = e^{A_c h}$ and

$$\Gamma = A_c^{-1} (\phi(h) - I) B_c \in \mathbb{R}^{(n+2) \times 1} \quad (21)$$

$$\Lambda = \frac{1}{h} A_c^{-1} (\Gamma - h B_c) \in \mathbb{R}^{(n+2) \times 1}. \quad (22)$$

203 Note that the state vector, $\mathbf{x}(k)$, has been augmented by including the PTO force
 204 and the excitation force; also the output vector has been augmented to include the PTO
 205 force. The state and output vectors have been augmented because the input has been
 206 expressed as increments with respect to its previous value (Δu and Δv are the change
 207 in control input and excitation, respectively), therefore the dynamical system had to be
 208 augmented with two integrators corresponding to the last two rows of matrix A .

209 Letting N denote the number of prediction steps, the predicted output of the system
210 can be written as function of the current state and future inputs increments as

$$\underline{\mathbf{y}}(k) = \mathcal{P}\mathbf{x}(k) + \mathcal{T}_u \underline{\Delta\mathbf{u}}(k) + \mathcal{T}_v \underline{\Delta\mathbf{v}}(k), \quad (23)$$

211 where \mathcal{P} , \mathcal{T}_u and \mathcal{T}_v are

$$\mathcal{P} = \begin{bmatrix} CA \\ CA^2 \\ \vdots \\ CA^N \end{bmatrix} \in \mathbb{R}^{3N \times (n+4)} \quad (24)$$

$$\mathcal{T}_u = \begin{bmatrix} CB & 0 & 0 & \dots \\ CAB & CB & 0 & \dots \\ CA^2 B & CAB & CB & \dots \\ \vdots & \vdots & \vdots & \vdots \\ CA^{N-1} B & CA^{N-2} B & CA^{N-3} B & \dots \end{bmatrix} \in \mathbb{R}^{3N \times N} \quad (25)$$

$$\mathcal{T}_v = \begin{bmatrix} CF & 0 & 0 & \dots \\ CAF & CF & 0 & \dots \\ CA^2 F & CAF & CF & \dots \\ \vdots & \vdots & \vdots & \vdots \\ CA^{N-1} F & CA^{N-2} F & CA^{N-3} F & \dots \end{bmatrix} \in \mathbb{R}^{3N \times N} \quad (26)$$

212 The quantity to be maximized is the mechanical work done by the PTO over the
213 prediction horizon T , expressed as

$$E_{t,t+T} = -(m + A_\infty) \int_t^{t+T} u(\tau)v(\tau) d\tau. \quad (27)$$

214 By means of the discretization, this quantity can be written in matrix form as the
215 quadratic cost function J

$$J = \frac{1}{2} \underline{\Delta\mathbf{u}}^T \mathcal{T}_u^T Q \mathcal{T}_u \underline{\Delta\mathbf{u}} + \underline{\Delta\mathbf{u}}^T \mathcal{T}_u^T Q (\mathcal{P}\mathbf{x} + \mathcal{T}_v \underline{\Delta\mathbf{v}}), \quad (28)$$

²¹⁶ where Q and M are

$$Q = \begin{bmatrix} M & & & \\ & \ddots & & \\ & & M & \\ & & & \frac{1}{2}M \end{bmatrix}, \quad M = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}. \quad (29)$$

²¹⁷ Constraints on the maximum PTO force and maximum displacement can be included
²¹⁸ in the formulation of the optimization problem using the linear inequalities

$$\begin{bmatrix} M_z \\ -M_z \end{bmatrix} \mathcal{T}_u \underline{\Delta \mathbf{u}} = \begin{bmatrix} -M_z \\ M_z \end{bmatrix} (\mathcal{P} \mathbf{x} + \mathcal{T}_v \underline{\Delta \mathbf{v}}) + z_{max} \quad (30)$$

$$\begin{bmatrix} M_f \\ -M_f \end{bmatrix} \mathcal{T}_u \underline{\Delta \mathbf{u}} = \begin{bmatrix} -M_f \\ M_f \end{bmatrix} (\mathcal{P} \mathbf{x} + \mathcal{T}_v \underline{\Delta \mathbf{v}}) + f_{max}, \quad (31)$$

²¹⁹ where M_z and M_f are

$$M_z = \begin{bmatrix} C_z & & & \\ & \ddots & & \\ & & C_z & \\ & & & C_z \end{bmatrix} \in \mathbb{R}^{N \times 3N} \quad C_z = [1 \ 0 \ 0] \quad (32)$$

$$M_f = \begin{bmatrix} C_f & & & \\ & \ddots & & \\ & & C_f & \\ & & & C_f \end{bmatrix} \in \mathbb{R}^{N \times 3N} \quad C_f = [0 \ 0 \ 1]. \quad (33)$$

²²⁰ *3.4. Dynamic programming (DP)*

²²¹ Dynamic programming (DP) is a useful mathematical technique for making a se-
²²² quence of interrelated decisions. It provides a systematic procedure for determining the
²²³ optimal combination of decisions [23]. The basis of the DP approach is the Bellman's
²²⁴ principle of optimality [24]. An optimal sequence of decisions has the property that at
²²⁵ any stage (time) the remaining decisions must be optimal for the remaining problem

226 with the decision and state resulting from the previous decision considered as initial con-
227 ditions. There is no standard mathematical formulation of the dynamic programming
228 problem; unlike other techniques, such as linear programming, DP is a general approach
229 to problem solving.

230 Hence the implementation of DP requires developing a tailored algorithm and equa-
231 tions for the particular application. In this optimal WEC control problem, the space-time
232 domain is discretized. This discretization renders the obtained solution sub-optimal. At
233 each time node, the problem can be thought of as searching for the optimal control (de-
234 cision) at that time, such that the extracted energy is maximized over a given future
235 horizon. DP is a receding horizon strategy (see Figure 5) and in the current implemen-
236 tation does not include a inner feedback loop (block $C_{FB}(s) = 1$ and feedback block
237 $H_{FB}(s) = 0$). Instead, as shown in Figure 5, the current state of the system is passed to
238 the optimization block directly.

239 The states are discretized in space and time. This discretization is fundamental
240 for DP operation and is crucial for computational efficiency/feasibility of the DP ap-
241 proach. Given maximum and minimum values for each of the system states, the state
242 space is divided into nodes of equal inter-spaces. The number of nodes for the states,
243 $N_{x1}, N_{x2}, \dots, N_{xn}$, are tuning parameters. An illustration for a two-dimensional dis-
244 cretized domain is shown in Figure 6. In this discretized domain, any state \vec{x}_i , for
245 instance in box 1, is associated with the state vector at the node \vec{x}_{al} in the same box.
246 When the system transitions from a state \vec{x}_i at time step k to a state \vec{x}_j , for instance in
247 box 2, at time step $k + 1$ through a control u , the two associated states for \vec{x}_i and \vec{x}_j , \vec{x}_{al}
248 and \vec{x}_{am} , respectively, are computed and stored. The transition between any two other
249 states whose associated states are also \vec{x}_{al} and \vec{x}_{am} (i.e., transition between any state in
250 box 1 to any state in box 2) at the time step k and $k + 1$, respectively, is considered to
251 have the same fitness value as the fitness of the transition between \vec{x}_i and \vec{x}_j ; hence a
252 significant computational effort can be saved.

253 The process of dynamic programming for the WEC optimal control is here described.
254 Suppose that the control is updated at a rate of u_{rate} Hz. Given a current state vector
255 \vec{x}_k and current time t_k , the optimal control over a horizon (H seconds) is computed,
256 u_1, u_2, \dots, u_N , where $N = H \times u_{rate}$. Only the first control u_1 is used to update the

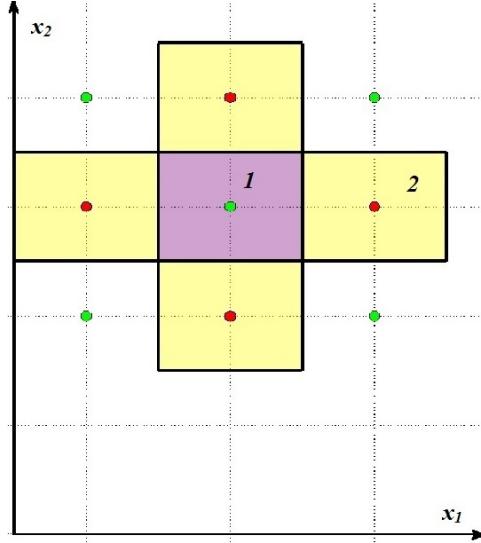


Figure 6: Discretization of the state space for DP implementation.

257 current state to a new state \vec{x}_{k+1} . This process is repeated. To implement this process,
 258 three matrices are constructed and updated at a rate u_{rate} ; also an index is given to
 259 each associated state. The three matrices are: $S_{Ind,N}$, $U_{Ind,N}$, and $I_{Ind,N}$, where $Ind =$
 260 $N_{x1} \times N_{x2}$ is the total number of indices. The matrix $S_{Ind,N}$ contains associated states
 261 at N different times starting from the current time until the end of the horizon H . The
 262 matrix element $S(i, k)$, for instance, includes the index of the associated states at time
 263 $k - 1$ that is transitioned to the associated state i at time k . The corresponding control
 264 used for this transition is stored in $U(i, k)$. The corresponding extracted energy is stored
 265 in $I(i, k)$.

266 The three matrices (S , U and I) are initialized recursively. Starting from the initial
 267 state \vec{x}_0 at time t_0 , each of the Nu discrete control values between u_{max} and $-u_{max}$ is
 268 applied to \vec{x}_0 to compute a set of new states $\vec{x}_1, \dots, \vec{x}_{Nu}$ at time t_1 . The associated states
 269 ($\vec{x}_{a0}, \vec{x}_{a1}, \dots$, and \vec{x}_{aNu}) of the states $\vec{x}_0, \vec{x}_1, \dots$, and \vec{x}_{Nu} , respectively, are computed
 270 and stored in the S matrix.

$$\begin{aligned}
S(\vec{x}_{\mathbf{a}l}, 1) &= \vec{x}_{\mathbf{a}0} \\
&\vdots \\
S(\vec{x}_{\mathbf{aN}u}, 1) &= \vec{x}_{\mathbf{a}0}
\end{aligned} \tag{34}$$

²⁷¹ The corresponding controls and extracted energies are stored in U and I matrices as
²⁷² follows

$$\begin{aligned}
U(\vec{x}_{\mathbf{a}l}, 1) &= u_1 \\
&\vdots \\
U(\vec{x}_{\mathbf{aN}u}, 1) &= u_{N_u} \\
I(\vec{x}_{\mathbf{a}l}, 1) &= u_1 \times \vec{x}_0(2) \\
&\vdots \\
I(\vec{x}_{\mathbf{aN}u}, 1) &= u_{N_u} \times \vec{x}_0(2)
\end{aligned} \tag{35}$$

²⁷³ Starting from each of $\vec{x}_1, \dots, \vec{x}_{N_u}$ as initial states, the above process is repeated recur-
²⁷⁴ sively until time t_N to initialize the three matrices. The extracted energy is accumulated
²⁷⁵ in subsequent steps, e.g.,

$$I(\vec{x}_{\mathbf{a}4}, 2) = I(\vec{x}_{\mathbf{a}1}, 1) - u_1 \times \vec{x}_1(2) \tag{36}$$

²⁷⁶ After initialization, the last column in the I matrix is scanned for the maximum value
²⁷⁷ (maximum extracted energy). This entry in the I matrix at time t_N is traced back in
²⁷⁸ the U matrix to find the corresponding control at initial time u_1 . This initial control is
²⁷⁹ applied to the initial state to compute the new updated state. The above process repeats
²⁸⁰ iteratively. It is not necessary to compute the full matrices anymore; we only need to
²⁸¹ compute one additional column in each matrix, at each new time step.

²⁸² *3.5. Shape-based (SB) control*

²⁸³ The SB approach was recently developed for control of wave energy conversion [25],
²⁸⁴ for space trajectory optimization [26, 27, 28, 29], and it has its roots in pseudo-spectral

285 optimal control [30, 31]. In pseudo-spectral methods, the system dynamics are approx-
 286 imated by function series. The derivative of the state vector is approximated by the
 287 analytic derivative of the corresponding approximating function of the state.

288 This SB approach differs from the pseudo-spectral optimal control approach in that
 289 it approximates only one state (buoy's vertical velocity) using Fourier series as opposed
 290 to approximating all the system's states and the control in pseudo-spectral methods;
 291 hence the SB method is computationally faster. The SB approach benefits from a priori
 292 knowledge about the shape of one of the states to generate a good initial guess for the
 293 optimization process. In this development, the buoy's vertical velocity is selected to
 294 be the approximated state since the shape of the wave vertical velocity can be used as
 295 initial guess for the buoy's vertical velocity. For this, a Fourier series expansion is used
 296 for approximation. Hence, existing, well-developed optimization algorithms may be used
 297 to solve the transformed problem [31].

298 The SB control approach is a receding horizon strategy. The implementation of SB
 299 used here does not include an inner feedback loop (block $C_{FB}(s) = 1$ and feedback block
 300 $H_{FB}(s) = 0$). However, as shown in Figure 5, the current state of the system is passed
 301 to the optimization block directly.

302 For the WEC optimal control problem, the SB control approach approximate the
 303 buoy's vertical velocity, $v_f(t)$, as follows:

$$v_f(t) \equiv x_2 = \frac{a_0}{2} + \sum_{n=1}^N \left(a_n \cos \left(\frac{n\pi}{H} t \right) + b_n \sin \left(\frac{n\pi}{H} t \right) \right) \quad (37)$$

304 Where H is the predication horizon time interval, and N is number of Fourier terms
 305 which is a design parameter. The coefficients a_0 , a_n , and b_n are the design variables to
 306 be optimized in order to obtain the shape of $v_f(t)$ that would maximize the extracted
 307 energy. (Note that including a_0 in (37) allows for a nonzero initial value for $v_f(t)$.) For
 308 a given set of the coefficients, $v_f(t)$ is computed using (37). The PTO control input
 309 associated with the obtained buoy's vertical velocity is computed using the system's
 310 dynamic model (A , B , C , D matrices).

311 The SB optimal control problem is formulated as: find the optimal values of the
 312 coefficients a_0 , a_n , and b_n , $\forall n = 1 \dots N$ such that the extracted energy is maximized,

313 subject to the constraints: $u(t) < u_{max}$, $0 < t < T$. The optimal control problem is con-
 314 verted to a parameters optimization problem. An interior point optimization algorithm
 315 is used for optimizing the coefficients. A good initial guess for the coefficients a_0 , a_n ,
 316 and b_n ($\forall n = 1 \dots N$) can be obtained if we note that the wave velocity model can be
 317 approximated using Fourier series as follows:

$$w(t) = \frac{c_0}{2} + \sum_{n=1}^N \left(c_n \cos \left(\frac{n\pi}{T} t \right) + d_n \sin \left(\frac{n\pi}{T} t \right) \right) \quad (38)$$

318 In (38), the coefficients c_0 , c_n , and d_n can be computed given a prediction for $w(t)$. These
 319 coefficients are used as initial guesses for the coefficients a_0 , a_n , and b_n , respectively.

320 The SB approach computes the required control at each control update step over the
 321 prediction horizon. These control updates are stored. In order to save computational
 322 time, it is possible to use these control updates at subsequent control time steps without
 323 updating the control calculations. The number of control steps that do not need control
 324 calculations is $CtrlInteg$. The following parameters need to be selected:

- 325 • N_H : an integer that represents the horizon length in units of wave period (or peak
 326 period for irregular sea states)
- 327 • N_{cw} : an integer that determines the number of control updates in one wave period
- 328 • N_{FFT} : the number of Fourier terms
- 329 • $CtrlInteg$: an integer that determines the step of updating the control calculations

330 The optimal selection for these parameters varies depending on the sea state being
 331 solved. Table 4 shows the parameters' values for some of the irregular sea states.

332 3.6. Linear quadratic (LQ) control

333 Linear quadratic (LQ) control is a pure feedback control strategy (see Figure 4),
 334 meaning that the control signal can be expressed as a function of the current state by
 335 means of the controller $C_{FB}(s)$. For this reason, the LQ control strategy requires a state
 336 estimator (block $H_{FB}(s)$). LQ does not include any feedforward block ($C_{FF}(s)$) nor
 337 input conditioning/pre-filtering block ($H_{ref}(s)$), and the reference signal r is zero.

338 LQ optimal control is an optimization based design technique for the calculation of a
 339 feedback law. The linear quadratic regulator (LQR) and the linear quadratic Gaussian
 340 (LQG) controller are two common “special cases” of LQ optimal control problems. In
 341 particular, consider the linear dynamical system (non-necessarily time-invariant)

$$\dot{x}(t) = A(t)x(t) + B(t)u(t), \quad (39)$$

342 where $u(t) \in \mathbb{R}^m$ is the input and $x(t) \in \mathbb{R}^m$ is the state. The objective of the LQR is
 343 to find a feedback matrix $K(t)$, such that the closed-loop system with feedback

$$u(t) = -K(t)x(t) \quad (40)$$

344 minimizes the function J

$$J = \int_{t_0}^{t_f} x^T Q x + x^T H u + u^T R u \, dt + x(t_f)^T F x(t_f), \quad (41)$$

345 where $Q \geq 0$, $F \geq 0$ and $R > 0$ [32]. The weight matrices Q , H , R , and F are in general
 346 design parameters to be tuned. The feedback gain K is calculated as $K(t) = R^{-1}B^T P(t)$,
 347 where the symmetric matrix P is the solution of the Riccati equation

$$-\dot{P} = P A + A^T P - (P B + H) R^{-1} (B^T P + H^T) + Q, \quad (42)$$

348 with boundary condition $P(t_f) = F$.

349 A special case of the LQR problem is the infinite-time and time-invariant LQR, that
 350 is when $t_f \rightarrow \infty$ and the matrices A and B are constant. In this case, both the gain
 351 matrix K and the matrix P are constant; in particular,

$$K = R^{-1}B^T P \quad (43)$$

352 and P is the solution of Continuous time Algebraic Riccati Equation (CARE)

$$P A + A^T P - (P B + H) R^{-1} (B^T P + H^T) + Q. \quad (44)$$

353 The LQG control problem differs from the LQR in that it considers dynamical systems
 354 affected by noise and for which the state is not accessible. The LQG problem is solved by

355 applying the separation principle, stating that the control design and the estimator design
 356 can be carried out independently. In practice, the LQG comprises an LQR and a Kalman
 357 filter, which is used for the estimation of the state from noisy outputs (measurements).
 358 Assuming the system is time-invariant, it may be described as

$$\dot{x} = Ax + Bu + k \quad (45)$$

$$y = Cx + \varpi, \quad (46)$$

359 where y is the system output, k is the system noise and ϖ is the measurement noise.
 360 A fundamental assumption for optimality is that the noise (both k and ϖ) is white and
 361 Gaussian. The estimate of the state \hat{x} is given by the Kalman-Bucy filter

$$\dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x}) \quad (47)$$

362 with initial condition $\hat{x}(0) = E[x(0)]$. The Kalman gain L is calculated as $L = SC^TW^{-1}$
 363 with $W = E[\varpi\varpi^T]$. The term S is the solution of the Riccati equation.

$$0 = AS + S A^T - SC^TW^{-1}CS + V \quad (48)$$

364 where $V = E[kk^T]$. By applying the separation principle, the gain K is calculated as in
 365 the LQR case, that is via (43), and by using the same Riccati equation in (44) for the
 366 calculation of P .

367 For this study, both the control system and the estimator are designed based on the
 368 formulation described in [7] as a single-input/single-output. However, the LQG allows the
 369 design of multi-input/multi-output controllers. More specifically, the controller model is
 370 composed of a linear system (A_d, B_d, C_d) describing the heave dynamics, combined with a
 371 second linear system (A_e, B_e, C_e) describing the excitation, which is considered as colored
 372 system noise. Thus, we write the dynamic model in heave as

$$\dot{x}_d = A_d x_d + B_d u + B_d f_e \quad (49)$$

$$y = C_d x, \quad (50)$$

373 while the model of the excitation force is

$$\dot{x}_e = A_e x_e + B_e \varpi \quad (51)$$

$$f_e = C_e x_e \quad (52)$$

374 The state vector x_d and the system matrices A_d and B_d the same as those used in (6)
 375 (i.e., $A_d = A_c$ and $B_d = B_c$). The input u is the PTO force and the output y is the
 376 heave velocity ($y = v$), thus the output matrix C_d is different from (6) (i.e., it is the last
 377 row of C_c in (6)).

378 The linear system (A_e, B_e, C_e) is obtained by first approximating the wave spectrum
 379 $S(\omega)$ with a transfer function $\tilde{S}(\omega) \approx S(\omega)$, as described in [33]. The spectral character-
 380 istics of the sea are assumed to follow a Bretschneider distribution. The excitation force
 381 $E(\omega)$ is calculated as

$$E(\omega) = H(\omega) \tilde{S}(\omega), \quad (53)$$

382 where $H(\omega)$ is the excitation FRF defined in (3), and the matrices A_e, B_e, C_e are ob-
 383 tained through a balanced realization of the transfer function $E(\omega)$. The matrices of the
 384 augmented state space model are built as

$$A = \begin{bmatrix} A_d & B_d C_e \\ \mathbf{0} & A_e \end{bmatrix} \quad B' = \begin{bmatrix} B_d \\ \mathbf{0} \end{bmatrix} \quad B_\varpi = \begin{bmatrix} \mathbf{0} \\ B_e \end{bmatrix} \quad C' = [C_d \ \mathbf{0}], \quad (54)$$

385 resulting in the dynamical system

$$\dot{x} = A x + B' u + B_\varpi \varpi \quad (55)$$

$$y = C' x. \quad (56)$$

386 The system is analogous to the model for the LQG problem in (45) and (46). However,
 387 the cost function to be minimized is different. In fact, the objective is to maximize
 388 the expected value of the electrical absorbed power $\bar{P}_{abs} = E[-\nu_{out} i]$, where ν_{out} is the
 389 output voltage and i is the current. The instantaneous power can be written as

$$-\nu_{out} i = -(\nu_{emf} + R i) i = -\nu_{emf} i - R i^2, \quad (57)$$

390 where ν_{emf} is the back electromotive force. As depicted in Figure 7, the force and
 391 velocity are related to the current and voltage as

$$f = K_i i \quad \nu = K_v v, \quad (58)$$

392 thus the dynamical system can be redefined in terms of the current i as the input, and
 393 the voltage ν_{out} as the output, by redefining B and C as

$$B = B' K_i \quad C = K_v C'. \quad (59)$$

394 The resulting LQ problem is then defined by the cost function

$$J = -E [x^T H i + i^T R i], \quad (60)$$

395 subject to the dynamical the model

$$\dot{x} = A x + B i + B_\omega \omega \quad (61)$$

$$v = C x. \quad (62)$$

396 Note that (60) is written in the same form as the standard LQ problem in (41), with
 397 $Q = 0$ and $H = C^T$. The R matrix corresponds to the resistance in the PTO model.

398 The LQ problem defined by (60), (61) and (62) depends of the wave spectra because
 399 the matrices A_e, B_e, C_e are calculated from $S(\omega)$. Therefore, the feedback gain, opti-
 400 mized by (60), needs to be updated whenever the spectral properties of the sea change.
 401 The optimization problem has an analytical solution (the feedback gain matrix) because
 402 the problem is linear quadratic (LQ) (i.e., the model is linear and the cost function is
 403 quadratic). The solution to the LQ problem is found by solving the CARE in (44), which
 404 is build using (60), (61), and (62). With this control strategy is not possible to include
 405 constraints in the problem formulation.

406 *3.7. PD version of CC control (PDC3)*

407 This control strategy sub-optimally (in terms of power absorption) realizes complex
 408 conjugate control (CCC) via a feedback strategy (see Figure 4) by creating a resonate

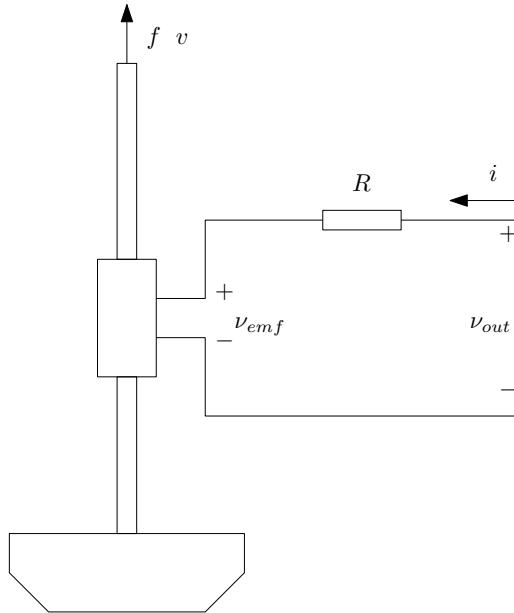


Figure 7: Schematic for LQ control.

409 generator. The theoretical underpinnings of complex conjugate control are fundamentally
 410 linear, and hence PDC3 this is also linear. This strategy targets individual frequency
 411 components that come from the excitation input signal. Each individual frequency uses
 412 a proportional-derivative (PD) control to provide both optimal resistive and reactive
 413 elements. By resonating each frequency component and summing them together, the
 414 controller feedback effort that maximizes the amount of absorbed power is provided. A
 415 fully detailed description of this control strategy is provided in [34].

416 The controller model consists of a linear transfer function with individual feedback for
 417 a bank of filters that isolate primary frequencies associated with a given sea state irregular
 418 wave input profile. Control design consists of an offline filter design optimization process
 419 that includes the number of filters and frequencies selected with their corresponding Q-
 420 factor (which is a parameter related to the bandwidth of the filter). The optimal P and
 421 D are values are derived from linear complex conjugate control. The goal is to have the
 422 filters resonate for frequencies that are off-resonance, which will require reactive power
 423 to help boost total energy capture width and absorbed power.

424 In the current implementation, the filter sets are sea state specific. A range of 1 – 3

425 peaking filters where used during this study for each sea state. As development work
426 continues on this strategy, the filter set is expected to become sea state independent.

427 *3.8. Latching*

428 Latching is a type of switching control, the origins of which in wave energy conversion
429 can be traced back to early studies on small heaving point absorber buoys with short
430 natural resonant periods. The technique consisted of locking the buoy displacement until
431 the approach of a crest (or a trough) and releasing it so it achieved full velocity at the
432 crest (or trough) and then re-locking the displacement until the approach of the next crest
433 or trough. A formal theoretical foundation was established in the mid-eighties through
434 the work of Hoskin and Nichols [5]. In practice, the objective of latching control can be
435 seen as to maximize the absorbed power by “keeping” the velocity of the buoy in phase
436 with the excitation force. The strategy is most effective when the incoming wave has a
437 period greater than the resonance period of the oscillating body because by holding the
438 device in a latched state for a given amount of time, the net result can be understood as
439 “shifting” the resonance period of the device to a larger value.

440 Latching is a mixed feedback/feedforward control strategy, and its implementation is
441 based on the prediction of the excitation force caused by the incident wave. Rather than
442 the exact profile of the excitation force, latching requires the prediction of the next peak
443 in the excitation force. Although the design of the latching control strategy has been
444 based on a single DOF device, it can be also be implemented with additional DOFs (see,
445 e.g., [35]).

446 Latching is a type of nonlinear control because the control variable can only assume
447 two values, 1 or 0. Typically, latching involves application of resistive loads only, so it is
448 a sub-optimal control in the hydrodynamics sense. The entire formulation is developed
449 in the time domain, and is framed as an optimal switching control problem.

450 The optimal switching sequence is one that leads to maximum power absorption over
451 a duration of time T , subject to the constraints imposed by the converter dynamic model
452 and limits on PTO force and stroke-length. In the framework of Hoskin and Nichols [5],
453 the switching sequence is derived using the Pontryagin Max/Min principle. Implicit in the
454 procedure, is the need to solve a two-point boundary value problem in the time domain,
455 where the boundary extends from the current instant to T time units into the future.

456 Therefore, prediction of the exciting force is required even though the control leads to
 457 suboptimal velocities. Early latching solutions evaluated the optimal switching sequence
 458 using an iterative procedure. More expedient approaches have evolved in recent years,
 459 among which empirical rules to calculate the switching sequence [36]. In this case, the
 460 device is latched whenever the buoy reaches zero velocity and it is released approximately
 461 $T_{res}/4$ s before the next predicted peak in the excitation force, where T_{res} is the resonance
 462 period of the device.

463 The calculation of the latching control law can be carried out online in both the Hoskin
 464 and Nichols [5] approach, where the implementation is based on Pontryagin Max/Min
 465 principle, and in the empirical approach [36]. The Hoskin and Nichols approach, how-
 466 ever, may not be suitable for real-time implementation due to the required intensive
 467 computation. On the opposite side, the empirical approach requires the prediction of
 468 the incoming excitation force and the resonance period of the device (T_{res})¹, but it is
 469 generally suitable for real-time implementation.

470 Latching is a type of switching control (Figure 8), the implementation of which is
 471 carried out by assuming that the force exerted by the linear generator is of the form

$$f_u = -(B_u + u(t) B_L)v(t) \quad (63)$$

472 where v is the heave velocity of the buoy and B_u is the damping coefficient used for
 473 power absorption, such that the instantaneous absorbed power is $P_u(t) = -f_u(t)v(t) =$
 474 $B_u v(t)^2$. The control signal $u(t)$ is a switching binary function that takes the value of 0
 475 when the device in unlatched (absorption mode), or 1 when the device is latched. When
 476 the device is in latched mode ($u(t) = 1$), then the total of the damping exerted by the
 477 PTO is equal to $B_u + B_L$, where, in practice, B_L takes a value large enough to prevent
 478 the device from moving. However, since the value of B_L is not infinite, the device moves
 479 with a very small velocity when latched.

480 The optimal switching policy for $u(t)$ can be obtained by using Pontryagin principle
 481 [5]; however, this approach is not suitable for real-time implementation because of the
 482 high computational cost. The solution chosen for the switching policy is the empirical

¹The resonance period is fixed once the structural/hydrodynamical properties of the device have been set.

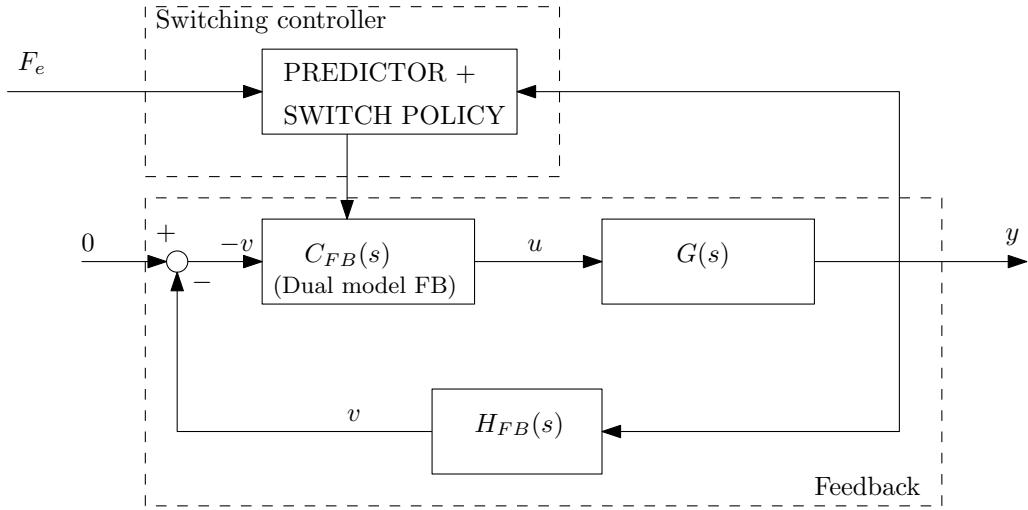


Figure 8: Structure of latching control.

483 method described by Budal and Falnes in [36], where the device is being latched whenever
 484 it reaches zero velocity, and it is being released a quarter of the resonance period before
 485 the next predicted peak in the excitation force. Figure 9 illustrates the working principle
 486 of latching control: by holding the device locked for an appropriate time interval so as
 487 the peak of the velocity matched with the peak of the excitation force, the oscillating
 488 body moves at considerably higher peak velocity and it absorbs more power.

489 **4. Results & discussion**

490 Table 5 summarizes the relative performance of the assessed control strategies in
 491 irregular waves. Six different quantities are considered: net power, reactive power, PTO
 492 force, position, velocity, and acceleration. Here, net power is the absorbed power minus
 493 any reactive power (note that this does not include any consideration for efficiency, i.e.,
 494 the motor is considered to be 100% efficient). Reactive power is power expended by
 495 the WEC. For each of these quantities, three different statistical measures are reported:
 496 average (mean), peak (98th percentile), and ratio of peak over average. For the averages,
 497 the reported value is obtained based on an average annual calculation, which takes into
 498 account the relative occurrence of the sea states analyzed. All values are given as the
 499 average annual value for the quantity defined. Further, all units are metric and all results

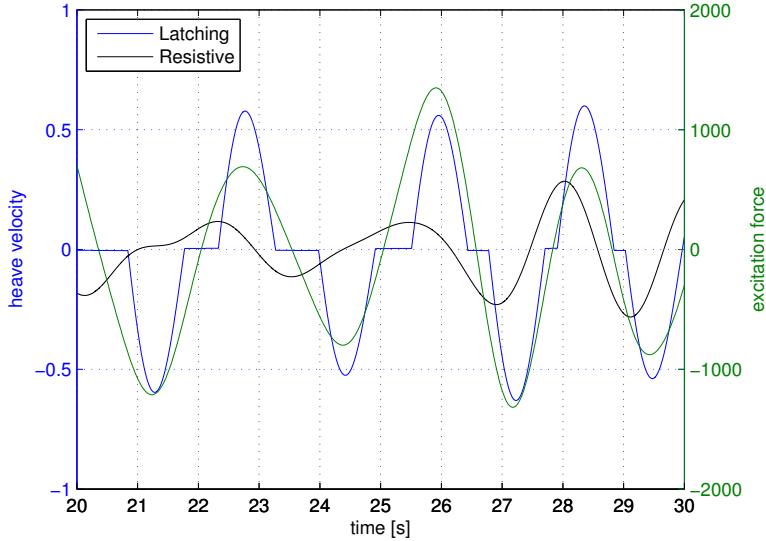


Figure 9: Heave velocities of latching control versus resistive control.

500 are shown in model scale.

501 From Table 5, we can see that the various control strategies have a wide range of
 502 performances. For example, the average net power produced ranges from 52.5 W for
 503 CCC to 15.5 W for resistive control. While CCC is not considered directly implementable,
 504 MPC produced nearly as much net power with 46.1 W (roughly 3 times that of resistive
 505 control). PDC3, LQ, and Latching control, which are all purely feedback, produce similar
 506 levels of net power (on the order of 25 W).

507 The peak/average net power also shows a wide range of results. This metric is con-
 508 sidered to be somewhat similar to a capacity factor, in that it might indicate the degree
 509 to which a WEC design utilizes its capabilities. A lower peak/average net power ratio
 510 would mean that the device is generally operating in a similar region, avoiding the need
 511 for components (e.g., PTO and power electronics) to be over-designed to accommodate
 512 infrequent spikes. LQ shows good power absorption (50% more than resistive control),
 513 while maintaining a low peak/average net power ratio. Conversely, PDC3 shows a rel-
 514 ative large peak/average net power ratio. This may be partially due to some tuning,
 515 which could be improved to reduce spikes in absorption.

516 Many of the strategies utilize reactive power levels an order of magnitude greater

517 than the net absorbed power. This may prove unrealistic in physical implementation, as
518 the PTO would need to be sized quite large to supply the necessary reactive power. LQ
519 also uses orders magnitude less reactive power compared to some of the other strategies.
520 This may be partially due to the fact that LQ is the only strategy that includes a model,
521 although very simplistic, of the PTO, which includes a resistor that provides a basic,
522 lumped parameter, linear model for the PTO inefficiency.

523 As with other metrics considered here, PTO forces required by the different control
524 strategies span a full order of magnitude. However, the peak/average force ratios from
525 each strategy were relatively similar (much more so than the net power peak/average
526 ratios). Acceleration may serve as a rough proxy for the loading on the mechani-
527 cal/structural components of a device. LQ has the lowest acceleration in Table 5; while
528 DP and CCC have the highest. Not surprisingly, latching control also tends to produce
529 relatively large accelerations.

530 It is also somewhat useful to compare the time history responses of the different
531 control strategies. Figure 10a shows a sample time-history from select control strategies
532 for the irregular sea state 15 ($H_s = 0.32$ m, $T_p = 3.6$ s). The four subplots (a-d) show the
533 heave velocity, heave position, PTO force and instantaneous absorbed power, respectively.
534 For each of the subplots, the excitation force (which is fully linear and therefore the same
535 for each of the control strategies) is shown in green.

536 It is interesting to note that all the control strategies attempt to improve the “phase
537 matching” between velocity and excitation force, when compared to resistive control.
538 The plots also show the different specific method each control strategy uses to keep
539 velocity in phase with excitation. Latching control locks the device in order to match
540 the peaks of the velocity with the peaks of the excitation force. MPC and LQ force the
541 device to follow excitation with a smoother profile, by using reactive power (Figure 10d),
542 that is by accelerating the device by means of the actuator force. The smoother motion
543 resulting from MPC and LQ can be observed also by looking at the time profiles of the
544 position (Figure 10b) and the force exerted by the actuator (Figures 10c).

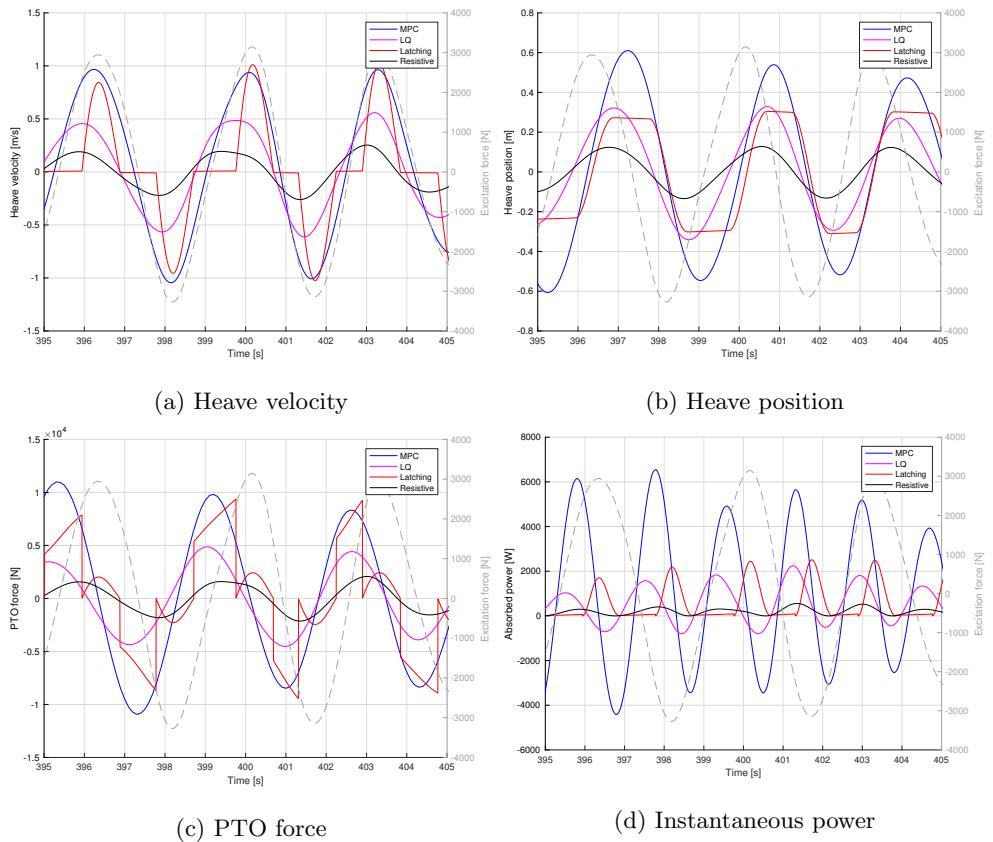


Figure 10: Sample time histories from irregular sea state 15 ($H_s = 0.32$ m, $T_p = 3.6$ s).

545 **5. Conclusions**

546 This study considered and evaluated a series of eight WEC control strategies. In ad-
547 dition to strategies well-studied for WECs, some novel strategies for this application were
548 also introduced. Using a numerical simulation, each strategy was utilized to simulate the
549 WEC response in a series irregular sea states. The results from these simulations were
550 distilled to provide a concise comparison of the performance produced by the different
551 control strategies. In addition to the obvious metric of power absorption, other perfor-
552 mance metrics were studied with the aim of providing some insight into the relative costs
553 and challenges of implementing the different control strategies. As WECs are intended
554 to be commercially profitable devices, this type of consideration is essential.

555 The results shown in this study begin to highlight the need for a holistic approach
556 to WEC design. So-called “co-design” practices, where components of a system design
557 which are often taken into account sequentially are instead considered in conjunction with
558 each other, will be needed to properly utilize advanced control for a WEC. Fundamental
559 design factors, such as the characteristic scale of a WEC, cannot properly be considered
560 without considering in earnest the eventual control strategies which may be implemented
561 on the device.

562 Thus, future work should consider a more comprehensive assessment of how control
563 design interfaces with overall WEC design. In this study, a device with a fixed design
564 was augmented with a series of control strategies. However, a more realistic study would
565 consider control design as part of the larger WEC design process. Also, some additional
566 development on the formulation of performance metrics would be helpful. Instead of
567 simply considering, for example, the peak PTO force across a series of sea states, processes
568 defined by design standards and technical specifications should be followed. In addition
569 to peak loading, modeling for fatigue could provide an important consideration.

570 If possible, similar studies should also be conducted for different WEC devices. This
571 study presents results only for a single specific device. We believe that the results provide
572 some general relative comparison, but further work will be necessary to establish just
573 how much such a comparison will vary for different device designs and archetypes. Addi-
574 tionally some further understanding can be obtained by considering control performance
575 in regular waves, and by normalizing both regular and irregular wave results with respect

576 to the natural frequency of the device.

577 It will also be useful to consider a more complete model of the WEC system. As is
578 typical, only the hydro-mechanical system is considered in this study. Mechanical power
579 is used as a performance metric, but most WEC systems are targeted at producing
580 electricity. Thus the PTO and power electronics should be considered to provide a fuller
581 assessment. By adding these components for both plant and control models, the impact
582 of generator efficiencies and dynamics can be included in the comparison. This may, for
583 example, tend to penalize strategies which use large amounts of reactive power. In this
584 study, the only strategy to somehow take into account some aspects of the PTO efficiency
585 is LQ control, which includes a model of the internal resistance of the generator circuit.
586 Another consideration, highlighted by the large levels of peak reactive utilized by many
587 of the strategies considered here, would be to apply constraints to curtail reactive power
588 levels.

589 A related ongoing project is focused on PTO design, considering integration with the
590 full WEC system, grid, and control. The purview of this work includes consideration for
591 stored energy in order to provide both reactive power and smoothing. Since the PTO
592 may indeed play an important role in the overall system dynamics, it is possible that
593 including this in the plant for control design could greatly affect outcome of a study such
594 as this.

595 Another important factor not fully considered here is the realistic implementation of
596 these various control strategies on a deployed device. For this study, the control model
597 is considered to be perfectly accurate (i.e. the control model and plant model are the
598 same). However, this will certainly not be the case in implementation. Model uncer-
599 tainties and nonlinearities not captured by the reduced-order control model are likely to
600 adversely affect the performance of controllers. The magnitude of such adverse effects
601 will be dependent on the specific control strategy. Additionally, this study assumed per-
602 fect foreknowledge of incoming waves and no sensor noise. While methods are available
603 for filtering noisy measurement signals and estimating/predicting the system state, limi-
604 tations in these methods, and their affect on controller performance should be considered
605 in future studies.

606 **Acknowledgements**

607 This work was funded by the U.S. Department of Energy's Wind and Water Power
608 Technologies Office. Sandia National Laboratories is a multi-mission laboratory managed
609 and operated by National Technology and Engineering Solutions of Sandia, LLC., a
610 wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of
611 Energys National Nuclear Security Administration under contract DE-NA0003525.

612 **References**

613 [1] K. Budal, J. Falnes, Interacting point absorbers with controlled motion, in: B. Count (Ed.), Power
614 from Sea Waves, Academic Press London, Edinburgh, Scotland, 1979, pp. 381–399.

615 [2] D. Jones, Wave energy conversion, Patent: US 4355511 A (1977).

616 [3] D. V. Evans, A theory for wave-power absorption by oscillating bodies, *Journal of Fluid Mechanics*
617 77 (01) (1976) 1–25. doi:10.1017/S0022112076001109.
618 URL <http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=374123>

619 [4] L. C. Iversen, Numerical method for computing the power absorbed by a phase-controlled point
620 absorber, *Applied Ocean Research* 4 (3) (1982) 173–180.

621 [5] R. Hoskin, B. Count, N. Nichols, D. Nicol, Phase control for the oscillating water column, in:
622 D. Evans, A. de Falco (Eds.), *Hydrodynamics of Ocean Wave-Energy Utilization*, International
623 Union of Theoretical and Applied Mechanics, Springer Berlin Heidelberg, 1986, pp. 257–268. doi:
624 10.1007/978-3-642-82666-5_22.
625 URL http://dx.doi.org/10.1007/978-3-642-82666-5_22

626 [6] A. Babarit, A. Clement, Optimal latching control of a wave energy device in regular and irregular
627 waves, *Applied Ocean Research* 28 (2) (2006) 77–91. doi:10.1016/j.apor.2006.05.002.
628 URL <http://www.sciencedirect.com/science/article/pii/S0141118706000423>

629 [7] J. T. Scruggs, S. M. Lattanzio, A. A. Taflanidis, I. L. Cassidy, Optimal causal control of a wave
630 energy converter in a random sea, *Applied Ocean Research* 42 (2013) 1–15. doi:10.1016/j.apor.
631 2013.03.004.
632 URL <http://www.sciencedirect.com/science/article/pii/S0141118713000205>

633 [8] J. A. M. Cretel, G. Lightbody, G. P. Thomas, A. W. Lewis, Maximisation of energy capture by a
634 wave-energy point absorber using model predictive control, in: IFAC World Congress, 2011.

635 [9] G. Li, M. R. Belmont, Model predictive control of a sea wave energy converter: a convex approach,
636 in: 19th World Congress of the International Federation of Automatic Control, Cape Town, South
637 Africa, 2014.

638 [10] J. Hals, J. Falnes, T. Moan, A comparison of selected strategies for adaptive control of wave
639 energy converters, *Journal of Offshore Mechanics and Arctic Engineering* 133 (3) (2011) 031101.
640 doi:10.1115/1.4002735.

641 URL <http://offshoremechanics.asmedigitalcollection.asme.org/article.aspx?articleid=1456895>

642 [11] R. G. Coe, G. Bacelli, D. Patterson, D. G. Wilson, Advanced WEC Dynamics & Controls FY16 testing report, Tech. Rep. SAND2016-10094, Sandia National Labs, Albuquerque, NM (October 2016).

643 URL <https://mhkdr.openei.org/submissions/151>

644 [12] W. E. Cummins, The impulse response function and ship motions, Tech. Rep. DTNSDRC 1661, Department of the Navy, David Taylor Model Basin, Bethesda, MD (1962).

645 URL <http://dome.mit.edu/handle/1721.3/49049>

646 [13] T. Burton, Volterra Integral and Differential Equations, Elsevier, 2005.

647 URL <http://www.sciencedirect.com/science/bookseries/00765392/202>

648 [14] T. Perez, T. I. Fossen, Time- vs. frequency-domain identification of parametric radiation force models for marine structures at zero speed, *Modeling, Identification and Control* 29 (1) (2008) 1–19. doi:10.4173/mic.2008.1.1.

649 URL <http://www.mic-journal.no/PDF/2008/MIC-2008-1-1.pdf>

650 [15] R. G. Coe, D. L. Bull, Nonlinear time-domain performance model for a wave energy converter in three dimensions, in: OCEANS2014, IEEE, St. John's, Canada, 2014.

651 [16] WAMIT, WAMIT User Manual, Chestnut Hill, MA, 7th Edition (2012).

652 URL <http://www.wamit.com/manual.htm>

653 [17] G. Bacelli, R. G. Coe, D. Patterson, D. Wilson, System identification of a heaving point absorber: Design of experiment and device modeling, *Energies* 10 (10) (2017) 472. doi:10.3390/en10040472.

654 URL <http://www.mdpi.com/1996-1073/10/4/472>

655 [18] J. Lavelle, J. P. Kofoed, Representative spectra of the wave resource from sea wave measurements, in: European Wave and Tidal Energy Conference (EWTEC), Aalborg, Denmark, 2013.

656 URL http://www.researchgate.net/profile/John_Lavelle2/publication/267763888_Representative_Spectra_of_the_Wave_Resource_from_Real_Sea_Wave_Measurements/links/545a287b0cf2cf51648437dc.pdf

657 [19] K. Aström, R. Murray, *Feedback Systems: An Introduction for Scientists and Engineers*, Princeton University Press, 2010.

658 [20] K. Ogata, *Modern Control Engineering*, Prentice Hall, 2002.

659 [21] J. Falnes, *Ocean Waves and Oscillating Systems*, Cambridge University Press, Cambridge; New York, 2002.

660 [22] J. Falnes, On non-causal impulse response functions related to propagating water waves, *Applied Ocean Research* 17 (6) (1995) 379–389. doi:10.1016/S0141-1187(96)00007-7.

661 URL <http://www.sciencedirect.com/science/article/pii/S0141118796000077>

662 [23] D. P. Bertsekas, *Dynamic Programming and Optimal Control*, 4th Edition, Athena Scientific, 2012.

663 [24] R. D. Robinett, *Applied dynamic programming for optimization of dynamical systems*, Society for Industrial and Applied Mathematics, Philadelphia, 2005.

664 [25] O. Abdelkhalik, R. Robinett, S. Zou, G. Bacelli, R. Coe, D. Bull, D. Wilson, U. Korde, On the

680 control design of wave energy converters with wave prediction, *Journal of Ocean Engineering and*
 681 *Marine Energy* 2 (4) (2016) 473–483. doi:10.1007/s40722-016-0048-4.

682 URL <http://dx.doi.org/10.1007/s40722-016-0048-4>

683 [26] E. Taheri, O. Abdelkhalik, Approximation of constraint low thrust space trajectories using Fourier
 684 series, in: *AAS / AIAA Astrodynamics Specialist Conference*, no. AAS11-555, Girdwood, Alaska,
 685 USA, 2011.

686 [27] E. Taheri, O. Abdelkhalik, Shape based approximation of constrained low-thrust space trajectories
 687 using Fourier series, *Journal of Spacecraft and Rockets* 49 (3).

688 [28] O. Abdelkhalik, E. Taheri, Approximate on-off low-thrust space trajectories using Fourier series,
 689 *Journal of Spacecraft and Rockets*, AIAA 49 (5) (2012) 962–965.

690 [29] E. Taheri, O. Abdelkhalik, Constraint low-thrust trajectory planning in three-body dynamic models:
 691 Fourier series approach, in: *AIAA Space and Astronautics Forum and Exposition, AAS / AIAA*
 692 *Astrodynamics Specialist Conference*, no. AIAA-2014-4464, San Diego, CA, USA, 2014.

693 [30] I. M. Ross, M. Karpenko, A review of pseudospectral optimal control: From theory to flight, *Annual*
 694 *Reviews in Control* 36 (2) (2012) 182 – 197. doi:<http://dx.doi.org/10.1016/j.arcontrol.2012.09.002>.

695 URL <http://www.sciencedirect.com/science/article/pii/S1367578812000375>

696 [31] G. Elnagar, M. Kazemi, M. Razzaghi, The pseudospectral legendre method for discretizing optimal
 697 control problems, *Automatic Control, IEEE Transactions on* 40 (10) (1995) 1793–1796. doi:10.
 698 1109/9.467672.

700 [32] B. D. Anderson, J. B. Moore, *Optimal Control - Linear Quadratic Methods*, Prentice-Hall Interna-
 701 tional, Inc., 1989.

702 [33] P.-T. Spanos, Filter approaches to wave kinematics approximation, *Applied Ocean Research* 8 (1)
 703 (1986) 2 – 7. doi:[http://dx.doi.org/10.1016/S0141-1187\(86\)80025-6](http://dx.doi.org/10.1016/S0141-1187(86)80025-6).

704 URL <http://www.sciencedirect.com/science/article/pii/S0141118786800256>

705 [34] D. Wilson, G. Bacelli, R. D. Robinett III, U. Korde, O. Abdelkhalik, S. F. Glover, Order of magni-
 706 tude power increase from multi-resonance wave energy converters, in: *OCEANS 2016 MTS/IEEE*
 707 *Monterey*, 2017.

708 [35] A. F. O. Falcao, P. A. Justino, J. C. Henriques, J. M. Andre, Reactive versus latching phase control
 709 of a two-body heaving wave energy converter, in: *European Control Conference (ECC)*, 2009, pp.
 710 3731–3736.

711 [36] K. Budal, J. Falnes, T. Hals, L. C. Iversen, T. Onshus, Model experiment with a phase controlled
 712 point absorber, in: *Proc. of the Second International Symposium on Wave and Tidal Energy*, H.
 713 S. Stephens and C. A. Stapleton, eds, *BHRA Fluid Engineering* (Cranford, Bedford), Cambridge,
 714 UK, 1981, pp. 191–206.

Table 2: Full list of the 17 irregular sea states considered in study. Note that sea states listed with an occurrence percentage of 0 are from the constant-steepness set and are not considered for average annual statistics.

Sea State index	Peak period, T_p [s]	Significant wave height, H_s [m]	Steepness, $(\frac{\lambda_p}{H_s})$ [-]	Occurrence [%]
1	1.00	0.0247	63	0
2	1.00	0.0148	105	0
3	1.00	0.0370	42	0
4	1.53	0.0871	42	18.5
5	2.00	0.0594	105	0
6	2.05	0.1039	63	17.2
7	2.25	0.1875	42	11.3
8	2.50	0.1545	63	0
9	2.50	0.0927	105	0
10	2.58	0.1194	87	21.1
11	2.89	0.2523	52	7.6
12	3.00	0.3337	42	0
13	3.03	0.1363	105	12.8
14	3.46	0.1283	146	9.2
15	3.60	0.3195	63	4.9
16	4.02	0.1320	191	5.8
17	4.86	0.1617	228	1.6

Table 3: Control strategies evaluated. *categorization is determined based on implementation in this study, however, these strategies can be implemented, e.g., to avoid reactive power.

	Computational expense	Constraints	Reactive	Foreknowledge
Resistive	low	yes	no	no
MPC	moderate-high	yes	yes*	yes
DP	high	yes	yes*	yes
SB	high	yes	yes*	yes
LQ	low	no	yes	no
PDC3	low	no	yes	no
Latching	low	no	no	yes*

Table 4: Selected SB parameters for some of the irregular sea states.

	N_H	N_{cw}	N_{FFT}	$CtrlInteg$
IS10	3	60	7	3
IS11	3	60	6	3
IS12	3	50	7	2
IS13	3	50	8	2
IS14	3	50	7	2
IS15	3	50	7	2
IS16	3	50	7	2
IS17	3	60	7	2

Table 5: Comparison of WEC control strategy performance.

	CCC	DP	LQ	Latch.	MPC	PDC3	Res.	SB
<i>Net power</i> [W]								
average	52.5	38.4	23.5	28.8	46.1	26.8	15.5	17.7
peak	4.8E3	4.6E3	4.5E2	3.9E2	1.8E3	1.3E3	1.7E2	4.9E2
peak/average	92.0	119.1	18.9	13.6	38.6	48.4	10.8	27.9
<i>Reactive power</i> [W]								
average	1.3E2	1.7E2	3.7E0	0	4.3E1	3.2E1	0	1.3E1
peak	2.7E3	3.1E3	7.4E1	0	7.6E2	6.8E2	0	1.9E2
peak/average	20.4	18.1	19.7	0	17.8	21.0	0	15.3
<i>PTO force</i> [N]								
average	1.3E3	1.6E3	2.6E2	5.1E2	7.7E2	6.9E2	2.1E2	3.4E2
peak	1.0E4	1.2E4	2.1E3	3.6E3	5.7E3	5.4E3	1.1E3	1.8E3
peak/average	8.1	7.7	8.0	7.2	7.5	7.7	5.0	5.1
<i>Position</i> [m]								
average	7.3E-2	8.4E-2	2.9E-2	3.3E-2	4.9E-2	4.0E-2	1.6E-2	3.0E-2
peak	5.3E-1	5.3E-1	1.6E-1	1.7E-1	3.1E-1	2.8E-1	7.5E-2	1.7E-1
peak/average	7.2	6.3	5.4	5.2	6.4	7.1	4.6	5.7
<i>Velocity</i> [m/s]								
average	1.4E-1	1.5E-1	7.1E-2	6.0E-2	1.0E-1	7.6E-2	4.0E-2	8.7E-2
peak	8.0E-1	8.3E-1	3.1E-1	4.0E-1	5.2E-1	4.1E-1	1.6E-1	4.8E-1
peak/average	5.8	5.5	4.4	6.7	5.1	5.4	4.0	5.5
<i>Acceleration</i> [m/s²]								
average	0.31	0.38	0.07	0.21	0.13	0.12	0.11	0.28
peak	1.42	1.83	0.31	1.37	0.83	0.58	0.40	1.46
peak/average	4.5	4.9	4.4	6.6	6.2	4.7	3.6	5.3