Journal of Applied and Computational Topology manuscript No.
(will be inserted by the editor)

The Computational Complexity of Multidimensional
Persistence

Jacek Skryzalin - Pawin Vongmasa

Received: date / Accepted: date

Abstract We present findings on the computational complexity of computing mul-
tidimensional persistent homology. We first show that the worst-case computational
complexity of multidimensional persistence is exponential. We then present an algo-
rithm for computing multidimensional persistence which extends the algorithm given
by Zomorodian and Carlsson for computing one-dimensional persistence [14]. The
computational complexity of our algorithm is polynomial in the size of the persistence
module and exponential in the persistence dimension.

Keywords multidimensional persistent homology - computational complexity -
applied topology

1 Introduction

Over the past decade, developments to the theory of persistent homology [1], [2] have
allowed scientists and analysts to apply topological techniques to the study of data (see
[31, [71, [9], [13], for example). However, almost all concrete applications of persistent
homology have used one-dimensional persistence. We believe that this is the case for
two main reasons. First, one-dimensional persistence can be computed in O(n?)
time [14], where n represents the number of generators of the underlying (filtered)
complex. Second, the output of one-dimensional persistence has a pleasingly intuitive
interpretation in terms of the “birth” and “death” times of geometrical features of the
complex. Both of these attractive qualities of one-dimensional persistence arise from
the equivalence between the category of one-dimensional persistence modules and

Jacek Skryzalin

Sandia National Laboratories
Tel.: 1-505-284-9487
E-mail: jskryza@sandia.gov

Pawin Vongmasa
Google, Inc.
E-mail: pawin.vongmasa@gmail.com

SAND2017-12740J

2 Jacek Skryzalin, Pawin Vongmasa

the category of finitely presented graded modules over a PID, and from the structure
theorem of such modules (see [8], for example).

Unfortunately, there is no analogous structure theorem for the category of mul-
tidimensional persistence modules. As such, the calculation of a multidimensional
persistence module and its subsequent analysis must be considered as two related but
separate problems. We build off the approach of Carlsson, Singh, and Zomorodian
[4], which rephrases the calculation of the homology of a multifiltered complex in
terms of a problem in computational commutative algebra. We first provide a family
of complexes whose homology requires exponential time to compute in this computa-
tional commutative algebra setting. This disproves a theorem of [4]. We then provide
an algorithm for the computation of the homology of a multifiltered complex whose
runtime is (approximately) O(n¢*!), where d is the persistence dimension and # is
the number of generators of the multi-filtered complex underlying the persistence
module. We note that our algorithm is highly parallelizeable; with infinite parallelism
available, our algorithm’s runtime would be (approximately) O(d’n* + dn*).

2 Algebraic Preliminaries

Throughout this paper, let k denote a field of arbitrary characteristic. We denote
elements of N using bold letters (e.g., a € NY), although we represent elements of N
using non-bold, italic letters (e.g., a € N). Furthermore, it is understood that the ith
coordinate of a € N is a;. We impose two orderings on N9, First, for a,b € N9 we
say that a < b if a; < b; for all i. Second, we say that a <, b if a precedes b in the
lexicographic ordering on N¢.

We let k[x1, ...x4] denote the polynomial ring in d variables over k, and we denote
the element x{'x5* ... xzd by x*. Given any ordering < on N, we may extend the
ordering to monomials in k[x] by declaring that x* < xP if and only if a < b. We
may further extend this ordering to the free module k[x]™ which is freely generated
by the standard basis elements e; (ordered so that e; > e; if i < j) by declaring that
x?e; < xPe;ifand onlyif (a)i > jor(b)i=janda <b.

Given any element f € k[x]™, we may write f as a sum of terms, each of the
form ¢ x" ¢;, where ¢ € k is nonzero. The greatest such summand ¢ x" ¢; under any
total order (we’ll be using the lexicographic ordering) is called the leading term.
The element ¢ € k is called the leading coefficient, and x" ¢; is called the leading
monomial. We now very briefly introduce the notion of a Grobner basis. More details
can be found in [6].

Definition 1 Let M be a submodule of the free module k[x1, ..., x4]™. Assume that
k[x1, ..., xq]™ is freely generated by the standard basis elements e;. A Grobner basis
for M with respect to a total order < on k[x1, ..., x4]™ is a set GB(M) of generators
of M such that the leading terms of elements in GB(M) generate the k[x]-module
consisting of all leading terms of all elements of M. A Grobner basis G is minimal
if no leading term in any element of the basis is in the ideal generated by the leading
terms of the other elements of the basis. A Grobner basis G is reduced if G is minimal,
the leading coefficient of each element of G is 1, and no non-leading monomial of
any element in G is divisible by any leading monomial of any element of G.

The Computational Complexity of Multidimensional Persistence 3

Grobner bases enjoy a number of attractive properties. For example, for a fixed
monomial ordering, all minimal Grobner bases for a module M have the same cardi-
nality, and M has a unique reduced Grobner basis. Furthermore,

Lemma 1 Let M C k[x]™. Assume that we have fixed an ordering on monomials in
k[x]™. Then the following are equivalent:

G is a Grobner basis of M.

The leading term of any f € M is divisible by some g € G.

The division of any polynomial in k[x]™ by G gives a unique remainder.
For f € M, the division of f by G yields 0.

Remark 1 In general, given some polynomial module M, one can construct a generat-
ing set G and an element f € M such that reducing f modulo G does not yield 0. This
fact suggests that whenever we wish to test membership in a complicated polynomial
ring or module, it is imperative to work with Grobner bases.

Remark 2 Definition 1 and Lemma 1 depart somewhat from the standard definition of
Grobner basis, which is typically defined for ideals of a polynomial ring k[xy, ..., x4]
rather than for submodules of k[xy, ..., x4]"". We note that we may identify submod-
ules M of k[xy, ..., xq]™ with ideals I of k[x, ..., x4, e1, ..., em]/{e;e;)i<; which are
contained in the ideal {e;)1 <; <;n- Because Grobner bases are typically given for ideals
of polynomial rings (rather than any of their quotients), we may compute a Grobner
basis for a module M C k[x]™ by computing a Grobner basis G for the inverse image
of the corresponding ideal [in k[xy, ..., x4, €1, ..., e,,] and subsequently removing all
monomial summands contained in the ideal {e;e;);<; from all generators in G.

3 A Review of Multidimensional Persistence

In this section, we discuss the theory of multidimensional persistence [5] and outline
the established approach to computing multidimensional persistence [4].

Definition 2 A persistence module M indexed by the partially ordered set V is a
family of k-modules {My}ycy together with homomorphisms ¢,y : My — My for all
u <V, such that ¢y y 0 ¢y y = ¢y w Wheneveru < v < w.

In this work, we are concerned specifically with the case V = N¢ for some integer
d>1.

Definition 3 A multidimensional persistence module M is a persistence module
whose underlying indexing set V is N¢ for some d > 1. We say that d is the persistence
dimension of M.

We now explain how multidimensional persistence arises naturally by taking the
homology of a multifiltered complex. We briefly review definitions and refer the
reader to [12] for a more in-depth discussion of the underlying theory.

4 Jacek Skryzalin, Pawin Vongmasa

Definition 4 Let V be a set. For a nonnegative integer i, an i-simplex is defined to
be an ordered list [vg, v1, ..., v;] of elements in V. Moreover, for j < i, we say that
a j-simplex o’ is a face of an i-simplex o if o’ can be obtained by removing some
number of elements from the ordered list describing o .

Furthermore, a simplicial complex X is a set of simplices such that:

— any face of any simplex in X is also a simplex in X, and
— the intersection of two simplices o~ and o’ in X is either the empty list or a face
of both o and ¢”’.

Example 1 In topological data analysis, one is often given a finite set S € R" of data
points. We assume that a (possibly arbitrary) total order has been imposed on this
set of data points. There are many established methods for constructing complexes
from data [1]. One popular choice is the Vietoris-Rips construction. Given some real
number € > 0, we define the Vietoris-Rips complex VR(X; €) with scale parameter

€ as the simplicial complex with vertex set S, where [sg, 51, ..., ;] spans an i-simplex
if and only if s < s; < --- < s; in the total order on S and d(s4, sp) < € for all
0<abc<i.

Definition S For a field k£ and simplicial complex X, the group C;(X; k) of i-chains
of X is defined to be the free k-module generated by the i-simplices of X. When the
field k is understood, we abbreviate C;(X; k) as C;(X). We define the boundary of
the i-simplex [vg, v1, ..., v;] to be the formal sum
3 ([v0, 1, o vil) = Y (1Y [0, V1y oo V1, T, Vit o vi] € Gt (X),
j=0

where vAj denotes that v; has been removed from the ordered list [vo, vy, ..., v;]. The
boundary map thus defines a homomorphism

0; 1 Ci(X) — Cim1(X).

We denote the group ker(d;) € C;(X) of i-cycles of X by Z;(X), and we denote the
group im(0;+1) € C;(X) of i-boundaries by B;(X). Because 0; o 0;4+1 = 0, we may
define the ith homology group H;(X) of a simplicial complex X as the quotient
Z:(X) _ ker(d; : Gi(X) - G (X))

Bi(X) im(diy1 : Cir1(X) = Gi(X))'

Definition 6 A d-filtered simplicial complex X is a collection of simplicial complexes
{Xv}yeya such that foru, v € N4 such that u < v, we have that Xu € Xy.

H;(X) =

For u,v € N the inclusion map X, < X, descends to a map on homology
H;(Xy) — H;(Xy). We may thus form a d-dimensional persistence module H;(X) =
{H;(Xy)}yene from any d-filtered simplicial complex X by applying the functor H; (-).

Example 2 We show how to extend the definition of the Vietoris-Rips complex in
Example 1 to obtain a multifiltered simplicial complex. We assume that our input
data S C R” has been equipped with d — 1 filter functions f; : S — N, which we
collectively represent as f. For u € R4 et VR(X; €;u) denote the subcomplex of
VR(X; €) such that:

The Computational Complexity of Multidimensional Persistence 5

— the set of vertices of VR(X;e;u)is {s € S| f(s) < u}, and
— vertices sy, ..., s; of VR(X; €;u) span an i-simplex in VR(X; €;u) if and only if
these vertices span an i-simplex in VR(X; €).

‘We now note for €; < €3 and u; < up, there is an inclusion
VR(X; €15u1) = VR(X; e2;mp).

The set of permissible values for € and u is isomorphic to R¢. By choosing an appro-
priate partially ordered subset V of these permissible values such that V' is isomorphic
as a partially ordered set to N, we may obtain a d-filtered simplicial complex. Taking
the homology of this complex leads to the notion of level-set persistence.

The study of multidimensional persistence stems from the following fact:

Theorem 1 ([5]) For any multidimensional persistence module M indexed by N9 e
can define a d-graded k[x]-module a(M) via

a(M) = P M,

veNd

where for u < v, we define X' ™" : My — My via the homomorphism ¢y y. Further-
more, a defines an equivalence of categories between the category of finite persistence
modules over k indexed by N and the category of finitely presented d-graded modules
over k[x1, ..., x4].

The graded version of the structure theorem for finitely generated modules over a
PID allows one to understand any one-dimensional (i.e., indexed over N) persistence
module in terms of a finite set of intervals in N. This correspondence provides a
unique and intuitive geometric depiction of any one-dimensional persistence module.

Unfortunately, there is no satisfactory analogue for the multidimensional case, nor
does there exist any discrete invariant (one which assigns to any module a point in an
algebraic variety in a way that does not depend on k) that is complete for the category
of multidimensional persistence modules [5]. Although the problem of extracting
useful information from multidimensional persistence modules is currently an active
area of research, we nonetheless can identify one basic quantity which we should be
able to compute:

Definition 7 Let M be a persistence module indexed over the partially ordered set
V. For w,v € V, the rank pyy(M) of M is defined as the rank of the k-linear map
My — M.

We now describe the approach of Carlsson, Singh, and Zomorodian [4] for com-
puting multidimensional persistent homology. We note that our exposition differs
slightly from that of [4], but the general ideas remain the same. As input we assume
that we are given the following:

— A d-filtered complex X consisting of a set X’ of i-simplices for each i € N.
— For each i, a total order on the set X®.

6 Jacek Skryzalin, Pawin Vongmasa

— For each simplex o € X, we are given the set
Birth(o) = {u e N9 ‘ o € Xyand o ¢ X, forevery v < u}

of gradings u € N¢ for each simplex which represent the gradings at which the
simplex first appears.

Remark 3 We note that our setting is strictly more general than that of [4], in which
the complex X is assumed to be one-critical (i.e., the sets Birth(o) are required
to have cardinality one). We further note that the extended Vietoris-Rips complex
presented in Example 2 is one-critical.

We represent the boundary maps 9; of the d-filtered complex X as matrices M;
with entries in the polynomial ring k[xy, ..., x4]. The columns of M; are indexed by
pairs (o, u), where o € X and u € Birth(c). The rows of M; are indexed by
elements 7 € X1 Furthermore, the rows of M should be ordered in decreasing
order of their corresponding indices. The entry of M; corresponding to column (o, u)
and row T is the product of x" and the coefficient of 7 in J; (o). We extend the given
total order < on X to a total order on X© x N¢ by declaring that (o, u) > (7, v) if
andonlyif (a)oc > 7or(b)oc =7andu >, v.

To compute H;(X), we must first “calculate” Z;(X) (the nullspace of M;) and
B;(X) (the columnspace of M,,1). If M; has m rows and n columns, then B;_|(X) is
a submodule of the free module k[x]” and Z;(X) is a submodule of the free module
k[x]". The authors of [4] argue that the proper definition of “calculate” in this setting
is “compute a Grobner basis for”. Indeed, after calculating Grobner bases for Z;(X)
and B;(X), it is easy to calculate their quotient H;(Xy) for any v € N9 [6].

Carlsson, Singh, and Zomorodian [4] recommend Buchberger’s algorithm and
Schreyer’s algorithm [6] for these computations. We first provide a lower bound to
the worst-case runtime of any algorithm which calculates a Grobner basis for B;(X)
and Z;(X). We then provide an alternative algorithm for computing multidimensional
persistence.

4 A Lower Bound on the Complexity of Computing Multidimensional
Persistence

In this section we provide a counterexample to the claim of [4] that multidimensional
persistence can be computed in polynomial time.

Example 3 Let n be an even positive integer. We construct an n-filtered complex
X = X(n). Let 19, 11, ..., T2 be a set of % + 1 O-simplices ordered so that 7; > 7; if
i < j. Assume that Birth(r;) = 0 € N" for all j. Further assume that we have 7
1-simplices o1, 09, ..., o such that Birth(o ;) = {ezj_1,e2;}, where e; denotes the
Jjth standard basis vector in N”. Set

-1 j=1

a(O'j) Z{

Tj-2 =T j>1

The Computational Complexity of Multidimensional Persistence 7

The matrix representation of d; is given below. We assume that the column labeled
e; below is understood as (‘TF%P e,-).

H €1 e e3 e4 es e " en_| ey

0 || X1 x2 x3 x4 0 O 0 0
T —X1 —X2 0 0 X5 X - 0 0
™ 0 0 —X3 —X4 0 0 0 0
K] 0 0 0 0 —X5 —Xg * 0 0
Tz) O 0 0 0 0 0 - xu1 xp
To_ o o o0 o0 o o0 -+ 0 0

| Tz 0 0 0 0 O 0 - —xp_1 —xn]

Theorem 2 Let X (n) be the n-filtered complex of Example 3. Any minimal Grobner
basis for By(X (n)) contains 23+ 4 5 — 4 elements.

Proof We prove Theorem 2 by induction on the following statements:

1. Any minimal Grobner basis for By(X (n)) contains 27+ 4 5 — 4 elements.

2. Any leading monomial x* 7; of an element in a minimal Grobner basis for
Bo(X(n)) satisfies j < & — 1.

3. There are 2"/? elements L,, in any minimal Grobner basis whose leading monomial
is a multiple of 72 _;. They are precisely the elements of the form

x? Tn_| — x? Tn,
2 2

where

ac {{0,1}" a1 +ay = 1forall 1 < j < g}

For n = 2, the three inductive hypotheses follow from the statement that the set
{0(01), 0(03)} is itself a Grobner basis for By(X(2)).

Now assume that n > 2 is even and that G is a minimal Grébner basis for
Bo(X(n — 2)). By inductive hypotheses (2) and (3), a minimal Grobner basis G for
Bo(X (n)) can be obtained from G by the insertion d(o,—1), d(0,), and the result of
the reduction of each of d(o,_1) and d(o,,) with each of the elements in L,_,. The
reduction of each of d(o,—1) and d(o,,) with the elements in L,_, produces the set
L,,and

|Lnl = HO(@n-1). ()} # | Lna| =2 2°T =23,

By inspection, we see that (2) still holds and that the elements of L,, are of the required
form, proving (3). Finally, (1) holds as well, since G is obtained from G by the addition
of 2 + 27 elements (i.e., 2 elements from d(o,,—1) and d(o,,) and 2% from L,).

Remark 4 In Example 3, we provide an example of a multifiltered complex X such
that the Grobner basis for By(X) has cardinality exponential in the number of 1-
simplices. We now explain how to generalize Example 3 to provide a multifiltered
complex such that the Grobner basis for B;(X) has cardinality exponential in the
number of (i + 1)-simplices for i > 0.

8 Jacek Skryzalin, Pawin Vongmasa

For an even integer n, we construct another n-filtered complex X with i-simplices
T05 Tl ooy T, UL, ooy Uiy where Birth(t;) = Birth(v;) = 0. Assume that 7; > 7; for
i < j,thaty; > vjfori < j, and that 7; > v; for alli and j. Let oy, O be a set of
(i + 1)-simplices with Birth(o;) = {ezj_1, e;}. We set

-7+ X vk JE{L2)
6(0']) = kfil . .

Tj72_Tj+Zk:1Uk] >2
A similar argument to that in Theorem 2 shows that GB(B;(X)) has cardinality
exponential in the number of (i + 1)-simplices.

Corollary 1 Leti € N, let X be a multifiltered complex, and let

n= Z HBirth(o)}| .

oeX+h
Then the worst-case computational complexity for computing GB(B; (X)) is Q (2%)

Remark 5 The bound of Corollary 1 contradicts Lemma 4 (and thus Theorem 3) of [4].
That is, multidimensional persistence cannot always be computed in time polynomial
in the number of simplices of the complex.

Remark 6 Tt should be noted that the multifiltered complexes in Example 3 and
Remark 4 are not one-critical. We explain how to construct a one-critical complex X (n)
with @(n) 1-simplices such that GB(By(X(n))) grows exponentially in n. Assume
that we have O-simplices ki, «2, ..., K1, 70, Tty ooy T2 (arranged in decreasing order)
such that Birth(x;) = Birth(t;) = 0 for all j.

Further assume that we have 1-simplices o7, 4, u; (for 1 < j < 7) such that
Birth(oj) = {ezj—1} and Birth(A;) = Birth(u;) = {ez;}. Set

- i=1
dop=1°"" T
Tio—17 j>1

L =1
au,->={K’ oo

Ki—Tja j>1

A(uj) = kj — 7j.

Using an argument similar to that in the proof of Theorem 2, one can show that
the size of GB(By(X(n))) grows exponentially in n (although slower than in the
family of complexes introduced in Example 3). Furthermore, as in Remark 4, one
can construct complexes X (n) with ®(n) (i + 1)-simplices such that GB(B;(X (n)))
grows exponentially in n.

We now provide a family X (n) of simplicial complexes such that the size of the
Grobner basis for Z; (X (n)) grows exponentially.

The Computational Complexity of Multidimensional Persistence 9

Example 4 In this example, we construct a family of multifiltered complexes X (n)
with ®(n) i-simplices such that the size of GB(Z;(X(n))) grows exponentially in 7.
Let m > i + 2 be a positive integer, and let o, ..., 0, be a set of i-simplices with
Birth(oj) = {ezj_1, e2;} such that the set {oy, ..., 07, } is a triangulation of the i-sphere
St

Theorem 3 Let i be a positive integer, let X (n) be the multifiltered complex con-
structed in Example 4, and let n = Y, cxw |Birth(c)|. Then GB(Z;(X (n))) contains
Q (2%) elements.

Proof For any
aeS={{01)"]|ay1+ay=1forall<j<n},

dim(H; (X (n)a)) = 1. However, for any a’ strictly less than all a € S under the partial
order on N, we have that dim(H;(X (n)y)) = 0. Since |S| = 2%, we have that the
size of GB(Zi(X (n))) is Q (2%).

Corollary 2 Leti € N, let X be a multifiltered complex, and let

n= Z U Birth(o)}| .

oex@
Then the worst-case computational complexity for computing GB(Z;(X)) is Q <2%)

Remark 7 Note that the complexes X (n) in Example 4 are not one-critical. One can
use a technique similar to that of Remark 6 to construct a one-critical simplicial
complex X (n) with n i-simplices (for n > (i + 2)2) such that GB(Z;(X(n))) has
Q (2$) elements.

Remark 8 We have assumed in this paper that we are given a total order on the set
X@ of i-simplices. We note that if we reverse the order of O-simplices in Example
3 so that 7; < 7; whenever i < j, then the columns of the resulting boundary matrix
serve as a minimal Grobner basis for By(X). In this case, the minimal Grobner basis
for By(X) now contains exactly n elements. We leave as open the question of whether
it is possible to calculate efficiently an ordering on the simplices of a complex in order
to obtain a polynomially-sized Grobner basis for the various cycle and boundary
modules of a multifiltered complex.

5 Fast Computation of Multidimensional Persistence: Our Approach

We now provide and analyze an algorithm for computing multidimensional per-
sistence. This algorithm extends the algorithm given in [14] for computing one-
dimensional persistence. We note that our algorithm is inspired by Faugere’s im-
provements [10], [11] to Buchberger’s algorithm; indeed, it would not be wholly
inaccurate to view the algorithms we provide as adaptations of Faugere’s F4 and F5

10 Jacek Skryzalin, Pawin Vongmasa

algorithms to the computation of multidimensional persistent homology. Addition-
ally, we show how our approach allows us to derive bounds on the complexity of
computing multidimensional persistence.

Our main insight is that despite Corollaries 1 and 2, if we fix a persistence
dimension, we can compute Grobner bases for Z;(X) and B;(X) in time polynomial
in the number of simplices of X. Although the runtime of our algorithm is exponential
in the persistence dimension, our algorithm nevertheless has utility in the wild, where
high persistence dimensions are unlikely to be encountered. The results of [14] show
that it is possible to compute persistent homology for d = 1 in time O(n?), where n
is the number of simplices of our complex X. Our results show that, surprisingly, it is
also possible to compute persistent homology in time O(n?) for d = 2.

Our algorithm heavily exploits the multigraded structure of multidimensional per-
sistence modules in order to reduce the computation of multidimensional persistence
to the one-dimensional setting. We now provide theoretical results which will serve
as the basis for our algorithm.

Lemma2 Let M = EBveNd My be a d-graded submodule of k[xi,...,x4]™. Let
GB(My) denote a Grobner basis for the k-module My. Then

|J 6BMy)

veNd

is a Grobner basis for M.
Proof The proof is a routine check of the properties of a Grobner basis.

Remark 9 A Grobner basis for any k-module V with respect to an ordered basis {e;}
can be constructed from a set of generators by converting into column echelon form
the matrix M whose rows are indexed by the e; and whose columns correspond to
generators (as in Example 3).

For any v € N, we may write v.= (V,v;) € NI XN.If M = P, ja My is a
égraded submodule of k[x1, ..., x4]™, we can construct a (d — 1)-graded submodule
M of (k[xd])[xl, . xd,l]m via

where My = @, M.y, is itself a graded k[x,]-module. Furthermore, note that
X" My C Mg,y forallu,v € N41,

Lemma 2 can be generalized slightly:
Lemma3 Let M = @VENd My be a d-graded submodule of k[xi,...,xq]". Let

GB (MV) denote a Grobner basis for the graded k|[x4]-module MV. Then

| GBat)

VENd_l

is a Grobner basis of M.

The Computational Complexity of Multidimensional Persistence 11

We will use Lemma 3 with M as either Z;(X) or B;(X) for a finite d-filtered
complex X. Of course, N9~! is infinite, so it is necessary to choose a finite subset
S € N41 50 that | yes GB(My) serves as a finite Grobner basis of M.

Let X be the totally ordered set of i-simplices of the d-filtered complex X,
and recall that for each o € X¥, we are given a set Birth(c) of gradings u € N¢
where the simplex is born. We recall that we denote the coordinates of u € N¢ by
Uy, Uy, ..., ug. We now define

\/].“')(X):{u‘,- ue | J Birth(o)p C N,

oeX®

d
(@) — @) d
1% (X)—l_[Vj (X) C N9,
Jj=1
and
d-1
0} - (@) d-1
VO (X) =]_[vj (X) C N4
j=1
If our input is of size n (i.e., n = |Jgyexw Birth(o)|), then |Vj(i)(X)| < n, and
hence |V(i) (X)| < n? and |W(X)| < n9"!. When computing a Grébner basis for
B;_1(X) or Z;(X), we need only focus on the (at most) nd gradings in VO (X) (or the
(at most) n?~! gradings in V() (X)), and thus we can tailor Lemma 3 to our setting:

Lemma 4 Let X be a finite d-filtered complex. Let M denote either Z;(X) or Bi—1(X),
and let GB(My) denote a Grobner basis for the graded k[x z]-module M. Then

| GBOL)

eV (X)
is a Grobner basis for M.

Lemma 4 allows us to split up the computation of the Grobner basis GB(Z; (X))
or GB(B;(X)) of any d-filtered complex X into at most pd-1 separate computations of
Grobner bases of the graded modules ‘M over the PID k[x,]. This is wonderful news,
because finitely generated (graded) modules over a (graded) PID are well-understood.
Indeed, for any d-filtered complex X, specific algorithms for computing Grobner
bases of Z;(Xy) and B;(Xy) can be given by modifying slightly the algorithms given
in [14].

However, the Grobner basis guaranteed by Lemma 4 for M = Z;(X) or for M =
B;(X) is not necessarily minimal. The solution to this problem is to compute minimal
Grobner bases for each individual My sequentially while maintaining separately a
master list of generators. This master list is a subset of UVEW) G B(My) constructed
throughout the computation of GB(M) so as to form a minimal Grobner basis for M
at the conclusion of the algorithm. Specific implementation details are given in the
following section.

12 Jacek Skryzalin, Pawin Vongmasa

6 Computing Multidimensional Persistence: Algorithm CMP1

In this section we give an algorithm for computing minimal Groébner bases GB(B; (X))
and GB(Z;(X)) with respect to the lexicographic order discussed in Section 2. In our
exposition of the algorithm, we will err on the side of providing too many details for
the sake of completeness. For example, we explicitly describe an implementation of
sparse vectors and associated operations. We recognize the existence of other equally
valid implementations.

We briefly provide intuition for the algorithm which we’ll describe throughout this
section. First, Gaussian elimination serves as an O(n>) algorithm for 0-dimensional
persistence; repeating this for O(n?) gradings results in an O(n¢*3) algorithm for
computing (not necessarily minimal) Grobner bases GB(B;(X)) and GB(Z;(X)).
Next, the work of Zomorodian and Carlsson provide a way to calculate 1-dimensional
persistence in O (1) time by exploiting properties of finitely generated graded modules
over a PID [14]; repeating their algorithm O(n~!) times (once for every grading in

V@O (X)) results in an O(n4+?) algorithm for computing (not necessarily minimal)
Grobner bases.

Our algorithm builds upon this in two ways. First, we show that the algorithm
of [14] can actually be used to calculate 2-dimensional persistence in O(n?) time,
leading to an O(n*!) algorithm for computing (not necessarily minimal) Grébner
bases. Secondly, we show that calculating minimal Grobner bases can be performed
without a large cost in runtime.

Since our algorithm will calculate a Grobner basis for a submodule M of a free
k[x]"-module, we need to maintain a data structure Poly for elements of M and
a data structure GB for minimal Grobner bases GB(B;(Xy)) and GB(Z;(Xy)). We
summarize these data structures in Figure 1. We denote the coordinates of M (which
correspond to the totally ordered (i — 1)- or i- simplexes of X) by splx_idx (i.e.,
“simplex index”). Lastly, we note that all arrays used are zero-indexed.

The elements of a GB will be stored in an array eles (i.e., “elements”), whose
jth element is a Poly. For fast reduction, we maintain a hash table splx2idx (i.e.,
“simplex to index””) within each GB. The member splx2idx takes a splx_idx (which
represents a simplex) and identifies the index within eles of the unique Poly in the
GB whose leading term is a multiple of the simplex corresponding to splx_idx.
splx2idx will be used to aid the reduction of a Poly modulo the Grébner basis
represented by a GB. We assume that all GBs are initialized so that splx2idx and
eles are empty.

We represent each Poly as a sparse vector. The nonzero entries in the vector
corresponding to an element in M will be stored in an array eles; eles[j] gives
a pair (splx_idx, coeff), where coeff gives the field coefficient of the term in
the Poly corresponding to the simplex Tsp1x_iax. The elements of eles should be
arranged in increasing order: for i < j, we should have that eles[i].splx_idx <
eles[j].splx_idx. Within each Poly, we maintain a hash table splx2idx, which
takes a splx_idx and identifies the index within eles of the term in the Poly
corresponding to Tspix_idx-

We further maintain in each Poly the grading (i.e., a tuple representing an element
of V(X)) at which this Poly was generated in the field grading. We decompose

The Computational Complexity of Multidimensional Persistence 13

Grading: (first, last)
GB:
- eles : int --> Poly
- splx2idx : splx_idx --> int
- combineWith : (Poly, Grading, GB) --> (O

- eles : int --> (splx_idx, coeff)
- splx2idx : splx_idx --> int
- grading : Grading
- LC : Poly (or null)
reduceWith : (Poly, Poly, k, Grading) --> Poly

Fig. 1 Data structures used in CMP1.

each grading in N into the first d — 1 coordinates (in the field first of the grading)
and the last coordinate (in the field 1ast of the grading). Each Poly will be reduced
during computation, and we’ll use the field LC to record the linear combination of
i-simplexes which produce each Poly in B;_;(Xy5). The field LC will be set to null
for elements of the GBs used to calculate GB(Z;(Xy)). The grading of each Poly
generator of B;_;(X) is initialized with the birth grading of the generator.

We also define two methods. The method reduceWith (Algorithm 1) is respon-
sible for arithmetic on the Polys. For Polys f and g and a field coeflicient c, calling
reduceWith(f, g, c, v) will return the Poly f+(c*g) with its grading set to
v.

GB.combineWith (Algorithm 2) is used to calculate minimal Grobner bases
GB(My) (cf. Lemma 4). GB.combineWith takes as input a Poly, reduces it with
respect to the GB, and adds it to the GB if the reduced Poly is nonzero. Furthermore,
GB. combineWith is responsible for ensuring that its GB is a minimal Grobner basis.
The second argument to GB.combineWith is used to record at which grading the
current reduction is taking place. There is a third argument to GB.combineWith
which is used if and only if GB is a Grobner basis for B;_ (Xy). In this case, the third
argument will be a Grobner basis for Z; (Xy).

Pseudocode for CMP1, which calculates minimal Grobner bases imageGB for
B;_1(X) and kernelGB for Z;(X), is given in Algorithm 3. We remark that, for
fast implementation, W (cf. line 5) should be implemented as a list or array sorted
in lexicographic order. Furthermore, we recommend that each Poly be assigned a
unique identifier upon creation. This allows insertion into and membership queries
for the sets Z and B (cf. line 6) to be performed in O(1) time using a hash-based set.

We now prove the correctness of CMP1 and analyze its runtime. We denote the
number of i-simplices by n, the number of (i — 1)-simplices by m, and the persistence
dimension by d. We assume that d > 2.

Lemma 5 reduceWith (Algorithm 1) runs in time O(m + n).

Proof There are two key observations which validate this claim. First, al11dxs (line
3) can be constructed in linear time because we assume that £.eles and g.eles are
sorted. Second, reduceWith is linear in the maximum possible size of f.eles and
f.LC.eles. If £ is an element of B;.;(X), the maximum possible size of f.eles is

14 Jacek Skryzalin, Pawin Vongmasa

Algorithm 1 reduceWith(f, g, c, v) returnsh = f+(g*c)

1: procedure REDUCEWITH(f, g, C, V)
2: Let h be a new Poly

3 Let allIdxs «— sorted({ele.splx_idx | elein f.elesorg.eles})
4 for splx_idx in allIdxs do

5 Let newCoeff «— @

6: if splx_idxin f.splx2idx then

7 newCoeff «— f.eles[f.splx2idx[splx_idx]].coeff

8: end if

9: if splx_idxin g.splx2idx then

10: newCoeff «— newCoeff + c*g.eles[g.splx2idx[splx_idx]].coeff
11: end if

12: if newCoeff # 0 then

13: h.splx2idx[splx_idx] «— h.eles.size()
14: h.eles.append((splx_idx, newCoeff))
15: end if
16: end for

17: h.grading «— v
18: if £.LCis not null then

19: h.LC «— reduceWith(f.LC, g.LC, c, v)
20: end if
21: return h

22: end procedure

Algorithm 2 Algorithm to add a polynomial to a minimal Grobner basis for a 1D
persistence module

1: procedure GB.coMBINEWITH(g, v, KGB (default null))
2 if g.eles[0].splx_idx is notin this.splx2idx then

3 this.splx2idx[g.eles[0].splx_idx] «— this.eles.size()
4 this.eles.append(g)

5 return

6: end if
7‘

8

9

h «— this.eles[this.splx2idx[g.eles[0].splx_idx]]
if g.grading.last < h.grading.last then
this.eles[this.splx2idx[g.eles[0].splx_idx]] «—g

10: this.combineWithCh, (v.first, h.grading.last), KGB)
11: return
12: end if

13: g «— reduceWith(g, h, -g.eles[0].coeff * h.eles[0] .coeff‘l, V)
14: if g # 0 then

15: this.combineWith(g, v, KGB)

16: end if

17: if (g = 0) and (KGB is not null) and (g.LC # 0) then
18: KGB.combineWith(g.LC, v, null)

19: end if

20: end procedure

m and the maximum possible size of £.LC.eles is n. If £ is an element of Z;(X),
the maximum possible size of f.eles is n and £.LCisnull.

Lemma 6 Let By and Zy be instances of a GB representing minimal Grobner bases
for submodules Mg of Bi_1(X)y and Mz of Z;(X)5, respectively.

The Computational Complexity of Multidimensional Persistence 15

Algorithm 3 [CMP1] Algorithm which calculates a minimal Grobner basis for Z; (X)
and B;_{(X) given the Poly generators g of B;_(X), where each g is the boundary
of some i-simplex of X.

1: procedure CMP1(Poly generators {g} of B;_1(X))
Initialize empty sets kernelGB and imageGB (to store Grobner bases for Z; (X) and B;_1 (X))

N

for gradings v in V(1) (X) in lexicographic order do
Initialize GBs named Zz (for Z; (X)y) and By (for B;_;(X)y)

3

4

5 W — {W ‘ W is an immediate predecessor to V in V() (X)

6: Let Z and B be empty sets of Polys

7: for w in W in reverse lexicographic order do

8: for g in Z; such that g is not in Z do

9: Zy.combineWith(g, (v, g.grading.last), null)

10: Addgto Z

11: end for

12: end for

13: for win W in reverse lexicographic order do
14: for g in By such that g is not in B do

15: By .combineWith(g, (v, g.grading.last), Zgy)
16: Addgto B

17: end for

18: end for

19: for generator g in B;_{(X)y do

20: By .combineWith(g, g.grading, Zg)
21: end for

22: for gin {g € By | g.grading. first = v} do
23: Add g to imageGB

24: end for

25: for g in {g € Z7 | g.grading. first = v} do
26: Add g to kernelGB

27: end for

28: end for

29: return kernelGB and imageGB

30: end procedure

A call of the form By.combineWith(g, u, Zg) modifies By to be a minimal
Grobner basis for the module generated by Mp and g. If the addition of g into By
introduces a syzygy h of the generators of Mp (i.e., an element of Z;(X)y), then
By.combineWith(g, u, Zy) further modifies Zy to be a minimal Grobner basis
for the module generated by Mz and h. Furthermore, calls of this form run in time
O(n? + nm + m?) = O(n® + m?).

Similarly, a call of the form Calling Zy.combineWith(g, u, null) modifies
Zz to be a minimal Grobner basis for the module generated by Mz and g. Calls of
this form run in time o(n?).

Proof Recall that combineWith assumes a priori that By and Z; are minimal Grob-
ner bases. Every call to combineWith maintains this minimality. Indeed, calling
By.combineWith(g, u, Zy) reduces g with respect to Mp. If the remainder g’ of
this reduction is nonzero, then g’ is added to Bg. If g’ is zero, then g’.LC (which keeps
track of which reductions have been performed in terms of the generators of B; (X))
is combined with Z.

16 Jacek Skryzalin, Pawin Vongmasa

Combining g with By requires at most m calls to reduceWith (which runs in
time O(m + n) (Lemma 5)). Combining g.LC with Z; requires at most n calls to
reduceWith (which runs in time O(n)). We conclude that each call of the form
By.combineWith takes time O(n® + nm + m?) = O(n? + m?).

A similar argument holds for calls of the from Z.combineWith(g, u, null).

Lemma 7 At the conclusion of CMP1, each By (resp. Zz) is a minimal Grobner basis
for Bi-1(X)y (resp. Zi(X)z).

Proof We prove that the loop beginning in line 3 of CMP1 inductively constructs
minimal Grobner bases for B;_; (X)y (resp. Z; (X)y).

Lines 7 through 21 of CMP1 compute minimal Grobner bases for B;_ (X)y (resp.
Z;(X)y) in two stages. First, in lines 7 through 18, we combine the generators from
all Bg (resp. Zgz), where w runs over all immediate predecessors of v in the partial

ordering on V) (X). Lines 19 through 21 then combine generators that first appear in
grading v. Minimality is guaranteed by combineWith (Lemma 6).

Theorem 4 CMPI computes minimal Grébner bases for Z;(X) and B;—1(X).

Proof Throughout the process of constructing By (resp. Zz), combineWith is respon-
sible for maintaining the grading when each generator g of B;_|(X)y (resp. Z;(X)y)
was born. Because By (resp. Zy) is a minimal Grobner basis (cf. Lemma 7), an element
g in By (resp. Zy) has grading v only if the leading term of g is not divisible by the
leading term of any element of any B;_;(X)w (resp. Z; (X)) for any immediate pre-
decessors w of v. After we have completely constructed Grobner bases for B;_; (X)y
(resp. Z;(X)v), we add an element g to the minimal Grobner basis for B;_; (X)) (resp.
Z;(X)) if and only if g is associated with grading Vv (cf. lines 22 through 27).

Theorem 5 The runtime of CMP1 is O(dn® + n?='(n® + m?)) ~ O(n%*h).

Proof For this proof, we use the symbol u to denote an element of N¢.

During our exposition of CMP1, we have so far split gradings into two pieces;
that is, we have been representing any d-tuple u as a pair (u.first, u.last),
where u. first € N¢7! and u.last € N. For this proof, we further split u. first
into a pair (u.first.first, u.first.last), where u.first.first € Nd-2
andu.first.last € N. Note that u. first.first will be empty if d = 2.

In the remainder of the proof, we will show that for any fixed u, the computation
of all Grobner bases for the By such that v.first = u.first.first occurs in
O(dn? + n(n* + m?)) time. We will first consider the case where d = 2 (i.e., when
u.first.first is empty) and then show that our argument holds for d > 2. Since
there exactly n?=2 possibilities for u. first.first (and we assume that d < n), it
follows that CMP1 runs in time O(n4~1(n? + m?)).

If d = 2, then V®O(X) € N and W (defined on line 5 of CMP1) will contain at
most one element throughout the algorithm. Therefore, there is no need to maintain
each By (resp. Z) after having constructed By (resp. Zy). In this case, lines 7 through
18 of CMP1 are unnecessary; we need only maintain GBs B and Z as long as we
remember to add the required Polys from B and Z to imageGB and kernelGB (lines
22 through 27) during each iteration of the loop. Hence, when d = 2 and when we

The Computational Complexity of Multidimensional Persistence 17

make the simplification where we ignore lines 7 through 18, combineWith is called
from CMP1 exactly n times, leading to an overall O(n(n® + m?)) runtime.

Fortunately, when d = 2, the simplification described in the previous paragraph
(which removes lines 7 through 18 from CMP1) does not cause a decrease in the
overall complexity of CMP1. Since each By (resp. Zg) is assumed to be a minimal
Grobner basis, each of the calls to combineWith in lines 9 and 15 of CMP1 runs
in constant time because the conditional in line 2 of combineWith will evaluate to
true. Since the size of By (resp. Z;) is O(n), lines 7 through 18 in CMP1 contribute
a negligible O (n?) increase in the runtime to CMP1. Moreover, this increase is solely
due to copying items from By (resp. Zz) into By (resp. Zy).

We now consider the case when d > 2. The argument is similar; we wish to split
the computation into O0(n?-2) two-dimensional slices (by two-dimensional “slice”, we
refer to all gradings u of V®(X) which share the same value for u. first.first).
We propose that computing the Grobner bases for each two-dimensional slice can be
accomplished in O(n(n? + m?)) time. If our goal was simply to compute Grobner
bases for B;_1(X) and Z;(X) in the proposed runtime, we could simply repeat the
two-dimensional algorithm (analyzed in the previous two paragraphs) O(n~?) times.
However, we wish to compute minimal Grobner bases. Consequently, we must insert
a Poly g of By (resp. Zy) into imageGB (resp. kernelGB) if and only if g is reduced
with respect to all By (resp. Z;) such that w < v. We accomplish this via lines 7
through 18 of CMP1.

Note that, for each Vv, the first iteration of lines 8 though 11 and in lines 14
through 17 will only copy elements from the relevant By (resp. Zg) into By (resp.
Zz); no reductions will occur. Note further that if there is a predecessor w of v in the
same two-dimensional slice, then this w is lexicographically last among the immediate
predecessors of V.

The key to calculating minimal Grobner bases while maintaining a modest run-
time lies in calling combineWith on a Poly only if that Poly has not yet been
processed into By. For each generator g of B;_1(X), we would like to ensure that
g only causes one call to combineWith from CMP1 per two-dimensional slice. To
achieve this, lines 7 and 13 traverse W in reverse lexicographic order. As a result of
this ordering, for each v, during the first iteration of lines 8 through 11 and 14 through
17, w is in the same two-dimensional slice as V. Because of lines 8, 10, 14, and 16,
subsequent iterations of lines 8 through 11 and 14 through 17 (for the same V) pass
to combineWith Poly generators g (potentially partially reduced in previously pro-
cessed two-dimensional slices) only if g.grading. first.last = v.last. Indeed,
if g.grading.first.last < v.last, then g would have already been added to Z
or B.

Consequently, for each two-dimensional slice, calls to combineWith contribute
O (n(n?+m?)) to the algorithm’s time complexity. Moreover, lines 8 and 14 contribute
O(dn) to the time complexity of CMP1 for each grading v, since lines 8 and 14 must
filter O(n) Polys from each of O(d) GBs.

Thus, our algorithm runs in time

O(n*2(dn® + n(n® + m?))) = 0(dn® + n®' (n* + m?)).

18 Jacek Skryzalin, Pawin Vongmasa

Moreover, we do not need to consider all m (i — 1)-simplices; we need only consider
those simplices which occur as the face of some i-simplex. There are at most (i + 1)n
of these. In most applied topology contexts, i and d are taken to be small; by assuming
thati = O(1) and d = O(n), we obtain an approximate runtime bound of O(n?*!) for
CMP1.

Remark 10 The proof of Theorem 5 actually provides a slightly tighter complex-
dependent bound on the runtime of CMP1. If Vl(:ld)—z (X) denotes the set obtained by
projecting each element of V) (X) onto its first d — 2 coordinates, then our proof
shows that the runtime of CMP1 when computing B;_1(X) and Z;(X) is

0 (VX (dn® + n(n* + m?))).

Remark 11 1t is possible to parallelize CMP1! Although we specified in line 3 that
V@ (X) was to be traversed in increasing lexicographic order, it is possible to execute
lines 4 through 27 of CMP1 for any grading v € V@ (X) provided that these lines
have already been executed for all gradings w € V) (X) such that W is an immediate
predecessor of V.

By taking full advantage of this fact in a setting with limitless parallelization, the
runtime of our algorithm becomes O(dn?(d +n?+m?)) for d > 2. Indeed, the runtime
can be bounded above by the product of (a) the runtime of the computation of one
iteration of lines 4 through 27 in CMP1, and (b) the length of a minimal sequence
V0, V1, - - -, V¢ from the minimum element of V@ (X) to the maximum element of
V®(X), where each V,,; is an immediate successor to v, in the partial order on
V@ (X). Theorem 5 shows that one iteration of lines 4 through 27 has runtime
O(dn + n(n® + m?)), and the maximum possible length of such a minimal sequence
has € = (d —1)(n— 1) + 1 = O(dn) (this bound is tight when |vj(">(X)| = n for all j).

Remark 12 Although we have managed to achieve a respectable upper bound on the
runtime of the computation of a Grobner basis for B; (X) and Z;(X), our algorithm as
stated above will quite possibly execute a number of redundant computations (in lines
7 through 21 of CMP1). We would like a way to ensure that if two polynomials have
been reduced in one two-dimensional slice, then these two polynomials will never
again be reduced in another two-dimensional slice. We leave as open the problem of
constructing an algorithmic solution to this problem.

We mention that this problem is also encountered in the original version of
Buchberger’s algorithm, where one does not wish to compute a reduction to any S-
polynomial if one has prior information that this reduction will be 0. Faugere’s F5
algorithm [11] provides a good solution to this problem in the case when one is trying
to calculate a Grobner basis of an ideal of a polynomial ring. It would be highly
beneficial to adopt these techniques to the persistence setting in a way that does not
greatly increase the time or space complexity of our algorithm.

Remark 13 Given Grobner bases Gg for B;(X) and Gz for Z;(X), we can calculate
the rank py,v(H; (X)) foranyu, v € N using the algorithm given in Section 6.3 of [4].
A cursory analysis of the algorithm shows that the runtime of calculating p, y(H;(X))

The Computational Complexity of Multidimensional Persistence 19

is well approximated by the runtime of column reducing the matrix whose columns
correspond to the elements of Gp and Gz. The runtime of such an operation is
0 (n(IGl +1Gz)?).

7 Empirical Evaluation of Runtime

In the previous section we have described an algorithm for computing multidimen-
sional persistence and provided an upper bound on its runtime. In this section, we
randomly construct and compute the persistent homology of d-filtered simplicial
complexes.

In [4], empirical measures of runtime were calculated from simulated boundary
matrices. In an attempt to better emulate the boundary matrix of a collection of i-
simplices, each column in these simulated boundary matrices contained the same
number of nonzero entries. Our experiments, motivated by the following proposition,
differ slightly in that we construct boundary matrices from actual d-filtered abstract
simplicial complexes.

Proposition 1 There exists a matrix over Fy such that each column contains the
same number of nonzero entries that does not arise as the boundary matrix from any
abstract simplicial complex.

Proof Consider the following matrix:

Assume towards a contradiction that M = 0, (X) for some abstract simplicial complex
X. Since the rows of M must be indexed by the 1-simplices of X, we may assume
without loss of generalization that the first row of M represents the 1-simplex [0, 1],
that the second row of M represents the 1-simplex [0, 2], and that the third row of
M represents [1,2]. Because these are the only three edges that may exist among
an abstract simplicial complex with three vertices, the existence of a fourth row in
M implies the existence of a fourth vertex [3]. But then the second column of M
represents a 2-simplex which contains 4 vertices, which is impossible.

Remark 14 Proposition 1 presents a number of questions which we leave as open
problems. For example:

1. For a given dimension i, a number n of i-simplices, and a number m of i — 1
simplices, what percentage of all m X n matrices with exactly i + 1 nonzero entries
in each column arise as the boundary matrices of a simplicial complex?

2. Does the time complexity of computing persistent homology change when consid-
ering only matrices which arise as boundary matrices of some simplicial complex?

3. Does the assumption that a matrix M arises as the boundary matrix of a simplicial
complex provide any information about the size of a Grobner basis G for the image
or boundary of M?

20 Jacek Skryzalin, Pawin Vongmasa

Thus, for our experiments, we randomly generate an i-dimensional abstract sim-
plicial complex X to test the computation of GB(Z;(X)) and GB(B;(X)) according
to the following procedure. First, we specify the values of six variables:

— the dimension i of the abstract simplicial complex X

— the number |V| of vertices of X

— the number |S| of i-simplices of X

— the persistence dimension d of X

— the number of distinct persistence coordinates |P| per persistence dimension (no-
tated above as |Vj(’)(X)|)

— the number |T'| of birth times per i-simplex

We randomly create a set X of cardinality |S|, each element of which is a subset
of {0,1,...,]V| — 1} of cardinality i + 1. For each element of X, we assign |T| d-
tuples, each entry of which is a natural number between 0 and |P| — 1 inclusive. The
elements of X represent a collection of |S| i-simplexes, and the d-tuples associated to
each simplex represent the birth times of the simplex. We then run algorithm CMP1
against the complex and measure runtime.

We first test the effect of changing the dimension i of the complex. Figure 2 shows
the runtime while varying i from 2 to 8. We see a modest runtime for smaller complex
dimensions. However, once the dimension of the complex of the dimension of the
complex reaches 6, the runtime increases significantly.

We next test the effect of varying the number of vertices between 25 and 5000. For
this experiment, we fix the number of simplexes at 500, the dimension of the complex
at 3, the persistence dimension at 4, the number of distinct persistence coordinates
in each (persistence) dimension at 50, and the number of birth times per simplex at
1. With these settings, the runtime of CMP1 varies between 5.75 seconds and 6.25
seconds, and the runtime for this experiment appears to be independent of the number
of vertices.

For our third test, we study the effect of changing the number of simplexes in the
top dimension. Figure 3 shows the runtime while varying the number |S| of simplexes
of top dimension between 100 and 10,000. Note that the linear relationship between
runtime and the number of simplexes of top dimension in no way contradicts the O (n°)
runtime suggested by Theorem 5. In this experiment, we fix the number of birth times
per persistence dimension at 50; in contrast, Theorem 5 implicitly assumes that the
number of birth times per persistence dimension is (|S]).

Next, we study the relationship between persistence dimension and runtime. Figure
4 shows the runtime while varying the persistence dimension between 1 and 5. We
see from this graph that, as suggested by Theorem 5, persistence dimension has a very
significant effect on runtime.

For our next experiment, we plot the runtime of CMP1 against | P|, the number of
distinct persistence coordinates per persistence dimension and present the results in
Figure 5. We see a modest runtime when the number of unique persistence coordinates
per dimension stays below 100. We thus recommend that users of multidimensional
persistence bin persistence coordinates to maintain a modest runtime.

The Computational Complexity of Multidimensional Persistence 21

-0 Runtime as a function of complex dimension

18 A

16

14 4

Runtime (seconds)

12 A

2 3 4 5 6 7 8
Complex dimension

Fig. 2 The runtime of CMP1 as a function of the complex dimension i. For this experiment, we fix the
number of vertices and the number of i-simplices at 1000. Furthermore, the persistence dimension is fixed
at 4, the number of distinct persistence coordinates in each (persistence) dimension is fixed at 50, and the
number of birth times per simplex is fixed at 1.

Finally, we plot the runtime of CMP1 against the number |T'| of birth times per

simplex. Figure 6 suggests that there is a roughly linear relationship between the
number of birth times per simplex and the runtime of CMP1.

References

—_

. Carlsson, G.: Topology and data. Bulletin of the American Mathematical Society 46, 255-308 (2009)
. Carlsson, G.: Topological pattern recognition for point cloud data. Acta Numerica 23, 289-368 (2014)
. Carlsson, G., Ishkhanov, T., De Silva, V., Zomorodian, A.: On the local behavior of spaces of natural

images. International journal of computer vision 76(1), 1-12 (2008)

. Carlsson, G., Singh, G., Zomorodian, A.: Computing multidimensional persistence. Journal of Com-

putational Geometry 1(1), 72-100 (2010)

. Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. Discrete & Computational

Geometry 42(1), 71-93 (2009)

. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational

Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics). Springer-
Verlag New York, Inc., Secaucus, NJ, USA (2007)

. De Silva, V., Carlsson, G.: Topological estimation using witness complexes. Proc. Sympos. Point-

Based Graphics pp. 157-166 (2004)

. Dummit, D.S., Foote, R.M.: Abstract algebra, vol. 1984. Wiley Hoboken (2004)
. Emmett, K.J., Rabadan, R.: Characterizing scales of genetic recombination and antibiotic resistance

in pathogenic bacteria using topological data analysis. In: Brain Informatics and Health, pp. 540-551.
Springer (2014)

22 Jacek Skryzalin, Pawin Vongmasa

Runtime as a function of the number of simplices

100 A

80 A

60 -

Runtime (seconds)

40

20 A

0 2000 4000 6000 8000 10000
Number of simplices

Fig. 3 The runtime of CMPI1 as a function of the number |S| of simplices of dimension i. For this
experiment, we fix the number of vertices at 1000, the dimension of the complex at 3, the persistence
dimension is fixed at 4, the number of distinct persistence coordinates per persistence dimension is fixed
at 50, and the number of birth times per simplex is fixed at 1. The runtime profile assuming 250 and 500
vertices is almost identical (although not shown here).

10. Faugere, J.C.: A new efficient algorithm for computing grobner bases (f4). Journal of pure and applied
algebra 139(1), 61-88 (1999)

11. Faugere, J.C.: A new efficient algorithm for computing grobner bases without reduction to zero (f5). In:
International Symposium on Symbolic and Algebraic Computation Symposium-ISSAC 2002 (2002)

12. Hatcher, A.: Algebraic topology. Cambridge University Press, Cambridge, New York (2002)

13. Singh, G., Memoli, F., Ishkhanov, T., Sapiro, G., Carlsson, G., Ringach, D.L.: Topological analysis of
population activity in visual cortex. Journal of vision 8(8), 11 (2008)

14. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete & Computational Geometry
33(2), 249-274 (2005)

The Computational Complexity of Multidimensional Persistence 23

Runtime as a function of persistence dimension

102 4
w
T
=
3
o 10% 4
2
(]
£
)
c
]
4
100 4
10—1 4

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Persistence dimension

Fig.4 The runtime of CMP1 as a function of persistence dimension. For this experiment, we fix the number
of vertices and simplexes of top dimension at 1000, the dimension of the complex at 3, the number of
distinct persistence coordinates per persistence dimension at 50, and the number of birth times per simplex
at 1.

24 Jacek Skryzalin, Pawin Vongmasa

Runtime as a function of the number of persistence coordinates
500 A

400 A

300 A

200 A

Runtime (seconds)

100 A

0 50 100 150 200 250
Number of unique persistence coordinates

Fig. 5 The runtime of CMP1 as a function of the number of distinct persistence coordinates per persistence
dimension. For this experiment, we fix the number of vertices and simplexes of top dimension at 500, the
dimension of the complex at 3, the persistence dimension at 4, and the number of birth times per simplex
at 1.

The Computational Complexity of Multidimensional Persistence 25

Runtime as a function of nhumber of birth times per simplex

27.5 4

25.0 1

22.5 4

20.0 4

17.5 A

Runtime (seconds)

15.0 A

12.5 A

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of birth times per simplex

Fig. 6 The runtime of CMP1 as a function of the number of birth times per simplex in top dimension. For
this experiment, we fix the number of vertices and simplexes of top dimension at 1000, the dimension of
the complex at 3, the persistence dimension at 4, and the number of distinct persistence coordinates per
persistence dimension at 50.

