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Abstract We present findings on the computational complexity of computing mul-
tidimensional persistent homology. We first show that the worst-case computational
complexity of multidimensional persistence is exponential. We then present an algo-
rithm for computing multidimensional persistence which extends the algorithm given
by Zomorodian and Carlsson for computing one-dimensional persistence [14]. The
computational complexity of our algorithm is polynomial in the size of the persistence
module and exponential in the persistence dimension.

Keywords multidimensional persistent homology · computational complexity ·
applied topology

1 Introduction

Over the past decade, developments to the theory of persistent homology [1], [2] have
allowed scientists and analysts to apply topological techniques to the study of data (see
[3], [7], [9], [13], for example). However, almost all concrete applications of persistent
homology have used one-dimensional persistence. We believe that this is the case for
two main reasons. First, one-dimensional persistence can be computed in O(n3)
time [14], where n represents the number of generators of the underlying (filtered)
complex. Second, the output of one-dimensional persistence has a pleasingly intuitive
interpretation in terms of the “birth” and “death” times of geometrical features of the
complex. Both of these attractive qualities of one-dimensional persistence arise from
the equivalence between the category of one-dimensional persistence modules and
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the category of finitely presented graded modules over a PID, and from the structure
theorem of such modules (see [8], for example).

Unfortunately, there is no analogous structure theorem for the category of mul-
tidimensional persistence modules. As such, the calculation of a multidimensional
persistence module and its subsequent analysis must be considered as two related but
separate problems. We build off the approach of Carlsson, Singh, and Zomorodian
[4], which rephrases the calculation of the homology of a multifiltered complex in
terms of a problem in computational commutative algebra. We first provide a family
of complexes whose homology requires exponential time to compute in this computa-
tional commutative algebra setting. This disproves a theorem of [4]. We then provide
an algorithm for the computation of the homology of a multifiltered complex whose
runtime is (approximately) O(nd+1), where d is the persistence dimension and n is
the number of generators of the multi-filtered complex underlying the persistence
module. We note that our algorithm is highly parallelizeable; with infinite parallelism
available, our algorithm’s runtime would be (approximately) O(d2n2 + dn4).

2 Algebraic Preliminaries

Throughout this paper, let k denote a field of arbitrary characteristic. We denote
elements of Nd using bold letters (e.g., a ∈ Nd), although we represent elements of N
using non-bold, italic letters (e.g., a ∈ N). Furthermore, it is understood that the ith
coordinate of a ∈ Nd is ai . We impose two orderings on Nd . First, for a, b ∈ Nd , we
say that a ≤ b if ai ≤ bi for all i. Second, we say that a ≤` b if a precedes b in the
lexicographic ordering on Nd .

We let k[x1, ...xd] denote the polynomial ring in d variables over k, and we denote
the element xa1

1 xa2
2 . . . xad

d
by xa. Given any ordering ≤ on Nd , we may extend the

ordering to monomials in k[x] by declaring that xa ≤ xb if and only if a ≤ b. We
may further extend this ordering to the free module k[x]m which is freely generated
by the standard basis elements ei (ordered so that ei ≥ e j if i ≤ j) by declaring that
xa ei ≤ xb e j if and only if (a) i ≥ j or (b) i = j and a ≤ b.

Given any element f ∈ k[x]m, we may write f as a sum of terms, each of the
form c xu ei , where c ∈ k is nonzero. The greatest such summand c xu ei under any
total order (we’ll be using the lexicographic ordering) is called the leading term.
The element c ∈ k is called the leading coefficient, and xu ei is called the leading
monomial. We now very briefly introduce the notion of a Gröbner basis. More details
can be found in [6].

Definition 1 Let M be a submodule of the free module k[x1, ..., xd]m. Assume that
k[x1, ..., xd]m is freely generated by the standard basis elements ei . A Gröbner basis
for M with respect to a total order ≤ on k[x1, ..., xd]m is a set GB(M) of generators
of M such that the leading terms of elements in GB(M) generate the k[x]-module
consisting of all leading terms of all elements of M . A Gröbner basis G is minimal
if no leading term in any element of the basis is in the ideal generated by the leading
terms of the other elements of the basis. A Gröbner basis G is reduced if G is minimal,
the leading coefficient of each element of G is 1, and no non-leading monomial of
any element in G is divisible by any leading monomial of any element of G.
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Gröbner bases enjoy a number of attractive properties. For example, for a fixed
monomial ordering, all minimal Gröbner bases for a module M have the same cardi-
nality, and M has a unique reduced Gröbner basis. Furthermore,

Lemma 1 Let M ⊆ k[x]m. Assume that we have fixed an ordering on monomials in
k[x]m. Then the following are equivalent:

– G is a Gröbner basis of M .
– The leading term of any f ∈ M is divisible by some g ∈ G.
– The division of any polynomial in k[x]m by G gives a unique remainder.
– For f ∈ M , the division of f by G yields 0.

Remark 1 In general, given some polynomial module M , one can construct a generat-
ing set G and an element f ∈ M such that reducing f modulo G does not yield 0. This
fact suggests that whenever we wish to test membership in a complicated polynomial
ring or module, it is imperative to work with Gröbner bases.

Remark 2 Definition 1 and Lemma 1 depart somewhat from the standard definition of
Gröbner basis, which is typically defined for ideals of a polynomial ring k[x1, ..., xd]
rather than for submodules of k[x1, ..., xd]m. We note that we may identify submod-
ules M of k[x1, ..., xd]m with ideals I of k[x1, ..., xd, e1, ..., em]/〈eie j〉i≤ j which are
contained in the ideal 〈ei〉1≤i≤m. Because Gröbner bases are typically given for ideals
of polynomial rings (rather than any of their quotients), we may compute a Gröbner
basis for a module M ⊆ k[x]m by computing a Gröbner basis G for the inverse image
of the corresponding ideal I in k[x1, ..., xd, e1, ..., em] and subsequently removing all
monomial summands contained in the ideal 〈eie j〉i≤ j from all generators in G.

3 A Review of Multidimensional Persistence

In this section, we discuss the theory of multidimensional persistence [5] and outline
the established approach to computing multidimensional persistence [4].

Definition 2 A persistence module M indexed by the partially ordered set V is a
family of k-modules {Mv}v∈V together with homomorphisms φu,v : Mu → Mv for all
u ≤ v, such that φv,w ◦ φu,v = φu,w whenever u ≤ v ≤ w.

In this work, we are concerned specifically with the case V = Nd for some integer
d > 1.

Definition 3 A multidimensional persistence module M is a persistence module
whose underlying indexing setV isNd for some d > 1.We say that d is the persistence
dimension of M .

We now explain how multidimensional persistence arises naturally by taking the
homology of a multifiltered complex. We briefly review definitions and refer the
reader to [12] for a more in-depth discussion of the underlying theory.
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Definition 4 Let V be a set. For a nonnegative integer i, an i-simplex is defined to
be an ordered list [v0, v1, ..., vi] of elements in V . Moreover, for j < i, we say that
a j-simplex σ′ is a face of an i-simplex σ if σ′ can be obtained by removing some
number of elements from the ordered list describing σ.

Furthermore, a simplicial complex X is a set of simplices such that:
– any face of any simplex in X is also a simplex in X , and
– the intersection of two simplices σ and σ′ in X is either the empty list or a face
of both σ and σ′.

Example 1 In topological data analysis, one is often given a finite set S ⊆ Rn of data
points. We assume that a (possibly arbitrary) total order has been imposed on this
set of data points. There are many established methods for constructing complexes
from data [1]. One popular choice is the Vietoris-Rips construction. Given some real
number ε > 0, we define the Vietoris-Rips complex V R(X ; ε ) with scale parameter
ε as the simplicial complex with vertex set S, where [s0, s1, ..., si] spans an i-simplex
if and only if s0 ≤ s1 ≤ · · · ≤ si in the total order on S and d(sa, sb) < ε for all
0 ≤ a, b ≤ i.

Definition 5 For a field k and simplicial complex X , the group Ci (X ; k) of i-chains
of X is defined to be the free k-module generated by the i-simplices of X . When the
field k is understood, we abbreviate Ci (X ; k) as Ci (X ). We define the boundary of
the i-simplex [v0, v1, ..., vi] to be the formal sum

∂ ([v0, v1, ..., vi]) =
i∑

j=0
(−1) j[v0, v1, ..., vj−1, v̂j, vj+1, ..., vi] ∈ Ci−1(X ),

where v̂j denotes that vj has been removed from the ordered list [v0, v1, ..., vi]. The
boundary map thus defines a homomorphism

∂i : Ci (X ) → Ci−1(X ).

We denote the group ker(∂i) ⊆ Ci (X ) of i-cycles of X by Zi (X ), and we denote the
group im(∂i+1) ⊆ Ci (X ) of i-boundaries by Bi (X ). Because ∂i ◦ ∂i+1 = 0, we may
define the ith homology group Hi (X ) of a simplicial complex X as the quotient

Hi (X ) =
Zi (X )
Bi (X )

=
ker(∂i : Ci (X ) → Ci−1(X ))
im(∂i+1 : Ci+1(X ) → Ci (X ))

.

Definition 6 A d-filtered simplicial complex X is a collection of simplicial complexes
{Xv}v∈Nd such that for u, v ∈ Nd such that u ≤ v, we have that Xu ⊆ Xv.

For u, v ∈ Nd , the inclusion map Xu ↪→ Xv descends to a map on homology
Hi (Xu) → Hi (Xv). We may thus form a d-dimensional persistence module Hi (X ) =
{Hi (Xv)}v∈Nd fromany d-filtered simplicial complex X by applying the functor Hi (−).

Example 2 We show how to extend the definition of the Vietoris-Rips complex in
Example 1 to obtain a multifiltered simplicial complex. We assume that our input
data S ⊆ Rn has been equipped with d − 1 filter functions f i : S → N, which we
collectively represent as f. For u ∈ Rd−1, let V R(X ; ε ; u) denote the subcomplex of
V R(X ; ε ) such that:
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– the set of vertices of V R(X ; ε ; u) is {s ∈ S | f(s) ≤ u}, and
– vertices s0, ..., si of V R(X ; ε ; u) span an i-simplex in V R(X ; ε ; u) if and only if

these vertices span an i-simplex in V R(X ; ε ).

We now note for ε1 ≤ ε2 and u1 ≤ u2, there is an inclusion

V R(X ; ε1; u1) ↪→V R(X ; ε2; u2).

The set of permissible values for ε and u is isomorphic to Rd . By choosing an appro-
priate partially ordered subset V of these permissible values such that V is isomorphic
as a partially ordered set toNd , we may obtain a d-filtered simplicial complex. Taking
the homology of this complex leads to the notion of level-set persistence.

The study of multidimensional persistence stems from the following fact:

Theorem 1 ([5]) For any multidimensional persistence module M indexed byNd , we
can define a d-graded k[x]-module α(M) via

α(M) =
⊕
v∈Nd

Mv,

where for u ≤ v, we define xv−u : Mu → Mv via the homomorphism φu,v. Further-
more, α defines an equivalence of categories between the category of finite persistence
modules over k indexed byNd and the category of finitely presented d-gradedmodules
over k[x1, ..., xd].

The graded version of the structure theorem for finitely generated modules over a
PID allows one to understand any one-dimensional (i.e., indexed over N) persistence
module in terms of a finite set of intervals in N. This correspondence provides a
unique and intuitive geometric depiction of any one-dimensional persistence module.

Unfortunately, there is no satisfactory analogue for the multidimensional case, nor
does there exist any discrete invariant (one which assigns to any module a point in an
algebraic variety in a way that does not depend on k) that is complete for the category
of multidimensional persistence modules [5]. Although the problem of extracting
useful information from multidimensional persistence modules is currently an active
area of research, we nonetheless can identify one basic quantity which we should be
able to compute:

Definition 7 Let M be a persistence module indexed over the partially ordered set
V . For u, v ∈ V , the rank ρu,v(M) of M is defined as the rank of the k-linear map
Mu → Mv.

We now describe the approach of Carlsson, Singh, and Zomorodian [4] for com-
puting multidimensional persistent homology. We note that our exposition differs
slightly from that of [4], but the general ideas remain the same. As input we assume
that we are given the following:

– A d-filtered complex X consisting of a set X (i) of i-simplices for each i ∈ N.
– For each i, a total order on the set X (i) .
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– For each simplex σ ∈ X , we are given the set

Birth(σ) =
{
u ∈ Nd ��� σ ∈ Xu and σ < Xv for every v < u

}

of gradings u ∈ Nd for each simplex which represent the gradings at which the
simplex first appears.

Remark 3 We note that our setting is strictly more general than that of [4], in which
the complex X is assumed to be one-critical (i.e., the sets Birth(σ) are required
to have cardinality one). We further note that the extended Vietoris-Rips complex
presented in Example 2 is one-critical.

We represent the boundary maps ∂i of the d-filtered complex X as matrices Mi

with entries in the polynomial ring k[x1, ..., xd]. The columns of Mi are indexed by
pairs (σ, u), where σ ∈ X (i) and u ∈ Birth(σ). The rows of Mi are indexed by
elements τ ∈ X (i−1) . Furthermore, the rows of M should be ordered in decreasing
order of their corresponding indices. The entry of Mi corresponding to column (σ, u)
and row τ is the product of xu and the coefficient of τ in ∂i (σ). We extend the given
total order ≤ on X (i) to a total order on X (i) × Nd by declaring that (σ, u) ≥ (τ, v) if
and only if (a) σ ≥ τ or (b) σ = τ and u ≥` v.

To compute Hi (X ), we must first “calculate” Zi (X ) (the nullspace of Mi) and
Bi (X ) (the columnspace of Mi+1). If Mi has m rows and n columns, then Bi−1(X ) is
a submodule of the free module k[x]m and Zi (X ) is a submodule of the free module
k[x]n. The authors of [4] argue that the proper definition of “calculate” in this setting
is “compute a Gröbner basis for”. Indeed, after calculating Gröbner bases for Zi (X )
and Bi (X ), it is easy to calculate their quotient Hi (Xv) for any v ∈ Nd [6].

Carlsson, Singh, and Zomorodian [4] recommend Buchberger’s algorithm and
Schreyer’s algorithm [6] for these computations. We first provide a lower bound to
the worst-case runtime of any algorithm which calculates a Gröbner basis for Bi (X )
and Zi (X ). We then provide an alternative algorithm for computing multidimensional
persistence.

4 A Lower Bound on the Complexity of Computing Multidimensional
Persistence

In this section we provide a counterexample to the claim of [4] that multidimensional
persistence can be computed in polynomial time.

Example 3 Let n be an even positive integer. We construct an n-filtered complex
X = X (n). Let τ0, τ1, ..., τn

2
be a set of n

2 + 1 0-simplices ordered so that τi > τj if
i < j. Assume that Birth(τj ) = 0 ∈ Nn for all j. Further assume that we have n

2
1-simplices σ1, σ2, ..., σ n

2
such that Birth(σ j ) = {e2j−1, e2j }, where e j denotes the

jth standard basis vector in Nn. Set

∂(σ j ) =



τ0 − τ1 j = 1
τj−2 − τj j > 1

.
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The matrix representation of ∂1 is given below. We assume that the column labeled
ei below is understood as

(
σ d i2 e

, ei
)
.



e1 e2 e3 e4 e5 e6 · · · en−1 en
τ0 x1 x2 x3 x4 0 0 · · · 0 0
τ1 −x1 −x2 0 0 x5 x6 · · · 0 0
τ2 0 0 −x3 −x4 0 0 · · · 0 0
τ3 0 0 0 0 −x5 −x6 · · · 0 0
...

...
...

...
...

...
...

. . .
...

...
τn

2 −2 0 0 0 0 0 0 · · · xn−1 xn
τn

2 −1 0 0 0 0 0 0 · · · 0 0
τn

2
0 0 0 0 0 0 · · · −xn−1 −xn


Theorem 2 Let X (n) be the n-filtered complex of Example 3. Any minimal Gröbner
basis for B0(X (n)) contains 2 n

2 +1 + n − 4 elements.

Proof We prove Theorem 2 by induction on the following statements:

1. Any minimal Gröbner basis for B0(X (n)) contains 2 n
2 +1 + n − 4 elements.

2. Any leading monomial xa τj of an element in a minimal Gröbner basis for
B0(X (n)) satisfies j ≤ n

2 − 1.
3. There are 2n/2 elements Ln in anyminimalGröbner basis whose leadingmonomial

is a multiple of τn
2 −1. They are precisely the elements of the form

xa τn
2 −1 − xa τn

2
,

where
a ∈

{
{0, 1}n

���� a2j−1 + a2j = 1 for all 1 ≤ j ≤
n
2

}
.

For n = 2, the three inductive hypotheses follow from the statement that the set
{∂(σ1), ∂(σ2)} is itself a Gröbner basis for B0(X (2)).

Now assume that n > 2 is even and that G̃ is a minimal Gröbner basis for
B0(X (n − 2)). By inductive hypotheses (2) and (3), a minimal Gröbner basis G for
B0(X (n)) can be obtained from G̃ by the insertion ∂(σn−1), ∂(σn), and the result of
the reduction of each of ∂(σn−1) and ∂(σn) with each of the elements in Ln−2. The
reduction of each of ∂(σn−1) and ∂(σn) with the elements in Ln−2 produces the set
Ln, and

|Ln | = |{∂(σn−1), ∂(σn)}| ∗ |Ln−2 | = 2 ∗ 2
n−2

2 = 2
n
2 .

By inspection, we see that (2) still holds and that the elements of Ln are of the required
form, proving (3). Finally, (1) holds as well, sinceG is obtained from G̃ by the addition
of 2 + 2 n

2 elements (i.e., 2 elements from ∂(σn−1) and ∂(σn) and 2 n
2 from Ln).

Remark 4 In Example 3, we provide an example of a multifiltered complex X such
that the Gröbner basis for B0(X ) has cardinality exponential in the number of 1-
simplices. We now explain how to generalize Example 3 to provide a multifiltered
complex such that the Gröbner basis for Bi (X ) has cardinality exponential in the
number of (i + 1)-simplices for i > 0.
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For an even integer n, we construct another n-filtered complex X with i-simplices
τ0, τ1, ..., τn

2
, υ1, ..., υi , where Birth(τj ) = Birth(υj ) = 0. Assume that τi > τj for

i < j, that υi > υj for i < j, and that τi > υj for all i and j. Let σ1, ..., σ n
2
be a set of

(i + 1)-simplices with Birth(σ j ) = {e2j−1, e j }. We set

∂(σ j ) =



τ0 − τ1 +
∑i

k=1 υk j ∈ {1, 2}
τj−2 − τj +

∑i
k=1 υk j > 2

.

A similar argument to that in Theorem 2 shows that GB(Bi (X )) has cardinality
exponential in the number of (i + 1)-simplices.

Corollary 1 Let i ∈ N, let X be a multifiltered complex, and let

n =
∑

σ∈X (i+1)

|{Birth(σ)}| .

Then the worst-case computational complexity for computing GB(Bi (X )) is Ω
(
2 n

2
)
.

Remark 5 The bound of Corollary 1 contradicts Lemma 4 (and thus Theorem3) of [4].
That is, multidimensional persistence cannot always be computed in time polynomial
in the number of simplices of the complex.

Remark 6 It should be noted that the multifiltered complexes in Example 3 and
Remark 4 are not one-critical.We explain how to construct a one-critical complex X (n)
with Θ(n) 1-simplices such that GB(B0(X (n))) grows exponentially in n. Assume
that we have 0-simplices κ1, κ2, ..., κ n

2
, τ0, τ1, ..., τn

2
(arranged in decreasing order)

such that Birth(κ j ) = Birth(τj ) = 0 for all j.
Further assume that we have 1-simplices σ j, λ j, µ j (for 1 ≤ j ≤ n

2 ) such that
Birth(σ j ) = {e2j−1} and Birth(λ j ) = Birth(µ j ) = {e2j }. Set

∂(σ j ) =



τ0 − τ1 j = 1
τj−2 − τj j > 1

.

∂(λ j ) =



κ j − τ0 j = 1
κ j − τj−2 j > 1

.

∂(µ j ) = κ j − τj .

Using an argument similar to that in the proof of Theorem 2, one can show that
the size of GB(B0(X (n))) grows exponentially in n (although slower than in the
family of complexes introduced in Example 3). Furthermore, as in Remark 4, one
can construct complexes X (n) with Θ(n) (i + 1)-simplices such that GB(Bi (X (n)))
grows exponentially in n.

We now provide a family X (n) of simplicial complexes such that the size of the
Gröbner basis for Zi (X (n)) grows exponentially.
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Example 4 In this example, we construct a family of multifiltered complexes X (n)
with Θ(n) i-simplices such that the size of GB(Zi (X (n))) grows exponentially in n.
Let m ≥ i + 2 be a positive integer, and let σ1, ..., σm be a set of i-simplices with
Birth(σ j ) = {e2j−1, e2j } such that the set {σ1, ..., σm} is a triangulation of the i-sphere
Si .

Theorem 3 Let i be a positive integer, let X (n) be the multifiltered complex con-
structed in Example 4, and let n =

∑
σ∈X (i) |Birth(σ) |. Then GB(Zi (X (n))) contains

Ω
(
2 n

2
)
elements.

Proof For any

a ∈ S =
{
{0, 1}n ��� a2j−1 + a2j = 1 for all 1 ≤ j ≤ n

}
,

dim(Hi (X (n)a)) = 1. However, for any a′ strictly less than all a ∈ S under the partial
order on Nn, we have that dim(Hi (X (n)a′ )) = 0. Since |S | = 2 n

2 , we have that the
size of GB(Zi (X (n))) is Ω

(
2 n

2
)
.

Corollary 2 Let i ∈ N, let X be a multifiltered complex, and let

n =
∑

σ∈X (i)

|{Birth(σ)}| .

Then the worst-case computational complexity for computing GB(Zi (X )) is Ω
(
2 n

2
)
.

Remark 7 Note that the complexes X (n) in Example 4 are not one-critical. One can
use a technique similar to that of Remark 6 to construct a one-critical simplicial
complex X (n) with n i-simplices (for n ≥ (i + 2)2) such that GB(Zi (X (n))) has
Ω

(
2 n

i+2
)
elements.

Remark 8 We have assumed in this paper that we are given a total order on the set
X (i) of i-simplices. We note that if we reverse the order of 0-simplices in Example
3 so that τi < τj whenever i < j, then the columns of the resulting boundary matrix
serve as a minimal Gröbner basis for B0(X ). In this case, the minimal Gröbner basis
for B0(X ) now contains exactly n elements. We leave as open the question of whether
it is possible to calculate efficiently an ordering on the simplices of a complex in order
to obtain a polynomially-sized Gröbner basis for the various cycle and boundary
modules of a multifiltered complex.

5 Fast Computation of Multidimensional Persistence: Our Approach

We now provide and analyze an algorithm for computing multidimensional per-
sistence. This algorithm extends the algorithm given in [14] for computing one-
dimensional persistence. We note that our algorithm is inspired by Faugère’s im-
provements [10], [11] to Buchberger’s algorithm; indeed, it would not be wholly
inaccurate to view the algorithms we provide as adaptations of Faugère’s F4 and F5
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algorithms to the computation of multidimensional persistent homology. Addition-
ally, we show how our approach allows us to derive bounds on the complexity of
computing multidimensional persistence.

Our main insight is that despite Corollaries 1 and 2, if we fix a persistence
dimension, we can compute Gröbner bases for Zi (X ) and Bi (X ) in time polynomial
in the number of simplices of X . Although the runtime of our algorithm is exponential
in the persistence dimension, our algorithm nevertheless has utility in the wild, where
high persistence dimensions are unlikely to be encountered. The results of [14] show
that it is possible to compute persistent homology for d = 1 in time O(n3), where n
is the number of simplices of our complex X . Our results show that, surprisingly, it is
also possible to compute persistent homology in time O(n3) for d = 2.

Our algorithm heavily exploits the multigraded structure of multidimensional per-
sistence modules in order to reduce the computation of multidimensional persistence
to the one-dimensional setting. We now provide theoretical results which will serve
as the basis for our algorithm.

Lemma 2 Let M =
⊕

v∈Nd Mv be a d-graded submodule of k[x1, ..., xd]m. Let
GB(Mv) denote a Gröbner basis for the k-module Mv. Then⋃

v∈Nd

GB(Mv)

is a Gröbner basis for M .

Proof The proof is a routine check of the properties of a Gröbner basis.

Remark 9 A Gröbner basis for any k-module V with respect to an ordered basis {e j }
can be constructed from a set of generators by converting into column echelon form
the matrix M whose rows are indexed by the e j and whose columns correspond to
generators (as in Example 3).

For any v ∈ Nd , we may write v = (v, v` ) ∈ Nd−1 ×N. If M =
⊕

v∈Nd Mv is a
d-graded submodule of k[x1, ..., xd]m, we can construct a (d − 1)-graded submodule
M of (k[xd])[x1, ..., xd−1]m via

M =
⊕

v∈Nd−1

Mv,

where Mv =
⊕

` M(v,v` ) is itself a graded k[xd]-module. Furthermore, note that
xu ·Mv ⊆ Mu+v for all u, v ∈ Nd−1.

Lemma 2 can be generalized slightly:

Lemma 3 Let M =
⊕

v∈Nd Mv be a d-graded submodule of k[x1, ..., xd]m. Let
GB(Mv) denote a Gröbner basis for the graded k[xd]-module Mv. Then⋃

v∈Nd−1

GB(Mv)

is a Gröbner basis of M .



The Computational Complexity of Multidimensional Persistence 11

We will use Lemma 3 with M as either Zi (X ) or Bi (X ) for a finite d-filtered
complex X . Of course, Nd−1 is infinite, so it is necessary to choose a finite subset
S ⊆ Nd−1 so that

⋃
v∈S GB(Mv) serves as a finite Gröbner basis of M .

Let X (i) be the totally ordered set of i-simplices of the d-filtered complex X ,
and recall that for each σ ∈ X (i) , we are given a set Birth(σ) of gradings u ∈ Nd

where the simplex is born. We recall that we denote the coordinates of u ∈ Nd by
u1, u2, ..., ud . We now define

V (i)
j (X ) =




u j

�������
u ∈

⋃
σ∈X (i)

Birth(σ)


⊆ N,

V (i) (X ) =
d∏
j=1

V (i)
j (X ) ⊆ Nd,

and

V (i) (X ) =
d−1∏
j=1

V (i)
j (X ) ⊆ Nd−1 .

If our input is of size n (i.e., n = ��
⋃
σ∈X (i) Birth(σ)��), then

���V
(i)
j (X )��� ≤ n, and

hence ���V
(i) (X )��� ≤ nd and ���V

(i) (X )��� ≤ nd−1. When computing a Gröbner basis for
Bi−1(X ) or Zi (X ), we need only focus on the (at most) nd gradings in V (i) (X ) (or the
(at most) nd−1 gradings in V (i) (X )), and thus we can tailor Lemma 3 to our setting:

Lemma 4 Let X be a finite d-filtered complex. Let M denote either Zi (X ) or Bi−1(X ),
and let GB(Mv) denote a Gröbner basis for the graded k[xd]-module Mv. Then⋃

v∈V (i) (X)

GB(Mv)

is a Gröbner basis for M .

Lemma 4 allows us to split up the computation of the Gröbner basis GB(Zi (X ))
or GB(Bi (X )) of any d-filtered complex X into at most nd−1 separate computations of
Gröbner bases of the graded modules Mv over the PID k[xd]. This is wonderful news,
because finitely generated (graded) modules over a (graded) PID are well-understood.
Indeed, for any d-filtered complex X , specific algorithms for computing Gröbner
bases of Zi (Xv) and Bi (Xv) can be given by modifying slightly the algorithms given
in [14].

However, the Gröbner basis guaranteed by Lemma 4 for M = Zi (X ) or for M =
Bi (X ) is not necessarily minimal. The solution to this problem is to compute minimal
Gröbner bases for each individual Mv sequentially while maintaining separately a
master list of generators. Thismaster list is a subset of

⋃
v∈V (i) (X) GB(Mv) constructed

throughout the computation of GB(M) so as to form a minimal Gröbner basis for M
at the conclusion of the algorithm. Specific implementation details are given in the
following section.
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6 Computing Multidimensional Persistence: Algorithm CMP1

In this sectionwe give an algorithm for computingminimal Gröbner basesGB(Bi (X ))
and GB(Zi (X )) with respect to the lexicographic order discussed in Section 2. In our
exposition of the algorithm, we will err on the side of providing too many details for
the sake of completeness. For example, we explicitly describe an implementation of
sparse vectors and associated operations. We recognize the existence of other equally
valid implementations.

We briefly provide intuition for the algorithmwhich we’ll describe throughout this
section. First, Gaussian elimination serves as an O(n3) algorithm for 0-dimensional
persistence; repeating this for O(nd) gradings results in an O(nd+3) algorithm for
computing (not necessarily minimal) Gröbner bases GB(Bi (X )) and GB(Zi (X )).
Next, the work of Zomorodian and Carlsson provide a way to calculate 1-dimensional
persistence inO(n3) time by exploiting properties of finitely generated gradedmodules
over a PID [14]; repeating their algorithm O(nd−1) times (once for every grading in
V (i) (X )) results in an O(nd+2) algorithm for computing (not necessarily minimal)
Gröbner bases.

Our algorithm builds upon this in two ways. First, we show that the algorithm
of [14] can actually be used to calculate 2-dimensional persistence in O(n3) time,
leading to an O(nd+1) algorithm for computing (not necessarily minimal) Gröbner
bases. Secondly, we show that calculating minimal Gröbner bases can be performed
without a large cost in runtime.

Since our algorithm will calculate a Gröbner basis for a submodule M of a free
k[x]m-module, we need to maintain a data structure Poly for elements of M and
a data structure GB for minimal Gröbner bases GB(Bi (Xv)) and GB(Zi (Xv)). We
summarize these data structures in Figure 1. We denote the coordinates of M (which
correspond to the totally ordered (i − 1)- or i- simplexes of X) by splx_idx (i.e.,
“simplex index”). Lastly, we note that all arrays used are zero-indexed.

The elements of a GB will be stored in an array eles (i.e., “elements”), whose
jth element is a Poly. For fast reduction, we maintain a hash table splx2idx (i.e.,
“simplex to index”) within each GB. The member splx2idx takes a splx_idx (which
represents a simplex) and identifies the index within eles of the unique Poly in the
GB whose leading term is a multiple of the simplex corresponding to splx_idx.
splx2idx will be used to aid the reduction of a Poly modulo the Gröbner basis
represented by a GB. We assume that all GBs are initialized so that splx2idx and
eles are empty.

We represent each Poly as a sparse vector. The nonzero entries in the vector
corresponding to an element in M will be stored in an array eles; eles[j] gives
a pair (splx_idx, coeff), where coeff gives the field coefficient of the term in
the Poly corresponding to the simplex τsplx_idx. The elements of eles should be
arranged in increasing order: for i < j, we should have that eles[i].splx_idx <
eles[j].splx_idx. Within each Poly, we maintain a hash table splx2idx, which
takes a splx_idx and identifies the index within eles of the term in the Poly
corresponding to τsplx_idx.

We further maintain in each Poly the grading (i.e., a tuple representing an element
of V (i) (X )) at which this Poly was generated in the field grading. We decompose
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Grading: (first, last)
GB:

- eles : int --> Poly
- splx2idx : splx_idx --> int
- combineWith : (Poly, Grading, GB) --> ()

Poly:
- eles : int --> (splx_idx, coeff)
- splx2idx : splx_idx --> int
- grading : Grading
- LC : Poly (or null)

reduceWith : (Poly, Poly, k, Grading) --> Poly

Fig. 1 Data structures used in CMP1.

each grading in Nd into the first d − 1 coordinates (in the field first of the grading)
and the last coordinate (in the field last of the grading). Each Poly will be reduced
during computation, and we’ll use the field LC to record the linear combination of
i-simplexes which produce each Poly in Bi−1(Xv). The field LC will be set to null
for elements of the GBs used to calculate GB(Zi (Xv)). The grading of each Poly
generator of Bi−1(X ) is initialized with the birth grading of the generator.

We also define two methods. The method reduceWith (Algorithm 1) is respon-
sible for arithmetic on the Polys. For Polys f and g and a field coefficient c, calling
reduceWith(f, g, c, v) will return the Poly f+(c*g) with its grading set to
v.
GB.combineWith (Algorithm 2) is used to calculate minimal Gröbner bases

GB(Mv) (cf. Lemma 4). GB.combineWith takes as input a Poly, reduces it with
respect to the GB, and adds it to the GB if the reduced Poly is nonzero. Furthermore,
GB.combineWith is responsible for ensuring that its GB is a minimal Gröbner basis.
The second argument to GB.combineWith is used to record at which grading the
current reduction is taking place. There is a third argument to GB.combineWith
which is used if and only if GB is a Gröbner basis for Bi−1(Xv). In this case, the third
argument will be a Gröbner basis for Zi (Xv).

Pseudocode for CMP1, which calculates minimal Gröbner bases imageGB for
Bi−1(X ) and kernelGB for Zi (X ), is given in Algorithm 3. We remark that, for
fast implementation, W (cf. line 5) should be implemented as a list or array sorted
in lexicographic order. Furthermore, we recommend that each Poly be assigned a
unique identifier upon creation. This allows insertion into and membership queries
for the setsZ and B (cf. line 6) to be performed in O(1) time using a hash-based set.

We now prove the correctness of CMP1 and analyze its runtime. We denote the
number of i-simplices by n, the number of (i − 1)-simplices by m, and the persistence
dimension by d. We assume that d ≥ 2.

Lemma 5 reduceWith (Algorithm 1) runs in time O(m + n).

Proof There are two key observations which validate this claim. First, allIdxs (line
3) can be constructed in linear time because we assume that f.eles and g.eles are
sorted. Second, reduceWith is linear in the maximum possible size of f.eles and
f.LC.eles. If f is an element of Bi+1(X ), the maximum possible size of f.eles is
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Algorithm 1 reduceWith(f, g, c, v) returns h = f+(g*c)
1: procedure reduceWith(f, g, c, v)
2: Let h be a new Poly
3: Let allIdxs←− sorted( {ele.splx_idx | ele in f.eles or g.eles})
4: for splx_idx in allIdxs do
5: Let newCoeff ←− 0
6: if splx_idx in f.splx2idx then
7: newCoeff ←− f.eles[f.splx2idx[splx_idx]].coeff
8: end if
9: if splx_idx in g.splx2idx then
10: newCoeff ←− newCoeff + c*g.eles[g.splx2idx[splx_idx]].coeff
11: end if
12: if newCoeff , 0 then
13: h.splx2idx[splx_idx]←− h.eles.size()
14: h.eles.append((splx_idx, newCoeff))
15: end if
16: end for
17: h.grading←− v
18: if f.LC is not null then
19: h.LC←− reduceWith(f.LC, g.LC, c, v)
20: end if
21: return h
22: end procedure

Algorithm 2 Algorithm to add a polynomial to a minimal Gröbner basis for a 1D
persistence module
1: procedure GB.combineWith(g, v, KGB (default null))
2: if g.eles[0].splx_idx is not in this.splx2idx then
3: this.splx2idx[g.eles[0].splx_idx]←− this.eles.size()
4: this.eles.append(g)
5: return
6: end if
7: h←− this.eles[this.splx2idx[g.eles[0].splx_idx]]
8: if g.grading.last < h.grading.last then
9: this.eles[this.splx2idx[g.eles[0].splx_idx]]←− g
10: this.combineWith(h, (v.first, h.grading.last), KGB)
11: return
12: end if
13: g←− reduceWith(g, h, -g.eles[0].coeff * h.eles[0].coeff−1, v)
14: if g , 0 then
15: this.combineWith(g, v, KGB)
16: end if
17: if (g = 0) and (KGB is not null) and (g.LC , 0) then
18: KGB.combineWith(g.LC, v, null)
19: end if
20: end procedure

m and the maximum possible size of f.LC.eles is n. If f is an element of Zi (X ),
the maximum possible size of f.eles is n and f.LC is null.

Lemma 6 Let Bv and Zv be instances of a GB representing minimal Gröbner bases
for submodules MB of Bi−1(X )v and MZ of Zi (X )v, respectively.
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Algorithm 3 [CMP1] Algorithm which calculates a minimal Gröbner basis for Zi (X )
and Bi−1(X ) given the Poly generators g of Bi−1(X ), where each g is the boundary
of some i-simplex of X .
1: procedure CMP1(Poly generators {g} of Bi−1 (X))
2: Initialize empty sets kernelGB and imageGB (to store Gröbner bases for Zi (X) and Bi−1 (X))
3: for gradings v inV (i) (X) in lexicographic order do
4: Initialize GBs named Zv (for Zi (X)v) and Bv (for Bi−1 (X)v)
5: W ←−

{
w

���� w is an immediate predecessor to v inV (i) (X)
}

6: Let Z and B be empty sets of Polys
7: for w inW in reverse lexicographic order do
8: for g in Zw such that g is not in Z do
9: Zv.combineWith(g, (v, g.grading.last), null)
10: Add g to Z
11: end for
12: end for
13: for w inW in reverse lexicographic order do
14: for g in Bw such that g is not in B do
15: Bv.combineWith(g, (v, g.grading.last), Zv)
16: Add g to B
17: end for
18: end for
19: for generator g in Bi−1 (X)v do
20: Bv.combineWith(g, g.grading, Zv)
21: end for
22: for g in

{
g ∈ Bv �� g.grading.first = v

}
do

23: Add g to imageGB
24: end for
25: for g in

{
g ∈ Zv �� g.grading.first = v

}
do

26: Add g to kernelGB
27: end for
28: end for
29: return kernelGB and imageGB
30: end procedure

A call of the form Bv.combineWith(g, u, Zv) modifies Bv to be a minimal
Gröbner basis for the module generated by MB and g. If the addition of g into Bv
introduces a syzygy h of the generators of MB (i.e., an element of Zi (X )v), then
Bv.combineWith(g, u, Zv) further modifies Zv to be a minimal Gröbner basis
for the module generated by MZ and h. Furthermore, calls of this form run in time
O(n2 + nm + m2) = O(n2 + m2).

Similarly, a call of the form Calling Zv.combineWith(g, u, null) modifies
Zv to be a minimal Gröbner basis for the module generated by MZ and g. Calls of
this form run in time O(n2).

Proof Recall that combineWith assumes a priori that Bv and Zv are minimal Gröb-
ner bases. Every call to combineWith maintains this minimality. Indeed, calling
Bv.combineWith(g, u, Zv) reduces g with respect to MB. If the remainder g′ of
this reduction is nonzero, then g′ is added to Bv. If g′ is zero, then g′.LC (which keeps
track of which reductions have been performed in terms of the generators of Bi (X ))
is combined with Zv.
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Combining g with Bv requires at most m calls to reduceWith (which runs in
time O(m + n) (Lemma 5)). Combining g.LC with Zv requires at most n calls to
reduceWith (which runs in time O(n)). We conclude that each call of the form
Bv.combineWith takes time O(n2 + nm + m2) = O(n2 + m2).

A similar argument holds for calls of the from Zv.combineWith(g, u, null).

Lemma 7 At the conclusion of CMP1, each Bv (resp. Zv) is a minimal Gröbner basis
for Bi−1(X )v (resp. Zi (X )v).

Proof We prove that the loop beginning in line 3 of CMP1 inductively constructs
minimal Gröbner bases for Bi−1(X )v (resp. Zi (X )v).

Lines 7 through 21 of CMP1 compute minimal Gröbner bases for Bi−1(X )v (resp.
Zi (X )v) in two stages. First, in lines 7 through 18, we combine the generators from
all Bw (resp. Zw), where w runs over all immediate predecessors of v in the partial
ordering on V (i) (X ). Lines 19 through 21 then combine generators that first appear in
grading v. Minimality is guaranteed by combineWith (Lemma 6).

Theorem 4 CMP1 computes minimal Gröbner bases for Zi (X ) and Bi−1(X ).

Proof Throughout the process of constructing Bv (resp. Zv), combineWith is respon-
sible for maintaining the grading when each generator g of Bi−1(X )v (resp. Zi (X )v)
was born. Because Bv (resp. Zv) is a minimal Gröbner basis (cf. Lemma 7), an element
g in Bv (resp. Zv) has grading v only if the leading term of g is not divisible by the
leading term of any element of any Bi−1(X )w (resp. Zi (X )w) for any immediate pre-
decessors w of v. After we have completely constructed Gröbner bases for Bi−1(X )v
(resp. Zi (X )v), we add an element g to the minimal Gröbner basis for Bi−1(X ) (resp.
Zi (X )) if and only if g is associated with grading v (cf. lines 22 through 27).

Theorem 5 The runtime of CMP1 is O(dnd + nd−1(n2 + m2)) ≈ O(nd+1).

Proof For this proof, we use the symbol u to denote an element of Nd .
During our exposition of CMP1, we have so far split gradings into two pieces;

that is, we have been representing any d-tuple u as a pair (u.first, u.last),
where u.first ∈ Nd−1 and u.last ∈ N. For this proof, we further split u.first
into a pair (u.first.first, u.first.last), where u.first.first ∈ Nd−2

and u.first.last ∈ N. Note that u.first.first will be empty if d = 2.
In the remainder of the proof, we will show that for any fixed u, the computation

of all Gröbner bases for the Bv such that v.first = u.first.first occurs in
O(dn2 + n(n2 + m2)) time. We will first consider the case where d = 2 (i.e., when
u.first.first is empty) and then show that our argument holds for d > 2. Since
there exactly nd−2 possibilities for u.first.first (and we assume that d � n), it
follows that CMP1 runs in time O(nd−1(n2 + m2)).

If d = 2, then V (i) (X ) ⊆ N and W (defined on line 5 of CMP1) will contain at
most one element throughout the algorithm. Therefore, there is no need to maintain
each Bw (resp. Zw) after having constructed Bv (resp. Zv). In this case, lines 7 through
18 of CMP1 are unnecessary; we need only maintain GBs B and Z as long as we
remember to add the required Polys from B and Z to imageGB and kernelGB (lines
22 through 27) during each iteration of the loop. Hence, when d = 2 and when we
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make the simplification where we ignore lines 7 through 18, combineWith is called
from CMP1 exactly n times, leading to an overall O(n(n2 + m2)) runtime.

Fortunately, when d = 2, the simplification described in the previous paragraph
(which removes lines 7 through 18 from CMP1) does not cause a decrease in the
overall complexity of CMP1. Since each Bw (resp. Zw) is assumed to be a minimal
Gröbner basis, each of the calls to combineWith in lines 9 and 15 of CMP1 runs
in constant time because the conditional in line 2 of combineWith will evaluate to
true. Since the size of Bw (resp. Zw) is O(n), lines 7 through 18 in CMP1 contribute
a negligible O(n2) increase in the runtime to CMP1. Moreover, this increase is solely
due to copying items from Bw (resp. Zw) into Bv (resp. Zv).

We now consider the case when d > 2. The argument is similar; we wish to split
the computation intoO(nd−2) two-dimensional slices (by two-dimensional “slice”, we
refer to all gradings u of V (i) (X ) which share the same value for u.first.first).
We propose that computing the Gröbner bases for each two-dimensional slice can be
accomplished in O(n(n2 + m2)) time. If our goal was simply to compute Gröbner
bases for Bi−1(X ) and Zi (X ) in the proposed runtime, we could simply repeat the
two-dimensional algorithm (analyzed in the previous two paragraphs) O(nd−2) times.
However, we wish to compute minimal Gröbner bases. Consequently, we must insert
a Poly g of Bv (resp. Zv) into imageGB (resp. kernelGB) if and only if g is reduced
with respect to all Bw (resp. Zw) such that w < v. We accomplish this via lines 7
through 18 of CMP1.

Note that, for each v, the first iteration of lines 8 though 11 and in lines 14
through 17 will only copy elements from the relevant Bw (resp. Zw) into Bv (resp.
Zv); no reductions will occur. Note further that if there is a predecessor w of v in the
same two-dimensional slice, then this w is lexicographically last among the immediate
predecessors of v.

The key to calculating minimal Gröbner bases while maintaining a modest run-
time lies in calling combineWith on a Poly only if that Poly has not yet been
processed into Bv. For each generator g of Bi−1(X ), we would like to ensure that
g only causes one call to combineWith from CMP1 per two-dimensional slice. To
achieve this, lines 7 and 13 traverse W in reverse lexicographic order. As a result of
this ordering, for each v, during the first iteration of lines 8 through 11 and 14 through
17, w is in the same two-dimensional slice as v. Because of lines 8, 10, 14, and 16,
subsequent iterations of lines 8 through 11 and 14 through 17 (for the same v) pass
to combineWith Poly generators g (potentially partially reduced in previously pro-
cessed two-dimensional slices) only if g.grading.first.last = v.last. Indeed,
if g.grading.first.last < v.last, then g would have already been added toZ
or B.

Consequently, for each two-dimensional slice, calls to combineWith contribute
O(n(n2+m2)) to the algorithm’s time complexity. Moreover, lines 8 and 14 contribute
O(dn) to the time complexity of CMP1 for each grading v, since lines 8 and 14 must
filter O(n) Polys from each of O(d) GBs.

Thus, our algorithm runs in time

O(nd−2(dn2 + n(n2 + m2))) = O(dnd + nd−1(n2 + m2)).



18 Jacek Skryzalin, Pawin Vongmasa

Moreover, we do not need to consider all m (i − 1)-simplices; we need only consider
those simplices which occur as the face of some i-simplex. There are at most (i + 1)n
of these. In most applied topology contexts, i and d are taken to be small; by assuming
that i = O(1) and d = O(n), we obtain an approximate runtime bound of O(nd+1) for
CMP1.

Remark 10 The proof of Theorem 5 actually provides a slightly tighter complex-
dependent bound on the runtime of CMP1. If V (i)

1:d−2(X ) denotes the set obtained by
projecting each element of V (i) (X ) onto its first d − 2 coordinates, then our proof
shows that the runtime of CMP1 when computing Bi−1(X ) and Zi (X ) is

O
(���V

(i)
1:d−2(X )���

(
dn2 + n(n2 + m2)

))
.

Remark 11 It is possible to parallelize CMP1! Although we specified in line 3 that
V (i) (X ) was to be traversed in increasing lexicographic order, it is possible to execute
lines 4 through 27 of CMP1 for any grading v ∈ V (i) (X ) provided that these lines
have already been executed for all gradings w ∈ V (i) (X ) such that w is an immediate
predecessor of v.

By taking full advantage of this fact in a setting with limitless parallelization, the
runtime of our algorithm becomesO(dn2(d+n2+m2)) for d > 2. Indeed, the runtime
can be bounded above by the product of (a) the runtime of the computation of one
iteration of lines 4 through 27 in CMP1, and (b) the length of a minimal sequence
v0, v1, . . . , v` from the minimum element of V (i) (X ) to the maximum element of
V (i) (X ), where each vr+1 is an immediate successor to vr in the partial order on
V (i) (X ). Theorem 5 shows that one iteration of lines 4 through 27 has runtime
O(dn + n(n2 + m2)), and the maximum possible length of such a minimal sequence
has ` = (d − 1)(n − 1) + 1 = O(dn) (this bound is tight when |V (i)

j (X ) | = n for all j).

Remark 12 Although we have managed to achieve a respectable upper bound on the
runtime of the computation of a Gröbner basis for Bi (X ) and Zi (X ), our algorithm as
stated above will quite possibly execute a number of redundant computations (in lines
7 through 21 of CMP1). We would like a way to ensure that if two polynomials have
been reduced in one two-dimensional slice, then these two polynomials will never
again be reduced in another two-dimensional slice. We leave as open the problem of
constructing an algorithmic solution to this problem.

We mention that this problem is also encountered in the original version of
Buchberger’s algorithm, where one does not wish to compute a reduction to any S-
polynomial if one has prior information that this reduction will be 0. Faugère’s F5
algorithm [11] provides a good solution to this problem in the case when one is trying
to calculate a Gröbner basis of an ideal of a polynomial ring. It would be highly
beneficial to adopt these techniques to the persistence setting in a way that does not
greatly increase the time or space complexity of our algorithm.

Remark 13 Given Gröbner bases GB for Bi (X ) and GZ for Zi (X ), we can calculate
the rank ρu,v(Hi (X )) for any u, v ∈ Nd using the algorithm given in Section 6.3 of [4].
A cursory analysis of the algorithm shows that the runtime of calculating ρu,v(Hi (X ))
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is well approximated by the runtime of column reducing the matrix whose columns
correspond to the elements of GB and GZ . The runtime of such an operation is
O

(
n (|GB | + |GZ |)2

)
.

7 Empirical Evaluation of Runtime

In the previous section we have described an algorithm for computing multidimen-
sional persistence and provided an upper bound on its runtime. In this section, we
randomly construct and compute the persistent homology of d-filtered simplicial
complexes.

In [4], empirical measures of runtime were calculated from simulated boundary
matrices. In an attempt to better emulate the boundary matrix of a collection of i-
simplices, each column in these simulated boundary matrices contained the same
number of nonzero entries. Our experiments, motivated by the following proposition,
differ slightly in that we construct boundary matrices from actual d-filtered abstract
simplicial complexes.

Proposition 1 There exists a matrix over F2 such that each column contains the
same number of nonzero entries that does not arise as the boundary matrix from any
abstract simplicial complex.

Proof Consider the following matrix:

M =



1 1
1 1
1 0
0 1


Assume towards a contradiction that M = ∂2(X ) for some abstract simplicial complex
X . Since the rows of M must be indexed by the 1-simplices of X , we may assume
without loss of generalization that the first row of M represents the 1-simplex [0, 1],
that the second row of M represents the 1-simplex [0, 2], and that the third row of
M represents [1, 2]. Because these are the only three edges that may exist among
an abstract simplicial complex with three vertices, the existence of a fourth row in
M implies the existence of a fourth vertex [3]. But then the second column of M
represents a 2-simplex which contains 4 vertices, which is impossible.

Remark 14 Proposition 1 presents a number of questions which we leave as open
problems. For example:

1. For a given dimension i, a number n of i-simplices, and a number m of i − 1
simplices, what percentage of all m× n matrices with exactly i+1 nonzero entries
in each column arise as the boundary matrices of a simplicial complex?

2. Does the time complexity of computing persistent homology change when consid-
ering onlymatrices which arise as boundarymatrices of some simplicial complex?

3. Does the assumption that a matrix M arises as the boundary matrix of a simplicial
complex provide any information about the size of a Gröbner basisG for the image
or boundary of M?
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Thus, for our experiments, we randomly generate an i-dimensional abstract sim-
plicial complex X to test the computation of GB(Zi (X )) and GB(Bi (X )) according
to the following procedure. First, we specify the values of six variables:

– the dimension i of the abstract simplicial complex X
– the number |V | of vertices of X
– the number |S | of i-simplices of X
– the persistence dimension d of X
– the number of distinct persistence coordinates |P | per persistence dimension (no-
tated above as ���V

(i)
j (X )���)

– the number |T | of birth times per i-simplex

We randomly create a set X of cardinality |S |, each element of which is a subset
of {0, 1, . . . , |V | − 1} of cardinality i + 1. For each element of X, we assign |T | d-
tuples, each entry of which is a natural number between 0 and |P | − 1 inclusive. The
elements of X represent a collection of |S | i-simplexes, and the d-tuples associated to
each simplex represent the birth times of the simplex. We then run algorithm CMP1
against the complex and measure runtime.

We first test the effect of changing the dimension i of the complex. Figure 2 shows
the runtime while varying i from 2 to 8. We see a modest runtime for smaller complex
dimensions. However, once the dimension of the complex of the dimension of the
complex reaches 6, the runtime increases significantly.

We next test the effect of varying the number of vertices between 25 and 5000. For
this experiment, we fix the number of simplexes at 500, the dimension of the complex
at 3, the persistence dimension at 4, the number of distinct persistence coordinates
in each (persistence) dimension at 50, and the number of birth times per simplex at
1. With these settings, the runtime of CMP1 varies between 5.75 seconds and 6.25
seconds, and the runtime for this experiment appears to be independent of the number
of vertices.

For our third test, we study the effect of changing the number of simplexes in the
top dimension. Figure 3 shows the runtime while varying the number |S | of simplexes
of top dimension between 100 and 10,000. Note that the linear relationship between
runtime and the number of simplexes of top dimension in noway contradicts theO(n5)
runtime suggested by Theorem 5. In this experiment, we fix the number of birth times
per persistence dimension at 50; in contrast, Theorem 5 implicitly assumes that the
number of birth times per persistence dimension is Θ( |S |).

Next, we study the relationship between persistence dimension and runtime. Figure
4 shows the runtime while varying the persistence dimension between 1 and 5. We
see from this graph that, as suggested by Theorem 5, persistence dimension has a very
significant effect on runtime.

For our next experiment, we plot the runtime of CMP1 against |P |, the number of
distinct persistence coordinates per persistence dimension and present the results in
Figure 5.We see amodest runtime when the number of unique persistence coordinates
per dimension stays below 100. We thus recommend that users of multidimensional
persistence bin persistence coordinates to maintain a modest runtime.
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Fig. 2 The runtime of CMP1 as a function of the complex dimension i. For this experiment, we fix the
number of vertices and the number of i-simplices at 1000. Furthermore, the persistence dimension is fixed
at 4, the number of distinct persistence coordinates in each (persistence) dimension is fixed at 50, and the
number of birth times per simplex is fixed at 1.

Finally, we plot the runtime of CMP1 against the number |T | of birth times per
simplex. Figure 6 suggests that there is a roughly linear relationship between the
number of birth times per simplex and the runtime of CMP1.
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Fig. 3 The runtime of CMP1 as a function of the number |S | of simplices of dimension i. For this
experiment, we fix the number of vertices at 1000, the dimension of the complex at 3, the persistence
dimension is fixed at 4, the number of distinct persistence coordinates per persistence dimension is fixed
at 50, and the number of birth times per simplex is fixed at 1. The runtime profile assuming 250 and 500
vertices is almost identical (although not shown here).
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Fig. 4 The runtime of CMP1 as a function of persistence dimension. For this experiment, we fix the number
of vertices and simplexes of top dimension at 1000, the dimension of the complex at 3, the number of
distinct persistence coordinates per persistence dimension at 50, and the number of birth times per simplex
at 1.
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Fig. 5 The runtime of CMP1 as a function of the number of distinct persistence coordinates per persistence
dimension. For this experiment, we fix the number of vertices and simplexes of top dimension at 500, the
dimension of the complex at 3, the persistence dimension at 4, and the number of birth times per simplex
at 1.
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Fig. 6 The runtime of CMP1 as a function of the number of birth times per simplex in top dimension. For
this experiment, we fix the number of vertices and simplexes of top dimension at 1000, the dimension of
the complex at 3, the persistence dimension at 4, and the number of distinct persistence coordinates per
persistence dimension at 50.


