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Abstract— Methods developed to reduce interference in a noisy
environment, be it radar target responses or effective
communications in the presence of noise for mobile phone
users, are vital in delivering a clear usable signal. The methods
used to render a cleaner signal can also be used to combine
signals of various frequencies. Ground Penetrating Radar
(GPR) scans over the same area are no exception. This paper
explores using an optimization problem solver, the Expectation
Maximization (EM) Algorithm, to define the weights to use to
combine multiple GPR scans at different frequencies over the
same target area. This approach exploits the Gaussian
Mixture Model (GMM) feature of the EM algorithm to
produce a cleaner image at depth. Our method demonstrates a
measured improvement toward producing a cleaner image.
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I.  INTRODUCTION

Ground Penetrating Radar (GPR) scans are used to
illuminate objects in various terrain types at different depths.
The frequency scan that best illuminates an object is
different at each depth. Higher frequency scans image
objects closer to the surface in great detail while lower
frequencies image objects deeper with less fidelity.
Assuming GPR radar scans at different frequencies over the
same terrain can be treated like sub-components of a square
wave, where the summation of sub-components determines a
crisp square wave; then, adding the scans together should
form an improved image of the terrain being scanned with
higher resolution to a lower depth [1]; a byproduct of the
summation. Just simply adding each scan together, as
demonstrated in this paper, has been shown not to be
sufficient for the GPR case but does suffice for square wave,
triangle wave, and sawtooth wave cases. For GPR scans, a
weighted version of each scan presents the best solution to
this problem [2]. Employing.an optimization problem solver
to determine the weight applied to each scan is the first use
of this method to develop an optimal weighted combination
of GPR frequency scans. In the literature, other methods
have been proposed to solve this problem with varying
success; all with a very similar approach to each other.
Methods by Dougherty et al. [3], Booth et al. [4], and

Bancroft [5] all discussed ways to weight each signal used to
combine individual frequency traces of GPR scans. Absent
from these works are optimization problem solvers such as
the Expectation Maximization (EM) Algorithm [6]. We
have chosen to investigate using the data mixture feature of
the EM Algorithm to develop optimal weights.

In this paper, we describe the EM algorithm and its data
mixture feature, as it relates to GPR scans of different
frequencies, and compare the results with the methods of
Dougherty et al. [3], Booth et al. [4] and Bancroft [5]. This
paper is organized as follows. In Section I, we discuss work
related to the multi-frequency GPR mixture process. In
Section Ill, the EM Algorithm data mixture process is
described. In Section 1V, the Maximum-Likelihood (ML)
Estimation process and its relationship to the EM Algorithm
data mixture process [6][7] is described. In Section V, we
present an EM Algorithm Test Case. Section VI, briefly,
describes the methods of Dougherty et al [3]. in developing
signal weights. Section VII, the methods examined by Booth
et al [4] are discussed. In Section VIII, the methods
proposed by Bancroft [5] are discussed. In Section 1X, we
demonstrate that computer modeling can be used to
substitute for real data. In Section X, we present results of
simulated GPR scan examples using the software GprMax
[8], comparing EM Algorithm data mixture method with
methods of Dougherty et al. [3], Booth et al [4]. and Bancroft
[5]. In Section XI, we draw some conclusions and discuss
possible future work.

Il. RELATED WORK

A search of the relevant literature uncovered only a few
publications on compositing of GPR signals. The earliest
works found discussed GPR time-slice analysis, GPR
overlay analysis and GPR isosurface rendering, all similar in
approach; mostly by archaeologists. The general approach
was to illuminate the strongest reflections at a specified time
or depth with a color or shading. Assemble the information
by layers of depth or time and display the completed result.
[9].

Dougherty et al. [3] was the earliest work found, which
attempted to combine GPR signal traces for site
characterization and bandwidth enhancement. Their



research involved real data taken from a former lumber mill
waste site near Boise, Idaho. Part of the focus was on
developing a method to simulate the direct arrival pulse to
ultimately subtract from the traces. An additional paper
focus was on enhancing the GPR response by summing the
traces of differing frequencies. The latter part of the paper,
focused on establishing proof of bandwidth enhancement
through summation. Some success was noted but, equally
weighting and summing the traces only marginally
enhanced the results. Bandwidth enhancement was
confirmed after trace summation using correlation.

The results of Dougherty et al. [3] were re-affirmed in
two publications both authored by Booth et al. [2][4]. They
successfully repeated the enhancement of the spectral
bandwidth by compositing; adding to the compositing
method, shifts to align trace direct arrival peaks and an
adjustment to trace weights before summing. The scan
weights were adjusted to enhance the magnitude of the
higher frequency scans while de-emphasizing the magnitude
of lower frequency scans. Booth et al. [2] used data sets
from glacial deposits near Guelph, Ontario, Canada for the
first publication. The second publication [4], focused on
attempting to find the best method to combine GPR
frequency scans. GPR data sets from the Waterloo Moraine
in Ontario, Canada were analyzed. Several methods to
combine multiple frequencies were documented. Weighting
factors were developed from trace averaged amplitude
spectra, as well as time invariant weighting factors output
from a least-squares analysis, were evaluated. The time
invariant weight methods developed, attempted to match the
compositing results to an idealized amplitude spectrum.
Improvements over Dougherty et al [3]. were realized.

Bancroft [5] continued the work by studying previous
compositing methods by Dougherty et al [3]. and Booth et
al [4]. Bancroft [5] introduced additional methods to
compute weights for use in compositing GPR frequencies.
One introduced method Bancroft [5] named the double ramp
summation method, where one ramp suppresses a
frequency’s energy over time while a second ramp
introduces an adjacent frequency’s energy over time. The
ramp length was arbitrarily defined but, based on the
wavelength of the GPR frequency of interest. The start time
for each ramp was a calculated value based on the GPR
frequency of interest. Bancroft’s [5] other method was
called Amplitude Envelope Equalization. The weights used
in this ramp summation technique were developed as a ratio
of the average envelope of GPR frequencies. Improvements
over Booth et al. [4] were not dramatic for the cases
presented.

The “state of the art” or related work to date has focused
on mathematically defining the weights for each frequency
by equal weighting, by the value needed to equalize the
spectra of GPR frequencies, through ramp summation, or by
a least-squares process to match an idealized amplitude
spectrum. Optimization problem solving methods have yet
to be explored. Our previous work [1] addresses the

problem as a clustering mixture model problem, well suited
for EM methods.

I11. EXPECTATION MAXIMIZATION ALGORITHM

The EM Algorithm is used to solve many types of
problems. One type is to group like items contained in
complex mixtures; another type is to solve incomplete data
problems by performing Maximum Likelihood (ML)
parameter estimation. A third type is to determine the
membership weights of data points in a cluster within a finite
Gaussian Mixture Model (GMM) [10][11]. This third
feature is what will be exploited to combine multiple GPR
frequency scans into a composite wave. Other mathematical
distributions can represent the data set created by GPR scans,
but we used a Gaussian distribution because it is often used
when the distribution of the real-valued random variables is
unknown.

We can define a finite mixture model f(x;0) of K
components as mixtures of a Gaussian function as:

f(x;0) = Koy awpr(x] 6y, 1)

Where:
- pi(x|6)) are K mixture components with a
distribution defined over p(§|6‘k) with parameters

0, = {Ek,Ck} (mean, covariance)
- pi(x]6k) =
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- ay are K mixture weights, where YX_, a; = 1.
- {&-, ......... ,gn} Data set for a mixture component
in d dimensional space.

There are 2 steps in each iteration of the EM Algorithm,
the Expectation step (E-step) and the Maximization step (M-
step). The E-Step computes the conditional expectation of
the group membership weights (wy,'s) for x;'s , adding
unobservable data given 6,. The M-Step computes new
parameter values (ak,,uk, Ck) to maximize the finite mixture
model using the membership weights. The E-Step and M-
Step are repeated until a stopping criterion is reached
(convergence).  Convergence is indicated by the log-
likelihood of f(x;8) not changing substantially from one
iteration to the next.
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Convergence (log likelihood of f(x;0))-
Logl(¥) =
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These equations that make up the EM Algorithm were
implemented in MATLAB. The variables ‘k” and ‘x’
represent the different scanning frequencies and GPR trace
scans, respectively. Each trace, at a frequency and
transmitter (Tx)/receiver (Rx) position, are analyzed and
combined for all frequencies using the EM Algorithm before
moving on to the next position. Described below are the EM
GMM process steps.

Expectation Maximization Gaussian Mixture Model process:

1. Initialize algorithm parameters; weights (mixture
and group membership), mean, covariance, for each
trace.

2. Expectation step — estimate parameters.

3. Maximization step — maximize estimated
parameters.

4. Check for convergence — log likelihood of mixture
model.

5. Repeat steps 2 — 4 until change from iteration to
iteration is below or equal a defined value.

6. Combine traces with defined mixture weights.

IV. MAXIMUM LIKELIHOOD ESTIMATION PROCESS AND
THE EM RELATIONSHIP

Maximum Likelihood Estimation (MLE) can provide a
good estimate of an unknown parameter, which maximizes
the probability of getting the data we observed (likelihood).
A simple example is as follows. Given a random sample Xj,
X2, ..., Xn, independent and identically distributed (i.i.d.)
with a probability density function f(x;, 8), where 6 is the
unknown parameter to be estimated; the joint probability
density function (PDF) can be labeled as L(6).

L(6) =P(X1=xy, X2 =%y, ..., Xn = Xy) =
f(x1;0) * f(x250) o f (x5 0) = [Ti2y f(xi56) (9)

Assuming the probability density function is Gaussian
with known variance a2 and unknown mean, p, then, the
likelihood equation becomes the following:

LG =ITs o™y =

o (2m) " 2exp(— 55 Xiki O — 1)?) (10)
To solve for the mean, u, we take the partial derivative of
the log likelihood equation with respect to (w.r.t.) the mean,
M, and set the result equal to 0 to solve the resultant equation
for the variable u. Taking a second partial derivative of the
log likelihood w.r.t. u and returning a negative value verifies
that the parameter u does indeed represent the maximum

value for the likelihood function.

Log (L(w) = —nlog(e) — Llog(zm) — Ti, S (11)

S logL) = 2(-DTL =0 (12
Solvefor g,  p = = (13)

n

The process can be repeated for the variance should it not
be known. The MLE process becomes hard if there are at
least two sets of data where only one set is partially observed
(hidden) or when estimating mixture parameters is
necessary.

A mixture distribution has a PDF of the form f(x) =
YK L arf(x; 6,), where there are K number of components
in the mixture model and for each k, there is a PDF, f(x; 6;)
as well as a weight a;, and a complete observed data set x.
Other assumed constraints are )., ,, = 1 and a;, = 0 for all
k. The joint PDF takes on the form with n observed data for
each k:

L(x|a,8;) = ?:1 Z£=1 af (x;; Ox) (14)

The log of the likelihood equation yields the following:

LOQ((L(XW»@k)): tlog Yoy arf(xi;60,)  (15)

Solving this weighted MLE equation using MLE is
challenging because of the log of sums and the challenge to
determine what value to start with for the weight associated
with an individual distribution «;. There may be many local
maxima that are less than the global maximum that are
available. Choosing the weight value that arrives at the
global maximum for the log likelihood is not likely in short
order.

The EM algorithm provides a means to estimate the
weights and guarantee convergence of the likelihood
equation [6][7] to a non-decreasing local maximum with
each completion of all steps of the algorithm. The EM
algorithm reduces the MLE optimization problem to a
sequence of simpler optimization sub-problems that are each
guaranteed to converge.



Another way to describe the MLE process and the EM
algorithm relationship is through this example of 2 different
coins tossed [12]. Two coins each tossed 10 times with the
result of Heads or Tails recorded as well as, which coin
produced the recorded values for 5 sets of 10 tosses. All
information is known therefore the calculation of the
probability of Heads (6,4) for coin A and the calculation of
Heads (Og) for coin B are straight forward.

#of heads using coin A
Total # of coin flips for coin A
#of heads using coin B
Oy = — : (17)

Total # of coin flips for coin B

Restructuring the problem such that the coin that was used,
for any of the 5 sets of 10-coin tosses, is unknown. The
approach of calculating with hidden data, which coin,
involves an iterative scheme where a guess is made to
determine, which coin was used for each of the 5 sets; then,
calculating the MLE as before; repeating this process until
convergence. Many local maxima are found before the
global maximum is determined. Each local maximum
reached in the interim is not necessarily larger than the
previous outcome. Changing the initial guess can change the
order of the outcome.

The EM process for this example is implemented such that
the probability of start values is calculated using existing
data (Expectation Step). The following step is to recalculate
the model parameters then, calculate the maxima for that set
of parameters using an MLE process (Maximization Step).
The EM process is repeated until a global maximum is
reached. The EM process creates a simpler optimization
sub-problem at each iteration that is guaranteed to converge
and has been shown to have an increasing maximum value
for each cycle (E-Step, M-Step). A set of equations as
shown below represent the EM solution given initial values
of 64 and Bg.

Expectation Step
p(4); =
p(B); =

04" (1-0 pNH

04" (1-6)NH + 95NH (1-05)NH
0" (1-0p)NH

04" (1-6,)NH + 95NH (1-05)NH

(18)

(19)

where: NH is the number of heads in set i of 5 sets
of 10 tossed coins, Xi;

p(A)i — probability of heads for coin A in set i;

p(B)i — probability of heads for coin B in set i

Maximization Step

_ i, p(A);
01 = z?le(ASn +32_ p(B); (20)
0y = Yi=1P(B); (21)

Z?:l p(A); + Z?:l p(B);

The EM algorithm provides a workable solution to a very
hard problem when hidden or incomplete data exists. It
incorporates the MLE process only after reducing the model
to a form, which is guaranteed to converge. Combining GPR

frequency scans have an aspect that the actual weight values
for each frequency are unknown or hidden. The way the EM
algorithm accomplishes workable solutions to hidden or
incomplete data sets, distinguishes it from other optimization
problem solvers, thus making it a featured candidate to
provide a viable solution for combining multiple GPR
frequency scans.

V. EXPECTATION MAXIMIZATION TEST CASE

As an EM GMM test case, we constructed a series of six
sine waves (50, 150, 250, 350, 450 and 550 Hz) noted in
Figures 1-3, which when weighted properly, sum to the
square wave of Figure 4. Figure 5, demonstrates the result
determined by the EM GMM as compared to the desired
result. The apparent error can be attributed to at least two
conditions; to machine round off errors of the computer used
and to the group membership weights, w;, and/or mixture
weights, a;, each constrained to sum to one. The weights
normally sum to greater than one depending on the number
of signals added together. Even when the weights for sine
wave to square wave construction are scaled to a maximum
value of one; they still do not match up to the EM GMM
generated weights. Despite this limitation, the mixed success
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Figure 1. Sine wave frequencies 50-150 Hz.
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Figure 2. Sine wave frequencies 250, 350Hz.



of adding arbitrary frequencies together bolsters our idea to
use the EM GMM method on multiple GPR scans. The GPR
frequencies to choose for the analyses are simply the
frequencies needed to span the depth and detail the GPR user
wishes to achieve. As a reminder, low frequencies image
deep with low resolution where as high frequencies image
with great detail in a shallow area.
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Figure 3. Sine wave frequencies, 450-550 Hz.
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Figure 5. EM algorithm result with desired signal.

VI. DOUGHERTY ET AL. PROCESS

Dougherty et al [3]. collected GPR data from a former
lumber mill waste site near Boise, ldaho. He sought to
enhance the original GPR data through air wave/direct
arrival wave removal, and bandwidth enhancement. They
first aligned each trace by the direct arrival pulse in each
trace then, removed DC shifts; the low frequency “wow”
component, followed by scaling each trace by the L2 norm
of the direct arrival pulse. The traces were summed and the
resultant direct arrival estimate was then, subtracted from
each trace removing the direct arrival signal. An exponential
gain recovery function was applied to each trace. Equal
weighting was applied to each trace with the direct arrival
signal removed as each frequency was summed. Dougherty
et al. [3] demonstrated some clarity of shallow reflections
due to direct wave removal. They achieved resolution and
continuity of reflection enhancement by summing the
frequencies. Spectral bandwidth was increased as well.
However, the resultant signal was overwhelmed by the
lower frequencies in the summation.

Dougherty et al. [3] process steps are as follows:

Align each trace by direct arrival.

Remove DC shift.

Remove low frequency (wow).

Scale each trace by L2 norm of direct arrival pulse.
Sum traces to form estimate of direct arrival signal.
Subtract estimate from each trace.

Apply exponential gain recovery function

Apply equal weighting to each trace.

Sum each trace all frequencies.

CoNoa~wNE

VII. BOOTH ET AL. PROCESS

Booth et al. [4], using real data acquired at a site on the
Waterloo Moraine (an accumulation of glacial debris) in
Ontario, Canada, examine five methods of achieving an
increased bandwidth and thus a more approximate delta
function through evaluating composite synthetic GPR
wavelets; with a few method variations. The simple
summation of [3] was examined, as one method. A second
method, examined a scaled summation approach where the
maximum value of each frequency spectra was determined
and the spectrums equalized. The values used to equalize
the spectra provided the signal weighting prior to
summation. A third method, involved shifting traces such
that the main peaks of the direct arrival pulses were aligned
with the dominant peak then, the scaled summation of
method two was applied. Method three provided the best
result for increased spectral bandwidth, thus the best delta
function, and GPR resolution for synthetic wavelets. Booth
et al. [4] repeated the above analyses with GPR traces with
one change. The time-shifting of traces was changed to
align the first break of each trace at 0 ns. Then method two
was applied, averaging the frequency spectra of each trace
for one frequency then, determining the frequency weight;



repeating for all frequencies. This process was given the
name of dominant frequency amplitude equalization
(DFAE). As a final discussion, another weighting method
was examined where the weighting factors were obtained
from a least squares analysis, Optimal Spectral Whitening
(OSW) that attempts to match the summed result to a
defined optimal amplitude spectrum. The defined optimal
spectrum determines over what set of frequencies the
frequency data sets would be enhanced. A time-varying
Fourier transformation of each data set must be performed
prior to implementing the least square analysis.

The OSW process determined a time window to operate
on by choosing the longest wavelet period of the GPR
scanned frequencies. A frequency spectrum was produced
for each time window of each trace. The spectra for a scan
frequency were averaged together, and a magnitude was
determined for each scanned frequency over the time-
window spectra. The magnitude determined became a row
in the OSW matrix. The process continues for each scan
frequency for that time-window resulting in an over-
determined linear system.  Then solving the over-
determined linear system for the frequency weights using a
defined desired spectral amplitude. The desired spectral
amplitude is usually defined as identical values (constant),
one for each scan frequency. The OSW process is complete
with the combining of traces for that time window with the
computed weights.

Booth et al. [4] process steps are as follows:
Method 2 —

1. Determine frequency spectrum of each wavelet.

2. Equalize spectra for all frequencies; the magnitude
needed to equalize spectra determines the weight
for that frequency. (method 3 variation — average
the frequency spectra of each trace for one
frequency then, determining the weight; repeating
for all frequencies).

3. Sum each wavelet of all frequencies with
appropriate weight for that frequency.

Method 3 -

1. Shift all traces such that main peaks of Direct
Arrival Signal are aligned. (variation — align the
first break of each trace to 0 ns).

2. Continue by applying the steps of method 2.

DFAE — method 4

1. Remove DC shift.

2. Remove low frequency (wow).

3. Shift all traces to first break of Direct Arrival.

4. Remove direct signal (mute-ramping from 0% to
100% at chosen mute time).

5. Determine frequency spectrum of each trace.

6. Average spectrum for ensemble estimate.

7. Equalize ensemble spectra for all frequencies; the

magnitude needed to equalize spectra determines
the weight for that frequency.

8. Sum each trace of all frequencies with appropriate
weight for that frequency.
OSW - method 5

1. Remove DC shift.

2. Remove low frequency (wow).

3. Shiftall traces to first break of Direct Arrival.

4. Remove direct signal (mute- mute-ramping from
0% to 100% at chosen mute time).

5. Average traces for each frequency.

6. Compute spectra of average trace for each

frequency.

7. Determine magnitude at scan frequencies for each
spectra; becomes a row in OSW matrix “A”. One
row for each frequency.

8. Determine idealized frequency spectra vector “S”;
vector usually set to value of one for each scan
frequency.

9. Determine weights by solving matrix equation
W= (AT A)" 1« AT « S.

10. Combine weighted frequency
traces x W.

11. Repeat steps 6 -10 for all analysis time windows
over the GPR reflection Profile. Time window
should be greater than the longest wavelet period to
be sampled.

traces; sum =

VIIl. BANCROFT PROCESS

Bancroft [5], using real data from Santa Rosa Island,
Florida, discusses the findings of Dougherty et al. [3] and
the methods described by Booth et al. [4], while defining
other methods to determine the weighting factors. One
method uses a ramped summation method where the higher
frequency data was suppressed by the same amount that the
lower frequency data was enhanced over the two-way transit
time of a GPR scan. Bancroft [5] discussed this double
ramped summation technique using linear or Butterworth
function ramps. To determine the ramp length for each
frequency, Bancroft [5] multiplied the wavelength period of
a frequency by an arbitrary number of 15 for 15 wave
periods. For the double ramped method two adjacent
frequencies were used; one frequency that was being
enhanced and one frequency that was suppressed. The ramp
length was determined by the frequency that was being
suppressed. The 15th wave period was used as the ramp
length. The start time was determined by examining the
amplitude envelope of a trace. The amplitude envelope was
calculated by taking the absolute value of the Hilbert
transformation of a single trace. The minimum value of the
log of the averaged amplitude envelope for all traces of one
frequency determines the suppression start time for that

frequency.
Another method discussed was called the Amplitude
Envelope Equalization (AEE) technique. Without

Automatic Gain Control (AGC) applied to each frequency
data set, a set of multipliers were calculated as the ratio of



the average envelope value of the lowest frequency and the
average envelope value of the other frequency data sets.
The weights or multipliers determined this way were
applied to AGC processed frequency data sets over the
portion of time that each frequency was to be enhanced.
Determining the portion of time a ratio is applied was
calculated by finding the minimum value of the log of the
amplitude envelope (envelope computed without AGC
applied); indicating the time where the suppression of that
particular frequency data begins. This point was defined as
data too attenuated to provide useful information. The
average amplitude value of one frequency was determined
by averaging the envelopes of all traces at one frequency.
The weights established by this averaging method were used
in conjunction with the double ramped summation method
described earlier.

Bancroft [5] also suggests an alternative subjective
method to determine the weighting through visual
inspection of each frequency data set; but there was much
less clarity as to how this was done and how experienced the
reviewer must be.

Bancroft [5] Process steps are as follows:

Clip data prior to first arrival.

Remove low frequency (wow).

Automatic gain control gain.

Bandpass filter.

Determine length of decreasing ramp in

nanoseconds beginning with highest frequency.

Determine amplitude envelope of all traces

(without AGC) of one frequency and average them.

Repeat for all frequencies.

7. Determine the suppression start time by finding the
minimum value of the log of the amplitude
envelope.

8. Process traces adding them using the
summation technique.

agrwnE

o

ramp

Amplitude Envelope Equalization Technique -

Clip data prior to first arrival.

Remove low frequency (wow).

Automatic gain control gain.

Bandpass filter.

Determine length of decreasing ramp in

nanoseconds beginning with highest frequency.

6. Determine amplitude envelope of all traces
(without AGC) of one frequency and average them.
Repeat for all frequencies.

7. Determine the suppression start time by finding the
minimum value of the log of the amplitude
envelope.

8. Determine the AEE multipliers as a ratio of the
average envelope of the lowest frequency data set
and the average envelope of the other frequency
data sets.

agrwbdE

9. Apply the AEE multipliers to the
summation technique.

ramped

IX. COMPUTER MODELING VERIFICATION

Computer model verification that GprMax delivers
reasonably accurate simulated GPR scans is presented in
reference [13]. In the reference, target objects were buried
on a test site called “The Forest Lodge”, located near
Greenville, California in the Northern Sierra about 60 miles
(96.56 kilometers) north of Lake Tahoe. The objects were
metal (tin) roofing sheets approximately 1.83 meters (6 feet)
long by 66 centimeters (26 inches) wide by 1.27 millimeters
(0.05 inches) in depth. There were 8 sheets in total buried at
depths of 0.5 meters (1.64 feet), 1.0 meters (3.28 feet), 1.5
meters (4.92 feet), 2.0 meters (6.56 feet), 2.75 meters (9.02
feet), 3.0 meters (9.84 feet), 3.5 meters (11.48 feet) and 4.0
meters (13.12 feet), roughly 1.83 meters (6 feet) apart. The
soil content appeared to be a mixture of clay and sand,
though a geological survey was not conducted. Figure 6
shows the tin sheets before burial. A MALA Imaging Radar
Array System (MIRA), a multi-static radar by MALA
GeoScience Corporation, was used to scan the Forest Lodge
site. This radar consisted of 9 Tx’s and 8 Rx’s, constructed
such that each receiver collected a signal from 2 adjacent
transmitters at different times, constructing 2 channels
received by one receiver. This radar’s center frequency was
set at 200 MHz providing 16 channels of data cutting a 2-
meter swath over targets of interest to create a 3-D image.
The results shown in Figure 7 depict only 5 of the 8 roofing
sheets clearly, in a stair step fashion as they were buried.
For the 3-D model of Figure 8 a dry sand medium was used
for the analysis. Figure 9 and Figure 10 show two 2-D
slices of the results of a 200 MHz analysis using the
GprMax modeling program. Actual and model results

Figure 6. Target GPR imaging objects, tin roofing sheets, were buried
at various depths. The experiments provided ground truth GPR data for
hardware to software comparison.



compare favorably though the simulation shows all 8 sheets,
5 of them well. My argument that software analysis can be
used successfully to study actual GPR received data is
strengthened. Using a mixture of clay and sand as the
medium in the model we believe would show a better fit;
target reflections would be attenuated more. This could be
achieved by adjusting the permittivity, affecting the velocity
through the medium, and adjusting the conductivity,
affecting signal attenuation. This success of actual data
verses model data comparison, supports the use of computer
simulation for accurate results and shall be used in the
remaining analyses within this paper.
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Figure 7. Processed 3-D data scanned by MALA MIRA radar over the
Forest Lodge test site of buried tin sheets of known depth. 5 of the 8
roofing sheets are visible in a stair step fashion.

ik
3 ﬂrfﬂdﬂ#ﬂm b
T = &
%

Daps (metars)

Figure 8. GprMax 3-D model of the Forest Lodge site of buried
objects. This model was used to study FDTD response experiments
conducted for this study.
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Figure 10.
Figure 9 and Figure 10 FDTD Analysis results at 200 MHz for two 2-D
slices of the 3-D analysis results. All 8 of the simulated buried tin sheets
are shown.

X. GPR ScAN RESULTS

To determine the capability of the EM GMM problem
solver, a fictional area was defined using a Finite Difference
Time Domain (FDTD) [14][15][16] modeling software
package to produce GPR scans simulating real GPR scans.
A Proprietary package in development, similar in operation
to the popular GprMax software program by A.
Giannopoulos [8] using the Transmission-Line Matrix
(TLM) methods, as well as the GprMax software package
were used to model a defined space. The FDTD method
provides a solution to Maxwell’s equations expressed in
differential form. Whereas the TLM method provides a
solution by simulating the propagation of electric and
magnetic fields by voltage and current pulses in
interconnected transmission lines [17]. Only 2-D analyses
were performed.
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Figure 11. Defined Space with buried target at 15 meters depth and Tx’s &
Rx’s 5 meters above ground.

The defined space modeled consisted of a Transmitter
(TX) and Receiver (Rx) suspended 5 meters above ground in
air with a target (perfect electrical conductor) buried 10
meters below ground in a moist-sand medium with a relative
permittivity (&,) of 9.0 and an electrical conductivity of
0.001 mS/m (Test Case 1 - TC1). The target is 2 meters in
length and 0.5 meters in depth. The transmitter and receiver
were moved along the length of the defined space as shown
in Figure 11 for a total of 36 scans at 0.25 meters per step.
The Tx starts at 0.5 meters ending at 9.5 meters, and the Rx
starts at 0.75 meters ending at 9.75 meters, well within the
defined space of 10 meters in length by 25 meters in depth.
Each scan is 425 ns long, capable of receiving a reflected
signal approximately 24 meters below Tx’s and Rx’s in
moist-sand and air, with a minimum grid space of 200 points
in x-direction, (Ax — 0.05 meters), and 500 points in y-
direction, (Ay — 0.05 meters).

Simulated GPR scans were repeated for 20, 30, 50, 100,
500 and 900 MHz frequencies. A 2-D display for each
frequency result is shown in Figures 12-19. In each case the
object is correctly identified at approximately 10 meters
below ground, approximately 15 meters below Tx’s and Rx’s
or approximately 240 ns from the direct arrival signal (black
line on plot); the two-way travel time for the radar signal.
An individual trace by trace display is shown in Figure 17
and Figure 19, to better depict the target return signal.
Arrow 1 in Figure 12 shows the direct arrival signal and
ground bounce (radar return from the ground). Arrow 2 in
Figure 12 denotes the target reflection at depth. In the
30MHz trace result (Figure 13), the target is indicated by
arrow 3. The remaining unlabeled arrows indicate the target
reflection at depth for the indicated scan frequency. Of
interest, is the line length in frequency scans 100 MHz and
below indicating the target, representing limited if not non-
existent edge detection. For this analysis, the test area length
is less than half the depth (25 meters depth by 10 meters
length), more like a bore hole, contributing to the limited
target edge detection. Arrow 4 (Figure 19) exhibits better
edge detection.
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Figure 12. 2-D GPR scans 20MHz.
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Figure 13. 2-D GPR scan 30MHz.
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Figure 14. 2-D GPR scan 50MHz.



Traveltime (ns)

100 MHz

Traveltime (ns)

Scan Axis (meters)

Figure 15. 2-D GPR scan 100MHz.
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Figure 16. GPR scan 500MHz.
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Figure 17. GPR scan 500MHz (individual traces).
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Figure. 19. GPR scan 900MHz (individual traces).

In all the simulated GPR scan results, as the frequency is
increased, the area where the target exists is more
pronounced. The opposite occurs as the scan frequency is
lowered.

Figure 20 shows the result of adding each of the
frequencies together having removed the direct arrival signal
and scaling each signal max value to the same magnitude. A
broad area of target reflection is shown from approximately
240 ns to 320 ns in depth (two-way travel time); a very
rough indication of target depth. The direct arrival signal
was removed by subtracting a GPR scan without a target
from a scan with a target, for each frequency.
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Figure 20. Sum of frequency signals with direct arrival and ground bounce
signals removed.

Figure 21 and Figure 22, show the same signals
combined using the EM algorithm to determine the weight of
each signal. Figure 22 shows the EM processed individual
signal traces. The area that is being scanned is more like a
bore hole, twice as deep as its width. This accounts for the
broad reverse “u-shaped” area that begins at target depth.
The existence of lower frequencies in the sum broadens the
output result.

Figure 23 shows the results of applying the Dougherty et
al. [3] approach to the same test area. The target depth is
correctly identified but the depth indication is slightly less
crisp than the EM algorithm case. The EM case depicts a
thinner line in depth. It appears the delta depth issue (less
crisp) is the result of the lower frequencies in the sum.
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Figure 21. EM sum of frequency signals with Direct Arrival and ground
bounce signals removed.
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Figure 22. EM processed signal traces with Direct Arrival and ground
bounce signals removed.

However, the Dougherty et al. [3] approach shows better
edge detection. The width of the target is better defined
though still wider than the defined area but less than the EM
GMM case. For the Dougherty et al. [3] case, part of the
Direct Arrival/Ground bounce signal is visible due to the
method used to remove them from each frequency scan.

For the same test area, applying the Booth et al. [4] OSW
approach with one time-window results in the output shown
in Figure 24. Again, the target depth is correctly identified
but like the Dougherty et al. [3] method the depth indication
is quite broad. The delta time depth indication is larger than
the EM and Dougherty et al. [3] methods, (Figure 21 and
Figure 23). Similar to the EM method, the width in scan axis
length is large; edge detection is not well defined. The
thickest part of the trace indicates the test target.
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Figure 23. Dougherty et al. [3] standard response for TC1.
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Figure 24. Booth et al. [4] response for TC1.

Figure 25 demonstrates the AEE method of Bancroft [5].
The target depth is correctly identified and the depth
indication is like that of the EM method, sharp but slightly
broader in depth. This is about the same as the Dougherty et
al. [3] method, and smaller than the Booth et al. [4] method.
Target edge detection is more like Booth et al. [4] where the
thickest part of the GPR result indicates the test target. Like
the EM method the GPR reflection covers a wide area (0 to 9
meters) in scan axis length. How much of this response is
due to the bore hole effect of the target area is unknown at
this time. We applied a modified AEE method consisting of
calculated multipliers only and not the ramped summation
because the calculated start and end of each ramp conflicted
with each other, which is not the case for the scan
frequencies chosen by Bancroft [5].
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Figure 25. Output from Amplitude Envelope Equalization
method of Bancroft [5] for TCL1.

For test case 1, the test area definition poses a problem as
to the effect of the bore hole like definition of the target area,
on the outcome of the scan response. Of concern, is whether
a less than crisp edge detection or the addition of large
magnitude lower frequencies, are making the depth
indicators broad. By exercising a more complicated test area

with broader scan area we attempted to address these
concerns.

The second defined area consists of an area 30 meters in
length and 25 meters in depth with little or no space above
ground, (0.15 meters), for the Tx and Rx used (Test Case 2 —
TC2). They are swept along the scan axis length starting at
0.5 meters (Tx) and ending at 24.85 meters with spacing
between the Tx and Rx the same as before (0.25 meters), as
shown in Figure 26. The number of GPR scans is 145. The
electrical conductivity of the ground is the same as before
but the relative permittivity (e,) is 3.0 for dry sand. Each
scan is 550 ns long, capable of receiving a reflected signal
approximately 48 meters below Tx’s and Rx’s in dry sand,
with a minimum grid space of 150 points in x direction, (Ax
— 0.2 meters), and 2500 points in the y direction, (Ay - 0.01
meters). Simulated burial in the ground at 8 different levels
(4.565, 6.065, 8.565, 10.065, 12.815, 14.065, 16.565 and
18.065 meters) are sheets of corrugated aluminum, modeled
as perfect electrical conductors for ease of computation.
Each sheet is approximately 2 meters in length and 0.1
meters in depth. The GPR scanning frequencies are the same
as before. The result for the EM method, shown in Figure
27, identifies 8 targets at very close to the correct depth
(approximately 50, 70, 100, 116, 148, 160, 190 and 208 ns
for two-way travel time at a velocity in the medium of
0.1732 m/ns for the defined relative permittivity) with edges
depicted reliably but with less fidelity as one descends in
depth. Figure 28 displays the individual GPR traces instead
of the image response.

Applying the Dougherty et al. [3] method to this second
test area produces the GPR response shown in Figure 29.
Note that not all plates are depicted. Only 5 and barely 6 of
the 8 are designated. Where the plates end in width is
tolerably detectable; edges are noted but not clearly. The
result is poorer than the EM processed response of Figure
27; direct arrival signal removed by subtraction as before.
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Figure 26. EM algorithm Test Case, (8) 2 meter long plates, 0.1 meter
thick.
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Figure 29. Dougherty et al. [3] standard response for TC2.

Figure 30 shows the GPR response of the Booth et al. [4]
OSW method with one time-window applied to this second
test area. The ground bounce (shown as a straight line at
approximately 50 ns in Figure 30) is still present in the

Trace:

image because the mute feature had to balance between
removing the direct arrival/ground bounce signal and not
removing the reflection of the first plate at a depth of
approximately 50 ns two-way travel time. Again only a few
plates are detectable. Easily shown are the first 4 plates and
barely plates 5 and 6 of the 8 plates in the test area.
Comparing the result to the EM method, the Booth et al. [4]
method falls short at depth. Edge detection is poorer than the
EM method but comparable to the Dougherty et al. [3]
method.
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Figure 30. Booth et al. [4] response for TC2.

Figure 31 depicts the result of employing the AEE
Bancroft [5] method on test area 2. Like Booth et al. [4] and
Dougherty et al. [3] before, not all buried plates are
illuminated. Of the 8 plates, 4 are depicted with a possibility
of 3 more. Added under plates at 50 ns and 75 ns in depth
are “ghost” plates at 100 ns and 150 ns. There were no
targets buried at these two points. Edge detection is better
than Booth et al. [4] and Dougherty et al. [3] and on par with
the EM algorithm.  Again, only the calculated AEE
multipliers were used due to the same ramp start and end
conflict issue.
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Figure 31. Bancroft [5] response for TC2.



For this more complicated test case, the EM algorithm
has performed the best in terms of revealing the 8 buried
plates. Edge detection is still not great but tolerable for the
EM method for both test cases and the Bancroft method for
the second test case. The larger scan area does address the
bore hole effect question of wider scan axis length reducing
wide reflection traces. The dimensions of the scan area does
affect the width of the scan axis reflections. The ability to
achieve crisp edge detection has not changed much however.

The previous test cases modeled were all in homogenous
material either moist sand or dry sand. Of interest to be
modeled were objects placed in a non-homogenous material;
layered like what could appear in nature. As an additional
test case (TC3), a model area was created with dry sand,
clay, concrete, granite, and limestone with relative
permittivity of material noted in Figure 32. Sheets of
corrugated aluminum, modeled as perfect electrical
conductors were buried as noted in the previous test case.
The result (Figure 33) for the EM method on this test case
mirrors that of the previous homogeneous medium case.
There are a few subtle changes (coloration differences — the
concrete buried object, plate 6, has a lighter color for
example), which coincide with material the aluminum sheets
(perfect electrical conductors) are buried in. Figure 34
shows the individual GPR traces.
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Figure 32. Test Case Area 3 (8) 2 meter long plates, 0.1 meter in depth.
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Figure 33. EM Algorithm GPR scan result for TC3 (8) Plates shown
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Figure 34. EM Algorithm GPR Scan result showing individual traces
for TC3.

XIl. CONCLUSION AND FUTURE WORK

In this paper, we have explored using the Expectation
Maximization Gaussian Mixture Model, an optimization
problem solver, to define weights to combine multiple GPR
frequency scans over the same area to improve image
resolution to a lower depth. First, we looked at using the EM
GMM method to combine multiple frequency sine waves to
form a square wave by defining the best set of weights for
the square wave frequency harmonics presented. Though not
without problems, the process performs reasonably well in
forming a square wave combining the multiple frequencies.
The value of the mixture weights summing to one is an issue
to look at; but they are defined that way in the EM GMM
algorithm. Actual multiple sine wave mixture weight values
are different but similar in magnitude. Though not ideal,
there was enough success to pursue using the EM GMM
technique on GPR scans over the same area at different
frequencies, the first use of this technique on GPR scans of
multiple frequencies. We explored whether the Maximum
Likelihood Estimation process would be more fitting for our
analyses. In exploring this technique, we were reminded that
the MLE process, though workable, presents problems when
hidden or incomplete data exists [6][7]. The resultant
likelihood equation does not have a closed form solution or a
single global maximum and becomes very hard to solve.
Whereas the EM Algorithm provides a well-structured
solution by creating a set of simpler optimization sub-
problems, from the MLE process, that are guaranteed to
converge and produce local maxima at each iteration that
increase until a global maximum is reached.

In considering the EM GMM case for GPR signals we
encountered several other methods, in the literature, that
attempted to combine scans of various frequencies over the
same target area. Methods by Dougherty et al. [3], Booth et
al. [4] and Bancroft [5] were compared to our EM GMM
method [18] as a way to judge how well our method
performed compared to solutions found in the literature.
Because we lacked the equipment hardware to perform field
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experiments, a well-known computer program was used to
model simulated target areas. The targets were perfect
electrical conductors and the media used well-defined
permittivity values. The scan results demonstrated the
effectiveness of the software program GprMax [8]. The
connection between actual and simulated results were
detailed in reference [13] and discussed here briefly. The
GprMax [8] results were determined to be an accurate
depiction of field experiments. We found that in comparing
our EM GMM process with Dougherty et al. [3], Booth et al.
[4] and Bancroft [5], our process faired the best in
recognizing images at depths down to 20 meters in moist
sand and dry sand media. As a final test, we performed an
experiment with the same targets positioned this time in
several media types that varied with depth from the surface.
In this hon-homogenous experiment, we used dry sand first
then, clay and granite, concrete and finally limestone as the
final layer. The result was the same as without such division
in media types.

Our results uncovered problem areas in need of future
study. The edge detection ability, how to reliably remove the
direct wave/ground bounce without removing the reflected
radar response from the target, and how to best align GPR
trace starting points across frequencies, are a few examples.
Solving the alignment problem appears to reduce the
thickness in depth of the GPR scan results. Of interest in a
future project would be the result of using the EM GMM
method in finding tunnels in a realistic clutter environment.

APPENDIX A

Al GPR BaAsiIcs

Ground Penetrating Radar method provides a way to map
sub-surface artifacts or structures using radio waves. GPR
modes in practice consist of reflection, velocity sounding
(common mid-point) mode and trans-illumination. The
most common mode is the reflection mode where a GPR
radio wave from a transmitter at or above the ground
surface, propagates through a medium to a buried target,
reflecting the radar wave back to a receiving antenna. The
velocity sounding or common mid-point mode provides a
method to determine the velocity of the radio wave in a
medium by setting a transmitter and receiver at a specified
distance apart; instituting a scan then, moving both
transmitter and receiver a distance further apart, repeating
the process several times. The result provides a way to
calculate the velocity through the medium that the radio
waves have encountered. Trans-illumination is used for
Bore holes in two ways; One, a transmitter (Tx) and receiver
(Rx) are moved in unison from one position to another
beginning at the surface of a bore hole then, lower on either
side of the area of interest; scanning is across the area of
interest. Two, only one transmitter is used and several
receivers are placed at various positions in depth. Figure 1A
depicts these modes. Antenna orientation, polarization and
the available power verses the loss mechanisms determined

by the radar range equation are of interest but beyond the
scope of this paper.

Of interest in the reflection mode method are the signal
arrival types, the theoretical resolution of a GPR system,
and what item is the major contributor to the velocity in a
medium. The signal arrival types are the direct air wave,
critically refracted air wave, direct ground wave, and
reflected wave. The theoretical resolution is proportional to
Y, of the velocity in a medium divided by the frequency of
the radio wave (i.e. the wavelength in a medium divided by

4; Theoretical resolution = (/'1 = ;)/4 ). The velocity

in a medium is proportional to the speed of light in a
vacuum divided by the square root of the relative
permittivity of the medium making permittivity the major
influence on the velocity in a medium.

Velocity = (c/(\g,)) * 1le °meters/ns 1A
¢ = speed of light (3e® meters/sec)
&, — relative permittivity

Permittivity is defined as a measure of how an electric
field is affected and affects a dielectric medium. Figure 2A
and Figure 3A. depict the signal arrival types, and equations
governing time, depth and velocity measurements.
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Figure 1A. GPR Scanning Modes [19].

Typically, short radar pulses are transmitted into the
medium. The most common pulses used are the “Ricker
Pulse” (second derivative of a Gaussian pulse) or the first
derivative of a Gaussian pulse (a Monocycle) (Figure 4A).
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Figure 3A. Simple CMP plot w/equations for
Arrival Types [20].

Most equipment manufacturers do not divulge their transmit
pulse type; but the “Ricker” Pulse is assumed. Figures 5A-
8A show plots of typical reflected signals received without a
buried target at various frequencies. Each Tx/Rx is 5 meters
above the ground (dry sand) in air. Shown are the direct
arrival signal and the ground bounce. Note as the frequency
increases, the direct arrival gets sharper and the ground
bounce is better defined though the time of the return signal
occurs is the same.
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Figure 4A. Gaussian, 1st derivative (Monocycle), 2nd
derivative (Ricker)(normally GPR response signals for
Monocycle and Ricker are inverted) [21].
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Figure 6A. Direct arrival and ground bounce, 50MHz.
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Figure 7A. Direct arrival and ground bounce, 100MHz.
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Several methods exist to calculate the velocity of a radio
wave in a medium. The two most popular are derived from
the common mid-point (CMP) mode. Figure 3A depicts the
first method, a simple plot of the CMP results with
equations. Figure 9A depicts the second method, the (time2
— Tx/Rx separation2) analysis method named (t>-x?) where
the slope of the plot is equal to 1/(velocity squared). With
simple manipulation of the result, the velocity in a medium
can be determined.
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Velocity (V)
(Slope=1/V2)

(t=x2) Velocity Analysis

2 4 6 8
xz (kmg)

Example of a EJ-XJ-AMGE}SM.

Figure 9A. Shows t? — x? Analysis (st) [22].

A2 MODELING BASICS

The top 2 methods used to model GPR analysis are the
Transmission-Line Matrix (TLM) method and the Finite
Difference Time Domain (FDTD) method [15]. Both
methods provide a solution to Maxwell’s equation subject to
geometry, initial conditions, and boundaries of a problem.
The TLM method [17] is implemented as an electrical
network model solution to an electromagnetic field problem.
Transmission lines are interconnected at regular intervals to
form TLM nodes. The propagation of electric and magnetic
fields are simulated by voltage and current pulses. The
model space step defines the distance between TLM

adjacent nodes. The time step represents the time, which a
pulse takes to travel from one TLM node to the next.

The FDTD method provides a solution to Maxwell’s
equations expressed in differential form. The partial
derivatives in Maxwell equations are discretized using
central difference techniques resulting in difference
equations, which are solved by an iterative process.
Included in the difference equations are the model space
step and time step.

A3 TwO-WAY-TRAVEL-TIME (TWTT)

Figure 10A and Figure 11A, demonstrate the GPR trace
of the example in Figure 6 at 20 and 50 Mhz. The target is
10 meters below the ground and 15 meters from the Tx’s
and Rx’s. There are 2 mediums the radar signal travels
through, free space (Tx/Rx to ground) and moist sand
(ground to target). The velocities for the 2 mediums are 0.3
m/ns (free space) and 0.1 m/ns (moist sand). To determine
the distance to the target from the Tx/Rx from Figure 7A,
the mediums and the velocity through the mediums alone
the following occurs.

2xdistance Tx/Rx to target

TWTT = (2A)

Velocity through the media

TWTT =280 ns - 40 ns =240 ns, from Figure 7A.

Medium 1 — free space, velocity 0.3 m/ns, distance to
ground from Tx/Rx is 5 meters

TWTT (1)= (2 * 5 meters)/(0.3 m/ns)~=33 ns

Medium 2 — moist sand, velocity 0.1 m/ns, distance to
target from ground is:

d = (0.1 m/ns * (240 ns - 33 ns))/2 ==10.35 meters.

Total calculated distance (d) from Tx/Rx to target is 15.35
meters (5 meters + 10.35 meters); close to the defined 15-
meter distance, but accurate because true distance from
Tx/Rx to target is at an angle, which is longer than the
perpendicular distance.

A4 VELOCITY THROUGH A MEDIUM AND PENETRATION
DEPTH [23]

The velocity is dependent on a material’s relative
permittivity. The higher the relative permittivity of a
medium, the lower the velocity is through the medium.
When the relative permittivity of a medium is known the
calculated velocity through the medium can be calculated
using equation 1A.

Example: free-space has a permittivity (&) = 1,
Velocity = [ 3e + 8/Sqrt(1) » 1e — 9] m/ns.
V =0.3 m/ns.



20MHz, Sm-height, 10m-depth, moist sand

Direct Arrival

S

o Tﬂ.s 1 1.4 ;GD“:: 3 3.8 4 m:,u
_ TWTT

»
< »

Target Refloction

Magnitude

Figure 10A. GPR trace depicting Two-way-transit-time
for a target at 20MHz.
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Figure 11A. GPR trace depicting Two-way-transit-time
for same target of Figure 10A at 50 MHz.

As the electrical conductivity, (units Siemens/meter),
increases the penetration depth decreases, determining how
deep an electrical signal will penetrate. Higher frequencies
reduce the depth penetration but increase image resolution.
Table 1 lists a few nominal values for permittivity and
conductivity.

TABLE 1 (MEDIUM AND VELOCITY VALUES)

Medium & Velocity Conductivity
(m/ns) (mS/m)
concrete 6 0.1225 0.01
clay 5 0.1342 2
dry-sand 3 0.1732 0.01
granite 4 0.1500 0.01
limestone 7 0.1134 0.5
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