
Adversarial Issues in Machine Learning
Dr. W. Philip Kegelmeyer, Sandia National Laboratories

Introduction

The US Government makes critical use of machine learning analytics in defense of national
security. One of the primary defining characteristics of a “national security” analysis is the
existence of adversaries who seek to sap, even suborn, that analysis. Through understand-
ing the machine learning methods in play, they seek to produce data which is evolving,
incomplete, deceptive, and otherwise custom-designed to defeat them.

This cannot be easily prevented. Recent work[1, 2] has shown that if a machine learning
model is publicly deployed, it can itself be easily modeled, even duplicated, and then studied
in private to discover its weaknesses. Even a privately held model might be sufficiently
well deduced through reverse engineering, or network compromise. And once a model is
understood, there are typically many avenues of attack, as the training data, test data, or
both are generally uncontrolled, and can be modified by an adversary.

“Adversarial Machine Learning” addresses these issues, spanning developing attacks
against machine learning, assessing defenses, detecting whether an attack is in progress,
quantitative assessment of worst case scenarios, considerations around if, when, and how
to deploy a machine learning model, and so on. Adversarial machine learning tradecraft is
essentially applying vulnerability assessment methods at the algorithm level, rather than to
software or hardware. The end goal is to harden the machine learning methods in use, and
in any case, to regard their outputs with an informed, wary eye. That is, to become the top
middle sheep in Figure 1, the one that doesn’t quite buy into the “IF (white AND fuzzy)
THEN <Harmless>” analytic.
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Figure 1: IF (white AND fuzzy) THEN <Harmless>

A Taxonomy of Adversary Goals

Though adversarial aspects of machine learning have been discussed for more than a decade[3],
there is no broadly adopted consensus as to how to categorize an adversary’s goals. One
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possibility is to think in terms of “quality”, “confidence”, or “evasion” attacks:

• In a quality attack the adversary’s goal is to drive down the overall effectiveness of ma-
chine learning as assessed on the training data, regardless of whether test performance
is unaffected. The idea might be to convince the defender not to deploy an actually
useful analytic, or to cause the defender to waste time attempting to improve it.

• In a confidence attack the adversary’s goal is to drive down the overall effectiveness of
machine learning as assessed on the test data, without necessarily affecting accuracy
on the training data. The idea here is to convince the defender to confidently deploy
an ineffective analytic.

• In an evasion attack the adversary’s goal is to engineer a specific desired outcome for
a specific future test sample or samples. Thus the idea is to appropriately shape a
specific part of the machine learning decision surface, or to understand the existing
decision surfaces well enough to be able to move evasively within them.

What Makes Machine Learning Vulnerable?

What might make a machine learning algorithm vulnerable to such attacks? Classic super-
vised machine learning methods depend on two fundamental assumptions; violating either
of them creates exploitable weaknesses.

The first assumption is that the test data is essentially similar to the training data. It has
long been well understood that this is often an unreliable expectation. For instance, data
often changes slowly and naturally over time. Therefore much research has been focused
on building machine learning models robust to dissimilar test data; examples are methods
for handling concept drift[4], or for using transfer learning[5] to explicitly extend a machine
learning model beyond its original training data.

This test set similarity assumption is also the basis for most of the currently popular
attacks against deep learning on image data[6]. Deep learning methods typically overfit
their training data, generating machine learning models which are indeed very accurate if
the test data is similar to the training data, but which are easily led astray by minutely
altered test data. This vulnerability has created its own sub-field, Generative Adversarial
Networks[7], in which one machine learning model is explicitly trained to generate images
designed to fool a competing machine learning model, which is in turn trying to learn how
not to be fooled.

The second assumption, perhaps less well appreciated, is that the “groundtruth” labels
in the training data used to build the model are accurate. Undermining this assumption by
tampering with the labels exposes particularly pernicious algorithmic vulnerabilities.

An Example Label Tampering Vulnerability

As one example, consider ensembles of bagged decision trees[8] as the machine learning
method. For machine learning in general it is standard to assume that self-assessment on
the training data via cross validation is a useful, if mildly optimistic, estimate of accuracy on
an eventual test set. Further, for ensemble methods in particular, it is standard to assume
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that ensemble accuracy will be higher than the average accuracy of the individual trees.
These assumptions have been correct so consistently that they are rarely examined.

With that in mind, consider Figure 2, which depicts the results of tampering with
groundtruth labels. The underlying data is a product inspection data set with roughly
balanced “Pass/Fail” labels. The curves indicate what happens to three measures of accu-
racy (on the y-axis) as we flip a certain number of the ground truth labels (the x-axis) before
we build the ensemble model. Here the adversary is choosing which labels to flip in a purely
random fashion.

(ensembles training data, ensembles test data, single tree test data)

Figure 2: A Random Label Flipping Attack is Effective But Obvious

In that plot, the red curve is the test set accuracy, the accuracy we care about. Happily,
nearly two hundred of the five hundred training samples must be corrupted before there
is a noted drop in accuracy, which is a reassuring testament to the robustness of ensemble
decision tree methods. Also, at first, the ensemble accuracy (in red) out performs the average
single tree accuracy (in black), as we would hope.

The blue curve depicts the cross-validated training set accuracy. That does decrease
nearly linearly with the amount of tampering (until a full half of the data is flipped), and
thereby illustrates a mild example of a “quality” attack. That is, a defender who looked only
at training set accuracy might incorrectly conclude that the test set accuracy would not be
high enough to be useful.

Unfortunately, Figure 2 is a best-case scenario of a particularly lazy adversarial attack.
Now consider Figure 3, which illustrates an effective “confidence” attack. Here the adversary
has been slightly smarter, and has clustered all of the training data, randomly ordered the
clusters, and then randomly attacked all members of a cluster before going on to the next
one. This small change dramatically improves matters for the adversary. Now the test set
ensemble accuracy (in red) decreases nearly linearly with the amount of tampering. It is
also essentially no better than the average tree accuracy (in black), which means the extra
computation required by ensembles is accomplishing nothing.

Most worrisome, however, is the fact that the training set accuracy, in blue, stays rel-
atively flat regardless of the degree of tampering. This means, for instance, that if the
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(ensembles training data, ensembles test data, single tree test data)

Figure 3: A Slightly Smarter Label Flipping Attack is Effective But Not Obvious

adversary can tamper one hundred of the training points, the actual real-world accuracy will
decrease to about 60%, but the defender won’t know this! They’ll expect the accuracy to be
around 90%, because that’s what the training set validation indicates.

Conclusion

Adversarial machine learning is a new and rapidly developing field, and so this article was
able only to introduce some of its ideas, along with a single example of an unnervingly
effective attack.

Still, we can’t stop using these methods, so perhaps we can learn to consider them with
a useful sense of watchful paranoia. G.K. Chesteron famously said “We must learn to love
life without ever quite trusting it”[9]; that seems the right perspective to take with machine
learning as well.
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